text
stringlengths
0
1.05M
meta
dict
from __future__ import absolute_import, division, print_function from functools import wraps __all__ = ['memoize', 'singleton', 'memoize_attr_check'] def _make_key(args, kwargs): return args, frozenset(kwargs.items()) def memoize(func): """Save results of function calls to avoid repeated calculation""" memo = {} @wraps(func) def wrapper(*args, **kwargs): key = _make_key(args, kwargs) try: return memo[key] except KeyError: result = func(*args, **kwargs) memo[key] = result return result except TypeError: # unhashable input return func(*args, **kwargs) wrapper.__memoize_cache = memo return wrapper def clear_cache(func): """ Clear the cache of a function that has potentially been decorated by memoize. Safely ignores non-decorated functions """ try: func.__memoize_cache.clear() except AttributeError: pass def memoize_attr_check(attr): """ Memoize a method call, cached both on arguments and given attribute of first argument (which is presumably self) Has the effect of re-calculating results if a specific attribute changes """ def decorator(func): # must return a decorator function @wraps(func) def result(*args, **kwargs): first_arg = getattr(args[0], attr) return memo(first_arg, *args, **kwargs) @memoize def memo(*args, **kwargs): return func(*args[1:], **kwargs) return result return decorator def singleton(cls): """Turn a class into a singleton, such that new objects in this class share the same instance""" instances = {} @wraps(cls) def getinstance(): if cls not in instances: instances[cls] = cls() return instances[cls] return getinstance
{ "repo_name": "JudoWill/glue", "path": "glue/core/decorators.py", "copies": "1", "size": "1903", "license": "bsd-3-clause", "hash": -4601531437269009400, "line_mean": 23.7142857143, "line_max": 76, "alpha_frac": 0.6111403048, "autogenerated": false, "ratio": 4.266816143497758, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5377956448297758, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import wraps import numpy as np from matplotlib.patches import Polygon, Rectangle, Ellipse, PathPatch from matplotlib.patches import Path as mplPath from matplotlib.transforms import IdentityTransform, blended_transform_factory import copy np.seterr(all='ignore') from .exceptions import UndefinedROI __all__ = ['Roi', 'RectangularROI', 'CircularROI', 'PolygonalROI', 'AbstractMplRoi', 'MplRectangularROI', 'MplCircularROI', 'MplPolygonalROI', 'MplXRangeROI', 'MplYRangeROI', 'XRangeROI', 'RangeROI', 'YRangeROI','VertexROIBase'] PATCH_COLOR = '#FFFF00' SCRUBBING_KEY = 'control' try: from matplotlib.nxutils import points_inside_poly except ImportError: # nxutils removed in MPL v1.3 from matplotlib.path import Path as mplPath def points_inside_poly(xypts, xyvts): p = mplPath(xyvts) return p.contains_points(xypts) def aspect_ratio(axes): """ Returns the pixel height / width of a box that spans 1 data unit in x and y """ width = axes.get_position().width * axes.figure.get_figwidth() height = axes.get_position().height * axes.figure.get_figheight() xmin, xmax = axes.get_xlim() ymin, ymax = axes.get_ylim() return height / width / (ymax - ymin) * (xmax - xmin) def data_to_norm(axes, x, y): xy = np.column_stack((np.asarray(x).ravel(), np.asarray(y).ravel())) pixel = axes.transData.transform(xy) norm = axes.transAxes.inverted().transform(pixel) return norm def data_to_pixel(axes, x, y): xy = np.column_stack((np.asarray(x).ravel(), np.asarray(y).ravel())) return axes.transData.transform(xy) def pixel_to_data(axes, x, y): xy = np.column_stack((np.asarray(x).ravel(), np.asarray(y).ravel())) return axes.transData.inverted().transform(xy) class Roi(object): # pragma: no cover """ A geometrical 2D region of interest. Glue uses Roi's to represent user-drawn regions on plots. There are many specific subtypes of Roi, but they all have a ``contains`` method to test whether a collection of 2D points lies inside the region. """ def contains(self, x, y): """Return true/false for each x/y pair. :param x: Array of X locations :param y: Array of Y locations :returns: A Boolean array, where each element is True if the corresponding (x,y) tuple is inside the Roi. :raises: UndefinedROI exception if not defined """ raise NotImplementedError() def center(self): """Return the (x,y) coordinates of the ROI center""" raise NotImplementedError() def move_to(self, x, y): """Translate the ROI to a center of (x, y)""" raise NotImplementedError() def defined(self): """ Returns whether or not the subset is properly defined """ raise NotImplementedError() def to_polygon(self): """ Returns a tuple of x and y points, approximating the ROI as a polygon.""" raise NotImplementedError def copy(self): """ Return a clone of the ROI """ return copy.copy(self) class PointROI(Roi): def __init__(self, x=None, y=None): self.x = x self.y = y def contains(self, x, y): return False def move_to(self, x, y): self.x = x self.y = y def defined(self): try: return np.isfinite([self.x, self.y]).all() except TypeError: return False def center(self): return self.x, self.y def reset(self): self.x = self.y = None class RectangularROI(Roi): """ A 2D rectangular region of interest. """ def __init__(self, xmin=None, xmax=None, ymin=None, ymax=None): super(RectangularROI, self).__init__() self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax def __str__(self): if self.defined(): return "x=[%0.3f, %0.3f], y=[%0.3f, %0.3f]" % (self.xmin, self.xmax, self.ymin, self.ymax) else: return "Undefined Rectangular ROI" def center(self): return self.xmin + self.width() / 2, self.ymin + self.height() / 2 def move_to(self, x, y): cx, cy = self.center() dx = x - cx dy = y - cy self.xmin += dx self.xmax += dx self.ymin += dy self.ymax += dy def corner(self): return (self.xmin, self.ymin) def width(self): return self.xmax - self.xmin def height(self): return self.ymax - self.ymin def contains(self, x, y): """ Test whether a set of (x,y) points falls within the region of interest :param x: A scalar or numpy array of x points :param y: A scalar or numpy array of y points *Returns* A list of True/False values, for whether each (x,y) point falls within the ROI """ if not self.defined(): raise UndefinedROI return (x > self.xmin) & (x < self.xmax) & \ (y > self.ymin) & (y < self.ymax) def update_limits(self, xmin, ymin, xmax, ymax): """ Update the limits of the rectangle """ self.xmin = min(xmin, xmax) self.xmax = max(xmin, xmax) self.ymin = min(ymin, ymax) self.ymax = max(ymin, ymax) def reset(self): """ Reset the rectangular region. """ self.xmin = None self.xmax = None self.ymin = None self.ymax = None def defined(self): return self.xmin is not None def to_polygon(self): if self.defined(): return [self.xmin, self.xmax, self.xmax, self.xmin, self.xmin], \ [self.ymin, self.ymin, self.ymax, self.ymax, self.ymin] else: return [], [] def __gluestate__(self, context): return dict(xmin=self.xmin, xmax=self.xmax, ymin=self.ymin, ymax=self.ymax) @classmethod def __setgluestate__(cls, rec, context): return cls(xmin=rec['xmin'], xmax=rec['xmax'], ymin=rec['ymin'], ymax=rec['ymax']) class RangeROI(Roi): def __init__(self, orientation, min=None, max=None): """:param orientation: 'x' or 'y'. Sets which axis to range""" super(RangeROI, self).__init__() if orientation not in ['x', 'y']: raise TypeError("Orientation must be one of 'x', 'y'") self.min = min self.max = max self.ori = orientation def __str__(self): if self.defined(): return "%0.3f < %s < %0.3f" % (self.min, self.ori, self.max) else: return "Undefined %s" % type(self).__name__ def range(self): return self.min, self.max def center(self): return (self.min + self.max) / 2 def set_range(self, lo, hi): self.min, self.max = lo, hi def move_to(self, center): delta = center - self.center() self.min += delta self.max += delta def contains(self, x, y): if not self.defined(): raise UndefinedROI() coord = x if self.ori == 'x' else y return (coord > self.min) & (coord < self.max) def reset(self): self.min = None self.max = None def defined(self): return self.min is not None and self.max is not None def to_polygon(self): if self.defined(): on = [self.min, self.max, self.max, self.min, self.min] off = [-1e100, -1e100, 1e100, 1e100, -1e100] x, y = (on, off) if (self.ori == 'x') else (off, on) return x, y else: return [], [] def __gluestate__(self, context): return dict(ori=self.ori, min=self.min, max=self.max) @classmethod def __setgluestate__(cls, rec, context): return cls(rec['ori'], min=rec['min'], max=rec['max']) class XRangeROI(RangeROI): def __init__(self, min=None, max=None): super(XRangeROI, self).__init__('x', min=min, max=max) class YRangeROI(RangeROI): def __init__(self, min=None, max=None): super(YRangeROI, self).__init__('y', min=min, max=max) class CircularROI(Roi): """ A 2D circular region of interest. """ def __init__(self, xc=None, yc=None, radius=None): super(CircularROI, self).__init__() self.xc = xc self.yc = yc self.radius = radius def contains(self, x, y): """ Test whether a set of (x,y) points falls within the region of interest :param x: A list of x points :param y: A list of y points *Returns* A list of True/False values, for whether each (x,y) point falls within the ROI """ if not self.defined(): raise UndefinedROI if not isinstance(x, np.ndarray): x = np.asarray(x) if not isinstance(y, np.ndarray): y = np.asarray(y) return (x - self.xc) ** 2 + (y - self.yc) ** 2 < self.radius ** 2 def set_center(self, x, y): """ Set the center of the circular region """ self.xc = x self.yc = y def set_radius(self, radius): """ Set the radius of the circular region """ self.radius = radius def get_center(self): return self.xc, self.yc def get_radius(self): return self.radius def reset(self): """ Reset the rectangular region. """ self.xc = None self.yc = None self.radius = 0. def defined(self): """ Returns True if the ROI is defined """ return self.xc is not None and \ self.yc is not None and self.radius is not None def to_polygon(self): """ Returns x, y, where each is a list of points """ if not self.defined(): return [], [] theta = np.linspace(0, 2 * np.pi, num=20) x = self.xc + self.radius * np.cos(theta) y = self.yc + self.radius * np.sin(theta) return x, y def __gluestate__(self, context): return dict(xc=self.xc, yc=self.yc, radius=self.radius) @classmethod def __setgluestate__(cls, rec, context): return cls(xc=rec['xc'], yc=rec['yc'], radius=rec['radius']) class VertexROIBase(Roi): def __init__(self, vx=None, vy=None): """ :param vx: initial x vertices :type vx: list :param vy: initial y vertices :type vy: list """ super(VertexROIBase, self).__init__() self.vx = vx self.vy = vy if self.vx is None: self.vx = [] if self.vy is None: self.vy = [] def add_point(self, x, y): """ Add another vertex to the ROI :param x: The x coordinate :param y: The y coordinate """ self.vx.append(x) self.vy.append(y) def reset(self): """ Reset the vertex list. """ self.vx = [] self.vy = [] def replace_last_point(self, x, y): if len(self.vx) > 0: self.vx[-1] = x self.vy[-1] = y def remove_point(self, x, y, thresh=None): """Remove the vertex closest to a reference (xy) point :param x: The x coordinate of the reference point :param y: The y coordinate of the reference point :param thresh: An optional threshhold. If present, the vertex closest to (x,y) will only be removed if the distance is less than thresh """ if len(self.vx) == 0: return # find distance between vertices and input dist = [(x - a) ** 2 + (y - b) ** 2 for a, b in zip(self.vx, self.vy)] inds = range(len(dist)) near = min(inds, key=lambda x: dist[x]) if thresh is not None and dist[near] > (thresh ** 2): return self.vx = [self.vx[i] for i in inds if i != near] self.vy = [self.vy[i] for i in inds if i != near] def defined(self): return len(self.vx) > 0 def to_polygon(self): return self.vx, self.vy def __gluestate__(self, context): return dict(vx=np.asarray(self.vx).tolist(), vy=np.asarray(self.vy).tolist()) @classmethod def __setgluestate__(cls, rec, context): return cls(vx=rec['vx'], vy=rec['vy']) class PolygonalROI(VertexROIBase): """ A class to define 2D polygonal regions-of-interest """ def __str__(self): result = 'Polygonal ROI (' result += ','.join(['(%s, %s)' % (x, y) for x, y in zip(self.vx, self.vy)]) result += ')' return result def contains(self, x, y): """ Test whether a set of (x,y) points falls within the region of interest :param x: A list of x points :param y: A list of y points *Returns* A list of True/False values, for whether each (x,y) point falls within the ROI """ if not self.defined(): raise UndefinedROI if not isinstance(x, np.ndarray): x = np.asarray(x) if not isinstance(y, np.ndarray): y = np.asarray(y) xypts = np.column_stack((x.flat, y.flat)) xyvts = np.column_stack((self.vx, self.vy)) result = points_inside_poly(xypts, xyvts) good = np.isfinite(xypts).all(axis=1) result[~good] = False result.shape = x.shape return result def move_to(self, xdelta, ydelta): self.vx = list(map(lambda x: x + xdelta, self.vx)) self.vy = list(map(lambda y: y + ydelta, self.vy)) class Path(VertexROIBase): def __str__(self): result = 'Path (' result += ','.join(['(%s, %s)' % (x, y) for x, y in zip(self.vx, self.vy)]) result += ')' return result class AbstractMplRoi(object): # pragma: no cover """ Base class for objects which use Matplotlib user events to edit/display ROIs """ def __init__(self, axes): """ :param axes: The Matplotlib Axes object to draw to """ self._axes = axes self._roi = self._roi_factory() self._previous_roi = None self._mid_selection = False self._scrubbing = False def _draw(self): self._axes.figure.canvas.draw() def _roi_factory(self): raise NotImplementedError() def roi(self): return self._roi.copy() def reset(self, include_roi=True): self._mid_selection = False self._scrubbing = False if include_roi: self._roi.reset() self._sync_patch() def active(self): return self._mid_selection def start_selection(self, event): raise NotImplementedError() def update_selection(self, event): raise NotImplementedError() def finalize_selection(self, event): raise NotImplementedError() def abort_selection(self, event): if self._mid_selection: self._roi_restore() self.reset(include_roi=False) def _sync_patch(self): raise NotImplementedError() def _roi_store(self): self._previous_roi = self._roi.copy() def _roi_restore(self): self._roi = self._previous_roi class MplPickROI(AbstractMplRoi): def _draw(self): pass def _roi_factory(self): return PointROI() def start_selection(self, event): self._roi.x = event.xdata self._roi.y = event.ydata def update_selection(self, event): self._roi.x = event.xdata self._roi.y = event.ydata def finalize_selection(self, event): self._roi.x = event.xdata self._roi.y = event.ydata def _sync_patch(self): pass class MplRectangularROI(AbstractMplRoi): """ A subclass of RectangularROI that also renders the ROI to a plot *Attributes*: plot_opts: Dictionary instance A dictionary of plot keywords that are passed to the patch representing the ROI. These control the visual properties of the ROI """ def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self._xi = None self._yi = None self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} self._patch = Rectangle((0., 0.), 1., 1.) self._patch.set_zorder(100) self._setup_patch() def _setup_patch(self): self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return RectangularROI() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() self._xi = event.xdata self._yi = event.ydata if event.key == SCRUBBING_KEY: self._scrubbing = True self._cx, self._cy = self._roi.center() else: self.reset() self._roi.update_limits(event.xdata, event.ydata, event.xdata, event.ydata) self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(self._cx + event.xdata - self._xi, self._cy + event.ydata - self._yi) else: self._roi.update_limits(min(event.xdata, self._xi), min(event.ydata, self._yi), max(event.xdata, self._xi), max(event.ydata, self._yi)) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._draw() def _sync_patch(self): if self._roi.defined(): corner = self._roi.corner() width = self._roi.width() height = self._roi.height() self._patch.set_xy(corner) self._patch.set_width(width) self._patch.set_height(height) self._patch.set(**self.plot_opts) self._patch.set_visible(True) else: self._patch.set_visible(False) self._draw() def __str__(self): return "MPL Rectangle: %s" % self._patch class MplXRangeROI(AbstractMplRoi): def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self._xi = None self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} trans = blended_transform_factory(self._axes.transData, self._axes.transAxes) self._patch = Rectangle((0., 0.), 1., 1., transform=trans) self._patch.set_zorder(100) self._setup_patch() def _setup_patch(self): self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return XRangeROI() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True self._dx = event.xdata - self._roi.center() else: self.reset() self._roi.set_range(event.xdata, event.xdata) self._xi = event.xdata self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(event.xdata + self._dx) else: self._roi.set_range(min(event.xdata, self._xi), max(event.xdata, self._xi)) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._draw() def _sync_patch(self): if self._roi.defined(): rng = self._roi.range() self._patch.set_xy((rng[0], 0)) self._patch.set_width(rng[1] - rng[0]) self._patch.set_height(1) self._patch.set(**self.plot_opts) self._patch.set_visible(True) else: self._patch.set_visible(False) self._draw() class MplYRangeROI(AbstractMplRoi): def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self._xi = None self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} trans = blended_transform_factory(self._axes.transAxes, self._axes.transData) self._patch = Rectangle((0., 0.), 1., 1., transform=trans) self._patch.set_zorder(100) self._setup_patch() def _setup_patch(self): self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return YRangeROI() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True self._dy = event.ydata - self._roi.center() else: self.reset() self._roi.set_range(event.ydata, event.ydata) self._xi = event.ydata self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(event.ydata + self._dy) else: self._roi.set_range(min(event.ydata, self._xi), max(event.ydata, self._xi)) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._draw() def _sync_patch(self): if self._roi.defined(): rng = self._roi.range() self._patch.set_xy((0, rng[0])) self._patch.set_height(rng[1] - rng[0]) self._patch.set_width(1) self._patch.set(**self.plot_opts) self._patch.set_visible(True) else: self._patch.set_visible(False) self._draw() class MplCircularROI(AbstractMplRoi): """ Class to display / edit circular ROIs using matplotlib Since circles on the screen may not be circles in the data (due, e.g., to logarithmic scalings on the axes), the ultimate ROI that is created is a polygonal ROI :param plot_opts: A dictionary of plot keywords that are passed to the patch representing the ROI. These control the visual properties of the ROI """ def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} self._xi = None self._yi = None self._setup_patch() def _setup_patch(self): self._patch = Ellipse((0., 0.), transform=IdentityTransform(), width=0., height=0.,) self._patch.set_zorder(100) self._patch.set(**self.plot_opts) self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return CircularROI() def _sync_patch(self): # Update geometry if not self._roi.defined(): self._patch.set_visible(False) else: xy = self._roi.get_center() r = self._roi.get_radius() self._patch.center = xy self._patch.width = 2. * r self._patch.height = 2. * r self._patch.set_visible(True) # Update appearance self._patch.set(**self.plot_opts) # Refresh self._axes.figure.canvas.draw() def start_selection(self, event): if event.inaxes != self._axes: return False xy = data_to_pixel(self._axes, [event.xdata], [event.ydata]) xi = xy[0, 0] yi = xy[0, 1] if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(xi, yi): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True (xc, yc) = self._roi.get_center() self._dx = xc - xi self._dy = yc - yi else: self.reset() self._roi.set_center(xi, yi) self._roi.set_radius(0.) self._xi = xi self._yi = yi self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False xy = data_to_pixel(self._axes, [event.xdata], [event.ydata]) xi = xy[0, 0] yi = xy[0, 1] if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.set_center(xi + self._dx, yi + self._dy) else: dx = xy[0, 0] - self._xi dy = xy[0, 1] - self._yi self._roi.set_radius(np.hypot(dx, dy)) self._sync_patch() def roi(self): if not self._roi.defined(): return PolygonalROI() theta = np.linspace(0, 2 * np.pi, num=200) xy_center = self._roi.get_center() rad = self._roi.get_radius() x = xy_center[0] + rad * np.cos(theta) y = xy_center[1] + rad * np.sin(theta) xy_data = pixel_to_data(self._axes, x, y) vx = xy_data[:, 0].ravel().tolist() vy = xy_data[:, 1].ravel().tolist() result = PolygonalROI(vx, vy) return result def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._axes.figure.canvas.draw() class MplPolygonalROI(AbstractMplRoi): """ Defines and displays polygonal ROIs on matplotlib plots Attributes: plot_opts: Dictionary instance A dictionary of plot keywords that are passed to the patch representing the ROI. These control the visual properties of the ROI """ def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} self._setup_patch() def _setup_patch(self): self._patch = Polygon(np.array(list(zip([0, 1], [0, 1])))) self._patch.set_zorder(100) self._patch.set(**self.plot_opts) self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return PolygonalROI() def _sync_patch(self): # Update geometry if not self._roi.defined(): self._patch.set_visible(False) else: x, y = self._roi.to_polygon() self._patch.set_xy(list(zip(x + [x[0]], y + [y[0]]))) self._patch.set_visible(True) # Update appearance self._patch.set(**self.plot_opts) # Refresh self._axes.figure.canvas.draw() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True self._cx = event.xdata self._cy = event.ydata else: self.reset() self._roi.add_point(event.xdata, event.ydata) self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(event.xdata - self._cx, event.ydata - self._cy) self._cx = event.xdata self._cy = event.ydata else: self._roi.add_point(event.xdata, event.ydata) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._axes.figure.canvas.draw() class MplPathROI(MplPolygonalROI): def roi_factory(self): return Path() def _setup_patch(self): self._patch = None def _sync_patch(self): if self._patch is not None: self._patch.remove() self._patch = None # Update geometry if not self._roi.defined(): return else: x, y = self._roi.to_polygon() p = MplPath(np.column_stack((x, y))) self._patch = PatchPath(p) self._patch.set_visible(True) # Update appearance self._patch.set(**self.plot_opts) # Refresh self._axes.figure.canvas.draw() def finalize_selection(self, event): self._mid_selection = False if self._patch is not None: self._patch.set_visible(False) self._axes.figure.canvas.draw() class CategoricalRoi(Roi): """ A ROI abstraction to represent selections of categorical data. """ def __init__(self, categories=None): if categories is None: self.categories = None else: self.update_categories(categories) def _categorical_helper(self, indata): """ A helper function to do the rigamaroll of getting categorical data. :param indata: Any type of input data :return: The best guess at the categorical data associated with indata """ try: if indata.categorical: return indata._categorical_data else: return indata[:] except AttributeError: return np.asarray(indata) def contains(self, x, y): """ Test whether a set categorical elements fall within the region of interest :param x: Any array-like object of categories (includes CategoricalComponenets) :param y: Unused but required for compatibility *Returns* A list of True/False values, for whether each x value falls within the ROI """ check = self._categorical_helper(x) index = np.minimum(np.searchsorted(self.categories, check), len(self.categories)-1) return self.categories[index] == check def update_categories(self, categories): self.categories = np.unique(self._categorical_helper(categories)) def defined(self): """ Returns True if the ROI is defined """ return self.categories is not None def reset(self): self.categories = None @staticmethod def from_range(cat_comp, lo, hi): """ Utility function to help construct the Roi from a range. :param cat_comp: Anything understood by ._categorical_helper ... array, list or component :param lo: lower bound of the range :param hi: upper bound of the range :return: CategoricalRoi object """ roi = CategoricalRoi() cat_data = cat_comp._categories roi.update_categories(cat_data[np.floor(lo):np.ceil(hi)]) return roi
{ "repo_name": "JudoWill/glue", "path": "glue/core/roi.py", "copies": "1", "size": "34433", "license": "bsd-3-clause", "hash": 455936305685501100, "line_mean": 26.8134087237, "line_max": 97, "alpha_frac": 0.5387564255, "autogenerated": false, "ratio": 3.8152908587257617, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9853786700679925, "avg_score": 0.000052116709167251514, "num_lines": 1238 }
from __future__ import absolute_import, division, print_function from functools import wraps __all__ = ['memoize', 'singleton', 'memoize_attr_check'] def _make_key(args, kwargs): return args, frozenset(kwargs.items()) def memoize(func): """Save results of function calls to avoid repeated calculation""" memo = {} @wraps(func) def wrapper(*args, **kwargs): # Note that here we have two separate try...except statements, because # we want to make sure that we catch only TypeError on the first # statement, and both TypeError and KeyError on the second. try: key = _make_key(args, kwargs) except TypeError: # unhashable input return func(*args, **kwargs) try: return memo[key] except KeyError: result = func(*args, **kwargs) memo[key] = result return result except TypeError: # unhashable input return func(*args, **kwargs) wrapper.__memoize_cache = memo return wrapper def clear_cache(func): """ Clear the cache of a function that has potentially been decorated by memoize. Safely ignores non-decorated functions """ try: func.__memoize_cache.clear() except AttributeError: pass def memoize_attr_check(attr): """ Memoize a method call, cached both on arguments and given attribute of first argument (which is presumably self) Has the effect of re-calculating results if a specific attribute changes """ def decorator(func): # must return a decorator function @wraps(func) def result(*args, **kwargs): first_arg = getattr(args[0], attr) return memo(first_arg, *args, **kwargs) @memoize def memo(*args, **kwargs): return func(*args[1:], **kwargs) return result return decorator def singleton(cls): """Turn a class into a singleton, such that new objects in this class share the same instance""" instances = {} @wraps(cls) def getinstance(): if cls not in instances: instances[cls] = cls() return instances[cls] return getinstance
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/decorators.py", "copies": "5", "size": "2231", "license": "bsd-3-clause", "hash": -6575718541488137000, "line_mean": 24.6436781609, "line_max": 78, "alpha_frac": 0.6131779471, "autogenerated": false, "ratio": 4.374509803921568, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 87 }
from __future__ import absolute_import, division, print_function from functools import wraps, partial import traceback from .data_collection import DataCollection from .data_factories import load_data from . import command from . import Data, Subset from .hub import HubListener from .util import PropertySetMixin from ..utils import as_list from .edit_subset_mode import EditSubsetMode from .session import Session from ..config import settings __all__ = ['Application', 'ViewerBase'] def catch_error(msg): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: m = "%s\n%s" % (msg, str(e)) detail = str(traceback.format_exc()) self = args[0] self.report_error(m, detail) return wrapper return decorator class Application(HubListener): def __init__(self, data_collection=None, session=None): if session is not None: self._session = session session.application = self self._data = session.data_collection else: self._data = data_collection or DataCollection() self._session = Session(data_collection=self._data, application=self) EditSubsetMode().data_collection = self._data self._hub = self._session.hub self._cmds = self._session.command_stack self._cmds.add_callback(lambda x: self._update_undo_redo_enabled()) self._settings = {} for key, value, validator in settings: self._settings[key] = [value, validator] @property def session(self): return self._session @property def data_collection(self): return self.session.data_collection def new_data_viewer(self, viewer_class, data=None): """ Create a new data viewer, add it to the UI, and populate with data """ if viewer_class is None: return c = viewer_class(self._session) c.register_to_hub(self._session.hub) if data and not c.add_data(data): c.close(warn=False) return self.add_widget(c) c.show() return c @catch_error("Failed to save session") def save_session(self, path, include_data=False): """ Save the data collection and hub to file. Can be restored via restore_session Note: Saving of client is not currently supported. Thus, restoring this session will lose all current viz windows """ from .state import GlueSerializer gs = GlueSerializer(self, include_data=include_data) state = gs.dumps(indent=2) with open(path, 'w') as out: out.write(state) def new_tab(self): raise NotImplementedError() def add_widget(self, widget, label=None, tab=None): raise NotImplementedError() def close_tab(self): raise NotImplementedError() def get_setting(self, key): """ Fetch the value of an application setting """ return self._settings[key][0] def set_setting(self, key, value): """ Set the value of an application setting Raises a KeyError if the setting does not exist Raises a ValueError if the value is invalid """ validator = self._settings[key][1] self._settings[key][0] = validator(value) @property def settings(self): """Iterate over settings""" for key, (value, _) in self._settings.items(): yield key, value @catch_error("Could not load data") def load_data(self, path): d = load_data(path) self.add_datasets(self.data_collection, d) def report_error(self, message, detail): """ Report an error message to the user. Must be implemented in a subclass :param message: the message to display :type message: str :detail: Longer context about the error :type message: str """ raise NotImplementedError() def do(self, command): self._cmds.do(command) def undo(self): try: self._cmds.undo() except RuntimeError: pass def redo(self): try: self._cmds.redo() except RuntimeError: pass def _update_undo_redo_enabled(self): raise NotImplementedError() @classmethod def add_datasets(cls, data_collection, datasets): """ Utility method to interactively add datasets to a data_collection :param data_collection: :class:`~glue.core.data_collection.DataCollection` :param datasets: one or more :class:`~glue.core.data.Data` instances Adds datasets to the collection """ datasets = as_list(datasets) data_collection.extend(datasets) list(map(partial(cls._suggest_mergers, data_collection), datasets)) @classmethod def _suggest_mergers(cls, data_collection, data): """ When loading a new dataset, check if any existing data has the same shape. If so, offer to merge the two datasets """ shp = data.shape other = [d for d in data_collection if d.shape == shp and d is not data] if not other: return merges = cls._choose_merge(data, other) if merges: data_collection.merge(*merges) @staticmethod def _choose_merge(data, other): """ Present an interface to the user for approving or rejecting a proposed data merger. Returns a list of datasets from other that the user has approved to merge with data """ raise NotImplementedError @property def viewers(self): """Return a tuple of tuples of viewers currently open The i'th tuple stores the viewers in the i'th close_tab """ raise NotImplementedError() def __gluestate__(self, context): viewers = [list(map(context.id, tab)) for tab in self.viewers] data = self.session.data_collection return dict(session=context.id(self.session), viewers=viewers, data=context.id(data)) @classmethod def __setgluestate__(cls, rec, context): self = cls(data_collection=context.object(rec['data'])) # manually register the newly-created session, which # the viewers need context.register_object(rec['session'], self.session) for i, tab in enumerate(rec['viewers']): if self.tab(i) is None: self.new_tab() for v in tab: viewer = context.object(v) self.add_widget(viewer, tab=i, hold_position=True) return self class ViewerBase(HubListener, PropertySetMixin): """ Base class for data viewers in an application """ # the glue.clients.layer_artist.LayerArtistContainer # class/subclass to use _container_cls = None def __init__(self, session): super(ViewerBase, self).__init__() self._session = session self._data = session.data_collection self._hub = None self._container = self._container_cls() def register_to_hub(self, hub): self._hub = hub def unregister(self, hub): """ Abstract method to unsubscribe from messages """ raise NotImplementedError def request_add_layer(self, layer): """ Issue a command to add a layer """ cmd = command.AddLayer(layer=layer, viewer=self) self._session.command_stack.do(cmd) def add_layer(self, layer): if isinstance(layer, Data): self.add_data(layer) elif isinstance(layer, Subset): self.add_subset(layer) # else: SubsetGroup def add_data(self, data): """ Add a data instance to the viewer This must be overridden by a subclass :param data: Data object to add :type data: :class:`~glue.core.data.Data` """ raise NotImplementedError def add_subset(self, subset): """ Add a subset to the viewer This must be overridden by a subclass :param subset: Subset instance to add :type subset: :class:`~glue.core.subset.Subset` """ raise NotImplementedError def apply_roi(self, roi): """ Apply an ROI to the client :param roi: The ROI to apply :type roi: :class:`~glue.core.roi.Roi` """ cmd = command.ApplyROI(client=self.client, roi=roi) self._session.command_stack.do(cmd) @property def session(self): return self._session @property def axes(self): return self.client.axes def layer_view(self): raise NotImplementedError() def options_widget(self): raise NotImplementedError() def move(self, x=None, y=None): """ Reposition a viewer within the application. :param x: Offset of viewer's left edge from the left edge of the parent window. Optional :type x: int :param y: Offset of the viewer's top edge from the top edge of the parent window. Optional :type y: int """ raise NotImplementedError() @property def position(self): """ Return the location of the viewer :rtype: (x, y). Tuple of 2 integers """ raise NotImplementedError() @property def viewer_size(self): """ Return the size of the viewer :rtype: (width, height). Tuple of 2 ints """ raise NotImplementedError() @viewer_size.setter def viewer_size(self, value): """ Resize the width and/or height of the viewer :param value: (width, height) :param width: new width. Optional. :type width: int :param height: new height. Optional. :type height: int """ raise NotImplementedError() def restore_layers(self, rec, context): """ Given a list of glue-serialized layers, restore them to the viewer """ # if this viewer manages a client, rely on it to restore layers if hasattr(self, 'client'): return self.client.restore_layers(rec, context) raise NotImplementedError() @property def layers(self): """Return a tuple of layers in this viewer. A layer is a visual representation of a dataset or subset within the viewer""" return tuple(self._container) def __gluestate__(self, context): return dict(session=context.id(self._session), size=self.viewer_size, pos=self.position, properties=dict((k, context.id(v)) for k, v in self.properties.items()), layers=list(map(context.do, self.layers)) ) @classmethod def __setgluestate__(cls, rec, context): session = context.object(rec['session']) result = cls(session) result.register_to_hub(session.hub) result.viewer_size = rec['size'] x, y = rec['pos'] result.move(x=x, y=y) prop = dict((k, context.object(v)) for k, v in rec['properties'].items()) result.restore_layers(rec['layers'], context) result.properties = prop return result
{ "repo_name": "JudoWill/glue", "path": "glue/core/application_base.py", "copies": "1", "size": "11609", "license": "bsd-3-clause", "hash": 8375539739027677000, "line_mean": 28.1683417085, "line_max": 82, "alpha_frac": 0.5879920751, "autogenerated": false, "ratio": 4.344685628742515, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000030271841133377734, "num_lines": 398 }
from __future__ import absolute_import, division, print_function from future import standard_library standard_library.install_aliases() from future.utils import iteritems from typing import List, Dict, Any, Optional, NamedTuple, Tuple, Iterator, Iterable, Union, cast from types import FrameType, TracebackType, CodeType, FunctionType, ModuleType import typing import ast # noinspection PyCompatibility import html import inspect import json import os import traceback from collections import defaultdict, Sequence, Set, Mapping, deque, namedtuple, Counter from functools import partial from itertools import chain, islice from threading import Lock from uuid import uuid4 import hashlib import sys from asttokens import ASTTokens from littleutils import group_by_key_func, only from outdated import warn_if_outdated from cached_property import cached_property from cheap_repr import cheap_repr, try_register_repr from cheap_repr.utils import safe_qualname, exception_string from birdseye.db import Database, retry_db from birdseye.tracer import TreeTracerBase, TracedFile, EnterCallInfo, ExitCallInfo, FrameInfo, ChangeValue, Loop from birdseye import tracer from birdseye.utils import correct_type, PY3, PY2, one_or_none, \ of_type, Deque, Text, flatten_list, lru_cache, ProtocolEncoder, IPYTHON_FILE_PATH, source_without_decorators, \ is_future_import, get_unfrozen_datetime, FILE_SENTINEL_NAME, read_source_file from birdseye import __version__ try: from numpy import ndarray except ImportError: class ndarray(object): pass try: from pandas import DataFrame, Series except ImportError: class DataFrame(object): pass class Series(object): pass try: from django.db.models import QuerySet except ImportError: class QuerySet(object): pass warn_if_outdated('birdseye', __version__) CodeInfo = namedtuple('CodeInfo', 'db_func traced_file arg_names') class BirdsEye(TreeTracerBase): """ Decorate functions with an instance of this class to debug them, or just use the existing instance `eye`. """ def __init__(self, db_uri=None, num_samples=None): """ Set db_uri to specify where the database lives, as an alternative to the environment variable BIRDSEYE_DB. """ super(BirdsEye, self).__init__() self._db_uri = db_uri self._code_infos = {} # type: Dict[CodeType, CodeInfo] self._last_call_id = None self._ipython_cell_value = None self.num_samples = num_samples or dict( big=dict( attributes=50, dict=50, list=30, set=30, pandas_rows=20, pandas_cols=100, ), small=dict( attributes=50, dict=10, list=6, set=6, pandas_rows=6, pandas_cols=10, ), ) @cached_property def db(self): return Database(self._db_uri) def parse_extra(self, root, source, filename): # type: (ast.Module, str, str) -> None for node in ast.walk(root): # type: ast.AST node._loops = tracer.loops(node) if isinstance(node, ast.expr): node._is_interesting_expression = is_interesting_expression(node) @lru_cache() def compile(self, source, filename, flags=0): traced_file = super(BirdsEye, self).compile(source, filename, flags) traced_file.tokens = ASTTokens(source, tree=traced_file.root) return traced_file def before_stmt(self, node, frame): # type: (ast.stmt, FrameType) -> None if frame.f_code not in self._code_infos: return if isinstance(node.parent, ast.For) and node is node.parent.body[0]: self._add_iteration(node._loops, frame) def before_expr(self, node, frame): if isinstance(node.parent, ast.While) and node is node.parent.test: self._add_iteration(node._loops, frame) def _add_iteration(self, loops, frame): # type: (typing.Sequence[Loop], FrameType) -> None """ Given one or more nested loops, add an iteration for the innermost loop (the last in the sequence). """ iteration = self.stack[frame].iteration # type: Iteration for i, loop_node in enumerate(loops): loop = iteration.loops[loop_node._tree_index] if i == len(loops) - 1: loop.append(Iteration()) else: iteration = loop.last() def after_expr(self, node, frame, value, exc_value, exc_tb): # type: (ast.expr, FrameType, Any, Optional[BaseException], Optional[TracebackType]) -> Optional[ChangeValue] if _tracing_recursively(frame): return None if frame.f_code not in self._code_infos: return None if node._is_interesting_expression: # If this is an expression statement and the last statement # in the body, the value is returned from the cell magic # to be displayed as usual if (self._code_infos[frame.f_code].traced_file.is_ipython_cell and isinstance(node.parent, ast.Expr) and node.parent is node.parent.parent.body[-1]): self._ipython_cell_value = value if is_obvious_builtin(node, self.stack[frame].expression_values[node]): return None frame_info = self.stack[frame] if exc_value: node_value = self._exception_value(node, frame, exc_value) else: node_value = NodeValue.expression( self.num_samples, value, level=max(1, 3 - len(node._loops) * (not self._is_first_loop_iteration(node, frame))), ) self._set_node_value(node, frame, node_value) self._check_inner_call(frame_info, node, node_value) # i.e. is `node` the `y` in `[f(x) for x in y]`, making `node.parent` the `for x in y` is_special_comprehension_iter = ( isinstance(node.parent, ast.comprehension) and node is node.parent.iter and # Generators execute in their own time and aren't directly attached to the parent frame not isinstance(node.parent.parent, ast.GeneratorExp)) if not is_special_comprehension_iter: return None # Mark `for x in y` as a bit that executed, so it doesn't show as grey self._set_node_value(node.parent, frame, NodeValue.covered()) if exc_value: return None # Track each iteration over `y` so that the 'loop' can be stepped through loops = node._loops + (node.parent,) # type: Tuple[Loop, ...] def comprehension_iter_proxy(): for item in value: self._add_iteration(loops, frame) yield item # This effectively changes to code to `for x in comprehension_iter_proxy()` return ChangeValue(comprehension_iter_proxy()) def _check_inner_call(self, frame_info, node, node_value): # type: (FrameInfo, Union[ast.stmt, ast.expr], NodeValue) -> None inner_calls = frame_info.inner_calls.pop(node, None) if inner_calls: node_value.set_meta('inner_calls', inner_calls) def _is_first_loop_iteration(self, node, frame): # type: (ast.AST, FrameType) -> bool iteration = self.stack[frame].iteration # type: Iteration for loop_node in node._loops: # type: ast.AST loop = iteration.loops[loop_node._tree_index] iteration = loop.last() if iteration.index > 0: return False return True def _set_node_value(self, node, frame, value): # type: (ast.AST, FrameType, NodeValue) -> None iteration = self.stack[frame].iteration # type: Iteration for loop_node in node._loops: # type: ast.AST loop = iteration.loops[loop_node._tree_index] loop.recorded_node(node) iteration = loop.last() iteration.vals[node._tree_index] = value def _exception_value(self, node, frame, exc_value): # type: (Union[ast.expr, ast.stmt], FrameType, BaseException) -> NodeValue value = NodeValue.exception(exc_value) self._set_node_value(node, frame, value) return value def after_stmt(self, node, frame, exc_value, exc_traceback, exc_node): # type: (ast.stmt, FrameType, Optional[BaseException], Optional[TracebackType], Optional[ast.AST]) -> Optional[bool] if frame.f_code not in self._code_infos or _tracing_recursively(frame): return None if exc_value and node is exc_node: value = self._exception_value(node, frame, exc_value) else: value = NodeValue.covered() self._set_node_value(node, frame, value) self._check_inner_call(self.stack[frame], node, value) return None def enter_call(self, enter_info): # type: (EnterCallInfo) -> None frame = enter_info.current_frame # type: FrameType if frame.f_code not in self._code_infos or _tracing_recursively(frame): return frame_info = self.stack[frame] frame_info.start_time = get_unfrozen_datetime() frame_info.iteration = Iteration() code_info = self._code_infos[frame.f_code] if isinstance(enter_info.enter_node.parent, ast.Module): arguments = [] else: f_locals = frame.f_locals.copy() # type: Dict[str, Any] arguments = [(name, f_locals.pop(name)) for name in code_info.arg_names if name] + [ # Local variables other than actual arguments. These are variables from # the enclosing scope. It's handy to treat them like arguments in the UI it for it in f_locals.items() if it[0][0] != '.' # Appears when using nested tuple arguments ] frame_info.arguments = json.dumps([[k, cheap_repr(v)] for k, v in arguments]) frame_info.call_id = self._call_id() frame_info.inner_calls = defaultdict(list) prev = self.stack.get(enter_info.caller_frame) if prev: inner_calls = getattr(prev, 'inner_calls', None) if inner_calls is not None: inner_calls[enter_info.call_node].append(frame_info.call_id) def _call_id(self): # type: () -> Text return uuid4().hex def exit_call(self, exit_info): # type: (ExitCallInfo) -> None """ This is where all the data collected during the call is gathered up and sent to the database. """ frame = exit_info.current_frame # type: FrameType if frame.f_code not in self._code_infos or _tracing_recursively(frame): return frame_info = self.stack[frame] top_iteration = frame_info.iteration # type: Iteration node_values = _deep_dict() self._extract_node_values(top_iteration, (), node_values) db_func = self._code_infos[frame.f_code].db_func exc = exit_info.exc_value # type: Optional[Exception] if exc: traceback_str = ''.join(traceback.format_exception(type(exc), exc, exit_info.exc_tb)) exception = exception_string(exc) else: traceback_str = exception = None @retry_db def add_call(): Call = self.db.Call call = Call(id=frame_info.call_id, function_id=db_func, arguments=frame_info.arguments, return_value=cheap_repr(exit_info.return_value), exception=exception, traceback=traceback_str, data=json.dumps( dict( node_values=node_values, loop_iterations=top_iteration.extract_iterations()['loops'], type_names=type_registry.names(), num_special_types=type_registry.num_special_types, ), cls=ProtocolEncoder, separators=(',', ':') ), start_time=frame_info.start_time) with self.db.session_scope() as session: session.add(call) add_call() self._last_call_id = frame_info.call_id def _extract_node_values(self, iteration, path, node_values): # type: (Iteration, Tuple[int, ...], dict) -> None """ Populates node_values with values inside iteration. """ # Each element of `path` is an index of a loop iteration # e.g. given the nested loops: # # for i in [0, 1, 2]: # for j in [0, 1, 2, 3]: # # path may be (i, j) for each of the iterations for tree_index, node_value in iteration.vals.items(): # So this `full_path` is a tuple of ints, but the first # int has a different meaning from the others full_path = (tree_index,) + path # Given a path (a, b, c) we're making node_values 'contain' # this structure: # {a: {b: {c: node_value}}} d = node_values for path_k in full_path[:-1]: d = d[path_k] d[full_path[-1]] = node_value for loop in iteration.loops.values(): for i, iteration in enumerate(loop): self._extract_node_values(iteration, path + (i,), node_values) def trace_function(self, func): # type: (FunctionType) -> FunctionType new_func = super(BirdsEye, self).trace_function(func) code_info = self._code_infos.get(new_func.__code__) if code_info: return new_func lines, start_lineno = inspect.getsourcelines(func) # type: List[Text], int end_lineno = start_lineno + len(lines) name = safe_qualname(func) source_file = inspect.getsourcefile(func) if source_file.startswith('<ipython-input'): filename = IPYTHON_FILE_PATH else: filename = os.path.abspath(source_file) traced_file = new_func.traced_file arg_info = inspect.getargs(new_func.__code__) arg_names = list(chain(flatten_list(arg_info[0]), arg_info[1:])) # type: List[str] self._trace(name, filename, traced_file, new_func.__code__, typ='function', start_lineno=start_lineno, end_lineno=end_lineno, arg_names=arg_names) return new_func def exec_ipython_cell(self, source, callback): from IPython import get_ipython shell = get_ipython() filename = name = shell.compile.cache(source) flags = shell.compile.flags traced_file = self.compile(source, filename, flags) traced_file.is_ipython_cell = True for node in traced_file.root.body: if is_future_import(node): raise ValueError('from __future__ import ... statements ' 'are not allowed in cells traced with %%eye') shell.user_global_ns.update(self._trace_methods_dict(traced_file)) self._trace(name, filename, traced_file, traced_file.code, 'module', source) try: shell.ex(traced_file.code) return self._ipython_cell_value finally: callback(self._last_call_id) self._ipython_cell_value = None def trace_this_module(self, context=0, deep=False): frame = inspect.currentframe() filename = None while context >= 0: frame = frame.f_back filename = inspect.getsourcefile(frame) if filename is not None: context -= 1 filename = os.path.abspath(filename) if frame.f_globals.get('__name__') != '__main__': if PY3 and self._treetrace_hidden_with_stmt.__name__ not in frame.f_globals: raise RuntimeError( 'To trace an imported module, you must import birdseye before ' 'importing that module.') return lines = read_source_file(filename).splitlines() lines[:frame.f_lineno] = [''] * frame.f_lineno source = '\n'.join(lines) self.exec_string(source, filename, frame.f_globals, frame.f_locals, deep) sys.exit(0) def exec_string(self, source, filename, globs=None, locs=None, deep=False): globs = globs or {} locs = locs or {} traced_file = self.compile(source, filename) globs.update(self._trace_methods_dict(traced_file)) self._trace(FILE_SENTINEL_NAME, filename, traced_file, traced_file.code, 'module', source) if deep: nodes_by_lineno = { node.lineno: node for node in traced_file.nodes if isinstance(node, ast.FunctionDef) } def find_code(root_code): # type: (CodeType) -> None for code in root_code.co_consts: # type: CodeType if not inspect.iscode(code) or code.co_name.startswith('<'): continue find_code(code) lineno = code.co_firstlineno node = nodes_by_lineno.get(lineno) if not node: continue self._trace( code.co_name, filename, traced_file, code, typ='function', source=source, start_lineno=lineno, end_lineno=node.last_token.end[0] + 1, ) find_code(traced_file.code) exec(traced_file.code, globs, locs) def _trace( self, name, filename, traced_file, code, typ, source='', start_lineno=1, end_lineno=None, arg_names=(), ): if not end_lineno: end_lineno = start_lineno + len(source.splitlines()) nodes = list(self._nodes_of_interest(traced_file, start_lineno, end_lineno)) html_body = self._nodes_html(nodes, start_lineno, end_lineno, traced_file) data_dict = dict( # This maps each node to the loops enclosing that node node_loops={ node._tree_index: [n._tree_index for n in node._loops] for node, _ in nodes if node._loops }, ) if typ == 'function': tokens = traced_file.tokens func_node = only(node for node, _ in nodes if isinstance(node, ast.FunctionDef) and node.first_token.start[0] == start_lineno) func_startpos, source = source_without_decorators(tokens, func_node) # These are for the PyCharm plugin data_dict.update( node_ranges=list(self._node_ranges(nodes, tokens, func_startpos)), loop_ranges=list(self._loop_ranges(nodes, tokens, func_startpos)), ) data = json.dumps(data_dict, sort_keys=True) db_func = self._db_func(data, filename, html_body, name, start_lineno, source, typ) self._code_infos[code] = CodeInfo(db_func, traced_file, arg_names) def _loop_ranges(self, nodes, tokens, func_start): # For a for loop, e.g. # # for x in y: # # this yields the range of the target 'x'. # # For a while loop, e.g. # # while x < 10: # # this yields the range of the condition 'x < 10'. for node, (classes, _, __) in nodes: if 'loop' not in classes: continue try: target = node.target # for loop except AttributeError: target = node.test # while loop start, end = tokens.get_text_range(target) start -= func_start end -= func_start yield dict( tree_index=node._tree_index, start=start, end=end ) def _node_ranges(self, nodes, tokens, func_start): for node, (classes, _, __) in nodes: start, end = tokens.get_text_range(node) start -= func_start end -= func_start if start < 0: assert (end < 0 # nodes before the def, i.e. decorators or isinstance(node, ast.FunctionDef)) continue yield dict( tree_index=node._tree_index, start=start, end=end, depth=node._depth, classes=classes, ) @retry_db def _db_func(self, data, filename, html_body, name, start_lineno, source, typ): """ Retrieve the Function object from the database if one exists, or create one. """ def h(s): return hashlib.sha256(s.encode('utf8')).hexdigest() function_hash = h(filename + name + html_body + data + str(start_lineno)) Function = self.db.Function with self.db.session_scope() as session: db_func = one_or_none(session.query(Function).filter_by(hash=function_hash)) # type: Optional[Function] if not db_func: db_func = Function(file=filename, name=name, type=typ, html_body=html_body, lineno=start_lineno, data=data, body_hash=h(source), hash=function_hash) session.add(db_func) session.commit() # ensure .id exists assert isinstance(db_func.id, int) return db_func.id def _nodes_of_interest(self, traced_file, start_lineno, end_lineno): # type: (TracedFile, int, int) -> Iterator[Tuple[ast.AST, Tuple]] """ Nodes that may have a value, show up as a box in the UI, and lie within the given line range. """ for node in traced_file.nodes: classes = [] if (isinstance(node, (ast.While, ast.For, ast.comprehension)) and not isinstance(node.parent, ast.GeneratorExp)): classes.append('loop') if isinstance(node, ast.stmt): classes.append('stmt') if isinstance(node, ast.expr): if not node._is_interesting_expression: continue elif not classes: continue assert isinstance(node, ast.AST) # In particular FormattedValue is missing this if not hasattr(node, 'first_token'): continue if not start_lineno <= node.first_token.start[0] <= end_lineno: continue start, end = traced_file.tokens.get_text_range(node) # type: int, int if start == end == 0: continue yield node, (classes, start, end) def _nodes_html(self, nodes, start_lineno, end_lineno, traced_file): # type: (list, int, int, TracedFile) -> str """ The algorithm for generating the HTML works as follows. We generate a list of HTMLPositions, which are essentially places to insert HTML into the source plus some metadata. The order of the fields of HTMLPosition ensure that when the list is sorted, the resulting HTML is valid and correct. Specifically, the fields are: 1. index: the index in the source string where the HTML would be inserted 2. is_start: Indicates if this piece of HTML is the start of a tag, rather than the end. Ends should appear first, so that the resulting HTML looks like: <span> ... </span><span> ... </span> rather than: <span> ... <span></span> ... </span> (I think this might actually be unnecessary, since I can't think of any cases of two expressions right next to each other with nothing in between) 3. depth: the depth of the corresponding node in the AST. We want the start of a tag from a node to appear before the start of a tag nested within, e.g. `foo()` should become: <span [for foo()]><span [for foo]>foo</span>()</span> rather than: <span [for foo]><span [for foo()]>foo</span>()</span> 4. html: the actual HTML to insert. Not important for ordering. Mostly the list contains pairs of HTMLPositions corresponding to AST nodes, one for the start and one for the end. After the list is sorted, the HTML generated is essentially: source[0:positions[0].index] + positions[0].html + source[positions[0].index:positions[1].index] + positions[1].html + ... """ traced_file.root._depth = 0 for node in ast.walk(traced_file.root): # type: ast.AST for child in ast.iter_child_nodes(node): child._depth = node._depth + 1 positions = [] # type: List[HTMLPosition] for node, (classes, start, end) in nodes: # noinspection PyArgumentList positions.extend(map( HTMLPosition, [start, end], [True, False], # is_start [node._depth, node._depth], ['<span data-index="%s" class="%s">' % (node._tree_index, ' '.join(classes)), '</span>'])) end_lineno = self._separate_comprehensions( [n[0] for n in nodes], end_lineno, positions, traced_file) # This just makes the loop below simpler positions.append(HTMLPosition(len(traced_file.source), False, 0, '')) positions.sort() html_parts = [] start = 0 for position in positions: html_parts.append(html.escape(traced_file.source[start:position.index])) html_parts.append(position.html) start = position.index html_body = ''.join(html_parts) html_body = '\n'.join(html_body.split('\n')[start_lineno - 1:end_lineno - 1]) return html_body.strip('\n') def _separate_comprehensions(self, nodes, end_lineno, positions, traced_file): # type: (list, int, List[HTMLPosition], TracedFile) -> int """ Comprehensions (e.g. list comprehensions) are troublesome because they can be navigated like loops, and the buttons for these need to be on separate lines. This function inserts newlines to turn: [x + y for x in range(3) for y in range(5)] and [[x + y for x in range(3)] for y in range(5)] into [x + y for x in range(3) for y in range(5)] and [[x + y for x in range(3)] for y in range(5)] """ comprehensions = group_by_key_func(of_type((ast.comprehension, ast.While, ast.For), nodes), lambda c: c.first_token.start[0] ) # type: Dict[Any, Iterable[ast.comprehension]] def get_start(n): # type: (ast.AST) -> int return traced_file.tokens.get_text_range(n)[0] for comp_list in comprehensions.values(): prev_start = None # type: Optional[int] for comp in sorted(comp_list, key=lambda c: c.first_token.startpos): if isinstance(comp, ast.comprehension) and comp is comp.parent.generators[0]: start = get_start(comp.parent) if prev_start is not None and start < prev_start: start = get_start(comp) else: start = get_start(comp) if prev_start is not None: positions.append(HTMLPosition(start, True, 0, '\n ')) end_lineno += 1 prev_start = start return end_lineno eye = BirdsEye() HTMLPosition = NamedTuple('HTMLPosition', [ ('index', int), ('is_start', bool), ('depth', int), ('html', str), ]) def _deep_dict(): return defaultdict(_deep_dict) _bad_codes = (eye.enter_call.__code__, eye.exit_call.__code__, eye.after_expr.__code__, eye.after_stmt.__code__) def _tracing_recursively(frame): while frame: if frame.f_code in _bad_codes: return True frame = frame.f_back class Iteration(object): """ Corresponds to an iteration of a loop during a call, OR the call itself (FrameInfo.iteration). """ def __init__(self): # Mapping of nodes (via node._tree_index) to the value of that # node in this iteration. Only contains nodes within the corresponding # loop or at the top of the function, but not in loops further within # (those will be somewhere within self.loops) # Therefore those nodes have at most one value. self.vals = {} # type: Dict[int, NodeValue] # Mapping of loop nodes (via node._tree_index) to IterationLists # for loops that happened during this iteration self.loops = defaultdict(IterationList) # type: Dict[int, IterationList] # 0-based index of this iteration self.index = None # type: int self.keep = False def extract_iterations(self): # type: () -> Dict[str, Union[int, Dict]] return { 'index': self.index, 'loops': { tree_index: [iteration.extract_iterations() for iteration in iteration_list] for tree_index, iteration_list in self.loops.items() } } class IterationList(Iterable[Iteration]): """ A list of Iterations, corresponding to a run of a loop. If the loop has many iterations, only contains the first and last few and any in the middle where unique nodes had values, so that any node which appeared during this loop exists in at least some iterations. """ side_len = 3 def __init__(self): # Contains the first few iterations # and any after that have unique nodes in them self.start = [] # type: List[Iteration] # Contains the last few iterations self.end = deque(maxlen=self.side_len) # type: Deque[Iteration] # Total number of iterations in the loop, not all of which # are kept self.length = 0 # type: int # Number of times each node has been recorded in this loop self.recorded = Counter() def append(self, iteration): # type: (Iteration) -> None if self.length < self.side_len: self.start.append(iteration) else: # If self.end is too long, the first element self.end[0] # is about to be dropped by the deque. If that iteration # should be kept because of some node that was recorded, # add it to self.start if len(self.end) >= self.side_len and self.end[0].keep: self.start.append(self.end[0]) self.end.append(iteration) iteration.index = self.length self.length += 1 def __iter__(self): # type: () -> Iterator[Iteration] return chain(self.start, self.end) def last(self): # type: () -> Iteration if self.end: return self.end[-1] else: return self.start[-1] def recorded_node(self, node): # type: (ast.AST) -> None if self.recorded[node] >= 2: # We've already seen this node enough return # This node is new(ish), make sure we keep this iteration self.last().keep = True self.recorded[node] += 1 class TypeRegistry(object): basic_types = (type(None), bool, int, float, complex) if PY2: basic_types += (long,) special_types = basic_types + (list, dict, tuple, set, frozenset, str) if PY2: special_types += (unicode if PY2 else bytes,) num_special_types = len(special_types) def __init__(self): self.lock = Lock() self.data = defaultdict(lambda: len(self.data)) # type: Dict[type, int] for t in self.special_types: _ = self.data[t] def __getitem__(self, item): t = correct_type(item) with self.lock: return self.data[t] def names(self): # type: () -> List[str] rev = dict((v, k) for k, v in self.data.items()) return [safe_qualname(rev[i]) for i in range(len(rev))] type_registry = TypeRegistry() class NodeValue(object): """ The 'value' of a node during a particular iteration. This can mean different things, see the classmethods. Can also contain some metadata, including links to other calls. """ __slots__ = ('val_repr', 'type_index', 'meta', 'children') def __init__(self, val_repr, type_index): self.val_repr = val_repr # type: str self.type_index = type_index # type: int self.meta = None # type: Optional[Dict[str, Any]] self.children = None # type: Optional[List[Tuple[str, NodeValue]]] def set_meta(self, key, value): # type: (str, Any) -> None self.meta = self.meta or {} self.meta[key] = value def add_child(self, samples, level, key, value): # type: (dict, int, str, Any) -> None self.children = self.children or [] self.children.append((key, NodeValue.expression(samples, value, level))) def as_json(self): result = [self.val_repr, self.type_index, self.meta or {}] # type: list if self.children: result.extend(self.children) return result @classmethod def covered(cls): """ Represents a bit of code, usually a statement, that executed successfully but doesn't have an actual value. """ return cls('', -2) @classmethod def exception(cls, exc_value): """ Means that exc_value was raised by a node when executing, and not any inner node. """ return cls(exception_string(exc_value), -1) @classmethod def expression(cls, samples, val, level): # type: (dict, Any, int) -> NodeValue """ The value of an expression or one of its children, with attributes, dictionary items, etc as children. Has a max depth of `level` levels. """ result = cls(cheap_repr(val), type_registry[val]) if isinstance(val, (TypeRegistry.basic_types, BirdsEye)): return result length = None if not isinstance(val, QuerySet): # len triggers a database query try: length = len(val) except: pass else: result.set_meta('len', length) if isinstance(val, ModuleType): level = min(level, 2) add_child = partial(result.add_child, samples, level - 1) if isinstance(val, (Series, ndarray)): attrs = ['dtype'] if isinstance(val, ndarray): attrs.append('shape') for name in attrs: try: attr = getattr(val, name) except AttributeError: pass else: add_child(name, attr) if level >= 3 or level >= 2 and isinstance(val, Series): sample_type = 'big' else: sample_type = 'small' samples = samples[sample_type] # Always expand DataFrames and Series regardless of level to # make the table view of DataFrames work if isinstance(val, DataFrame): meta = {} result.set_meta('dataframe', meta) max_rows = samples['pandas_rows'] max_cols = samples['pandas_cols'] if length > max_rows + 2: meta['row_break'] = max_rows // 2 columns = val.columns num_cols = len(columns) if num_cols > max_cols + 2: meta['col_break'] = max_cols // 2 indices = set(_sample_indices(num_cols, max_cols)) for i, (formatted_name, label) in enumerate(zip(val.columns.format(sparsify=False), val.columns)): if i in indices: add_child(formatted_name, val[label]) return result if isinstance(val, Series): for i in _sample_indices(length, samples['pandas_rows']): try: k = val.index[i:i + 1].format(sparsify=False)[0] v = val.iloc[i] except: pass else: add_child(k, v) return result if (level <= 0 or isinstance(val, (str, bytes, range) if PY3 else (str, unicode, xrange))): return result if isinstance(val, (Sequence, ndarray)) and length is not None: for i in _sample_indices(length, samples['list']): try: v = val[i] except: pass else: add_child(str(i), v) if isinstance(val, Mapping): for k, v in islice(_safe_iter(val, iteritems), samples['dict']): add_child(cheap_repr(k), v) if isinstance(val, Set): vals = _safe_iter(val) num_items = samples['set'] if length is None or length > num_items + 2: vals = islice(vals, num_items) for i, v in enumerate(vals): add_child('<%s>' % i, v) d = getattr(val, '__dict__', None) if d: for k in sorted(islice(_safe_iter(d), samples['attributes']), key=str): v = d[k] if isinstance(v, TracedFile): continue add_child(str(k), v) else: for s in sorted(getattr(type(val), '__slots__', None) or ()): try: attr = getattr(val, s) except AttributeError: pass else: add_child(str(s), attr) return result def _safe_iter(val, f=lambda x: x): try: for x in f(val): yield x except: pass def _sample_indices(length, max_length): if length <= max_length + 2: return range(length) else: return chain(range(max_length // 2), range(length - max_length // 2, length)) @try_register_repr('pandas', 'Series') def _repr_series_one_line(x, helper): n = len(x) if n == 0: return repr(x) newlevel = helper.level - 1 pieces = [] maxparts = _repr_series_one_line.maxparts for i in _sample_indices(n, maxparts): k = x.index[i:i + 1].format(sparsify=False)[0] v = x.iloc[i] pieces.append('%s = %s' % (k, cheap_repr(v, newlevel))) if n > maxparts + 2: pieces.insert(maxparts // 2, '...') return '; '.join(pieces) def is_interesting_expression(node): # type: (ast.AST) -> bool """ If this expression has a value that may not be exactly what it looks like, return True. Put differently, return False if this is just a literal. """ return (isinstance(node, ast.expr) and not (isinstance(node, (ast.Num, ast.Str, getattr(ast, 'NameConstant', ()))) or isinstance(getattr(node, 'ctx', None), (ast.Store, ast.Del)) or (isinstance(node, ast.UnaryOp) and isinstance(node.op, (ast.UAdd, ast.USub)) and isinstance(node.operand, ast.Num)) or (isinstance(node, (ast.List, ast.Tuple, ast.Dict)) and not any(is_interesting_expression(n) for n in ast.iter_child_nodes(node))))) def is_obvious_builtin(node, value): # type: (ast.expr, Any) -> bool """ Return True if this node looks like a builtin and it really is (i.e. hasn't been shadowed). """ # noinspection PyUnresolvedReferences builtins = cast(dict, __builtins__) return ((isinstance(node, ast.Name) and node.id in builtins and builtins[node.id] is value) or isinstance(node, getattr(ast, 'NameConstant', ())))
{ "repo_name": "alexmojaki/executing", "path": "tests/samples/bird.py", "copies": "1", "size": "41548", "license": "mit", "hash": -8994771742548180000, "line_mean": 35.4776119403, "line_max": 130, "alpha_frac": 0.5481852315, "autogenerated": false, "ratio": 4.111627906976744, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5159813138476743, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ginga.misc import log from ginga import toolkit try: toolkit.use('qt') from ginga.gw import ColorBar except ImportError: # older versions of ginga from ginga.qtw import ColorBar from ginga.qtw.ImageViewCanvasQt import ImageViewCanvas from qtpy import QtWidgets from glue.plugins.ginga_viewer.qt.client import GingaClient from glue.viewers.image.qt import ImageWidgetBase from glue.viewers.common.qt.toolbar import BasicToolbar from glue.plugins.ginga_viewer.qt.utils import ginga_graphic_to_roi try: from ginga.gw import Readout except ImportError: # older versions of ginga from ginga.qtw import Readout __all__ = ['GingaWidget'] class GingaWidget(ImageWidgetBase): LABEL = "Ginga Viewer" _toolbar_cls = BasicToolbar tools = ['ginga:rectangle', 'ginga:circle', 'ginga:polygon', 'ginga:pan', 'ginga:freepan', 'ginga:rotate', 'ginga:contrast', 'ginga:cuts', 'ginga:colormap', 'ginga:slicer', 'ginga:spectrum'] def __init__(self, session, parent=None): self.logger = log.get_logger(name='ginga', level=20, null=True, # uncomment for debugging # log_stderr=True ) self.viewer = ImageViewCanvas(self.logger, render='widget') self.canvas = self.viewer # prevent widget from grabbing focus try: self.canvas.set_enter_focus(False) except AttributeError: self.canvas.set_follow_focus(False) # enable interactive features bindings = self.canvas.get_bindings() bindings.enable_all(True) self.canvas.add_callback('none-move', self.motion_readout) self.canvas.add_callback('draw-event', self._apply_roi_cb) self.canvas.add_callback('draw-down', self._clear_roi_cb) self.canvas.enable_draw(False) self.canvas.enable_autozoom('off') self.canvas.set_zoom_algorithm('rate') self.canvas.set_zoomrate(1.4) bm = self.canvas.get_bindmap() bm.add_callback('mode-set', self.mode_set_cb) self.mode_w = None self.mode_actns = {} # Create settings and set defaults settings = self.canvas.get_settings() self.settings = settings settings.getSetting('cuts').add_callback('set', self.cut_levels_cb) settings.set(autozoom='off', autocuts='override', autocenter='override') # make color bar, with color maps shared from ginga canvas rgbmap = self.viewer.get_rgbmap() self.colorbar = ColorBar.ColorBar(self.logger) rgbmap.add_callback('changed', self.rgbmap_cb, self.viewer) self.colorbar.set_rgbmap(rgbmap) # make coordinates/value readout self.readout = Readout.Readout(-1, 20) self.roi_tag = None super(GingaWidget, self).__init__(session, parent) def make_client(self): return GingaClient(self._data, self.viewer, self._layer_artist_container) def make_central_widget(self): topw = QtWidgets.QWidget() layout = QtWidgets.QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) layout.addWidget(self.viewer.get_widget(), stretch=1) cbar_w = self.colorbar.get_widget() if not isinstance(cbar_w, QtWidgets.QWidget): # ginga wrapped widget cbar_w = cbar_w.get_widget() layout.addWidget(cbar_w, stretch=0) readout_w = self.readout.get_widget() if not isinstance(readout_w, QtWidgets.QWidget): # ginga wrapped widget readout_w = readout_w.get_widget() layout.addWidget(readout_w, stretch=0) topw.setLayout(layout) return topw def match_colorbar(self, canvas, colorbar): rgbmap = self.viewer.get_rgbmap() loval, hival = self.viewer.get_cut_levels() colorbar.set_range(loval, hival) colorbar.set_rgbmap(rgbmap) def rgbmap_cb(self, rgbmap, canvas): self.match_colorbar(canvas, self.colorbar) def cut_levels_cb(self, setting, tup): (loval, hival) = tup self.colorbar.set_range(loval, hival) def _set_roi_mode(self, name, tf): self.canvas.enable_draw(True) # XXX need better way of setting draw contexts self.canvas.draw_context = self self.canvas.set_drawtype(name, color='cyan', linestyle='dash') bm = self.viewer.get_bindmap() bm.set_mode('draw', mode_type='locked') def _clear_roi_cb(self, canvas, *args): try: self.canvas.deleteObjectByTag(self.roi_tag) except: pass def _apply_roi_cb(self, canvas, tag): if self.canvas.draw_context is not self: return self.roi_tag = tag obj = self.canvas.getObjectByTag(self.roi_tag) roi = ginga_graphic_to_roi(obj) # delete outline self.canvas.deleteObject(obj, redraw=False) self.apply_roi(roi) def _tweak_geometry(self): super(GingaWidget, self)._tweak_geometry() # rgb mode not supported yet, so hide option self.ui.monochrome.hide() self.ui.rgb.hide() def motion_readout(self, canvas, button, data_x, data_y): """This method is called when the user moves the mouse around the Ginga canvas. """ d = self.client.point_details(data_x, data_y) # Get the value under the data coordinates try: # value = fitsimage.get_data(data_x, data_y) # We report the value across the pixel, even though the coords # change halfway across the pixel value = self.viewer.get_data(int(data_x + 0.5), int(data_y + 0.5)) except Exception: value = None x_lbl, y_lbl = d['labels'][0], d['labels'][1] # x_txt, y_txt = d['world'][0], d['world'][1] text = "%s %s X=%.2f Y=%.2f Value=%s" % ( x_lbl, y_lbl, data_x, data_y, value) self.readout.set_text(text) def mode_cb(self, modname, tf): """This method is called when a toggle button in the toolbar is pressed selecting one of the modes. """ bm = self.viewer.get_bindmap() if not tf: bm.reset_mode(self.viewer) return bm.set_mode(modname, mode_type='locked') return True def mode_set_cb(self, bm, modname, mtype): """This method is called when a mode is selected in the viewer widget. NOTE: it may be called when mode_cb() is not called (for example, when a keypress initiates a mode); however, the converse is not true: calling mode_cb() will always result in this method also being called as a result. This logic is to insure that the toggle buttons are left in a sane state that reflects the current mode, however it was initiated. """ if modname in self.mode_actns: if self.mode_w and (self.mode_w != self.mode_actns[modname]): self.mode_w.setChecked(False) self.mode_w = self.mode_actns[modname] self.mode_w.setChecked(True) elif self.mode_w: # keystroke turned on a mode for which we have no GUI button # and a GUI button is selected--unselect it self.mode_w.setChecked(False) self.mode_w = None return True
{ "repo_name": "saimn/glue", "path": "glue/plugins/ginga_viewer/qt/viewer_widget.py", "copies": "1", "size": "7539", "license": "bsd-3-clause", "hash": 4977925983985761000, "line_mean": 35.0717703349, "line_max": 82, "alpha_frac": 0.6129460141, "autogenerated": false, "ratio": 3.6158273381294963, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4728773352229496, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glob import glob from .chunks import Chunks, chunks from .resource import resource from .utils import copydoc from toolz import memoize, first from datashape import discover, var import os class _Directory(Chunks): """ A directory of files on disk For typed containers see the ``Directory`` function which generates parametrized Directory classes. >>> from odo import CSV >>> c = Directory(CSV)('path/to/data/') # doctest: +SKIP Normal use through resource strings >>> r = resource('path/to/data/*.csv') # doctest: +SKIP >>> r = resource('path/to/data/') # doctest: +SKIP """ def __init__(self, path, **kwargs): self.path = path self.kwargs = kwargs def __iter__(self): return (resource(os.path.join(self.path, fn), **self.kwargs) for fn in sorted(os.listdir(self.path))) @memoize @copydoc(_Directory) def Directory(cls): """ Parametrized DirectoryClass """ return type('Directory(%s)' % cls.__name__, (_Directory, chunks(cls)), {}) re_path_sep = os.path.sep if re_path_sep == '\\': re_path_sep = '\\\\' @discover.register(_Directory) def discover_Directory(c, **kwargs): return var * discover(first(c)).subshape[0] @resource.register('.+' + re_path_sep + '\*\..+', priority=15) def resource_directory(uri, **kwargs): path = uri.rsplit(os.path.sep, 1)[0] try: one_uri = first(glob(uri)) except (OSError, StopIteration): return _Directory(path, **kwargs) subtype = type(resource(one_uri, **kwargs)) return Directory(subtype)(path, **kwargs) @resource.register('.+' + re_path_sep, priority=9) def resource_directory_with_trailing_slash(uri, **kwargs): try: one_uri = os.listdir(uri)[0] except (OSError, IndexError): return _Directory(uri, **kwargs) subtype = type(resource(one_uri, **kwargs)) return Directory(subtype)(uri, **kwargs)
{ "repo_name": "quantopian/odo", "path": "odo/directory.py", "copies": "4", "size": "1996", "license": "bsd-3-clause", "hash": -5126755256467711000, "line_mean": 27.1126760563, "line_max": 78, "alpha_frac": 0.6407815631, "autogenerated": false, "ratio": 3.5899280575539567, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0011323597026072056, "num_lines": 71 }
from __future__ import absolute_import, division, print_function from glob import glob from .chunks import Chunks from .resource import resource from toolz import memoize, first from datashape import discover, var import os class _Directory(Chunks): """ A directory of files on disk For typed containers see the ``Directory`` function which generates parametrized Directory classes. >>> from into import CSV >>> c = Directory(CSV)('path/to/data/') Normal use through resource strings >>> r = resource('path/to/data/*.csv') >>> r = resource('path/to/data/') """ def __init__(self, path, **kwargs): self.path = path self.kwargs = kwargs def __iter__(self): return (resource(os.path.join(self.path, fn), **self.kwargs) for fn in sorted(os.listdir(self.path))) def Directory(cls): """ Parametrized DirectoryClass """ return type('Directory(%s)' % cls.__name__, (_Directory,), {'container': cls}) Directory.__doc__ = Directory.__doc__ Directory = memoize(Directory) @discover.register(_Directory) def discover_Directory(c, **kwargs): return var * discover(first(c)).subshape[0] @resource.register('.+' + os.path.sep + '\*\..+', priority=15) def resource_directory(uri, **kwargs): path = uri.rsplit(os.path.sep, 1)[0] try: one_uri = first(glob(uri)) except (OSError, StopIteration): return _Directory(path, **kwargs) subtype = type(resource(one_uri, **kwargs)) return Directory(subtype)(path, **kwargs) @resource.register('.+' + os.path.sep, priority=9) def resource_directory_with_trailing_slash(uri, **kwargs): try: one_uri = os.listdir(uri)[0] except (OSError, IndexError): return _Directory(uri, **kwargs) subtype = type(resource(one_uri, **kwargs)) return Directory(subtype)(uri, **kwargs)
{ "repo_name": "mrocklin/into", "path": "into/directory.py", "copies": "1", "size": "1877", "license": "bsd-3-clause", "hash": 7361175921667981000, "line_mean": 26.6029411765, "line_max": 82, "alpha_frac": 0.6446457112, "autogenerated": false, "ratio": 3.7094861660079053, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9847771328927483, "avg_score": 0.0012721096560845751, "num_lines": 68 }
from __future__ import absolute_import, division, print_function from glob import glob from .chunks import Chunks from .resource import resource from .utils import copydoc from toolz import memoize, first from datashape import discover, var import os class _Directory(Chunks): """ A directory of files on disk For typed containers see the ``Directory`` function which generates parametrized Directory classes. >>> from odo import CSV >>> c = Directory(CSV)('path/to/data/') # doctest: +SKIP Normal use through resource strings >>> r = resource('path/to/data/*.csv') # doctest: +SKIP >>> r = resource('path/to/data/') # doctest: +SKIP """ def __init__(self, path, **kwargs): self.path = path self.kwargs = kwargs def __iter__(self): return (resource(os.path.join(self.path, fn), **self.kwargs) for fn in sorted(os.listdir(self.path))) @memoize @copydoc(_Directory) def Directory(cls): """ Parametrized DirectoryClass """ return type('Directory(%s)' % cls.__name__, (_Directory,), {'container': cls}) re_path_sep = os.path.sep if re_path_sep == '\\': re_path_sep = '\\\\' @discover.register(_Directory) def discover_Directory(c, **kwargs): return var * discover(first(c)).subshape[0] @resource.register('.+' + re_path_sep + '\*\..+', priority=15) def resource_directory(uri, **kwargs): path = uri.rsplit(os.path.sep, 1)[0] try: one_uri = first(glob(uri)) except (OSError, StopIteration): return _Directory(path, **kwargs) subtype = type(resource(one_uri, **kwargs)) return Directory(subtype)(path, **kwargs) @resource.register('.+' + re_path_sep, priority=9) def resource_directory_with_trailing_slash(uri, **kwargs): try: one_uri = os.listdir(uri)[0] except (OSError, IndexError): return _Directory(uri, **kwargs) subtype = type(resource(one_uri, **kwargs)) return Directory(subtype)(uri, **kwargs)
{ "repo_name": "Dannnno/odo", "path": "odo/directory.py", "copies": "5", "size": "1992", "license": "bsd-3-clause", "hash": -4025174196731448300, "line_mean": 27.0563380282, "line_max": 82, "alpha_frac": 0.640562249, "autogenerated": false, "ratio": 3.595667870036101, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6736230119036101, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glob import glob import os try: from skimage.io import imread as sk_imread except ImportError: pass from .core import Array from ..base import tokenize def add_leading_dimension(x): return x[None, ...] def imread(filename, imread=None, preprocess=None): """ Read a stack of images into a dask array Parameters ---------- filename: string A globstring like 'myfile.*.png' imread: function (optional) Optionally provide custom imread function. Function should expect a filename and produce a numpy array. Defaults to ``skimage.io.imread``. preprocess: function (optional) Optionally provide custom function to preprocess the image. Function should expect a numpy array for a single image. Examples -------- >>> from dask.array.image import imread >>> im = imread('2015-*-*.png') # doctest: +SKIP >>> im.shape # doctest: +SKIP (365, 1000, 1000, 3) Returns ------- Dask array of all images stacked along the first dimension. All images will be treated as individual chunks """ imread = imread or sk_imread filenames = sorted(glob(filename)) if not filenames: raise ValueError("No files found under name %s" % filename) name = 'imread-%s' % tokenize(filenames, map(os.path.getmtime, filenames)) sample = imread(filenames[0]) if preprocess: sample = preprocess(sample) keys = [(name, i) + (0,) * len(sample.shape) for i in range(len(filenames))] if preprocess: values = [(add_leading_dimension, (preprocess, (imread, fn))) for fn in filenames] else: values = [(add_leading_dimension, (imread, fn)) for fn in filenames] dsk = dict(zip(keys, values)) chunks = ((1, ) * len(filenames), ) + tuple((d, ) for d in sample.shape) return Array(dsk, name, chunks, sample.dtype)
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/array/image.py", "copies": "6", "size": "1997", "license": "mit", "hash": -25959412088231750, "line_mean": 27.1267605634, "line_max": 80, "alpha_frac": 0.6334501753, "autogenerated": false, "ratio": 3.9860279441117763, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7619478119411777, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.config import colormaps from glue.external.echo import CallbackProperty, SelectionCallbackProperty, delay_callback from glue.core.state_objects import StateAttributeLimitsHelper from glue.core.data_combo_helper import ComponentIDComboHelper from ..common.layer_state import VispyLayerState __all__ = ['IsosurfaceLayerState'] class IsosurfaceLayerState(VispyLayerState): """ A state object for volume layers """ attribute = SelectionCallbackProperty() level_low = CallbackProperty() level_high = CallbackProperty() cmap = CallbackProperty() step = CallbackProperty(4) level_cache = CallbackProperty({}) def __init__(self, layer=None, **kwargs): super(IsosurfaceLayerState, self).__init__(layer=layer) self.att_helper = ComponentIDComboHelper(self, 'attribute') self.lim_helper = StateAttributeLimitsHelper(self, attribute='attribute', lower='level_low', upper='level_high') self.add_callback('layer', self._on_layer_change) if layer is not None: self._on_layer_change() self.cmap = colormaps.members[0][1] self.update_from_dict(kwargs) def _on_layer_change(self, layer=None): with delay_callback(self, 'level_low', 'level_high'): if self.layer is None: self.att_helper.set_multiple_data([]) else: self.att_helper.set_multiple_data([self.layer]) def update_priority(self, name): return 0 if name == 'level' else 1
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/isosurface/layer_state.py", "copies": "3", "size": "1648", "license": "bsd-2-clause", "hash": -9152456319949282000, "line_mean": 28.9636363636, "line_max": 91, "alpha_frac": 0.6541262136, "autogenerated": false, "ratio": 4, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6154126213600001, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.config import colormaps from glue.external.echo import (CallbackProperty, SelectionCallbackProperty, keep_in_sync, delay_callback) from glue.core.state_objects import StateAttributeLimitsHelper from glue.core.data_combo_helper import ComponentIDComboHelper from ..common.layer_state import VispyLayerState __all__ = ['ScatterLayerState'] class ScatterLayerState(VispyLayerState): """ A state object for volume layers """ size_mode = CallbackProperty('Fixed') size = CallbackProperty() size_attribute = SelectionCallbackProperty() size_vmin = CallbackProperty() size_vmax = CallbackProperty() size_scaling = CallbackProperty(1) color_mode = CallbackProperty('Fixed') cmap_attribute = SelectionCallbackProperty() cmap_vmin = CallbackProperty() cmap_vmax = CallbackProperty() cmap = CallbackProperty() size_limits_cache = CallbackProperty({}) cmap_limits_cache = CallbackProperty({}) def __init__(self, layer=None, **kwargs): self._sync_markersize = None super(ScatterLayerState, self).__init__(layer=layer) if self.layer is not None: self.color = self.layer.style.color self.size = self.layer.style.markersize self.alpha = self.layer.style.alpha self.size_att_helper = ComponentIDComboHelper(self, 'size_attribute') self.cmap_att_helper = ComponentIDComboHelper(self, 'cmap_attribute') self.size_lim_helper = StateAttributeLimitsHelper(self, attribute='size_attribute', lower='size_vmin', upper='size_vmax', cache=self.size_limits_cache) self.cmap_lim_helper = StateAttributeLimitsHelper(self, attribute='cmap_attribute', lower='cmap_vmin', upper='cmap_vmax', cache=self.cmap_limits_cache) self.add_callback('layer', self._on_layer_change) if layer is not None: self._on_layer_change() self.cmap = colormaps.members[0][1] self.update_from_dict(kwargs) def _on_layer_change(self, layer=None): with delay_callback(self, 'cmap_vmin', 'cmap_vmax', 'size_vmin', 'size_vmax'): if self.layer is None: self.cmap_att_helper.set_multiple_data([]) self.size_att_helper.set_multiple_data([]) else: self.cmap_att_helper.set_multiple_data([self.layer]) self.size_att_helper.set_multiple_data([self.layer]) def update_priority(self, name): return 0 if name.endswith(('vmin', 'vmax')) else 1 def _layer_changed(self): super(ScatterLayerState, self)._layer_changed() if self._sync_markersize is not None: self._sync_markersize.stop_syncing() if self.layer is not None: self.size = self.layer.style.markersize self._sync_markersize = keep_in_sync(self, 'size', self.layer.style, 'markersize') def flip_size(self): self.size_lim_helper.flip_limits() def flip_cmap(self): self.cmap_lim_helper.flip_limits()
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/scatter/layer_state.py", "copies": "3", "size": "3356", "license": "bsd-2-clause", "hash": 6718872008350335000, "line_mean": 34.7021276596, "line_max": 95, "alpha_frac": 0.6114421931, "autogenerated": false, "ratio": 4.112745098039215, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6224187291139216, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.core.data_factories.hdf5 import is_hdf5, extract_hdf5_datasets from glue.core.data_factories.fits import is_fits, is_image_hdu from glue.core.coordinates import coordinates_from_header from glue.core.data import Component, Data from glue.config import data_factory from glue.utils import file_format __all__ = ['is_gridded_data', 'gridded_data'] def extract_data_hdf5(filename, use_datasets='all'): ''' Extract non-tabular datasets from an HDF5 file. If `use_datasets` is 'all', then all non-tabular datasets are extracted, otherwise only the ones specified by `use_datasets` are extracted (`use_datasets` should then contain a list of paths). If the requested datasets do not have the same dimensions, an Exception is raised. ''' import h5py # Open file file_handle = h5py.File(filename, 'r') # Define function to read # Read in all datasets datasets = extract_hdf5_datasets(file_handle) # Only keep non-tabular datasets remove = [] for key in datasets: if datasets[key].dtype.fields is not None: remove.append(key) for key in remove: datasets.pop(key) # Check that dimensions of all datasets are the same reference_shape = datasets[list(datasets.keys())[0]].value.shape for key in datasets: if datasets[key].value.shape != reference_shape: raise Exception("Datasets are not all the same dimensions") # Extract data arrays = {} for key in datasets: arrays[key] = datasets[key].value # Close HDF5 file file_handle.close() return arrays def filter_hdulist_by_shape(hdulist, use_hdu='all'): """ Remove empty HDUs, and ensure that all HDUs can be packed into a single Data object (ie have the same shape) Parameters ---------- use_hdu : 'all' or list of integers (optional) Which HDUs to use Returns ------- a new HDUList """ from astropy.io import fits # If only a subset are requested, extract those if use_hdu != 'all': hdulist = [hdulist[hdu] for hdu in use_hdu] # Now only keep HDUs that are not tables or empty. valid_hdus = [] for hdu in hdulist: if (isinstance(hdu, fits.PrimaryHDU) or isinstance(hdu, fits.ImageHDU)) and \ hdu.data is not None: valid_hdus.append(hdu) # Check that dimensions of all HDU are the same # Allow for HDU's that have no data. reference_shape = valid_hdus[0].data.shape for hdu in valid_hdus: if hdu.data.shape != reference_shape: raise Exception("HDUs are not all the same dimensions") return valid_hdus def extract_data_fits(filename, use_hdu='all'): ''' Extract non-tabular HDUs from a FITS file. If `use_hdu` is 'all', then all non-tabular HDUs are extracted, otherwise only the ones specified by `use_hdu` are extracted (`use_hdu` should then contain a list of integers). If the requested HDUs do not have the same dimensions, an Exception is raised. ''' from astropy.io import fits # Read in all HDUs hdulist = fits.open(filename, ignore_blank=True) hdulist = filter_hdulist_by_shape(hdulist) # Extract data arrays = {} for hdu in hdulist: arrays[hdu.name] = hdu.data return arrays def is_gridded_data(filename, **kwargs): if is_hdf5(filename): return True if is_fits(filename): from astropy.io import fits with fits.open(filename) as hdulist: return is_image_hdu(hdulist[0]) return False @data_factory(label="FITS/HDF5 Image", identifier=is_gridded_data, deprecated=True) def gridded_data(filename, format='auto', **kwargs): result = Data() # Try and automatically find the format if not specified if format == 'auto': format = file_format(filename) # Read in the data if is_fits(filename): from astropy.io import fits arrays = extract_data_fits(filename, **kwargs) header = fits.getheader(filename) result.coords = coordinates_from_header(header) elif is_hdf5(filename): arrays = extract_data_hdf5(filename, **kwargs) else: raise Exception("Unkonwn format: %s" % format) for component_name in arrays: comp = Component.autotyped(arrays[component_name]) result.add_component(comp, component_name) return result
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/data_factories/deprecated.py", "copies": "4", "size": "4547", "license": "bsd-3-clause", "hash": 3293082004932872000, "line_mean": 27.9617834395, "line_max": 74, "alpha_frac": 0.6522982186, "autogenerated": false, "ratio": 3.6997558991049635, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6352054117704964, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.core.data import Data, Component from glue.config import data_factory from glue.core.data_factories.helpers import has_extension __all__ = ['is_npy', 'npy_reader', 'is_npz', 'npz_reader'] # TODO: implement support for regular arrays, e.g., not just structured arrays? def is_npy(filename): """ The first bytes are: x93NUMPY see: https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.rst """ from numpy.lib.format import MAGIC_PREFIX with open(filename, 'rb') as infile: return infile.read(6) == MAGIC_PREFIX @data_factory(label="Numpy save file", identifier=is_npy, priority=100) def npy_reader(filename, format='auto', auto_merge=False, **kwargs): """ Read in a Numpy structured array saved to a .npy or .npz file. Parameters ---------- source: str The pathname to the Numpy save file. """ import numpy as np npy_data = np.load(filename) if not hasattr(npy_data.dtype, 'names'): raise ValueError("Numpy save file loading currently only supports structured" " arrays, e.g., with specified names.") d = Data() for name in npy_data.dtype.names: comp = Component.autotyped(npy_data[name]) d.add_component(comp, label=name) return d def is_npz(filename): """ The first bytes are: x93NUMPY see: https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.rst """ tester = has_extension('npz .npz') MAGIC_PREFIX = b'PK\x03\x04' # first 4 bytes for a zipfile with open(filename, 'rb') as infile: check = infile.read(4) == MAGIC_PREFIX return check and tester(filename) @data_factory(label="Numpy multiple array save file", identifier=is_npz, priority=100) def npz_reader(filename, format='auto', auto_merge=False, **kwargs): """ Read in a Numpy structured array saved to a .npy or .npz file. Parameters ---------- source: str The pathname to the Numpy save file. """ import numpy as np npy_data = np.load(filename) groups = [] for groupname in sorted(npy_data.files): d = Data(label=groupname) arr = npy_data[groupname] if not hasattr(arr.dtype, 'names'): raise ValueError("Numpy save file loading currently only supports structured" " arrays, e.g., with specified names.") for name in arr.dtype.names: comp = Component.autotyped(arr[name]) d.add_component(comp, label=name) groups.append(d) return groups
{ "repo_name": "saimn/glue", "path": "glue/core/data_factories/npy.py", "copies": "2", "size": "2643", "license": "bsd-3-clause", "hash": -4987282703729713000, "line_mean": 28.6966292135, "line_max": 89, "alpha_frac": 0.6375331063, "autogenerated": false, "ratio": 3.660664819944598, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.012594876112937439, "num_lines": 89 }
from __future__ import absolute_import, division, print_function from glue.core import command from glue.viewers.matplotlib.qt.toolbar import MatplotlibViewerToolbar from glue.core.edit_subset_mode import EditSubsetMode from glue.core.util import update_ticks from glue.viewers.matplotlib.qt.data_viewer import MatplotlibDataViewer from glue.viewers.scatter.qt.layer_style_editor import ScatterLayerStyleEditor from glue.viewers.scatter.layer_artist import ScatterLayerArtist from glue.viewers.scatter.qt.options_widget import ScatterOptionsWidget from glue.viewers.scatter.state import ScatterViewerState from glue.viewers.scatter.compat import update_scatter_viewer_state __all__ = ['ScatterViewer'] class ScatterViewer(MatplotlibDataViewer): LABEL = '2D Scatter' _toolbar_cls = MatplotlibViewerToolbar _layer_style_widget_cls = ScatterLayerStyleEditor _state_cls = ScatterViewerState _options_cls = ScatterOptionsWidget _data_artist_cls = ScatterLayerArtist _subset_artist_cls = ScatterLayerArtist tools = ['select:rectangle', 'select:xrange', 'select:yrange', 'select:circle', 'select:polygon'] def __init__(self, session, parent=None, state=None): super(ScatterViewer, self).__init__(session, parent, state=state) self.state.add_callback('x_att', self._update_axes) self.state.add_callback('y_att', self._update_axes) self.state.add_callback('x_log', self._update_axes) self.state.add_callback('y_log', self._update_axes) self._update_axes() def _update_axes(self, *args): if self.state.x_att is not None: # Update ticks, which sets the labels to categories if components are categorical update_ticks(self.axes, 'x', self.state._get_x_components(), self.state.x_log) if self.state.x_log: self.axes.set_xlabel('Log ' + self.state.x_att.label) else: self.axes.set_xlabel(self.state.x_att.label) if self.state.y_att is not None: # Update ticks, which sets the labels to categories if components are categorical update_ticks(self.axes, 'y', self.state._get_y_components(), self.state.y_log) if self.state.y_log: self.axes.set_ylabel('Log ' + self.state.y_att.label) else: self.axes.set_ylabel(self.state.y_att.label) self.axes.figure.canvas.draw() # TODO: move some of the ROI stuff to state class? def _roi_to_subset_state(self, roi): x_comp = self.state.x_att.parent.get_component(self.state.x_att) y_comp = self.state.y_att.parent.get_component(self.state.y_att) return x_comp.subset_from_roi(self.state.x_att, roi, other_comp=y_comp, other_att=self.state.y_att, coord='x') @staticmethod def update_viewer_state(rec, context): return update_scatter_viewer_state(rec, context)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/scatter/qt/data_viewer.py", "copies": "1", "size": "3061", "license": "bsd-3-clause", "hash": -7325583605861242000, "line_mean": 38.2435897436, "line_max": 93, "alpha_frac": 0.6566481542, "autogenerated": false, "ratio": 3.6054181389870434, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47620662931870433, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.core import Data, DataCollection from qtpy import QtGui, QtWidgets from qtpy.QtCore import Qt from glue.core.hub import HubListener from glue.core.message import (ComponentsChangedMessage, DataCollectionAddMessage, DataCollectionDeleteMessage, DataUpdateMessage) from glue.utils import nonpartial from glue.utils.qt import update_combobox from glue.utils.qt.widget_properties import CurrentComboDataProperty __all__ = ['ComponentIDComboHelper', 'ManualDataComboHelper', 'DataCollectionComboHelper'] class ComponentIDComboHelper(HubListener): """ The purpose of this class is to set up a combo showing componentIDs for one or more datasets, and to update these componentIDs if needed, for example if new components are added to a dataset, or if componentIDs are renamed. Parameters ---------- component_id_combo : Qt combo widget The Qt widget for the component ID combo box data_collection : :class:`~glue.core.DataCollection` The data collection to which the datasets belong - this is needed because if a dataset is removed from the data collection, we want to remove it here. visible : bool, optional Only show visible components numeric : bool, optional Show numeric components categorical : bool, optional Show categorical components """ def __init__(self, component_id_combo, data_collection, visible=True, numeric=True, categorical=True): super(ComponentIDComboHelper, self).__init__() if data_collection.hub is None: raise ValueError("Hub on data collection is not set") self._visible = visible self._numeric = numeric self._categorical = categorical self._component_id_combo = component_id_combo self._data = [] self._data_collection = data_collection self.hub = data_collection.hub def clear(self): self._data.clear() self.refresh() @property def visible(self): return self._visible @visible.setter def visible(self, value): self._visible = value self.refresh() @property def numeric(self): return self._numeric @numeric.setter def numeric(self, value): self._numeric = value self.refresh() @property def categorical(self): return self._categorical @categorical.setter def categorical(self, value): self._categorical = value self.refresh() def append_data(self, data): if self.hub is None: if data.hub is None: raise ValueError("Hub is not set on Data object") else: self.hub = data.hub elif data.hub is not self.hub: raise ValueError("Data Hub is different from current hub") self._data.append(data) self.refresh() def remove_data(self, data): self._data.remove(data) self.refresh() def set_multiple_data(self, datasets): """ Add multiple datasets to the combo in one go (and clear any previous datasets). Parameters ---------- datasets : list The list of :class:`~glue.core.data.Data` objects to add """ try: self._data.clear() except AttributeError: # PY2 self._data[:] = [] self._data.extend(datasets) self.refresh() @property def hub(self): return self._hub @hub.setter def hub(self, value): self._hub = value if value is not None: self.register_to_hub(value) def refresh(self): label_data = [] for data in self._data: if len(self._data) > 1: if data.label is None or data.label == '': label_data.append(("Untitled Data", None)) else: label_data.append((data.label, None)) if self.visible: all_component_ids = data.visible_components else: all_component_ids = data.components component_ids = [] for cid in all_component_ids: comp = data.get_component(cid) if (comp.numeric and self.numeric) or (comp.categorical and self.categorical): component_ids.append(cid) label_data.extend([(cid.label, (cid, data)) for cid in component_ids]) update_combobox(self._component_id_combo, label_data) # Disable header rows model = self._component_id_combo.model() for index in range(self._component_id_combo.count()): if self._component_id_combo.itemData(index) is None: item = model.item(index) palette = self._component_id_combo.palette() item.setFlags(item.flags() & ~(Qt.ItemIsSelectable | Qt.ItemIsEnabled)) item.setData(palette.color(QtGui.QPalette.Disabled, QtGui.QPalette.Text)) index = self._component_id_combo.currentIndex() if self._component_id_combo.itemData(index) is None: for index in range(index + 1, self._component_id_combo.count()): if self._component_id_combo.itemData(index) is not None: self._component_id_combo.setCurrentIndex(index) break def register_to_hub(self, hub): hub.subscribe(self, ComponentsChangedMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.data in self._data) hub.subscribe(self, DataCollectionDeleteMessage, handler=lambda msg: self.remove_data(msg.data), filter=lambda msg: msg.sender is self._data_collection) def unregister(self, hub): hub.unsubscribe_all(self) class BaseDataComboHelper(HubListener): """ This is a base class for helpers for combo boxes that need to show a list of data objects. Parameters ---------- data_combo : Qt combo widget The Qt widget for the data combo box """ _data = CurrentComboDataProperty('_data_combo') def __init__(self, data_combo): super(BaseDataComboHelper, self).__init__() self._data_combo = data_combo self._component_id_helpers = [] self._data_combo.currentIndexChanged.connect(self.refresh_component_ids) def refresh(self): label_data = [(data.label, data) for data in self._datasets] update_combobox(self._data_combo, label_data) self.refresh_component_ids() def refresh_component_ids(self): for helper in self._component_id_helpers: helper.clear() if self._data is not None: helper.append_data(self._data) helper.refresh() def add_component_id_combo(self, combo): helper = ComponentIDComboHelper(combo) self._component_id_helpers.append_data(helper) if self._data is not None: helper.append_data(self._data) @property def hub(self): return self._hub @hub.setter def hub(self, value): self._hub = value if value is not None: self.register_to_hub(value) def register_to_hub(self, hub): pass class ManualDataComboHelper(BaseDataComboHelper): """ This is a helper for combo boxes that need to show a list of data objects that is manually curated. Datasets are added and removed using the :meth:`~ManualDataComboHelper.append_data` and :meth:`~ManualDataComboHelper.remove_data` methods. Parameters ---------- data_combo : Qt combo widget The Qt widget for the data combo box data_collection : :class:`~glue.core.DataCollection` The data collection to which the datasets belong - this is needed because if a dataset is removed from the data collection, we want to remove it here. """ def __init__(self, data_combo, data_collection): super(ManualDataComboHelper, self).__init__(data_combo) if data_collection.hub is None: raise ValueError("Hub on data collection is not set") self._data_collection = data_collection self._datasets = [] self.hub = data_collection.hub def append_data(self, data): self._datasets.append(data) self.refresh() def remove_data(self, data): self._datasets.remove(data) self.refresh() def register_to_hub(self, hub): super(ManualDataComboHelper, self).register_to_hub(hub) hub.subscribe(self, DataUpdateMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender in self._datasets) hub.subscribe(self, DataCollectionDeleteMessage, handler=lambda msg: self.remove_data(msg.data), filter=lambda msg: msg.sender is self._data_collection) class DataCollectionComboHelper(BaseDataComboHelper): """ This is a helper for combo boxes that need to show a list of data objects that is always in sync with a :class:`~glue.core.DataCollection`. Parameters ---------- data_combo : Qt combo widget The Qt widget for the data combo box data_collection : :class:`~glue.core.DataCollection` The data collection with which to stay in sync """ def __init__(self, data_combo, data_collection): super(DataCollectionComboHelper, self).__init__(data_combo) if data_collection.hub is None: raise ValueError("Hub on data collection is not set") self._datasets = data_collection self.register_to_hub(data_collection.hub) self.refresh() def register_to_hub(self, hub): super(DataCollectionComboHelper, self).register_to_hub(hub) hub.subscribe(self, DataUpdateMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender in self._datasets) hub.subscribe(self,DataCollectionAddMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender is self._datasets) hub.subscribe(self, DataCollectionDeleteMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender is self._datasets) if __name__ == "__main__": from glue.utils.qt import get_qapp app = get_qapp() window = QtWidgets.QWidget() layout = QtWidgets.QVBoxLayout() window.setLayout(layout) data_combo = QtWidgets.QComboBox() layout.addWidget(data_combo) cid1_combo = QtWidgets.QComboBox() layout.addWidget(cid1_combo) cid2_combo = QtWidgets.QComboBox() layout.addWidget(cid2_combo) d1 = Data(x=[1,2,3], y=[2,3,4], label='banana') d2 = Data(a=[0,1,1], b=[2,1,1], label='apple') dc = DataCollection([d1, d2]) helper = DataCollectionComboHelper(data_combo, dc) helper.add_component_id_combo(cid1_combo) helper.add_component_id_combo(cid2_combo) window.show() window.raise_() # app.exec_()
{ "repo_name": "saimn/glue", "path": "glue/core/qt/data_combo_helper.py", "copies": "1", "size": "11368", "license": "bsd-3-clause", "hash": 2405121046332123600, "line_mean": 30.9325842697, "line_max": 94, "alpha_frac": 0.6111893033, "autogenerated": false, "ratio": 4.275291462955998, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5386480766255998, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.core import Data, DataCollection from qtpy import QtWidgets from ..data_combo_helper import (ComponentIDComboHelper, ManualDataComboHelper, DataCollectionComboHelper) def _items_as_string(combo): items = [combo.itemText(i) for i in range(combo.count())] return ":".join(items) def test_component_id_combo_helper(): combo = QtWidgets.QComboBox() dc = DataCollection([]) helper = ComponentIDComboHelper(combo, dc) assert _items_as_string(combo) == "" data1 = Data(x=[1,2,3], y=[2,3,4], label='data1') dc.append(data1) helper.append_data(data1) assert _items_as_string(combo) == "x:y" data2 = Data(a=[1,2,3], b=['a','b','c'], label='data2') dc.append(data2) helper.append_data(data2) assert _items_as_string(combo) == "data1:x:y:data2:a:b" helper.categorical = False assert _items_as_string(combo) == "data1:x:y:data2:a" helper.numeric = False assert _items_as_string(combo) == "data1:data2" helper.categorical = True helper.numeric = True helper.visible = False assert _items_as_string(combo) == "data1:Pixel Axis 0 [x]:World 0:x:y:data2:Pixel Axis 0 [x]:World 0:a:b" helper.visible = True dc.remove(data2) assert _items_as_string(combo) == "x:y" # TODO: check that renaming a component updates the combo # data1.id['x'].label = 'z' # assert _items_as_string(combo) == "z:y" helper.remove_data(data1) assert _items_as_string(combo) == "" def test_component_id_combo_helper_init(): # Regression test to make sure that the numeric and categorical options # in the __init__ are taken into account properly combo = QtWidgets.QComboBox() dc = DataCollection([]) data = Data(a=[1,2,3], b=['a','b','c'], label='data2') dc.append(data) helper = ComponentIDComboHelper(combo, dc) helper.append_data(data) assert _items_as_string(combo) == "a:b" helper = ComponentIDComboHelper(combo, dc, numeric=False) helper.append_data(data) assert _items_as_string(combo) == "b" helper = ComponentIDComboHelper(combo, dc, categorical=False) helper.append_data(data) assert _items_as_string(combo) == "a" helper = ComponentIDComboHelper(combo, dc, numeric=False, categorical=False) helper.append_data(data) assert _items_as_string(combo) == "" def test_manual_data_combo_helper(): combo = QtWidgets.QComboBox() dc = DataCollection([]) helper = ManualDataComboHelper(combo, dc) data1 = Data(x=[1,2,3], y=[2,3,4], label='data1') dc.append(data1) assert _items_as_string(combo) == "" helper.append_data(data1) assert _items_as_string(combo) == "data1" data1.label = 'mydata1' assert _items_as_string(combo) == "mydata1" dc.remove(data1) assert _items_as_string(combo) == "" def test_data_collection_combo_helper(): combo = QtWidgets.QComboBox() dc = DataCollection([]) helper = DataCollectionComboHelper(combo, dc) data1 = Data(x=[1,2,3], y=[2,3,4], label='data1') dc.append(data1) assert _items_as_string(combo) == "data1" data1.label = 'mydata1' assert _items_as_string(combo) == "mydata1" dc.remove(data1) assert _items_as_string(combo) == ""
{ "repo_name": "saimn/glue", "path": "glue/core/qt/tests/test_data_combo_helper.py", "copies": "1", "size": "3366", "license": "bsd-3-clause", "hash": 1624665912514601000, "line_mean": 23.0428571429, "line_max": 109, "alpha_frac": 0.642305407, "autogenerated": false, "ratio": 3.199619771863118, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4341925178863118, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.core import Data, DataCollection, Subset from qtpy import QtGui, QtWidgets from qtpy.QtCore import Qt from glue.core.hub import HubListener from glue.core.message import (ComponentsChangedMessage, DataCollectionAddMessage, DataCollectionDeleteMessage, DataUpdateMessage, ComponentReplacedMessage) from glue.utils import nonpartial from glue.utils.qt import update_combobox from glue.utils.qt.widget_properties import CurrentComboDataProperty from glue.external.echo.qt.connect import _find_combo_data __all__ = ['ComponentIDComboHelper', 'ManualDataComboHelper', 'DataCollectionComboHelper'] class ComponentIDComboHelper(HubListener): """ The purpose of this class is to set up a combo showing componentIDs for one or more datasets, and to update these componentIDs if needed, for example if new components are added to a dataset, or if componentIDs are renamed. Parameters ---------- component_id_combo : Qt combo widget The Qt widget for the component ID combo box data_collection : :class:`~glue.core.DataCollection` The data collection to which the datasets belong - if specified, this is used to remove datasets from the combo when they are removed from the data collection. data : :class:`~glue.core.Data` If specified, set up the combo for this dataset only and don't allow datasets to be added/removed visible : bool, optional Only show visible components numeric : bool, optional Show numeric components categorical : bool, optional Show categorical components pixel_coord : bool, optional Show pixel coordinate components world_coord : bool, optional Show world coordinate components """ def __init__(self, component_id_combo, data_collection=None, data=None, visible=True, numeric=True, categorical=True, pixel_coord=False, world_coord=False, default_index=0,): super(ComponentIDComboHelper, self).__init__() self._visible = visible self._numeric = numeric self._categorical = categorical self._pixel_coord = pixel_coord self._world_coord = world_coord self._component_id_combo = component_id_combo if data is None: self._manual_data = False self._data = [] else: self._manual_data = True self._data = [data] self._data_collection = data_collection if data_collection is not None: if data_collection.hub is None: raise ValueError("Hub on data collection is not set") else: self.hub = data_collection.hub self.default_index = default_index if data is not None: self.refresh() def clear(self): self._data.clear() self.refresh() @property def visible(self): return self._visible @visible.setter def visible(self, value): self._visible = value self.refresh() @property def numeric(self): return self._numeric @numeric.setter def numeric(self, value): self._numeric = value self.refresh() @property def categorical(self): return self._categorical @categorical.setter def categorical(self, value): self._categorical = value self.refresh() @property def pixel_coord(self): return self._pixel_coord @pixel_coord.setter def pixel_coord(self, value): self._pixel_coord = value self.refresh() @property def world_coord(self): return self._world_coord @world_coord.setter def world_coord(self, value): self._world_coord = value self.refresh() def append_data(self, data, refresh=True): if self._manual_data: raise Exception("Cannot change data in ComponentIDComboHelper " "initialized from a single dataset") if isinstance(data, Subset): data = data.data if self.hub is None: if data.hub is not None: self.hub = data.hub elif data.hub is not self.hub: raise ValueError("Data Hub is different from current hub") if data not in self._data: self._data.append(data) if refresh: self.refresh() def remove_data(self, data): if self._manual_data: raise Exception("Cannot change data in ComponentIDComboHelper " "initialized from a single dataset") if data in self._data: self._data.remove(data) self.refresh() def set_multiple_data(self, datasets): """ Add multiple datasets to the combo in one go (and clear any previous datasets). Parameters ---------- datasets : list The list of :class:`~glue.core.data.Data` objects to add """ if self._manual_data: raise Exception("Cannot change data in ComponentIDComboHelper " "initialized from a single dataset") try: self._data.clear() except AttributeError: # PY2 self._data[:] = [] for data in datasets: self.append_data(data, refresh=False) self.refresh() @property def hub(self): return self._hub @hub.setter def hub(self, value): self._hub = value if value is not None: self.register_to_hub(value) def refresh(self): label_data = [] for data in self._data: if len(self._data) > 1: if data.label is None or data.label == '': label_data.append(("Untitled Data", None)) else: label_data.append((data.label, None)) if self.visible: all_component_ids = data.visible_components else: all_component_ids = data.components component_ids = [] for cid in all_component_ids: comp = data.get_component(cid) if ((comp.numeric and self.numeric) or (comp.categorical and self.categorical) or (cid in data.pixel_component_ids and self.pixel_coord) or (cid in data.world_component_ids and self.world_coord)): component_ids.append(cid) label_data.extend([(cid.label, cid) for cid in component_ids]) update_combobox(self._component_id_combo, label_data, default_index=self.default_index) # Disable header rows model = self._component_id_combo.model() for index in range(self._component_id_combo.count()): if self._component_id_combo.itemData(index) is None: item = model.item(index) palette = self._component_id_combo.palette() item.setFlags(item.flags() & ~(Qt.ItemIsSelectable | Qt.ItemIsEnabled)) item.setData(palette.color(QtGui.QPalette.Disabled, QtGui.QPalette.Text)) index = self._component_id_combo.currentIndex() if self._component_id_combo.itemData(index) is None: for index in range(index + 1, self._component_id_combo.count()): if self._component_id_combo.itemData(index) is not None: self._component_id_combo.setCurrentIndex(index) break def register_to_hub(self, hub): hub.subscribe(self, ComponentReplacedMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.data in self._data) hub.subscribe(self, ComponentsChangedMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.data in self._data) if self._data_collection is not None: hub.subscribe(self, DataCollectionDeleteMessage, handler=lambda msg: self.remove_data(msg.data), filter=lambda msg: msg.sender is self._data_collection) def unregister(self, hub): hub.unsubscribe_all(self) class BaseDataComboHelper(HubListener): """ This is a base class for helpers for combo boxes that need to show a list of data objects. Parameters ---------- data_combo : Qt combo widget The Qt widget for the data combo box """ _data = CurrentComboDataProperty('_data_combo') def __init__(self, data_combo): super(BaseDataComboHelper, self).__init__() self._data_combo = data_combo self._component_id_helpers = [] self._data_combo.currentIndexChanged.connect(self.refresh_component_ids) def refresh(self): label_data = [(data.label, data) for data in self._datasets] update_combobox(self._data_combo, label_data) self.refresh_component_ids() def refresh_component_ids(self): for helper in self._component_id_helpers: helper.clear() if self._data is not None: helper.append_data(self._data) helper.refresh() def add_component_id_combo(self, combo): helper = ComponentIDComboHelper(combo) self._component_id_helpers.append_data(helper) if self._data is not None: helper.append_data(self._data) @property def hub(self): return self._hub @hub.setter def hub(self, value): self._hub = value if value is not None: self.register_to_hub(value) def register_to_hub(self, hub): pass class ManualDataComboHelper(BaseDataComboHelper): """ This is a helper for combo boxes that need to show a list of data objects that is manually curated. Datasets are added and removed using the :meth:`~ManualDataComboHelper.append_data` and :meth:`~ManualDataComboHelper.remove_data` methods. Parameters ---------- data_combo : Qt combo widget The Qt widget for the data combo box data_collection : :class:`~glue.core.DataCollection` The data collection to which the datasets belong - this is needed because if a dataset is removed from the data collection, we want to remove it here. """ def __init__(self, data_combo, data_collection): super(ManualDataComboHelper, self).__init__(data_combo) if data_collection.hub is None: raise ValueError("Hub on data collection is not set") self._data_collection = data_collection self._datasets = [] self.hub = data_collection.hub def set_multiple_data(self, datasets): """ Add multiple datasets to the combo in one go (and clear any previous datasets). Parameters ---------- datasets : list The list of :class:`~glue.core.data.Data` objects to add """ try: self._datasets.clear() except AttributeError: # PY2 self._datasets[:] = [] for data in datasets: self._datasets.append(data) self.refresh() def append_data(self, data): if data in self._datasets: return self._datasets.append(data) self.refresh() def remove_data(self, data): if data not in self._datasets: return self._datasets.remove(data) self.refresh() def register_to_hub(self, hub): super(ManualDataComboHelper, self).register_to_hub(hub) hub.subscribe(self, DataUpdateMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender in self._datasets) hub.subscribe(self, DataCollectionDeleteMessage, handler=lambda msg: self.remove_data(msg.data), filter=lambda msg: msg.sender is self._data_collection) class DataCollectionComboHelper(BaseDataComboHelper): """ This is a helper for combo boxes that need to show a list of data objects that is always in sync with a :class:`~glue.core.DataCollection`. Parameters ---------- data_combo : Qt combo widget The Qt widget for the data combo box data_collection : :class:`~glue.core.DataCollection` The data collection with which to stay in sync """ def __init__(self, data_combo, data_collection): super(DataCollectionComboHelper, self).__init__(data_combo) if data_collection.hub is None: raise ValueError("Hub on data collection is not set") self._datasets = data_collection self.register_to_hub(data_collection.hub) self.refresh() def register_to_hub(self, hub): super(DataCollectionComboHelper, self).register_to_hub(hub) hub.subscribe(self, DataUpdateMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender in self._datasets) hub.subscribe(self,DataCollectionAddMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender is self._datasets) hub.subscribe(self, DataCollectionDeleteMessage, handler=nonpartial(self.refresh), filter=lambda msg: msg.sender is self._datasets) if __name__ == "__main__": from glue.utils.qt import get_qapp app = get_qapp() window = QtWidgets.QWidget() layout = QtWidgets.QVBoxLayout() window.setLayout(layout) data_combo = QtWidgets.QComboBox() layout.addWidget(data_combo) cid1_combo = QtWidgets.QComboBox() layout.addWidget(cid1_combo) cid2_combo = QtWidgets.QComboBox() layout.addWidget(cid2_combo) d1 = Data(x=[1,2,3], y=[2,3,4], label='banana') d2 = Data(a=[0,1,1], b=[2,1,1], label='apple') dc = DataCollection([d1, d2]) helper = DataCollectionComboHelper(data_combo, dc) helper.add_component_id_combo(cid1_combo) helper.add_component_id_combo(cid2_combo) window.show() window.raise_() # app.exec_()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/qt/data_combo_helper.py", "copies": "2", "size": "14412", "license": "bsd-3-clause", "hash": -1801757280630376400, "line_mean": 31.3139013453, "line_max": 95, "alpha_frac": 0.5998473494, "autogenerated": false, "ratio": 4.368596544407396, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5968443893807396, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.core import Subset from glue.core.subset import MaskSubsetState __all__ = ['SubsetMaskImporter', 'SubsetMaskExporter'] class SubsetMaskImporter(object): def get_filename_and_reader(self): raise NotImplementedError def run(self, data_or_subset, data_collection): filename, reader = self.get_filename_and_reader() if filename is None: return # Read in the masks masks = reader(filename) # Make sure shape is unique shapes = set(mask.shape for mask in masks.values()) if len(shapes) == 0: raise ValueError("No subset masks were returned") elif len(shapes) > 1: raise ValueError("Not all subsets have the same shape") if list(shapes)[0] != data_or_subset.shape: raise ValueError("Mask shape(s) {0} does not match data shape {1}".format(list(shapes)[0], data_or_subset.shape)) if isinstance(data_or_subset, Subset): subset = data_or_subset if len(masks) != 1: raise ValueError("Can only read in a single subset when importing into a subset") mask = list(masks.values())[0] subset_state = MaskSubsetState(mask, subset.pixel_component_ids) subset.subset_state = subset_state else: data = data_or_subset for label, mask in masks.items(): subset_state = MaskSubsetState(mask, data.pixel_component_ids) data_collection.new_subset_group(label=label, subset_state=subset_state) class SubsetMaskExporter(object): def get_filename_and_writer(self): raise NotImplementedError def run(self, data_or_subset): filename, writer = self.get_filename_and_writer() if filename is None: return # Prepare dictionary of masks masks = {} if isinstance(data_or_subset, Subset): subset = data_or_subset masks[subset.label] = subset.to_mask() else: data = data_or_subset for subset in data.subsets: masks[subset.label] = subset.to_mask() writer(filename, masks)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/io/subset_mask.py", "copies": "2", "size": "2274", "license": "bsd-3-clause", "hash": -782718395318820600, "line_mean": 25.7529411765, "line_max": 125, "alpha_frac": 0.6064204046, "autogenerated": false, "ratio": 4.211111111111111, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00034560640735695024, "num_lines": 85 }
from __future__ import absolute_import, division, print_function from glue.core import Subset from glue.external.echo import (CallbackProperty, SelectionCallbackProperty, delay_callback) from glue.core.state_objects import StateAttributeLimitsHelper from glue.core.data_combo_helper import ComponentIDComboHelper from ..common.layer_state import VispyLayerState __all__ = ['VolumeLayerState'] class VolumeLayerState(VispyLayerState): """ A state object for volume layers """ attribute = SelectionCallbackProperty() vmin = CallbackProperty() vmax = CallbackProperty() subset_mode = CallbackProperty('data') limits_cache = CallbackProperty({}) def __init__(self, layer=None, **kwargs): super(VolumeLayerState, self).__init__(layer=layer) if self.layer is not None: self.color = self.layer.style.color self.alpha = self.layer.style.alpha self.att_helper = ComponentIDComboHelper(self, 'attribute') self.lim_helper = StateAttributeLimitsHelper(self, attribute='attribute', lower='vmin', upper='vmax', cache=self.limits_cache) self.add_callback('layer', self._on_layer_change) if layer is not None: self._on_layer_change() if isinstance(self.layer, Subset): self.vmin = 0 self.lim_helper.lower_frozen = True self.update_from_dict(kwargs) def _on_layer_change(self, layer=None): with delay_callback(self, 'vmin', 'vmin'): if self.layer is None: self.att_helper.set_multiple_data([]) else: self.att_helper.set_multiple_data([self.layer]) def update_priority(self, name): return 0 if name.endswith(('vmin', 'vmax')) else 1
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/volume/layer_state.py", "copies": "1", "size": "1911", "license": "bsd-2-clause", "hash": 2214458956751394000, "line_mean": 31.3898305085, "line_max": 81, "alpha_frac": 0.6117216117, "autogenerated": false, "ratio": 4.246666666666667, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0004159457790434778, "num_lines": 59 }
from __future__ import absolute_import, division, print_function from glue.core.message import (DataUpdateMessage, SubsetUpdateMessage, SubsetCreateMessage, SubsetDeleteMessage, DataCollectionDeleteMessage, NumericalDataChangedMessage) from glue.core.data_collection import DataCollection from glue.core.subset import Subset from glue.core.data import Data from glue.core.hub import HubListener __all__ = ['Client', 'BasicClient'] class Client(HubListener): """ Base class for interaction / visualization modules Attributes ---------- data: DataCollection instance The data associated with this client. """ def __init__(self, data): """ Create a new client object. Parameters ---------- data: Data, DataCollection, or list of data The primary data associated with this client. Raises ------ TypeError: If the data input is the wrong type """ super(Client, self).__init__() self._data = data if not isinstance(data, DataCollection): raise TypeError("Input data must be a DataCollection: %s" % type(data)) @property def data(self): """ Returns the data collection """ return self._data def register_to_hub(self, hub): """The main method to establish a link with a hub, and set up event handlers. For common message types Client subclasses at a minimum should override these methods to provide functionality: _add_subset _update_subset _remove_subset _remove_data Clients can also override register_to_hub to add additional event handlers. Attributes ---------- hub: The hub to subscribe to """ has_data = lambda x: x.sender.data in self._data has_data_collection = lambda x: x.sender is self._data hub.subscribe(self, SubsetCreateMessage, handler=self._add_subset, filter=has_data) hub.subscribe(self, SubsetUpdateMessage, handler=self._update_subset, filter=has_data) hub.subscribe(self, SubsetDeleteMessage, handler=self._remove_subset, filter=has_data) hub.subscribe(self, DataUpdateMessage, handler=self._update_data, filter=has_data) hub.subscribe(self, NumericalDataChangedMessage, handler=self._numerical_data_changed, filter=has_data) hub.subscribe(self, DataCollectionDeleteMessage, handler=self._remove_data, filter=has_data_collection) def _add_subset(self, message): raise NotImplementedError def _remove_data(self, message): raise NotImplementedError def _remove_subset(self, message): raise NotImplementedError def _update_data(self, message): """ Default handler for DataMessage """ raise NotImplementedError def _update_subset(self, message): """ Default handler for SubsetUpdateMessage """ raise NotImplementedError def apply_roi(self, roi): raise NotImplementedError def _numerical_data_changed(self, message): raise NotImplementedError class BasicClient(Client): def _add_subset(self, message): subset = message.subset self.add_layer(subset) def _update_subset(self, message): subset = message.subset self.update_layer(subset) def _remove_subset(self, message): subset = message.subset self.remove_layer(subset) def _remove_data(self, message): self.remove_layer(message.data) def _update_data(self, message): self.update_layer(message.data) def add_layer(self, layer): if self.layer_present(layer): return if layer.data not in self.data: raise TypeError("Data not in collection") if isinstance(layer, Data): self._do_add_data(layer) for subset in layer.subsets: self.add_layer(subset) else: if not self.layer_present(layer.data): self.add_layer(layer.data) else: self._do_add_subset(layer) self.update_layer(layer) def update_layer(self, layer): if not self.layer_present(layer): return if isinstance(layer, Subset): self._do_update_subset(layer) else: self._do_update_data(layer) def remove_layer(self, layer): if not self.layer_present(layer): return if isinstance(layer, Data): self._do_remove_data(layer) for subset in layer.subsets: self._do_remove_subset(subset) else: self._do_remove_subset(layer) def _do_add_data(self, data): raise NotImplementedError def _do_add_subset(self, subset): raise NotImplementedError def _do_update_subset(self, subset): raise NotImplementedError def _do_update_data(self, data): raise NotImplementedError def _do_remove_subset(self, subset): raise NotImplementedError def _do_remove_data(self, data): raise NotImplementedError def layer_present(self, layer): raise NotImplementedError
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/client.py", "copies": "4", "size": "5812", "license": "bsd-3-clause", "hash": 1220531006990243000, "line_mean": 28.06, "line_max": 69, "alpha_frac": 0.5688231246, "autogenerated": false, "ratio": 4.767842493847416, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7336665618447415, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.core.state import lookup_class_with_patches from glue.config import settings from glue.core import message as msg from qtpy.QtWidgets import QMessageBox from ..common.vispy_data_viewer import BaseVispyViewer from .layer_artist import VolumeLayerArtist from .layer_style_widget import VolumeLayerStyleWidget from .viewer_state import Vispy3DVolumeViewerState from ..scatter.layer_artist import ScatterLayerArtist from ..scatter.layer_style_widget import ScatterLayerStyleWidget from ..common import tools # noqa from ..common import selection_tools # noqa from . import volume_toolbar # noqa try: import OpenGL # flake8: noqa except ImportError: OPENGL_INSTALLED = False else: OPENGL_INSTALLED = True class VispyVolumeViewer(BaseVispyViewer): LABEL = "3D Volume Rendering" _state_cls = Vispy3DVolumeViewerState _layer_style_widget_cls = {VolumeLayerArtist: VolumeLayerStyleWidget, ScatterLayerArtist: ScatterLayerStyleWidget} tools = BaseVispyViewer.tools + ['vispy:lasso', 'vispy:rectangle', 'vispy:circle', 'volume3d:point'] def __init__(self, *args, **kwargs): super(VispyVolumeViewer, self).__init__(*args, **kwargs) if not OPENGL_INSTALLED: self.close() QMessageBox.critical(self, "Error", "The PyOpenGL package is required for the " "3D volume rendering viewer", buttons=QMessageBox.Ok) def add_data(self, data): if data in self._layer_artist_container: return True if data.ndim == 1: if len(self._layer_artist_container) == 0: QMessageBox.critical(self, "Error", "Can only add a scatter plot overlay once a volume is present".format(data.ndim), buttons=QMessageBox.Ok) # Assume that the user wants a scatter plot overlay layer_artist = ScatterLayerArtist(layer=data, vispy_viewer=self) self._vispy_widget._update_limits() elif data.ndim == 3: if len(self._layer_artist_container) > 0: required_shape = self._layer_artist_container[0].shape if data.shape != required_shape: QMessageBox.critical(self, "Error", "Shape of dataset ({0}) does not agree " "with shape of existing datasets in volume " "rendering ({1})".format(data.shape, required_shape), buttons=QMessageBox.Ok) return False layer_artist = VolumeLayerArtist(layer=data, vispy_viewer=self) else: QMessageBox.critical(self, "Error", "Data should be 1- or 3-dimensional ({0} dimensions found)".format(data.ndim), buttons=QMessageBox.Ok) return False if len(self._layer_artist_container) == 0: self.state.set_limits(*layer_artist.bbox) self._layer_artist_container.append(layer_artist) for subset in data.subsets: self.add_subset(subset) return True def add_subset(self, subset): if subset in self._layer_artist_container: return if subset.ndim == 1: layer_artist = ScatterLayerArtist(layer=subset, vispy_viewer=self) elif subset.ndim == 3: layer_artist = VolumeLayerArtist(layer=subset, vispy_viewer=self) else: return self._layer_artist_container.append(layer_artist) def _add_subset(self, message): self.add_subset(message.subset) @classmethod def __setgluestate__(cls, rec, context): viewer = super(VispyVolumeViewer, cls).__setgluestate__(rec, context) return viewer def _update_appearance_from_settings(self, message): super(VispyVolumeViewer, self)._update_appearance_from_settings(message) if hasattr(self._vispy_widget, '_multivol'): self._vispy_widget._multivol.set_background(settings.BACKGROUND_COLOR)
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/volume/volume_viewer.py", "copies": "1", "size": "4382", "license": "bsd-2-clause", "hash": -9130946912821858000, "line_mean": 34.6260162602, "line_max": 118, "alpha_frac": 0.5983569147, "autogenerated": false, "ratio": 4.342913776015857, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0006184971485689158, "num_lines": 123 }
from __future__ import absolute_import, division, print_function from glue.core.util import disambiguate from glue.core.message import (DataCollectionAddMessage, DataCollectionDeleteMessage, DataAddComponentMessage) from glue.core.registry import Registry from glue.core.link_manager import LinkManager from glue.core.data import Data from glue.core.hub import Hub, HubListener from glue.config import settings from glue.utils import as_list __all__ = ['DataCollection'] class DataCollection(HubListener): """The top-level object for interacting with datasets in Glue. DataCollections have the following responsibilities: * Providing a way to retrieve and store data * Broadcasting messages when data are added or removed * Keeping each managed data set's list of :class:`~glue.core.component.DerivedComponent` instances up-to-date * Creating the hub that all other objects should use to communicate with one another (stored in ``self.hub``) """ def __init__(self, data=None): """ :param data: :class:`~glue.core.data.Data` object, or list of such objects """ super(DataCollection, self).__init__() self._link_manager = LinkManager() self._data = [] self.hub = None self._subset_groups = [] self.register_to_hub(Hub()) self.extend(as_list(data or [])) self._sg_count = 0 @property def data(self): """ The :class:`~glue.core.data.Data` objects in the collection """ return self._data def append(self, data): """ Add a new dataset to this collection. Appending emits a DataCollectionAddMessage. It also updates the list of DerivedComponents that each data set can work with. :param data: :class:`~glue.core.data.Data` object to add """ if isinstance(data, list): self.extend(data) return if data in self: return self._data.append(data) if self.hub: data.register_to_hub(self.hub) for s in data.subsets: s.register() msg = DataCollectionAddMessage(self, data) self.hub.broadcast(msg) self._sync_link_manager() def extend(self, data): """Add several new datasets to this collection See :meth:`append` for more information :param data: List of data objects to add """ [self.append(d) for d in data] def remove(self, data): """ Remove a data set from the collection Emits a DataCollectionDeleteMessage :param data: the object to remove :type data: :class:`~glue.core.data.Data` """ if data not in self._data: return self._data.remove(data) Registry().unregister(data, Data) if self.hub: msg = DataCollectionDeleteMessage(self, data) self.hub.broadcast(msg) def _sync_link_manager(self): """ update the LinkManager, so all the DerivedComponents for each data set are up-to-date """ # add any links in the data for d in self._data: for derived in d.derived_components: self._link_manager.add_link(d.get_component(derived).link) for link in d.coordinate_links: self._link_manager.add_link(link) for d in self._data: self._link_manager.update_data_components(d) @property def links(self): """ Tuple of :class:`~glue.core.component_link.ComponentLink` objects. """ return tuple(self._link_manager.links) def add_link(self, links): """Add one or more links to the data collection. This will auto-update the components in each data set :param links: The links to add. A scalar or list of :class:`~glue.core.component_link.ComponentLink` instances, or a :class:`~glue.core.link_helpers.LinkCollection` """ self._link_manager.add_link(links) for d in self._data: self._link_manager.update_data_components(d) def _merge_link(self, link): pass def set_links(self, links): """Override the links in the collection, and update data objects as necessary. :param links: The new links. An iterable of :class:`~glue.core.component_link.ComponentLink` instances """ self._link_manager.clear() for link in links: self._link_manager.add_link(link) for d in self._data: self._link_manager.update_data_components(d) def register_to_hub(self, hub): """ Register managed data objects to a hub. :param hub: The hub to register with :type hub: :class:`~glue.core.hub.Hub` """ if self.hub is hub: return if self.hub is not None: raise RuntimeError("Data Collection already registered " "to a different Hub") if not isinstance(hub, Hub): raise TypeError("Input is not a Hub object: %s" % type(hub)) self.hub = hub # re-assign all data, subset hub instances to this hub for d in self._data: d.register_to_hub(hub) for s in d.subsets: s.register() hub.subscribe(self, DataAddComponentMessage, lambda msg: self._sync_link_manager(), filter=lambda x: x.sender in self._data) def new_subset_group(self, label=None, subset_state=None): """ Create and return a new Subset Group. :param label: The label to assign to the group :type label: str :param subset_state: The state to initialize the group with :type subset_state: :class:`~glue.core.subset.SubsetState` :returns: A new :class:`~glue.core.subset_group.SubsetGroup` """ from glue.core.subset_group import SubsetGroup color = settings.SUBSET_COLORS[self._sg_count % len(settings.SUBSET_COLORS)] self._sg_count += 1 label = label or "%i" % (self._sg_count) result = SubsetGroup(color=color, label=label, subset_state=subset_state) self._subset_groups.append(result) result.register(self) return result def remove_subset_group(self, subset_grp): """ Remove an existing :class:`~glue.core.subset_group.SubsetGroup` """ if subset_grp not in self._subset_groups: return # remove from list first, so that group appears deleted # by the time the first SubsetDelete message is broadcast self._subset_groups.remove(subset_grp) for s in subset_grp.subsets: s.delete() subset_grp.unregister(self.hub) def merge(self, *data, **kwargs): """ Merge two or more datasets into a single dataset. This has the following effects: All components from all datasets are added to the first argument All datasets except the first argument are removed from the collection Any component name conflicts are disambiguated The pixel and world components apart from the first argument are discarded :note: All arguments must have the same shape :param data: One or more :class:`~glue.core.data.Data` instances. :returns: self """ if len(data) < 2: raise ValueError("merge requires 2 or more arguments") shp = data[0].shape for d in data: if d.shape != shp: raise ValueError("All arguments must have the same shape") label = kwargs.get('label', data[0].label) master = Data(label=label) self.append(master) for d in data: skip = d.pixel_component_ids + d.world_component_ids for c in d.components: if c in skip: continue if c in master.components: # already present (via a link) continue taken = [_.label for _ in master.components] lbl = c.label # Special-case 'PRIMARY', rename to data label if lbl == 'PRIMARY': lbl = d.label # First-pass disambiguation, try component_data if lbl in taken: lbl = '%s_%s' % (lbl, d.label) lbl = disambiguate(lbl, taken) c._label = lbl master.add_component(d.get_component(c), c) self.remove(d) return self @property def subset_groups(self): """ tuple of current :class:`Subset Groups <glue.core.subset_group.SubsetGroup>` """ return tuple(self._subset_groups) def __contains__(self, obj): return obj in self._data or obj in self.subset_groups def __getitem__(self, key): return self._data[key] def __iter__(self): return iter(self._data) def __len__(self): return len(self._data) def __str__(self): if len(self) == 1: result = "DataCollection (1 data set)\n\t" else: result = "DataCollection (%i data sets)\n\t" % len(self) result += '\n\t'.join("%3i: %s" % (i, d.label) for i, d in enumerate(self)) return result def __repr__(self): return self.__str__() def __bool__(self): return True def __nonzero__(self): return True
{ "repo_name": "saimn/glue", "path": "glue/core/data_collection.py", "copies": "1", "size": "9736", "license": "bsd-3-clause", "hash": 75180354344016770, "line_mean": 30.8169934641, "line_max": 84, "alpha_frac": 0.5780608053, "autogenerated": false, "ratio": 4.220199393151279, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5298260198451279, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.external.echo import CallbackProperty, keep_in_sync from glue.core.message import LayerArtistUpdatedMessage from glue.viewers.common.state import LayerState __all__ = ['VispyLayerState'] class VispyLayerState(LayerState): """ A base state object for all Vispy layers """ color = CallbackProperty() alpha = CallbackProperty() def __init__(self, **kwargs): super(VispyLayerState, self).__init__(**kwargs) self._sync_color = None self._sync_alpha = None self.add_callback('layer', self._layer_changed) self._layer_changed() self.add_global_callback(self._notify_layer_update) def _notify_layer_update(self, **kwargs): message = LayerArtistUpdatedMessage(self) if self.layer is not None and self.layer.hub is not None: self.layer.hub.broadcast(message) def _layer_changed(self): if self._sync_color is not None: self._sync_color.stop_syncing() if self._sync_alpha is not None: self._sync_alpha.stop_syncing() if self.layer is not None: self.color = self.layer.style.color self.alpha = self.layer.style.alpha self._sync_color = keep_in_sync(self, 'color', self.layer.style, 'color') self._sync_alpha = keep_in_sync(self, 'alpha', self.layer.style, 'alpha')
{ "repo_name": "astrofrog/glue-vispy-viewers", "path": "glue_vispy_viewers/common/layer_state.py", "copies": "2", "size": "1448", "license": "bsd-2-clause", "hash": -318366996663089900, "line_mean": 28.5510204082, "line_max": 85, "alpha_frac": 0.6408839779, "autogenerated": false, "ratio": 3.7416020671834627, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5382486045083462, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.external.echo import CallbackProperty, keep_in_sync from glue.core.state_objects import State __all__ = ['VispyLayerState'] class VispyLayerState(State): """ A base state object for all Vispy layers """ layer = CallbackProperty() visible = CallbackProperty(True) zorder = CallbackProperty(0) color = CallbackProperty() alpha = CallbackProperty() def __init__(self, **kwargs): super(VispyLayerState, self).__init__(**kwargs) self._sync_color = None self._sync_alpha = None self.add_callback('layer', self._layer_changed) self._layer_changed() def _layer_changed(self): if self._sync_color is not None: self._sync_color.stop_syncing() if self._sync_alpha is not None: self._sync_alpha.stop_syncing() if self.layer is not None: self.color = self.layer.style.color self.alpha = self.layer.style.alpha self._sync_color = keep_in_sync(self, 'color', self.layer.style, 'color') self._sync_alpha = keep_in_sync(self, 'alpha', self.layer.style, 'alpha')
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/common/layer_state.py", "copies": "1", "size": "1211", "license": "bsd-2-clause", "hash": 7706980771562629000, "line_mean": 26.5227272727, "line_max": 85, "alpha_frac": 0.6251032205, "autogenerated": false, "ratio": 3.7376543209876543, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48627575414876545, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.external.echo import keep_in_sync from glue.core.layer_artist import LayerArtistBase from glue.viewers.matplotlib.state import DeferredDrawCallbackProperty # TODO: should use the built-in class for this, though we don't need # the _sync_style method, so just re-define here for now. class MatplotlibLayerArtist(LayerArtistBase): zorder = DeferredDrawCallbackProperty() visible = DeferredDrawCallbackProperty() def __init__(self, axes, viewer_state, layer_state=None, layer=None): super(MatplotlibLayerArtist, self).__init__(layer) # Keep a reference to the layer (data or subset) and axes self.axes = axes self._viewer_state = viewer_state # Set up a state object for the layer artist self.layer = layer or layer_state.layer self.state = layer_state or self._layer_state_cls(viewer_state=viewer_state, layer=self.layer) if self.state not in self._viewer_state.layers: self._viewer_state.layers.append(self.state) self.mpl_artists = [] self.zorder = self.state.zorder self.visible = self.state.visible self._sync_zorder = keep_in_sync(self, 'zorder', self.state, 'zorder') self._sync_visible = keep_in_sync(self, 'visible', self.state, 'visible') def clear(self): for artist in self.mpl_artists: try: artist.set_visible(False) except AttributeError: # can happen for e.g. errorbars pass def remove(self): for artist in self.mpl_artists: try: artist.remove() except ValueError: # already removed pass except TypeError: # can happen for e.g. errorbars pass except AttributeError: # can happen for Matplotlib 1.4 pass self.mpl_artists[:] = [] def get_layer_color(self): return self.state.color def redraw(self): self.axes.figure.canvas.draw() def __gluestate__(self, context): return dict(state=context.id(self.state))
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/matplotlib/layer_artist.py", "copies": "2", "size": "2239", "license": "bsd-3-clause", "hash": 6687584650179023000, "line_mean": 33.4461538462, "line_max": 84, "alpha_frac": 0.6154533274, "autogenerated": false, "ratio": 4.0783242258652095, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5693777553265209, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.utils.qt.mime import PyMimeData __all__ = ['GlueItemWidget'] class GlueItemWidget(object): """ A mixin for QtWidgets.QListWidget/GlueTreeWidget subclasses, that provides drag+drop funtionality. """ # Implementation detail: QXXWidgetItems are unhashable in PySide, # and cannot be used as dictionary keys. we hash on IDs instead SUPPORTED_MIME_TYPE = None def __init__(self, parent=None): super(GlueItemWidget, self).__init__(parent) self._mime_data = {} self.setDragEnabled(True) def mimeTypes(self): """ Return the list of MIME Types supported for this object. """ types = [self.SUPPORTED_MIME_TYPE] return types def mimeData(self, selected_items): """ Return a list of MIME data associated with the each selected item. Parameters ---------- selected_items : list A list of ``QtWidgets.QListWidgetItems`` or ``QtWidgets.QTreeWidgetItems`` instances Returns ------- result : list A list of MIME objects """ try: data = [self.get_data(i) for i in selected_items] except KeyError: data = None result = PyMimeData(data, **{self.SUPPORTED_MIME_TYPE: data}) # apparent bug in pyside garbage collects custom mime # data, and crashes. Save result here to avoid self._mime = result return result def get_data(self, item): """ Convenience method to fetch the data associated with a ``QxxWidgetItem``. """ # return item.data(Qt.UserRole) return self._mime_data.get(id(item), None) def set_data(self, item, data): """ Convenience method to set data associated with a ``QxxWidgetItem``. """ #item.setData(Qt.UserRole, data) self._mime_data[id(item)] = data def drop_data(self, item): self._mime_data.pop(id(item)) @property def data(self): return self._mime_data
{ "repo_name": "stscieisenhamer/glue", "path": "glue/utils/qt/mixins.py", "copies": "2", "size": "2139", "license": "bsd-3-clause", "hash": 7885272700538479000, "line_mean": 27.1447368421, "line_max": 96, "alpha_frac": 0.597942964, "autogenerated": false, "ratio": 4.145348837209302, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0006170347921601843, "num_lines": 76 }
from __future__ import absolute_import, division, print_function from glue.viewers.common.qt.data_viewer_with_state import DataViewerWithState from glue.viewers.matplotlib.qt.widget import MplWidget from glue.viewers.common.viz_client import init_mpl, update_appearance_from_settings from glue.external.echo import delay_callback from glue.utils import defer_draw from glue.utils.decorators import avoid_circular from glue.viewers.matplotlib.qt.toolbar import MatplotlibViewerToolbar from glue.viewers.matplotlib.state import MatplotlibDataViewerState from glue.core.command import ApplySubsetState __all__ = ['MatplotlibDataViewer'] class MatplotlibDataViewer(DataViewerWithState): _toolbar_cls = MatplotlibViewerToolbar _state_cls = MatplotlibDataViewerState def __init__(self, session, parent=None, wcs=None, state=None): super(MatplotlibDataViewer, self).__init__(session, parent, state=state) # Use MplWidget to set up a Matplotlib canvas inside the Qt window self.mpl_widget = MplWidget() self.setCentralWidget(self.mpl_widget) # TODO: shouldn't have to do this self.central_widget = self.mpl_widget self.figure, self._axes = init_mpl(self.mpl_widget.canvas.fig, wcs=wcs) self.state.add_callback('aspect', self.update_aspect) self.update_aspect() self.state.add_callback('x_min', self.limits_to_mpl) self.state.add_callback('x_max', self.limits_to_mpl) self.state.add_callback('y_min', self.limits_to_mpl) self.state.add_callback('y_max', self.limits_to_mpl) self.limits_to_mpl() self.state.add_callback('x_log', self.update_x_log, priority=1000) self.state.add_callback('y_log', self.update_y_log, priority=1000) self.update_x_log() self.axes.callbacks.connect('xlim_changed', self.limits_from_mpl) self.axes.callbacks.connect('ylim_changed', self.limits_from_mpl) self.axes.set_autoscale_on(False) self.central_widget.resize(600, 400) self.resize(self.central_widget.size()) def redraw(self): self.figure.canvas.draw() @defer_draw def update_x_log(self, *args): self.axes.set_xscale('log' if self.state.x_log else 'linear') self.redraw() @defer_draw def update_y_log(self, *args): self.axes.set_yscale('log' if self.state.y_log else 'linear') self.redraw() def update_aspect(self, aspect=None): self.axes.set_aspect(self.state.aspect, adjustable='datalim') @avoid_circular def limits_from_mpl(self, *args): with delay_callback(self.state, 'x_min', 'x_max', 'y_min', 'y_max'): self.state.x_min, self.state.x_max = self.axes.get_xlim() self.state.y_min, self.state.y_max = self.axes.get_ylim() @avoid_circular def limits_to_mpl(self, *args): if self.state.x_min is not None and self.state.x_max is not None: self.axes.set_xlim(self.state.x_min, self.state.x_max) if self.state.y_min is not None and self.state.y_max is not None: self.axes.set_ylim(self.state.y_min, self.state.y_max) if self.state.aspect == 'equal': # FIXME: for a reason I don't quite understand, dataLim doesn't # get updated immediately here, which means that there are then # issues in the first draw of the image (the limits are such that # only part of the image is shown). We just set dataLim manually # to avoid this issue. self.axes.dataLim.intervalx = self.axes.get_xlim() self.axes.dataLim.intervaly = self.axes.get_ylim() # We then force the aspect to be computed straight away self.axes.apply_aspect() # And propagate any changes back to the state since we have the # @avoid_circular decorator with delay_callback(self.state, 'x_min', 'x_max', 'y_min', 'y_max'): self.state.x_min, self.state.x_max = self.axes.get_xlim() self.state.y_min, self.state.y_max = self.axes.get_ylim() self.axes.figure.canvas.draw() # TODO: shouldn't need this! @property def axes(self): return self._axes def _update_appearance_from_settings(self, message=None): update_appearance_from_settings(self.axes) self.redraw() def get_layer_artist(self, cls, layer=None, layer_state=None): return cls(self.axes, self.state, layer=layer, layer_state=layer_state) def apply_roi(self, roi): if len(self.layers) > 0: subset_state = self._roi_to_subset_state(roi) cmd = ApplySubsetState(data_collection=self._data, subset_state=subset_state) self._session.command_stack.do(cmd) else: # Make sure we force a redraw to get rid of the ROI self.axes.figure.canvas.draw()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/matplotlib/qt/data_viewer.py", "copies": "1", "size": "4960", "license": "bsd-3-clause", "hash": -6686820566251339000, "line_mean": 37.75, "line_max": 84, "alpha_frac": 0.6491935484, "autogenerated": false, "ratio": 3.4855938158819395, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4634787364281939, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from glue.viewers.matplotlib.qt.toolbar import MatplotlibViewerToolbar from glue.core.edit_subset_mode import EditSubsetMode from glue.core.util import update_ticks from glue.core.roi import RangeROI from glue.core import command from glue.viewers.matplotlib.qt.data_viewer import MatplotlibDataViewer from glue.viewers.histogram.qt.layer_style_editor import HistogramLayerStyleEditor from glue.viewers.histogram.layer_artist import HistogramLayerArtist from glue.viewers.histogram.qt.options_widget import HistogramOptionsWidget from glue.viewers.histogram.state import HistogramViewerState from glue.viewers.histogram.compat import update_histogram_viewer_state __all__ = ['HistogramViewer'] class HistogramViewer(MatplotlibDataViewer): LABEL = '1D Histogram' _toolbar_cls = MatplotlibViewerToolbar _layer_style_widget_cls = HistogramLayerStyleEditor _state_cls = HistogramViewerState _options_cls = HistogramOptionsWidget _data_artist_cls = HistogramLayerArtist _subset_artist_cls = HistogramLayerArtist tools = ['select:xrange'] def __init__(self, session, parent=None, state=None): super(HistogramViewer, self).__init__(session, parent, state=state) self.state.add_callback('x_att', self._update_axes) self.state.add_callback('x_log', self._update_axes) self.state.add_callback('normalize', self._update_axes) def _update_axes(self, *args): if self.state.x_att is not None: # Update ticks, which sets the labels to categories if components are categorical update_ticks(self.axes, 'x', self.state._get_x_components(), False) if self.state.x_log: self.axes.set_xlabel('Log ' + self.state.x_att.label) else: self.axes.set_xlabel(self.state.x_att.label) if self.state.normalize: self.axes.set_ylabel('Normalized number') else: self.axes.set_ylabel('Number') self.axes.figure.canvas.draw() # TODO: move some of the ROI stuff to state class? def _roi_to_subset_state(self, roi): # TODO Does subset get applied to all data or just visible data? bins = self.state.bins x = roi.to_polygon()[0] lo, hi = min(x), max(x) if lo >= bins.min(): lo = bins[bins <= lo].max() if hi <= bins.max(): hi = bins[bins >= hi].min() roi_new = RangeROI(min=lo, max=hi, orientation='x') x_comp = self.state.x_att.parent.get_component(self.state.x_att) return x_comp.subset_from_roi(self.state.x_att, roi_new, coord='x') @staticmethod def update_viewer_state(rec, context): return update_histogram_viewer_state(rec, context)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/histogram/qt/data_viewer.py", "copies": "1", "size": "2818", "license": "bsd-3-clause", "hash": 1026471101702943100, "line_mean": 34.225, "line_max": 93, "alpha_frac": 0.6788502484, "autogenerated": false, "ratio": 3.6035805626598467, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4782430811059847, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) from gridded.pysgrid.sgrid import SGrid from gridded.pyugrid.ugrid import UGrid import numpy as np from gridded.utilities import get_dataset, gen_celltree_mask_from_center_mask from six import string_types class GridBase(object): ''' Base object for grids to share common behavior ''' _def_count = 0 def __init__(self, filename=None, *args, **kwargs): """ Init common to all Grid types. This initializer will take all the kwargs of both pyugrid.UGrid and pysgrid.SGrid. See their documentation for details :param filename: Name of the file this grid was constructed from, if available. """ if 'name' in kwargs: self.name = kwargs['name'] else: self.name = self.__class__.__name__ + '_' + str(type(self)._def_count) self.filename = filename type(self)._def_count += 1 super(GridBase, self).__init__(**kwargs) @classmethod def from_netCDF(cls, *args, **kwargs): kwargs['grid_type'] = cls return Grid.from_netCDF(*args, **kwargs) @classmethod def _find_required_grid_attrs(cls, filename, dataset=None, grid_topology=None,): ''' This function is the top level 'search for attributes' function. If there are any common attributes to all potential grid types, they will be sought here. This function returns a dict, which maps an attribute name to a netCDF4 Variable or numpy array object extracted from the dataset. When called from Grid_U or Grid_S, this function should provide all the kwargs needed to create a valid instance. ''' gf_vars = dataset.variables if dataset is not None else get_dataset(filename).variables gf_vars = dict([(k.lower(), v) for k, v in gf_vars.items()]) init_args = {} gt = {} init_args['filename'] = filename node_attrs = ['node_lon', 'node_lat'] node_coord_names = [['node_lon', 'node_lat'], ['lon', 'lat'], ['lon_psi', 'lat_psi'], ['longitude', 'latitude']] composite_node_names = ['nodes', 'node'] if grid_topology is None: for n1, n2 in node_coord_names: if n1 in gf_vars and n2 in gf_vars: init_args[node_attrs[0]] = gf_vars[n1][:] init_args[node_attrs[1]] = gf_vars[n2][:] gt[node_attrs[0]] = n1 gt[node_attrs[1]] = n2 break if node_attrs[0] not in init_args: for n in composite_node_names: if n in gf_vars: v = gf_vars[n][:].reshape(-1, 2) init_args[node_attrs[0]] = v[:, 0] init_args[node_attrs[1]] = v[:, 1] gt['node_coordinates'] = n break if node_attrs[0] not in init_args: raise ValueError('Unable to find node coordinates.') else: for n, v in grid_topology.items(): if n in node_attrs: init_args[n] = gf_vars[v][:] if n in composite_node_names: v = gf_vars[n][:].reshape(-1, 2) init_args[node_attrs[0]] = v[:, 0] init_args[node_attrs[1]] = v[:, 1] return init_args, gt @property def shape(self): return self.node_lon.shape def __eq__(self, o): if self is o: return True for n in ('nodes', 'faces'): if (hasattr(self, n) and hasattr(o, n) and getattr(self, n) is not None and getattr(o, n) is not None): s = getattr(self, n) s2 = getattr(o, n) if s.shape != s2.shape or np.any(s != s2): return False return True def _write_grid_to_file(self, pth): self.save_as_netcdf(pth) def import_variable(self, variable, location='node'): """ Takes a Variable or VectorVariable and interpolates the data onto this grid. You may pass a location ('nodes', 'faces', 'edge1', 'edge2) and the variable will be interpolated there if possible If no location is passed, the variable will be interpolated to the nodes of this grid. If the Variable's grid and this grid are the same, this function will return the Variable unchanged. If this grid covers area that the source grid does not, all values in this area will be masked. If regridding from cell centers to the nodes, The values of any border point not within will be equal to the value at the center of the border cell. """ raise NotImplementedError("GridBase cannot interpolate variables to itself") class Grid_U(GridBase, UGrid): @classmethod def _find_required_grid_attrs(cls, filename, dataset=None, grid_topology=None): gf_vars = dataset.variables if dataset is not None else get_dataset(filename).variables gf_vars = dict([(k.lower(), v) for k, v in gf_vars.items()]) # Get superset attributes init_args, gt = super(Grid_U, cls)._find_required_grid_attrs(filename=filename, dataset=dataset, grid_topology=grid_topology) face_attrs = ['faces'] face_var_names = ['faces', 'tris', 'nv', 'ele'] if grid_topology is None: for n in face_var_names: if n in gf_vars: init_args[face_attrs[0]] = gf_vars[n][:] gt[face_attrs[0]] = n break if face_attrs[0] not in init_args: raise ValueError('Unable to find face connectivity array.') else: for n, v in grid_topology.items(): if n in face_attrs: init_args[n] = gf_vars[v][:] break if init_args['faces'].shape[0] == 3: init_args['faces'] = np.ascontiguousarray(np.array(init_args['faces']).T - 1) return init_args, gt @classmethod def gen_from_quads(cls, nodes): if not len(nodes.shape) == 3: raise ValueError('Nodes of a quad grid must be 2 dimensional') lin_nodes = None if isinstance(nodes, np.ma.MaskedArray): lin_nodes = nodes.reshape(-1, 2)[nodes] class Grid_S(GridBase, SGrid): @classmethod def _find_required_grid_attrs(cls, filename, dataset=None, grid_topology=None): # THESE ARE ACTUALLY ALL OPTIONAL. This should be migrated when optional attributes # are dealt with # Get superset attributes gf_vars = dataset.variables if dataset is not None else get_dataset(filename).variables gf_vars = dict([(k.lower(), v) for k, v in gf_vars.items()]) init_args, gt = super(Grid_S, cls)._find_required_grid_attrs(filename, dataset=dataset, grid_topology=grid_topology) center_attrs = ['center_lon', 'center_lat'] edge1_attrs = ['edge1_lon', 'edge1_lat'] edge2_attrs = ['edge2_lon', 'edge2_lat'] node_mask = 'node_mask' center_mask = 'center_mask' edge1_mask = 'edge1_mask' edge2_mask = 'edge2_mask' center_coord_names = [['center_lon', 'center_lat'], ['lon_rho', 'lat_rho'], ['lonc', 'latc']] edge1_coord_names = [['edge1_lon', 'edge1_lat'], ['lon_u', 'lat_u']] edge2_coord_names = [['edge2_lon', 'edge2_lat'], ['lon_v', 'lat_v']] node_mask_names = ['mask_psi'] center_mask_names = ['mask_rho'] edge1_mask_names = ['mask_u'] edge2_mask_names = ['mask_v'] if grid_topology is None: for attr, names, maskattr, maskname in (zip((center_attrs, edge1_attrs, edge2_attrs), (center_coord_names, edge1_coord_names, edge2_coord_names), (center_mask, edge1_mask, edge2_mask), (center_mask_names, edge1_mask_names, edge2_mask_names))): for n1, n2 in names: if n1 in gf_vars and n2 in gf_vars: mask = False #for n in maskname: #if n in gf_vars: #mask = gen_mask(gf_vars[n]) a1 = gf_vars[n1][:] a2 = gf_vars[n2][:] init_args[attr[0]] = a1 init_args[attr[1]] = a2 if maskname[0] in gf_vars: init_args[maskattr] = gf_vars[maskname[0]] gt[maskattr] = maskname[0] gt[attr[0]] = n1 gt[attr[1]] = n2 break if 'node_lon' in init_args and 'node_lat' in init_args: mask = False for name in node_mask_names: if name in gf_vars: init_args[node_mask] = gf_vars[name] gt[node_mask] = name else: for n, v in grid_topology.items(): if n in center_attrs + edge1_attrs + edge2_attrs and v in gf_vars: init_args[n] = gf_vars[v][:] return init_args, gt class Grid_R(GridBase): def __init__(self, node_lon=None, node_lat=None, grid_topology=None, dimensions=None, node_dimensions=None, node_coordinates=None, *args, **kwargs): self.node_lon = node_lon self.node_lat = node_lat self.grid_topology = grid_topology self.dimensions = dimensions self.node_dimensions = node_dimensions self.node_coordinates = node_coordinates super(Grid_R, self).__init__(*args,**kwargs) @classmethod def _find_required_grid_attrs(cls, filename, dataset=None, grid_topology=None): # THESE ARE ACTUALLY ALL OPTIONAL. This should be migrated when optional attributes # are dealt with # Get superset attributes gf_vars = dataset.variables if dataset is not None else get_dataset(filename).variables gf_vars = dict([(k.lower(), v) for k, v in gf_vars.items()] ) init_args, gt = super(Grid_R, cls)._find_required_grid_attrs(filename, dataset=dataset, grid_topology=grid_topology) # Grid_R only needs node_lon and node_lat. However, they must be a specific shape (1D) node_lon = init_args['node_lon'] node_lat = init_args['node_lat'] if len(node_lon.shape) != 1: raise ValueError('Too many dimensions in node_lon. Must be 1D, was {0}D'.format(len(node_lon.shape))) if len(node_lat.shape) != 1: raise ValueError('Too many dimensions in node_lat. Must be 1D, was {0}D'.format(len(node_lat.shape))) return init_args, gt @property def nodes(self): return np.stack((np.meshgrid(self.node_lon, self.node_lat)), axis=-1) @property def center_lon(self): return (self.node_lon[0:-1] + self.node_lon[1:]) / 2 @property def center_lat(self): return (self.node_lat[0:-1] + self.node_lat[1:]) / 2 @property def centers(self): return np.stack((np.meshgrid(self.center_lon, self.center_lat)), axis=-1) def locate_faces(self, points): """ Returns the node grid indices, one per point. Points that are not on the node grid will have an index of -1 If a single point is passed in, a single index will be returned. If a sequence of points is passed in an array of indexes will be returned. :param points: The points that you want to locate -- (lon, lat). If the shape of point is 1D, function will return a scalar index. If it is 2D, it will return a 1D array of indices. :type points: array-like containing one or more points: shape (2,) for one point, shape (N, 2) for more than one point. """ points = np.asarray(points, dtype=np.float64) just_one = (points.ndim == 1) points = points.reshape(-1, 2) lons = points[:, 0] lats = points[:, 1] lon_idxs = np.digitize(lons, self.node_lon) - 1 for i, n in enumerate(lon_idxs): if n == len(self.node_lon) - 1: lon_idxs[i] = -1 # if n == 0 and not lons[i] < self.node_lon.max() and not lons[i] >= self.node_lon.min(): # lon_idxs[i] = -1 lat_idxs = np.digitize(lats, self.node_lat) - 1 for i, n in enumerate(lat_idxs): if n == len(self.node_lat) -1: lat_idxs[i] = -1 # if n == 0 and not lats[i] < self.node_lat.max() and not lats[i] >= self.node_lat.min(): # lat_idxs[i] = -1 idxs = np.column_stack((lon_idxs, lat_idxs)) idxs[:,0] = np.where(idxs[:,1] == -1, -1, idxs[:,0]) idxs[:,1] = np.where(idxs[:,0] == -1, -1, idxs[:,1]) if just_one: res = idxs[0] return res else: return idxs def interpolate_var_to_points(self, points, variable, method='linear', indices=None, slices=None, mask=None, **kwargs): try: from scipy.interpolate import RegularGridInterpolator except ImportError: raise ImportError("The scipy package is required to use " "Grid_R.interpolate_var_to_points\n" " -- interpolating a regular grid") points = np.asarray(points, dtype=np.float64) just_one = (points.ndim == 1) points = points.reshape(-1, 2) if slices is not None: variable = variable[slices] if np.ma.isMA(variable): variable = variable.filled(0) #eventually should use Variable fill value x = self.node_lon if variable.shape[0] == len(self.node_lon) else self.node_lat y = self.node_lat if x is self.node_lon else self.node_lon interp_func = RegularGridInterpolator((x, y), variable, method=method, bounds_error=False, fill_value=0) if x is self.node_lon: vals = interp_func(points, method=method) else: vals = interp_func(points[:, ::-1], method=method) if just_one: return vals[0] else: return vals def infer_location(self, variable): """ fixme: should first look for "location" attribute. But now we are checking variable dimensions to which part of the grid it is on. """ shape = None node_shape = self.nodes.shape[0:-1] # centers_shape = self.centers.shape[0:-1] try: shape = np.array(variable.shape) except: return None # Variable has no shape attribute! if len(variable.shape) < 2: return None difference = (shape[-2:] - node_shape).tolist() if (difference == [1, 1] or difference == [-1, -1]) and self.center_lon is not None: return 'center' elif difference == [1, 0] and self.edge1_lon is not None: return 'edge1' elif difference == [0, 1] and self.edge2_lon is not None: return 'edge2' elif difference == [0, 0] and self.node_lon is not None: return 'node' else: return None class Grid(object): ''' Factory class that generates grid objects. Also handles common loading and parsing operations ''' def __init__(self): ''' Init common to all Grid types. This constructor will take all the kwargs of both pyugrid.UGrid and pysgrid.SGrid. See their documentation for details :param filename: Name of the file this grid was constructed from, if available. ''' raise NotImplementedError("Grid is not meant to be instantiated. " "Please use the from_netCDF function. " "or initialize the type of grid you want directly") @staticmethod def _load_grid(filename, grid_type, dataset=None): ''' Redirect to grid-specific loading routine. ''' if issubclass(grid_type, UGrid): return grid_type.from_ncfile(filename) elif issubclass(grid_type, SGrid): ds = get_dataset(filename, dataset) g = grid_type.load_grid(ds) g.filename = filename return g else: return grid_type.from_ncfile(filename) pass @staticmethod def from_netCDF(filename=None, dataset=None, grid_type=None, grid_topology=None, _default_types=(('ugrid', Grid_U), ('sgrid', Grid_S), ('rgrid', Grid_R)), *args, **kwargs): ''' :param filename: File containing a grid :param dataset: Takes precedence over filename, if provided. :param grid_type: Must be provided if Dataset does not have a 'grid_type' attribute, or valid topology variable :param grid_topology: A dictionary mapping of grid attribute to variable name. Takes precedence over discovered attributes :param kwargs: All kwargs to SGrid, UGrid, or RGrid are valid, and take precedence over all. :returns: Instance of Grid_U, Grid_S, or Grid_R ''' gf = dataset if filename is None else get_dataset(filename, dataset) if gf is None: raise ValueError('No filename or dataset provided') cls = grid_type if (grid_type is None or isinstance(grid_type, string_types) or not issubclass(grid_type, GridBase)): cls = Grid._get_grid_type(gf, grid_type, grid_topology, _default_types) # if grid_topology is passed in, don't look for the variable if not grid_topology: compliant = Grid._find_topology_var(None, gf) else: compliant = None if compliant is not None: c = Grid._load_grid(filename, cls, dataset) c.grid_topology = compliant.__dict__ else: init_args, gt = cls._find_required_grid_attrs(filename, dataset=dataset, grid_topology=grid_topology) c = cls(**init_args) c.grid_topology = gt return c @staticmethod def _get_grid_type(dataset, grid_type=None, grid_topology=None, _default_types=(('ugrid', Grid_U), ('sgrid', Grid_S), ('rgrid', Grid_R))): # fixme: this logic should probably be defered to # the grid type code -- that is, ask each grid # type if this dataset is its type. # # It also should be refactored to start with the standards # and maybe havev a pedantic mode where it won't load non-standard # files if _default_types is None: _default_types = dict() else: _default_types = dict(_default_types) Grid_U = _default_types.get('ugrid', None) Grid_S = _default_types.get('sgrid', None) Grid_R = _default_types.get('rgrid', None) sgrid_names = ['sgrid', 'pygrid_s', 'staggered', 'curvilinear', 'roms'] ugrid_names = ['ugrid', 'pygrid_u', 'triangular', 'unstructured'] rgrid_names = ['rgrid', 'regular', 'rectangular', 'rectilinear'] if grid_type is not None: if grid_type.lower() in sgrid_names: return Grid_S elif grid_type.lower() in ugrid_names: return Grid_U elif grid_type.lower() in rgrid_names: return Grid_R else: raise ValueError('Specified grid_type not recognized/supported') if grid_topology is not None: if ('faces' in grid_topology.keys() or grid_topology.get('grid_type', 'notype').lower() in ugrid_names): return Grid_U elif grid_topology.get('grid_type', 'notype').lower() in rgrid_names: return Grid_R else: return Grid_S else: # no topology, so search dataset for grid_type variable if (hasattr(dataset, 'grid_type') and dataset.grid_type in sgrid_names + ugrid_names): if dataset.grid_type.lower() in ugrid_names: return Grid_U elif dataset.grid_type.lower() in rgrid_names: return Grid_R else: return Grid_S else: # TODO: Determine an effective decision tree for picking if # a topology variable is present # no grid type explicitly specified. is a topology variable present? topology = Grid._find_topology_var(None, dataset=dataset) if topology is not None: if (hasattr(topology, 'node_coordinates') and not hasattr(topology, 'node_dimensions')): return Grid_U else: return Grid_S else: # no topology variable either, so generate and try again. # if no defaults are found, _gen_topology will raise an error try: u_init_args, u_gf_vars = Grid_U._find_required_grid_attrs(None, dataset) return Grid_U except ValueError: try: r_init_args, r_gf_vars = Grid_R._find_required_grid_attrs(None, dataset) return Grid_R except ValueError: try: s_init_args, s_gf_vars = Grid_S._find_required_grid_attrs(None, dataset) except ValueError: raise ValueError("Can not figure out what type of grid this is. " "Try specifying the grid_topology attributes " "or specifying the grid type") return Grid_S @staticmethod def _find_topology_var(filename, dataset=None): gf = get_dataset(filename, dataset) gts = [] for k, v in gf.variables.items(): if hasattr(v, 'cf_role') and 'topology' in v.cf_role: gts.append(v) # gts = gf.get_variables_by_attributes(cf_role=lambda t: t is not None and 'topology' in t) if len(gts) != 0: return gts[0] else: return None
{ "repo_name": "NOAA-ORR-ERD/gridded", "path": "gridded/grids.py", "copies": "1", "size": "24463", "license": "unlicense", "hash": -7558090765451816000, "line_mean": 40.8886986301, "line_max": 113, "alpha_frac": 0.5102399542, "autogenerated": false, "ratio": 4.235283933518006, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5245523887718005, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from .hub import Hub, HubListener from .data import Data from .link_manager import LinkManager from .registry import Registry from .visual import COLORS from .message import (DataCollectionAddMessage, DataCollectionDeleteMessage, DataAddComponentMessage) from .util import disambiguate from ..utils import as_list __all__ = ['DataCollection'] class DataCollection(HubListener): """The top-level object for interacting with datasets in Glue. DataCollections have the following responsibilities: * Providing a way to retrieve and store data * Broadcasting messages when data are added or removed * Keeping each managed data set's list of :class:`~glue.core.data.DerivedComponent` instances up-to-date * Creating the hub that all other objects should use to communicate with one another (stored in ``self.hub``) """ def __init__(self, data=None): """ :param data: :class:`~glue.core.data.Data` object, or list of such objects """ super(DataCollection, self).__init__() self._link_manager = LinkManager() self._data = [] self.hub = None self._subset_groups = [] self.register_to_hub(Hub()) self.extend(as_list(data or [])) self._sg_count = 0 @property def data(self): """ The :class:`~glue.core.data.Data` objects in the collection """ return self._data def append(self, data): """ Add a new dataset to this collection. Appending emits a DataCollectionAddMessage. It also updates the list of DerivedComponents that each data set can work with. :param data: :class:`~glue.core.data.Data` object to add """ if isinstance(data, list): self.extend(data) return if data in self: return self._data.append(data) if self.hub: data.register_to_hub(self.hub) for s in data.subsets: s.register() msg = DataCollectionAddMessage(self, data) self.hub.broadcast(msg) self._sync_link_manager() def extend(self, data): """Add several new datasets to this collection See :meth:`append` for more information :param data: List of data objects to add """ [self.append(d) for d in data] def remove(self, data): """ Remove a data set from the collection Emits a DataCollectionDeleteMessage :param data: the object to remove :type data: :class:`~glue.core.data.Data` """ if data not in self._data: return self._data.remove(data) Registry().unregister(data, Data) if self.hub: msg = DataCollectionDeleteMessage(self, data) self.hub.broadcast(msg) def _sync_link_manager(self): """ update the LinkManager, so all the DerivedComponents for each data set are up-to-date """ # add any links in the data for d in self._data: for derived in d.derived_components: self._link_manager.add_link(d.get_component(derived).link) for link in d.coordinate_links: self._link_manager.add_link(link) for d in self._data: self._link_manager.update_data_components(d) @property def links(self): """ Tuple of :class:`~glue.core.component_link.ComponentLink` objects. """ return tuple(self._link_manager.links) def add_link(self, links): """Add one or more links to the data collection. This will auto-update the components in each data set :param links: The links to add. A scalar or list of :class:`~glue.core.component_link.ComponentLink` instances, or a :class:`~glue.core.link_helpers.LinkCollection` """ self._link_manager.add_link(links) for d in self._data: self._link_manager.update_data_components(d) def _merge_link(self, link): pass def set_links(self, links): """Override the links in the collection, and update data objects as necessary. :param links: The new links. An iterable of :class:`~glue.core.component_link.ComponentLink` instances """ self._link_manager.clear() for link in links: self._link_manager.add_link(link) for d in self._data: self._link_manager.update_data_components(d) def register_to_hub(self, hub): """ Register managed data objects to a hub. :param hub: The hub to register with :type hub: :class:`~glue.core.hub.Hub` """ if self.hub is hub: return if self.hub is not None: raise RuntimeError("Data Collection already registered " "to a different Hub") if not isinstance(hub, Hub): raise TypeError("Input is not a Hub object: %s" % type(hub)) self.hub = hub # re-assign all data, subset hub instances to this hub for d in self._data: d.register_to_hub(hub) for s in d.subsets: s.register() hub.subscribe(self, DataAddComponentMessage, lambda msg: self._sync_link_manager(), filter=lambda x: x.sender in self._data) def new_subset_group(self, label=None, subset_state=None): """ Create and return a new Subset Group. :param label: The label to assign to the group :type label: str :param subset_state: The state to initialize the group with :type subset_state: :class:`~glue.core.subset.SubsetState` :returns: A new :class:`~glue.core.subset_group.SubsetGroup` """ from .subset_group import SubsetGroup color = COLORS[self._sg_count % len(COLORS)] self._sg_count += 1 label = label or "%i" % (self._sg_count) result = SubsetGroup(color=color, label=label, subset_state=subset_state) self._subset_groups.append(result) result.register(self) return result def remove_subset_group(self, subset_grp): """ Remove an existing :class:`~glue.core.subset_group.SubsetGroup` """ if subset_grp not in self._subset_groups: return # remove from list first, so that group appears deleted # by the time the first SubsetDelete message is broadcast self._subset_groups.remove(subset_grp) for s in subset_grp.subsets: s.delete() subset_grp.unregister(self.hub) def merge(self, *data): """ Merge two or more datasets into a single dataset. This has the following effects: All components from all datasets are added to the first argument All datasets except the first argument are removed from the collection Any component name conflicts are disambiguated The pixel and world components apart from the first argument are discarded :note: All arguments must have the same shape :param data: One or more :class:`~glue.core.data.Data` instances. :returns: self """ if len(data) < 2: raise ValueError("merge requires 2 or more arguments") shp = data[0].shape for d in data: if d.shape != shp: raise ValueError("All arguments must have the same shape") master = data[0] for d in data[1:]: skip = d.pixel_component_ids + d.world_component_ids for c in d.components: if c in skip: continue if c in master.components: # already present (via a link) continue taken = [_.label for _ in master.components] lbl = c.label # first-pass disambiguation, try component_data # also special-case 'PRIMARY', rename to data label if lbl in taken: lbl = d.label if lbl == 'PRIMARY' else '%s_%s' % (lbl, d.label) lbl = disambiguate(lbl, taken) c._label = lbl master.add_component(d.get_component(c), c) self.remove(d) return self @property def subset_groups(self): """ tuple of current :class:`Subset Groups <glue.core.subset_group.SubsetGroup>` """ return tuple(self._subset_groups) def __contains__(self, obj): return obj in self._data or obj in self.subset_groups def __getitem__(self, key): return self._data[key] def __iter__(self): return iter(self._data) def __len__(self): return len(self._data) def __str__(self): if len(self) == 1: result = "DataCollection (1 data set)\n\t" else: result = "DataCollection (%i data sets)\n\t" % len(self) result += '\n\t'.join("%3i: %s" % (i, d.label) for i, d in enumerate(self)) return result def __repr__(self): return self.__str__() def __bool__(self): return True def __nonzero__(self): return True
{ "repo_name": "JudoWill/glue", "path": "glue/core/data_collection.py", "copies": "1", "size": "9476", "license": "bsd-3-clause", "hash": -2245078325687599600, "line_mean": 30.9057239057, "line_max": 84, "alpha_frac": 0.5777754327, "autogenerated": false, "ratio": 4.230357142857143, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5308132575557143, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from .hub import HubListener from .data import Data from .subset import Subset from .data_collection import DataCollection from .message import (DataUpdateMessage, SubsetUpdateMessage, SubsetCreateMessage, SubsetDeleteMessage, DataCollectionDeleteMessage, NumericalDataChangedMessage) __all__ = ['Client', 'BasicClient'] class Client(HubListener): """ Base class for interaction / visualization modules Attributes ---------- data: DataCollection instance The data associated with this client. """ def __init__(self, data): """ Create a new client object. Parameters ---------- data: Data, DataCollection, or list of data The primary data associated with this client. Raises ------ TypeError: If the data input is the wrong type """ super(Client, self).__init__() self._data = data if not isinstance(data, DataCollection): raise TypeError("Input data must be a DataCollection: %s" % type(data)) @property def data(self): """ Returns the data collection """ return self._data def register_to_hub(self, hub): """The main method to establish a link with a hub, and set up event handlers. For common message types Client subclasses at a minimum should override these methods to provide functionality: _add_subset _update_subset _remove_subset _remove_data Clients can also override register_to_hub to add additional event handlers. Attributes ---------- hub: The hub to subscribe to """ has_data = lambda x: x.sender.data in self._data has_data_collection = lambda x: x.sender is self._data hub.subscribe(self, SubsetCreateMessage, handler=self._add_subset, filter=has_data) hub.subscribe(self, SubsetUpdateMessage, handler=self._update_subset, filter=has_data) hub.subscribe(self, SubsetDeleteMessage, handler=self._remove_subset, filter=has_data) hub.subscribe(self, DataUpdateMessage, handler=self._update_data, filter=has_data) hub.subscribe(self, NumericalDataChangedMessage, handler=self._numerical_data_changed, filter=has_data) hub.subscribe(self, DataCollectionDeleteMessage, handler=self._remove_data, filter=has_data_collection) def _add_subset(self, message): raise NotImplementedError def _remove_data(self, message): raise NotImplementedError def _remove_subset(self, message): raise NotImplementedError def _update_data(self, message): """ Default handler for DataMessage """ raise NotImplementedError def _update_subset(self, message): """ Default handler for SubsetUpdateMessage """ raise NotImplementedError def apply_roi(self, roi): raise NotImplementedError def _numerical_data_changed(self, message): raise NotImplementedError class BasicClient(Client): def _add_subset(self, message): subset = message.subset self.add_layer(subset) def _update_subset(self, message): subset = message.subset self.update_layer(subset) def _remove_subset(self, message): subset = message.subset self.remove_layer(subset) def _remove_data(self, message): self.remove_layer(message.data) def _update_data(self, message): self.update_layer(message.data) def add_layer(self, layer): if self.layer_present(layer): return if layer.data not in self.data: raise TypeError("Data not in collection") if isinstance(layer, Data): self._do_add_data(layer) for subset in layer.subsets: self.add_layer(subset) else: if not self.layer_present(layer.data): self.add_layer(layer.data) else: self._do_add_subset(layer) self.update_layer(layer) def update_layer(self, layer): if not self.layer_present(layer): return if isinstance(layer, Subset): self._do_update_subset(layer) else: self._do_update_data(layer) def remove_layer(self, layer): if not self.layer_present(layer): return if isinstance(layer, Data): self._do_remove_data(layer) for subset in layer.subsets: self._do_remove_subset(subset) else: self._do_remove_subset(layer) def _do_add_data(self, data): raise NotImplementedError def _do_add_subset(self, subset): raise NotImplementedError def _do_update_subset(self, subset): raise NotImplementedError def _do_update_data(self, data): raise NotImplementedError def _do_remove_subset(self, subset): raise NotImplementedError def _do_remove_data(self, data): raise NotImplementedError def layer_present(self, layer): raise NotImplementedError
{ "repo_name": "JudoWill/glue", "path": "glue/core/client.py", "copies": "1", "size": "5721", "license": "bsd-3-clause", "hash": 4271329927683681000, "line_mean": 27.7487437186, "line_max": 69, "alpha_frac": 0.5708792169, "autogenerated": false, "ratio": 4.771476230191826, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00016792399759868682, "num_lines": 199 }
from __future__ import absolute_import, division, print_function from . import IDataDescriptor, Capabilities def blaze_func_iter(bfd, noiter_dims): args = bfd.args dim_size = 1 iters = [] for a, noiter in zip(args, noiter_dims): if noiter: iters.append(a) else: # TODO handle streaming dimension with no __len__ arg_dim_size = len(a) if dim_size == 1: dim_size = arg_dim_size elif dim_size != arg_dim_size: raise BroadcastError(('Cannot broadcast dimensions of ' + 'size %d and %d together') % (dim_size, arg_dim_size)) iters.append(a.__iter__()) # TODO continue... class BlazeFuncDeprecatedDescriptor(IDataDescriptor): """ Data descriptor for blaze.bkernel.BlazeFunc Attributes: =========== kerneltree: blaze.bkernel.kernel_tree.KernelTree deferred expression DAG/tree outdshape: DataShape result type argmap: { blaze.bkernel.kernel_tree.Argument : Array } Keeps track of concrete input arrays """ _args = None deferred = True def __init__(self, kerneltree, outdshape, argmap): self.kerneltree = kerneltree self.outdshape = outdshape self.argmap = argmap def _reset_args(self): from blaze.compute.bkernel.kernel_tree import find_unique_args unique_args = [] find_unique_args(self.kerneltree, unique_args) self._args = [self.argmap[argument] for argument in unique_args] @property def capabilities(self): """The capabilities for the blaze function data descriptor.""" return Capabilities( immutable = True, deferred = True, # persistency is not supported yet persistent = False, appendable = False, remote = False, ) @property def args(self): if self._args is None: self._reset_args() return self._args @property def isfused(self): from blaze.compute.bkernel.kernel_tree import Argument return all(isinstance(child, Argument) for child in self.kerneltree.children) def fuse(self): if not self.isfused: return self.__class__(self.kerneltree.fuse(), self.outdshape) else: return self def _printer(self): return str(self.kerneltree) @property def dshape(self): return self.outdshape def __iter__(self): # Figure out how the outermost dimension broadcasts, by # subtracting the rank sizes of the blaze func elements from # the argument dshape sizes broadcast_dims = [len(a.dshape) - len(e.dshape) for a, e in zip(self.args, self.kernel_elements)] ndim = max(broadcast_dims) if ndim > 1: # Do a data descriptor-level broadcasting noiter_dims = [x == 0 for x in broadcast_dim] return blaze_func_iter(self, noiter_dims) elif ndim == 1: # Do an element-level broadcasting raise NotImplemented else: raise IndexError('Cannot iterate over a scalar') def __getitem__(self, key): raise NotImplementedError
{ "repo_name": "zeeshanali/blaze", "path": "blaze/datadescriptor/blaze_func_descriptor.py", "copies": "2", "size": "3329", "license": "bsd-3-clause", "hash": 5383006264740548000, "line_mean": 29.5412844037, "line_max": 86, "alpha_frac": 0.5872634425, "autogenerated": false, "ratio": 4.099753694581281, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.012897538598303001, "num_lines": 109 }
from __future__ import absolute_import, division, print_function from . import ops from .groupby import DataArrayGroupBy, DatasetGroupBy from .pycompat import OrderedDict, dask_array_type RESAMPLE_DIM = '__resample_dim__' class Resample(object): """An object that extends the `GroupBy` object with additional logic for handling specialized re-sampling operations. You should create a `Resample` object by using the `DataArray.resample` or `Dataset.resample` methods. The dimension along re-sampling See Also -------- DataArray.resample Dataset.resample """ def _upsample(self, method, *args, **kwargs): """Dispatch function to call appropriate up-sampling methods on data. This method should not be called directly; instead, use one of the wrapper functions supplied by `Resample`. Parameters ---------- method : str {'asfreq', 'pad', 'ffill', 'backfill', 'bfill', 'nearest', 'interpolate'} Method to use for up-sampling See Also -------- Resample.asfreq Resample.pad Resample.backfill Resample.interpolate """ upsampled_index = self._full_index # Drop non-dimension coordinates along the resampled dimension for k, v in self._obj.coords.items(): if k == self._dim: continue if self._dim in v.dims: self._obj = self._obj.drop(k) if method == 'asfreq': return self.mean(self._dim) elif method in ['pad', 'ffill', 'backfill', 'bfill', 'nearest']: kwargs = kwargs.copy() kwargs.update(**{self._dim: upsampled_index}) return self._obj.reindex(method=method, *args, **kwargs) elif method == 'interpolate': return self._interpolate(*args, **kwargs) else: raise ValueError('Specified method was "{}" but must be one of' '"asfreq", "ffill", "bfill", or "interpolate"' .format(method)) def asfreq(self): """Return values of original object at the new up-sampling frequency; essentially a re-index with new times set to NaN. """ return self._upsample('asfreq') def pad(self): """Forward fill new values at up-sampled frequency. """ return self._upsample('pad') ffill = pad def backfill(self): """Backward fill new values at up-sampled frequency. """ return self._upsample('backfill') bfill = backfill def nearest(self): """Take new values from nearest original coordinate to up-sampled frequency coordinates. """ return self._upsample('nearest') def interpolate(self, kind='linear'): """Interpolate up-sampled data using the original data as knots. Parameters ---------- kind : str {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'} Interpolation scheme to use See Also -------- scipy.interpolate.interp1d """ return self._interpolate(kind=kind) def _interpolate(self, kind='linear'): raise NotImplementedError class DataArrayResample(DataArrayGroupBy, Resample): """DataArrayGroupBy object specialized to time resampling operations over a specified dimension """ def __init__(self, *args, **kwargs): self._dim = kwargs.pop('dim', None) self._resample_dim = kwargs.pop('resample_dim', None) if self._dim == self._resample_dim: raise ValueError("Proxy resampling dimension ('{}') " "cannot have the same name as actual dimension " "('{}')! ".format(self._resample_dim, self._dim)) super(DataArrayResample, self).__init__(*args, **kwargs) def apply(self, func, shortcut=False, **kwargs): """Apply a function over each array in the group and concatenate them together into a new array. `func` is called like `func(ar, *args, **kwargs)` for each array `ar` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the array. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped array after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each array. shortcut : bool, optional Whether or not to shortcut evaluation under the assumptions that: (1) The action of `func` does not depend on any of the array metadata (attributes or coordinates) but only on the data and dimensions. (2) The action of `func` creates arrays with homogeneous metadata, that is, with the same dimensions and attributes. If these conditions are satisfied `shortcut` provides significant speedup. This should be the case for many common groupby operations (e.g., applying numpy ufuncs). **kwargs Used to call `func(ar, **kwargs)` for each array `ar`. Returns ------- applied : DataArray or DataArray The result of splitting, applying and combining this array. """ combined = super(DataArrayResample, self).apply( func, shortcut=shortcut, **kwargs) # If the aggregation function didn't drop the original resampling # dimension, then we need to do so before we can rename the proxy # dimension we used. if self._dim in combined.coords: combined = combined.drop(self._dim) if self._resample_dim in combined.dims: combined = combined.rename({self._resample_dim: self._dim}) return combined def _interpolate(self, kind='linear'): """Apply scipy.interpolate.interp1d along resampling dimension.""" from .dataarray import DataArray from scipy.interpolate import interp1d if isinstance(self._obj.data, dask_array_type): raise TypeError( "Up-sampling via interpolation was attempted on the the " "variable '{}', but it is a dask array; dask arrays are not " "yet supported in resample.interpolate(). Load into " "memory with Dataset.load() before resampling." .format(self._obj.data.name) ) x = self._obj[self._dim].astype('float') y = self._obj.data axis = self._obj.get_axis_num(self._dim) f = interp1d(x, y, kind=kind, axis=axis, bounds_error=True, assume_sorted=True) new_x = self._full_index.values.astype('float') # construct new up-sampled DataArray dummy = self._obj.copy() dims = dummy.dims # drop any existing non-dimension coordinates along the resampling # dimension coords = OrderedDict() for k, v in dummy.coords.items(): # is the resampling dimension if k == self._dim: coords[self._dim] = self._full_index # else, check if resampling dim is in coordinate dimensions elif self._dim not in v.dims: coords[k] = v return DataArray(f(new_x), coords, dims, name=dummy.name, attrs=dummy.attrs) ops.inject_reduce_methods(DataArrayResample) ops.inject_binary_ops(DataArrayResample) class DatasetResample(DatasetGroupBy, Resample): """DatasetGroupBy object specialized to resampling a specified dimension """ def __init__(self, *args, **kwargs): self._dim = kwargs.pop('dim', None) self._resample_dim = kwargs.pop('resample_dim', None) if self._dim == self._resample_dim: raise ValueError("Proxy resampling dimension ('{}') " "cannot have the same name as actual dimension " "('{}')! ".format(self._resample_dim, self._dim)) super(DatasetResample, self).__init__(*args, **kwargs) def apply(self, func, **kwargs): """Apply a function over each Dataset in the groups generated for resampling and concatenate them together into a new Dataset. `func` is called like `func(ds, *args, **kwargs)` for each dataset `ds` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the datasets. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped item after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each sub-dataset. **kwargs Used to call `func(ds, **kwargs)` for each sub-dataset `ar`. Returns ------- applied : Dataset or DataArray The result of splitting, applying and combining this dataset. """ kwargs.pop('shortcut', None) # ignore shortcut if set (for now) applied = (func(ds, **kwargs) for ds in self._iter_grouped()) combined = self._combine(applied) return combined.rename({self._resample_dim: self._dim}) def reduce(self, func, dim=None, keep_attrs=False, **kwargs): """Reduce the items in this group by applying `func` along the pre-defined resampling dimension. Note that `dim` is by default here and ignored if passed by the user; this ensures compatibility with the existing reduce interface. Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ return super(DatasetResample, self).reduce( func, self._dim, keep_attrs, **kwargs) def _interpolate(self, kind='linear'): """Apply scipy.interpolate.interp1d along resampling dimension.""" from .dataset import Dataset from .variable import Variable from scipy.interpolate import interp1d old_times = self._obj[self._dim].astype(float) new_times = self._full_index.values.astype(float) data_vars = OrderedDict() coords = OrderedDict() # Apply the interpolation to each DataArray in our original Dataset for name, variable in self._obj.variables.items(): if name in self._obj.coords: if name == self._dim: coords[self._dim] = self._full_index elif self._dim not in variable.dims: coords[name] = variable else: if isinstance(variable.data, dask_array_type): raise TypeError( "Up-sampling via interpolation was attempted on the " "variable '{}', but it is a dask array; dask arrays " "are not yet supprted in resample.interpolate(). Load " "into memory with Dataset.load() before resampling." .format(name) ) axis = variable.get_axis_num(self._dim) # We've previously checked for monotonicity along the # re-sampling dimension (in __init__ via the GroupBy # constructor), so we can avoid sorting the data again by # passing 'assume_sorted=True' f = interp1d(old_times, variable.data, kind=kind, axis=axis, bounds_error=True, assume_sorted=True) interpolated = Variable(variable.dims, f(new_times)) data_vars[name] = interpolated return Dataset(data_vars, coords) ops.inject_reduce_methods(DatasetResample) ops.inject_binary_ops(DatasetResample)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/resample.py", "copies": "1", "size": "13023", "license": "apache-2.0", "hash": -5081576379401345000, "line_mean": 36.1025641026, "line_max": 79, "alpha_frac": 0.5866543807, "autogenerated": false, "ratio": 4.629576964095272, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5716231344795273, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from . import twisted from ._core import ( Certificate, DHParameters, Key, RSAPrivateKey, parse, parse_file, ) from .twisted import ( certificateOptionsFromFiles as certificateOptionsFromFilesOriginal, certificateOptionsFromPEMs as certificateOptionsFromPEMsOriginal, ) __version__ = "15.1.0.dev0" __author__ = "Hynek Schlawack" __license__ = "MIT" __description__ = "Easy PEM file parsing in Python." __uri__ = "https://pem.readthedocs.org/" __email__ = "[email protected]" _DEPRECATION_WARNING = ( "Calling {func} from the pem package is deprecated as of pem 15.0.0. " "Please use pem.twisted.{func} instead." ) def certificateOptionsFromFiles(*a, **kw): """ Deprecated function. Please use pem.twisted.certificateOptionsFromFiles. """ import warnings warnings.warn( _DEPRECATION_WARNING.format(func="certificateOptionsFromFiles"), DeprecationWarning ) return certificateOptionsFromFilesOriginal(*a, **kw) def certificateOptionsFromPEMs(*a, **kw): """ Deprecated function. Please use pem.twisted.certificateOptionsFromPEMs. """ import warnings warnings.warn( _DEPRECATION_WARNING.format(func="certificateOptionsFromPEMs"), DeprecationWarning ) return certificateOptionsFromPEMsOriginal(*a, **kw) __all__ = [ "Certificate", "DHParameters", "Key", "RSAPrivateKey", "certificateOptionsFromFiles", "certificateOptionsFromPEMs", "parse", "parse_file", "twisted", ]
{ "repo_name": "leandrotoledo/pem", "path": "pem/__init__.py", "copies": "1", "size": "1596", "license": "mit", "hash": 105649644403248600, "line_mean": 23.1818181818, "line_max": 77, "alpha_frac": 0.6810776942, "autogenerated": false, "ratio": 3.7116279069767444, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48927056011767445, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from imps.core import Sorter def test_smarkets_style(): input = '''from __future__ import absolute_import, division, print_function import ast import configparser import os import StringIO import sys from functools import * from os import path import flake8 import pytest from flake8.defaults import NOQA_INLINE_REGEXP, STATISTIC_NAMES from flake8.exceptions import * from pytest import * from pytest import capture from pytest import compat, config from common.interfaces import Config from common.rest.decorators import jsonify from han.db import Database from winners.server.db_access import ( acknowledge_winner_exposure_for_market, get_acknowledged_winner_exposures_for_market, ) from . import A from . import B from .A import A from .B import B from .. import A from .. import B from ..A import A from ..B import B ''' assert Sorter('s', 80, ['common', 'winners', 'han']).sort(input) == input def test_smarkets_style_from_import_capitals_are_not_lowered(): input = '''from __future__ import absolute_import, division, print_function from imps.strings import AAAA from imps.strings import get_doc_string, strip_to_module_name, strip_to_module_name_from_import from imps.strings import ZZZZ ''' # Possible alternative: # output = '''from __future__ import absolute_import, division, print_function # # from imps.strings import ( # AAAA, # get_doc_string, # strip_to_module_name, # strip_to_module_name_from_import # ZZZZ, # ) # ''' assert Sorter('s', max_line_length=110).sort(input) == input def test_newlines_reduced(): s = Sorter('s', 80, ['local']) input = """import io import sys import A """ output = """import io import sys import A """ assert s.sort(input) == output def test_no_new_line_between_same_type(): s = Sorter(type='s', max_line_length=110, indent=" ") input_str = """ from __future__ import absolute_import, division, print_function import re from collections import OrderedDict """ correct = """from __future__ import absolute_import, division, print_function import re from collections import OrderedDict """ assert s.sort(input_str) == correct
{ "repo_name": "bootandy/imps", "path": "imps/tests/test_smarkets.py", "copies": "1", "size": "2242", "license": "apache-2.0", "hash": 2559477037607645700, "line_mean": 21.42, "line_max": 95, "alpha_frac": 0.7100802855, "autogenerated": false, "ratio": 3.402124430955994, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9610471717386545, "avg_score": 0.00034659981388970515, "num_lines": 100 }
from __future__ import absolute_import, division, print_function from imps.stdlib import get_paths, LOCAL, STDLIB, strip_to_first_module, THIRDPARTY def test_strip_to_first_module(): assert strip_to_first_module('from alpha.beta import squid') == 'alpha' assert strip_to_first_module('import sys') == 'sys' assert strip_to_first_module('import sys, io') == 'sys' assert strip_to_first_module('from sys import stdin') == 'sys' assert strip_to_first_module('from . import A') == '.' assert strip_to_first_module('from ..B import A') == '..B' def test_path_std(): assert get_paths('import sys', []) == STDLIB assert get_paths('import io', []) == STDLIB assert get_paths('from contextlib import *', []) == STDLIB def test_path_local(): assert get_paths('import a_local_path', ['a_local_path']) == LOCAL assert get_paths('import a_local_path.submodule', ['a_local_path']) == LOCAL def test_path_third(): assert get_paths('import pytest', []) == THIRDPARTY assert get_paths('import flask.abort', []) == THIRDPARTY assert get_paths('fom six import sax', []) == THIRDPARTY
{ "repo_name": "bootandy/imps", "path": "imps/tests/test_stdlib.py", "copies": "1", "size": "1130", "license": "apache-2.0", "hash": 3827987076141693000, "line_mean": 37.9655172414, "line_max": 83, "alpha_frac": 0.6584070796, "autogenerated": false, "ratio": 3.3333333333333335, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4491740412933334, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from inspect import getargspec from ..external.qt.QtGui import (QWidget, QHBoxLayout, QVBoxLayout, QLabel, QLineEdit) from ..external.qt.QtGui import QSpacerItem, QSizePolicy from .. import core from ..compat.collections import OrderedDict from .qtutil import load_ui, is_pyside def function_label(function): """ Provide a label for a function :param function: A member from the glue.config.link_function registry """ name = function.function.__name__ args = getargspec(function.function)[0] args = ', '.join(args) output = function.output_labels output = ', '.join(output) label = "Link from %s to %s" % (args, output) return label def helper_label(helper): """ Provide a label for a link helper :param helper: A member from the glue.config.link_helper registry """ return helper.info class ArgumentWidget(QWidget): def __init__(self, argument, parent=None): super(ArgumentWidget, self).__init__(parent) self.layout = QHBoxLayout() self.layout.setContentsMargins(1, 0, 1, 1) self.setLayout(self.layout) label = QLabel(argument) self._label = label self._component_id = None self.layout.addWidget(label) self.editor = QLineEdit() self.editor.setReadOnly(True) try: self.editor.setPlaceholderText("Drag a component from above") except AttributeError: # feature added in Qt 4.7 pass self.layout.addWidget(self.editor) self.setAcceptDrops(True) @property def component_id(self): return self._component_id @component_id.setter def component_id(self, cid): self._component_id = cid self.editor.setText(str(cid)) @property def label(self): return self._label.text() @label.setter def label(self, label): self._label.setText(label) @property def editor_text(self): return self.editor.text() def clear(self): self.component_id = None self.editor.clear() def dragEnterEvent(self, event): if event.mimeData().hasFormat('application/py_instance'): event.accept() else: event.ignore() def dropEvent(self, event): obj = event.mimeData().data('application/py_instance') if isinstance(obj, list): obj = obj[0] if not isinstance(obj, core.data.ComponentID): event.ignore() return self.component_id = obj event.accept() class LinkEquation(QWidget): """ Interactively define ComponentLinks from existing functions This widget inspects the calling signatures of helper functions, and presents the user with an interface for assigning componentIDs to the input and output arguments. It also generates ComponentLinks from this information. ComponentIDs are assigned to arguments via drag and drop. This widget is used within the LinkEditor dialog Usage:: widget = LinkEquation() """ def __init__(self, parent=None): super(LinkEquation, self).__init__(parent) from ..config import link_function, link_helper # Set up mapping of function/helper name -> function/helper tuple. For the helpers, we use the 'display' name if available. def get_name(item): if hasattr(item, 'display') and item.display is not None: return item.display else: return item.__name__ f = [f for f in link_function.members if len(f.output_labels) == 1] self._functions = OrderedDict((get_name(l[0]), l) for l in f + link_helper.members) self._argument_widgets = [] self.spacer = None self._output_widget = ArgumentWidget("") # pyqt4 can't take self as second argument here # for some reason. Manually embed self._ui = load_ui('link_equation', None) l = QHBoxLayout() l.addWidget(self._ui) self.setLayout(l) self._init_widgets() self._populate_function_combo() self._connect() self._setup_editor() def set_result_visible(self, state): self._ui.output_canvas.setVisible(state) self._ui.output_label.setVisible(state) def is_helper(self): return self.function is not None and \ type(self.function).__name__ == 'LinkHelper' def is_function(self): return self.function is not None and \ type(self.function).__name__ == 'LinkFunction' def _init_widgets(self): layout = QVBoxLayout() layout.setSpacing(1) self._ui.input_canvas.setLayout(layout) layout = QVBoxLayout() layout.setContentsMargins(1, 0, 1, 1) self._ui.output_canvas.setLayout(layout) layout.addWidget(self._output_widget) spacer = QSpacerItem(5, 5, QSizePolicy.Minimum, QSizePolicy.Expanding) layout.addItem(spacer) @property def add_button(self): return self._ui.addButton @property def signature(self): """ Returns the ComponentIDs assigned to the input and output arguments :rtype: tuple of (input, output). Input is a list of ComponentIDs. output is a ComponentID """ inp = [a.component_id for a in self._argument_widgets] out = self._output_widget.component_id return inp, out @signature.setter def signature(self, inout): inp, out = inout for i, a in zip(inp, self._argument_widgets): a.component_id = i self._output_widget.component_id = out @property def function(self): """ The currently-selected function :rtype: A function or helper tuple """ fname = str(self._ui.function.currentText()) func = self._functions[fname] return func @function.setter def function(self, val): if hasattr(val[0], 'display') and val[0].display is not None: name = val[0].display else: name = val[0].__name__ pos = self._ui.function.findText(name) if pos < 0: raise KeyError("No function or helper found %s" % [val]) self._ui.function.setCurrentIndex(pos) def links(self): """ Create ComponentLinks from the state of the widget :rtype: list of ComponentLinks that can be created. If no links can be created (e.g. because of missing input), the empty list is returned """ inp, out = self.signature if self.is_function(): using = self.function.function if not all(inp) or not out: return [] link = core.component_link.ComponentLink(inp, out, using) return [link] if self.is_helper(): helper = self.function.helper if not all(inp): return [] return helper(*inp) def _update_add_enabled(self): state = True for a in self._argument_widgets: state = state and a.component_id is not None if self.is_function(): state = state and self._output_widget.component_id is not None self._ui.addButton.setEnabled(state) def _connect(self): signal = self._ui.function.currentIndexChanged signal.connect(self._setup_editor) signal.connect(self._update_add_enabled) self._output_widget.editor.textChanged.connect( self._update_add_enabled) def clear_inputs(self): for w in self._argument_widgets: w.clear() self._output_widget.clear() def _setup_editor(self): if self.is_function(): self._setup_editor_function() else: self._setup_editor_helper() def _setup_editor_function(self): """ Prepare the widget for the active function.""" assert self.is_function() self.set_result_visible(True) func = self.function.function args = getargspec(func)[0] label = function_label(self.function) self._ui.info.setText(label) self._output_widget.label = self.function.output_labels[0] self._clear_input_canvas() for a in args: self._add_argument_widget(a) self.spacer = QSpacerItem(5, 5, QSizePolicy.Minimum, QSizePolicy.Expanding) self._ui.input_canvas.layout().addItem(self.spacer) def _setup_editor_helper(self): """Setup the editor for the selected link helper""" assert self.is_helper() self.set_result_visible(False) label = helper_label(self.function) args = self.function.input_labels self._ui.info.setText(label) self._clear_input_canvas() for a in args: self._add_argument_widget(a) self.spacer = QSpacerItem(5, 5, QSizePolicy.Minimum, QSizePolicy.Expanding) self._ui.input_canvas.layout().addItem(self.spacer) def _add_argument_widget(self, argument): """ Create and add a single argument widget to the input canvas :param arguement: The argument name (string) """ widget = ArgumentWidget(argument) widget.editor.textChanged.connect(self._update_add_enabled) self._ui.input_canvas.layout().addWidget(widget) self._argument_widgets.append(widget) def _clear_input_canvas(self): """ Remove all widgets from the input canvas """ layout = self._ui.input_canvas.layout() for a in self._argument_widgets: layout.removeWidget(a) a.close() if not is_pyside(): # PySide crashing here layout.removeItem(self.spacer) self._argument_widgets = [] def _populate_function_combo(self): """ Add name of functions to function combo box """ self._ui.function.clear() for f in self._functions: self._ui.function.addItem(f)
{ "repo_name": "JudoWill/glue", "path": "glue/qt/link_equation.py", "copies": "1", "size": "10206", "license": "bsd-3-clause", "hash": -197317345852547940, "line_mean": 31.1955835962, "line_max": 131, "alpha_frac": 0.6034685479, "autogenerated": false, "ratio": 4.116982654296087, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5220451202196087, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from io import TextIOBase import sys import threading if sys.version_info[0] < 3: from Queue import Queue else: from queue import Queue def start_thread(runnable): threading.Thread(target=lambda: runnable.run()).start() class ConsoleInputStream(TextIOBase): """Receives input in on_input in one thread (non-blocking), and provides a read interface in another thread (blocking). Reads will return bytes in Python 2 or unicode in Python 3. """ def __init__(self, task): TextIOBase.__init__(self) self.task = task self.queue = Queue() self.buffer = "" self.eof = False @property def encoding(self): return "UTF-8" @property def errors(self): return "strict" # UTF-8 encoding should never fail. def readable(self): return True def on_input(self, input): if self.eof: raise ValueError("Can't add more input after EOF") if input is None: self.eof = True self.queue.put(input) def read(self, size=None): if size is not None and size < 0: size = None buffer = self.buffer while (self.queue is not None) and ((size is None) or (len(buffer) < size)): if self.queue.empty(): self.task.onInputState(True) input = self.queue.get() self.task.onInputState(False) if input is None: # EOF self.queue = None else: buffer += input result = buffer if (size is None) else buffer[:size] self.buffer = buffer[len(result):] return result.encode(self.encoding, self.errors) if (sys.version_info[0] < 3) else result def readline(self, size=None): if size is not None and size < 0: size = None chars = [] while (size is None) or (len(chars) < size): c = self.read(1) if not c: break chars.append(c) if c == "\n": break return "".join(chars) class ConsoleOutputStream(TextIOBase): """Passes each write to the underlying stream, and also to the given method (which must take a single String argument) on the given Task object. """ def __init__(self, task, method_name, stream): TextIOBase.__init__(self) self.stream = stream self.method = getattr(task, method_name) @property def encoding(self): return self.stream.encoding @property def errors(self): return self.stream.errors def writable(self): return True def write(self, s): if sys.version_info[0] < 3 and isinstance(s, str): u = s.decode(self.encoding, self.errors) else: u = s self.method(u) return self.stream.write(s) def flush(self): self.stream.flush()
{ "repo_name": "fyookball/electrum", "path": "android/app/src/main/python/chaquopy/utils/console.py", "copies": "1", "size": "2993", "license": "mit", "hash": 5238465816921857000, "line_mean": 26.712962963, "line_max": 98, "alpha_frac": 0.5760106916, "autogenerated": false, "ratio": 4.0610583446404345, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5137069036240435, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import chain from dynd import nd from collections import Iterator from datashape import dshape, Record, DataShape, Mono from datashape.predicates import isdimension from toolz import partition_all, partial, map, compose, first from ..dispatch import dispatch from ..compatibility import _strtypes def validate(schema, item): try: nd.array(item, dtype=str(schema)) return True except: return False @dispatch((DataShape, Mono), object) def coerce(dshape, item): return coerce(str(dshape), item) @dispatch(_strtypes, object) def coerce(dshape, item): try: return nd.as_py(nd.array(item, dtype=dshape), tuple=True) except ValueError as e: raise ValueError("DataShape mismatch.\n" "DyND failed to parse data with the following datashape: %s\n" "Produced the following error: %s\n" "Consider providing a more general datashape with " "keyword dshape=" % (dshape, e.args[0])) @dispatch(_strtypes, Iterator) def coerce(dshape, item): blocks = partition_all(1024, item) return chain.from_iterable(map(partial(coerce, dshape), blocks)) def coerce_to_ordered(ds, data): """ Coerce data with dicts into an ordered ND collection >>> from datashape import dshape >>> coerce_to_ordered('{x: int, y: int}', {'x': 1, 'y': 2}) (1, 2) >>> coerce_to_ordered('var * {x: int, y: int}', ... [{'x': 1, 'y': 2}, {'x': 10, 'y': 20}]) ((1, 2), (10, 20)) Idempotent >>> coerce_to_ordered('var * {x: int, y: int}', ... ((1, 2), (10, 20))) ((1, 2), (10, 20)) """ if isinstance(ds, _strtypes): ds = dshape(ds) if isinstance(ds[0], Record): if isinstance(data, (list, tuple)): return data rec = ds[0] return tuple(coerce_to_ordered(rec[name], data[name]) for name in rec.names) if isdimension(ds[0]): return tuple(coerce_to_ordered(ds.subarray(1), row) for row in data) return data def coerce_record_to_row(schema, rec): """ >>> from datashape import dshape >>> schema = dshape('{x: int, y: int}') >>> coerce_record_to_row(schema, {'x': 1, 'y': 2}) [1, 2] Idempotent >>> coerce_record_to_row(schema, [1, 2]) [1, 2] """ if isinstance(rec, (tuple, list)): return rec return [rec[name] for name in schema[0].names] def coerce_row_to_dict(schema, row): """ >>> from datashape import dshape >>> schema = dshape('{x: int, y: int}') >>> coerce_row_to_dict(schema, (1, 2)) # doctest: +SKIP {'x': 1, 'y': 2} Idempotent >>> coerce_row_to_dict(schema, {'x': 1, 'y': 2}) # doctest: +SKIP {'x': 1, 'y': 2} """ if isinstance(row, dict): return row return dict((name, item) for name, item in zip(schema[0].names, row)) def ordered_index(ind, ds): """ Transform a named index into an ordered one >>> ordered_index(1, '3 * int') 1 >>> ordered_index('name', '{name: string, amount: int}') 0 >>> ordered_index((0, 0), '3 * {x: int, y: int}') (0, 0) >>> ordered_index([0, 1], '3 * {x: int, y: int}') [0, 1] >>> ordered_index(([0, 1], 'x'), '3 * {x: int, y: int}') ([0, 1], 0) >>> ordered_index((0, 'x'), '3 * {x: int, y: int}') (0, 0) >>> ordered_index((0, [0, 1]), '3 * {x: int, y: int}') (0, [0, 1]) >>> ordered_index((0, ['x', 'y']), '3 * {x: int, y: int}') (0, [0, 1]) """ if isinstance(ds, _strtypes): ds = dshape(ds) if isinstance(ind, (int, slice)): return ind if isinstance(ind, list): return [ordered_index(i, ds) for i in ind] if isinstance(ind, _strtypes) and isinstance(ds[0], Record): return ds[0].names.index(ind) if isinstance(ind, tuple) and not ind: return () if isdimension(ds[0]): return (ind[0],) + tupleit(ordered_index(ind[1:], ds.subshape[0])) if isinstance(ind, tuple): return ((ordered_index(ind[0], ds),) + tupleit(ordered_index(ind[1:], ds.subshape[0]))) raise NotImplementedError("Rule for ind: %s, ds: %ds not found" % (str(ind), str(ds))) def tupleit(x): if not isinstance(x, tuple): return (x,) else: return x def tuplify(x): if isinstance(x, (tuple, list, Iterator)): return tuple(map(tuplify, x)) else: return x def listpack(x): """ >>> listpack(1) [1] >>> listpack((1, 2)) [1, 2] >>> listpack([1, 2]) [1, 2] """ if isinstance(x, tuple): return list(x) elif isinstance(x, list): return x else: return [x] def sort_dtype_items(items, names): return sorted(items, key=compose(names.index, first))
{ "repo_name": "vitan/blaze", "path": "blaze/data/utils.py", "copies": "1", "size": "4949", "license": "bsd-3-clause", "hash": -8610963531535163000, "line_mean": 25.8967391304, "line_max": 78, "alpha_frac": 0.5508183471, "autogenerated": false, "ratio": 3.2473753280839897, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42981936751839894, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import chain from dynd import nd from collections import Iterator from datashape import dshape, Record from datashape.predicates import isunit, isdimension from toolz import partition_all, partial, map from ..compatibility import _strtypes def validate(schema, item): try: nd.array(item, dtype=str(schema)) return True except: return False def coerce(dshape, item): if isinstance(item, Iterator): blocks = partition_all(1000, item) return chain.from_iterable(map(partial(coerce, dshape), blocks)) return nd.as_py(nd.array(item, dtype=str(dshape)), tuple=True) def coerce_to_ordered(ds, data): """ Coerce data with dicts into an ordered ND collection >>> from datashape import dshape >>> coerce_to_ordered('{x: int, y: int}', {'x': 1, 'y': 2}) (1, 2) >>> coerce_to_ordered('var * {x: int, y: int}', ... [{'x': 1, 'y': 2}, {'x': 10, 'y': 20}]) ((1, 2), (10, 20)) Idempotent >>> coerce_to_ordered('var * {x: int, y: int}', ... ((1, 2), (10, 20))) ((1, 2), (10, 20)) """ if isinstance(ds, _strtypes): ds = dshape(ds) if isinstance(ds[0], Record): if isinstance(data, (list, tuple)): return data rec = ds[0] return tuple(coerce_to_ordered(rec[name], data[name]) for name in rec.names) if isdimension(ds[0]): return tuple(coerce_to_ordered(ds.subarray(1), row) for row in data) return data def coerce_record_to_row(schema, rec): """ >>> from datashape import dshape >>> schema = dshape('{x: int, y: int}') >>> coerce_record_to_row(schema, {'x': 1, 'y': 2}) [1, 2] Idempotent >>> coerce_record_to_row(schema, [1, 2]) [1, 2] """ if isinstance(rec, (tuple, list)): return rec return [rec[name] for name in schema[0].names] def coerce_row_to_dict(schema, row): """ >>> from datashape import dshape >>> schema = dshape('{x: int, y: int}') >>> coerce_row_to_dict(schema, (1, 2)) # doctest: +SKIP {'x': 1, 'y': 2} Idempotent >>> coerce_row_to_dict(schema, {'x': 1, 'y': 2}) # doctest: +SKIP {'x': 1, 'y': 2} """ if isinstance(row, dict): return row return dict((name, item) for name, item in zip(schema[0].names, row)) def ordered_index(ind, ds): """ Transform a named index into an ordered one >>> ordered_index(1, '3 * int') 1 >>> ordered_index('name', '{name: string, amount: int}') 0 >>> ordered_index((0, 0), '3 * {x: int, y: int}') (0, 0) >>> ordered_index([0, 1], '3 * {x: int, y: int}') [0, 1] >>> ordered_index(([0, 1], 'x'), '3 * {x: int, y: int}') ([0, 1], 0) >>> ordered_index((0, 'x'), '3 * {x: int, y: int}') (0, 0) >>> ordered_index((0, [0, 1]), '3 * {x: int, y: int}') (0, [0, 1]) >>> ordered_index((0, ['x', 'y']), '3 * {x: int, y: int}') (0, [0, 1]) """ if isinstance(ds, _strtypes): ds = dshape(ds) if isinstance(ind, (int, slice)): return ind if isinstance(ind, list): return [ordered_index(i, ds) for i in ind] if isinstance(ind, _strtypes) and isinstance(ds[0], Record): return ds[0].names.index(ind) if isinstance(ind, tuple) and not ind: return () if isdimension(ds[0]): return (ind[0],) + tupleit(ordered_index(ind[1:], ds.subshape[0])) if isinstance(ind, tuple): return ((ordered_index(ind[0], ds),) + tupleit(ordered_index(ind[1:], ds.subshape[0]))) raise NotImplementedError("Rule for ind: %s, ds: %ds not found" % (str(ind), str(ds))) def tupleit(x): if not isinstance(x, tuple): return (x,) else: return x def tuplify(x): if isinstance(x, (tuple, list, Iterator)): return tuple(map(tuplify, x)) else: return x
{ "repo_name": "aterrel/blaze", "path": "blaze/data/utils.py", "copies": "1", "size": "4043", "license": "bsd-3-clause", "hash": -974982947258924700, "line_mean": 26.8827586207, "line_max": 74, "alpha_frac": 0.5426663369, "autogenerated": false, "ratio": 3.2036450079239303, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42463113448239304, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import chain from dynd import nd import datashape from datashape.internal_utils import IndexCallable from datashape import discover from functools import partial from ..dispatch import dispatch from blaze.expr import Projection, Field from blaze.expr import Expr, UnaryOp from .utils import validate, coerce, coerce_to_ordered, ordered_index from ..utils import partition_all __all__ = ['DataDescriptor', 'discover', 'compute_up'] def isdimension(ds): return isinstance(ds, (datashape.Var, datashape.Fixed)) class DataDescriptor(object): """ Standard interface to data storage Data descriptors provide read and write access to common data storage systems like csv, json, HDF5, and SQL. They provide Pythonic iteration over these resources as well as efficient chunked access with DyND arrays. Data Descriptors implement the following methods: __iter__ - iterate over storage, getting results as Python objects chunks - iterate over storage, getting results as DyND arrays extend - insert new data into storage (if possible.) Consumes a sequence of core Python objects extend_chunks - insert new data into storage (if possible.) Consumes a sequence of DyND arrays as_dynd - load entire dataset into memory as a DyND array """ def extend(self, rows): """ Extend data with many rows """ rows = iter(rows) row = next(rows) rows = chain([row], rows) if not validate(self.schema, row): raise ValueError('Invalid data:\n\t %s \nfor dshape \n\t%s' % (str(row), self.schema)) if isinstance(row, dict): rows = map(partial(coerce_to_ordered, self.schema), rows) self._extend(rows) def extend_chunks(self, chunks): def dtype_of(chunk): return str(len(chunk) * self.schema) self._extend_chunks((nd.array(chunk, type=dtype_of(chunk)) for chunk in chunks)) def _extend_chunks(self, chunks): self.extend((row for chunk in chunks for row in nd.as_py(chunk, tuple=True))) def chunks(self, **kwargs): def dshape(chunk): return str(len(chunk) * self.dshape.subshape[0]) for chunk in self._chunks(**kwargs): yield nd.array(chunk, type=dshape(chunk)) def _chunks(self, blen=100): return partition_all(blen, iter(self)) def as_dynd(self): return self.dynd[:] def as_py(self): if isdimension(self.dshape[0]): return tuple(self) else: return tuple(nd.as_py(self.as_dynd(), tuple=True)) def __array__(self): return nd.as_numpy(self.as_dynd()) def __getitem__(self, key): return self.get_py(key) @property def dynd(self): return IndexCallable(self.get_dynd) def get_py(self, key): key = ordered_index(key, self.dshape) subshape = self.dshape._subshape(key) if hasattr(self, '_get_py'): result = self._get_py(key) elif hasattr(self, '_get_dynd'): result = self._get_dynd(key) else: raise AttributeError("Data Descriptor defines neither " "_get_py nor _get_dynd. Can not index") return coerce(subshape, result) def get_dynd(self, key): key = ordered_index(key, self.dshape) subshape = self.dshape._subshape(key) if hasattr(self, '_get_dynd'): result = self._get_dynd(key) elif hasattr(self, '_get_py'): result = nd.array(self._get_py(key), type=str(subshape)) else: raise AttributeError("Data Descriptor defines neither " "_get_py nor _get_dynd. Can not index") # Currently nd.array(result, type=discover(result)) is oddly slower # than just nd.array(result) , even though no type coercion should be # necessary. As a short-term solution we check if this is the case and # short-circuit the `type=` call # This check can be deleted once these two run at similar speeds ds_result = discover(result) if (subshape == ds_result or (isdimension(subshape[0]) and isdimension(ds_result[0]) and subshape.subshape[0] == subshape.subshape[0])): return nd.array(result) else: return nd.array(result, type=str(subshape)) def __iter__(self): if not isdimension(self.dshape[0]): raise TypeError("Data Descriptor not iterable, has dshape %s" % self.dshape) schema = self.dshape.subshape[0] try: seq = self._iter() except NotImplementedError: seq = iter(nd.as_py(self.as_dynd(), tuple=True)) if not isdimension(self.dshape[0]): yield coerce(self.dshape, nd.as_py(self.as_dynd(), tuple=True)) else: for block in partition_all(100, seq): x = coerce(len(block) * schema, block) for row in x: yield row def _iter(self): raise NotImplementedError() _dshape = None @property def dshape(self): return datashape.dshape(self._dshape or datashape.Var() * self.schema) _schema = None @property def schema(self): if self._schema: return datashape.dshape(self._schema) if isdimension(self.dshape[0]): return self.dshape.subarray(1) raise TypeError('Datashape is not indexable to schema\n%s' % self.dshape) @property def columns(self): rec = self.schema[0] if isinstance(rec, datashape.Record): return rec.names else: raise TypeError('Columns attribute only valid on tabular ' 'datashapes of records, got %s' % self.dshape) @dispatch((Expr, UnaryOp), DataDescriptor) def compute_up(t, ddesc, **kwargs): return compute_up(t, iter(ddesc)) # use Python streaming by default @dispatch(Projection, DataDescriptor) def compute_up(t, ddesc, **kwargs): return ddesc[:, t.fields] @dispatch(Field, DataDescriptor) def compute_up(t, ddesc, **kwargs): return ddesc[:, t.fields[0]] @dispatch(DataDescriptor) def discover(dd): return dd.dshape
{ "repo_name": "vitan/blaze", "path": "blaze/data/core.py", "copies": "1", "size": "6508", "license": "bsd-3-clause", "hash": -5320380126648248000, "line_mean": 31.8686868687, "line_max": 79, "alpha_frac": 0.6040258144, "autogenerated": false, "ratio": 3.885373134328358, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4989398948728358, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import chain from dynd import nd import datashape from datashape.internal_utils import IndexCallable from .utils import validate, coerce, coerce_to_ordered, ordered_index from ..utils import partition_all __all__ = ['DataDescriptor', 'discover', 'compute'] def isdimension(ds): return isinstance(ds, (datashape.Var, datashape.Fixed)) class DataDescriptor(object): """ Standard interface to data storage Data descriptors provide read and write access to common data storage systems like csv, json, HDF5, and SQL. They provide Pythonic iteration over these resources as well as efficient chunked access with DyND arrays. Data Descriptors implement the following methods: __iter__ - iterate over storage, getting results as Python objects chunks - iterate over storage, getting results as DyND arrays extend - insert new data into storage (if possible.) Consumes a sequence of core Python objects extend_chunks - insert new data into storage (if possible.) Consumes a sequence of DyND arrays as_dynd - load entire dataset into memory as a DyND array """ def extend(self, rows): """ Extend data with many rows """ if not self.appendable or self.immutable: raise TypeError('Data Descriptor not appendable') rows = iter(rows) row = next(rows) if not validate(self.schema, row): raise ValueError('Invalid data:\n\t %s \nfor dshape \n\t%s' % (str(row), self.schema)) self._extend(chain([row], rows)) def extend_chunks(self, chunks): if not self.appendable or self.immutable: raise TypeError('Data Descriptor not appendable') def dtype_of(chunk): return str(len(chunk) * self.schema) self._extend_chunks((nd.array(chunk, dtype=dtype_of(chunk)) for chunk in chunks)) def _extend_chunks(self, chunks): self.extend((row for chunk in chunks for row in nd.as_py(chunk, tuple=True))) def chunks(self, **kwargs): def dshape(chunk): return str(len(chunk) * self.dshape.subshape[0]) chunks = self._chunks(**kwargs) return (nd.array(chunk, dtype=dshape(chunk)) for chunk in chunks) def _chunks(self, blen=100): return partition_all(blen, iter(self)) def as_dynd(self): return self.dynd[:] def as_py(self): if isdimension(self.dshape[0]): return tuple(self) else: return tuple(nd.as_py(self.as_dynd(), tuple=True)) def __array__(self): return nd.as_numpy(self.as_dynd()) @property def py(self): return IndexCallable(self.get_py) @property def dynd(self): return IndexCallable(self.get_dynd) def get_py(self, key): key = ordered_index(key, self.dshape) subshape = self.dshape._subshape(key) if hasattr(self, '_get_py'): result = self._get_py(key) elif hasattr(self, '_get_dynd'): result = self._get_dynd(key) else: raise AttributeError("Data Descriptor defines neither " "_get_py nor _get_dynd. Can not index") return coerce(subshape, result) def get_dynd(self, key): key = ordered_index(key, self.dshape) subshape = self.dshape._subshape(key) if hasattr(self, '_get_dynd'): result = self._get_dynd(key) elif hasattr(self, '_get_py'): result = nd.array(self._get_py(key), type=str(subshape)) else: raise AttributeError("Data Descriptor defines neither " "_get_py nor _get_dynd. Can not index") return nd.array(result, type=str(subshape)) def __iter__(self): if not isdimension(self.dshape[0]): raise TypeError("Data Descriptor not iterable, has dshape %s" % self.dshape) schema = self.dshape.subshape[0] try: seq = self._iter() except NotImplementedError: seq = iter(nd.as_py(self.as_dynd(), tuple=True)) if not isdimension(self.dshape[0]): yield coerce(self.dshape, nd.as_py(self.as_dynd(), tuple=True)) else: for block in partition_all(100, seq): x = coerce(len(block) * schema, block) for row in x: yield row def _iter(self): raise NotImplementedError() _dshape = None @property def dshape(self): return datashape.dshape(self._dshape or datashape.Var() * self.schema) _schema = None @property def schema(self): if self._schema: return datashape.dshape(self._schema) if isdimension(self.dshape[0]): return self.dshape.subarray(1) raise TypeError('Datashape is not indexable to schema\n%s' % self.dshape) @property def columns(self): rec = self.schema[0] if isinstance(rec, datashape.Record): return rec.names else: raise TypeError('Columns attribute only valid on tabular ' 'datashapes of records, got %s' % self.dshape) from ..dispatch import dispatch from blaze.expr.table import Join, TableExpr from blaze.expr.core import Expr @dispatch((Join, Expr), DataDescriptor) def compute(t, ddesc): return compute(t, iter(ddesc)) # use Python streaming by default @dispatch(DataDescriptor) def discover(dd): return dd.dshape
{ "repo_name": "aterrel/blaze", "path": "blaze/data/core.py", "copies": "1", "size": "5728", "license": "bsd-3-clause", "hash": 4043698314402395000, "line_mean": 31.5454545455, "line_max": 78, "alpha_frac": 0.6014315642, "autogenerated": false, "ratio": 3.947622329427981, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0007041293617998163, "num_lines": 176 }
from __future__ import absolute_import, division, print_function from itertools import chain from dynd import nd import datashape from .utils import validate, coerce from ..utils import partition_all __all__ = ['DataDescriptor'] def isdimension(ds): return isinstance(ds, (datashape.Var, datashape.Fixed)) class DataDescriptor(object): """ Standard interface to data storage Data descriptors provide read and write access to common data storage systems like csv, json, HDF5, and SQL. They provide Pythonic iteration over these resources as well as efficient chunked access with DyND arrays. Data Descriptors implement the following methods: __iter__ - iterate over storage, getting results as Python objects chunks - iterate over storage, getting results as DyND arrays extend - insert new data into storage (if possible.) Consumes a sequence of core Python objects extend_chunks - insert new data into storage (if possible.) Consumes a sequence of DyND arrays as_dynd - load entire dataset into memory as a DyND array """ def extend(self, rows): """ Extend data with many rows """ if not self.appendable or self.immutable: raise TypeError('Data Descriptor not appendable') rows = iter(rows) row = next(rows) if not validate(self.schema, row): raise ValueError('Invalid data:\n\t %s \nfor dshape \n\t%s' % (str(row), self.schema)) self._extend(chain([row], rows)) def extend_chunks(self, chunks): if not self.appendable or self.immutable: raise TypeError('Data Descriptor not appendable') self._extend_chunks((nd.array(chunk) for chunk in chunks)) def _extend_chunks(self, chunks): self.extend((row for chunk in chunks for row in nd.as_py(chunk))) def chunks(self, **kwargs): def dshape(chunk): return str(len(chunk) * self.dshape.subarray(1)) chunks = self._chunks(**kwargs) return (nd.array(chunk, dtype=dshape(chunk)) for chunk in chunks) def _chunks(self, blen=100): return partition_all(blen, iter(self)) def getattr(self, name): raise NotImplementedError('this data descriptor does not support attribute access') def as_dynd(self): return nd.array(self.as_py(), dtype=str(self.dshape)) def as_py(self): if isdimension(self.dshape[0]): return list(self) else: return nd.as_py(self.as_dynd()) def __array__(self): return nd.as_numpy(self.as_dynd()) def __getitem__(self, key): if hasattr(self, '_getitem'): return coerce(self.schema, self._getitem(key)) else: return self.as_dynd()[key] def __iter__(self): try: for row in self._iter(): yield coerce(self.schema, row) except NotImplementedError: py = nd.as_py(self.as_dynd()) if isdimension(self.dshape[0]): for row in py: yield row else: yield py def _iter(self): raise NotImplementedError() _dshape = None @property def dshape(self): return datashape.dshape(self._dshape or datashape.Var() * self.schema) _schema = None @property def schema(self): if self._schema: return datashape.dshape(self._schema) if isdimension(self.dshape[0]): return self.dshape.subarray(1) raise TypeError('Datashape is not indexable to schema\n%s' % self.dshape)
{ "repo_name": "sethkontny/blaze", "path": "blaze/data/core.py", "copies": "1", "size": "3681", "license": "bsd-3-clause", "hash": -7048420654411449000, "line_mean": 30.1949152542, "line_max": 91, "alpha_frac": 0.6145069275, "autogenerated": false, "ratio": 4.058434399117972, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5172941326617971, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import chain from .utils_test import add, inc # noqa: F401 def ishashable(x): """ Is x hashable? Examples -------- >>> ishashable(1) True >>> ishashable([1]) False """ try: hash(x) return True except TypeError: return False def istask(x): """ Is x a runnable task? A task is a tuple with a callable first argument Examples -------- >>> inc = lambda x: x + 1 >>> istask((inc, 1)) True >>> istask(1) False """ return type(x) is tuple and x and callable(x[0]) def has_tasks(dsk, x): """Whether ``x`` has anything to compute. Returns True if: - ``x`` is a task - ``x`` is a key in ``dsk`` - ``x`` is a list that contains any tasks or keys """ if istask(x): return True try: if x in dsk: return True except: pass if isinstance(x, list): for i in x: if has_tasks(dsk, i): return True return False def preorder_traversal(task): """A generator to preorder-traverse a task.""" for item in task: if istask(item): for i in preorder_traversal(item): yield i elif isinstance(item, list): yield list for i in preorder_traversal(item): yield i else: yield item def _get_nonrecursive(d, x, maxdepth=1000): # Non-recursive. DAG property is checked upon reaching maxdepth. _list = lambda *args: list(args) # We construct a nested hierarchy of tuples to mimic the execution stack # of frames that Python would maintain for a recursive implementation. # A frame is associated with a single task from a Dask. # A frame tuple has three elements: # 1) The function for the task. # 2) The arguments for the task (typically keys in the Dask). # Arguments are stored in reverse order, and elements are popped # as they are evaluated. # 3) The calculated results of the arguments from (2). stack = [(lambda x: x, [x], [])] while True: func, args, results = stack[-1] if not args: val = func(*results) if len(stack) == 1: return val stack.pop() stack[-1][2].append(val) continue elif maxdepth and len(stack) > maxdepth: cycle = getcycle(d, x) if cycle: cycle = '->'.join(cycle) raise RuntimeError('Cycle detected in Dask: %s' % cycle) maxdepth = None key = args.pop() if isinstance(key, list): stack.append((_list, list(key[::-1]), [])) continue elif ishashable(key) and key in d: args.append(d[key]) continue elif istask(key): stack.append((key[0], list(key[:0:-1]), [])) else: results.append(key) def _get_recursive(d, x): # recursive, no cycle detection if isinstance(x, list): return [_get_recursive(d, k) for k in x] elif ishashable(x) and x in d: return _get_recursive(d, d[x]) elif istask(x): func, args = x[0], x[1:] args2 = [_get_recursive(d, k) for k in args] return func(*args2) else: return x def get(d, x, recursive=False): """ Get value from Dask Examples -------- >>> inc = lambda x: x + 1 >>> d = {'x': 1, 'y': (inc, 'x')} >>> get(d, 'x') 1 >>> get(d, 'y') 2 """ _get = _get_recursive if recursive else _get_nonrecursive if isinstance(x, list): return tuple(get(d, k) for k in x) elif x in d: return _get(d, x) raise KeyError("{0} is not a key in the graph".format(x)) def get_dependencies(dsk, key=None, task=None, as_list=False): """ Get the immediate tasks on which this task depends Examples -------- >>> dsk = {'x': 1, ... 'y': (inc, 'x'), ... 'z': (add, 'x', 'y'), ... 'w': (inc, 'z'), ... 'a': (add, (inc, 'x'), 1)} >>> get_dependencies(dsk, 'x') set([]) >>> get_dependencies(dsk, 'y') set(['x']) >>> get_dependencies(dsk, 'z') # doctest: +SKIP set(['x', 'y']) >>> get_dependencies(dsk, 'w') # Only direct dependencies set(['z']) >>> get_dependencies(dsk, 'a') # Ignore non-keys set(['x']) >>> get_dependencies(dsk, task=(inc, 'x')) # provide tasks directly set(['x']) """ if key is not None: arg = dsk[key] elif task is not None: arg = task else: raise ValueError("Provide either key or task") result = [] work = [arg] while work: new_work = [] for w in work: typ = type(w) if typ is tuple and w and callable(w[0]): # istask(w) new_work += w[1:] elif typ is list: new_work += w elif typ is dict: new_work += w.values() else: try: if w in dsk: result.append(w) except TypeError: # not hashable pass work = new_work return result if as_list else set(result) def get_deps(dsk): """ Get dependencies and dependents from dask dask graph >>> dsk = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')} >>> dependencies, dependents = get_deps(dsk) >>> dependencies {'a': set([]), 'c': set(['b']), 'b': set(['a'])} >>> dependents {'a': set(['b']), 'c': set([]), 'b': set(['c'])} """ dependencies = {k: get_dependencies(dsk, task=v) for k, v in dsk.items()} dependents = reverse_dict(dependencies) return dependencies, dependents def flatten(seq): """ >>> list(flatten([1])) [1] >>> list(flatten([[1, 2], [1, 2]])) [1, 2, 1, 2] >>> list(flatten([[[1], [2]], [[1], [2]]])) [1, 2, 1, 2] >>> list(flatten(((1, 2), (1, 2)))) # Don't flatten tuples [(1, 2), (1, 2)] >>> list(flatten((1, 2, [3, 4]))) # support heterogeneous [1, 2, 3, 4] """ if isinstance(seq, str): yield seq else: for item in seq: if isinstance(item, list): for item2 in flatten(item): yield item2 else: yield item def reverse_dict(d): """ >>> a, b, c = 'abc' >>> d = {a: [b, c], b: [c]} >>> reverse_dict(d) # doctest: +SKIP {'a': set([]), 'b': set(['a']}, 'c': set(['a', 'b'])} """ terms = list(d.keys()) + list(chain.from_iterable(d.values())) result = {t: set() for t in terms} for k, vals in d.items(): for val in vals: result[val].add(k) return result def subs(task, key, val): """ Perform a substitution on a task Examples -------- >>> subs((inc, 'x'), 'x', 1) # doctest: +SKIP (inc, 1) """ type_task = type(task) if not (type_task is tuple and task and callable(task[0])): # istask(task): try: if type_task is type(key) and task == key: return val except Exception: pass if type_task is list: return [subs(x, key, val) for x in task] return task newargs = [] for arg in task[1:]: type_arg = type(arg) if type_arg is tuple and arg and callable(arg[0]): # istask(task): arg = subs(arg, key, val) elif type_arg is list: arg = [subs(x, key, val) for x in arg] elif type_arg is type(key) and arg == key: arg = val newargs.append(arg) return task[:1] + tuple(newargs) def _toposort(dsk, keys=None, returncycle=False, dependencies=None): # Stack-based depth-first search traversal. This is based on Tarjan's # method for topological sorting (see wikipedia for pseudocode) if keys is None: keys = dsk elif not isinstance(keys, list): keys = [keys] if not returncycle: ordered = [] # Nodes whose descendents have been completely explored. # These nodes are guaranteed to not be part of a cycle. completed = set() # All nodes that have been visited in the current traversal. Because # we are doing depth-first search, going "deeper" should never result # in visiting a node that has already been seen. The `seen` and # `completed` sets are mutually exclusive; it is okay to visit a node # that has already been added to `completed`. seen = set() if dependencies is None: dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) for key in keys: if key in completed: continue nodes = [key] while nodes: # Keep current node on the stack until all descendants are visited cur = nodes[-1] if cur in completed: # Already fully traversed descendants of cur nodes.pop() continue seen.add(cur) # Add direct descendants of cur to nodes stack next_nodes = [] for nxt in dependencies[cur]: if nxt not in completed: if nxt in seen: # Cycle detected! cycle = [nxt] while nodes[-1] != nxt: cycle.append(nodes.pop()) cycle.append(nodes.pop()) cycle.reverse() if returncycle: return cycle else: cycle = '->'.join(cycle) raise RuntimeError('Cycle detected in Dask: %s' % cycle) next_nodes.append(nxt) if next_nodes: nodes.extend(next_nodes) else: # cur has no more descendants to explore, so we're done with it if not returncycle: ordered.append(cur) completed.add(cur) seen.remove(cur) nodes.pop() if returncycle: return [] return ordered def toposort(dsk, dependencies=None): """ Return a list of keys of dask sorted in topological order.""" return _toposort(dsk, dependencies=dependencies) def getcycle(d, keys): """ Return a list of nodes that form a cycle if Dask is not a DAG. Returns an empty list if no cycle is found. ``keys`` may be a single key or list of keys. Examples -------- >>> d = {'x': (inc, 'z'), 'y': (inc, 'x'), 'z': (inc, 'y')} >>> getcycle(d, 'x') ['x', 'z', 'y', 'x'] See Also -------- isdag """ return _toposort(d, keys=keys, returncycle=True) def isdag(d, keys): """ Does Dask form a directed acyclic graph when calculating keys? ``keys`` may be a single key or list of keys. Examples -------- >>> inc = lambda x: x + 1 >>> isdag({'x': 0, 'y': (inc, 'x')}, 'y') True >>> isdag({'x': (inc, 'y'), 'y': (inc, 'x')}, 'y') False See Also -------- getcycle """ return not getcycle(d, keys) class literal(object): """A small serializable object to wrap literal values without copying""" __slots__ = ('data',) def __init__(self, data): self.data = data def __repr__(self): return 'literal<type=%s>' % type(self.data).__name__ def __reduce__(self): return (literal, (self.data,)) def __call__(self): return self.data def quote(x): """ Ensure that this value remains this value in a dask graph Some values in dask graph take on special meaning. Sometimes we want to ensure that our data is not interpreted but remains literal. >>> quote((add, 1, 2)) # doctest: +SKIP (literal<type=tuple>,) """ if istask(x) or type(x) is list: return (literal(x),) return x
{ "repo_name": "cpcloud/dask", "path": "dask/core.py", "copies": "1", "size": "12150", "license": "bsd-3-clause", "hash": -1031776024656334800, "line_mean": 25.6447368421, "line_max": 84, "alpha_frac": 0.5109465021, "autogenerated": false, "ratio": 3.7592821782178216, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.976875422039178, "avg_score": 0.00029489198520846264, "num_lines": 456 }
from __future__ import absolute_import, division, print_function from itertools import count from functools import wraps from collections import Iterator import numpy as np from toolz import merge, merge_sorted from .core import Array from ..base import tokenize from .. import sharedict @wraps(np.percentile) def _percentile(a, q, interpolation='linear'): if not len(a): return None if isinstance(q, Iterator): q = list(q) if str(a.dtype) == 'category': result = np.percentile(a.codes, q, interpolation=interpolation) import pandas as pd return pd.Categorical.from_codes(result, a.categories, a.ordered) if np.issubdtype(a.dtype, np.datetime64): a2 = a.astype('i8') result = np.percentile(a2, q, interpolation=interpolation) return result.astype(a.dtype) if not np.issubdtype(a.dtype, np.number): interpolation = 'nearest' return np.percentile(a, q, interpolation=interpolation) names = ('percentile-%d' % i for i in count(1)) def percentile(a, q, interpolation='linear'): """ Approximate percentile of 1-D array See numpy.percentile for more information """ if not a.ndim == 1: raise NotImplementedError( "Percentiles only implemented for 1-d arrays") q = np.array(q) token = tokenize(a, list(q), interpolation) name = 'percentile_chunk-' + token dsk = dict(((name, i), (_percentile, (key), q, interpolation)) for i, key in enumerate(a._keys())) name2 = 'percentile-' + token dsk2 = {(name2, 0): (merge_percentiles, q, [q] * len(a.chunks[0]), sorted(dsk), a.chunks[0], interpolation)} dtype = a.dtype if np.issubdtype(dtype, np.integer): dtype = (np.array([], dtype=dtype) / 0.5).dtype dsk = merge(dsk, dsk2) dsk = sharedict.merge(a.dask, (name2, dsk)) return Array(dsk, name2, chunks=((len(q),),), dtype=dtype) def merge_percentiles(finalq, qs, vals, Ns, interpolation='lower'): """ Combine several percentile calculations of different data. Parameters ---------- finalq : numpy.array Percentiles to compute (must use same scale as ``qs``). qs : sequence of numpy.arrays Percentiles calculated on different sets of data. vals : sequence of numpy.arrays Resulting values associated with percentiles ``qs``. Ns : sequence of integers The number of data elements associated with each data set. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} Specify the type of interpolation to use to calculate final percentiles. For more information, see numpy.percentile. Examples -------- >>> finalq = [10, 20, 30, 40, 50, 60, 70, 80] >>> qs = [[20, 40, 60, 80], [20, 40, 60, 80]] >>> vals = [np.array([1, 2, 3, 4]), np.array([10, 11, 12, 13])] >>> Ns = [100, 100] # Both original arrays had 100 elements >>> merge_percentiles(finalq, qs, vals, Ns) array([ 1, 2, 3, 4, 10, 11, 12, 13]) """ if isinstance(finalq, Iterator): finalq = list(finalq) finalq = np.array(finalq) qs = list(map(list, qs)) vals = list(vals) Ns = list(Ns) L = list(zip(*[(q, val, N) for q, val, N in zip(qs, vals, Ns) if N])) if not L: raise ValueError("No non-trivial arrays found") qs, vals, Ns = L # TODO: Perform this check above in percentile once dtype checking is easy # Here we silently change meaning if str(vals[0].dtype) == 'category': result = merge_percentiles(finalq, qs, [v.codes for v in vals], Ns, interpolation) import pandas as pd return pd.Categorical.from_codes(result, vals[0].categories, vals[0].ordered) if not np.issubdtype(vals[0].dtype, np.number): interpolation = 'nearest' if len(vals) != len(qs) or len(Ns) != len(qs): raise ValueError('qs, vals, and Ns parameters must be the same length') # transform qs and Ns into number of observations between percentiles counts = [] for q, N in zip(qs, Ns): count = np.empty(len(q)) count[1:] = np.diff(q) count[0] = q[0] count *= N counts.append(count) # Sort by calculated percentile values, then number of observations. # >95% of the time in this function is spent in `merge_sorted` below. # An alternative that uses numpy sort is shown. It is sometimes # comparable to, but typically slower than, `merge_sorted`. # # >>> A = np.concatenate(map(np.array, map(zip, vals, counts))) # >>> A.sort(0, kind='mergesort') combined_vals_counts = merge_sorted(*map(zip, vals, counts)) combined_vals, combined_counts = zip(*combined_vals_counts) combined_vals = np.array(combined_vals) combined_counts = np.array(combined_counts) # percentile-like, but scaled by total number of observations combined_q = np.cumsum(combined_counts) # rescale finalq percentiles to match combined_q desired_q = finalq * sum(Ns) # the behavior of different interpolation methods should be # investigated further. if interpolation == 'linear': rv = np.interp(desired_q, combined_q, combined_vals) else: left = np.searchsorted(combined_q, desired_q, side='left') right = np.searchsorted(combined_q, desired_q, side='right') - 1 np.minimum(left, len(combined_vals) - 1, left) # don't exceed max index lower = np.minimum(left, right) upper = np.maximum(left, right) if interpolation == 'lower': rv = combined_vals[lower] elif interpolation == 'higher': rv = combined_vals[upper] elif interpolation == 'midpoint': rv = 0.5 * (combined_vals[lower] + combined_vals[upper]) elif interpolation == 'nearest': lower_residual = np.abs(combined_q[lower] - desired_q) upper_residual = np.abs(combined_q[upper] - desired_q) mask = lower_residual > upper_residual index = lower # alias; we no longer need lower index[mask] = upper[mask] rv = combined_vals[index] else: raise ValueError("interpolation can only be 'linear', 'lower', " "'higher', 'midpoint', or 'nearest'") return rv
{ "repo_name": "cpcloud/dask", "path": "dask/array/percentile.py", "copies": "1", "size": "6350", "license": "bsd-3-clause", "hash": -1907418161750873600, "line_mean": 35.9186046512, "line_max": 90, "alpha_frac": 0.6207874016, "autogenerated": false, "ratio": 3.6747685185185186, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47955559201185183, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import count, product from functools import partial from toolz import curry import numpy as np from .core import Array, normalize_chunks from .numpy_compat import full names = ('wrapped_%d' % i for i in count(1)) def dims_from_size(size, blocksize): """ >>> list(dims_from_size(30, 8)) [8, 8, 8, 6] """ result = (blocksize,) * (size // blocksize) if size % blocksize: result = result + (size % blocksize,) return result def wrap_func_size_as_kwarg(func, *args, **kwargs): """ Transform np.random function into blocked version """ if 'shape' in kwargs and 'size' not in kwargs: kwargs['size'] = kwargs.pop('shape') if 'size' not in kwargs: args, size = args[:-1], args[-1] else: size = kwargs.pop('size') if not isinstance(size, (tuple, list)): size = (size,) chunks = kwargs.pop('chunks', None) chunks = normalize_chunks(chunks, size) name = kwargs.pop('name', None) dtype = kwargs.pop('dtype', None) if dtype is None: kw = kwargs.copy(); kw['size'] = (0,) dtype = func(*args, **kw).dtype name = name or next(names) keys = product([name], *[range(len(bd)) for bd in chunks]) sizes = product(*chunks) if not kwargs: vals = ((func,) + args + (size,) for size in sizes) else: vals = ((partial(func, *args, size=size, **kwargs),) for size in sizes) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, dtype=dtype) def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np.random function into blocked version """ if 'shape' not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop('shape') if not isinstance(shape, (tuple, list)): shape = (shape,) chunks = kwargs.pop('chunks', None) chunks = normalize_chunks(chunks, shape) name = kwargs.pop('name', None) dtype = kwargs.pop('dtype', None) if dtype is None: dtype = func(shape, *args, **kwargs).dtype name = name or next(names) keys = product([name], *[range(len(bd)) for bd in chunks]) shapes = product(*chunks) func = partial(func, dtype=dtype, **kwargs) vals = ((func,) + (s,) + args for s in shapes) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, dtype=dtype) @curry def wrap(wrap_func, func, **kwargs): f = partial(wrap_func, func, **kwargs) f.__doc__ = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also requires a keyword argument chunks=(...) Original signature follows below. """ % {'name': func.__name__} + func.__doc__ f.__name__ = 'blocked_' + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) ones = w(np.ones, dtype='f8') zeros = w(np.zeros, dtype='f8') empty = w(np.empty, dtype='f8') full = w(full)
{ "repo_name": "freeman-lab/dask", "path": "dask/array/wrap.py", "copies": "5", "size": "2996", "license": "bsd-3-clause", "hash": -9073903511037532000, "line_mean": 25.052173913, "line_max": 79, "alpha_frac": 0.599799733, "autogenerated": false, "ratio": 3.4279176201372996, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.65277173531373, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import count, product from toolz import curry from .core import Array import numpy as np names = ('wrapped_%d' % i for i in count(1)) def dims_from_size(size, blocksize): """ >>> list(dims_from_size(30, 8)) [8, 8, 8, 6] """ result = (blocksize,) * (size // blocksize) if size % blocksize: result = result + (size % blocksize,) return result def blockdims_from_blockshape(shape, blockshape): """ Convert blockshape to dimensions along each axis >>> blockdims_from_blockshape((30, 30), (10, 10)) ((10, 10, 10), (10, 10, 10)) >>> blockdims_from_blockshape((30, 30), (12, 12)) ((12, 12, 6), (12, 12, 6)) """ return tuple(map(tuple, map(dims_from_size, shape, blockshape))) def wrap_func_size_as_kwarg(func, *args, **kwargs): """ Transform np.random function into blocked version """ if 'shape' in kwargs and 'size' not in kwargs: kwargs['size'] = kwargs.pop('shape') if 'size' not in kwargs: args, size = args[:-1], args[-1] else: size = kwargs.pop('size') if not isinstance(size, (tuple, list)): size = (size,) blockshape = kwargs.pop('blockshape', None) blockdims = kwargs.pop('blockdims', None) name = kwargs.pop('name', None) if not blockdims and blockshape: blockdims = blockdims_from_blockshape(size, blockshape) name = name or next(names) keys = product([name], *[range(len(bd)) for bd in blockdims]) sizes = product(*blockdims) if not kwargs: vals = ((func,) + args + (size,) for size in sizes) else: vals = ((curry(func, *args, size=size, **kwargs),) for size in sizes) dsk = dict(zip(keys, vals)) return Array(dsk, name, shape=size, blockdims=blockdims) def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np.random function into blocked version """ if 'shape' not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop('shape') if not isinstance(shape, (tuple, list)): shape = (shape,) blockshape = kwargs.pop('blockshape', None) blockdims = kwargs.pop('blockdims', None) name = kwargs.pop('name', None) if not blockdims and blockshape: blockdims = blockdims_from_blockshape(shape, blockshape) name = name or next(names) keys = product([name], *[range(len(bd)) for bd in blockdims]) shapes = product(*blockdims) if not kwargs: func = curry(func, **kwargs) vals = ((func,) + (s,) + args for s in shapes) dsk = dict(zip(keys, vals)) return Array(dsk, name, shape=shape, blockdims=blockdims) @curry def wrap(wrap_func, func): f = curry(wrap_func, func) f.__doc__ = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also requires a keyword argument blockshape=(...) or blockdims=(...). Original signature follows below. """ % {'name': func.__name__} + func.__doc__ f.__name__ = 'blocked_' + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) ones = w(np.ones) zeros = w(np.zeros) empty = w(np.empty)
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/array/wrap.py", "copies": "1", "size": "3237", "license": "bsd-3-clause", "hash": -2869510694894797000, "line_mean": 25.975, "line_max": 77, "alpha_frac": 0.609206055, "autogenerated": false, "ratio": 3.393081761006289, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4502287816006289, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import count, product from toolz import curry import numpy as np from .core import Array, normalize_chunks from .numpy_compat import full names = ('wrapped_%d' % i for i in count(1)) def dims_from_size(size, blocksize): """ >>> list(dims_from_size(30, 8)) [8, 8, 8, 6] """ result = (blocksize,) * (size // blocksize) if size % blocksize: result = result + (size % blocksize,) return result def wrap_func_size_as_kwarg(func, *args, **kwargs): """ Transform np.random function into blocked version """ if 'shape' in kwargs and 'size' not in kwargs: kwargs['size'] = kwargs.pop('shape') if 'size' not in kwargs: args, size = args[:-1], args[-1] else: size = kwargs.pop('size') if not isinstance(size, (tuple, list)): size = (size,) chunks = kwargs.pop('chunks', None) chunks = normalize_chunks(chunks, size) name = kwargs.pop('name', None) dtype = kwargs.pop('dtype', None) if dtype is None: kw = kwargs.copy(); kw['size'] = (0,) dtype = func(*args, **kw).dtype name = name or next(names) keys = product([name], *[range(len(bd)) for bd in chunks]) sizes = product(*chunks) if not kwargs: vals = ((func,) + args + (size,) for size in sizes) else: vals = ((curry(func, *args, size=size, **kwargs),) for size in sizes) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, dtype=dtype) def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np.random function into blocked version """ if 'shape' not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop('shape') if not isinstance(shape, (tuple, list)): shape = (shape,) chunks = kwargs.pop('chunks', None) chunks = normalize_chunks(chunks, shape) name = kwargs.pop('name', None) dtype = kwargs.pop('dtype', None) if dtype is None: dtype = func(shape, *args, **kwargs).dtype name = name or next(names) keys = product([name], *[range(len(bd)) for bd in chunks]) shapes = product(*chunks) func = curry(func, dtype=dtype, **kwargs) vals = ((func,) + (s,) + args for s in shapes) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, dtype=dtype) @curry def wrap(wrap_func, func, **kwargs): f = curry(wrap_func, func, **kwargs) f.__doc__ = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also requires a keyword argument chunks=(...) Original signature follows below. """ % {'name': func.__name__} + func.__doc__ f.__name__ = 'blocked_' + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) ones = w(np.ones, dtype='f8') zeros = w(np.zeros, dtype='f8') empty = w(np.empty, dtype='f8') full = w(full)
{ "repo_name": "minrk/dask", "path": "dask/array/wrap.py", "copies": "4", "size": "2960", "license": "bsd-3-clause", "hash": 1470628939049209600, "line_mean": 24.9649122807, "line_max": 77, "alpha_frac": 0.5962837838, "autogenerated": false, "ratio": 3.3944954128440368, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00019069412662090006, "num_lines": 114 }
from __future__ import absolute_import, division, print_function from itertools import cycle from operator import itemgetter, add from toolz import unique, groupby, accumulate, pluck import bokeh.plotting as bp from bokeh.io import _state from bokeh.palettes import brewer from bokeh.models import HoverTool, LinearAxis, Range1d from ..utils import funcname from ..core import istask from ..compatibility import apply def unquote(expr): if istask(expr): if expr[0] in (tuple, list, set): return expr[0](map(unquote, expr[1])) elif expr[0] == dict and expr[1][0] == list: return dict(map(unquote, expr[1][1])) return expr def pprint_task(task, keys, label_size=60): """Return a nicely formatted string for a task. Parameters ---------- task: Value within dask graph to render as text keys: iterable List of keys within dask graph label_size: int (optional) Maximum size of output label, defaults to 60 Examples -------- >>> from operator import add, mul >>> dsk = {'a': 1, ... 'b': 2, ... 'c': (add, 'a', 'b'), ... 'd': (add, (mul, 'a', 'b'), 'c'), ... 'e': (sum, ['a', 'b', 5]), ... 'f': (add,), ... 'g': []} >>> pprint_task(dsk['c'], dsk) 'add(_, _)' >>> pprint_task(dsk['d'], dsk) 'add(mul(_, _), _)' >>> pprint_task(dsk['e'], dsk) 'sum([_, _, *])' >>> pprint_task(dsk['f'], dsk) 'add()' >>> pprint_task(dsk['g'], dsk) '[]' """ if istask(task): func = task[0] if func is apply: head = funcname(task[1]) tail = ')' args = unquote(task[2]) if len(task) > 2 else () kwargs = unquote(task[3]) if len(task) > 3 else {} else: if hasattr(func, 'funcs'): head = '('.join(funcname(f) for f in func.funcs) tail = ')'*len(func.funcs) else: head = funcname(task[0]) tail = ')' args = task[1:] kwargs = {} if args or kwargs: label_size2 = int((label_size - len(head) - len(tail)) // (len(args) + len(kwargs))) pprint = lambda t: pprint_task(t, keys, label_size2) if args: if label_size2 > 5: args = ', '.join(pprint(t) for t in args) else: args = '...' else: args = '' if kwargs: if label_size2 > 5: kwargs = ', ' + ', '.join('{0}={1}'.format(k, pprint(v)) for k, v in sorted(kwargs.items())) else: kwargs = ', ...' else: kwargs = '' return '{0}({1}{2}{3}'.format(head, args, kwargs, tail) elif isinstance(task, list): if not task: return '[]' elif len(task) > 3: result = pprint_task(task[:3], keys, label_size) return result[:-1] + ', ...]' else: label_size2 = int((label_size - 2 - 2*len(task)) // len(task)) args = ', '.join(pprint_task(t, keys, label_size2) for t in task) return '[{0}]'.format(args) else: try: if task in keys: return '_' else: return '*' except TypeError: return '*' def get_colors(palette, funcs): """Get a dict mapping funcs to colors from palette. Parameters ---------- palette : string Name of the palette. Must be a key in bokeh.palettes.brewer funcs : iterable Iterable of function names """ unique_funcs = list(sorted(unique(funcs))) n_funcs = len(unique_funcs) palette_lookup = brewer[palette] keys = list(palette_lookup.keys()) low, high = min(keys), max(keys) if n_funcs > high: colors = cycle(palette_lookup[high]) elif n_funcs < low: colors = palette_lookup[low] else: colors = palette_lookup[n_funcs] color_lookup = dict(zip(unique_funcs, colors)) return [color_lookup[n] for n in funcs] def visualize(profilers, file_path=None, show=True, save=True, **kwargs): """Visualize the results of profiling in a bokeh plot. If multiple profilers are passed in, the plots are stacked vertically. Parameters ---------- profilers : profiler or list Profiler or list of profilers. file_path : string, optional Name of the plot output file. show : boolean, optional If True (default), the plot is opened in a browser. save : boolean, optional If True (default), the plot is saved to disk. **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by visualize. Returns ------- The completed bokeh plot object. """ if not _state._notebook: file_path = file_path or "profile.html" bp.output_file(file_path) if not isinstance(profilers, list): profilers = [profilers] figs = [prof._plot(**kwargs) for prof in profilers] # Stack the plots if len(figs) == 1: p = figs[0] else: top = figs[0] for f in figs[1:]: f.x_range = top.x_range f.title = None f.min_border_top = 20 for f in figs[:1]: f.xaxis.axis_label = None f.min_border_bottom = 20 for f in figs: f.min_border_left = 75 f.min_border_right = 75 p = bp.gridplot([[f] for f in figs]) if show: bp.show(p) if file_path and save: bp.save(p) return p def plot_tasks(results, dsk, palette='GnBu', label_size=60, **kwargs): """Visualize the results of profiling in a bokeh plot. Parameters ---------- results : sequence Output of Profiler.results dsk : dict The dask graph being profiled. palette : string, optional Name of the bokeh palette to use, must be key in bokeh.palettes.brewer. label_size: int (optional) Maximum size of output labels in plot, defaults to 60 **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by visualize. Returns ------- The completed bokeh plot object. """ defaults = dict(title="Profile Results", tools="hover,save,reset,resize,xwheel_zoom,xpan", plot_width=800, plot_height=300) defaults.update((k, v) for (k, v) in kwargs.items() if k in bp.Figure.properties()) if results: keys, tasks, starts, ends, ids = zip(*results) id_group = groupby(itemgetter(4), results) timings = dict((k, [i.end_time - i.start_time for i in v]) for (k, v) in id_group.items()) id_lk = dict((t[0], n) for (n, t) in enumerate(sorted(timings.items(), key=itemgetter(1), reverse=True))) left = min(starts) right = max(ends) p = bp.figure(y_range=[str(i) for i in range(len(id_lk))], x_range=[0, right - left], **defaults) data = {} data['width'] = width = [e - s for (s, e) in zip(starts, ends)] data['x'] = [w/2 + s - left for (w, s) in zip(width, starts)] data['y'] = [id_lk[i] + 1 for i in ids] data['function'] = funcs = [pprint_task(i, dsk, label_size) for i in tasks] data['color'] = get_colors(palette, funcs) data['key'] = [str(i) for i in keys] source = bp.ColumnDataSource(data=data) p.rect(source=source, x='x', y='y', height=1, width='width', color='color', line_color='gray') else: p = bp.figure(y_range=[str(i) for i in range(8)], x_range=[0, 10], **defaults) p.grid.grid_line_color = None p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.yaxis.axis_label = "Worker ID" p.xaxis.axis_label = "Time (s)" hover = p.select(HoverTool) hover.tooltips = """ <div> <span style="font-size: 14px; font-weight: bold;">Key:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@key</span> </div> <div> <span style="font-size: 14px; font-weight: bold;">Task:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@function</span> </div> """ hover.point_policy = 'follow_mouse' return p def plot_resources(results, palette='GnBu', **kwargs): """Plot resource usage in a bokeh plot. Parameters ---------- results : sequence Output of ResourceProfiler.results palette : string, optional Name of the bokeh palette to use, must be key in bokeh.palettes.brewer. **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by plot_resources. Returns ------- The completed bokeh plot object. """ defaults = dict(title="Profile Results", tools="save,reset,resize,xwheel_zoom,xpan", plot_width=800, plot_height=300) defaults.update((k, v) for (k, v) in kwargs.items() if k in bp.Figure.properties()) if results: t, mem, cpu = zip(*results) left, right = min(t), max(t) t = [i - left for i in t] p = bp.figure(y_range=(0, max(cpu)), x_range=(0, right - left), **defaults) else: t = mem = cpu = [] p = bp.figure(y_range=(0, 100), x_range=(0, 10), **defaults) colors = brewer[palette][6] p.line(t, cpu, color=colors[0], line_width=4, legend='% CPU') p.yaxis.axis_label = "% CPU" p.extra_y_ranges = {'memory': Range1d(start=0, end=(max(mem) if mem else 100))} p.line(t, mem, color=colors[2], y_range_name='memory', line_width=4, legend='Memory') p.add_layout(LinearAxis(y_range_name='memory', axis_label='Memory (MB)'), 'right') p.xaxis.axis_label = "Time (s)" return p def plot_cache(results, dsk, start_time, metric_name, palette='GnBu', label_size=60, **kwargs): """Visualize the results of profiling in a bokeh plot. Parameters ---------- results : sequence Output of CacheProfiler.results dsk : dict The dask graph being profiled. start_time : float Start time of the profile. metric_name : string Metric used to measure cache size palette : string, optional Name of the bokeh palette to use, must be key in bokeh.palettes.brewer. label_size: int (optional) Maximum size of output labels in plot, defaults to 60 **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by visualize. Returns ------- The completed bokeh plot object. """ defaults = dict(title="Profile Results", tools="hover,save,reset,resize,wheel_zoom,xpan", plot_width=800, plot_height=300) defaults.update((k, v) for (k, v) in kwargs.items() if k in bp.Figure.properties()) if results: starts, ends = list(zip(*results))[3:] tics = list(sorted(unique(starts + ends))) groups = groupby(lambda d: pprint_task(d[1], dsk, label_size), results) data = {} for k, vals in groups.items(): cnts = dict.fromkeys(tics, 0) for v in vals: cnts[v.cache_time] += v.metric cnts[v.free_time] -= v.metric data[k] = list(accumulate(add, pluck(1, sorted(cnts.items())))) tics = [i - start_time for i in tics] p = bp.figure(x_range=[0, max(tics)], **defaults) for (key, val), color in zip(data.items(), get_colors(palette, data.keys())): p.line('x', 'y', line_color=color, line_width=3, source=bp.ColumnDataSource({'x': tics, 'y': val, 'label': [key for i in val]})) else: p = bp.figure(y_range=[0, 10], x_range=[0, 10], **defaults) p.grid.grid_line_color = None p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.yaxis.axis_label = "Cache Size ({0})".format(metric_name) p.xaxis.axis_label = "Time (s)" hover = p.select(HoverTool) hover.tooltips = """ <div> <span style="font-size: 14px; font-weight: bold;">Task:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@label</span> </div> """ return p
{ "repo_name": "pombredanne/dask", "path": "dask/diagnostics/profile_visualize.py", "copies": "1", "size": "12738", "license": "bsd-3-clause", "hash": -7523364113404990000, "line_mean": 32.171875, "line_max": 87, "alpha_frac": 0.5440414508, "autogenerated": false, "ratio": 3.611567904734902, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9653090671775296, "avg_score": 0.0005037367519211524, "num_lines": 384 }
from __future__ import absolute_import, division, print_function from itertools import cycle from operator import itemgetter, add from ..utils import funcname, import_required from ..core import istask from ..compatibility import apply _BOKEH_MISSING_MSG = ("Diagnostics plots require `bokeh` to be installed") _TOOLZ_MISSING_MSG = ("Diagnostics plots require `toolz` to be installed") def unquote(expr): if istask(expr): if expr[0] in (tuple, list, set): return expr[0](map(unquote, expr[1])) elif (expr[0] == dict and isinstance(expr[1], list) and isinstance(expr[1][0], list)): return dict(map(unquote, expr[1])) return expr def pprint_task(task, keys, label_size=60): """Return a nicely formatted string for a task. Parameters ---------- task: Value within dask graph to render as text keys: iterable List of keys within dask graph label_size: int (optional) Maximum size of output label, defaults to 60 Examples -------- >>> from operator import add, mul >>> dsk = {'a': 1, ... 'b': 2, ... 'c': (add, 'a', 'b'), ... 'd': (add, (mul, 'a', 'b'), 'c'), ... 'e': (sum, ['a', 'b', 5]), ... 'f': (add,), ... 'g': []} >>> pprint_task(dsk['c'], dsk) 'add(_, _)' >>> pprint_task(dsk['d'], dsk) 'add(mul(_, _), _)' >>> pprint_task(dsk['e'], dsk) 'sum([_, _, *])' >>> pprint_task(dsk['f'], dsk) 'add()' >>> pprint_task(dsk['g'], dsk) '[]' """ if istask(task): func = task[0] if func is apply: head = funcname(task[1]) tail = ')' args = unquote(task[2]) if len(task) > 2 else () kwargs = unquote(task[3]) if len(task) > 3 else {} else: if hasattr(func, 'funcs'): head = '('.join(funcname(f) for f in func.funcs) tail = ')'*len(func.funcs) else: head = funcname(task[0]) tail = ')' args = task[1:] kwargs = {} if args or kwargs: label_size2 = int((label_size - len(head) - len(tail)) // (len(args) + len(kwargs))) pprint = lambda t: pprint_task(t, keys, label_size2) if args: if label_size2 > 5: args = ', '.join(pprint(t) for t in args) else: args = '...' else: args = '' if kwargs: if label_size2 > 5: kwargs = ', ' + ', '.join('{0}={1}'.format(k, pprint(v)) for k, v in sorted(kwargs.items())) else: kwargs = ', ...' else: kwargs = '' return '{0}({1}{2}{3}'.format(head, args, kwargs, tail) elif isinstance(task, list): if not task: return '[]' elif len(task) > 3: result = pprint_task(task[:3], keys, label_size) return result[:-1] + ', ...]' else: label_size2 = int((label_size - 2 - 2*len(task)) // len(task)) args = ', '.join(pprint_task(t, keys, label_size2) for t in task) return '[{0}]'.format(args) else: try: if task in keys: return '_' else: return '*' except TypeError: return '*' def get_colors(palette, funcs): """Get a dict mapping funcs to colors from palette. Parameters ---------- palette : string Name of the palette. Must be a key in bokeh.palettes.brewer funcs : iterable Iterable of function names """ palettes = import_required('bokeh.palettes', _BOKEH_MISSING_MSG) tz = import_required('toolz', _TOOLZ_MISSING_MSG) unique_funcs = list(sorted(tz.unique(funcs))) n_funcs = len(unique_funcs) palette_lookup = palettes.brewer[palette] keys = list(palette_lookup.keys()) low, high = min(keys), max(keys) if n_funcs > high: colors = cycle(palette_lookup[high]) elif n_funcs < low: colors = palette_lookup[low] else: colors = palette_lookup[n_funcs] color_lookup = dict(zip(unique_funcs, colors)) return [color_lookup[n] for n in funcs] def visualize(profilers, file_path=None, show=True, save=True, **kwargs): """Visualize the results of profiling in a bokeh plot. If multiple profilers are passed in, the plots are stacked vertically. Parameters ---------- profilers : profiler or list Profiler or list of profilers. file_path : string, optional Name of the plot output file. show : boolean, optional If True (default), the plot is opened in a browser. save : boolean, optional If True (default), the plot is saved to disk. **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by visualize. Returns ------- The completed bokeh plot object. """ bp = import_required('bokeh.plotting', _BOKEH_MISSING_MSG) from bokeh.io import _state if not _state._notebook: file_path = file_path or "profile.html" bp.output_file(file_path) if not isinstance(profilers, list): profilers = [profilers] figs = [prof._plot(**kwargs) for prof in profilers] # Stack the plots if len(figs) == 1: p = figs[0] else: top = figs[0] for f in figs[1:]: f.x_range = top.x_range f.title = None f.min_border_top = 20 f.plot_height -= 30 for f in figs[:-1]: f.xaxis.axis_label = None f.min_border_bottom = 20 f.plot_height -= 30 for f in figs: f.min_border_left = 75 f.min_border_right = 75 p = bp.gridplot([[f] for f in figs]) if show: bp.show(p) if file_path and save: bp.save(p) return p def _get_figure_keywords(): bp = import_required('bokeh.plotting', _BOKEH_MISSING_MSG) o = bp.Figure.properties() o.add('tools') return o def plot_tasks(results, dsk, palette='YlGnBu', label_size=60, **kwargs): """Visualize the results of profiling in a bokeh plot. Parameters ---------- results : sequence Output of Profiler.results dsk : dict The dask graph being profiled. palette : string, optional Name of the bokeh palette to use, must be key in bokeh.palettes.brewer. label_size: int (optional) Maximum size of output labels in plot, defaults to 60 **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by visualize. Returns ------- The completed bokeh plot object. """ bp = import_required('bokeh.plotting', _BOKEH_MISSING_MSG) from bokeh.models import HoverTool tz = import_required('toolz', _TOOLZ_MISSING_MSG) defaults = dict(title="Profile Results", tools="hover,save,reset,resize,xwheel_zoom,xpan", plot_width=800, plot_height=300) defaults.update((k, v) for (k, v) in kwargs.items() if k in _get_figure_keywords()) if results: keys, tasks, starts, ends, ids = zip(*results) id_group = tz.groupby(itemgetter(4), results) timings = dict((k, [i.end_time - i.start_time for i in v]) for (k, v) in id_group.items()) id_lk = dict((t[0], n) for (n, t) in enumerate(sorted(timings.items(), key=itemgetter(1), reverse=True))) left = min(starts) right = max(ends) p = bp.figure(y_range=[str(i) for i in range(len(id_lk))], x_range=[0, right - left], **defaults) data = {} data['width'] = width = [e - s for (s, e) in zip(starts, ends)] data['x'] = [w/2 + s - left for (w, s) in zip(width, starts)] data['y'] = [id_lk[i] + 1 for i in ids] data['function'] = funcs = [pprint_task(i, dsk, label_size) for i in tasks] data['color'] = get_colors(palette, funcs) data['key'] = [str(i) for i in keys] source = bp.ColumnDataSource(data=data) p.rect(source=source, x='x', y='y', height=1, width='width', color='color', line_color='gray') else: p = bp.figure(y_range=[str(i) for i in range(8)], x_range=[0, 10], **defaults) p.grid.grid_line_color = None p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.yaxis.axis_label = "Worker ID" p.xaxis.axis_label = "Time (s)" hover = p.select(HoverTool) hover.tooltips = """ <div> <span style="font-size: 14px; font-weight: bold;">Key:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@key</span> </div> <div> <span style="font-size: 14px; font-weight: bold;">Task:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@function</span> </div> """ hover.point_policy = 'follow_mouse' return p def plot_resources(results, palette='YlGnBu', **kwargs): """Plot resource usage in a bokeh plot. Parameters ---------- results : sequence Output of ResourceProfiler.results palette : string, optional Name of the bokeh palette to use, must be key in bokeh.palettes.brewer. **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by plot_resources. Returns ------- The completed bokeh plot object. """ bp = import_required('bokeh.plotting', _BOKEH_MISSING_MSG) from bokeh.palettes import brewer from bokeh.models import LinearAxis, Range1d defaults = dict(title="Profile Results", tools="save,reset,resize,xwheel_zoom,xpan", plot_width=800, plot_height=300) defaults.update((k, v) for (k, v) in kwargs.items() if k in _get_figure_keywords()) if results: t, mem, cpu = zip(*results) left, right = min(t), max(t) t = [i - left for i in t] p = bp.figure(y_range=(0, max(cpu)), x_range=(0, right - left), **defaults) else: t = mem = cpu = [] p = bp.figure(y_range=(0, 100), x_range=(0, 10), **defaults) colors = brewer[palette][6] p.line(t, cpu, color=colors[0], line_width=4, legend='% CPU') p.yaxis.axis_label = "% CPU" p.extra_y_ranges = {'memory': Range1d(start=(min(mem) if mem else 0), end=(max(mem) if mem else 100))} p.line(t, mem, color=colors[2], y_range_name='memory', line_width=4, legend='Memory') p.add_layout(LinearAxis(y_range_name='memory', axis_label='Memory (MB)'), 'right') p.xaxis.axis_label = "Time (s)" return p def plot_cache(results, dsk, start_time, metric_name, palette='YlGnBu', label_size=60, **kwargs): """Visualize the results of profiling in a bokeh plot. Parameters ---------- results : sequence Output of CacheProfiler.results dsk : dict The dask graph being profiled. start_time : float Start time of the profile. metric_name : string Metric used to measure cache size palette : string, optional Name of the bokeh palette to use, must be key in bokeh.palettes.brewer. label_size: int (optional) Maximum size of output labels in plot, defaults to 60 **kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults set by visualize. Returns ------- The completed bokeh plot object. """ bp = import_required('bokeh.plotting', _BOKEH_MISSING_MSG) from bokeh.models import HoverTool tz = import_required('toolz', _TOOLZ_MISSING_MSG) defaults = dict(title="Profile Results", tools="hover,save,reset,resize,wheel_zoom,xpan", plot_width=800, plot_height=300) defaults.update((k, v) for (k, v) in kwargs.items() if k in _get_figure_keywords()) if results: starts, ends = list(zip(*results))[3:] tics = list(sorted(tz.unique(starts + ends))) groups = tz.groupby(lambda d: pprint_task(d[1], dsk, label_size), results) data = {} for k, vals in groups.items(): cnts = dict.fromkeys(tics, 0) for v in vals: cnts[v.cache_time] += v.metric cnts[v.free_time] -= v.metric data[k] = [0] + list(tz.accumulate(add, tz.pluck(1, sorted(cnts.items())))) tics = [0] + [i - start_time for i in tics] p = bp.figure(x_range=[0, max(tics)], **defaults) for (key, val), color in zip(data.items(), get_colors(palette, data.keys())): p.line('x', 'y', line_color=color, line_width=3, source=bp.ColumnDataSource({'x': tics, 'y': val, 'label': [key for i in val]})) else: p = bp.figure(y_range=[0, 10], x_range=[0, 10], **defaults) p.yaxis.axis_label = "Cache Size ({0})".format(metric_name) p.xaxis.axis_label = "Time (s)" hover = p.select(HoverTool) hover.tooltips = """ <div> <span style="font-size: 14px; font-weight: bold;">Task:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@label</span> </div> """ return p
{ "repo_name": "cowlicks/dask", "path": "dask/diagnostics/profile_visualize.py", "copies": "2", "size": "13680", "license": "bsd-3-clause", "hash": -2443241040388121600, "line_mean": 32.6117936118, "line_max": 87, "alpha_frac": 0.548245614, "autogenerated": false, "ratio": 3.5849056603773586, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5133151274377359, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import ifilter, imap, islice import json import re import sys import traceback import urllib from urlparse import urljoin, urlparse, urlunparse import urlnorm from dossier.fc import FeatureCollection, StringCounter from dossier.models.etl.interface import ETL, html_to_fc, mk_content_id class Scrapy(ETL): @staticmethod def detect_url_prefix(filelike): # This is a heuristic based on my observation of the data. This assumes # that all data is coming from a single domain and that all discovered # relative links have exactly the same prefix. I'm dubious. ---AG # # The heuristic is to find an absolute URL and a relative URL, then # discover the prefix. # # If one could not be detected `None` is returned. def find_prefix(): for uabs in uabss: for urel in urels: prefix = prefix_of(uabs, urel) if prefix is not None: return prefix return None def prefix_of(uabs, urel): if len(uabs) >= len(urel) and uabs[-len(urel):] == urel: return uabs[:-len(urel)] return None def add_url(url): if url is None: return url = urlunparse(urlparse(url)._replace(query='')) if re.search('^http', url): uabss.add(url) else: urels.add(url.lstrip('.')) uabss, urels = set(), set() for row in ifilter(None, imap(json_maybe_loads, filelike)): if row.get('_type') == 'ForumPostItem': add_url(row.get('thread_link')) add_url(row.get('author', {}).get('link')) elif row.get('_type') == 'CcaItem': add_url(row.get('url')) prefix = find_prefix() if prefix is not None: return prefix return None def __init__(self, filelike, url_prefix=None): self.rows = ifilter(None, imap(json_maybe_loads, filelike)) self.url_prefix = url_prefix def cids_and_fcs(self, mapper, limit=5): posts = ifilter(lambda d: d.get('_type') == 'ForumPostItem', self.rows) return mapper(from_forum_post, islice(imap(self.sanitize, posts), limit)) def sanitize(self, post): for n in ['link', 'avatar']: if n not in post['author']: continue post['author'][n] = self.sanitize_url(post['author'][n]) if 'thread_link' in post: post['thread_link'] = self.sanitize_url(post['thread_link']) return post def sanitize_url(self, url): url = normurl(url) if self.url_prefix is None: return url if re.search('^http', url): return url return normurl(urljoin(self.url_prefix, url)) def from_forum_post(row): cid = forum_post_id(row) try: fc = html_to_fc(row['content'].strip(), url=row['thread_link'], timestamp=forum_post_timestamp(row), other_features=forum_post_features(row)) except: fc = None print('Could not create FC for %s:' % cid, file=sys.stderr) print(traceback.format_exc()) return cid, fc def forum_post_features(row): fc = FeatureCollection() for k in row['author']: fc['post_author_' + k] = row['author'][k] if 'image_urls' in row: fc['image_url'] = StringCounter() for image_url in row['image_urls']: fc['image_url'][image_url] += 1 others = ['parent_id', 'thread_id', 'thread_link', 'thread_name', 'title'] for k in others: if k in row: fc['post_' + k] = uni(row[k]) return fc def forum_post_id(row): ticks = forum_post_timestamp(row) abs_url = row['thread_link'] author = row['author'].get('username', 'unknown') return mk_content_id('|'.join(map(urlquote, [ticks, abs_url, author]))) def forum_post_timestamp(row): return str(int(row['created_at']) / 1000) def urlquote(s): if isinstance(s, unicode): s = s.encode('utf-8') return urllib.quote(s, safe='~') def normurl(url): try: return urlnorm.norm(url) except urlnorm.InvalidUrl: return urlnorm.norm_path('', url) def uni(s): if isinstance(s, str): return unicode(s, 'utf-8') return s def json_maybe_loads(s): try: d = json.loads(s) except: return None if 'thread_link' not in d: return None return d
{ "repo_name": "dossier/dossier.models", "path": "dossier/models/etl/scrapy.py", "copies": "1", "size": "4702", "license": "mit", "hash": 6823929727462572000, "line_mean": 28.949044586, "line_max": 79, "alpha_frac": 0.5586984262, "autogenerated": false, "ratio": 3.7287866772402856, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9782177247813959, "avg_score": 0.0010615711252653928, "num_lines": 157 }
from __future__ import absolute_import, division, print_function from itertools import product from distutils.version import LooseVersion import numpy as np from .. import Variable, coding, conventions from ..core import indexing from ..core.pycompat import OrderedDict, integer_types, iteritems from ..core.utils import FrozenOrderedDict, HiddenKeyDict from .common import AbstractWritableDataStore, ArrayWriter, BackendArray # need some special secret attributes to tell us the dimensions _DIMENSION_KEY = '_ARRAY_DIMENSIONS' # zarr attributes have to be serializable as json # many xarray datasets / variables have numpy arrays and values # these functions handle encoding / decoding of such items def _encode_zarr_attr_value(value): if isinstance(value, np.ndarray): encoded = value.tolist() # this checks if it's a scalar number elif isinstance(value, np.generic): encoded = value.item() else: encoded = value return encoded class ZarrArrayWrapper(BackendArray): def __init__(self, variable_name, datastore): self.datastore = datastore self.variable_name = variable_name array = self.get_array() self.shape = array.shape dtype = array.dtype self.dtype = dtype def get_array(self): return self.datastore.ds[self.variable_name] def __getitem__(self, key): array = self.get_array() if isinstance(key, indexing.BasicIndexer): return array[key.tuple] elif isinstance(key, indexing.VectorizedIndexer): return array.vindex[indexing._arrayize_vectorized_indexer( key.tuple, self.shape).tuple] else: assert isinstance(key, indexing.OuterIndexer) return array.oindex[key.tuple] # if self.ndim == 0: # could possibly have a work-around for 0d data here def _determine_zarr_chunks(enc_chunks, var_chunks, ndim): """ Given encoding chunks (possibly None) and variable chunks (possibly None) """ # zarr chunk spec: # chunks : int or tuple of ints, optional # Chunk shape. If not provided, will be guessed from shape and dtype. # if there are no chunks in encoding and the variable data is a numpy # array, then we let zarr use its own heuristics to pick the chunks if var_chunks is None and enc_chunks is None: return None # if there are no chunks in encoding but there are dask chunks, we try to # use the same chunks in zarr # However, zarr chunks needs to be uniform for each array # http://zarr.readthedocs.io/en/latest/spec/v1.html#chunks # while dask chunks can be variable sized # http://dask.pydata.org/en/latest/array-design.html#chunks if var_chunks and enc_chunks is None: all_var_chunks = list(product(*var_chunks)) first_var_chunk = all_var_chunks[0] # all but the last chunk have to match exactly for this_chunk in all_var_chunks[:-1]: if this_chunk != first_var_chunk: raise ValueError( "Zarr requires uniform chunk sizes excpet for final chunk." " Variable %r has incompatible chunks. Consider " "rechunking using `chunk()`." % (var_chunks,)) # last chunk is allowed to be smaller last_var_chunk = all_var_chunks[-1] for len_first, len_last in zip(first_var_chunk, last_var_chunk): if len_last > len_first: raise ValueError( "Final chunk of Zarr array must be smaller than first. " "Variable %r has incompatible chunks. Consider rechunking " "using `chunk()`." % var_chunks) return first_var_chunk # from here on, we are dealing with user-specified chunks in encoding # zarr allows chunks to be an integer, in which case it uses the same chunk # size on each dimension. # Here we re-implement this expansion ourselves. That makes the logic of # checking chunk compatibility easier if isinstance(enc_chunks, integer_types): enc_chunks_tuple = ndim * (enc_chunks,) else: enc_chunks_tuple = tuple(enc_chunks) if len(enc_chunks_tuple) != ndim: raise ValueError("zarr chunks tuple %r must have same length as " "variable.ndim %g" % (enc_chunks_tuple, ndim)) for x in enc_chunks_tuple: if not isinstance(x, int): raise TypeError("zarr chunks must be an int or a tuple of ints. " "Instead found %r" % (enc_chunks_tuple,)) # if there are chunks in encoding and the variable data is a numpy array, # we use the specified chunks if var_chunks is None: return enc_chunks_tuple # the hard case # DESIGN CHOICE: do not allow multiple dask chunks on a single zarr chunk # this avoids the need to get involved in zarr synchronization / locking # From zarr docs: # "If each worker in a parallel computation is writing to a separate # region of the array, and if region boundaries are perfectly aligned # with chunk boundaries, then no synchronization is required." # TODO: incorporate synchronizer to allow writes from multiple dask # threads if var_chunks and enc_chunks_tuple: for zchunk, dchunks in zip(enc_chunks_tuple, var_chunks): for dchunk in dchunks: if dchunk % zchunk: raise NotImplementedError( "Specified zarr chunks %r would overlap multiple dask " "chunks %r. This is not implemented in xarray yet. " " Consider rechunking the data using " "`chunk()` or specifying different chunks in encoding." % (enc_chunks_tuple, var_chunks)) return enc_chunks_tuple raise AssertionError( "We should never get here. Function logic must be wrong.") def _get_zarr_dims_and_attrs(zarr_obj, dimension_key): # Zarr arrays do not have dimenions. To get around this problem, we add # an attribute that specifies the dimension. We have to hide this attribute # when we send the attributes to the user. # zarr_obj can be either a zarr group or zarr array try: dimensions = zarr_obj.attrs[dimension_key] except KeyError: raise KeyError("Zarr object is missing the attribute `%s`, which is " "required for xarray to determine variable dimensions." % (dimension_key)) attributes = HiddenKeyDict(zarr_obj.attrs, [dimension_key]) return dimensions, attributes def _extract_zarr_variable_encoding(variable, raise_on_invalid=False): encoding = variable.encoding.copy() valid_encodings = set(['chunks', 'compressor', 'filters', 'cache_metadata']) if raise_on_invalid: invalid = [k for k in encoding if k not in valid_encodings] if invalid: raise ValueError('unexpected encoding parameters for zarr ' 'backend: %r' % invalid) else: for k in list(encoding): if k not in valid_encodings: del encoding[k] chunks = _determine_zarr_chunks(encoding.get('chunks'), variable.chunks, variable.ndim) encoding['chunks'] = chunks return encoding # Function below is copied from conventions.encode_cf_variable. # The only change is to raise an error for object dtypes. def encode_zarr_variable(var, needs_copy=True, name=None): """ Converts an Variable into an Variable which follows some of the CF conventions: - Nans are masked using _FillValue (or the deprecated missing_value) - Rescaling via: scale_factor and add_offset - datetimes are converted to the CF 'units since time' format - dtype encodings are enforced. Parameters ---------- var : xarray.Variable A variable holding un-encoded data. Returns ------- out : xarray.Variable A variable which has been encoded as described above. """ var = conventions.encode_cf_variable(var, name=name) # zarr allows unicode, but not variable-length strings, so it's both # simpler and more compact to always encode as UTF-8 explicitly. # TODO: allow toggling this explicitly via dtype in encoding. coder = coding.strings.EncodedStringCoder(allows_unicode=False) var = coder.encode(var, name=name) var = coding.strings.ensure_fixed_length_bytes(var) return var class ZarrStore(AbstractWritableDataStore): """Store for reading and writing data via zarr """ @classmethod def open_group(cls, store, mode='r', synchronizer=None, group=None, writer=None): import zarr min_zarr = '2.2' if LooseVersion(zarr.__version__) < min_zarr: # pragma: no cover raise NotImplementedError("Zarr version %s or greater is " "required by xarray. See zarr " "installation " "http://zarr.readthedocs.io/en/stable/" "#installation" % min_zarr) zarr_group = zarr.open_group(store=store, mode=mode, synchronizer=synchronizer, path=group) return cls(zarr_group, writer=writer) def __init__(self, zarr_group, writer=None): self.ds = zarr_group self._read_only = self.ds.read_only self._synchronizer = self.ds.synchronizer self._group = self.ds.path if writer is None: # by default, we should not need a lock for writing zarr because # we do not (yet) allow overlapping chunks during write zarr_writer = ArrayWriter(lock=False) else: zarr_writer = writer # do we need to define attributes for all of the opener keyword args? super(ZarrStore, self).__init__(zarr_writer) def open_store_variable(self, name, zarr_array): data = indexing.LazilyOuterIndexedArray(ZarrArrayWrapper(name, self)) dimensions, attributes = _get_zarr_dims_and_attrs(zarr_array, _DIMENSION_KEY) attributes = OrderedDict(attributes) encoding = {'chunks': zarr_array.chunks, 'compressor': zarr_array.compressor, 'filters': zarr_array.filters} # _FillValue needs to be in attributes, not encoding, so it will get # picked up by decode_cf if getattr(zarr_array, 'fill_value') is not None: attributes['_FillValue'] = zarr_array.fill_value return Variable(dimensions, data, attributes, encoding) def get_variables(self): return FrozenOrderedDict((k, self.open_store_variable(k, v)) for k, v in self.ds.arrays()) def get_attrs(self): attributes = OrderedDict(self.ds.attrs.asdict()) return attributes def get_dimensions(self): dimensions = OrderedDict() for k, v in self.ds.arrays(): try: for d, s in zip(v.attrs[_DIMENSION_KEY], v.shape): if d in dimensions and dimensions[d] != s: raise ValueError( 'found conflicting lengths for dimension %s ' '(%d != %d)' % (d, s, dimensions[d])) dimensions[d] = s except KeyError: raise KeyError("Zarr object is missing the attribute `%s`, " "which is required for xarray to determine " "variable dimensions." % (_DIMENSION_KEY)) return dimensions def set_dimensions(self, variables, unlimited_dims=None): if unlimited_dims is not None: raise NotImplementedError( "Zarr backend doesn't know how to handle unlimited dimensions") def set_attributes(self, attributes): self.ds.attrs.put(attributes) def encode_variable(self, variable): variable = encode_zarr_variable(variable) return variable def encode_attribute(self, a): return _encode_zarr_attr_value(a) def prepare_variable(self, name, variable, check_encoding=False, unlimited_dims=None): attrs = variable.attrs.copy() dims = variable.dims dtype = variable.dtype shape = variable.shape fill_value = attrs.pop('_FillValue', None) if variable.encoding == {'_FillValue': None} and fill_value is None: variable.encoding = {} encoding = _extract_zarr_variable_encoding( variable, raise_on_invalid=check_encoding) encoded_attrs = OrderedDict() # the magic for storing the hidden dimension data encoded_attrs[_DIMENSION_KEY] = dims for k, v in iteritems(attrs): encoded_attrs[k] = self.encode_attribute(v) zarr_array = self.ds.create(name, shape=shape, dtype=dtype, fill_value=fill_value, **encoding) zarr_array.attrs.put(encoded_attrs) return zarr_array, variable.data def store(self, variables, attributes, *args, **kwargs): AbstractWritableDataStore.store(self, variables, attributes, *args, **kwargs) def sync(self, compute=True): self.delayed_store = self.writer.sync(compute=compute) def open_zarr(store, group=None, synchronizer=None, auto_chunk=True, decode_cf=True, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables=None): """Load and decode a dataset from a Zarr store. .. note:: Experimental The Zarr backend is new and experimental. Please report any unexpected behavior via github issues. The `store` object should be a valid store for a Zarr group. `store` variables must contain dimension metadata encoded in the `_ARRAY_DIMENSIONS` attribute. Parameters ---------- store : MutableMapping or str A MutableMapping where a Zarr Group has been stored or a path to a directory in file system where a Zarr DirectoryStore has been stored. synchronizer : object, optional Array synchronizer provided to zarr group : str, obtional Group path. (a.k.a. `path` in zarr terminology.) auto_chunk : bool, optional Whether to automatically create dask chunks corresponding to each variable's zarr chunks. If False, zarr array data will lazily convert to numpy arrays upon access. decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. decode_coords : bool, optional If True, decode the 'coordinates' attribute to identify coordinates in the resulting dataset. drop_variables: string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. Returns ------- dataset : Dataset The newly created dataset. See Also -------- open_dataset References ---------- http://zarr.readthedocs.io/ """ if not decode_cf: mask_and_scale = False decode_times = False concat_characters = False decode_coords = False def maybe_decode_store(store, lock=False): ds = conventions.decode_cf( store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables) # TODO: this is where we would apply caching return ds # Zarr supports a wide range of access modes, but for now xarray either # reads or writes from a store, never both. For open_zarr, we only read mode = 'r' zarr_store = ZarrStore.open_group(store, mode=mode, synchronizer=synchronizer, group=group) ds = maybe_decode_store(zarr_store) # auto chunking needs to be here and not in ZarrStore because variable # chunks do not survive decode_cf if auto_chunk: # adapted from Dataset.Chunk() def maybe_chunk(name, var): from dask.base import tokenize chunks = var.encoding.get('chunks') if (var.ndim > 0) and (chunks is not None): # does this cause any data to be read? token2 = tokenize(name, var._data) name2 = 'zarr-%s' % token2 return var.chunk(chunks, name=name2, lock=None) else: return var variables = OrderedDict([(k, maybe_chunk(k, v)) for k, v in ds.variables.items()]) return ds._replace_vars_and_dims(variables) else: return ds
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/zarr.py", "copies": "1", "size": "18357", "license": "apache-2.0", "hash": -2325744561222545000, "line_mean": 38.9065217391, "line_max": 79, "alpha_frac": 0.6195456774, "autogenerated": false, "ratio": 4.380100214745884, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 460 }
from __future__ import absolute_import, division, print_function from itertools import product from functools import partial from toolz import curry import numpy as np from ..base import tokenize from .core import Array, normalize_chunks from .numpy_compat import full def dims_from_size(size, blocksize): """ >>> list(dims_from_size(30, 8)) [8, 8, 8, 6] """ result = (blocksize,) * (size // blocksize) if size % blocksize: result = result + (size % blocksize,) return result def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np creation function into blocked version """ if 'shape' not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop('shape') if not isinstance(shape, (tuple, list)): shape = (shape,) chunks = kwargs.pop('chunks', None) chunks = normalize_chunks(chunks, shape) name = kwargs.pop('name', None) dtype = kwargs.pop('dtype', None) if dtype is None: dtype = func(shape, *args, **kwargs).dtype name = name or 'wrapped-' + tokenize(func, shape, chunks, dtype, args, kwargs) keys = product([name], *[range(len(bd)) for bd in chunks]) shapes = product(*chunks) func = partial(func, dtype=dtype, **kwargs) vals = ((func,) + (s,) + args for s in shapes) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, dtype=dtype) @curry def wrap(wrap_func, func, **kwargs): f = partial(wrap_func, func, **kwargs) f.__doc__ = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also requires a keyword argument chunks=(...) Original signature follows below. """ % {'name': func.__name__} + func.__doc__ f.__name__ = 'blocked_' + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) ones = w(np.ones, dtype='f8') zeros = w(np.zeros, dtype='f8') empty = w(np.empty, dtype='f8') full = w(full)
{ "repo_name": "clarkfitzg/dask", "path": "dask/array/wrap.py", "copies": "4", "size": "1978", "license": "bsd-3-clause", "hash": 4193349603082930700, "line_mean": 24.6883116883, "line_max": 82, "alpha_frac": 0.6203235592, "autogenerated": false, "ratio": 3.4520069808027922, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6072330540002793, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import product from math import ceil from numbers import Number from operator import getitem, add, itemgetter import numpy as np from toolz import merge, accumulate, pluck, memoize from ..base import tokenize from ..compatibility import long colon = slice(None, None, None) def sanitize_index(ind): """ Sanitize the elements for indexing along one axis >>> sanitize_index([2, 3, 5]) [2, 3, 5] >>> sanitize_index([True, False, True, False]) [0, 2] >>> sanitize_index(np.array([1, 2, 3])) [1, 2, 3] >>> sanitize_index(np.array([False, True, True])) [1, 2] >>> type(sanitize_index(np.int32(0))) <type 'int'> >>> sanitize_index(1.0) 1 >>> sanitize_index(0.5) Traceback (most recent call last): ... IndexError: Bad index. Must be integer-like: 0.5 """ if isinstance(ind, Number): ind2 = int(ind) if ind2 != ind: raise IndexError("Bad index. Must be integer-like: %s" % ind) else: return ind2 if hasattr(ind, 'tolist'): ind = ind.tolist() if isinstance(ind, list) and ind and isinstance(ind[0], bool): ind = [a for a, b in enumerate(ind) if b] return ind if isinstance(ind, list): return [sanitize_index(i) for i in ind] if isinstance(ind, slice): return slice(sanitize_index(ind.start), sanitize_index(ind.stop), sanitize_index(ind.step)) if ind is None: return ind try: return sanitize_index(np.array(ind).tolist()) except: raise TypeError("Invalid index type", type(ind), ind) def slice_array(out_name, in_name, blockdims, index): """ Master function for array slicing This function makes a new dask that slices blocks along every dimension and aggregates (via cartesian product) each dimension's slices so that the resulting block slices give the same results as the original slice on the original structure Index must be a tuple. It may contain the following types int, slice, list (at most one list), None Parameters ---------- in_name - string This is the dask variable name that will be used as input out_name - string This is the dask variable output name blockshape - iterable of integers index - iterable of integers, slices, lists, or None Returns ------- Dict where the keys are tuples of (out_name, dim_index[, dim_index[, ...]]) and the values are (function, (in_name, dim_index, dim_index, ...), (slice(...), [slice()[,...]]) Also new blockdims with shapes of each block ((10, 10, 10, 10), (20, 20)) Examples -------- >>> dsk, blockdims = slice_array('y', 'x', [(20, 20, 20, 20, 20)], ... (slice(10, 35),)) # doctest: +SKIP >>> dsk # doctest: +SKIP {('y', 0): (getitem, ('x', 0), (slice(10, 20),)), ('y', 1): (getitem, ('x', 1), (slice(0, 15),))} >>> blockdims # doctest: +SKIP ((10, 15),) See Also -------- This function works by successively unwrapping cases and passing down through a sequence of functions. slice_with_newaxis - handle None/newaxis case slice_wrap_lists - handle fancy indexing with lists slice_slices_and_integers - handle everything else """ index = replace_ellipsis(len(blockdims), index) index = tuple(map(sanitize_index, index)) blockdims = tuple(map(tuple, blockdims)) # x[:, :, :] - Punt and return old value if all(index == slice(None, None, None) for index in index): suffixes = product(*[range(len(bd)) for bd in blockdims]) dsk = dict(((out_name,) + s, (in_name,) + s) for s in suffixes) return dsk, blockdims # Add in missing colons at the end as needed. x[5] -> x[5, :, :] missing = len(blockdims) - (len(index) - index.count(None)) index += (slice(None, None, None),) * missing # Pass down to next function dsk_out, bd_out = slice_with_newaxes(out_name, in_name, blockdims, index) bd_out = tuple(map(tuple, bd_out)) return dsk_out, bd_out def slice_with_newaxes(out_name, in_name, blockdims, index): """ Handle indexing with Nones Strips out Nones then hands off to slice_wrap_lists """ # Strip Nones from index index2 = tuple([ind for ind in index if ind is not None]) where_none = [i for i, ind in enumerate(index) if ind is None] where_none_orig = list(where_none) for i, x in enumerate(where_none): n = sum(isinstance(ind, int) for ind in index[:x]) if n: where_none[i] -= n # Pass down and do work dsk, blockdims2 = slice_wrap_lists(out_name, in_name, blockdims, index2) if where_none: expand = expander(where_none) expand_orig = expander(where_none_orig) # Insert ",0" into the key: ('x', 2, 3) -> ('x', 0, 2, 0, 3) dsk2 = {(out_name,) + expand(k[1:], 0): (v[:2] + (expand_orig(v[2], None),)) for k, v in dsk.items() if k[0] == out_name} # Add back intermediate parts of the dask that weren't the output dsk3 = merge(dsk2, {k: v for k, v in dsk.items() if k[0] != out_name}) # Insert (1,) into blockdims: ((2, 2), (3, 3)) -> ((2, 2), (1,), (3, 3)) blockdims3 = expand(blockdims2, (1,)) return dsk3, blockdims3 else: return dsk, blockdims2 def slice_wrap_lists(out_name, in_name, blockdims, index): """ Fancy indexing along blocked array dasks Handles index of type list. Calls slice_slices_and_integers for the rest See Also -------- take - handle slicing with lists ("fancy" indexing) slice_slices_and_integers - handle slicing with slices and integers """ shape = tuple(map(sum, blockdims)) assert all(isinstance(i, (slice, list, int, long)) for i in index) if not len(blockdims) == len(index): raise IndexError("Too many indices for array") for bd, i in zip(blockdims, index): check_index(i, sum(bd)) # Change indices like -1 to 9 index2 = posify_index(shape, index) # Do we have more than one list in the index? where_list = [i for i, ind in enumerate(index) if isinstance(ind, list)] if len(where_list) > 1: raise NotImplementedError("Don't yet support nd fancy indexing") # Is the single list an empty list? In this case just treat it as a zero # length slice if where_list and not index[where_list[0]]: index2 = list(index2) index2[where_list.pop()] = slice(0, 0, 1) index2 = tuple(index2) # No lists, hooray! just use slice_slices_and_integers if not where_list: return slice_slices_and_integers(out_name, in_name, blockdims, index2) # Replace all lists with full slices [3, 1, 0] -> slice(None, None, None) index_without_list = tuple(slice(None, None, None) if isinstance(i, list) else i for i in index2) # lists and full slices. Just use take if all(isinstance(i, list) or i == slice(None, None, None) for i in index2): axis = where_list[0] blockdims2, dsk3 = take(out_name, in_name, blockdims, index2[where_list[0]], axis=axis) # Mixed case. Both slices/integers and lists. slice/integer then take else: # Do first pass without lists tmp = 'slice-' + tokenize((out_name, in_name, blockdims, index)) dsk, blockdims2 = slice_slices_and_integers(tmp, in_name, blockdims, index_without_list) # After collapsing some axes due to int indices, adjust axis parameter axis = where_list[0] axis2 = axis - sum(1 for i, ind in enumerate(index2) if i < axis and isinstance(ind, (int, long))) # Do work blockdims2, dsk2 = take(out_name, tmp, blockdims2, index2[axis], axis=axis2) dsk3 = merge(dsk, dsk2) return dsk3, blockdims2 def slice_slices_and_integers(out_name, in_name, blockdims, index): """ Dask array indexing with slices and integers See Also -------- _slice_1d """ shape = tuple(map(sum, blockdims)) for dim, ind in zip(shape, index): if np.isnan(dim) and ind != slice(None, None, None): raise ValueError("Arrays chunk sizes are unknown: %s", shape) assert all(isinstance(ind, (slice, int, long)) for ind in index) assert len(index) == len(blockdims) # Get a list (for each dimension) of dicts{blocknum: slice()} block_slices = list(map(_slice_1d, shape, blockdims, index)) sorted_block_slices = [sorted(i.items()) for i in block_slices] # (in_name, 1, 1, 2), (in_name, 1, 1, 4), (in_name, 2, 1, 2), ... in_names = list(product([in_name], *[pluck(0, s) for s in sorted_block_slices])) # (out_name, 0, 0, 0), (out_name, 0, 0, 1), (out_name, 0, 1, 0), ... out_names = list(product([out_name], *[range(len(d))[::-1] if i.step and i.step < 0 else range(len(d)) for d, i in zip(block_slices, index) if not isinstance(i, (int, long))])) all_slices = list(product(*[pluck(1, s) for s in sorted_block_slices])) dsk_out = {out_name: (getitem, in_name, slices) for out_name, in_name, slices in zip(out_names, in_names, all_slices)} new_blockdims = [new_blockdim(d, db, i) for d, i, db in zip(shape, index, blockdims) if not isinstance(i, (int, long))] return dsk_out, new_blockdims def _slice_1d(dim_shape, lengths, index): """Returns a dict of {blocknum: slice} This function figures out where each slice should start in each block for a single dimension. If the slice won't return any elements in the block, that block will not be in the output. Parameters ---------- dim_shape - the number of elements in this dimension. This should be a positive, non-zero integer blocksize - the number of elements per block in this dimension This should be a positive, non-zero integer index - a description of the elements in this dimension that we want This might be an integer, a slice(), or an Ellipsis Returns ------- dictionary where the keys are the integer index of the blocks that should be sliced and the values are the slices Examples -------- Trivial slicing >>> _slice_1d(100, [60, 40], slice(None, None, None)) {0: slice(None, None, None), 1: slice(None, None, None)} 100 length array cut into length 20 pieces, slice 0:35 >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(0, 35)) {0: slice(None, None, None), 1: slice(0, 15, 1)} Support irregular blocks and various slices >>> _slice_1d(100, [20, 10, 10, 10, 25, 25], slice(10, 35)) {0: slice(10, 20, 1), 1: slice(None, None, None), 2: slice(0, 5, 1)} Support step sizes >>> _slice_1d(100, [15, 14, 13], slice(10, 41, 3)) {0: slice(10, 15, 3), 1: slice(1, 14, 3), 2: slice(2, 12, 3)} >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(0, 100, 40)) # step > blocksize {0: slice(0, 20, 40), 2: slice(0, 20, 40), 4: slice(0, 20, 40)} Also support indexing single elements >>> _slice_1d(100, [20, 20, 20, 20, 20], 25) {1: 5} And negative slicing >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(100, 0, -3)) {0: slice(-2, -20, -3), 1: slice(-1, -21, -3), 2: slice(-3, -21, -3), 3: slice(-2, -21, -3), 4: slice(-1, -21, -3)} >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(100, 12, -3)) {0: slice(-2, -8, -3), 1: slice(-1, -21, -3), 2: slice(-3, -21, -3), 3: slice(-2, -21, -3), 4: slice(-1, -21, -3)} >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(100, -12, -3)) {4: slice(-1, -12, -3)} """ if isinstance(index, (int, long)): i = 0 ind = index lens = list(lengths) while ind >= lens[0]: i += 1 ind -= lens.pop(0) return {i: ind} assert isinstance(index, slice) if index == colon: return {k: colon for k in range(len(lengths))} step = index.step or 1 if step > 0: start = index.start or 0 stop = index.stop if index.stop is not None else dim_shape else: start = index.start or dim_shape - 1 start = dim_shape - 1 if start >= dim_shape else start stop = -(dim_shape + 1) if index.stop is None else index.stop # posify start and stop if start < 0: start += dim_shape if stop < 0: stop += dim_shape d = dict() if step > 0: for i, length in enumerate(lengths): if start < length and stop > 0: d[i] = slice(start, min(stop, length), step) start = (start - length) % step else: start = start - length stop -= length else: rstart = start # running start chunk_boundaries = list(accumulate(add, lengths)) for i, chunk_stop in reversed(list(enumerate(chunk_boundaries))): # create a chunk start and stop if i == 0: chunk_start = 0 else: chunk_start = chunk_boundaries[i - 1] # if our slice is in this chunk if (chunk_start <= rstart < chunk_stop) and (rstart > stop): d[i] = slice(rstart - chunk_stop, max(chunk_start - chunk_stop - 1, stop - chunk_stop), step) # compute the next running start point, offset = (rstart - (chunk_start - 1)) % step rstart = chunk_start + offset - 1 # replace 0:20:1 with : if appropriate for k, v in d.items(): if v == slice(0, lengths[k], 1): d[k] = slice(None, None, None) if not d: # special case x[:0] d[0] = slice(0, 0, 1) return d def partition_by_size(sizes, seq): """ >>> partition_by_size([10, 20, 10], [1, 5, 9, 12, 29, 35]) [[1, 5, 9], [2, 19], [5]] """ seq = np.array(seq) right = np.cumsum(sizes) locations = np.searchsorted(seq, right) locations = [0] + locations.tolist() left = [0] + right.tolist() return [(seq[locations[i]:locations[i + 1]] - left[i]).tolist() for i in range(len(locations) - 1)] def issorted(seq): """ Is sequence sorted? >>> issorted([1, 2, 3]) True >>> issorted([3, 1, 2]) False """ if not seq: return True x = seq[0] for elem in seq[1:]: if elem < x: return False x = elem return True def take_sorted(outname, inname, blockdims, index, axis=0): """ Index array with sorted list index Forms a dask for the following case x[:, [1, 3, 5, 10], ...] where the index, ``[1, 3, 5, 10]`` is sorted in non-decreasing order. >>> blockdims, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], axis=0) >>> blockdims ((3, 1),) >>> dsk # doctest: +SKIP {('y', 0): (getitem, ('x', 0), ([1, 3, 5],)), ('y', 1): (getitem, ('x', 2), ([7],))} See Also -------- take - calls this function """ sizes = blockdims[axis] # the blocksizes on the axis that we care about index_lists = partition_by_size(sizes, sorted(index)) where_index = [i for i, il in enumerate(index_lists) if il] index_lists = [il for il in index_lists if il] dims = [range(len(bd)) for bd in blockdims] indims = list(dims) indims[axis] = list(range(len(where_index))) keys = list(product([outname], *indims)) outdims = list(dims) outdims[axis] = where_index slices = [[colon] * len(bd) for bd in blockdims] slices[axis] = index_lists slices = list(product(*slices)) inkeys = list(product([inname], *outdims)) values = [(getitem, inkey, slc) for inkey, slc in zip(inkeys, slices)] blockdims2 = list(blockdims) blockdims2[axis] = tuple(map(len, index_lists)) return tuple(blockdims2), dict(zip(keys, values)) def take(outname, inname, blockdims, index, axis=0): """ Index array with an iterable of index Handles a single index by a single list Mimics ``np.take`` >>> blockdims, dsk = take('y', 'x', [(20, 20, 20, 20)], [5, 1, 47, 3], axis=0) >>> blockdims ((4,),) >>> dsk # doctest: +SKIP {('y', 0): (getitem, (np.concatenate, [(getitem, ('x', 0), ([1, 3, 5],)), (getitem, ('x', 2), ([7],))], 0), (2, 0, 4, 1))} When list is sorted we retain original block structure >>> blockdims, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], axis=0) >>> blockdims ((3, 1),) >>> dsk # doctest: +SKIP {('y', 0): (getitem, ('x', 0), ([1, 3, 5],)), ('y', 2): (getitem, ('x', 2), ([7],))} """ if issorted(index): return take_sorted(outname, inname, blockdims, index, axis) n = len(blockdims) sizes = blockdims[axis] # the blocksizes on the axis that we care about index_lists = partition_by_size(sizes, sorted(index)) dims = [[0] if axis == i else list(range(len(bd))) for i, bd in enumerate(blockdims)] keys = list(product([outname], *dims)) rev_index = list(map(sorted(index).index, index)) vals = [(getitem, (np.concatenate, [(getitem, ((inname, ) + d[:axis] + (i, ) + d[axis + 1:]), ((colon, ) * axis + (IL, ) + (colon, ) * (n - axis - 1))) for i, IL in enumerate(index_lists) if IL], axis), ((colon, ) * axis + (rev_index, ) + (colon, ) * (n - axis - 1))) for d in product(*dims)] blockdims2 = list(blockdims) blockdims2[axis] = (len(index), ) return tuple(blockdims2), dict(zip(keys, vals)) def posify_index(shape, ind): """ Flip negative indices around to positive ones >>> posify_index(10, 3) 3 >>> posify_index(10, -3) 7 >>> posify_index(10, [3, -3]) [3, 7] >>> posify_index((10, 20), (3, -3)) (3, 17) >>> posify_index((10, 20), (3, [3, 4, -3])) (3, [3, 4, 17]) """ if isinstance(ind, tuple): return tuple(map(posify_index, shape, ind)) if isinstance(ind, (int, long)): if ind < 0: return ind + shape else: return ind if isinstance(ind, list): return [i + shape if i < 0 else i for i in ind] return ind @memoize def _expander(where): if not where: def expand(seq, val): return seq return expand else: decl = """def expand(seq, val): return ({left}) + tuple({right}) """ left = [] j = 0 for i in range(max(where) + 1): if i in where: left.append("val, ") else: left.append("seq[%d], " % j) j += 1 right = "seq[%d:]" % j left = "".join(left) decl = decl.format(**locals()) ns = {} exec(compile(decl, "<dynamic>", "exec"), ns, ns) return ns['expand'] def expander(where): """Create a function to insert value at many locations in sequence. >>> expander([0, 2])(['a', 'b', 'c'], 'z') ('z', 'a', 'z', 'b', 'c') """ return _expander(tuple(where)) def new_blockdim(dim_shape, lengths, index): """ >>> new_blockdim(100, [20, 10, 20, 10, 40], slice(0, 90, 2)) [10, 5, 10, 5, 15] >>> new_blockdim(100, [20, 10, 20, 10, 40], [5, 1, 30, 22]) [4] >>> new_blockdim(100, [20, 10, 20, 10, 40], slice(90, 10, -2)) [16, 5, 10, 5, 4] """ if index == slice(None, None, None): return lengths if isinstance(index, list): return [len(index)] assert not isinstance(index, (int, long)) pairs = sorted(_slice_1d(dim_shape, lengths, index).items(), key=itemgetter(0)) slices = [slice(0, lengths[i], 1) if slc == slice(None, None, None) else slc for i, slc in pairs] if isinstance(index, slice) and index.step and index.step < 0: slices = slices[::-1] return [int(ceil((1. * slc.stop - slc.start) / slc.step)) for slc in slices] def replace_ellipsis(n, index): """ Replace ... with slices, :, : ,: >>> replace_ellipsis(4, (3, Ellipsis, 2)) (3, slice(None, None, None), slice(None, None, None), 2) >>> replace_ellipsis(2, (Ellipsis, None)) (slice(None, None, None), slice(None, None, None), None) """ # Careful about using in or index because index may contain arrays isellipsis = [i for i, ind in enumerate(index) if ind is Ellipsis] extra_dimensions = n - (len(index) - sum(i is None for i in index) - 1) if not isellipsis: return index else: loc = isellipsis[0] return (index[:loc] + (slice(None, None, None),) * extra_dimensions + index[loc + 1:]) def check_index(ind, dimension): """ Check validity of index for a given dimension Examples -------- >>> check_index(3, 5) >>> check_index(5, 5) Traceback (most recent call last): ... IndexError: Index is not smaller than dimension 5 >= 5 >>> check_index(6, 5) Traceback (most recent call last): ... IndexError: Index is not smaller than dimension 6 >= 5 >>> check_index(-1, 5) >>> check_index(-6, 5) Traceback (most recent call last): ... IndexError: Negative index is not greater than negative dimension -6 <= -5 >>> check_index([1, 2], 5) >>> check_index([6, 3], 5) Traceback (most recent call last): ... IndexError: Index out of bounds 5 >>> check_index(slice(0, 3), 5) """ if isinstance(ind, list): x = np.array(ind) if (x >= dimension).any() or (x < -dimension).any(): raise IndexError("Index out of bounds %s" % dimension) elif isinstance(ind, slice): return elif ind >= dimension: raise IndexError("Index is not smaller than dimension %d >= %d" % (ind, dimension)) elif ind < -dimension: msg = "Negative index is not greater than negative dimension %d <= -%d" raise IndexError(msg % (ind, dimension))
{ "repo_name": "mraspaud/dask", "path": "dask/array/slicing.py", "copies": "1", "size": "22671", "license": "bsd-3-clause", "hash": 4678590991876652000, "line_mean": 30.8412921348, "line_max": 119, "alpha_frac": 0.5539676238, "autogenerated": false, "ratio": 3.417910447761194, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9470179690501153, "avg_score": 0.00033967621200811264, "num_lines": 712 }
from __future__ import absolute_import, division, print_function from itertools import product from math import ceil from numbers import Number from operator import getitem, add import numpy as np from toolz import merge, first, accumulate from ..base import tokenize from ..compatibility import long def sanitize_index(ind): """ Sanitize the elements for indexing along one axis >>> sanitize_index([2, 3, 5]) [2, 3, 5] >>> sanitize_index([True, False, True, False]) [0, 2] >>> sanitize_index(np.array([1, 2, 3])) [1, 2, 3] >>> sanitize_index(np.array([False, True, True])) [1, 2] >>> type(sanitize_index(np.int32(0))) <type 'int'> >>> sanitize_index(1.0) 1 >>> sanitize_index(0.5) Traceback (most recent call last): ... IndexError: Bad index. Must be integer-like: 0.5 """ if isinstance(ind, Number): ind2 = int(ind) if ind2 != ind: raise IndexError("Bad index. Must be integer-like: %s" % ind) else: return ind2 if isinstance(ind, np.ndarray): ind = ind.tolist() if isinstance(ind, list) and ind and isinstance(ind[0], bool): ind = [a for a, b in enumerate(ind) if b] return ind if isinstance(ind, list): return [sanitize_index(i) for i in ind] if isinstance(ind, slice): return slice(sanitize_index(ind.start), sanitize_index(ind.stop), sanitize_index(ind.step)) if ind is None: return ind raise IndexError("Invalid index", i) def slice_array(out_name, in_name, blockdims, index): """ Master function for array slicing This function makes a new dask that slices blocks along every dimension and aggregates (via cartesian product) each dimension's slices so that the resulting block slices give the same results as the original slice on the original structure Index must be a tuple. It may contain the following types int, slice, list (at most one list), None Parameters ---------- in_name - string This is the dask variable name that will be used as input out_name - string This is the dask variable output name blockshape - iterable of integers index - iterable of integers, slices, lists, or None Returns ------- Dict where the keys are tuples of (out_name, dim_index[, dim_index[, ...]]) and the values are (function, (in_name, dim_index, dim_index, ...), (slice(...), [slice()[,...]]) Also new blockdims with shapes of each block ((10, 10, 10, 10), (20, 20)) Examples -------- >>> dsk, blockdims = slice_array('y', 'x', [(20, 20, 20, 20, 20)], ... (slice(10, 35),)) # doctest: +SKIP >>> dsk # doctest: +SKIP {('y', 0): (getitem, ('x', 0), (slice(10, 20),)), ('y', 1): (getitem, ('x', 1), (slice(0, 15),))} >>> blockdims # doctest: +SKIP ((10, 15),) See Also -------- This function works by successively unwrapping cases and passing down through a sequence of functions. slice_with_newaxis - handle None/newaxis case slice_wrap_lists - handle fancy indexing with lists slice_slices_and_integers - handle everything else """ index = replace_ellipsis(len(blockdims), index) index = tuple(map(sanitize_index, index)) blockdims = tuple(map(tuple, blockdims)) # x[:, :, :] - Punt and return old value if all(index == slice(None, None, None) for index in index): suffixes = product(*[range(len(bd)) for bd in blockdims]) dsk = dict(((out_name,) + s, (in_name,) + s) for s in suffixes) return dsk, blockdims # Add in missing colons at the end as needed. x[5] -> x[5, :, :] missing = len(blockdims) - (len(index) - index.count(None)) index += (slice(None, None, None),) * missing # Pass down to next function dsk_out, bd_out = slice_with_newaxes(out_name, in_name, blockdims, index) bd_out = tuple(map(tuple, bd_out)) return dsk_out, bd_out def slice_with_newaxes(out_name, in_name, blockdims, index): """ Handle indexing with Nones Strips out Nones then hands off to slice_wrap_lists """ # Strip Nones from index index2 = tuple([ind for ind in index if ind is not None]) where_none = [i for i, ind in enumerate(index) if ind is None] # Pass down and do work dsk, blockdims2 = slice_wrap_lists(out_name, in_name, blockdims, index2) # Insert ",0" into the key: ('x', 2, 3) -> ('x', 0, 2, 0, 3) dsk2 = dict(((out_name,) + insert_many(k[1:], where_none, 0), (v[:2] + (insert_many(v[2], where_none, None),))) for k, v in dsk.items() if k[0] == out_name) # Add back intermediate parts of the dask that weren't the output dsk3 = merge(dsk2, dict((k, v) for k, v in dsk.items() if k[0] != out_name)) # Insert (1,) into blockdims: ((2, 2), (3, 3)) -> ((2, 2), (1,), (3, 3)) blockdims3 = insert_many(blockdims2, where_none, (1,)) return dsk3, blockdims3 def slice_wrap_lists(out_name, in_name, blockdims, index): """ Fancy indexing along blocked array dasks Handles index of type list. Calls slice_slices_and_integers for the rest See Also -------- take - handle slicing with lists ("fancy" indexing) slice_slices_and_integers - handle slicing with slices and integers """ shape = tuple(map(sum, blockdims)) assert all(isinstance(i, (slice, list, int, long)) for i in index) # Change indices like -1 to 9 index2 = posify_index(shape, index) # Do we have more than one list in the index? where_list = [i for i, ind in enumerate(index) if isinstance(ind, list)] if len(where_list) > 1: raise NotImplementedError("Don't yet support nd fancy indexing") # Replace all lists with full slices [3, 1, 0] -> slice(None, None, None) index_without_list = tuple(slice(None, None, None) if isinstance(i, list) else i for i in index2) # No lists, hooray! just use slice_slices_and_integers if index2 == index_without_list: return slice_slices_and_integers(out_name, in_name, blockdims, index2) # lists and full slices. Just use take if all(isinstance(i, list) or i == slice(None, None, None) for i in index2): axis = where_list[0] blockdims2, dsk3 = take(out_name, in_name, blockdims, index2[where_list[0]], axis=axis) # Mixed case. Both slices/integers and lists. slice/integer then take else: # Do first pass without lists tmp = 'slice-' + tokenize((out_name, in_name, blockdims, index)) dsk, blockdims2 = slice_slices_and_integers(tmp, in_name, blockdims, index_without_list) # After collapsing some axes due to int indices, adjust axis parameter axis = where_list[0] axis2 = axis - sum(1 for i, ind in enumerate(index2) if i < axis and isinstance(ind, (int, long))) # Do work blockdims2, dsk2 = take(out_name, tmp, blockdims2, index2[axis], axis=axis2) dsk3 = merge(dsk, dsk2) return dsk3, blockdims2 def slice_slices_and_integers(out_name, in_name, blockdims, index): """ Dask array indexing with slices and integers See Also -------- _slice_1d """ shape = tuple(map(sum, blockdims)) assert all(isinstance(ind, (slice, int, long)) for ind in index) assert len(index) == len(blockdims) # Get a list (for each dimension) of dicts{blocknum: slice()} block_slices = list(map(_slice_1d, shape, blockdims, index)) # (in_name, 1, 1, 2), (in_name, 1, 1, 4), (in_name, 2, 1, 2), ... in_names = list(product([in_name], *[sorted(i.keys()) for i in block_slices])) # (out_name, 0, 0, 0), (out_name, 0, 0, 1), (out_name, 0, 1, 0), ... out_names = list(product([out_name], *[range(len(d))[::-1] if i.step and i.step < 0 else range(len(d)) for d, i in zip(block_slices, index) if not isinstance(i, (int, long))])) all_slices = list(product(*[i.values() for i in block_slices])) dsk_out = dict((out_name, (getitem, in_name, slices)) for out_name, in_name, slices in zip(out_names, in_names, all_slices)) new_blockdims = [new_blockdim(d, db, i) for d, i, db in zip(shape, index, blockdims) if not isinstance(i, (int, long))] return dsk_out, new_blockdims def _slice_1d(dim_shape, lengths, index): """Returns a dict of {blocknum: slice} This function figures out where each slice should start in each block for a single dimension. If the slice won't return any elements in the block, that block will not be in the output. Parameters ---------- dim_shape - the number of elements in this dimension. This should be a positive, non-zero integer blocksize - the number of elements per block in this dimension This should be a positive, non-zero integer index - a description of the elements in this dimension that we want This might be an integer, a slice(), or an Ellipsis Returns ------- dictionary where the keys are the integer index of the blocks that should be sliced and the values are the slices Examples -------- 100 length array cut into length 20 pieces, slice 0:35 >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(0, 35)) {0: slice(None, None, None), 1: slice(0, 15, 1)} Support irregular blocks and various slices >>> _slice_1d(100, [20, 10, 10, 10, 25, 25], slice(10, 35)) {0: slice(10, 20, 1), 1: slice(None, None, None), 2: slice(0, 5, 1)} Support step sizes >>> _slice_1d(100, [15, 14, 13], slice(10, 41, 3)) {0: slice(10, 15, 3), 1: slice(1, 14, 3), 2: slice(2, 12, 3)} >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(0, 100, 40)) # step > blocksize {0: slice(0, 20, 40), 2: slice(0, 20, 40), 4: slice(0, 20, 40)} Also support indexing single elements >>> _slice_1d(100, [20, 20, 20, 20, 20], 25) {1: 5} And negative slicing >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(100, 0, -3)) {0: slice(-2, -20, -3), 1: slice(-1, -21, -3), 2: slice(-3, -21, -3), 3: slice(-2, -21, -3), 4: slice(-1, -21, -3)} >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(100, 12, -3)) {0: slice(-2, -8, -3), 1: slice(-1, -21, -3), 2: slice(-3, -21, -3), 3: slice(-2, -21, -3), 4: slice(-1, -21, -3)} >>> _slice_1d(100, [20, 20, 20, 20, 20], slice(100, -12, -3)) {4: slice(-1, -12, -3)} """ if isinstance(index, (int, long)): i = 0 ind = index lens = list(lengths) while ind >= lens[0]: i += 1 ind -= lens.pop(0) return {i: ind} assert isinstance(index, slice) step = index.step or 1 if step > 0: start = index.start or 0 stop = index.stop if index.stop is not None else dim_shape else: start = index.start or dim_shape - 1 start = dim_shape - 1 if start >= dim_shape else start stop = -(dim_shape + 1) if index.stop is None else index.stop # posify start and stop if start < 0: start += dim_shape if stop < 0: stop += dim_shape d = dict() if step > 0: for i, length in enumerate(lengths): if start < length and stop > 0: d[i] = slice(start, min(stop, length), step) start = (start - length) % step else: start = start - length stop -= length else: rstart = start # running start chunk_boundaries = list(accumulate(add, lengths)) for i, chunk_stop in reversed(list(enumerate(chunk_boundaries))): # create a chunk start and stop if i == 0: chunk_start = 0 else: chunk_start = chunk_boundaries[i - 1] # if our slice is in this chunk if (chunk_start <= rstart < chunk_stop) and (rstart > stop): d[i] = slice(rstart - chunk_stop, max(chunk_start - chunk_stop - 1, stop - chunk_stop), step) # compute the next running start point, offset = (rstart - (chunk_start - 1)) % step rstart = chunk_start + offset - 1 # replace 0:20:1 with : if appropriate for k, v in d.items(): if v == slice(0, lengths[k], 1): d[k] = slice(None, None, None) if not d: # special case x[:0] d[0] = slice(0, 0, 1) return d def partition_by_size(sizes, seq): """ >>> partition_by_size([10, 20, 10], [1, 5, 9, 12, 29, 35]) [[1, 5, 9], [2, 19], [5]] """ seq = list(seq) pretotal = 0 total = 0 i = 0 result = list() for s in sizes: total += s L = list() while i < len(seq) and seq[i] < total: L.append(seq[i] - pretotal) i += 1 result.append(L) pretotal += s return result def issorted(seq): """ Is sequence sorted? >>> issorted([1, 2, 3]) True >>> issorted([3, 1, 2]) False """ if not seq: return True x = seq[0] for elem in seq[1:]: if elem < x: return False x = elem return True colon = slice(None, None, None) def take_sorted(outname, inname, blockdims, index, axis=0): """ Index array with sorted list index Forms a dask for the following case x[:, [1, 3, 5, 10], ...] where the index, ``[1, 3, 5, 10]`` is sorted in non-decreasing order. >>> blockdims, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], axis=0) >>> blockdims ((3, 1),) >>> dsk # doctest: +SKIP {('y', 0): (getitem, ('x', 0), ([1, 3, 5],)), ('y', 1): (getitem, ('x', 2), ([7],))} See Also -------- take - calls this function """ n = len(blockdims) sizes = blockdims[axis] # the blocksizes on the axis that we care about index_lists = partition_by_size(sizes, sorted(index)) where_index = [i for i, il in enumerate(index_lists) if il] index_lists = [il for il in index_lists if il] dims = [range(len(bd)) for bd in blockdims] indims = list(dims) indims[axis] = list(range(len(where_index))) keys = list(product([outname], *indims)) outdims = list(dims) outdims[axis] = where_index slices = [[colon]*len(bd) for bd in blockdims] slices[axis] = index_lists slices = list(product(*slices)) inkeys = list(product([inname], *outdims)) values = [(getitem, inkey, slc) for inkey, slc in zip(inkeys, slices)] blockdims2 = list(blockdims) blockdims2[axis] = tuple(map(len, index_lists)) return tuple(blockdims2), dict(zip(keys, values)) def take(outname, inname, blockdims, index, axis=0): """ Index array with an iterable of index Handles a single index by a single list Mimics ``np.take`` >>> blockdims, dsk = take('y', 'x', [(20, 20, 20, 20)], [5, 1, 47, 3], axis=0) >>> blockdims ((4,),) >>> dsk # doctest: +SKIP {('y', 0): (getitem, (np.concatenate, [(getitem, ('x', 0), ([1, 3, 5],)), (getitem, ('x', 2), ([7],))], 0), (2, 0, 4, 1))} When list is sorted we retain original block structure >>> blockdims, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], axis=0) >>> blockdims ((3, 1),) >>> dsk # doctest: +SKIP {('y', 0): (getitem, ('x', 0), ([1, 3, 5],)), ('y', 2): (getitem, ('x', 2), ([7],))} """ if issorted(index): return take_sorted(outname, inname, blockdims, index, axis) n = len(blockdims) sizes = blockdims[axis] # the blocksizes on the axis that we care about index_lists = partition_by_size(sizes, sorted(index)) dims = [[0] if axis == i else list(range(len(bd))) for i, bd in enumerate(blockdims)] keys = list(product([outname], *dims)) rev_index = list(map(sorted(index).index, index)) vals = [(getitem, (np.concatenate, (list, [(getitem, ((inname,) + d[:axis] + (i,) + d[axis+1:]), ((colon,)*axis + (IL,) + (colon,)*(n-axis-1))) for i, IL in enumerate(index_lists) if IL]), axis), ((colon,)*axis + (rev_index,) + (colon,)*(n-axis-1))) for d in product(*dims)] blockdims2 = list(blockdims) blockdims2[axis] = (len(index),) return tuple(blockdims2), dict(zip(keys, vals)) def posify_index(shape, ind): """ Flip negative indices around to positive ones >>> posify_index(10, 3) 3 >>> posify_index(10, -3) 7 >>> posify_index(10, [3, -3]) [3, 7] >>> posify_index((10, 20), (3, -3)) (3, 17) >>> posify_index((10, 20), (3, [3, 4, -3])) (3, [3, 4, 17]) """ if isinstance(ind, tuple): return tuple(map(posify_index, shape, ind)) if isinstance(ind, (int, long)): if ind < 0: return ind + shape else: return ind if isinstance(ind, list): return [posify_index(shape, i) for i in ind] return ind def insert_many(seq, where, val): """ Insert value at many locations in sequence >>> insert_many(['a', 'b', 'c'], [0, 2], 'z') ('z', 'a', 'z', 'b', 'c') """ seq = list(seq) result = [] for i in range(len(where) + len(seq)): if i in where: result.append(val) else: result.append(seq.pop(0)) return tuple(result) def new_blockdim(dim_shape, lengths, index): """ >>> new_blockdim(100, [20, 10, 20, 10, 40], slice(0, 90, 2)) [10, 5, 10, 5, 15] >>> new_blockdim(100, [20, 10, 20, 10, 40], [5, 1, 30, 22]) [4] >>> new_blockdim(100, [20, 10, 20, 10, 40], slice(90, 10, -2)) [16, 5, 10, 5, 4] """ if isinstance(index, list): return [len(index)] assert not isinstance(index, (int, long)) pairs = sorted(_slice_1d(dim_shape, lengths, index).items(), key=first) slices = [slice(0, lengths[i], 1) if slc == slice(None, None, None) else slc for i, slc in pairs] if isinstance(index, slice) and index.step and index.step < 0: slices = slices[::-1] return [int(ceil((1. * slc.stop - slc.start) / slc.step)) for slc in slices] def replace_ellipsis(n, index): """ Replace ... with slices, :, : ,: >>> replace_ellipsis(4, (3, Ellipsis, 2)) (3, slice(None, None, None), slice(None, None, None), 2) """ # Careful about using in or index because index may contain arrays isellipsis = [i for i, ind in enumerate(index) if ind is Ellipsis] if not isellipsis: return index else: loc = isellipsis[0] return (index[:loc] + (slice(None, None, None),) * (n - len(index) + 1) + index[loc+1:])
{ "repo_name": "vikhyat/dask", "path": "dask/array/slicing.py", "copies": "1", "size": "19485", "license": "bsd-3-clause", "hash": -7097070787210551000, "line_mean": 30.6314935065, "line_max": 119, "alpha_frac": 0.5490377213, "autogenerated": false, "ratio": 3.388695652173913, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44377333734739133, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import product from operator import getitem import numpy as np from .core import (normalize_chunks, Array, slices_from_chunks, broadcast_shapes, broadcast_to) from ..base import tokenize from ..utils import different_seeds, ignoring def doc_wraps(func): """ Copy docstring from one function to another """ def _(func2): if func.__doc__ is not None: func2.__doc__ = func.__doc__.replace('>>>', '>>').replace('...', '..') return func2 return _ class RandomState(object): """ Mersenne Twister pseudo-random number generator This object contains state to deterministically generate pseudo-random numbers from a variety of probability distributions. It is identical to ``np.random.RandomState`` except that all functions also take a ``chunks=`` keyword argument. Examples -------- >>> import dask.array as da >>> state = da.random.RandomState(1234) # a seed >>> x = state.normal(10, 0.1, size=3, chunks=(2,)) >>> x.compute() array([ 9.95487579, 10.02999135, 10.08498441]) See Also: np.random.RandomState """ def __init__(self, seed=None): self._numpy_state = np.random.RandomState(seed) def seed(self, seed=None): self._numpy_state.seed(seed) def _wrap(self, func, *args, **kwargs): """ Wrap numpy random function to produce dask.array random function extra_chunks should be a chunks tuple to append to the end of chunks """ size = kwargs.pop('size', None) chunks = kwargs.pop('chunks') extra_chunks = kwargs.pop('extra_chunks', ()) if size is not None and not isinstance(size, (tuple, list)): size = (size,) args_shapes = {ar.shape for ar in args if isinstance(ar, (Array, np.ndarray))} args_shapes.union({ar.shape for ar in kwargs.values() if isinstance(ar, (Array, np.ndarray))}) shapes = list(args_shapes) if size is not None: shapes += [size] # broadcast to the final size(shape) size = broadcast_shapes(*shapes) chunks = normalize_chunks(chunks, size) slices = slices_from_chunks(chunks) def _broadcast_any(ar, shape, chunks): if isinstance(ar, Array): return broadcast_to(ar, shape).rechunk(chunks) if isinstance(ar, np.ndarray): return np.ascontiguousarray(np.broadcast_to(ar, shape)) # Broadcast all arguments, get tiny versions as well # Start adding the relevant bits to the graph dsk = {} lookup = {} small_args = [] for i, ar in enumerate(args): if isinstance(ar, (np.ndarray, Array)): res = _broadcast_any(ar, size, chunks) if isinstance(res, Array): dsk.update(res.dask) lookup[i] = res.name elif isinstance(res, np.ndarray): name = 'array-{}'.format(tokenize(res)) lookup[i] = name dsk[name] = res small_args.append(ar[tuple(0 for _ in ar.shape)]) else: small_args.append(ar) small_kwargs = {} for key, ar in kwargs.items(): if isinstance(ar, (np.ndarray, Array)): res = _broadcast_any(ar, size, chunks) if isinstance(res, Array): dsk.update(res.dask) lookup[key] = res.name elif isinstance(res, np.ndarray): name = 'array-{}'.format(tokenize(res)) lookup[key] = name dsk[name] = res small_kwargs[key] = ar[tuple(0 for _ in ar.shape)] else: small_kwargs[key] = ar # Get dtype small_kwargs['size'] = (0,) dtype = func(np.random.RandomState(), *small_args, **small_kwargs).dtype sizes = list(product(*chunks)) seeds = different_seeds(len(sizes), self._numpy_state) token = tokenize(seeds, size, chunks, args, kwargs) name = 'da.random.{0}-{1}'.format(func.__name__, token) keys = product([name], *([range(len(bd)) for bd in chunks] + [[0]] * len(extra_chunks))) blocks = product(*[range(len(bd)) for bd in chunks]) vals = [] for seed, size, slc, block in zip(seeds, sizes, slices, blocks): arg = [] for i, ar in enumerate(args): if i not in lookup: arg.append(ar) else: if isinstance(ar, Array): arg.append((lookup[i], ) + block) else: # np.ndarray arg.append((getitem, lookup[i], slc)) kwrg = {} for k, ar in kwargs.items(): if k not in lookup: kwrg[k] = ar else: if isinstance(ar, Array): kwrg[k] = (lookup[k], ) + block else: # np.ndarray kwrg[k] = (getitem, lookup[k], slc) vals.append((_apply_random, func.__name__, seed, size, arg, kwrg)) dsk.update(dict(zip(keys, vals))) return Array(dsk, name, chunks + extra_chunks, dtype=dtype) @doc_wraps(np.random.RandomState.beta) def beta(self, a, b, size=None, chunks=None): return self._wrap(np.random.RandomState.beta, a, b, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.binomial) def binomial(self, n, p, size=None, chunks=None): return self._wrap(np.random.RandomState.binomial, n, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.chisquare) def chisquare(self, df, size=None, chunks=None): return self._wrap(np.random.RandomState.chisquare, df, size=size, chunks=chunks) with ignoring(AttributeError): @doc_wraps(np.random.RandomState.choice) def choice(self, a, size=None, replace=True, p=None, chunks=None): return self._wrap(np.random.RandomState.choice, a, size=size, replace=True, p=None, chunks=chunks) # @doc_wraps(np.random.RandomState.dirichlet) # def dirichlet(self, alpha, size=None, chunks=None): @doc_wraps(np.random.RandomState.exponential) def exponential(self, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.exponential, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.f) def f(self, dfnum, dfden, size=None, chunks=None): return self._wrap(np.random.RandomState.f, dfnum, dfden, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.gamma) def gamma(self, shape, scale=1.0, chunks=None): return self._wrap(np.random.RandomState.gamma, scale, size=shape, chunks=chunks) @doc_wraps(np.random.RandomState.geometric) def geometric(self, p, size=None, chunks=None): return self._wrap(np.random.RandomState.geometric, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.gumbel) def gumbel(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.gumbel, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.hypergeometric) def hypergeometric(self, ngood, nbad, nsample, size=None, chunks=None): return self._wrap(np.random.RandomState.hypergeometric, ngood, nbad, nsample, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.laplace) def laplace(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.laplace, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.logistic) def logistic(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.logistic, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.lognormal) def lognormal(self, mean=0.0, sigma=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.lognormal, mean, sigma, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.logseries) def logseries(self, p, size=None, chunks=None): return self._wrap(np.random.RandomState.logseries, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.multinomial) def multinomial(self, n, pvals, size=None, chunks=None): return self._wrap(np.random.RandomState.multinomial, n, pvals, size=size, chunks=chunks, extra_chunks=((len(pvals),),)) @doc_wraps(np.random.RandomState.negative_binomial) def negative_binomial(self, n, p, size=None, chunks=None): return self._wrap(np.random.RandomState.negative_binomial, n, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.noncentral_chisquare) def noncentral_chisquare(self, df, nonc, size=None, chunks=None): return self._wrap(np.random.RandomState.noncentral_chisquare, df, nonc, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.noncentral_f) def noncentral_f(self, dfnum, dfden, nonc, size=None, chunks=None): return self._wrap(np.random.RandomState.noncentral_f, dfnum, dfden, nonc, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.normal) def normal(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.normal, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.pareto) def pareto(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.pareto, a, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.poisson) def poisson(self, lam=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.poisson, lam, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.power) def power(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.power, a, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.randint) def randint(self, low, high=None, size=None, chunks=None): return self._wrap(np.random.RandomState.randint, low, high, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.random_integers) def random_integers(self, low, high=None, size=None, chunks=None): return self._wrap(np.random.RandomState.random_integers, low, high, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.random_sample) def random_sample(self, size=None, chunks=None): return self._wrap(np.random.RandomState.random_sample, size=size, chunks=chunks) random = random_sample @doc_wraps(np.random.RandomState.rayleigh) def rayleigh(self, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.rayleigh, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_cauchy) def standard_cauchy(self, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_cauchy, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_exponential) def standard_exponential(self, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_exponential, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_gamma) def standard_gamma(self, shape, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_gamma, shape, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_normal) def standard_normal(self, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_normal, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_t) def standard_t(self, df, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_t, df, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.tomaxint) def tomaxint(self, size=None, chunks=None): return self._wrap(np.random.RandomState.tomaxint, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.triangular) def triangular(self, left, mode, right, size=None, chunks=None): return self._wrap(np.random.RandomState.triangular, left, mode, right, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.uniform) def uniform(self, low=0.0, high=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.uniform, low, high, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.vonmises) def vonmises(self, mu, kappa, size=None, chunks=None): return self._wrap(np.random.RandomState.vonmises, mu, kappa, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.wald) def wald(self, mean, scale, size=None, chunks=None): return self._wrap(np.random.RandomState.wald, mean, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.weibull) def weibull(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.weibull, a, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.zipf) def zipf(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.zipf, a, size=size, chunks=chunks) def _apply_random(func, seed, size, args, kwargs): """ Apply RandomState method with seed >>> _apply_random('normal', 123, 3, (10, 1.0), {}) array([ 8.9143694 , 10.99734545, 10.2829785 ]) """ state = np.random.RandomState(seed) func = getattr(state, func) return func(*args, size=size, **kwargs) _state = RandomState() seed = _state.seed beta = _state.beta binomial = _state.binomial chisquare = _state.chisquare exponential = _state.exponential f = _state.f gamma = _state.gamma geometric = _state.geometric gumbel = _state.gumbel hypergeometric = _state.hypergeometric laplace = _state.laplace logistic = _state.logistic lognormal = _state.lognormal logseries = _state.logseries multinomial = _state.multinomial negative_binomial = _state.negative_binomial noncentral_chisquare = _state.noncentral_chisquare noncentral_f = _state.noncentral_f normal = _state.normal pareto = _state.pareto poisson = _state.poisson power = _state.power rayleigh = _state.rayleigh random_sample = _state.random_sample random = random_sample randint = _state.randint random_integers = _state.random_integers triangular = _state.triangular uniform = _state.uniform vonmises = _state.vonmises wald = _state.wald weibull = _state.weibull zipf = _state.zipf """ Standard distributions """ standard_cauchy = _state.standard_cauchy standard_exponential = _state.standard_exponential standard_gamma = _state.standard_gamma standard_normal = _state.standard_normal standard_t = _state.standard_t
{ "repo_name": "cowlicks/dask", "path": "dask/array/random.py", "copies": "2", "size": "15992", "license": "bsd-3-clause", "hash": -3918635735124103700, "line_mean": 38.1960784314, "line_max": 82, "alpha_frac": 0.6016133067, "autogenerated": false, "ratio": 3.7487107360525083, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5350324042752508, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import product from operator import mul import numpy as np from .core import Array from ..base import tokenize from ..core import flatten from ..compatibility import reduce from .. import sharedict def reshape_rechunk(inshape, outshape, inchunks): assert all(isinstance(c, tuple) for c in inchunks) ii = len(inshape) - 1 oi = len(outshape) - 1 result_inchunks = [None for i in range(len(inshape))] result_outchunks = [None for i in range(len(outshape))] while ii >= 0 or oi >= 0: if inshape[ii] == outshape[oi]: result_inchunks[ii] = inchunks[ii] result_outchunks[oi] = inchunks[ii] ii -= 1 oi -= 1 continue din = inshape[ii] dout = outshape[oi] if din == 1: result_inchunks[ii] = (1,) ii -= 1 elif dout == 1: result_outchunks[oi] = (1,) oi -= 1 elif din < dout: # (4, 4, 4) -> (64,) ileft = ii - 1 while ileft >= 0 and reduce(mul, inshape[ileft:ii + 1]) < dout: # 4 < 64, 4*4 < 64, 4*4*4 == 64 ileft -= 1 if reduce(mul, inshape[ileft:ii + 1]) != dout: raise ValueError("Shapes not compatible") for i in range(ileft + 1, ii + 1): # need single-shape dimensions result_inchunks[i] = (inshape[i],) # chunks[i] = (4,) chunk_reduction = reduce(mul, map(len, inchunks[ileft + 1:ii + 1])) result_inchunks[ileft] = expand_tuple(inchunks[ileft], chunk_reduction) prod = reduce(mul, inshape[ileft + 1: ii + 1]) # 16 result_outchunks[oi] = tuple(prod * c for c in result_inchunks[ileft]) # (1, 1, 1, 1) .* 16 oi -= 1 ii = ileft - 1 elif din > dout: # (64,) -> (4, 4, 4) oleft = oi - 1 while oleft >= 0 and reduce(mul, outshape[oleft:oi + 1]) < din: oleft -= 1 if reduce(mul, outshape[oleft:oi + 1]) != din: raise ValueError("Shapes not compatible") # TODO: don't coalesce shapes unnecessarily cs = reduce(mul, outshape[oleft + 1: oi + 1]) result_inchunks[ii] = contract_tuple(inchunks[ii], cs) # (16, 16, 16, 16) for i in range(oleft + 1, oi + 1): result_outchunks[i] = (outshape[i],) result_outchunks[oleft] = tuple(c // cs for c in result_inchunks[ii]) oi = oleft - 1 ii -= 1 return tuple(result_inchunks), tuple(result_outchunks) def expand_tuple(chunks, factor): """ >>> expand_tuple((2, 4), 2) (1, 1, 2, 2) >>> expand_tuple((2, 4), 3) (1, 1, 1, 1, 2) >>> expand_tuple((3, 4), 2) (1, 2, 2, 2) >>> expand_tuple((7, 4), 3) (2, 2, 3, 1, 1, 2) """ if factor == 1: return chunks out = [] for c in chunks: x = c part = max(x / factor, 1) while x >= 2 * part: out.append(int(part)) x -= int(part) if x: out.append(x) assert sum(chunks) == sum(out) return tuple(out) def contract_tuple(chunks, factor): """ Return simple chunks tuple such that factor divides all elements Examples -------- >>> contract_tuple((2, 2, 8, 4), 4) (4, 8, 4) """ assert sum(chunks) % factor == 0 out = [] residual = 0 for chunk in chunks: chunk += residual div = chunk // factor residual = chunk % factor good = factor * div if good: out.append(good) return tuple(out) def reshape(x, shape): """ Reshape array to new shape This is a parallelized version of the ``np.reshape`` function with the following limitations: 1. It assumes that the array is stored in C-order 2. It only allows for reshapings that collapse or merge dimensions like ``(1, 2, 3, 4) -> (1, 6, 4)`` or ``(64,) -> (4, 4, 4)`` When communication is necessary this algorithm depends on the logic within rechunk. It endeavors to keep chunk sizes roughly the same when possible. See Also -------- dask.array.rechunk numpy.reshape """ # Sanitize inputs, look for -1 in shape from .slicing import sanitize_index shape = tuple(map(sanitize_index, shape)) known_sizes = [s for s in shape if s != -1] if len(known_sizes) < len(shape): if len(known_sizes) - len(shape) > 1: raise ValueError('can only specify one unknown dimension') missing_size = sanitize_index(x.size / reduce(mul, known_sizes, 1)) shape = tuple(missing_size if s == -1 else s for s in shape) if np.isnan(sum(x.shape)): raise ValueError("Array chunk size or shape is unknown. shape: %s", x.shape) if reduce(mul, shape, 1) != x.size: raise ValueError('total size of new array must be unchanged') if x.shape == shape: return x name = 'reshape-' + tokenize(x, shape) if x.npartitions == 1: key = next(flatten(x._keys())) dsk = {(name,) + (0,) * len(shape): (np.reshape, key, shape)} chunks = tuple((d,) for d in shape) return Array(sharedict.merge((name, dsk), x.dask), name, chunks, dtype=x.dtype) # Logic for how to rechunk inchunks, outchunks = reshape_rechunk(x.shape, shape, x.chunks) x2 = x.rechunk(inchunks) # Construct graph in_keys = list(product([x2.name], *[range(len(c)) for c in inchunks])) out_keys = list(product([name], *[range(len(c)) for c in outchunks])) shapes = list(product(*outchunks)) dsk = {a: (np.reshape, b, shape) for a, b, shape in zip(out_keys, in_keys, shapes)} return Array(sharedict.merge((name, dsk), x2.dask), name, outchunks, dtype=x.dtype)
{ "repo_name": "cpcloud/dask", "path": "dask/array/reshape.py", "copies": "1", "size": "5917", "license": "bsd-3-clause", "hash": -7006342420301881000, "line_mean": 30.3068783069, "line_max": 107, "alpha_frac": 0.5519689032, "autogenerated": false, "ratio": 3.404487917146145, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4456456820346145, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from itertools import product import numpy as np from .core import normalize_chunks, Array from ..base import tokenize from ..utils import different_seeds, ignoring def doc_wraps(func): """ Copy docstring from one function to another """ def _(func2): func2.__doc__ = func.__doc__.replace('>>>', '>>').replace('...', '..') return func2 return _ class RandomState(object): """ Mersenne Twister pseudo-random number generator This object contains state to deterministically generate pseudo-random numbers from a variety of probability distributions. It is identical to ``np.random.RandomState`` except that all functions also take a ``chunks=`` keyword argument. Examples -------- >>> import dask.array as da >>> state = da.random.RandomState(1234) # a seed >>> x = state.normal(10, 0.1, size=3, chunks=(2,)) >>> x.compute() array([ 9.95487579, 10.02999135, 10.08498441]) See Also: np.random.RandomState """ def __init__(self, seed=None): self._numpy_state = np.random.RandomState(seed) def seed(self, seed=None): self._numpy_state.seed(seed) def _wrap(self, func, *args, **kwargs): """ Wrap numpy random function to produce dask.array random function extra_chunks should be a chunks tuple to append to the end of chunks """ size = kwargs.pop('size') chunks = kwargs.pop('chunks') extra_chunks = kwargs.pop('extra_chunks', ()) if not isinstance(size, (tuple, list)): size = (size,) chunks = normalize_chunks(chunks, size) # Get dtype kw = kwargs.copy() kw['size'] = (0,) dtype = func(np.random.RandomState(), *args, **kw).dtype # Build graph sizes = list(product(*chunks)) seeds = different_seeds(len(sizes), self._numpy_state) token = tokenize(seeds, size, chunks, args, kwargs) name = 'da.random.{0}-{1}'.format(func.__name__, token) keys = product([name], *([range(len(bd)) for bd in chunks] + [[0]] * len(extra_chunks))) vals = ((_apply_random, func.__name__, seed, size, args, kwargs) for seed, size in zip(seeds, sizes)) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks + extra_chunks, dtype=dtype) @doc_wraps(np.random.RandomState.beta) def beta(self, a, b, size=None, chunks=None): return self._wrap(np.random.RandomState.beta, a, b, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.binomial) def binomial(self, n, p, size=None, chunks=None): return self._wrap(np.random.RandomState.binomial, n, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.chisquare) def chisquare(self, df, size=None, chunks=None): return self._wrap(np.random.RandomState.chisquare, df, size=size, chunks=chunks) with ignoring(AttributeError): @doc_wraps(np.random.RandomState.choice) def choice(self, a, size=None, replace=True, p=None, chunks=None): return self._wrap(np.random.RandomState.choice, a, size=size, replace=True, p=None, chunks=chunks) # @doc_wraps(np.random.RandomState.dirichlet) # def dirichlet(self, alpha, size=None, chunks=None): @doc_wraps(np.random.RandomState.exponential) def exponential(self, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.exponential, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.f) def f(self, dfnum, dfden, size=None, chunks=None): return self._wrap(np.random.RandomState.f, dfnum, dfden, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.gamma) def gamma(self, shape, scale=1.0, chunks=None): return self._wrap(np.random.RandomState.gamma, scale, size=shape, chunks=chunks) @doc_wraps(np.random.RandomState.geometric) def geometric(self, p, size=None, chunks=None): return self._wrap(np.random.RandomState.geometric, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.gumbel) def gumbel(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.gumbel, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.hypergeometric) def hypergeometric(self, ngood, nbad, nsample, size=None, chunks=None): return self._wrap(np.random.RandomState.hypergeometric, ngood, nbad, nsample, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.laplace) def laplace(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.laplace, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.logistic) def logistic(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.logistic, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.lognormal) def lognormal(self, mean=0.0, sigma=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.lognormal, mean, sigma, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.logseries) def logseries(self, p, size=None, chunks=None): return self._wrap(np.random.RandomState.logseries, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.multinomial) def multinomial(self, n, pvals, size=None, chunks=None): return self._wrap(np.random.RandomState.multinomial, n, pvals, size=size, chunks=chunks, extra_chunks=((len(pvals),),)) @doc_wraps(np.random.RandomState.negative_binomial) def negative_binomial(self, n, p, size=None, chunks=None): return self._wrap(np.random.RandomState.negative_binomial, n, p, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.noncentral_chisquare) def noncentral_chisquare(self, df, nonc, size=None, chunks=None): return self._wrap(np.random.RandomState.noncentral_chisquare, df, nonc, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.noncentral_f) def noncentral_f(self, dfnum, dfden, nonc, size=None, chunks=None): return self._wrap(np.random.RandomState.noncentral_f, dfnum, dfden, nonc, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.normal) def normal(self, loc=0.0, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.normal, loc, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.pareto) def pareto(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.pareto, a, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.poisson) def poisson(self, lam=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.poisson, lam, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.power) def power(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.power, a, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.randint) def randint(self, low, high=None, size=None, chunks=None): return self._wrap(np.random.RandomState.randint, low, high, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.random_integers) def random_integers(self, low, high=None, size=None, chunks=None): return self._wrap(np.random.RandomState.random_integers, low, high, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.random_sample) def random_sample(self, size=None, chunks=None): return self._wrap(np.random.RandomState.random_sample, size=size, chunks=chunks) random = random_sample @doc_wraps(np.random.RandomState.rayleigh) def rayleigh(self, scale=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.rayleigh, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_cauchy) def standard_cauchy(self, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_cauchy, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_exponential) def standard_exponential(self, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_exponential, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_gamma) def standard_gamma(self, shape, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_gamma, shape, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_normal) def standard_normal(self, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_normal, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.standard_t) def standard_t(self, df, size=None, chunks=None): return self._wrap(np.random.RandomState.standard_t, df, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.tomaxint) def tomaxint(self, size=None, chunks=None): return self._wrap(np.random.RandomState.tomaxint, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.triangular) def triangular(self, left, mode, right, size=None, chunks=None): return self._wrap(np.random.RandomState.triangular, left, mode, right, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.uniform) def uniform(self, low=0.0, high=1.0, size=None, chunks=None): return self._wrap(np.random.RandomState.uniform, low, high, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.vonmises) def vonmises(self, mu, kappa, size=None, chunks=None): return self._wrap(np.random.RandomState.vonmises, mu, kappa, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.wald) def wald(self, mean, scale, size=None, chunks=None): return self._wrap(np.random.RandomState.wald, mean, scale, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.weibull) def weibull(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.weibull, a, size=size, chunks=chunks) @doc_wraps(np.random.RandomState.zipf) def zipf(self, a, size=None, chunks=None): return self._wrap(np.random.RandomState.zipf, a, size=size, chunks=chunks) def _apply_random(func, seed, size, args, kwargs): """ Apply RandomState method with seed >>> _apply_random('normal', 123, 3, (10, 1.0), {}) array([ 8.9143694 , 10.99734545, 10.2829785 ]) """ state = np.random.RandomState(seed) func = getattr(state, func) return func(*args, size=size, **kwargs) _state = RandomState() seed = _state.seed beta = _state.beta binomial = _state.binomial chisquare = _state.chisquare exponential = _state.exponential f = _state.f gamma = _state.gamma geometric = _state.geometric gumbel = _state.gumbel hypergeometric = _state.hypergeometric laplace = _state.laplace logistic = _state.logistic lognormal = _state.lognormal logseries = _state.logseries multinomial = _state.multinomial negative_binomial = _state.negative_binomial noncentral_chisquare = _state.noncentral_chisquare noncentral_f = _state.noncentral_f normal = _state.normal pareto = _state.pareto poisson = _state.poisson power = _state.power rayleigh = _state.rayleigh random_sample = _state.random_sample random = random_sample randint = _state.randint random_integers = _state.random_integers triangular = _state.triangular uniform = _state.uniform vonmises = _state.vonmises wald = _state.wald weibull = _state.weibull zipf = _state.zipf """ Standard distributions """ standard_cauchy = _state.standard_cauchy standard_exponential = _state.standard_exponential standard_gamma = _state.standard_gamma standard_normal = _state.standard_normal standard_t = _state.standard_t
{ "repo_name": "mikegraham/dask", "path": "dask/array/random.py", "copies": "1", "size": "12905", "license": "bsd-3-clause", "hash": -9215933013564944000, "line_mean": 37.4077380952, "line_max": 79, "alpha_frac": 0.6333204184, "autogenerated": false, "ratio": 3.6290776152980877, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47623980336980876, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from keyword import iskeyword import re import datashape from datashape import dshape, DataShape, Record, Var, Mono, Fixed from datashape.predicates import isscalar, iscollection, isboolean, isrecord import numpy as np from odo.utils import copydoc import toolz from toolz import concat, memoize, partial, first from toolz.curried import map, filter from ..compatibility import _strtypes, builtins, boundmethod, PY2 from .core import Node, subs, common_subexpression, path from .method_dispatch import select_functions from ..dispatch import dispatch from .utils import hashable_index, replace_slices __all__ = ['Expr', 'ElemWise', 'Field', 'Symbol', 'discover', 'Projection', 'projection', 'Selection', 'selection', 'Label', 'label', 'Map', 'ReLabel', 'relabel', 'Apply', 'apply', 'Slice', 'shape', 'ndim', 'label', 'symbol', 'Coerce', 'coerce'] _attr_cache = dict() def isvalid_identifier(s): """Check whether a string is a valid Python identifier Examples -------- >>> isvalid_identifier('Hello') True >>> isvalid_identifier('Hello world') False >>> isvalid_identifier('Helloworld!') False >>> isvalid_identifier('1a') False >>> isvalid_identifier('a1') True >>> isvalid_identifier('for') False >>> isvalid_identifier(None) False """ # the re module compiles and caches regexs so no need to compile it return (s is not None and not iskeyword(s) and re.match(r'^[_a-zA-Z][_a-zA-Z0-9]*$', s) is not None) def valid_identifier(s): """Rewrite a string to be a valid identifier if it contains >>> valid_identifier('hello') 'hello' >>> valid_identifier('hello world') 'hello_world' >>> valid_identifier('hello.world') 'hello_world' >>> valid_identifier('hello-world') 'hello_world' >>> valid_identifier(None) >>> valid_identifier('1a') """ if isinstance(s, _strtypes): if s[0].isdigit(): return return s.replace(' ', '_').replace('.', '_').replace('-', '_') return s class Expr(Node): """ Symbolic expression of a computation All Blaze expressions (Join, By, Sort, ...) descend from this class. It contains shared logic and syntax. It in turn inherits from ``Node`` which holds all tree traversal logic """ def _get_field(self, fieldname): if not isinstance(self.dshape.measure, Record): if fieldname == self._name: return self raise ValueError( "Can not get field '%s' of non-record expression %s" % (fieldname, self)) return Field(self, fieldname) def __getitem__(self, key): if isinstance(key, _strtypes) and key in self.fields: return self._get_field(key) elif isinstance(key, Expr) and iscollection(key.dshape): return selection(self, key) elif (isinstance(key, list) and builtins.all(isinstance(k, _strtypes) for k in key)): if set(key).issubset(self.fields): return self._project(key) else: raise ValueError('Names %s not consistent with known names %s' % (key, self.fields)) elif (isinstance(key, tuple) and all(isinstance(k, (int, slice, type(None), list, np.ndarray)) for k in key)): return sliceit(self, key) elif isinstance(key, (slice, int, type(None), list, np.ndarray)): return sliceit(self, (key,)) raise ValueError("Not understood %s[%s]" % (self, key)) def map(self, func, schema=None, name=None): return Map(self, func, schema, name) def _project(self, key): return projection(self, key) @property def schema(self): return datashape.dshape(self.dshape.measure) @property def fields(self): if isinstance(self.dshape.measure, Record): return self.dshape.measure.names name = getattr(self, '_name', None) if name is not None: return [self._name] return [] def _len(self): try: return int(self.dshape[0]) except TypeError: raise ValueError('Can not determine length of table with the ' 'following datashape: %s' % self.dshape) def __len__(self): # pragma: no cover return self._len() def __iter__(self): raise NotImplementedError( 'Iteration over expressions is not supported.\n' 'Iterate over computed result instead, e.g. \n' "\titer(expr) # don't do this\n" "\titer(compute(expr)) # do this instead") def __dir__(self): result = dir(type(self)) if isrecord(self.dshape.measure) and self.fields: result.extend(list(map(valid_identifier, self.fields))) d = toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape)) result.extend(list(d)) return sorted(set(filter(isvalid_identifier, result))) def __getattr__(self, key): if key == '_hash': raise AttributeError() try: return _attr_cache[(self, key)] except: pass try: result = object.__getattribute__(self, key) except AttributeError: fields = dict(zip(map(valid_identifier, self.fields), self.fields)) # prefer the method if there's a field with the same name methods = toolz.merge( schema_methods(self.dshape.measure), dshape_methods(self.dshape) ) if key in methods: func = methods[key] if func in method_properties: result = func(self) else: result = boundmethod(func, self) elif self.fields and key in fields: if isscalar(self.dshape.measure): # t.foo.foo is t.foo result = self else: result = self[fields[key]] else: raise _attr_cache[(self, key)] = result return result @property def _name(self): if (isscalar(self.dshape.measure) and len(self._inputs) == 1 and isscalar(self._child.dshape.measure)): return self._child._name def __enter__(self): """ Enter context """ return self def __exit__(self, *args): """ Exit context Close any open resource if we are called in context """ for value in self._resources().values(): try: value.close() except AttributeError: pass return True _symbol_cache = dict() def _symbol_key(args, kwargs): if len(args) == 1: name, = args ds = None token = None if len(args) == 2: name, ds = args token = None elif len(args) == 3: name, ds, token = args ds = kwargs.get('dshape', ds) token = kwargs.get('token', token) ds = dshape(ds) return (name, ds, token) @memoize(cache=_symbol_cache, key=_symbol_key) def symbol(name, dshape, token=None): return Symbol(name, dshape, token=token) class Symbol(Expr): """ Symbolic data. The leaf of a Blaze expression Examples -------- >>> points = symbol('points', '5 * 3 * {x: int, y: int}') >>> points points >>> points.dshape dshape("5 * 3 * {x: int32, y: int32}") """ __slots__ = '_hash', '_name', 'dshape', '_token' __inputs__ = () def __init__(self, name, dshape, token=None): self._name = name if isinstance(dshape, _strtypes): dshape = datashape.dshape(dshape) if isinstance(dshape, Mono) and not isinstance(dshape, DataShape): dshape = DataShape(dshape) self.dshape = dshape self._token = token def __str__(self): return self._name or '' def _resources(self): return dict() @dispatch(Symbol, dict) def _subs(o, d): """ Subs symbols using symbol function Supports caching""" newargs = [subs(arg, d) for arg in o._args] return symbol(*newargs) class ElemWise(Expr): """ Elementwise operation. The shape of this expression matches the shape of the child. """ @property def dshape(self): return datashape.DataShape(*(self._child.dshape.shape + tuple(self.schema))) class Field(ElemWise): """ A single field from an expression. Get a single field from an expression with record-type schema. We store the name of the field in the ``_name`` attribute. Examples -------- >>> points = symbol('points', '5 * 3 * {x: int32, y: int32}') >>> points.x.dshape dshape("5 * 3 * int32") For fields that aren't valid Python identifiers, use ``[]`` syntax: >>> points = symbol('points', '5 * 3 * {"space station": float64}') >>> points['space station'].dshape dshape("5 * 3 * float64") """ __slots__ = '_hash', '_child', '_name' def __str__(self): fmt = '%s.%s' if isvalid_identifier(self._name) else '%s[%r]' return fmt % (self._child, self._name) @property def _expr(self): return symbol(self._name, datashape.DataShape(self.dshape.measure)) @property def dshape(self): shape = self._child.dshape.shape schema = self._child.dshape.measure.dict[self._name] shape = shape + schema.shape schema = (schema.measure,) return DataShape(*(shape + schema)) class Projection(ElemWise): """Select a subset of fields from data. Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> accounts[['name', 'amount']].schema dshape("{name: string, amount: int32}") >>> accounts[['name', 'amount']] accounts[['name', 'amount']] See Also -------- blaze.expr.expressions.Field """ __slots__ = '_hash', '_child', '_fields' @property def fields(self): return list(self._fields) @property def schema(self): d = self._child.schema[0].dict return DataShape(Record([(name, d[name]) for name in self.fields])) def __str__(self): return '%s[%s]' % (self._child, self.fields) def _project(self, key): if isinstance(key, list) and set(key).issubset(set(self.fields)): return self._child[key] raise ValueError("Column Mismatch: %s" % key) def _get_field(self, fieldname): if fieldname in self.fields: return Field(self._child, fieldname) raise ValueError("Field %s not found in columns %s" % (fieldname, self.fields)) @copydoc(Projection) def projection(expr, names): if not names: raise ValueError("Projection with no names") if not isinstance(names, (tuple, list)): raise TypeError("Wanted list of strings, got %s" % names) if not set(names).issubset(expr.fields): raise ValueError("Mismatched names. Asking for names %s " "where expression has names %s" % (names, expr.fields)) return Projection(expr, tuple(names)) def sanitize_index_lists(ind): """ Handle lists/arrays of integers/bools as indexes >>> sanitize_index_lists([2, 3, 5]) [2, 3, 5] >>> sanitize_index_lists([True, False, True, False]) [0, 2] >>> sanitize_index_lists(np.array([1, 2, 3])) [1, 2, 3] >>> sanitize_index_lists(np.array([False, True, True])) [1, 2] """ if not isinstance(ind, (list, np.ndarray)): return ind if isinstance(ind, np.ndarray): ind = ind.tolist() if isinstance(ind, list) and ind and isinstance(ind[0], bool): ind = [a for a, b in enumerate(ind) if b] return ind def sliceit(child, index): index2 = tuple(map(sanitize_index_lists, index)) index3 = hashable_index(index2) s = Slice(child, index3) hash(s) return s class Slice(Expr): """Elements `start` until `stop`. On many backends, a `step` parameter is also allowed. Examples -------- >>> from blaze import symbol >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts[2:7].dshape dshape("5 * {name: string, amount: int32}") >>> accounts[2:7:2].dshape dshape("3 * {name: string, amount: int32}") """ __slots__ = '_hash', '_child', '_index' @property def dshape(self): return self._child.dshape.subshape[self.index] @property def index(self): return replace_slices(self._index) def __str__(self): if isinstance(self.index, tuple): index = ', '.join(map(str, self._index)) else: index = str(self._index) return '%s[%s]' % (self._child, index) class Selection(Expr): """ Filter elements of expression based on predicate Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> deadbeats = accounts[accounts.amount < 0] """ __slots__ = '_hash', '_child', 'predicate' def __str__(self): return "%s[%s]" % (self._child, self.predicate) @property def dshape(self): shape = list(self._child.dshape.shape) shape[0] = Var() return DataShape(*(shape + [self._child.dshape.measure])) @copydoc(Selection) def selection(table, predicate): subexpr = common_subexpression(table, predicate) if not builtins.all(isinstance(node, (ElemWise, Symbol)) or node.isidentical(subexpr) for node in concat([path(predicate, subexpr), path(table, subexpr)])): raise ValueError("Selection not properly matched with table:\n" "child: %s\n" "apply: %s\n" "predicate: %s" % (subexpr, table, predicate)) if not isboolean(predicate.dshape): raise TypeError("Must select over a boolean predicate. Got:\n" "%s[%s]" % (table, predicate)) return table._subs({subexpr: Selection(subexpr, predicate)}) class Label(ElemWise): """An expression with a name. Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> expr = accounts.amount * 100 >>> expr._name 'amount' >>> expr.label('new_amount')._name 'new_amount' See Also -------- blaze.expr.expressions.ReLabel """ __slots__ = '_hash', '_child', 'label' @property def schema(self): return self._child.schema @property def _name(self): return self.label def _get_field(self, key): if key[0] == self.fields[0]: return self raise ValueError("Column Mismatch: %s" % key) def __str__(self): return 'label(%s, %r)' % (self._child, self.label) @copydoc(Label) def label(expr, lab): if expr._name == lab: return expr return Label(expr, lab) class ReLabel(ElemWise): """ Table with same content but with new labels Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.schema dshape("{name: string, amount: int32}") >>> accounts.relabel(amount='balance').schema dshape("{name: string, balance: int32}") >>> accounts.relabel(not_a_column='definitely_not_a_column') Traceback (most recent call last): ... ValueError: Cannot relabel non-existent child fields: {'not_a_column'} >>> s = symbol('s', 'var * {"0": int64}') >>> s.relabel({'0': 'foo'}) s.relabel({'0': 'foo'}) >>> s.relabel(0='foo') # doctest: +SKIP Traceback (most recent call last): ... SyntaxError: keyword can't be an expression Notes ----- When names are not valid Python names, such as integers or string with spaces, you must pass a dictionary to ``relabel``. For example .. code-block:: python >>> s = symbol('s', 'var * {"0": int64}') >>> s.relabel({'0': 'foo'}) s.relabel({'0': 'foo'}) >>> t = symbol('t', 'var * {"whoo hoo": ?float32}') >>> t.relabel({"whoo hoo": 'foo'}) t.relabel({'whoo hoo': 'foo'}) See Also -------- blaze.expr.expressions.Label """ __slots__ = '_hash', '_child', 'labels' @property def schema(self): subs = dict(self.labels) param = self._child.dshape.measure.parameters[0] return DataShape(Record([[subs.get(name, name), dtype] for name, dtype in param])) def __str__(self): labels = self.labels if all(map(isvalid_identifier, map(first, labels))): rest = ', '.join('%s=%r' % l for l in labels) else: rest = '{%s}' % ', '.join('%r: %r' % l for l in labels) return '%s.relabel(%s)' % (self._child, rest) @copydoc(ReLabel) def relabel(child, labels=None, **kwargs): labels = labels or dict() labels = toolz.merge(labels, kwargs) labels = dict((k, v) for k, v in labels.items() if k != v) label_keys = set(labels) fields = child.fields if not label_keys.issubset(fields): non_existent_fields = label_keys.difference(fields) raise ValueError("Cannot relabel non-existent child fields: {%s}" % ', '.join(map(repr, non_existent_fields))) if not labels: return child if isinstance(labels, dict): # Turn dict into tuples labels = tuple(sorted(labels.items())) if isscalar(child.dshape.measure): if child._name == labels[0][0]: return child.label(labels[0][1]) else: return child return ReLabel(child, labels) class Map(ElemWise): """ Map an arbitrary Python function across elements in a collection Examples -------- >>> from datetime import datetime >>> t = symbol('t', 'var * {price: real, time: int64}') # times as integers >>> datetimes = t.time.map(datetime.utcfromtimestamp) Optionally provide extra schema information >>> datetimes = t.time.map(datetime.utcfromtimestamp, ... schema='{time: datetime}') See Also -------- blaze.expr.expresions.Apply """ __slots__ = '_hash', '_child', 'func', '_schema', '_name0' @property def schema(self): if self._schema: return dshape(self._schema) else: raise NotImplementedError("Schema of mapped column not known.\n" "Please specify datashape keyword in " ".map method.\nExample: " "t.columnname.map(function, 'int64')") def label(self, name): assert isscalar(self.dshape.measure) return Map(self._child, self.func, self.schema, name) @property def shape(self): return self._child.shape @property def ndim(self): return self._child.ndim @property def _name(self): if self._name0: return self._name0 else: return self._child._name if PY2: copydoc(Map, Expr.map.im_func) else: copydoc(Map, Expr.map) class Apply(Expr): """ Apply an arbitrary Python function onto an expression Examples -------- >>> t = symbol('t', 'var * {name: string, amount: int}') >>> h = t.apply(hash, dshape='int64') # Hash value of resultant dataset You must provide the datashape of the result with the ``dshape=`` keyword. For datashape examples see http://datashape.pydata.org/grammar.html#some-simple-examples If using a chunking backend and your operation may be safely split and concatenated then add the ``splittable=True`` keyword argument >>> t.apply(f, dshape='...', splittable=True) # doctest: +SKIP See Also -------- blaze.expr.expressions.Map """ __slots__ = '_hash', '_child', 'func', '_dshape', '_splittable' @property def schema(self): if iscollection(self.dshape): return self.dshape.subshape[0] else: raise TypeError("Non-tabular datashape, %s" % self.dshape) @property def dshape(self): return dshape(self._dshape) @copydoc(Apply) def apply(expr, func, dshape, splittable=False): return Apply(expr, func, datashape.dshape(dshape), splittable) class Coerce(Expr): """Coerce an expression to a different type. Examples -------- >>> t = symbol('t', '100 * float64') >>> t.coerce(to='int64') t.coerce(to='int64') >>> t.coerce('float32') t.coerce(to='float32') >>> t.coerce('int8').dshape dshape("100 * int8") """ __slots__ = '_hash', '_child', 'to' @property def schema(self): return self.to @property def dshape(self): return DataShape(*(self._child.shape + (self.schema,))) def __str__(self): return '%s.coerce(to=%r)' % (self._child, str(self.schema)) @copydoc(Coerce) def coerce(expr, to): return Coerce(expr, dshape(to) if isinstance(to, _strtypes) else to) dshape_method_list = list() schema_method_list = list() method_properties = set() dshape_methods = memoize(partial(select_functions, dshape_method_list)) schema_methods = memoize(partial(select_functions, schema_method_list)) @dispatch(DataShape) def shape(ds): s = ds.shape s = tuple(int(d) if isinstance(d, Fixed) else d for d in s) return s @dispatch(object) def shape(expr): """ Shape of expression >>> symbol('s', '3 * 5 * int32').shape (3, 5) Works on anything discoverable >>> shape([[1, 2], [3, 4]]) (2, 2) """ s = list(discover(expr).shape) for i, elem in enumerate(s): try: s[i] = int(elem) except TypeError: pass return tuple(s) def ndim(expr): """ Number of dimensions of expression >>> symbol('s', '3 * var * int32').ndim 2 """ return len(shape(expr)) dshape_method_list.extend([ (lambda ds: True, set([apply])), (iscollection, set([shape, ndim])), (lambda ds: iscollection(ds) and isscalar(ds.measure), set([coerce])) ]) schema_method_list.extend([ (isscalar, set([label, relabel, coerce])), (isrecord, set([relabel])), ]) method_properties.update([shape, ndim]) @dispatch(Expr) def discover(expr): return expr.dshape
{ "repo_name": "xlhtc007/blaze", "path": "blaze/expr/expressions.py", "copies": "6", "size": "23031", "license": "bsd-3-clause", "hash": -9032310935931768000, "line_mean": 27.4333333333, "line_max": 80, "alpha_frac": 0.5645000217, "autogenerated": false, "ratio": 3.820670205706702, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7385170227406702, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..layout import Rectangle, snap_to_grid class TestSnap(object): @staticmethod def check(input, expected, **kwargs): result = snap_to_grid(input, **kwargs) for i, e in zip(input, expected): assert result[i] == e def test_2x2(self): rs = [Rectangle(-.2, -.1, .45, .52), Rectangle(.52, -.23, .49, .49), Rectangle(0, .45, .51, .53), Rectangle(.50, .45, .51, .53)] ex = [Rectangle(0, 0, .5, .5), Rectangle(.5, 0, .5, .5), Rectangle(0, .5, .5, .5), Rectangle(.5, .5, .5, .5)] self.check(rs, ex) def test_1x2(self): rs = [Rectangle(-.2, -.2, .95, .48), Rectangle(0, .45, .51, .53), Rectangle(.50, .45, .51, .53)] ex = [Rectangle(0, 0, 1, .5), Rectangle(0, .5, .5, .5), Rectangle(.5, .5, .5, .5)] self.check(rs, ex) def test_1x3(self): rs = [Rectangle(-.02, -.2, .95, .48), Rectangle(0.1, .51, 0.32, .53), Rectangle(0.32, .49, .30, .53), Rectangle(0.7, .52, .40, .53)] ex = [Rectangle(0, 0, 1, .5), Rectangle(0, .5, 1 / 3., .5), Rectangle(1 / 3., .5, 1 / 3., .5), Rectangle(2 / 3., .5, 1 / 3., .5)] self.check(rs, ex) def test_padding_1x2(self): rs = [Rectangle(0, 0, 1, .5), Rectangle(0, .5, .5, .5), Rectangle(.5, .5, .5, .5)] ex = [Rectangle(.1, .1, .8, .3), Rectangle(.1, .6, .3, .3), Rectangle(.6, .6, .3, .3)] self.check(rs, ex, padding=0.1)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/tests/test_layout.py", "copies": "5", "size": "1757", "license": "bsd-3-clause", "hash": 3604348905946779600, "line_mean": 26.8888888889, "line_max": 64, "alpha_frac": 0.4302788845, "autogenerated": false, "ratio": 2.8615635179153096, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 63 }
from __future__ import absolute_import, division, print_function from .llvm_array import (array_type, const_intp, auto_const_intp, intp_type, int_type, store_at, load_at, get_shape_ptr, get_data_ptr, get_strides_ptr, sizeof, isinteger, isiterable, F_CONTIGUOUS, C_CONTIGUOUS, STRIDED) from llvm.core import Constant, Type import llvm.core as lc import itertools def _check_N(N): if N is None: raise ValueError("negative integers not supported") def adjust_slice(key, N=None): start = key.start if start is None: start = 0 if start < 0: _check_N(N) while start < 0: start += N stop = key.stop if stop is None: _check_N(N) stop = N if stop < 0: _check_N(N) while stop < 0: stop += N step = key.step if step is None: step = 1 return start, stop, step # STRIDED def Sarr_from_S(arr, key): raise NotImplementedError def Sarr_from_S_slice(arr, start, stop, step): raise NotImplementedError def from_S_int(arr, index): return from_S_ints(arr, (index,)) def from_S_ints(arr, key): raise NotImplementedError builder = arr.builder num = len(key) newnd = arr.nd - num if newnd < 0: raise ValueError("Too many keys") new = arr.getview(nd=newnd) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) # Load the shape array for i in range(newnd): val = load_at(builder, oldshape, i+num) store_at(builder, newshape, i, val) # Load the data-pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) new_data_ptr = get_data_ptr(builder, new.array_ptr) loc = Constant.int(intp_type, 0) factor = Constant.int(intp_type, 1) for index in range(arr.nd-1,-1,-1): val = load_at(builder, oldshape, index) factor = builder.mul(factor, val) if index < num: # keyval = auto_const_intp(key[index]) # Multiply by strides tmp = builder.mul(keyval, factor) # Add to location loc = builder.add(loc, tmp) ptr = builder.gep(old_data_ptr, [loc]) builder.store(ptr, new_data_ptr) return new def from_S_slice(arr, start, end): raise NotImplementedError builder = arr.builder new = arr.getview() # Load the shape array oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) diff = Constant.int(intp_int, end-start) store_at(builder, newshape, 0, diff) for i in range(1, new.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) # Data Pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) loc = Constant.int(intp_type, start) while dim in arr.shape[1:]: loc = builder.mul(loc, dim) ptr = builder.gep(old_data_ptr, [loc]) new_data_ptr = get_data_ptr(builder, new.array_ptr) builder.store(ptr, new_data_ptr) return new # FORTRAN CONTIGUOUS def Sarr_from_F(arr, key): raise NotImplementedError def Sarr_from_F_slice(arr, start, stop, step): raise NotImplementedError def from_F_int(arr, index): return from_F_ints(arr, (index,)) # key will be *just* the final integers to extract # so that resulting array stays F_CONTIGUOUS def from_F_ints(arr, key): raise NotImplementedError builder = arr.builder num = len(key) newnd = arr.nd - num if newnd < 0: raise ValueError("Too many keys") new = arr.getview(nd=newnd) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) # Load the shape array for i in range(newnd): val = load_at(builder, oldshape, i+num) store_at(builder, newshape, i, val) # Load the data-pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) new_data_ptr = get_data_ptr(builder, new.array_ptr) loc = Constant.int(intp_type, 0) factor = Constant.int(intp_type, 1) for index in range(arr.nd-1,-1,-1): val = load_at(builder, oldshape, index) factor = builder.mul(factor, val) if index < num: # keyval = auto_const_intp(key[index]) # Multiply by strides tmp = builder.mul(keyval, factor) # Add to location loc = builder.add(loc, tmp) ptr = builder.gep(old_data_ptr, [loc]) builder.store(ptr, new_data_ptr) return new def from_F_slice(arr, start, end): raise NotImplementedError builder = arr.builder new = arr.getview() # Load the shape array oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) diff = Constant.int(intp_int, end-start) store_at(builder, newshape, 0, diff) for i in range(1, new.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) # Data Pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) loc = Constant.int(intp_type, start) while dim in arr.shape[1:]: loc = builder.mul(loc, dim) ptr = builder.gep(old_data_ptr, [loc]) new_data_ptr = get_data_ptr(builder, new.array_ptr) builder.store(ptr, new_data_ptr) return new # C-CONTIGUOUS def Sarr_from_C(arr, key): raise NotImplementedError def Sarr_from_C_slice(arr, start, stop, step): builder = arr.builder new = arr.getview(kind=STRIDED) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) newstrides = get_strides_ptr(bulder, new.array_ptr) if all(hasattr(x, '__index__') for x in [start, stop, step]): step = auto_const_intp(step) newdim = auto_const_intp((stop - start) // step) else: start, stop, step = [auto_const_intp(x) for x in [start, stop, step]] tmp = builder.sub(stop, start) newdim = builder.udiv(tmp, step) store_at(builder, newshape, 0, newdim) # Copy other dimensions over for i in range(1, arr.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) raise NotImplementedError # Fill-in strides # Update data-ptr def from_C_int(arr, index): return from_C_ints(arr, (index,)) def from_C_ints(arr, key): builder = arr.builder num = len(key) newnd = arr.nd - num if newnd < 0: raise ValueError("Too many keys") new = arr.getview(nd=newnd) oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) # Load the shape array for i in range(newnd): val = load_at(builder, oldshape, i+num) store_at(builder, newshape, i, val) # Load the data-pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) new_data_ptr = get_data_ptr(builder, new.array_ptr) loc = Constant.int(intp_type, 0) factor = Constant.int(intp_type, 1) for index in range(arr.nd-1,-1,-1): val = load_at(builder, oldshape, index) factor = builder.mul(factor, val) if index < num: # keyval = auto_const_intp(key[index]) # Multiply by strides tmp = builder.mul(keyval, factor) # Add to location loc = builder.add(loc, tmp) ptr = builder.gep(old_data_ptr, [loc]) builder.store(ptr, new_data_ptr) return new def from_C_slice(arr, start, end): builder = arr.builder new = arr.getview() # Load the shape array oldshape = get_shape_ptr(builder, arr.array_ptr) newshape = get_shape_ptr(builder, new.array_ptr) diff = Constant.int(intp_int, end-start) store_at(builder, newshape, 0, diff) for i in range(1, new.nd): val = load_at(builder, oldshape, i) store_at(builder, newshape, i, val) # Data Pointer old_data_ptr = get_data_ptr(builder, arr.array_ptr) loc = Constant.int(intp_type, start) while dim in arr.shape[1:]: loc = builder.mul(loc, dim) ptr = builder.gep(old_data_ptr, [loc]) new_data_ptr = get_data_ptr(builder, new.array_ptr) builder.store(ptr, new_data_ptr) return new # get just the integers def _convert(x): if hasattr(x, '__index__'): return x.__index__() else: return x _keymsg = "Unsupported getitem value %s" # val is either Ellipsis or slice object. # check to see if start, stop, and/or step is given for slice def _needstride(val): if not isinstance(val, slice): return False if val.start is not None and val.start != 0: return True if val.stop is not None: return True if (val.step is not None) and (val.step != 1): return True return False def _getitem_C(arr, key): lastint = None needstrided = False # determine if 1) the elements of the geitem iterable are # integers (LLVM or Python indexable), Ellipsis, # or slice objects # 2) the integer elements are all at the front # so that the resulting slice is continuous for i, val in enumerate(key): if isinteger(val): if lastint is not None: needstrided = True elif isinstance(val, (Ellipsis, slice)): if lastint is None: lastint = i needstrided = _needstride(val) else: raise ValueError(_keymsg % val) if not needstrided: key = [_convert(x) for x in itertools.islice(key, lastint)] return needstrided, key def _getitem_F(arr, key): # This looks for integers at the end of the key iterable # arr[:,...,i,j] would not need strided # arr[:,i,:,j] would need strided as would a[:,i,5:20,j] # and a[:,...,5:10,j] # elements can be integers or LLVM ints # with indexing being done either at compile time (Python int) # or run time (LLVM int) last_elsl = None needstrided = False for i, val in enumerate(key): if isinteger(val): if last_elsl is None: last_elsl = i elif isinstance(val, (Ellipsis, slice)): if last_elsl is not None: needstrided = True needstrided = needstrided or _needstride(val) else: raise ValueError(_keymsg % val) # Return just the integers fields if needstrided not set if not needstrided: key = [_convert(x) for x in itertools.islice(key, lastint, None)] return needstrided, key def _getitem_S(arr, key): return True, key def from_Array(arr, key, char): if isinteger(key): return eval('from_%s_int' % char)(arr, key) elif isinstance(key, slice): if key == slice(None): return arr else: start, stop, step = adjust_slice(arr, key) if step == 1: return eval('from_%s_slice' % char)(arr, start, stop) else: return eval('Sarr_from_%s_slice' % char)(arr, start, stop, step) elif isiterable(key): # will be less than arr._nd or have '...' or ':' # at the end needstrided, key = eval("_getitem_%s" % char)(arr, key) if needstrided: return eval('Sarr_from_%s' % char)(arr, key) if len(key) > arr.nd: raise ValueError('Too many indicies') return eval('from_%s_ints' % char)(arr, key) else: raise ValueError(_keymsg % key)
{ "repo_name": "cezary12/blaze", "path": "blaze/compute/llgetitem.py", "copies": "7", "size": "11586", "license": "bsd-3-clause", "hash": 4172442806679004000, "line_mean": 29.5699208443, "line_max": 80, "alpha_frac": 0.6002934576, "autogenerated": false, "ratio": 3.3524305555555554, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7452724013155555, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from logging import getLogger from os.path import isfile, join from .core.link import UnlinkLinkTransaction from .core.package_cache_data import ProgressiveFetchExtract from .exceptions import CondaFileIOError from .gateways.disk.link import islink log = getLogger(__name__) # op codes CHECK_FETCH = 'CHECK_FETCH' FETCH = 'FETCH' CHECK_EXTRACT = 'CHECK_EXTRACT' EXTRACT = 'EXTRACT' RM_EXTRACTED = 'RM_EXTRACTED' RM_FETCHED = 'RM_FETCHED' PREFIX = 'PREFIX' PRINT = 'PRINT' PROGRESS = 'PROGRESS' SYMLINK_CONDA = 'SYMLINK_CONDA' UNLINK = 'UNLINK' LINK = 'LINK' UNLINKLINKTRANSACTION = 'UNLINKLINKTRANSACTION' PROGRESSIVEFETCHEXTRACT = 'PROGRESSIVEFETCHEXTRACT' PROGRESS_COMMANDS = set([EXTRACT, RM_EXTRACTED]) ACTION_CODES = ( CHECK_FETCH, FETCH, CHECK_EXTRACT, EXTRACT, UNLINK, LINK, SYMLINK_CONDA, RM_EXTRACTED, RM_FETCHED, ) def PREFIX_CMD(state, prefix): state['prefix'] = prefix def PRINT_CMD(state, arg): # pragma: no cover if arg.startswith(('Unlinking packages', 'Linking packages')): return getLogger('conda.stdout.verbose').info(arg) def FETCH_CMD(state, package_cache_entry): raise NotImplementedError() def EXTRACT_CMD(state, arg): raise NotImplementedError() def PROGRESSIVEFETCHEXTRACT_CMD(state, progressive_fetch_extract): # pragma: no cover assert isinstance(progressive_fetch_extract, ProgressiveFetchExtract) progressive_fetch_extract.execute() def UNLINKLINKTRANSACTION_CMD(state, arg): # pragma: no cover unlink_link_transaction = arg assert isinstance(unlink_link_transaction, UnlinkLinkTransaction) unlink_link_transaction.execute() def check_files_in_package(source_dir, files): for f in files: source_file = join(source_dir, f) if isfile(source_file) or islink(source_file): return True else: raise CondaFileIOError(source_file, "File %s does not exist in tarball" % f) # Map instruction to command (a python function) commands = { PREFIX: PREFIX_CMD, PRINT: PRINT_CMD, FETCH: FETCH_CMD, PROGRESS: lambda x, y: None, EXTRACT: EXTRACT_CMD, RM_EXTRACTED: lambda x, y: None, RM_FETCHED: lambda x, y: None, UNLINK: None, LINK: None, SYMLINK_CONDA: lambda x, y: None, UNLINKLINKTRANSACTION: UNLINKLINKTRANSACTION_CMD, PROGRESSIVEFETCHEXTRACT: PROGRESSIVEFETCHEXTRACT_CMD, } OP_ORDER = (RM_FETCHED, FETCH, RM_EXTRACTED, EXTRACT, UNLINK, LINK, )
{ "repo_name": "Microsoft/PTVS", "path": "Python/Product/Miniconda/Miniconda3-x64/Lib/site-packages/conda/instructions.py", "copies": "1", "size": "2609", "license": "apache-2.0", "hash": 8638009812320842000, "line_mean": 23.8476190476, "line_max": 88, "alpha_frac": 0.690302798, "autogenerated": false, "ratio": 3.383916990920882, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45742197889208824, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from math import ceil from operator import getitem import os from threading import Lock from warnings import warn import pandas as pd import numpy as np from toolz import merge from ...base import tokenize from ...compatibility import unicode, PY3 from ... import array as da from ...delayed import delayed from ..core import DataFrame, Series, new_dd_object from ..shuffle import set_partition from ..utils import insert_meta_param_description from ...utils import M, ensure_dict lock = Lock() def _meta_from_array(x, columns=None): """ Create empty pd.DataFrame or pd.Series which has correct dtype """ if x.ndim > 2: raise ValueError('from_array does not input more than 2D array, got' ' array with shape %r' % (x.shape,)) if getattr(x.dtype, 'names', None) is not None: # record array has named columns if columns is None: columns = list(x.dtype.names) elif np.isscalar(columns): raise ValueError("For a struct dtype, columns must be a list.") elif not all(i in x.dtype.names for i in columns): extra = sorted(set(columns).difference(x.dtype.names)) raise ValueError("dtype {0} doesn't have fields " "{1}".format(x.dtype, extra)) fields = x.dtype.fields dtypes = [fields[n][0] if n in fields else 'f8' for n in columns] elif x.ndim == 1: if np.isscalar(columns) or columns is None: return pd.Series([], name=columns, dtype=x.dtype) elif len(columns) == 1: return pd.DataFrame(np.array([], dtype=x.dtype), columns=columns) raise ValueError("For a 1d array, columns must be a scalar or single " "element list") else: if np.isnan(x.shape[1]): raise ValueError("Shape along axis 1 must be known") if columns is None: columns = list(range(x.shape[1])) if x.ndim == 2 else [0] elif len(columns) != x.shape[1]: raise ValueError("Number of column names must match width of the " "array. Got {0} names for {1} " "columns".format(len(columns), x.shape[1])) dtypes = [x.dtype] * len(columns) data = {c: np.array([], dtype=dt) for (c, dt) in zip(columns, dtypes)} return pd.DataFrame(data, columns=columns) def from_array(x, chunksize=50000, columns=None): """ Read any slicable array into a Dask Dataframe Uses getitem syntax to pull slices out of the array. The array need not be a NumPy array but must support slicing syntax x[50000:100000] and have 2 dimensions: x.ndim == 2 or have a record dtype: x.dtype == [('name', 'O'), ('balance', 'i8')] """ if isinstance(x, da.Array): return from_dask_array(x, columns=columns) meta = _meta_from_array(x, columns) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) token = tokenize(x, chunksize, columns) name = 'from_array-' + token dsk = {} for i in range(0, int(ceil(len(x) / chunksize))): data = (getitem, x, slice(i * chunksize, (i + 1) * chunksize)) if isinstance(meta, pd.Series): dsk[name, i] = (pd.Series, data, None, meta.dtype, meta.name) else: dsk[name, i] = (pd.DataFrame, data, None, meta.columns) return new_dd_object(dsk, name, meta, divisions) def from_pandas(data, npartitions=None, chunksize=None, sort=True, name=None): """ Construct a Dask DataFrame from a Pandas DataFrame This splits an in-memory Pandas dataframe into several parts and constructs a dask.dataframe from those parts on which Dask.dataframe can operate in parallel. Note that, despite parallelism, Dask.dataframe may not always be faster than Pandas. We recommend that you stay with Pandas for as long as possible before switching to Dask.dataframe. Parameters ---------- df : pandas.DataFrame or pandas.Series The DataFrame/Series with which to construct a Dask DataFrame/Series npartitions : int, optional The number of partitions of the index to create. Note that depending on the size and index of the dataframe, the output may have fewer partitions than requested. chunksize : int, optional The size of the partitions of the index. sort: bool Sort input first to obtain cleanly divided partitions or don't sort and don't get cleanly divided partitions name: string, optional An optional keyname for the dataframe. Defaults to hashing the input Returns ------- dask.DataFrame or dask.Series A dask DataFrame/Series partitioned along the index Examples -------- >>> df = pd.DataFrame(dict(a=list('aabbcc'), b=list(range(6))), ... index=pd.date_range(start='20100101', periods=6)) >>> ddf = from_pandas(df, npartitions=3) >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', freq='D'), Timestamp('2010-01-03 00:00:00', freq='D'), Timestamp('2010-01-05 00:00:00', freq='D'), Timestamp('2010-01-06 00:00:00', freq='D')) >>> ddf = from_pandas(df.a, npartitions=3) # Works with Series too! >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', freq='D'), Timestamp('2010-01-03 00:00:00', freq='D'), Timestamp('2010-01-05 00:00:00', freq='D'), Timestamp('2010-01-06 00:00:00', freq='D')) Raises ------ TypeError If something other than a ``pandas.DataFrame`` or ``pandas.Series`` is passed in. See Also -------- from_array : Construct a dask.DataFrame from an array that has record dtype read_csv : Construct a dask.DataFrame from a CSV file """ if isinstance(getattr(data, 'index', None), pd.MultiIndex): raise NotImplementedError("Dask does not support MultiIndex Dataframes.") if not isinstance(data, (pd.Series, pd.DataFrame)): raise TypeError("Input must be a pandas DataFrame or Series") if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') nrows = len(data) if chunksize is None: chunksize = int(ceil(nrows / npartitions)) else: npartitions = int(ceil(nrows / chunksize)) name = name or ('from_pandas-' + tokenize(data, chunksize)) if not nrows: return new_dd_object({(name, 0): data}, name, data, [None, None]) if sort and not data.index.is_monotonic_increasing: data = data.sort_index(ascending=True) if sort: divisions, locations = sorted_division_locations(data.index, chunksize=chunksize) else: locations = list(range(0, nrows, chunksize)) + [len(data)] divisions = [None] * len(locations) dsk = dict(((name, i), data.iloc[start: stop]) for i, (start, stop) in enumerate(zip(locations[:-1], locations[1:]))) return new_dd_object(dsk, name, data, divisions) def from_bcolz(x, chunksize=None, categorize=True, index=None, lock=lock, **kwargs): """ Read BColz CTable into a Dask Dataframe BColz is a fast on-disk compressed column store with careful attention given to compression. https://bcolz.readthedocs.io/en/latest/ Parameters ---------- x : bcolz.ctable chunksize : int, optional The size of blocks to pull out from ctable. categorize : bool, defaults to True Automatically categorize all string dtypes index : string, optional Column to make the index lock: bool or Lock Lock to use when reading or False for no lock (not-thread-safe) See Also -------- from_array: more generic function not optimized for bcolz """ if lock is True: lock = Lock() import dask.array as da import bcolz if isinstance(x, (str, unicode)): x = bcolz.ctable(rootdir=x) bc_chunklen = max(x[name].chunklen for name in x.names) if chunksize is None and bc_chunklen > 10000: chunksize = bc_chunklen categories = dict() if categorize: for name in x.names: if (np.issubdtype(x.dtype[name], np.string_) or np.issubdtype(x.dtype[name], np.unicode_) or np.issubdtype(x.dtype[name], np.object_)): a = da.from_array(x[name], chunks=(chunksize * len(x.names),)) categories[name] = da.unique(a) columns = tuple(x.dtype.names) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) if x.rootdir: token = tokenize((x.rootdir, os.path.getmtime(x.rootdir)), chunksize, categorize, index, kwargs) else: token = tokenize((id(x), x.shape, x.dtype), chunksize, categorize, index, kwargs) new_name = 'from_bcolz-' + token dsk = dict(((new_name, i), (dataframe_from_ctable, x, (slice(i * chunksize, (i + 1) * chunksize),), columns, categories, lock)) for i in range(0, int(ceil(len(x) / chunksize)))) meta = dataframe_from_ctable(x, slice(0, 0), columns, categories, lock) result = DataFrame(dsk, new_name, meta, divisions) if index: assert index in x.names a = da.from_array(x[index], chunks=(chunksize * len(x.names),)) q = np.linspace(0, 100, len(x) // chunksize + 2) divisions = tuple(da.percentile(a, q).compute()) return set_partition(result, index, divisions, **kwargs) else: return result def dataframe_from_ctable(x, slc, columns=None, categories=None, lock=lock): """ Get DataFrame from bcolz.ctable Parameters ---------- x: bcolz.ctable slc: slice columns: list of column names or None >>> import bcolz >>> x = bcolz.ctable([[1, 2, 3, 4], [10, 20, 30, 40]], names=['a', 'b']) >>> dataframe_from_ctable(x, slice(1, 3)) a b 1 2 20 2 3 30 >>> dataframe_from_ctable(x, slice(1, 3), columns=['b']) b 1 20 2 30 >>> dataframe_from_ctable(x, slice(1, 3), columns='b') 1 20 2 30 Name: b, dtype: int... """ import bcolz if columns is None: columns = x.dtype.names if isinstance(columns, tuple): columns = list(columns) x = x[columns] if type(slc) is slice: start = slc.start stop = slc.stop if slc.stop < len(x) else len(x) else: start = slc[0].start stop = slc[0].stop if slc[0].stop < len(x) else len(x) idx = pd.Index(range(start, stop)) if lock: lock.acquire() try: if isinstance(x, bcolz.ctable): chunks = [x[name][slc] for name in columns] if categories is not None: chunks = [pd.Categorical.from_codes( np.searchsorted(categories[name], chunk), categories[name], True) if name in categories else chunk for name, chunk in zip(columns, chunks)] result = pd.DataFrame(dict(zip(columns, chunks)), columns=columns, index=idx) elif isinstance(x, bcolz.carray): chunk = x[slc] if categories is not None and columns and columns in categories: chunk = pd.Categorical.from_codes( np.searchsorted(categories[columns], chunk), categories[columns], True) result = pd.Series(chunk, name=columns, index=idx) finally: if lock: lock.release() return result def from_dask_array(x, columns=None): """ Create Dask Array from a Dask DataFrame Converts a 2d array into a DataFrame and a 1d array into a Series. Parameters ---------- x: da.Array columns: list or string list of column names if DataFrame, single string if Series Examples -------- >>> import dask.array as da >>> import dask.dataframe as dd >>> x = da.ones((4, 2), chunks=(2, 2)) >>> df = dd.io.from_dask_array(x, columns=['a', 'b']) >>> df.compute() a b 0 1.0 1.0 1 1.0 1.0 2 1.0 1.0 3 1.0 1.0 See Also -------- dask.bag.to_dataframe: from dask.bag dask.dataframe._Frame.values: Reverse conversion dask.dataframe._Frame.to_records: Reverse conversion """ meta = _meta_from_array(x, columns) if x.ndim == 2 and len(x.chunks[1]) > 1: x = x.rechunk({1: x.shape[1]}) name = 'from-dask-array' + tokenize(x, columns) if np.isnan(sum(x.shape)): divisions = [None] * (len(x.chunks[0]) + 1) index = [None] * len(x.chunks[0]) else: divisions = [0] for c in x.chunks[0]: divisions.append(divisions[-1] + c) index = [(np.arange, a, b, 1, 'i8') for a, b in zip(divisions[:-1], divisions[1:])] divisions[-1] -= 1 dsk = {} for i, (chunk, ind) in enumerate(zip(x._keys(), index)): if x.ndim == 2: chunk = chunk[0] if isinstance(meta, pd.Series): dsk[name, i] = (pd.Series, chunk, ind, x.dtype, meta.name) else: dsk[name, i] = (pd.DataFrame, chunk, ind, meta.columns) return new_dd_object(merge(ensure_dict(x.dask), dsk), name, meta, divisions) def _link(token, result): """ A dummy function to link results together in a graph We use this to enforce an artificial sequential ordering on tasks that don't explicitly pass around a shared resource """ return None def _df_to_bag(df, index=False): if isinstance(df, pd.DataFrame): return list(map(tuple, df.itertuples(index))) elif isinstance(df, pd.Series): return list(df.iteritems()) if index else list(df) def to_bag(df, index=False): """Create Dask Bag from a Dask DataFrame Parameters ---------- index : bool, optional If True, the elements are tuples of ``(index, value)``, otherwise they're just the ``value``. Default is False. Examples -------- >>> bag = df.to_bag() # doctest: +SKIP """ from ...bag.core import Bag if not isinstance(df, (DataFrame, Series)): raise TypeError("df must be either DataFrame or Series") name = 'to_bag-' + tokenize(df, index) dsk = dict(((name, i), (_df_to_bag, block, index)) for (i, block) in enumerate(df._keys())) dsk.update(df._optimize(df.dask, df._keys())) return Bag(dsk, name, df.npartitions) def to_records(df): """ Create Dask Array from a Dask Dataframe Warning: This creates a dask.array without precise shape information. Operations that depend on shape information, like slicing or reshaping, will not work. Examples -------- >>> df.to_records() # doctest: +SKIP dask.array<shape=(nan,), dtype=(numpy.record, [('ind', '<f8'), ('x', 'O'), ('y', '<i8')]), chunksize=(nan,)> See Also -------- dask.dataframe._Frame.values dask.dataframe.from_dask_array """ from ...array.core import Array if not isinstance(df, (DataFrame, Series)): raise TypeError("df must be either DataFrame or Series") name = 'to-records-' + tokenize(df) dsk = {(name, i): (M.to_records, key) for (i, key) in enumerate(df._keys())} x = df._meta.to_records() chunks = ((np.nan,) * df.npartitions,) return Array(merge(df.dask, dsk), name, chunks, x.dtype) @insert_meta_param_description def from_delayed(dfs, meta=None, divisions=None, prefix='from-delayed', metadata=None): """ Create Dask DataFrame from many Dask Delayed objects Parameters ---------- dfs : list of Delayed An iterable of ``dask.delayed.Delayed`` objects, such as come from ``dask.delayed`` These comprise the individual partitions of the resulting dataframe. $META divisions : tuple, str, optional Partition boundaries along the index. For tuple, see http://dask.pydata.org/en/latest/dataframe-design.html#partitions For string 'sorted' will compute the delayed values to find index values. Assumes that the indexes are mutually sorted. If None, then won't use index information prefix : str, optional Prefix to prepend to the keys. """ if metadata is not None and meta is None: warn("Deprecation warning: Use meta keyword, not metadata") meta = metadata from dask.delayed import Delayed if isinstance(dfs, Delayed): dfs = [dfs] dfs = [delayed(df) if not isinstance(df, Delayed) and hasattr(df, 'key') else df for df in dfs] for df in dfs: if not isinstance(df, Delayed): raise TypeError("Expected Delayed object, got %s" % type(df).__name__) dsk = merge(df.dask for df in dfs) name = prefix + '-' + tokenize(*dfs) names = [(name, i) for i in range(len(dfs))] values = [df.key for df in dfs] dsk2 = dict(zip(names, values)) dsk3 = merge(dsk, dsk2) if meta is None: meta = dfs[0].compute() if isinstance(meta, (str, pd.Series)): Frame = Series else: Frame = DataFrame if divisions is None or divisions == 'sorted': divs = [None] * (len(dfs) + 1) else: divs = tuple(divisions) if len(divs) != len(dfs) + 1: raise ValueError("divisions should be a tuple of len(dfs) + 1") df = Frame(dsk3, name, meta, divs) if divisions == 'sorted': from ..shuffle import compute_divisions divisions = compute_divisions(df) df.divisions = divisions return df def sorted_division_locations(seq, npartitions=None, chunksize=None): """ Find division locations and values in sorted list Examples -------- >>> L = ['A', 'B', 'C', 'D', 'E', 'F'] >>> sorted_division_locations(L, chunksize=2) (['A', 'C', 'E', 'F'], [0, 2, 4, 6]) >>> sorted_division_locations(L, chunksize=3) (['A', 'D', 'F'], [0, 3, 6]) >>> L = ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'C'] >>> sorted_division_locations(L, chunksize=3) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(L, chunksize=2) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(['A'], chunksize=2) (['A', 'A'], [0, 1]) """ if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') if npartitions: chunksize = ceil(len(seq) / npartitions) positions = [0] values = [seq[0]] for pos in list(range(0, len(seq), chunksize)): if pos <= positions[-1]: continue while pos + 1 < len(seq) and seq[pos - 1] == seq[pos]: pos += 1 values.append(seq[pos]) if pos == len(seq) - 1: pos += 1 positions.append(pos) if positions[-1] != len(seq): positions.append(len(seq)) values.append(seq[-1]) return values, positions if PY3: DataFrame.to_records.__doc__ = to_records.__doc__ DataFrame.to_bag.__doc__ = to_bag.__doc__
{ "repo_name": "cpcloud/dask", "path": "dask/dataframe/io/io.py", "copies": "1", "size": "19641", "license": "bsd-3-clause", "hash": 2977808181552649000, "line_mean": 32.3463497453, "line_max": 112, "alpha_frac": 0.5871391477, "autogenerated": false, "ratio": 3.6691574817859145, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9755724867293477, "avg_score": 0.00011435243848750694, "num_lines": 589 }
from __future__ import absolute_import, division, print_function from math import ceil from operator import getitem import os from threading import Lock import uuid from warnings import warn import pandas as pd import numpy as np from toolz import merge from ...base import tokenize from ...compatibility import unicode from ... import array as da from ...async import get_sync from ...delayed import Delayed, delayed from ..core import DataFrame, Series, new_dd_object from ..shuffle import set_partition from ..utils import insert_meta_param_description from ...utils import M lock = Lock() def _meta_from_array(x, columns=None): """ Create empty pd.DataFrame or pd.Series which has correct dtype """ if x.ndim > 2: raise ValueError('from_array does not input more than 2D array, got' ' array with shape %r' % (x.shape,)) if getattr(x.dtype, 'names', None) is not None: # record array has named columns if columns is None: columns = list(x.dtype.names) elif np.isscalar(columns): raise ValueError("For a struct dtype, columns must be a list.") elif not all(i in x.dtype.names for i in columns): extra = sorted(set(columns).difference(x.dtype.names)) raise ValueError("dtype {0} doesn't have fields " "{1}".format(x.dtype, extra)) fields = x.dtype.fields dtypes = [fields[n][0] if n in fields else 'f8' for n in columns] elif x.ndim == 1: if np.isscalar(columns) or columns is None: return pd.Series([], name=columns, dtype=x.dtype) elif len(columns) == 1: return pd.DataFrame(np.array([], dtype=x.dtype), columns=columns) raise ValueError("For a 1d array, columns must be a scalar or single " "element list") else: if columns is None: columns = list(range(x.shape[1])) if x.ndim == 2 else [0] elif len(columns) != x.shape[1]: raise ValueError("Number of column names must match width of the " "array. Got {0} names for {1} " "columns".format(len(columns), x.shape[1])) dtypes = [x.dtype] * len(columns) data = {c: np.array([], dtype=dt) for (c, dt) in zip(columns, dtypes)} return pd.DataFrame(data, columns=columns) def from_array(x, chunksize=50000, columns=None): """ Read dask Dataframe from any slicable array Uses getitem syntax to pull slices out of the array. The array need not be a NumPy array but must support slicing syntax x[50000:100000] and have 2 dimensions: x.ndim == 2 or have a record dtype: x.dtype == [('name', 'O'), ('balance', 'i8')] """ if isinstance(x, da.Array): return from_dask_array(x, columns=columns) meta = _meta_from_array(x, columns) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) token = tokenize(x, chunksize, columns) name = 'from_array-' + token dsk = {} for i in range(0, int(ceil(len(x) / chunksize))): data = (getitem, x, slice(i * chunksize, (i + 1) * chunksize)) if isinstance(meta, pd.Series): dsk[name, i] = (pd.Series, data, None, meta.dtype, meta.name) else: dsk[name, i] = (pd.DataFrame, data, None, meta.columns) return new_dd_object(dsk, name, meta, divisions) def from_pandas(data, npartitions=None, chunksize=None, sort=True, name=None): """Construct a dask object from a pandas object. If given a ``pandas.Series`` a ``dask.Series`` will be returned. If given a ``pandas.DataFrame`` a ``dask.DataFrame`` will be returned. All other pandas objects will raise a ``TypeError``. Parameters ---------- df : pandas.DataFrame or pandas.Series The DataFrame/Series with which to construct a dask DataFrame/Series npartitions : int, optional The number of partitions of the index to create. chunksize : int, optional The size of the partitions of the index. sort: bool Sort input first to obtain cleanly divided partitions or don't sort and don't get cleanly divided partitions name: string, optional An optional keyname for the dataframe. Defaults to hashing the input Returns ------- dask.DataFrame or dask.Series A dask DataFrame/Series partitioned along the index Examples -------- >>> df = pd.DataFrame(dict(a=list('aabbcc'), b=list(range(6))), ... index=pd.date_range(start='20100101', periods=6)) >>> ddf = from_pandas(df, npartitions=3) >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', freq='D'), Timestamp('2010-01-03 00:00:00', freq='D'), Timestamp('2010-01-05 00:00:00', freq='D'), Timestamp('2010-01-06 00:00:00', freq='D')) >>> ddf = from_pandas(df.a, npartitions=3) # Works with Series too! >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', freq='D'), Timestamp('2010-01-03 00:00:00', freq='D'), Timestamp('2010-01-05 00:00:00', freq='D'), Timestamp('2010-01-06 00:00:00', freq='D')) Raises ------ TypeError If something other than a ``pandas.DataFrame`` or ``pandas.Series`` is passed in. See Also -------- from_array : Construct a dask.DataFrame from an array that has record dtype from_bcolz : Construct a dask.DataFrame from a bcolz ctable read_csv : Construct a dask.DataFrame from a CSV file """ if isinstance(getattr(data, 'index', None), pd.MultiIndex): raise NotImplementedError("Dask does not support MultiIndex Dataframes.") if not isinstance(data, (pd.Series, pd.DataFrame)): raise TypeError("Input must be a pandas DataFrame or Series") if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') nrows = len(data) if chunksize is None: chunksize = int(ceil(nrows / npartitions)) else: npartitions = int(ceil(nrows / chunksize)) name = name or ('from_pandas-' + tokenize(data, chunksize)) if not nrows: return new_dd_object({(name, 0): data}, name, data, [None, None]) if sort and not data.index.is_monotonic_increasing: data = data.sort_index(ascending=True) if sort: divisions, locations = sorted_division_locations(data.index, chunksize=chunksize) else: locations = list(range(0, nrows, chunksize)) + [len(data)] divisions = [None] * len(locations) dsk = dict(((name, i), data.iloc[start: stop]) for i, (start, stop) in enumerate(zip(locations[:-1], locations[1:]))) return new_dd_object(dsk, name, data, divisions) def from_bcolz(x, chunksize=None, categorize=True, index=None, lock=lock, **kwargs): """ Read dask Dataframe from bcolz.ctable Parameters ---------- x : bcolz.ctable Input data chunksize : int, optional The size of blocks to pull out from ctable. Ideally as large as can comfortably fit in memory categorize : bool, defaults to True Automatically categorize all string dtypes index : string, optional Column to make the index lock: bool or Lock Lock to use when reading or False for no lock (not-thread-safe) See Also -------- from_array: more generic function not optimized for bcolz """ if lock is True: lock = Lock() import dask.array as da import bcolz if isinstance(x, (str, unicode)): x = bcolz.ctable(rootdir=x) bc_chunklen = max(x[name].chunklen for name in x.names) if chunksize is None and bc_chunklen > 10000: chunksize = bc_chunklen categories = dict() if categorize: for name in x.names: if (np.issubdtype(x.dtype[name], np.string_) or np.issubdtype(x.dtype[name], np.unicode_) or np.issubdtype(x.dtype[name], np.object_)): a = da.from_array(x[name], chunks=(chunksize * len(x.names),)) categories[name] = da.unique(a) columns = tuple(x.dtype.names) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) if x.rootdir: token = tokenize((x.rootdir, os.path.getmtime(x.rootdir)), chunksize, categorize, index, kwargs) else: token = tokenize((id(x), x.shape, x.dtype), chunksize, categorize, index, kwargs) new_name = 'from_bcolz-' + token dsk = dict(((new_name, i), (dataframe_from_ctable, x, (slice(i * chunksize, (i + 1) * chunksize),), columns, categories, lock)) for i in range(0, int(ceil(len(x) / chunksize)))) meta = dataframe_from_ctable(x, slice(0, 0), columns, categories, lock) result = DataFrame(dsk, new_name, meta, divisions) if index: assert index in x.names a = da.from_array(x[index], chunks=(chunksize * len(x.names),)) q = np.linspace(0, 100, len(x) // chunksize + 2) divisions = tuple(da.percentile(a, q).compute()) return set_partition(result, index, divisions, **kwargs) else: return result def dataframe_from_ctable(x, slc, columns=None, categories=None, lock=lock): """ Get DataFrame from bcolz.ctable Parameters ---------- x: bcolz.ctable slc: slice columns: list of column names or None >>> import bcolz >>> x = bcolz.ctable([[1, 2, 3, 4], [10, 20, 30, 40]], names=['a', 'b']) >>> dataframe_from_ctable(x, slice(1, 3)) a b 1 2 20 2 3 30 >>> dataframe_from_ctable(x, slice(1, 3), columns=['b']) b 1 20 2 30 >>> dataframe_from_ctable(x, slice(1, 3), columns='b') 1 20 2 30 Name: b, dtype: int... """ import bcolz if columns is None: columns = x.dtype.names if isinstance(columns, tuple): columns = list(columns) x = x[columns] if type(slc) is slice: start = slc.start stop = slc.stop if slc.stop < len(x) else len(x) else: start = slc[0].start stop = slc[0].stop if slc[0].stop < len(x) else len(x) idx = pd.Index(range(start, stop)) if lock: lock.acquire() try: if isinstance(x, bcolz.ctable): chunks = [x[name][slc] for name in columns] if categories is not None: chunks = [pd.Categorical.from_codes( np.searchsorted(categories[name], chunk), categories[name], True) if name in categories else chunk for name, chunk in zip(columns, chunks)] result = pd.DataFrame(dict(zip(columns, chunks)), columns=columns, index=idx) elif isinstance(x, bcolz.carray): chunk = x[slc] if categories is not None and columns and columns in categories: chunk = pd.Categorical.from_codes( np.searchsorted(categories[columns], chunk), categories[columns], True) result = pd.Series(chunk, name=columns, index=idx) finally: if lock: lock.release() return result def from_dask_array(x, columns=None): """ Convert dask Array to dask DataFrame Converts a 2d array into a DataFrame and a 1d array into a Series. Parameters ---------- x: da.Array columns: list or string list of column names if DataFrame, single string if Series Examples -------- >>> import dask.array as da >>> import dask.dataframe as dd >>> x = da.ones((4, 2), chunks=(2, 2)) >>> df = dd.io.from_dask_array(x, columns=['a', 'b']) >>> df.compute() a b 0 1.0 1.0 1 1.0 1.0 2 1.0 1.0 3 1.0 1.0 """ meta = _meta_from_array(x, columns) name = 'from-dask-array' + tokenize(x, columns) divisions = [0] for c in x.chunks[0]: divisions.append(divisions[-1] + c) index = [(np.arange, a, b, 1, 'i8') for a, b in zip(divisions[:-1], divisions[1:])] divisions[-1] -= 1 if x.ndim == 2: if len(x.chunks[1]) > 1: x = x.rechunk({1: x.shape[1]}) dsk = {} for i, (chunk, ind) in enumerate(zip(x._keys(), index)): if x.ndim == 2: chunk = chunk[0] if isinstance(meta, pd.Series): dsk[name, i] = (pd.Series, chunk, ind, x.dtype, meta.name) else: dsk[name, i] = (pd.DataFrame, chunk, ind, meta.columns) return new_dd_object(merge(x.dask, dsk), name, meta, divisions) def from_castra(x, columns=None): """Load a dask DataFrame from a Castra. Parameters ---------- x : filename or Castra columns: list or string, optional The columns to load. Default is all columns. """ from castra import Castra if not isinstance(x, Castra): x = Castra(x, readonly=True) return x.to_dask(columns) def _link(token, result): """ A dummy function to link results together in a graph We use this to enforce an artificial sequential ordering on tasks that don't explicitly pass around a shared resource """ return None def to_castra(df, fn=None, categories=None, sorted_index_column=None, compute=True, get=get_sync): """ Write DataFrame to Castra on-disk store See https://github.com/blosc/castra for details See Also -------- Castra.to_dask """ from castra import Castra name = 'to-castra-' + uuid.uuid1().hex if sorted_index_column: func = lambda part: (M.set_index, part, sorted_index_column) else: func = lambda part: part dsk = dict() dsk[(name, -1)] = (Castra, fn, func((df._name, 0)), categories) for i in range(0, df.npartitions): dsk[(name, i)] = (_link, (name, i - 1), (Castra.extend, (name, -1), func((df._name, i)))) dsk = merge(dsk, df.dask) keys = [(name, -1), (name, df.npartitions - 1)] if compute: return DataFrame._get(dsk, keys, get=get)[0] else: return delayed([Delayed(key, [dsk]) for key in keys])[0] def _df_to_bag(df, index=False): if isinstance(df, pd.DataFrame): return list(map(tuple, df.itertuples(index))) elif isinstance(df, pd.Series): return list(df.iteritems()) if index else list(df) def to_bag(df, index=False): from ...bag.core import Bag if not isinstance(df, (DataFrame, Series)): raise TypeError("df must be either DataFrame or Series") name = 'to_bag-' + tokenize(df, index) dsk = dict(((name, i), (_df_to_bag, block, index)) for (i, block) in enumerate(df._keys())) dsk.update(df._optimize(df.dask, df._keys())) return Bag(dsk, name, df.npartitions) @insert_meta_param_description def from_delayed(dfs, meta=None, divisions=None, prefix='from-delayed', metadata=None): """ Create DataFrame from many dask.delayed objects Parameters ---------- dfs : list of Delayed An iterable of ``dask.delayed.Delayed`` objects, such as come from ``dask.delayed`` These comprise the individual partitions of the resulting dataframe. $META divisions : tuple, str, optional Partition boundaries along the index. For tuple, see http://dask.pydata.io/en/latest/dataframe-partitions.html For string 'sorted' will compute the delayed values to find index values. Assumes that the indexes are mutually sorted. If None, then won't use index information prefix : str, optional Prefix to prepend to the keys. """ if metadata is not None and meta is None: warn("Deprecation warning: Use meta keyword, not metadata") meta = metadata from dask.delayed import Delayed if isinstance(dfs, Delayed): dfs = [dfs] dsk = merge(df.dask for df in dfs) name = prefix + '-' + tokenize(*dfs) names = [(name, i) for i in range(len(dfs))] values = [df.key for df in dfs] dsk2 = dict(zip(names, values)) dsk3 = merge(dsk, dsk2) if meta is None: meta = dfs[0].compute() if isinstance(meta, (str, pd.Series)): Frame = Series else: Frame = DataFrame if divisions == 'sorted': from ..core import compute_divisions divisions = [None] * (len(dfs) + 1) df = Frame(dsk3, name, meta, divisions) return compute_divisions(df) elif divisions is None: divisions = [None] * (len(dfs) + 1) return Frame(dsk3, name, meta, divisions) def sorted_division_locations(seq, npartitions=None, chunksize=None): """ Find division locations and values in sorted list Examples -------- >>> L = ['A', 'B', 'C', 'D', 'E', 'F'] >>> sorted_division_locations(L, chunksize=2) (['A', 'C', 'E', 'F'], [0, 2, 4, 6]) >>> sorted_division_locations(L, chunksize=3) (['A', 'D', 'F'], [0, 3, 6]) >>> L = ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'C'] >>> sorted_division_locations(L, chunksize=3) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(L, chunksize=2) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(['A'], chunksize=2) (['A', 'A'], [0, 1]) """ if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') if npartitions: chunksize = ceil(len(seq) / npartitions) positions = [0] values = [seq[0]] for pos in list(range(0, len(seq), chunksize)): if pos <= positions[-1]: continue while pos + 1 < len(seq) and seq[pos - 1] == seq[pos]: pos += 1 values.append(seq[pos]) if pos == len(seq) - 1: pos += 1 positions.append(pos) if positions[-1] != len(seq): positions.append(len(seq)) values.append(seq[-1]) return values, positions
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/dataframe/io/io.py", "copies": "1", "size": "18447", "license": "mit", "hash": -8264843338888125000, "line_mean": 31.5918727915, "line_max": 87, "alpha_frac": 0.5843768634, "autogenerated": false, "ratio": 3.6198979591836733, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47042748225836734, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from matplotlib.colors import ColorConverter from glue.config import settings from glue.external.echo import callback_property from glue.external import six # Define acceptable line styles VALID_LINESTYLES = ['solid', 'dashed', 'dash-dot', 'dotted', 'none'] __all__ = ['VisualAttributes'] class VisualAttributes(object): ''' This class is used to define visual attributes for any kind of objects The essential attributes of a VisualAttributes instance are: :param color: A matplotlib color string :param alpha: Opacity (0-1) :param linewidth: The linewidth (float or int) :param linestyle: The linestyle (``'solid' | 'dashed' | 'dash-dot' | 'dotted' | 'none'``) :param marker: The matplotlib marker shape (``'o' | 's' | '^' | etc``) :param markersize: The size of the marker (int) ''' def __init__(self, parent=None, washout=False, color=None, alpha=None): # We have to set the defaults here, otherwise the settings are fixed # once the class is defined. color = color or settings.DATA_COLOR alpha = alpha or settings.DATA_ALPHA self.parent = parent self._atts = ['color', 'alpha', 'linewidth', 'linestyle', 'marker', 'markersize'] self.color = color self.alpha = alpha self.linewidth = 1 self.linestyle = 'solid' self.marker = 'o' self.markersize = 3 def __eq__(self, other): if not isinstance(other, VisualAttributes): return False elif self is other: return True else: return all(getattr(self, a) == getattr(other, a) for a in self._atts) # In Python 3, if __eq__ is defined, then __hash__ has to be re-defined if six.PY3: __hash__ = object.__hash__ def set(self, other): """ Update this instance's properties based on another VisualAttributes instance. """ for att in self._atts: setattr(self, att, getattr(other, att)) def copy(self, new_parent=None): """ Create a new instance with the same visual properties """ result = VisualAttributes() result.set(self) if new_parent is not None: result.parent = new_parent return result @callback_property def color(self): """ Color specified using Matplotlib notation Specifically, it can be: * A string with a common color (e.g. 'black', 'red', 'orange') * A string containing a float in the rng [0:1] for a shade of gray ('0.0' = black,'1.0' = white) * A tuple of three floats in the rng [0:1] for (R, G, B) * An HTML hexadecimal string (e.g. '#eeefff') """ return self._color @color.setter def color(self, value): if isinstance(value, six.string_types): self._color = value.lower() else: self._color = value @callback_property def alpha(self): """ Transparency, given as a floating point value between 0 and 1. """ return self._alpha @alpha.setter def alpha(self, value): self._alpha = value @property def rgba(self): r, g, b = ColorConverter().to_rgb(self.color) return (r, g, b, self.alpha) @callback_property def linestyle(self): """ The line style, which can be one of 'solid', 'dashed', 'dash-dot', 'dotted', or 'none'. """ return self._linestyle @linestyle.setter def linestyle(self, value): if value not in VALID_LINESTYLES: raise Exception("Line style should be one of %s" % '/'.join(VALID_LINESTYLES)) self._linestyle = value @callback_property def linewidth(self): """ The line width, in points. """ return self._linewidth @linewidth.setter def linewidth(self, value): if type(value) not in [float, int]: raise Exception("Line width should be a float or an int") if value < 0: raise Exception("Line width should be positive") self._linewidth = value @callback_property def marker(self): """ The marker symbol. """ return self._marker @marker.setter def marker(self, value): self._marker = value @callback_property def markersize(self): return self._markersize @markersize.setter def markersize(self, value): self._markersize = int(value) def __setattr__(self, attribute, value): # Check that the attribute exists (don't allow new attributes) allowed = set(['color', 'linewidth', 'linestyle', 'alpha', 'parent', 'marker', 'markersize']) if attribute not in allowed and not attribute.startswith('_'): raise Exception("Attribute %s does not exist" % attribute) changed = getattr(self, attribute, None) != value super(VisualAttributes, self).__setattr__(attribute, value) # if parent has a broadcast method, broadcast the change if (changed and hasattr(self, 'parent') and hasattr(self.parent, 'broadcast') and attribute != 'parent' and not attribute.startswith('_')): self.parent.broadcast('style')
{ "repo_name": "saimn/glue", "path": "glue/core/visual.py", "copies": "4", "size": "5472", "license": "bsd-3-clause", "hash": -1179724166966962000, "line_mean": 29.5698324022, "line_max": 93, "alpha_frac": 0.5858918129, "autogenerated": false, "ratio": 4.218966846569005, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00019252137877264874, "num_lines": 179 }
from __future__ import absolute_import, division, print_function from mentor.executor import OneOffExecutor, Running from mentor.messages import PythonTask, PythonTaskStatus from mentor.utils import RemoteException class FakeThread(object): def __init__(self, target): self.target = target def start(self): return self.target() def test_finished_status_updates(mocker): mocker.patch('threading.Thread', side_effect=FakeThread) driver = mocker.Mock() task = PythonTask(fn=sum, args=[range(5)]) executor = OneOffExecutor() executor.on_launch(driver, task) calls = driver.update.call_args_list args, kwargs = calls[0] status = args[0] assert isinstance(status, PythonTaskStatus) assert status.state == 'TASK_RUNNING' assert status.data is None args, kwargs = calls[1] status = args[0] assert isinstance(status, PythonTaskStatus) assert status.state == 'TASK_FINISHED' assert status.data == 10 def test_failed_status_updates(mocker): mocker.patch('threading.Thread', FakeThread) def failing_function(*args): raise Exception("Booom!") driver = mocker.Mock() task = PythonTask(fn=failing_function, args=['arbitrary', 'args']) executor = OneOffExecutor() executor.on_launch(driver, task) calls = driver.update.call_args_list args, kwargs = calls[0] status = args[0] assert isinstance(status, PythonTaskStatus) assert status.state == 'TASK_RUNNING' assert status.data is None args, kwargs = calls[1] status = args[0] assert isinstance(status, PythonTaskStatus) assert status.state == 'TASK_FAILED' assert isinstance(status.data, tuple) assert isinstance(status.exception, RemoteException) assert status.message == 'Booom!' # def test_runner_context_manager(): # executor = OneOffExecutor() # with Running(executor): # pass # assert executor
{ "repo_name": "lensacom/satyr", "path": "mentor/tests/test_executor.py", "copies": "1", "size": "1949", "license": "apache-2.0", "hash": 5379852632266473000, "line_mean": 24.6447368421, "line_max": 70, "alpha_frac": 0.6859928168, "autogenerated": false, "ratio": 3.8290766208251474, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5015069437625147, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from mock import MagicMock import pytest import numpy as np from ... import core from .. import roi from .. import command as c from ..data_factories import tabular_data from .util import simple_session, simple_catalog from ...external.six.moves import range as xrange class TestCommandStack(object): def setup_method(self, method): self.session = simple_session() self.stack = self.session.command_stack def make_command(self): return MagicMock(c.Command) def make_data(self): with simple_catalog() as path: cmd = c.LoadData(path=path, factory=tabular_data) data = self.stack.do(cmd) return data def test_do(self): c1 = self.make_command() self.stack.do(c1) c1.do.assert_called_once_with(self.session) def test_undo(self): c1, c2 = self.make_command(), self.make_command() self.stack.do(c1) self.stack.do(c2) self.stack.undo() c2.undo.assert_called_once_with(self.session) self.stack.undo() c1.undo.assert_called_once_with(self.session) def test_redo(self): c1, c2 = self.make_command(), self.make_command() self.stack.do(c1) self.stack.do(c2) self.stack.undo() self.stack.redo() c2.undo.assert_called_once_with(self.session) assert c2.do.call_count == 2 assert c2.undo.call_count == 1 assert c1.do.call_count == 1 assert c1.undo.call_count == 0 def test_max_undo(self): cmds = [self.make_command() for _ in xrange(c.MAX_UNDO + 1)] for cmd in cmds: self.stack.do(cmd) for cmd in cmds[:-1]: self.stack.undo() with pytest.raises(IndexError): self.stack.undo() def test_invalid_redo(self): with pytest.raises(IndexError) as exc: self.stack.redo() assert exc.value.args[0] == 'No commands to redo' def test_load_data(self): data = self.make_data() np.testing.assert_array_equal(data['a'], [1, 3]) def test_add_data(self): data = self.make_data() cmd = c.AddData(data=data) self.stack.do(cmd) assert len(self.session.data_collection) == 1 self.stack.undo() assert len(self.session.data_collection) == 0 def test_remove_data(self): data = self.make_data() add = c.AddData(data=data) remove = c.RemoveData(data=data) self.stack.do(add) assert len(self.session.data_collection) == 1 self.stack.do(remove) assert len(self.session.data_collection) == 0 self.stack.undo() assert len(self.session.data_collection) == 1 def test_new_data_viewer(self): cmd = c.NewDataViewer(viewer=None, data=None) v = self.stack.do(cmd) self.session.application.new_data_viewer.assert_called_once_with( None, None) self.stack.undo() v.close.assert_called_once_with(warn=False) def test_apply_roi(self): x = core.Data(x=[1, 2, 3]) s = x.new_subset() dc = self.session.data_collection dc.append(x) r = MagicMock(roi.Roi) client = MagicMock(core.client.Client) client.data = dc cmd = c.ApplyROI(client=client, roi=r) self.stack.do(cmd) client.apply_roi.assert_called_once_with(r) old_state = s.subset_state s.subset_state = MagicMock(spec_set=core.subset.SubsetState) self.stack.undo() assert s.subset_state is old_state
{ "repo_name": "JudoWill/glue", "path": "glue/core/tests/test_command.py", "copies": "1", "size": "3669", "license": "bsd-3-clause", "hash": 4369406948513540000, "line_mean": 25.2071428571, "line_max": 73, "alpha_frac": 0.5979831017, "autogenerated": false, "ratio": 3.4418386491557222, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9539821750855723, "avg_score": 0, "num_lines": 140 }
from __future__ import absolute_import, division, print_function from mock import MagicMock from ..application_base import Application from .. import Data from ...external.six.moves import cPickle as pickle class MockApplication(Application): def __init__(self, data=None, hub=None): super(MockApplication, self).__init__(data, hub) self.tab = MagicMock() self.errors = MagicMock() def report_error(self, message, detail): self.errors.report(message, detail) def new_tab(self): self.tab.tab() def add_widget(self, widget, label=None, tab=None): self.tab.add(widget, label) def close_tab(self): self.tab.close() def _load_settings(self): pass class TestApplicationBase(object): def setup_method(self, method): self.app = MockApplication() def test_suggest_mergers(self): x = Data(x=[1, 2, 3]) y = Data(y=[1, 2, 3, 4]) z = Data(z=[1, 2, 3]) Application._choose_merge = MagicMock() Application._choose_merge.return_value = [x] self.app.data_collection.merge = MagicMock() self.app.data_collection.append(x) self.app.data_collection.append(y) self.app.add_datasets(self.app.data_collection, z) args = self.app._choose_merge.call_args[0] assert args[0] == z assert args[1] == [x] assert self.app.data_collection.merge.call_count == 1
{ "repo_name": "JudoWill/glue", "path": "glue/core/tests/test_application_base.py", "copies": "1", "size": "1456", "license": "bsd-3-clause", "hash": 4910993275697213000, "line_mean": 25, "line_max": 64, "alpha_frac": 0.6222527473, "autogenerated": false, "ratio": 3.6129032258064515, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9735155973106451, "avg_score": 0, "num_lines": 56 }
from __future__ import absolute_import, division, print_function from mock import patch from matplotlib import cm from glue.core import Data, DataCollection from ..subset_facet import SubsetFacet patched_facet = patch('glue.dialogs.subset_facet.qt.subset_facet.facet_subsets') class TestSubsetFacet(object): def setup_method(self, method): d = Data(x=[1, 2, 3]) dc = DataCollection([d]) self.collect = dc self.s = dc.new_subset_group() def test_limits(self): s = SubsetFacet(self.collect) s.data = self.collect[0] s.component = self.collect[0].id['x'] assert s.vmin == 1 assert s.vmax == 3 def test_get_set_cmap(self): s = SubsetFacet(self.collect) assert s.cmap is cm.cool def test_apply(self): with patched_facet as p: s = SubsetFacet(self.collect) s.data = self.collect[0] s.component = self.collect[0].id['x'] s._apply() p.assert_called_once_with(self.collect, s.component, lo=1, hi=3, steps=5, log=False)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/dialogs/subset_facet/qt/tests/test_subset_facet.py", "copies": "4", "size": "1169", "license": "bsd-3-clause", "hash": -1800748357862443300, "line_mean": 27.512195122, "line_max": 80, "alpha_frac": 0.5739948674, "autogenerated": false, "ratio": 3.5749235474006116, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00030111412225233364, "num_lines": 41 }
from __future__ import absolute_import, division, print_function from mock import patch from qtpy import QtWidgets from glue import _plugin_helpers as ph from glue.main import load_plugins from ..plugin_manager import QtPluginManager def setup_function(func): from glue import config func.CFG_DIR_ORIG = config.CFG_DIR def teardown_function(func): from glue import config config.CFG_DIR = func.CFG_DIR_ORIG def test_basic_empty(tmpdir): # Test that things work when the plugin cfg file is empty from glue import config config.CFG_DIR = tmpdir.join('.glue').strpath w = QtPluginManager() w.clear() w.update_list() w.finalize() def test_basic(tmpdir): # Test that things work when the plugin cfg file is populated from glue import config config.CFG_DIR = tmpdir.join('.glue').strpath load_plugins() config = ph.PluginConfig.load() config.plugins['spectrum_tool'] = False config.plugins['pv_slicer'] = False config.save() w = QtPluginManager() w.clear() w.update_list() w.finalize() config2 = ph.PluginConfig.load() assert config.plugins == config2.plugins def test_permission_fail(tmpdir): from glue import config config.CFG_DIR = tmpdir.join('.glue').strpath # Make a *file* at that location so that reading the plugin file will fail with open(config.CFG_DIR, 'w') as f: f.write("test") config2 = ph.PluginConfig.load() with patch.object(QtWidgets.QMessageBox, 'exec_', return_value=None) as qmb: w = QtPluginManager() w.finalize() assert qmb.call_count == 1
{ "repo_name": "stscieisenhamer/glue", "path": "glue/app/qt/tests/test_plugin_manager.py", "copies": "3", "size": "1640", "license": "bsd-3-clause", "hash": -8504459362969016000, "line_mean": 20.5789473684, "line_max": 80, "alpha_frac": 0.6762195122, "autogenerated": false, "ratio": 3.6363636363636362, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00016244314489928524, "num_lines": 76 }
from __future__ import absolute_import, division, print_function from multipledispatch import dispatch from six import string_types from pennies.trading.assets import Asset from pennies.market.market import Market BASE_ASSET = (Asset, object) BASE_MARKET = (Market, object) BASE_STRING = string_types + (object,) @dispatch(BASE_ASSET, BASE_MARKET, BASE_STRING) def present_value(contract, market, reporting_ccy): """Base present value calculation. Given an asset (or sequence of assets), calculate it's present value as of today. The supplied market provides prices, curves, and so on. Parameters ---------- contract: Asset Asset to calculate present value market: Market Market to retrieve raw and computed market values such as prices, curves, and surfaces. reporting_ccy: str Specifies which currency to report value in Returns ------- float Present Value in the reporting currency """ raise NotImplementedError("Not available for base types") @dispatch(BASE_ASSET, BASE_MARKET, BASE_STRING, object, BASE_STRING) def sens_to_zero_rates(contract, market, curve_ccy, curve_key, reporting_ccy): """Sensitivity of each cashflow to the curve specified by currency and key Given an asset contract (or sequence of assets), calculate the change in Present Value to a unit shift in the zero rate of the curve specified by curve_ccy and curve_key. Parameters ---------- contract: Asset Calculate Sensitivity to this Asset. market: Market Market to retrieve raw and computed market values such as prices, curves, and surfaces. curve_ccy: str Specifies currency of the curve curve_key: str Along with curve_ccy, specifies which curve to compute sensitivity to. reporting_ccy: str Specifies which currency to report value in Returns ------- DataFrame Table containing maturities, sensitivities, curve currency and key, columns=['ttm', 'sens', 'ccy', 'curve']. """ raise NotImplementedError("Not available for base types") @dispatch(BASE_ASSET, BASE_MARKET, str) def sens_to_market_rates(contract, market, reporting_ccy): """Compute sensitivity of contract to each node in the market's curves. Market Curve Calibration consists of finding the discount rates for a desired set of curves that correctly prices a target set of contracts. To do this, we form a Jacobian matrix consisting of the sensitivities of each contract's Present Value, V_i, to each node of each curve in the market, r_j: d(V_i)/dr_j. This function produces a single row of the Jacobian. Note the indices: i = index over market contracts. (rows) j = index over model curve nodes, for all curves. (columns) Thus, if one had a discount curve with N nodes, and a single LIBOR curve with M nodes. j = 0..N+M-1 V_i = Present Value of the i'th contract. r_j = Discount rate of node j. t_k = Maturity of some bond required to price V_i. r_{c,k} = discount rate of curve, c, at time t_k. z_{c,k} = discount bond price of curve, c, at time t_k. dP/dr_j = ( dV/dz_{c,k} ) * ( dz_{c,k} / dr_{c,k} ) * ( dr_{c,k} / dr_j ) Note that dr_{c,k} / dr_j == 0 if node j does not belong to curve c. Parameters ---------- contract: Asset Asset to calculate present value market: Market Market to retrieve raw and computed market values such as prices, curves, and surfaces. Returns ------- Array of CurrencyAmount's Derivative of Present Value with respect to each node's rate """ raise NotImplementedError("Not available for base types") class AssetCalculator(object): def __init__(self, contract, market): """ Parameters ---------- contract: Asset Asset (or Trade) representing the payment of a fixed amount market: Market Market values required to price the Asset. """ self.contract = contract self.market = market def all_calculators(): return AssetCalculator.__subclasses__() def default_calculators(): from pennies.trading import assets from pennies.calculators import payments return { str(assets.BulletPayment): payments.BulletPaymentCalculator, str(assets.DiscountBond): payments.BulletPaymentCalculator, str(assets.SettlementPayment): payments.BulletPaymentCalculator, str(assets.Zero): payments.BulletPaymentCalculator, str(assets.ZeroCouponBond): payments.BulletPaymentCalculator, str(assets.CompoundAsset): None, str(assets.Annuity): None, str(assets.FixedLeg): None, str(assets.IborLeg): None, str(assets.Swap): None, str(assets.VanillaSwap): None, str(assets.CurrencySwap): None, str(assets.TenorSwap): None, str(assets.Deposit): None, str(assets.StirFuture): None, str(assets.FRA): None, str(assets.IborFixing): None}
{ "repo_name": "caseyclements/pennies", "path": "pennies/calculators/assets.py", "copies": "1", "size": "5119", "license": "apache-2.0", "hash": 4056597498530552300, "line_mean": 32.4575163399, "line_max": 79, "alpha_frac": 0.6665364329, "autogenerated": false, "ratio": 3.9407236335642803, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.510726006646428, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from multipledispatch import dispatch from pennies.trading.assets import BulletPayment from pennies.calculators.assets import AssetCalculator from pennies import CurrencyAmount from pennies.market.market import Market, RatesTermStructure @dispatch(BulletPayment, RatesTermStructure, str) def present_value(contract, market, reporting_ccy): """Present Value as sum of discount cash flows. This assumes that one has already computed the rates. For fixed rate annuities, this will be done during construction. For floating rate annuities, this will have to be pre-computed, typically via psuedo-discount factors of other curves.""" df = market.discount_factor(contract.dt_payment, contract.currency) pv = contract.notional * df if reporting_ccy != contract.currency: pv *= market.fx(reporting_ccy, contract.currency) return pv class BulletPaymentCalculator(AssetCalculator): """(Deprecated) Calculator for BulletPayments and its aliases.""" measures = { # TODO Complete this. Consider visitor pattern for ccrs "present_value", #"pv01", #"position", #"cashflow_dates" # Should this be here? } def __init__(self, contract, market): """ Parameters ---------- contract: BulletPayment Asset (or Trade) representing the payment of a fixed amount market: Market Market values required to price the Asset. Here, a DiscountCurve """ super(BulletPaymentCalculator, self).__init__(contract, market) # TODO As it stands, init isn't needed as it just calls super # TODO It is here as a reminder to refactor if market gets specific def present_value(self): """Present, or Fair, Value of a known BulletPayment.""" df = self.market.discount_factor(self.contract.dt_payment, self.contract.currency) return CurrencyAmount(self.contract.notional * df, self.contract.currency)
{ "repo_name": "caseyclements/pennies", "path": "pennies/calculators/payments.py", "copies": "1", "size": "2089", "license": "apache-2.0", "hash": 4311841912290494500, "line_mean": 37.6851851852, "line_max": 82, "alpha_frac": 0.6840593585, "autogenerated": false, "ratio": 4.2719836400818, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5456042998581799, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from multipledispatch import MDNotImplementedError from odo import Chunks, chunks, convert, discover, into from collections import Iterator, Iterable from toolz import curry, concat, map from datashape.dispatch import dispatch import pandas as pd import numpy as np from ..expr import Head, ElemWise, Distinct, Symbol, Expr, path from ..expr.split import split from .core import compute from .pmap import get_default_pmap Cheap = (Head, ElemWise, Distinct, Symbol) @dispatch(Head, Chunks) def pre_compute(expr, data, **kwargs): leaf = expr._leaves()[0] if all(isinstance(e, Cheap) for e in path(expr, leaf)): return convert(Iterator, data) else: raise MDNotImplementedError() def compute_chunk(chunk, chunk_expr, part): return compute(chunk_expr, {chunk: part}) @dispatch(Expr, Chunks) def compute_down(expr, data, map=None, **kwargs): if map is None: map = get_default_pmap() leaf = expr._leaves()[0] (chunk, chunk_expr), (agg, agg_expr) = split(leaf, expr) parts = list(map(curry(compute_chunk, chunk, chunk_expr), data)) if isinstance(parts[0], np.ndarray): intermediate = np.concatenate(parts) elif isinstance(parts[0], pd.DataFrame): intermediate = pd.concat(parts) elif isinstance(parts[0], (Iterable, Iterator)): intermediate = list(concat(parts)) return compute(agg_expr, {agg: intermediate}) Cheap = (Head, ElemWise, Distinct, Symbol) @dispatch(Head, Chunks) def compute_down(expr, data, **kwargs): leaf = expr._leaves()[0] if all(isinstance(e, Cheap) for e in path(expr, leaf)): return compute(expr, {leaf: into(Iterator, data)}, **kwargs) else: raise MDNotImplementedError()
{ "repo_name": "mrocklin/blaze", "path": "blaze/compute/chunks.py", "copies": "1", "size": "1792", "license": "bsd-3-clause", "hash": 3515949893189694500, "line_mean": 28.3770491803, "line_max": 68, "alpha_frac": 0.69140625, "autogenerated": false, "ratio": 3.534516765285996, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4725923015285996, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from multipledispatch import MDNotImplementedError from odo import Chunks, convert, into from collections import Iterator, Iterable from toolz import curry, concat from datashape.dispatch import dispatch import pandas as pd import numpy as np from ..expr import Head, ElemWise, Distinct, Symbol, Expr, path from ..expr.split import split from .core import compute from .pmap import get_default_pmap __all__ = ['Cheap', 'compute_chunk', 'compute_down'] Cheap = (Head, ElemWise, Distinct, Symbol) @dispatch(Head, Chunks) def pre_compute(expr, data, **kwargs): leaf = expr._leaves()[0] if all(isinstance(e, Cheap) for e in path(expr, leaf)): return convert(Iterator, data) else: raise MDNotImplementedError() def compute_chunk(chunk, chunk_expr, part): return compute(chunk_expr, {chunk: part}) @dispatch(Expr, Chunks) def compute_down(expr, data, map=None, **kwargs): if map is None: map = get_default_pmap() leaf = expr._leaves()[0] (chunk, chunk_expr), (agg, agg_expr) = split(leaf, expr) parts = list(map(curry(compute_chunk, chunk, chunk_expr), data)) if isinstance(parts[0], np.ndarray): intermediate = np.concatenate(parts) elif isinstance(parts[0], pd.DataFrame): intermediate = pd.concat(parts) elif isinstance(parts[0], (Iterable, Iterator)): intermediate = list(concat(parts)) return compute(agg_expr, {agg: intermediate}) Cheap = (Head, ElemWise, Distinct, Symbol) @dispatch(Head, Chunks) def compute_down(expr, data, **kwargs): leaf = expr._leaves()[0] if all(isinstance(e, Cheap) for e in path(expr, leaf)): return compute(expr, {leaf: into(Iterator, data)}, **kwargs) else: raise MDNotImplementedError()
{ "repo_name": "dwillmer/blaze", "path": "blaze/compute/chunks.py", "copies": "16", "size": "1826", "license": "bsd-3-clause", "hash": -1086373702137248600, "line_mean": 26.6666666667, "line_max": 68, "alpha_frac": 0.6861993428, "autogenerated": false, "ratio": 3.504798464491363, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0006313131313131313, "num_lines": 66 }
from __future__ import absolute_import, division, print_function from nfldb.db import _upsert class Entity (object): """ This is an abstract base class that handles most of the SQL plumbing for entities in `nfldb`. Its interface is meant to be declarative: specify the schema and let the methods defined here do the SQL generation work. However, it is possible to override methods (like `nfldb.Entity._sql_field`) when more customization is desired. Note that many of the methods defined here take an `aliases` argument. This should be a dictionary mapping table name (defined in `nfldb.Entity._sql_tables`) to some custom prefix. If it isn't provided, then the table name itself is used. """ # This class doesn't introduce any instance variables, but we need # to declare as such, otherwise all subclasses will wind up with a # `__dict__`. (Thereby negating the benefit of using __slots__.) __slots__ = [] _sql_tables = {} """ A dictionary with four keys: `primary`, `tables`, `managed` and `derived`. The `primary` key should map to a list of primary key fields that correspond to a shared minimal subset of primary keys in all tables that represent this entity. (i.e., It should be the foreign key that joins all tables in the representation together.) The `tables` key should map to an association list of table names that map to lists of fields for that table. The lists of fields for every table should be *disjoint*: no two tables may share a field name in common (outside of the primary key). The `managed` key should be a list of tables that are managed directly by `nfldb`. `INSERT`, `UPDATE` and `DELETE` queries will be generated appropriately. (Tables not in this list are assumed to be maintained by the database itself, e.g., they are actually views or materialized views maintained by triggers.) The `derived` key should map to a list of *computed* fields. These are fields that aren't directly stored in the table, but can be computed from combining columns in the table (like `offense_tds` or `points`). This API will expose such fields as regular SQL columns in the API, and will handle writing them for you in `WHERE` and `ORDER BY` statements. The actual implementation of each computed field should be in an entity's `_sql_field` method (overriding the one defined on `nfldb.Entity`). The derived fields must be listed here so that the SQL generation code is aware of them. """ @classmethod def _sql_columns(cls): """ Returns all columns defined for this entity. Every field corresponds to a single column in a table. The first `N` columns returned correspond to this entity's primary key, where `N` is the number of columns in the primary key. """ cols = cls._sql_tables['primary'][:] for table, table_cols in cls._sql_tables['tables']: cols += table_cols return cols @classmethod def sql_fields(cls): """ Returns a list of all SQL fields across all tables for this entity, including derived fields. This method can be used in conjunction with `nfldb.Entity.from_row_tuple` to quickly create new `nfldb` objects without every constructing a dict. """ if not hasattr(cls, '_cached_sql_fields'): cls._cached_sql_fields = cls._sql_columns() cls._cached_sql_fields += cls._sql_tables['derived'] return cls._cached_sql_fields @classmethod def from_row_dict(cls, db, row): """ Introduces a new entity object from a full SQL row result from the entity's tables. (i.e., `row` is a dictionary mapping column to value.) Note that the column names must be of the form '{entity_name}_{column_name}'. For example, in the `game` table, the `gsis_id` column must be named `game_gsis_id` in `row`. """ obj = cls(db) seta = setattr prefix = cls._sql_primary_table() + '_' slice_from = len(prefix) for k in row: if k.startswith(prefix): seta(obj, k[slice_from:], row[k]) return obj @classmethod def from_row_tuple(cls, db, t): """ Given a tuple `t` corresponding to a result from a SELECT query, this will construct a new instance for this entity. Note that the tuple `t` must be in *exact* correspondence with the columns returned by `nfldb.Entity.sql_fields`. """ cols = cls.sql_fields() seta = setattr obj = cls(db) for i, field in enumerate(cols): seta(obj, field, t[i]) return obj @classmethod def _sql_from(cls, aliases=None): """ Return a valid SQL `FROM table AS alias [LEFT JOIN extra_table ...]` string for this entity. """ # This is a little hokey. Pick the first table as the 'FROM' table. # Subsequent tables are joined. from_table = cls._sql_primary_table() as_from_table = cls._sql_table_alias(from_table, aliases) extra_tables = '' for table, _ in cls._sql_tables['tables'][1:]: extra_tables += cls._sql_join_to(cls, from_table=from_table, to_table=table, from_aliases=aliases, to_aliases=aliases) return ''' FROM {from_table} AS {as_from_table} {extra_tables} '''.format(from_table=from_table, as_from_table=as_from_table, extra_tables=extra_tables) @classmethod def _sql_select_fields(cls, fields, wrap=None, aliases=None): """ Returns correctly qualified SELECT expressions for each field in `fields` (namely, a field may be a derived field). If `wrap` is a not `None`, then it is applied to the result of calling `cls._sql_field` on each element in `fields`. All resulting fields are aliased with `AS` to correspond to the name given in `fields`. Namely, this makes table aliases opaque to the resulting query, but this also disallows selecting columns of the same name from multiple tables. """ if wrap is None: wrap = lambda x: x sql = lambda f: wrap(cls._sql_field(f, aliases=aliases)) entity_prefix = cls._sql_primary_table() return ['%s AS %s_%s' % (sql(f), entity_prefix, f) for f in fields] @classmethod def _sql_relation_distance(cls_from, cls_to): primf = set(cls_from._sql_tables['primary']) primt = set(cls_to._sql_tables['primary']) if len(primf.intersection(primt)) == 0: return None outsiders = primf.difference(primt).union(primt.difference(primf)) if len(primf) > len(primt): return -len(outsiders) else: return len(outsiders) @classmethod def _sql_join_all(cls_from, cls_tos): """ Given a list of sub classes `cls_tos` of `nfldb.Entity`, produce as many SQL `LEFT JOIN` clauses as is necessary so that all fields in all entity types given are available for filtering. Unlike the other join functions, this one has no alias support or support for controlling particular tables. The key contribution of this function is that it knows how to connect a group of tables correctly. e.g., If the group of tables is `game`, `play` and `play_player`, then `game` and `play` will be joined and `play` and `play_player` will be joined. (Instead of `game` and `play_player` or some other erronoeous combination.) In essence, each table is joined with the least general table in the group. """ assert cls_from not in cls_tos, \ 'cannot join %s with itself with `sql_join_all`' % cls_from def dist(f, t): return f._sql_relation_distance(t) def relation_dists(froms, tos): return filter(lambda (f, t, d): d is not None, ((f, t, dist(f, t)) for f in froms for t in tos)) def more_general(froms, tos): return filter(lambda (f, t, d): d < 0, relation_dists(froms, tos)) def more_specific(froms, tos): return filter(lambda (f, t, d): d > 0, relation_dists(froms, tos)) joins = '' froms, tos = set([cls_from]), set(cls_tos) while len(tos) > 0: general = more_general(froms, tos) specific = more_specific(froms, tos) assert len(general) > 0 or len(specific) > 0, \ 'Cannot compute distances between sets. From: %s, To: %s' \ % (froms, tos) def add_join(f, t): tos.discard(t) froms.add(t) return f._sql_join_to_all(t) if general: f, t, _ = max(general, key=lambda (f, t, d): d) joins += add_join(f, t) if specific: f, t, _ = min(specific, key=lambda (f, t, d): d) joins += add_join(f, t) return joins @classmethod def _sql_join_to_all(cls_from, cls_to, from_table=None, from_aliases=None, to_aliases=None): """ Given a **sub class** `cls_to` of `nfldb.Entity`, produce as many SQL `LEFT JOIN` clauses as is necessary so that all fields in `cls_to.sql_fields()` are available for filtering. See the documentation for `nfldb.Entity._sql_join_to` for information on the parameters. """ to_primary = cls_to._sql_primary_table() joins = cls_from._sql_join_to(cls_to, from_table=from_table, to_table=to_primary, from_aliases=from_aliases, to_aliases=to_aliases) for table, _ in cls_to._sql_tables['tables'][1:]: joins += cls_to._sql_join_to(cls_to, from_table=to_primary, to_table=table, from_aliases=to_aliases, to_aliases=to_aliases) return joins @classmethod def _sql_join_to(cls_from, cls_to, from_table=None, to_table=None, from_aliases=None, to_aliases=None): """ Given a **sub class** `cls_to` of `nfldb.Entity`, produce a SQL `LEFT JOIN` clause. If the primary keys in `cls_from` and `cls_to` have an empty intersection, then an assertion error is raised. Note that the first table defined for each of `cls_from` and `cls_to` is used to join them if `from_table` or `to_table` are `None`. `from_aliases` are only applied to the `from` tables and `to_aliases` are only applied to the `to` tables. This allows one to do self joins. """ if from_table is None: from_table = cls_from._sql_primary_table() if to_table is None: to_table = cls_to._sql_primary_table() from_table = cls_from._sql_table_alias(from_table, aliases=from_aliases) as_to_table = cls_to._sql_table_alias(to_table, aliases=to_aliases) from_pkey = cls_from._sql_tables['primary'] to_pkey = cls_to._sql_tables['primary'] # Avoiding set.intersection so we can preserve order. common = [k for k in from_pkey if k in to_pkey] assert len(common) > 0, \ "Cannot join %s to %s with non-overlapping primary keys." \ % (cls_from.__name__, cls_to.__name__) fkey = [qualified_field(from_table, f) for f in common] tkey = [qualified_field(as_to_table, f) for f in common] return ''' LEFT JOIN {to_table} AS {as_to_table} ON ({fkey}) = ({tkey}) '''.format(to_table=to_table, as_to_table=as_to_table, fkey=', '.join(fkey), tkey=', '.join(tkey)) @classmethod def _sql_primary_key(cls, table, aliases=None): t = cls._sql_table_alias(table, aliases) return [qualified_field(t, f) for f in cls._sql_tables['primary']] @classmethod def _sql_primary_table(cls): return cls._sql_tables['tables'][0][0] @classmethod def _sql_column_to_table(cls, name): """ Returns the table in `cls._sql_tables` containing the field `name`. If `name` corresponds to a primary key column, then the primary table (first table) is returned. If a table could not be found, a `exceptions.KeyError` is raised. """ if name in cls._sql_tables['primary']: return cls._sql_primary_table() for table_name, fields in cls._sql_tables['tables']: if name in fields: return table_name raise KeyError("Could not find table for %s" % name) @classmethod def _sql_table_alias(cls, table_name, aliases): if aliases is None or table_name not in aliases: return table_name else: return aliases[table_name] @classmethod def _sql_field(cls, name, aliases=None): """ Returns a SQL expression corresponding to the field `name`. The default implementation returns `table_for_name`.`name`. Entities can override this for special computed fields. """ prefix = cls._sql_table_alias(cls._sql_column_to_table(name), aliases) return qualified_field(prefix, name) def _save(self, cursor): """ Does an upsert for each managed table specified in `nfldb.Entity._sql_tables`. The data is drawn from `self`. """ for table, prim, vals in self._rows: _upsert(cursor, table, vals, prim) @property def _rows(self): prim = self._sql_tables['primary'][:] for table, table_fields in self._sql_tables['tables']: if table in self._sql_tables['managed']: r = _as_row(prim + table_fields, self) yield table, r[0:len(prim)], r def _as_row(fields, obj): """ Given a list of fields in a SQL table and a Python object, return an association list where the keys are from `fields` and the values are the result of `getattr(obj, fields[i], None)` for some `i`. Note that the `time_inserted` and `time_updated` fields are always omitted. """ exclude = ('time_inserted', 'time_updated') return [(f, getattr(obj, f, None)) for f in fields if f not in exclude] def ands(*exprs): anded = ' AND '.join('(%s)' % e for e in exprs if e) return 'true' if len(anded) == 0 else anded def qualified_field(alias, field): """ Qualifies the SQL `field` with `alias`. If `alias` is empty, then no qualification is used. (Just `field` is returned.) """ if not alias: return field else: return '%s.%s' % (alias, field)
{ "repo_name": "verdimrc/nfldb", "path": "nfldb/sql.py", "copies": "5", "size": "15501", "license": "unlicense", "hash": 2931798795539151400, "line_mean": 38.4427480916, "line_max": 78, "alpha_frac": 0.5810592865, "autogenerated": false, "ratio": 4.008533747090768, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7089593033590768, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from numbers import Number from toolz import concat, first, curry, compose from datashape import DataShape from blaze import compute, ndim from blaze.dispatch import dispatch from blaze.compute.core import compute_up, optimize from blaze.expr import (ElemWise, symbol, Reduction, Transpose, TensorDot, Expr, Slice, Broadcast) from blaze.expr.split import split from dask.array.core import (_concatenate2, Array, atop, names, transpose, tensordot) def compute_it(expr, leaves, *data, **kwargs): kwargs.pop('scope') return compute(expr, dict(zip(leaves, data)), **kwargs) def elemwise_array(expr, *data, **kwargs): leaves = expr._inputs expr_inds = tuple(range(ndim(expr)))[::-1] return atop(curry(compute_it, expr, leaves, **kwargs), expr_inds, *concat((dat, tuple(range(ndim(dat))[::-1])) for dat in data)) try: from blaze.compute.numba import (get_numba_ufunc, broadcast_collect, Broadcastable) def compute_broadcast(expr, *data, **kwargs): expr_inds = tuple(range(ndim(expr)))[::-1] func = get_numba_ufunc(expr) return atop(func, expr_inds, *concat((dat, tuple(range(ndim(dat))[::-1])) for dat in data)) def optimize_array(expr, *data): return broadcast_collect(expr, Broadcastable=Broadcastable, WantToBroadcast=Broadcastable) for i in range(5): compute_up.register(Broadcast, *([(Array, Number)] * i))(compute_broadcast) optimize.register(Expr, *([(Array, Number)] * i))(optimize_array) except ImportError: pass for i in range(5): compute_up.register(ElemWise, *([Array] * i))(elemwise_array) @dispatch(Reduction, Array) def compute_up(expr, data, **kwargs): leaf = expr._leaves()[0] chunk = symbol('chunk', DataShape(*(tuple(map(first, data.chunks)) + (leaf.dshape.measure,)))) (chunk, chunk_expr), (agg, agg_expr) = split(expr._child, expr, chunk=chunk) inds = tuple(range(ndim(leaf))) tmp = atop(curry(compute_it, chunk_expr, [chunk], **kwargs), inds, data, inds) return atop(compose(curry(compute_it, agg_expr, [agg], **kwargs), curry(_concatenate2, axes=expr.axis)), tuple(i for i in inds if i not in expr.axis), tmp, inds) @dispatch(Transpose, Array) def compute_up(expr, data, **kwargs): return transpose(data, expr.axes) @dispatch(TensorDot, Array, Array) def compute_up(expr, lhs, rhs, **kwargs): return tensordot(lhs, rhs, (expr._left_axes, expr._right_axes)) @dispatch(Slice, Array) def compute_up(expr, data, **kwargs): return data[expr.index]
{ "repo_name": "LiaoPan/blaze", "path": "blaze/compute/dask.py", "copies": "3", "size": "2914", "license": "bsd-3-clause", "hash": -5792800541194806000, "line_mean": 32.1136363636, "line_max": 83, "alpha_frac": 0.6091283459, "autogenerated": false, "ratio": 3.5842558425584254, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0008554057499840632, "num_lines": 88 }
from __future__ import absolute_import, division, print_function from numbers import Number import numpy as np from toolz import concat, first, curry, compose from datashape import DataShape from blaze.dispatch import dispatch from blaze.compute.core import compute_up, optimize from blaze import compute, ndim from blaze.expr import (ElemWise, symbol, Reduction, Transpose, TensorDot, Expr, Slice, Broadcast) from .core import (getem, _concatenate2, top, Array, get, atop, names, transpose, tensordot) from .slicing import slice_array def compute_it(expr, leaves, *data, **kwargs): kwargs.pop('scope') return compute(expr, dict(zip(leaves, data)), **kwargs) def elemwise_array(expr, *data, **kwargs): leaves = expr._inputs expr_inds = tuple(range(ndim(expr)))[::-1] return atop(curry(compute_it, expr, leaves, **kwargs), next(names), expr_inds, *concat((dat, tuple(range(ndim(dat))[::-1])) for dat in data)) try: from blaze.compute.numba import (get_numba_ufunc, broadcast_collect, Broadcastable) def compute_broadcast(expr, *data, **kwargs): leaves = expr._inputs expr_inds = tuple(range(ndim(expr)))[::-1] func = get_numba_ufunc(expr) return atop(func, next(names), expr_inds, *concat((dat, tuple(range(ndim(dat))[::-1])) for dat in data)) def optimize_array(expr, *data): return broadcast_collect(expr, Broadcastable=Broadcastable, WantToBroadcast=Broadcastable) for i in range(5): compute_up.register(Broadcast, *([(Array, Number)] * i))(compute_broadcast) optimize.register(Expr, *([(Array, Number)] * i))(optimize_array) except ImportError: pass for i in range(5): compute_up.register(ElemWise, *([Array] * i))(elemwise_array) from blaze.expr.split import split @dispatch(Reduction, Array) def compute_up(expr, data, **kwargs): leaf = expr._leaves()[0] chunk = symbol('chunk', DataShape(*(tuple(map(first, data.blockdims)) + (leaf.dshape.measure,)))) (chunk, chunk_expr), (agg, agg_expr) = split(expr._child, expr, chunk=chunk) inds = tuple(range(ndim(leaf))) tmp = atop(curry(compute_it, chunk_expr, [chunk], **kwargs), next(names), inds, data, inds) return atop(compose(curry(compute_it, agg_expr, [agg], **kwargs), curry(_concatenate2, axes=expr.axis)), next(names), tuple(i for i in inds if i not in expr.axis), tmp, inds) @dispatch(Transpose, Array) def compute_up(expr, data, **kwargs): return transpose(data, expr.axes) @dispatch(TensorDot, Array, Array) def compute_up(expr, lhs, rhs, **kwargs): return tensordot(lhs, rhs, (expr._left_axes, expr._right_axes)) @dispatch(Slice, Array) def compute_up(expr, data, **kwargs): return data[expr.index]
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/array/blaze.py", "copies": "1", "size": "2956", "license": "bsd-3-clause", "hash": 2220561997763636000, "line_mean": 31.1304347826, "line_max": 83, "alpha_frac": 0.6339648173, "autogenerated": false, "ratio": 3.4573099415204678, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4591274758820468, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from numpy import inf import toolz import datashape from datashape import Record, DataShape, dshape, TimeDelta from datashape import coretypes as ct from datashape.predicates import iscollection, isboolean, isnumeric, isdatelike from .core import common_subexpression from .expressions import Expr, ndim from .strings import isstring from .expressions import dshape_method_list, method_properties class Reduction(Expr): """ A column-wise reduction Blaze supports the same class of reductions as NumPy and Pandas. sum, min, max, any, all, mean, var, std, count, nunique Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> e = t['amount'].sum() >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 3]] >>> from blaze.compute.python import compute >>> compute(e, data) 350 """ __slots__ = '_hash', '_child', 'axis', 'keepdims' def __init__(self, _child, axis=None, keepdims=False): self._child = _child if axis is None: axis = tuple(range(_child.ndim)) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) axis = tuple(sorted(axis)) self.axis = axis self.keepdims = keepdims @property def dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) return DataShape(*(shape + (self.schema,))) @property def schema(self): schema = self._child.schema[0] if isinstance(schema, Record) and len(schema.types) == 1: result = toolz.first(schema.types) else: result = schema return DataShape(result) @property def symbol(self): return type(self).__name__ @property def _name(self): try: return self._child._name + '_' + type(self).__name__ except (AttributeError, ValueError, TypeError): return type(self).__name__ def __str__(self): kwargs = list() if self.keepdims: kwargs.append('keepdims=True') if self.axis != tuple(range(self._child.ndim)): kwargs.append('axis=' + str(self.axis)) other = sorted( set(self.__slots__[1:]) - set(['_child', 'axis', 'keepdims'])) for slot in other: kwargs.append('%s=%s' % (slot, getattr(self, slot))) name = type(self).__name__ if kwargs: return '%s(%s, %s)' % (name, self._child, ', '.join(kwargs)) else: return '%s(%s)' % (name, self._child) class any(Reduction): schema = dshape(ct.bool_) class all(Reduction): schema = dshape(ct.bool_) class sum(Reduction): @property def schema(self): return DataShape(datashape.maxtype(super(sum, self).schema)) class max(Reduction): pass class min(Reduction): pass class mean(Reduction): schema = dshape(ct.real) class var(Reduction): """Variance Parameters ---------- child : Expr An expression unbiased : bool, optional Compute an unbiased estimate of the population variance if this is ``True``. In NumPy and pandas, this parameter is called ``ddof`` (delta degrees of freedom) and is equal to 1 for unbiased and 0 for biased. """ __slots__ = '_hash', '_child', 'unbiased', 'axis', 'keepdims' schema = dshape(ct.real) def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased super(var, self).__init__(child, *args, **kwargs) class std(Reduction): """Standard Deviation Parameters ---------- child : Expr An expression unbiased : bool, optional Compute the square root of an unbiased estimate of the population variance if this is ``True``. .. warning:: This does *not* return an unbiased estimate of the population standard deviation. See Also -------- var """ __slots__ = '_hash', '_child', 'unbiased', 'axis', 'keepdims' schema = dshape(ct.real) def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased super(std, self).__init__(child, *args, **kwargs) class count(Reduction): """ The number of non-null elements """ schema = dshape(ct.int32) class nunique(Reduction): schema = dshape(ct.int32) class nelements(Reduction): """Compute the number of elements in a collection, including missing values. See Also --------- blaze.expr.reductions.count: compute the number of non-null elements Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: float64}') >>> t[t.amount < 1].nelements() nelements(t[t.amount < 1]) """ schema = dshape(ct.int32) def nrows(expr): return nelements(expr, axis=(0,)) class Summary(Expr): """ A collection of named reductions Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> expr = summary(number=t.id.nunique(), sum=t.amount.sum()) >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 1]] >>> from blaze import compute >>> compute(expr, data) (2, 350) """ __slots__ = '_hash', '_child', 'names', 'values', 'axis', 'keepdims' def __init__(self, _child, names, values, axis=None, keepdims=False): self._child = _child self.names = names self.values = values self.keepdims = keepdims self.axis = axis @property def dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) measure = Record(list(zip(self.names, [v.schema for v in self.values]))) return DataShape(*(shape + (measure,))) def __str__(self): s = 'summary(' s += ', '.join('%s=%s' % (name, str(val)) for name, val in zip(self.fields, self.values)) if self.keepdims: s += ', keepdims=True' s += ')' return s def summary(keepdims=False, axis=None, **kwargs): items = sorted(kwargs.items(), key=toolz.first) names = tuple(map(toolz.first, items)) values = tuple(map(toolz.second, items)) child = common_subexpression(*values) if len(kwargs) == 1 and not iscollection(child.dshape): while not iscollection(child.dshape): children = [i for i in child._inputs if isinstance(i, Expr)] if len(children) == 1: child = children[0] else: child = common_subexpression(*children) if axis is None: axis = tuple(range(ndim(child))) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) return Summary(child, names, values, keepdims=keepdims, axis=axis) summary.__doc__ = Summary.__doc__ def vnorm(expr, ord=None, axis=None, keepdims=False): """ Vector norm See np.linalg.norm """ if ord is None or ord == 'fro': ord = 2 if ord == inf: return max(abs(expr), axis=axis, keepdims=keepdims) elif ord == -inf: return min(abs(expr), axis=axis, keepdims=keepdims) elif ord == 1: return sum(abs(expr), axis=axis, keepdims=keepdims) elif ord % 2 == 0: return sum(expr ** ord, axis=axis, keepdims=keepdims) ** (1.0 / ord) return sum(abs(expr) ** ord, axis=axis, keepdims=keepdims) ** (1.0 / ord) dshape_method_list.extend([ (iscollection, set([count, nelements])), (lambda ds: (iscollection(ds) and (isstring(ds) or isnumeric(ds) or isboolean(ds) or isdatelike(ds) or isinstance(ds, TimeDelta))), set([min, max])), (lambda ds: len(ds.shape) == 1, set([nrows, nunique])), (lambda ds: iscollection(ds) and isboolean(ds), set([any, all])), (lambda ds: iscollection(ds) and (isnumeric(ds) or isboolean(ds)), set([mean, sum, std, var, vnorm])), ]) method_properties.update([nrows])
{ "repo_name": "dwillmer/blaze", "path": "blaze/expr/reductions.py", "copies": "1", "size": "8872", "license": "bsd-3-clause", "hash": 4537954242533676000, "line_mean": 26.2147239264, "line_max": 80, "alpha_frac": 0.561767358, "autogenerated": false, "ratio": 3.756138865368332, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9817716872463235, "avg_score": 0.00003787018101946527, "num_lines": 326 }
from __future__ import absolute_import, division, print_function from .object_hook import object_hook, register import werkzeug.exceptions as wz_ex from blaze.compatibility import builtins, reduce import numpy as np import pandas as pd _converters_trusted = object_hook._converters.copy() def object_hook_trusted(ob, _converters=_converters_trusted): return object_hook(ob, _converters=_converters) object_hook_trusted._converters = _converters_trusted object_hook_trusted.register = register(converters=_converters_trusted) del _converters_trusted @object_hook_trusted.register('callable') def numpy_pandas_function_from_str(f): """ reconstruct function from string representation """ if f.startswith(np.__name__): mod = np elif f.startswith(pd.__name__): mod = pd elif f.startswith(builtins.__name__): mod = builtins else: msg = ("Function {} not recognized; only numpy, pandas, or builtin " "functions are supported.") raise wz_ex.NotImplemented(msg.format(f)) fcn = reduce(getattr, f.split('.')[1:], mod) return fcn
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/server/serialization/object_hook_trusted.py", "copies": "3", "size": "1121", "license": "bsd-3-clause", "hash": 4076010981351232000, "line_mean": 31.0285714286, "line_max": 76, "alpha_frac": 0.6949152542, "autogenerated": false, "ratio": 3.9893238434163703, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000529100529100529, "num_lines": 35 }
from __future__ import (absolute_import, division, print_function) from odm2api.base import modelBase from sqlalchemy import BigInteger, Boolean, Column, Date, DateTime, Float, ForeignKey, Integer, String, case from sqlalchemy.dialects import mysql, postgresql, sqlite from sqlalchemy.orm import relationship Base = modelBase.Base BigIntegerType = BigInteger() BigIntegerType = BigIntegerType.with_variant(sqlite.INTEGER(), 'sqlite') BigIntegerType = BigIntegerType.with_variant(postgresql.BIGINT(), 'postgresql') BigIntegerType = BigIntegerType.with_variant(mysql.BIGINT(), 'mysql') DateTimeType = DateTime() DateTimeType = DateTimeType.with_variant(sqlite.DATETIME(), 'sqlite') def is_hex(s): try: int(s, base=16) return True except ValueError: return False ################################################################################ # CV ################################################################################ class CV(object): __table_args__ = {u'schema': 'odm2'} Term = Column('term', String(255), nullable=False) Name = Column('name', String(255), primary_key=True) Definition = Column('definition', String(1000)) Category = Column('category', String(255)) SourceVocabularyURI = Column('sourcevocabularyuri', String(255)) class CVActionType(Base, CV): __tablename__ = 'cv_actiontype' class CVAggregationStatistic(Base, CV): __tablename__ = 'cv_aggregationstatistic' class CVAnnotationType(Base, CV): __tablename__ = 'cv_annotationtype' class CVCensorCode(Base, CV): __tablename__ = 'cv_censorcode' class CVDataQualityType(Base, CV): __tablename__ = 'cv_dataqualitytype' class CVDataSetType(Base, CV): __tablename__ = 'cv_datasettypecv' class CVDeploymentType(Base, CV): __tablename__ = 'cv_deploymenttype' class CVDirectiveType(Base, CV): __tablename__ = 'cv_directivetype' class CVElevationDatum(Base, CV): __tablename__ = 'cv_elevationdatum' class CVEquipmentType(Base, CV): __tablename__ = 'cv_equipmenttype' class CVMediumType(Base, CV): __tablename__ = 'cv_medium' class CVMethodType(Base, CV): __tablename__ = 'cv_methodtype' class CVOrganizationType(Base, CV): __tablename__ = 'cv_organizationtype' class CVPropertyDataType(Base, CV): __tablename__ = 'cv_propertydatatype' class CVQualityCode(Base, CV): __tablename__ = 'cv_qualitycode' class CVResultType(Base, CV): __tablename__ = 'cv_resulttype' class CVRelationshipType(Base, CV): __tablename__ = 'cv_relationshiptype' class CVSamplingFeatureGeoType(Base, CV): __tablename__ = 'cv_samplingfeaturegeotype' class CVSamplingFeatureType(Base, CV): __tablename__ = 'cv_samplingfeaturetype' class CVSpatialOffsetType(Base, CV): __tablename__ = 'cv_spatialoffsettype' class CVSpeciation(Base, CV): __tablename__ = 'cv_speciation' class CVSpecimenType(Base, CV): __tablename__ = 'cv_specimentype' class CVSiteType(Base, CV): __tablename__ = 'cv_sitetype' class CVStatus(Base, CV): __tablename__ = 'cv_status' class CVTaxonomicClassifierType(Base, CV): __tablename__ = 'cv_taxonomicclassifiertype' class CVUnitsType(Base, CV): __tablename__ = 'cv_unitstype' class CVVariableName(Base, CV): __tablename__ = 'cv_variablename' class CVVariableType(Base, CV): __tablename__ = 'cv_variabletype' class CVReferenceMaterialMedium(Base, CV): __tablename__ = 'cv_referencematerialmedium' # ################################################################################ # Core # ################################################################################ class People(Base): """ Individuals that perform actions. """ PersonID = Column('personid', Integer, primary_key=True, nullable=False) PersonFirstName = Column('personfirstname', String(255), nullable=False) PersonMiddleName = Column('personmiddlename', String(255)) PersonLastName = Column('personlastname', String(255), nullable=False) class Organizations(Base): """ A group of people. """ OrganizationID = Column('organizationid', Integer, primary_key=True, nullable=False) OrganizationTypeCV = Column('organizationtypecv', ForeignKey(CVOrganizationType.Name), nullable=False, index=True) OrganizationCode = Column('organizationcode', String(50), nullable=False) OrganizationName = Column('organizationname', String(255), nullable=False) OrganizationDescription = Column('organizationdescription', String(500)) OrganizationLink = Column('organizationlink', String(255)) ParentOrganizationID = Column('parentorganizationid', ForeignKey('odm2.organizations.organizationid')) OrganizationObj = relationship(u'Organizations', remote_side=[OrganizationID]) class Affiliations(Base): AffiliationID = Column('affiliationid', Integer, primary_key=True, nullable=False) PersonID = Column('personid', ForeignKey(People.PersonID), nullable=False) OrganizationID = Column('organizationid', ForeignKey(Organizations.OrganizationID)) IsPrimaryOrganizationContact = Column('isprimaryorganizationcontact', Boolean) AffiliationStartDate = Column('affiliationstartdate', Date, nullable=False) AffiliationEndDate = Column('affiliationenddate', Date) PrimaryPhone = Column('primaryphone', String(50)) PrimaryEmail = Column('primaryemail', String(255), nullable=False) PrimaryAddress = Column('primaryaddress', String(255)) PersonLink = Column('personlink', String(255)) OrganizationObj = relationship(Organizations) PersonObj = relationship(People) class Methods(Base): """ The procedure used to perform an action. """ MethodID = Column('methodid', Integer, primary_key=True, nullable=False) MethodTypeCV = Column('methodtypecv', ForeignKey(CVMethodType.Name), nullable=False, index=True) MethodCode = Column('methodcode', String(50), nullable=False) MethodName = Column('methodname', String(255), nullable=False) MethodDescription = Column('methoddescription', String(500)) MethodLink = Column('methodlink', String(255)) OrganizationID = Column('organizationid', Integer, ForeignKey(Organizations.OrganizationID)) OrganizationObj = relationship(Organizations) class Actions(Base): """ Actions are performed by people and may have a result. """ ActionID = Column('actionid', Integer, primary_key=True, nullable=False) ActionTypeCV = Column('actiontypecv', ForeignKey(CVActionType.Name), nullable=False, index=True) MethodID = Column('methodid', ForeignKey(Methods.MethodID), nullable=False) BeginDateTime = Column('begindatetime', DateTime, nullable=False) BeginDateTimeUTCOffset = Column('begindatetimeutcoffset', Integer, nullable=False) EndDateTime = Column('enddatetime', DateTime) EndDateTimeUTCOffset = Column('enddatetimeutcoffset', Integer) ActionDescription = Column('actiondescription', String(500)) ActionFileLink = Column('actionfilelink', String(255)) MethodObj = relationship(Methods) class ActionBy(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', Integer, ForeignKey(Actions.ActionID), nullable=False) AffiliationID = Column('affiliationid', ForeignKey(Affiliations.AffiliationID), nullable=False) IsActionLead = Column('isactionlead', Boolean, nullable=False) RoleDescription = Column('roledescription', String(500)) ActionObj = relationship(Actions) AffiliationObj = relationship(Affiliations) class SamplingFeatures(Base): """ Where or on what an action was performed. """ SamplingFeatureID = Column('samplingfeatureid', Integer, primary_key=True, nullable=False) """int: Primary key identifier.""" SamplingFeatureUUID = Column('samplingfeatureuuid', String(36), nullable=False) """str: A universally unique identifier for the sampling feature.""" SamplingFeatureTypeCV = Column('samplingfeaturetypecv', ForeignKey(CVSamplingFeatureType.Name), nullable=False, index=True) """str: CV term describing the type of sampling feature.""" SamplingFeatureCode = Column('samplingfeaturecode', String(50), nullable=False) """str: A short but meaningful text identifier for the sampling feature.""" SamplingFeatureName = Column('samplingfeaturename', String(255)) """str: Sampling Feature name (free text).""" SamplingFeatureDescription = Column('samplingfeaturedescription', String(500)) """str: Text describing the sampling feature.""" SamplingFeatureGeotypeCV = Column('samplingfeaturegeotypecv', ForeignKey(CVSamplingFeatureGeoType.Name), index=True) """str: Dimensionality of SamplingFeature; point2d, line2d, etc.""" Elevation_m = Column('elevation_m', Float(53)) """float: The elevation of the sampling feature in meters, or in the case of Specimen, the elevation from where the SamplingFeature.Specimen was collected""" # noqa ElevationDatumCV = Column('elevationdatumcv', ForeignKey(CVElevationDatum.Name), index=True) """str: The code for the vertical geodetic datum that specifies the zero point for the Sampling Feature Elevation""" # noqa # FeatureGeometry = Column('featuregeometry', String(50)) """object: The location geometry of the sampling feature on the Earth expressed using a geometry data type. Can be a Point, Curve (profile, trajectory, etc), Surface (flat polygons, etc) or Solid/Volume (although often limited to 2D geometries). """ # noqa FeatureGeometryWKT = Column('featuregeometrywkt', String(50)) """str: The location geometry of the sampling feature on the Earth expressed as well known text (WKT). Can be a Point, Curve (profile, trajectory, etc.), Surface (flat polygons, etc.), or Solid/Volume (although often limited to 2D geometries).""" # noqa __mapper_args__ = { 'polymorphic_on': case( [ (SamplingFeatureTypeCV == 'Specimen', 'Specimen'), (SamplingFeatureTypeCV == 'Site', 'Site'), ], else_='samplingfeatures'), 'polymorphic_identity': 'samplingfeatures', } class FeatureActions(Base): """ Provides flexible linkage between Actions and the SamplingFeatures on which or at which they were performed. """ FeatureActionID = Column('featureactionid', Integer, primary_key=True, nullable=False) SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), nullable=False) ActionID = Column('actionid', ForeignKey(Actions.ActionID), nullable=False) ActionObj = relationship(Actions) SamplingFeatureObj = relationship(SamplingFeatures) class DataSets(Base): """ Enables grouping of results into a larger dataset. """ DataSetID = Column('datasetid', Integer, primary_key=True, nullable=False) # This has been changed to String to support multiple database uuid types DataSetUUID = Column('datasetuuid', String(255), nullable=False) DataSetTypeCV = Column('datasettypecv', ForeignKey(CVDataSetType.Name), nullable=False, index=True) DataSetCode = Column('datasetcode', String(50), nullable=False) DataSetTitle = Column('datasettitle', String(255), nullable=False) DataSetAbstract = Column('datasetabstract', String(500), nullable=False) class ProcessingLevels(Base): """ Levels to which data have been quality controlled. """ ProcessingLevelID = Column('processinglevelid', Integer, primary_key=True, nullable=False) ProcessingLevelCode = Column('processinglevelcode', String(50), nullable=False) Definition = Column('definition', String(500)) Explanation = Column('explanation', String(500)) class RelatedActions(Base): """ Enables specifying relationships among Actions (e.g., workflows, etc.) """ RelationID = Column('relationid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', ForeignKey(Actions.ActionID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) RelatedActionID = Column('relatedactionid', ForeignKey(Actions.ActionID), nullable=False) ActionObj = relationship(Actions, primaryjoin='RelatedActions.ActionID == Actions.ActionID') RelatedActionObj = relationship(Actions, primaryjoin='RelatedActions.RelatedActionID == Actions.ActionID') class TaxonomicClassifiers(Base): """ Terms for classifying results. """ TaxonomicClassifierID = Column('taxonomicclassifierid', Integer, primary_key=True, nullable=False) TaxonomicClassifierTypeCV = Column( 'taxonomicclassifiertypecv', ForeignKey(CVTaxonomicClassifierType.Name), nullable=False, index=True ) TaxonomicClassifierName = Column('taxonomicclassifiername', String(255), nullable=False) TaxonomicClassifierCommonName = Column('taxonomicclassifiercommonname', String(255)) TaxonomicClassifierDescription = Column('taxonomicclassifierdescription', String(500)) ParentTaxonomicClassifierID = Column('parenttaxonomicclassifierid', ForeignKey('odm2.taxonomicclassifiers.taxonomicclassifierid')) parent = relationship(u'TaxonomicClassifiers', remote_side=[TaxonomicClassifierID]) class Units(Base): """ Units of measure. """ UnitsID = Column('unitsid', Integer, primary_key=True, nullable=False) UnitsTypeCV = Column('unitstypecv', ForeignKey(CVUnitsType.Name), nullable=False, index=True) UnitsAbbreviation = Column('unitsabbreviation', String(255), nullable=False) UnitsName = Column('unitsname', String, nullable=False) UnitsLink = Column('unitslink', String(255)) class Variables(Base): """ What was observed. """ VariableID = Column('variableid', Integer, primary_key=True, nullable=False) VariableTypeCV = Column('variabletypecv', ForeignKey(CVVariableType.Name), nullable=False, index=True) VariableCode = Column('variablecode', String(50), nullable=False) VariableNameCV = Column('variablenamecv', ForeignKey(CVVariableName.Name), nullable=False, index=True) VariableDefinition = Column('variabledefinition', String(500)) SpeciationCV = Column('speciationcv', ForeignKey(CVSpeciation.Name), index=True) NoDataValue = Column('nodatavalue', Float(asdecimal=True), nullable=False) class Results(Base): """ The result of an action. """ ResultID = Column('resultid', BigIntegerType, primary_key=True) # This has been changed to String to support multiple database uuid types # ResultUUID = Column(UNIQUEIDENTIFIER, nullable=False) ResultUUID = Column('resultuuid', String(36), nullable=False) FeatureActionID = Column('featureactionid', ForeignKey(FeatureActions.FeatureActionID), nullable=False) ResultTypeCV = Column('resulttypecv', ForeignKey(CVResultType.Name), nullable=False, index=True) VariableID = Column('variableid', ForeignKey(Variables.VariableID), nullable=False) UnitsID = Column('unitsid', ForeignKey(Units.UnitsID), nullable=False) TaxonomicClassifierID = Column('taxonomicclassifierid', ForeignKey(TaxonomicClassifiers.TaxonomicClassifierID)) ProcessingLevelID = Column('processinglevelid', ForeignKey(ProcessingLevels.ProcessingLevelID), nullable=False) ResultDateTime = Column('resultdatetime', DateTime) ResultDateTimeUTCOffset = Column('resultdatetimeutcoffset', BigIntegerType) ValidDateTime = Column('validdatetime', DateTime) ValidDateTimeUTCOffset = Column('validdatetimeutcoffset', BigIntegerType) StatusCV = Column('statuscv', ForeignKey(CVStatus.Name), index=True) SampledMediumCV = Column('sampledmediumcv', ForeignKey(CVMediumType.Name), nullable=False, index=True) ValueCount = Column('valuecount', Integer, nullable=False) FeatureActionObj = relationship(FeatureActions) ProcessingLevelObj = relationship(ProcessingLevels) TaxonomicClassifierObj = relationship(TaxonomicClassifiers) UnitsObj = relationship(Units) VariableObj = relationship(Variables) __mapper_args__ = { 'polymorphic_on': case([ (ResultTypeCV == 'Point coverage', 'Point coverage'), (ResultTypeCV == 'Profile Coverage', 'Profile Coverage'), (ResultTypeCV == 'Category coverage', 'Category coverage'), (ResultTypeCV == 'Transect Coverage', 'Transect Coverage'), (ResultTypeCV == 'Spectra coverage', 'Spectra coverage'), (ResultTypeCV == 'Time series coverage', 'Time series coverage'), (ResultTypeCV == 'Section coverage', 'Section coverage'), (ResultTypeCV == 'Profile Coverage', 'Profile Coverage'), (ResultTypeCV == 'Trajectory coverage', 'Trajectory coverage'), (ResultTypeCV == 'Measurement', 'Measurement'), ], else_='results'), 'polymorphic_identity': 'results', } # ################################################################################ # Equipment # ################################################################################ class DataLoggerProgramFiles(Base): ProgramID = Column('programid', Integer, primary_key=True, nullable=False) AffiliationID = Column('affiliationid', Integer, ForeignKey(Affiliations.AffiliationID), nullable=False) ProgramName = Column('programname', String(255), nullable=False) ProgramDescription = Column('programdescription', String(500)) ProgramVersion = Column('programversion', String(50)) ProgramFileLink = Column('programfilelink', String(255)) AffiliationObj = relationship(Affiliations) class DataLoggerFiles(Base): DataLoggerFileID = Column('dataloggerfileid', Integer, primary_key=True, nullable=False) ProgramID = Column('programid', Integer, ForeignKey(DataLoggerProgramFiles.ProgramID), nullable=False) DataLoggerFileName = Column('dataloggerfilename', String(255), nullable=False) DataLoggerOutputFileDescription = Column('dataloggerfiledescription', String(500)) DataLoggerOutputFileLink = Column('dataloggerfilelink', String(255)) ProgramObj = relationship(DataLoggerProgramFiles) class EquipmentModels(Base): ModelID = Column('equipmentmodelid', Integer, primary_key=True, nullable=False) ModelManufacturerID = Column('modelmanufacturerid', Integer, ForeignKey(Organizations.OrganizationID), nullable=False) ModelPartNumber = Column('modelpartnumber', String(50)) ModelName = Column('modelname', String(255), nullable=False) ModelDescription = Column('modeldescription', String(500)) ModelSpecificationsFileLink = Column('modelspecificationsfilelink', String(255)) ModelLink = Column('modellink', String(255)) IsInstrument = Column('isinstrument', Boolean, nullable=False) OrganizationObj = relationship(Organizations) class InstrumentOutputVariables(Base): InstrumentOutputVariableID = Column( 'instrumentoutputvariableid', Integer, primary_key=True, nullable=False ) ModelID = Column('modelid', Integer, ForeignKey(EquipmentModels.ModelID), nullable=False) VariableID = Column('variableid', Integer, ForeignKey(Variables.VariableID), nullable=False) InstrumentMethodID = Column('instrumentmethodid', Integer, ForeignKey(Methods.MethodID), nullable=False) InstrumentResolution = Column('instrumentresolution', String(255)) InstrumentAccuracy = Column('instrumentaccuracy', String(255)) InstrumentRawOutputUnitsID = Column('instrumentrawoutputunitsid', Integer, ForeignKey(Units.UnitsID), nullable=False) MethodObj = relationship(Methods) OutputUnitObj = relationship(Units) EquipmentModelObj = relationship(EquipmentModels) VariableObj = relationship(Variables) class DataLoggerFileColumns(Base): DataLoggerFileColumnID = Column('dataloggerfilecolumnid', Integer, primary_key=True, nullable=False) ResultID = Column('resultid', BigIntegerType, ForeignKey(Results.ResultID)) DataLoggerFileID = Column('dataloggerfileid', Integer, ForeignKey(DataLoggerFiles.DataLoggerFileID), nullable=False) InstrumentOutputVariableID = Column('instrumentoutputvariableid', Integer, ForeignKey(InstrumentOutputVariables.VariableID), nullable=False) ColumnLabel = Column('columnlabel', String(50), nullable=False) ColumnDescription = Column('columndescription', String(500)) MeasurementEquation = Column('measurementequation', String(255)) ScanInterval = Column('scaninterval', Float(50)) ScanIntervalUnitsID = Column('scanintervalunitsid', Integer, ForeignKey(Units.UnitsID)) RecordingInterval = Column('recordinginterval', Float(50)) RecordingIntervalUnitsID = Column('recordingintervalunitsid', Integer, ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column( 'aggregationstatisticcv', String(255), ForeignKey(CVAggregationStatistic.Name), index=True ) ResultObj = relationship(Results) DataLoggerFileObj = relationship(DataLoggerFiles) InstrumentOutputVariableObj = relationship(InstrumentOutputVariables) ScanIntervalUnitsObj = relationship( Units, primaryjoin='DataLoggerFileColumns.ScanIntervalUnitsID == Units.UnitsID' ) RecordingIntervalUnitsObj = relationship( Units, primaryjoin='DataLoggerFileColumns.RecordingIntervalUnitsID == Units.UnitsID' ) class Equipment(Base): EquipmentID = Column('equipmentid', Integer, primary_key=True, nullable=False) EquipmentCode = Column('equipmentcode', String(50), nullable=False) EquipmentName = Column('equipmentname', String(255), nullable=False) EquipmentTypeCV = Column('equipmenttypecv', ForeignKey(CVEquipmentType.Name), nullable=False, index=True) ModelID = Column('equipmentmodelid', ForeignKey(EquipmentModels.ModelID), nullable=False) EquipmentSerialNumber = Column('equipmentserialnumber', String(50), nullable=False) EquipmentInventoryNumber = Column('equipmentinventorynumber', String(50)) EquipmentOwnerID = Column('equipmentownerid', ForeignKey(People.PersonID), nullable=False) EquipmentVendorID = Column('equipmentvendorid', ForeignKey(Organizations.OrganizationID), nullable=False) EquipmentPurchaseDate = Column('equipmentpurchasedate', DateTime, nullable=False) EquipmentPurchaseOrderNumber = Column('equipmentpurchaseordernumber', String(50)) EquipmentDescription = Column('equipmentdescription', String(500)) EquipmentDocumentationLink = Column('equipmentdocumentationlink', String(255)) PersonObj = relationship(People) OrganizationObj = relationship(Organizations) EquipmentModelObj = relationship(EquipmentModels) class CalibrationReferenceEquipment(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', Integer, ForeignKey(Actions.ActionID), nullable=False) EquipmentID = Column('equipmentid', Integer, ForeignKey(Equipment.EquipmentID), nullable=False) ActionObj = relationship(Actions) EquipmentObj = relationship(Equipment) class EquipmentActions(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) EquipmentID = Column('equipmentid', ForeignKey(Equipment.EquipmentID), nullable=False) ActionID = Column('actionid', ForeignKey(Actions.ActionID), nullable=False) ActionObj = relationship(Actions) EquipmentObj = relationship(Equipment) class EquipmentUsed(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', Integer, ForeignKey(Actions.ActionID), nullable=False) EquipmentID = Column('equipmentid', Integer, ForeignKey(Equipment.EquipmentID), nullable=False) ActionObj = relationship(Actions) EquipmentObj = relationship(Equipment) class MaintenanceActions(Base): ActionID = Column('actionid', Integer, ForeignKey(Actions.ActionID), primary_key=True, nullable=False) IsFactoryService = Column('isfactoryservice', Boolean, nullable=False) MaintenanceCode = Column('maintenancecode', String(50)) MantenanceReason = Column('maintenancereason', String(50)) ActionObj = relationship(Actions) class RelatedEquipment(Base): RelationID = Column('relationid', Integer, primary_key=True, nullable=True) EquipmentID = Column('equipmentid', Integer, ForeignKey(Equipment.EquipmentID), nullable=True) RelationshipTypeCV = Column('relationshiptypecv', String(255), nullable=True, index=True) RelatedEquipmentID = Column( 'relatedequipmentid', Integer, ForeignKey(Equipment.EquipmentID), nullable=True ) RelationshipStartDateTime = Column('relationshipstartdatetime', DateTime, nullable=True) RelationshipStartDateTimeUTCOffset = Column('relationshipstartdatetimeutcoffset', Integer, nullable=True) RelationshipEndDateTime = Column('relationshipenddatetime', DateTime) RelationshipEndDateTimeUTCOffset = Column('relationshipenddatetimeutcoffset', Integer) EquipmentObj = relationship( Equipment, primaryjoin='RelatedEquipment.EquipmentID == Equipment.EquipmentID' ) RelatedEquipmentObj = relationship( Equipment, primaryjoin='RelatedEquipment.RelatedEquipmentID == Equipment.EquipmentID' ) class CalibrationActions(Base): ActionID = Column('actionid', Integer, ForeignKey(Actions.ActionID), primary_key=True, nullable=False) CalibrationCheckValue = Column('calibrationcheckvalue', Float(53)) InstrumentOutputVariableID = Column('instrumentoutputvariableid', Integer, ForeignKey(InstrumentOutputVariables.VariableID), nullable=False) CalibrationEquation = Column('calibrationequation', String(255)) ActionObj = relationship(Actions) InstrumentOutputVariableObj = relationship(InstrumentOutputVariables) # ################################################################################ # Lab Analyses # ################################################################################ class Directives(Base): DirectiveID = Column('directiveid', Integer, primary_key=True, nullable=False) DirectiveTypeCV = Column('directivetypecv', ForeignKey(CVDirectiveType.Name), nullable=False, index=True) DirectiveDescription = Column('directivedescription', String(500), nullable=False) class ActionDirectives(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', ForeignKey(Actions.ActionID), nullable=False) DirectiveID = Column('directiveid', ForeignKey(Directives.DirectiveID), nullable=False) ActionObj = relationship(Actions) DirectiveObj = relationship(Directives) class SpecimenBatchPositions(Base): # todo fix misspelling __tablename__ = u'specimenbatchpostions' FeatureActionID = Column( 'featureactionid', Integer, ForeignKey(FeatureActions.FeatureActionID), primary_key=True, nullable=False ) BatchPositionsNumber = Column('batchpositionnumber', Integer, nullable=False) BatchPositionLabel = Column('batchpositionlabel', String(255)) FeatureActionObj = relationship(FeatureActions) # ################################################################################ # Sampling Features # ################################################################################ class SpatialReferences(Base): SpatialReferenceID = Column('spatialreferenceid', Integer, primary_key=True, nullable=False) SRSCode = Column('srscode', String(50)) SRSName = Column('srsname', String(255), nullable=False) SRSDescription = Column('srsdescription', String(500)) SRSLink = Column('srslink', String(255)) class Specimens(SamplingFeatures): SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), primary_key=True) SpecimenTypeCV = Column('specimentypecv', ForeignKey(CVSpecimenType.Name), nullable=False, index=True) SpecimenMediumCV = Column('specimenmediumcv', ForeignKey(CVMediumType.Name), nullable=False, index=True) IsFieldSpecimen = Column('isfieldspecimen', Boolean, nullable=False) __mapper_args__ = { 'polymorphic_identity': 'Specimen', } class SpatialOffsets(Base): SpatialOffsetID = Column('spatialoffsetid', Integer, primary_key=True, nullable=False) SpatialOffsetTypeCV = Column('spatialoffsettypecv', ForeignKey(CVSpatialOffsetType.Name), nullable=False, index=True) Offset1Value = Column('offset1value', Float(53), nullable=False) Offset1UnitID = Column('offset1unitid', Integer, ForeignKey(Units.UnitsID), nullable=False) Offset2Value = Column('offset2value', Float(53)) Offset2UnitID = Column('offset2unitid', Integer, ForeignKey(Units.UnitsID)) Offset3Value = Column('offset3value', Float(53)) Offset3UnitID = Column('offset3unitid', Integer, ForeignKey(Units.UnitsID)) Offset1UnitObj = relationship(Units, primaryjoin='SpatialOffsets.Offset1UnitID == Units.UnitsID') Offset2UnitObj = relationship(Units, primaryjoin='SpatialOffsets.Offset2UnitID == Units.UnitsID') Offset3UnitObj = relationship(Units, primaryjoin='SpatialOffsets.Offset3UnitID == Units.UnitsID') class Sites(SamplingFeatures): SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), primary_key=True) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID), nullable=False) SiteTypeCV = Column('sitetypecv', ForeignKey(CVSiteType.Name), nullable=False, index=True) Latitude = Column('latitude', Float(53), nullable=False) Longitude = Column('longitude', Float(53), nullable=False) SpatialReferenceObj = relationship(SpatialReferences) __mapper_args__ = { 'polymorphic_identity': 'Site', } class RelatedFeatures(Base): RelationID = Column('relationid', Integer, primary_key=True, nullable=False) SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) RelatedFeatureID = Column( 'relatedfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), nullable=False ) SpatialOffsetID = Column('spatialoffsetid', ForeignKey(SpatialOffsets.SpatialOffsetID)) SamplingFeatureObj = relationship( SamplingFeatures, primaryjoin='RelatedFeatures.SamplingFeatureID == SamplingFeatures.SamplingFeatureID' ) RelatedFeatureObj = relationship( SamplingFeatures, primaryjoin='RelatedFeatures.RelatedFeatureID == SamplingFeatures.SamplingFeatureID' ) SpatialOffsetObj = relationship(SpatialOffsets) class SpecimenTaxonomicClassifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) SamplingFeatureID = Column('samplingfeatureid', ForeignKey(Specimens.SamplingFeatureID), nullable=False) TaxonomicClassifierID = Column('taxonomicclassifierid', ForeignKey(TaxonomicClassifiers.TaxonomicClassifierID), nullable=False) CitationID = Column('citationid', Integer) SpecimenObj = relationship(Specimens) TaxonomicClassifierObj = relationship(TaxonomicClassifiers) # ################################################################################ # Simulation # ################################################################################ class Models(Base): ModelID = Column('modelid', Integer, primary_key=True, nullable=False) ModelCode = Column('modelcode', String(255), nullable=False) ModelName = Column('modelname', String(255), nullable=False) ModelDescription = Column('modeldescription', String(500)) class RelatedModels(Base): RelatedID = Column('relatedid', Integer, primary_key=True, nullable=False) ModelID = Column('modelid', ForeignKey(Models.ModelID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) RelatedModelID = Column('relatedmodelid', ForeignKey(Models.ModelID), nullable=False) ModelObj = relationship(Models, primaryjoin='RelatedModels.ModelID == Models.ModelID') RelatedModelObj = relationship(Models, primaryjoin='RelatedModels.RelatedModelID == Models.ModelID') class Simulations(Base): SimulationID = Column('simulationid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', ForeignKey(Actions.ActionID), nullable=False) SimulationName = Column('simulationname', String(255), nullable=False) SimulationDescription = Column('simulationdescription', String(500)) SimulationStartDateTime = Column('simulationstartdatetime', Date, nullable=False) SimulationStartDateTimeUTCOffset = Column('simulationstartdatetimeutcoffset', Integer, nullable=False) SimulationEndDateTime = Column('simulationenddatetime', Date, nullable=False) SimulationEndDateTimeUTCOffset = Column('simulationenddatetimeutcoffset', Integer, nullable=False) TimeStepValue = Column('timestepvalue', Float(53), nullable=False) TimeStepUnitsID = Column('timestepunitsid', ForeignKey(Units.UnitsID), nullable=False) InputDataSetID = Column('inputdatasetid', ForeignKey(DataSets.DataSetID)) # OutputDataSetID = Column('outputdatasetid', Integer) # What's this ? ModelID = Column('modelid', ForeignKey(Models.ModelID), nullable=False) Action = relationship(Actions) DataSet = relationship(DataSets) Model = relationship(Models) Unit = relationship(Units) # Part of the Provenance table, needed here to meet dependencies class Citations(Base): CitationID = Column('citationid', Integer, primary_key=True, nullable=False) Title = Column('title', String(255), nullable=False) Publisher = Column('publisher', String(255), nullable=False) PublicationYear = Column('publicationyear', Integer, nullable=False) CitationLink = Column('citationlink', String(255)) # ################################################################################ # Annotations # ################################################################################ class Annotations(Base): AnnotationID = Column('annotationid', Integer, primary_key=True, nullable=False) AnnotationTypeCV = Column( 'annotationtypecv', ForeignKey(CVAnnotationType.Name), nullable=False, index=True ) AnnotationCode = Column('annotationcode', String(50)) AnnotationText = Column('annotationtext', String(500), nullable=False) AnnotationDateTime = Column('annotationdatetime', DateTime) AnnotationUTCOffset = Column('annotationutcoffset', Integer) AnnotationLink = Column('annotationlink', String(255)) AnnotatorID = Column('annotatorid', ForeignKey(People.PersonID)) CitationID = Column('citationid', ForeignKey(Citations.CitationID)) # PersonObj = relationship(People) AnnotatorObj = relationship(People) CitationObj = relationship(Citations) class ActionAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', ForeignKey(Actions.ActionID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) ActionObj = relationship(Actions) AnnotationObj = relationship(Annotations) class EquipmentAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) EquipmentID = Column('equipmentid', BigIntegerType, ForeignKey(Equipment.EquipmentID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) EquipmentObj = relationship(Equipment) class MethodAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) MethodID = Column('methodid', ForeignKey(Methods.MethodID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) MethodObj = relationship(Methods) class ResultAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ResultID = Column('resultid', ForeignKey(Results.ResultID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) BeginDateTime = Column('begindatetime', DateTime, nullable=False) EndDateTime = Column('enddatetime', DateTime, nullable=False) AnnotationObj = relationship(Annotations) ResultObj = relationship(Results) class SamplingFeatureAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) SamplingFeatureObj = relationship(SamplingFeatures) # ################################################################################ # Data Quality # ################################################################################ class DataSetsResults(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) DataSetID = Column('datasetid', ForeignKey(DataSets.DataSetID), nullable=False) ResultID = Column('resultid', ForeignKey(Results.ResultID), nullable=False) DataSetObj = relationship(DataSets) ResultObj = relationship(Results) class DataQuality(Base): DataQualityID = Column('dataqualityid', Integer, primary_key=True, nullable=False) DataQualityTypeCV = Column('dataqualitytypecv', ForeignKey(CVDataQualityType.Name), nullable=False, index=True) DataQualityCode = Column('dataqualitycode', String(255), nullable=False) DataQualityValue = Column('dataqualityvalue', Float(53)) DataQualityValueUnitsID = Column('dataqualityvalueunitsid', ForeignKey(Units.UnitsID)) DataQualityDescription = Column('dataqualitydescription', String(500)) DataQualityLink = Column('dataqualitylink', String(255)) UnitObj = relationship(Units) class ReferenceMaterials(Base): ReferenceMaterialID = Column('referencematerialid', Integer, primary_key=True, nullable=False) ReferenceMaterialMediumCV = Column( 'referencematerialmediumcv', ForeignKey(CVReferenceMaterialMedium.Name), nullable=False, index=True ) ReferenceMaterialOrganizationID = Column('referencematerialorganizationid', ForeignKey(Organizations.OrganizationID), nullable=False) ReferenceMaterialCode = Column('referencematerialcode', String(50), nullable=False) ReferenceMaterialLotCode = Column('referencemateriallotcode', String(255)) ReferenceMaterialPurchaseDate = Column('referencematerialpurchasedate', DateTime) ReferenceMaterialExpirationDate = Column('referencematerialexpirationdate', DateTime) ReferenceMaterialCertificateLink = Column('referencematerialcertificatelink', String(255)) SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID)) OrganizationObj = relationship(Organizations) SamplingFeatureObj = relationship(SamplingFeatures) class CalibrationStandards(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', Integer, ForeignKey(Actions.ActionID), nullable=False) ReferenceMaterialID = Column( 'referencematerialid', Integer, ForeignKey(ReferenceMaterials.ReferenceMaterialID), nullable=False ) ActionObj = relationship(Actions) ReferenceMaterialObj = relationship(ReferenceMaterials) class ReferenceMaterialValues(Base): ReferenceMaterialValueID = Column('referencematerialvalueid', Integer, primary_key=True, nullable=False) ReferenceMaterialID = Column('referencematerialid', ForeignKey(ReferenceMaterials.ReferenceMaterialID), nullable=False) ReferenceMaterialValue = Column('referencematerialvalue', Float(53), nullable=False) ReferenceMaterialAccuracy = Column('referencematerialaccuracy', Float(53)) VariableID = Column('variableid', ForeignKey(Variables.VariableID), nullable=False) UnitsID = Column('unitsid', ForeignKey(Units.UnitsID), nullable=False) CitationID = Column('citationid', ForeignKey(Citations.CitationID), nullable=False) CitationObj = relationship(Citations) ReferenceMaterialObj = relationship(ReferenceMaterials) UnitObj = relationship(Units) VariableObj = relationship(Variables) class ResultNormalizationValues(Base): ResultID = Column(u'resultid', ForeignKey(Results.ResultID), primary_key=True) ReferenceMaterialValueID = Column(u'normalizedbyreferencematerialvalueid', ForeignKey(ReferenceMaterialValues.ReferenceMaterialValueID), nullable=False) ResultsObj = relationship(Results) ReferenceMaterialValueObj = relationship(ReferenceMaterialValues) class ResultsDataQuality(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ResultID = Column('resultid', ForeignKey(Results.ResultID), nullable=False) DataQualityID = Column('dataqualityid', ForeignKey(DataQuality.DataQualityID), nullable=False) DataQualityObj = relationship(DataQuality) ResultObj = relationship(Results) # ################################################################################ # Extension Properties # ################################################################################ class ExtensionProperties(Base): PropertyID = Column('propertyid', Integer, primary_key=True, nullable=False) PropertyName = Column('propertyname', String(255), nullable=False) PropertyDescription = Column('propertydescription', String(500)) PropertyDataTypeCV = Column('propertydatatypecv', ForeignKey(CVPropertyDataType.Name), nullable=False, index=True) PropertyUnitsID = Column('propertyunitsid', ForeignKey(Units.UnitsID)) UnitObj = relationship(Units) class ActionExtensionPropertyValues(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ActionID = Column('actionid', ForeignKey(Actions.ActionID), nullable=False) PropertyID = Column('propertyid', ForeignKey(ExtensionProperties.PropertyID), nullable=False) PropertyValue = Column('propertyvalue', String(255), nullable=False) ActionObj = relationship(Actions) ExtensionPropertyObj = relationship(ExtensionProperties) class CitationExtensionPropertyValues(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) CitationID = Column('citationid', ForeignKey(Citations.CitationID), nullable=False) PropertyID = Column('propertyid', ForeignKey(ExtensionProperties.PropertyID), nullable=False) PropertyValue = Column('propertyvalue', String(255), nullable=False) CitationObj = relationship(Citations) ExtensionPropertyObj = relationship(ExtensionProperties) class MethodExtensionPropertyValues(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) MethodID = Column('methodid', ForeignKey(Methods.MethodID), nullable=False) PropertyID = Column('propertyid', ForeignKey(ExtensionProperties.PropertyID), nullable=False) PropertyValue = Column('propertyvalue', String(255), nullable=False) MethodObj = relationship(Methods) ExtensionPropertyObj = relationship(ExtensionProperties) class ResultExtensionPropertyValues(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ResultID = Column('resultid', ForeignKey(Results.ResultID), nullable=False) PropertyID = Column('propertyid', ForeignKey(ExtensionProperties.PropertyID), nullable=False) PropertyValue = Column('propertyvalue', String(255), nullable=False) ExtensionPropertyObj = relationship(ExtensionProperties) ResultObj = relationship(Results) class SamplingFeatureExtensionPropertyValues(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), nullable=False) PropertyID = Column('propertyid', ForeignKey(ExtensionProperties.PropertyID), nullable=False) PropertyValue = Column('propertyvalue', String(255), nullable=False) ExtensionPropertyObj = relationship(ExtensionProperties) SamplingFeatureObj = relationship(SamplingFeatures) class VariableExtensionPropertyValues(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) VariableID = Column('variableid', ForeignKey(Variables.VariableID), nullable=False) PropertyID = Column('propertyid', ForeignKey(ExtensionProperties.PropertyID), nullable=False) PropertyValue = Column('propertyvalue', String(255), nullable=False) ExtensionPropertyObj = relationship(ExtensionProperties) VariableObj = relationship(Variables) # ################################################################################ # Extension Identifiers # ################################################################################ class ExternalIdentifierSystems(Base): ExternalIdentifierSystemID = Column( 'externalidentifiersystemid', Integer, primary_key=True, nullable=False ) ExternalIdentifierSystemName = Column('externalidentifiersystemname', String(255), nullable=False) IdentifierSystemOrganizationID = Column('identifiersystemorganizationid', ForeignKey(Organizations.OrganizationID), nullable=False) ExternalIdentifierSystemDescription = Column('externalidentifiersystemdescription', String(500)) ExternalIdentifierSystemURL = Column('externalidentifiersystemurl', String(255)) IdentifierSystemOrganizationObj = relationship(Organizations) class CitationExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) CitationID = Column('citationid', ForeignKey(Citations.CitationID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) CitationExternalIdentifier = Column('citationexternalidentifier', String(255), nullable=False) CitationExternalIdentifierURI = Column('citationexternalidentifieruri', String(255)) CitationObj = relationship(Citations) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) class MethodExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) MethodID = Column('methodid', ForeignKey(Methods.MethodID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) MethodExternalIdentifier = Column('methodexternalidentifier', String(255), nullable=False) MethodExternalIdentifierURI = Column('methodexternalidentifieruri', String(255)) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) MethodObj = relationship(Methods) class PersonExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) PersonID = Column('personid', ForeignKey(People.PersonID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) PersonExternalIdentifier = Column('personexternalidentifier', String(255), nullable=False) PersonExternalIdentifierURI = Column('personexternalidentifieruri', String(255)) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) PersonObj = relationship(People) class ReferenceMaterialExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ReferenceMaterialID = Column(ForeignKey(ReferenceMaterials.ReferenceMaterialID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) ReferenceMaterialExternalIdentifier = Column( 'referencematerialexternalidentifier', String(255), nullable=False ) ReferenceMaterialExternalIdentifierURI = Column('referencematerialexternalidentifieruri', String(255)) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) ReferenceMaterialObj = relationship(ReferenceMaterials) class SamplingFeatureExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) SamplingFeatureID = Column('samplingfeatureid', ForeignKey(SamplingFeatures.SamplingFeatureID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) SamplingFeatureExternalIdentifier = Column( 'samplingfeatureexternalidentifier', String(255), nullable=False ) SamplingFeatureExternalIdentifierURI = Column('samplingfeatureexternalidentifieruri', String(255)) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) SamplingFeatureObj = relationship(SamplingFeatures) class SpatialReferenceExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) SpatialReferenceExternalIdentifier = Column( 'spatialreferenceexternalidentifier', String(255), nullable=False ) SpatialReferenceExternalIdentifierURI = Column('spatialreferenceexternalidentifieruri', String(255)) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) SpatialReferenceObj = relationship(SpatialReferences) class TaxonomicClassifierExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) TaxonomicClassifierID = Column('taxonomicclassifierid', ForeignKey(TaxonomicClassifiers.TaxonomicClassifierID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) TaxonomicClassifierExternalIdentifier = Column( 'taxonomicclassifierexternalidentifier', String(255), nullable=False ) TaxonomicClassifierExternalIdentifierURI = Column('taxonomicclassifierexternalidentifieruri', String(255)) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) TaxonomicClassifierObj = relationship(TaxonomicClassifiers) class VariableExternalIdentifiers(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) VariableID = Column('variableid', ForeignKey(Variables.VariableID), nullable=False) ExternalIdentifierSystemID = Column('externalidentifiersystemid', ForeignKey(ExternalIdentifierSystems.ExternalIdentifierSystemID), nullable=False) VariableExternalIdentifier = Column('variableexternalidentifer', String(255), nullable=False) VariableExternalIdentifierURI = Column('variableexternalidentifieruri', String(255)) ExternalIdentifierSystemObj = relationship(ExternalIdentifierSystems) VariableObj = relationship(Variables) # ################################################################################ # Provenance # ################################################################################ class AuthorLists(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) CitationID = Column('citationid', ForeignKey(Citations.CitationID), nullable=False) PersonID = Column('personid', ForeignKey(People.PersonID), nullable=False) AuthorOrder = Column('authororder', Integer, nullable=False) CitationObj = relationship(Citations, primaryjoin='AuthorLists.CitationID == Citations.CitationID') PersonObj = relationship(People, primaryjoin='AuthorLists.PersonID == People.PersonID') class DataSetCitations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) DataSetID = Column('datasetid', ForeignKey(DataSets.DataSetID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) CitationID = Column('citationid', ForeignKey(Citations.CitationID), nullable=False) CitationObj = relationship(Citations) DataSetObj = relationship(DataSets) class DerivationEquations(Base): DerivationEquationID = Column('derivationequationid', Integer, primary_key=True, nullable=False) DerivationEquation = Column('derivationequation', String(255), nullable=False) class ResultDerivationEquations(Base): ResultID = Column(u'resultid', ForeignKey(Results.ResultID), primary_key=True) DerivationEquationID = Column( u'derivationequationid', ForeignKey(DerivationEquations.DerivationEquationID), nullable=False ) ResultsObj = relationship(Results) DerivationEquationsObj = relationship(DerivationEquations) class MethodCitations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) MethodID = Column('methodid', ForeignKey(Methods.MethodID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) CitationID = Column('citationid', ForeignKey(Citations.CitationID), nullable=False) CitationObj = relationship(Citations) MethodObj = relationship(Methods) class RelatedAnnotations(Base): RelationID = Column('relationid', Integer, primary_key=True, nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) RelatedAnnotationID = Column('relatedannotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship( Annotations, primaryjoin='RelatedAnnotations.AnnotationID == Annotations.AnnotationID' ) RelatedAnnotationObj = relationship( Annotations, primaryjoin='RelatedAnnotations.RelatedAnnotationID == Annotations.AnnotationID' ) class RelatedCitations(Base): RelationID = Column('relationid', Integer, primary_key=True, nullable=False) CitationID = Column('citationid', ForeignKey(Citations.CitationID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) RelatedCitationID = Column('relatedcitationid', ForeignKey(Citations.CitationID), nullable=False) CitationObj = relationship(Citations, primaryjoin='RelatedCitations.CitationID == Citations.CitationID') RelatedCitationObj = relationship( Citations, primaryjoin='RelatedCitations.RelatedCitationID == Citations.CitationID' ) class RelatedDataSets(Base): RelationID = Column('relationid', Integer, primary_key=True, nullable=False) DataSetID = Column('datasetid', ForeignKey(DataSets.DataSetID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) RelatedDataSetID = Column('relateddatasetid', ForeignKey(DataSets.DataSetID), nullable=False) VersionCode = Column('versioncode', String(50)) DataSetObj = relationship(DataSets, primaryjoin='RelatedDataSets.DataSetID == DataSets.DataSetID') RelatedDataSetObj = relationship( DataSets, primaryjoin='RelatedDataSets.RelatedDataSetID == DataSets.DataSetID' ) class RelatedResults(Base): RelationID = Column('relationid', Integer, primary_key=True, nullable=False) ResultID = Column('resultid', ForeignKey(Results.ResultID), nullable=False) RelationshipTypeCV = Column('relationshiptypecv', ForeignKey(CVRelationshipType.Name), nullable=False, index=True) RelatedResultID = Column('relatedresultid', ForeignKey(Results.ResultID), nullable=False) VersionCode = Column('versioncode', String(50)) RelatedResultSequenceNumber = Column('relatedresultsequencenumber', Integer) ResultObj = relationship(Results, primaryjoin='RelatedResults.RelatedResultID == Results.ResultID') RelatedResultObj = relationship(Results, primaryjoin='RelatedResults.ResultID == Results.ResultID') # ################################################################################ # Results # ################################################################################ class PointCoverageResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) ZLocation = Column('zlocation', Float(53)) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) IntendedXSpacing = Column('intendedxspacing', Float(53)) IntendedXSpacingUnitsID = Column('intendedxspacingunitsid', ForeignKey(Units.UnitsID)) IntendedYSpacing = Column('intendedyspacing', Float(53)) IntendedYSpacingUnitsID = Column('intendedyspacingunitsid', ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column('timeaggregationintervalunitsid', Integer, nullable=False) IntendedXSpacingUnitsObj = relationship( Units, primaryjoin='PointCoverageResults.IntendedXSpacingUnitsID == Units.UnitsID' ) IntendedYSpacingUnitsObj = relationship( Units, primaryjoin='PointCoverageResults.IntendedYSpacingUnitsID == Units.UnitsID' ) SpatialReferenceObj = relationship(SpatialReferences) ZLocationUnitsObj = relationship( Units, primaryjoin='PointCoverageResults.ZLocationUnitsID == Units.UnitsID' ) __mapper_args__ = {'polymorphic_identity': 'Point coverage'} class ProfileResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) XLocation = Column('xlocation', Float(53)) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID)) YLocation = Column('ylocation', Float(53)) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) IntendedZSpacing = Column('intendedzspacing', Float(53)) IntendedZSpacingUnitsID = Column('intendedzspacingunitsid', ForeignKey(Units.UnitsID)) IntendedTimeSpacing = Column('intendedtimespacing', Float(53)) IntendedTimeSpacingUnitsID = Column('intendedtimespacingunitsid', ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) IntendedTimeSpacingUnitsObj = relationship( Units, primaryjoin='ProfileResults.IntendedTimeSpacingUnitsID == Units.UnitsID' ) IntendedZSpacingUnitsObj = relationship( Units, primaryjoin='ProfileResults.IntendedZSpacingUnitsID == Units.UnitsID' ) SpatialReferenceObj = relationship(SpatialReferences) XLocationUnitsObj = relationship(Units, primaryjoin='ProfileResults.XLocationUnitsID == Units.UnitsID') YLocationUnitsObj = relationship(Units, primaryjoin='ProfileResults.YLocationUnitsID == Units.UnitsID') __mapper_args__ = {'polymorphic_identity': 'Profile Coverage'} class CategoricalResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) XLocation = Column('xlocation', Float(53)) XLocationUnitsID = Column('xlocationunitsid', Integer, ForeignKey(Units.UnitsID)) YLocation = Column('ylocation', Float(53)) YLocationUnitsID = Column('ylocationunitsid', Integer, ForeignKey(Units.UnitsID)) ZLocation = Column('zlocation', Float(53)) ZLocationUnitsID = Column('zlocationunitsid', Integer, ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) SpatialReferenceObj = relationship(SpatialReferences) XLocationUnitsObj = relationship( Units, primaryjoin='CategoricalResults.XLocationUnitsID == Units.UnitsID' ) YLocationUnitsObj = relationship( Units, primaryjoin='CategoricalResults.YLocationUnitsID == Units.UnitsID' ) ZLocationUnitsObj = relationship( Units, primaryjoin='CategoricalResults.ZLocationUnitsID == Units.UnitsID' ) __mapper_args__ = {'polymorphic_identity': ' Category coverage'} class TransectResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) ZLocation = Column('zlocation', Float(53)) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) IntendedTransectSpacing = Column('intendedtransectspacing', Float(53)) IntendedTransectSpacingUnitsID = Column('intendedtransectspacingunitsid', ForeignKey(Units.UnitsID)) IntendedTimeSpacing = Column('intendedtimespacing', Float(53)) IntendedTimeSpacingUnitsID = Column('intendedtimespacingunitsid', ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) IntendedTimeSpacingUnitsObj = relationship( Units, primaryjoin='TransectResults.IntendedTimeSpacingUnitsID == Units.UnitsID' ) IntendedTransectSpacingUnitsObj = relationship( Units, primaryjoin='TransectResults.IntendedTransectSpacingUnitsID == Units.UnitsID' ) SpatialReferenceObj = relationship(SpatialReferences) ZLocationUnitsObj = relationship(Units, primaryjoin='TransectResults.ZLocationUnitsID == Units.UnitsID') __mapper_args__ = {'polymorphic_identity': 'Transect Coverage'} class SpectraResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) XLocation = Column('xlocation', Float(53)) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID)) YLocation = Column('ylocation', Float(53)) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID)) ZLocation = Column('zlocation', Float(53)) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) IntendedWavelengthSpacing = Column('intendedwavelengthspacing', Float(53)) IntendedWavelengthSpacingUnitsID = Column('intendedwavelengthspacingunitsid', ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) IntendedWavelengthSpacingUnitsObj = relationship( Units, primaryjoin='SpectraResults.IntendedWavelengthSpacingUnitsID == Units.UnitsID' ) SpatialReferenceObj = relationship(SpatialReferences) XLocationUnitsObj = relationship(Units, primaryjoin='SpectraResults.XLocationUnitsID == Units.UnitsID') YLocationUnitsObj = relationship(Units, primaryjoin='SpectraResults.YLocationUnitsID == Units.UnitsID') ZLocationUnitsObj = relationship(Units, primaryjoin='SpectraResults.ZLocationUnitsID == Units.UnitsID') __mapper_args__ = {'polymorphic_identity': 'Spectra coverage'} class TimeSeriesResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) XLocation = Column('xlocation', Float(53)) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID)) YLocation = Column('ylocation', Float(53)) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID)) ZLocation = Column('zlocation', Float(53)) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) IntendedTimeSpacing = Column('intendedtimespacing', Float(53)) IntendedTimeSpacingUnitsID = Column('intendedtimespacingunitsid', ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) IntendedTimeSpacingUnitsObj = relationship( Units, primaryjoin='TimeSeriesResults.IntendedTimeSpacingUnitsID == Units.UnitsID' ) SpatialReferenceObj = relationship(SpatialReferences) XLocationUnitsObj = relationship(Units, primaryjoin='TimeSeriesResults.XLocationUnitsID == Units.UnitsID') YLocationUnitsObj = relationship(Units, primaryjoin='TimeSeriesResults.YLocationUnitsID == Units.UnitsID') ZLocationUnitsObj = relationship(Units, primaryjoin='TimeSeriesResults.ZLocationUnitsID == Units.UnitsID') __mapper_args__ = {'polymorphic_identity': 'Time series coverage'} class SectionResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) YLocation = Column('ylocation', Float(53)) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) IntendedXSpacing = Column('intendedxspacing', Float(53)) IntendedXSpacingUnitsID = Column('intendedxspacingunitsid', ForeignKey(Units.UnitsID)) IntendedZSpacing = Column('intendedzspacing', Float(53)) IntendedZSpacingUnitsID = Column('intendedzspacingunitsid', ForeignKey(Units.UnitsID)) IntendedTimeSpacing = Column('intendedtimespacing', Float(53)) IntendedTimeSpacingUnitsID = Column('intendedtimespacingunitsid', ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column( 'aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True ) IntendedTimeSpacingUnitsObj = relationship( Units, primaryjoin='SectionResults.IntendedTimeSpacingUnitsID == Units.UnitsID' ) IntendedXSpacingUnitsObj = relationship( Units, primaryjoin='SectionResults.IntendedXSpacingUnitsID == Units.UnitsID' ) IntendedZSpacingUnitsObj = relationship( Units, primaryjoin='SectionResults.IntendedZSpacingUnitsID == Units.UnitsID' ) SpatialReferenceObj = relationship(SpatialReferences) YLocationUnitsObj = relationship(Units, primaryjoin='SectionResults.YLocationUnitsID == Units.UnitsID') __mapper_args__ = {'polymorphic_identity': 'Section coverage'} class TrajectoryResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) IntendedTrajectorySpacing = Column('intendedtrajectoryspacing', Float(53)) IntendedTrajectorySpacingUnitsID = Column('intendedtrajectoryspacingunitsid', ForeignKey(Units.UnitsID)) IntendedTimeSpacing = Column('intendedtimespacing', Float(53)) IntendedTimeSpacingUnitsID = Column('intendedtimespacingunitsid', ForeignKey(Units.UnitsID)) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) IntendedTimeSpacingUnitsObj = relationship( Units, primaryjoin='TrajectoryResults.IntendedTimeSpacingUnitsID == Units.UnitsID' ) IntendedTrajectorySpacingUnitsObj = relationship( Units, primaryjoin='TrajectoryResults.IntendedTrajectorySpacingUnitsID == Units.UnitsID' ) SpatialReferenceObj = relationship(SpatialReferences) __mapper_args__ = {'polymorphic_identity': 'Trajectory coverage'} class MeasurementResults(Results): ResultID = Column('resultid', ForeignKey(Results.ResultID), primary_key=True) XLocation = Column('xlocation', Float(53)) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID)) YLocation = Column('ylocation', Float(53)) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID)) ZLocation = Column('zlocation', Float(53)) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID)) SpatialReferenceID = Column('spatialreferenceid', ForeignKey(SpatialReferences.SpatialReferenceID)) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column('timeaggregationintervalunitsid', ForeignKey(Units.UnitsID), nullable=False) SpatialReferenceObj = relationship(SpatialReferences) TimeAggregationIntervalUnitsObj = relationship( Units, primaryjoin='MeasurementResults.TimeAggregationIntervalUnitsID == Units.UnitsID' ) XLocationUnitsObj = relationship( Units, primaryjoin='MeasurementResults.XLocationUnitsID == Units.UnitsID' ) YLocationUnitsObj = relationship( Units, primaryjoin='MeasurementResults.YLocationUnitsID == Units.UnitsID' ) ZLocationUnitsObj = relationship( Units, primaryjoin='MeasurementResults.ZLocationUnitsID == Units.UnitsID' ) __mapper_args__ = {'polymorphic_identity': 'Measurement'} class CategoricalResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(CategoricalResults.ResultID), nullable=False) DataValue = Column('datavalue', String(255), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) ResultObj = relationship(CategoricalResults) class MeasurementResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(MeasurementResults.ResultID), nullable=False) DataValue = Column('datavalue', Float(53), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) ResultObj = relationship(MeasurementResults) class PointCoverageResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(PointCoverageResults.ResultID), nullable=False) DataValue = Column('datavalue', BigIntegerType, nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) XLocation = Column('xlocation', Float(53), nullable=False) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID), nullable=False) YLocation = Column('ylocation', Float(53), nullable=False) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID), nullable=False) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) ResultObj = relationship(PointCoverageResults) XLocationUnitsObj = relationship( Units, primaryjoin='PointCoverageResultValues.XLocationUnitsID == Units.UnitsID' ) YLocationUnitsobj = relationship( Units, primaryjoin='PointCoverageResultValues.YLocationUnitsID == Units.UnitsID' ) class ProfileResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(ProfileResults.ResultID), nullable=False) DataValue = Column('datavalue', Float(53), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) ZLocation = Column('zlocation', Float(53), nullable=False) ZAggregationInterval = Column('zaggregationinterval', Float(53), nullable=False) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID), nullable=False) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column('timeaggregationintervalunitsid', ForeignKey(Units.UnitsID), nullable=False) ResultObj = relationship(ProfileResults) TimeAggregationIntervalUnitsObj = relationship( Units, primaryjoin='ProfileResultValues.TimeAggregationIntervalUnitsID == Units.UnitsID' ) ZLocationUnitsObj = relationship( Units, primaryjoin='ProfileResultValues.ZLocationUnitsID == Units.UnitsID' ) class SectionResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(SectionResults.ResultID), nullable=False) DataValue = Column('datavalue', Float(53), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) XLocation = Column('xlocation', Float(53), nullable=False) XAggregationInterval = Column('xaggregationinterval', Float(53), nullable=False) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID), nullable=False) ZLocation = Column('zlocation', BigIntegerType, nullable=False) ZAggregationInterval = Column('zaggregationinterval', Float(53), nullable=False) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID), nullable=False) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column('timeaggregationintervalunitsid', ForeignKey(Units.UnitsID), nullable=False) ResultObj = relationship(SectionResults) TimeAggregationIntervalUnitsObj = relationship( Units, primaryjoin='SectionResultValues.TimeAggregationIntervalUnitsID == Units.UnitsID' ) XLocationUnitsObj = relationship( Units, primaryjoin='SectionResultValues.XLocationUnitsID == Units.UnitsID' ) ZLocationUnitsObj = relationship( Units, primaryjoin='SectionResultValues.ZLocationUnitsID == Units.UnitsID' ) class SpectraResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(SpectraResults.ResultID), nullable=False) DataValue = Column('datavalue', Float(53), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) ExcitationWavelength = Column('excitationwavelength', Float(53), nullable=False) EmissionWavelength = Column('emissionwavelength', Float(53), nullable=False) WavelengthUnitsID = Column('wavelengthunitsid', ForeignKey(Units.UnitsID), nullable=False) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column('timeaggregationintervalunitsid', ForeignKey(Units.UnitsID), nullable=False) ResultObj = relationship(SpectraResults) TimeAggregationIntervalUnitsObj = relationship( Units, primaryjoin='SpectraResultValues.TimeAggregationIntervalUnitsID == Units.UnitsID' ) WavelengthUnitsObj = relationship( Units, primaryjoin='SpectraResultValues.WavelengthUnitsID == Units.UnitsID' ) class TimeSeriesResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(TimeSeriesResults.ResultID), nullable=False) DataValue = Column('datavalue', Float(53), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column('timeaggregationintervalunitsid', ForeignKey(Units.UnitsID), nullable=False) ResultObj = relationship(TimeSeriesResults) TimeAggregationIntervalUnitsObj = relationship(Units) def get_columns(self): return ['ValueID', 'ResultID', 'DataValue', 'ValueDateTime', 'ValueDateTimeUTCOffset', 'CensorCodeCV', 'QualityCodeCV', 'TimeAggregationInterval', 'TimeAggregationIntervalUnitsID'] def list_repr(self): return [self.ValueID, self.ResultID, self.DataValue, self.ValueDateTime, self.ValueDateTimeUTCOffset, self.CensorCodeCV, self.QualityCodeCV, self.TimeAggregationInterval, self.TimeAggregationIntervalUnitsID] class TrajectoryResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(TrajectoryResults.ResultID), nullable=False) DataValue = Column('datavalue', Float(53), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) XLocation = Column('xlocation', Float(53), nullable=False) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID), nullable=False) YLocation = Column('ylocation', Float(53), nullable=False) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID), nullable=False) ZLocation = Column('zlocation', Float(53), nullable=False) ZLocationUnitsID = Column('zlocationunitsid', ForeignKey(Units.UnitsID), nullable=False) TrajectoryDistance = Column('trajectorydistance', Float(53), nullable=False) TrajectoryDistanceAggregationInterval = Column( 'trajectorydistanceaggregationinterval', Float(53), nullable=False ) TrajectoryDistanceUnitsID = Column('trajectorydistanceunitsid', Integer, nullable=False) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column('timeaggregationintervalunitsid', ForeignKey(Units.UnitsID), nullable=False) ResultObj = relationship(TrajectoryResults) TimeAggregationIntervalUnitsObj = relationship( Units, primaryjoin='TrajectoryResultValues.TimeAggregationIntervalUnitsID == Units.UnitsID' ) XLocationUnitsObj = relationship( Units, primaryjoin='TrajectoryResultValues.XLocationUnitsID == Units.UnitsID' ) YLocationUnitsObj = relationship( Units, primaryjoin='TrajectoryResultValues.YLocationUnitsID == Units.UnitsID' ) ZLocationUnitsObj = relationship( Units, primaryjoin='TrajectoryResultValues.ZLocationUnitsID == Units.UnitsID' ) class TransectResultValues(Base): ValueID = Column('valueid', BigIntegerType, primary_key=True) ResultID = Column('resultid', ForeignKey(TransectResults.ResultID), nullable=False) DataValue = Column('datavalue', Float(53), nullable=False) ValueDateTime = Column('valuedatetime', DateTimeType, nullable=False) ValueDateTimeUTCOffset = Column('valuedatetimeutcoffset', Integer, nullable=False) XLocation = Column('xlocation', Float(53), nullable=False) XLocationUnitsID = Column('xlocationunitsid', ForeignKey(Units.UnitsID), nullable=False) YLocation = Column('ylocation', Float(53), nullable=False) YLocationUnitsID = Column('ylocationunitsid', ForeignKey(Units.UnitsID), nullable=False) TransectDistance = Column('transectdistance', Float(53), nullable=False) TransectDistanceAggregationInterval = Column( 'transectdistanceaggregationinterval', Float(53), nullable=False ) TransectDistanceUnitsID = Column('transectdistanceunitsid', ForeignKey(Units.UnitsID), nullable=False) CensorCodeCV = Column('censorcodecv', ForeignKey(CVCensorCode.Name), nullable=False, index=True) QualityCodeCV = Column('qualitycodecv', ForeignKey(CVQualityCode.Name), nullable=False, index=True) AggregationStatisticCV = Column('aggregationstatisticcv', ForeignKey(CVAggregationStatistic.Name), nullable=False, index=True) TimeAggregationInterval = Column('timeaggregationinterval', Float(53), nullable=False) TimeAggregationIntervalUnitsID = Column( 'timeaggregationintervalunitsid', ForeignKey(Units.UnitsID), nullable=False ) ResultObj = relationship(TransectResults) TimeAggregationIntervalUnitsObj = relationship( Units, primaryjoin='TransectResultValues.TimeAggregationIntervalUnitsID == Units.UnitsID' ) XLocationUnitsObj = relationship( Units, primaryjoin='TransectResultValues.XLocationUnitsID == Units.UnitsID' ) YLocationUnitsObj = relationship( Units, primaryjoin='TransectResultValues.YLocationUnitsID == Units.UnitsID' ) TransectDistanceUnitsObj = relationship( Units, primaryjoin='TransectResultValues.TransectDistanceUnitsID == Units.UnitsID' ) class CategoricalResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(CategoricalResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(CategoricalResultValues) class MeasurementResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(MeasurementResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(MeasurementResultValues) class PointCoverageResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(PointCoverageResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(PointCoverageResultValues) class ProfileResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(ProfileResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(ProfileResultValues) class SectionResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(SectionResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(SectionResultValues) class SpectraResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(SpectraResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(SpectraResultValues) class TimeSeriesResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(TimeSeriesResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(TimeSeriesResultValues) class TrajectoryResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(TrajectoryResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(TrajectoryResultValues) class TransectResultValueAnnotations(Base): BridgeID = Column('bridgeid', Integer, primary_key=True, nullable=False) ValueID = Column('valueid', BigIntegerType, ForeignKey(TransectResultValues.ValueID), nullable=False) AnnotationID = Column('annotationid', ForeignKey(Annotations.AnnotationID), nullable=False) AnnotationObj = relationship(Annotations) ValueObj = relationship(TransectResultValues) def _changeSchema(schema): import inspect import sys # get a list of all of the classes in the module clsmembers = inspect.getmembers(sys.modules[__name__], lambda member: inspect.isclass(member) and member.__module__ == __name__) for name, Tbl in clsmembers: import sqlalchemy.ext.declarative.api as api if isinstance(Tbl, api.DeclarativeMeta): # check to see if the schema is already set correctly if Tbl.__table__.schema == schema: return Tbl.__table__.schema = schema Tbl.__table_args__['schema'] = schema def _getSchema(engine): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(engine) for name in insp.get_schema_names(): if 'odm2' == name.lower(): return name return insp.default_schema_name def setSchema(engine): s = _getSchema(engine) _changeSchema(s)
{ "repo_name": "ODM2/ODM2PythonAPI", "path": "odm2api/models.py", "copies": "1", "size": "91033", "license": "bsd-3-clause", "hash": 1418426195318752800, "line_mean": 46.167357513, "line_max": 110, "alpha_frac": 0.7172893346, "autogenerated": false, "ratio": 4.33098625053523, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5548275585135231, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) from odm2api.ODMconnection import dbconnection from odm2api.models import CVElevationDatum import pytest from sqlalchemy.engine import reflection __author__ = 'valentine' dbs_readonly = [ ['mysql_odm2_odm', 'mysql', 'localhost', 'odm2', 'ODM', 'odm'], ['mysql_odm2_root', 'mysql', 'localhost', 'odm2', 'root', None], ['postgresql_marchantariats', 'postgresql', 'localhost', 'marchantariats', 'postgres', 'iforget'], ['sqlite_wof', 'sqlite', './tests/spatialite/wof2odm/ODM2.sqlite', None, None, None] ] dbs_test = [ ['sqlite_memory', 'sqlite', ':memory:', None, None, None] ] class Connection: def __init__(self, request): db = request.param print ('dbtype', db[0], db[1]) session_factory = dbconnection.createConnection(db[1], db[2], db[3], db[4], db[5], echo=True) assert session_factory is not None, ('failed to create a session for ', db[0], db[1]) assert session_factory.engine is not None, ('failed: session has no engine ', db[0], db[1]) insp = reflection.Inspector.from_engine(session_factory.engine) insp.get_table_names() self.session = session_factory.getSession() @pytest.fixture(scope='session', params=dbs_readonly) def setup(request): return Connection(request) def test_connection(setup): q = setup.session.query(CVElevationDatum) results = q.all() assert len(results) > 0 def test_create_all_schema(): pass def test_create_all_no_schema(): pass
{ "repo_name": "ODM2/ODM2PythonAPI", "path": "tests/test_connection.py", "copies": "1", "size": "1559", "license": "bsd-3-clause", "hash": 1969935578429236500, "line_mean": 27.8703703704, "line_max": 102, "alpha_frac": 0.6619627967, "autogenerated": false, "ratio": 3.241164241164241, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4403127037864241, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) from odm2api.ODMconnection import SessionFactory from odm2api.models import CVElevationDatum, setSchema import pytest __author__ = 'valentine' dbs_readonly = [ ['mysql:ODM@Localhost/', 'mysql', 'mysql+pymysql://ODM:odm@localhost/'], ['mysql"root@Localhost/', 'mysql', 'mysql+pymysql://root@localhost/'], ['mysql:ODM@Localhost/odm2', 'mysql', 'mysql+pymysql://ODM:odm@localhost/odm2'], ['mysql"root@Localhost/odm2', 'mysql', 'mysql+pymysql://root@localhost/odm2'], ['postgresql_marchantariats_none', 'postgresql', 'postgresql+psycopg2://postgres:None@localhost/marchantariats', 'marchantariats', 'postgres', None], ['postgresql_marchantariats_empty', 'postgresql', 'postgresql+psycopg2://postgres@localhost/marchantariats', 'marchantariats', 'postgres', None], ['sqlite_wof', 'sqlite', 'sqlite:///./tests/spatialite/wof2odm/ODM2.sqlite', None, None, None] ] dbs_test = [ ['sqlite_test', 'sqlite' './tests/spatialite/odm2_test.sqlite', None, None, None] ] class aSessionFactory: def __init__(self, request): db = request.param print ('dbtype', db[0], db[1]) session_factory = SessionFactory(db[2]) setSchema(session_factory.engine) assert session_factory is not None, ('failed to create a session for ', db[0], db[1]) self.session = session_factory.getSession() @pytest.fixture(scope='session', params=dbs_readonly) def setup(request): return aSessionFactory(request) def test_aSessionFactory(setup): q = setup.session.query(CVElevationDatum) results = q.all() assert len(results) > 0
{ "repo_name": "ODM2/ODM2PythonAPI", "path": "tests/test_SessionFactory.py", "copies": "1", "size": "1682", "license": "bsd-3-clause", "hash": 7110009812174243000, "line_mean": 34.0416666667, "line_max": 98, "alpha_frac": 0.6831153389, "autogenerated": false, "ratio": 3.2284069097888675, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9402999213350893, "avg_score": 0.0017046070675949508, "num_lines": 48 }
from __future__ import absolute_import, division, print_function from odo.core import NetworkDispatcher, path from datashape import discover d = NetworkDispatcher('foo') @d.register(float, int, cost=1.0) def f(x, **kwargs): return float(x) @d.register(str, float, cost=1.0) def g(x, **kwargs): return str(x) def test_basic(): assert [func for a, b, func in d.path(int, str)] == [f, g] assert d.path(int, str) == d.path(1, '') def test_convert_is_robust_to_failures(): foo = NetworkDispatcher('foo') def badfunc(*args, **kwargs): raise NotImplementedError() class A(object): pass class B(object): pass class C(object): pass discover.register((A, B, C))(lambda x: 'int') foo.register(B, A, cost=1.0)(lambda x, **kwargs: 1) foo.register(C, B, cost=1.0)(badfunc) foo.register(C, A, cost=10.0)(lambda x, **kwargs: 2) assert foo(C, A()) == 2 def test_ooc_behavior(): foo = NetworkDispatcher('foo') class A(object): pass class B(object): pass class C(object): pass discover.register((A, B, C))(lambda x: 'int') foo.register(B, A, cost=1.0)(lambda x, **kwargs: 1) foo.register(C, B, cost=1.0)(lambda x, **kwargs: x / 0) # note that this errs foo.register(C, A, cost=10.0)(lambda x, **kwargs: 2) assert [(a, b) for a, b, func in path(foo.graph, A, C)] == [(A, B), (B, C)] ooc = set([A, C]) assert [(a, b) for a, b, func in path(foo.graph, A, C, ooc_types=ooc)] == \ [(A, C)]
{ "repo_name": "Dannnno/odo", "path": "odo/tests/test_core.py", "copies": "3", "size": "1515", "license": "bsd-3-clause", "hash": 6266833701682457000, "line_mean": 26.5454545455, "line_max": 81, "alpha_frac": 0.596039604, "autogenerated": false, "ratio": 2.8747628083491463, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9939503681950377, "avg_score": 0.006259746079753905, "num_lines": 55 }
from __future__ import absolute_import, division, print_function from oem_core.core.plugin import PluginManager from oem_framework.plugin import Plugin from oem_framework.storage import ProviderStorage class Provider(Plugin): def __init__(self, storage): self._storage = storage self._client = None # # Properties # @property def client(self): return self._client @property def formats(self): return self._client.formats @property def plugins(self): return self._client.plugins @property def storage(self): return self._storage # # Public methods # def initialize(self, client): self._client = client self._storage = self._construct_storage(self._storage) # # Abstract methods # def fetch(self, source, target, key, metadata): raise NotImplementedError def open_database(self, source, target): raise NotImplementedError # # Private methods # def _construct_storage(self, storage_or_key): if isinstance(storage_or_key, ProviderStorage): # Use provided source storage = storage_or_key elif PluginManager.has('storage', storage_or_key): # Construct source by key storage = PluginManager.get('storage', storage_or_key)() else: raise ValueError('Unknown storage interface: %r' % storage_or_key) # Initialize source storage.initialize(self._client) return storage
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/core/providers/base.py", "copies": "1", "size": "1564", "license": "bsd-3-clause", "hash": 7217312248077255000, "line_mean": 21.6666666667, "line_max": 78, "alpha_frac": 0.6221227621, "autogenerated": false, "ratio": 4.533333333333333, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5655456095433333, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from oem.core.exceptions import AbsoluteNumberRequiredError from oem.media.movie.identifier import MovieIdentifier from oem.media.show.identifier import EpisodeIdentifier from oem.media.show.match import EpisodeMatch from oem_framework.core.helpers import try_convert from copy import deepcopy import logging log = logging.getLogger(__name__) class ShowMapper(object): def __init__(self, service): self._service = service def match(self, show, identifier, resolve_mappings=True): if identifier is None: # Create identifier for S01E01 identifier = EpisodeIdentifier(1, 1) elif isinstance(identifier, MovieIdentifier): # Convert movie identifier to S01E01 identifier = EpisodeIdentifier(1, 1, progress=identifier.progress) # Validate identifier if identifier and not identifier.valid: raise ValueError('Invalid value provided for "identifier" parameter') # Show best = self._match_show(show, identifier) # Season season, result = self._match_season(show, identifier) if result: best = result if season: # Episode result = self._match_episode( show, season, identifier, resolve_mappings=resolve_mappings ) if result: best = result # Return best result return best def _match_show(self, show, identifier): # Retrieve "default_season" parameter default_season = None if 'default_season' in show.parameters: default_season = show.parameters['default_season'] if default_season != 'a': # Cast season number to an integer default_season = try_convert(default_season, int) if default_season is None: log.warn( 'Invalid value provided for the "default_season" parameter: %r', show.parameters['default_season'] ) return None # Retrieve season number season_num = identifier.season_num if season_num is None or default_season is None or default_season == 'a': season_num = default_season elif season_num > 0: season_num = default_season + (season_num - 1) # Retrieve episode number episode_num = identifier.episode_num if 'episode_offset' in show.parameters: episode_num += int(show.parameters['episode_offset']) # Build episode match if season_num != 'a': match = EpisodeMatch( self._get_identifiers(show), season_num=season_num, episode_num=episode_num, progress=identifier.progress ) else: if identifier.absolute_num is None: raise AbsoluteNumberRequiredError('Unable to match %r, an absolute number is required' % identifier) match = EpisodeMatch( self._get_identifiers(show), absolute_num=identifier.absolute_num, progress=identifier.progress ) if not match.valid: return None return match def _match_season(self, show, identifier): # Try retrieve matching season season = show.seasons.get(str(identifier.season_num)) or show.seasons.get('a') if not season: return None, None if season.number == 'a': if identifier.absolute_num is None: raise AbsoluteNumberRequiredError('Unable to match %r, an absolute number is required' % identifier) return season, EpisodeMatch( self._get_identifiers(show, season), absolute_num=identifier.absolute_num, progress=identifier.progress ) # Look for matching season mapping for season_mapping in season.mappings: if not (season_mapping.start <= identifier.episode_num <= season_mapping.end): continue return season, EpisodeMatch( self._get_identifiers(show, season), int(season_mapping.season), identifier.episode_num + season_mapping.offset, progress=identifier.progress ) # Retrieve "default_season" parameter default_season = None if 'default_season' in season.parameters: default_season = season.parameters['default_season'] if default_season != 'a': # Cast season number to an integer default_season = try_convert(default_season, int) if default_season is None: log.warn( 'Invalid value provided for the "default_season" parameter: %r', season.parameters['default_season'] ) return season, None # Retrieve season number season_num = identifier.season_num if season.identifiers: season_num = 1 if default_season is not None: season_num = default_season # Retrieve episode number episode_num = identifier.episode_num # Apply episode offset episode_offset = self._get_parameter('episode_offset', show, season) if episode_offset is not None: episode_num += int(episode_offset) # Build season match match = EpisodeMatch( self._get_identifiers(show, season), season_num=season_num, episode_num=episode_num, progress=identifier.progress ) if not match.valid: return season, None return season, match def _match_episode(self, show, season, identifier, resolve_mappings=True): episode = season.episodes.get(str(identifier.episode_num)) if not episode: return None if not resolve_mappings: match = EpisodeMatch( self._get_identifiers(show, season, episode), mappings=episode.mappings ) if not match.valid: return None return match if identifier.part is not None and identifier.part - 1 < len(episode.mappings): # Parse episode mapping valid, match = self._parse_episode_mapping( show, season, episode, episode.mappings[identifier.part - 1], part=identifier.part ) if valid: return match for episode_mapping in episode.mappings: # Parse timeline attributes progress = identifier.progress if episode_mapping.timeline: if identifier.progress is None: raise ValueError('Missing required parameter "progress"') if 'source' in episode_mapping.timeline: timeline_source = episode_mapping.timeline['source'] if not (timeline_source.start <= identifier.progress <= timeline_source.end): continue # Calculate progress progress = ( float(identifier.progress - timeline_source.start) * (100 / (timeline_source.end - timeline_source.start)) ) elif 'target' in episode_mapping.timeline: timeline_target = episode_mapping.timeline['target'] # Calculate progress progress = ( timeline_target.start + ( float(identifier.progress) / (100 / (timeline_target.end - timeline_target.start)) ) ) # Parse episode mapping valid, match = self._parse_episode_mapping( show, season, episode, episode_mapping, progress=progress ) if valid: return match return None def _parse_episode_mapping(self, show, season, episode, episode_mapping, progress=None, part=None): # Parse mapping attributes try: season_num = int(episode_mapping.season) except (TypeError, ValueError): return False, None try: episode_num = int(episode_mapping.number) except (TypeError, ValueError): return False, None # Return episode match match = EpisodeMatch( self._get_identifiers(show, season, episode), season_num=season_num, episode_num=episode_num, progress=progress, part=part ) if not match.valid: return True, None return True, match def _get_identifiers(self, show, season=None, episode=None): # Retrieve identifiers from objects if show and season and episode: identifiers = episode.identifiers or season.identifiers or show.identifiers elif show and season: identifiers = season.identifiers or show.identifiers else: identifiers = show.identifiers # Copy identifiers if identifiers: identifiers = deepcopy(identifiers) else: identifiers = {} # Remove source identifier if self._service.source_key in identifiers: del identifiers[self._service.source_key] return identifiers def _get_parameter(self, key, show, season=None, episode=None): for obj in [episode, season, show]: if not obj: continue return obj.parameters.get(key) return None
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/media/show/mapper.py", "copies": "1", "size": "10001", "license": "bsd-3-clause", "hash": 5635340066726829000, "line_mean": 30.9520766773, "line_max": 116, "alpha_frac": 0.5608439156, "autogenerated": false, "ratio": 5.076649746192893, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6137493661792893, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from oem.core.providers.base import Provider from oem.version import __version__ from oem_core.core.plugin import PluginManager import inspect import logging import six log = logging.getLogger(__name__) class Client(object): version = __version__ def __init__(self, services, provider, formats=None): """Client for OpenEntityMap. :param services: List of services to load (e.g. "anidb") :type services: list :param provider: Provider to use for databases (e.g. "package", "release/incremental") :type provider: str or oem.core.providers.base.Base :param formats: List of formats to use, or `None` for any :type formats: list or None """ self._formats = formats # Discover available plugins self._plugins = PluginManager self._plugins.discover() # Construct plugins self._services = self._construct_services(services) self._provider = self._construct_provider(provider) # Build database + package tables self._databases = {} self._packages = {} for _, cls in self._load_plugins('client', services, construct=False): # Merge service databases into client if cls.__databases__: self._databases.update(cls.__databases__) else: log.warn('Service %r has no "__databases__" defined', cls.__key__) # Merge service packages into client if cls.__packages__: self._packages.update(cls.__packages__) else: log.warn('Service %r has no "__packages__" defined', cls.__key__) @property def formats(self): return self._formats @property def plugins(self): return self._plugins @property def provider(self): return self._provider def load_all(self): for service in six.itervalues(self._services): service.load() def database_name(self, source, target): return self._databases.get((source, target)) def package_name(self, source, target): return self._packages.get((source, target)) def __getitem__(self, source): return ServiceInterface(self, source) # # Private methods # def _construct_services(self, services): result = {} for _, cls in self._load_plugins('client', services, construct=False): # Add supported service conversions for source, targets in cls.__services__.items(): for target in targets: # Construct service result[(source, target)] = cls(self, source, target) return result def _construct_provider(self, provider_or_key): if isinstance(provider_or_key, Provider): # Class provider = provider_or_key elif isinstance(provider_or_key, six.string_types): # Identifier provider = PluginManager.get('client-provider', provider_or_key) if provider is None: raise ValueError('Unable to find provider: %r' % provider_or_key) else: raise ValueError('Unknown provider: %r' % provider_or_key) # Ensure provider has been constructed if inspect.isclass(provider): provider = provider() # Initialize provider provider.initialize(self) return provider @staticmethod def _load_plugins(kind, keys, construct=True): if not keys: return for name in keys: cls = PluginManager.get(kind, name) if cls is None: log.warn('Unable to find plugin: %r', name) continue if not cls.available: log.warn('Plugin %r is not available', name) continue if construct: yield cls.__key__, cls() else: yield cls.__key__, cls class ServiceInterface(object): def __init__(self, client, source): self.client = client self.source = source def to(self, target): try: return self.client._services[(self.source, target)] except KeyError: raise KeyError('Unknown service: %s -> %s' % (self.source, target))
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/client.py", "copies": "1", "size": "4409", "license": "bsd-3-clause", "hash": -1233422667628177700, "line_mean": 28.3933333333, "line_max": 94, "alpha_frac": 0.5788160581, "autogenerated": false, "ratio": 4.621593291404612, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5700409349504613, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from oem_framework.core.elapsed import Elapsed from oem_framework.plugin import Plugin import logging log = logging.getLogger(__name__) class Service(Plugin): __databases__ = {} __packages__ = {} __services__ = {} def __init__(self, client, source, target, formats=None): self._client = client self._source = source self._target = target self._formats = formats self._database = None self._collection = None self._loaded = False @property def database_name(self): return 'oem_database_%s_%s' % (self._source, self._target) @property def loaded(self): return self._loaded @property def package_name(self): return 'oem-database-%s-%s' % (self._source, self._target) @property def provider(self): return self._client._provider @property def source_key(self): return self._source @property def target_key(self): return self._target @Elapsed.track def load(self): if self._loaded: return True # Load database self._database = self.provider.open_database( self.source_key, self.target_key ) if self._database is None: log.warn('Unable to load database for: %s -> %s', self.source_key, self.target_key) return False # Load collection self._collection = self._database.load_collection( self._source, self._target ) if self._collection is None: log.warn('Unable to load collection for: %s -> %s', self.source_key, self.target_key) return False # Successfully loaded service log.info('Loaded service: %-5s -> %-5s (storage: %r)', self._source, self._target, self._database.storage) self._loaded = True return True @Elapsed.track def fetch(self, key, metadata): # Ensure database is loaded if not self.load(): return False # Ensure item is loaded return self.provider.fetch( self.source_key, self.target_key, key, metadata )
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/core/services/base.py", "copies": "1", "size": "2285", "license": "bsd-3-clause", "hash": -7651818612636543000, "line_mean": 23.8369565217, "line_max": 114, "alpha_frac": 0.572428884, "autogenerated": false, "ratio": 4.215867158671586, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5288296042671586, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from oem.media.core.base.identifier import Identifier class EpisodeIdentifier(Identifier): __slots__ = ['season_num', 'episode_num', 'absolute_num', 'progress'] def __init__(self, season_num=None, episode_num=None, absolute_num=None, progress=None, part=None): # Season + Episode Identifier self.season_num = season_num self.episode_num = episode_num # Absolute Identifier self.absolute_num = absolute_num # Extra self.progress = progress self.part = part @property def valid(self): return ( self.season_num is not None and self.episode_num is not None ) or ( self.absolute_num is not None ) def to_dict(self): result = {} if self.absolute_num is not None: result['absolute_num'] = self.absolute_num if self.season_num is not None: result['season_num'] = self.season_num if self.episode_num is not None: result['episode_num'] = self.episode_num if self.progress is not None: result['progress'] = self.progress if self.part is not None: result['part'] = self.part return result def __repr__(self): attributes = [ ('%s: %r' % (key, getattr(self, key))) for key in ['progress', 'part'] if getattr(self, key) ] fragments = [] if self.absolute_num: fragments.append('[%03d]' % self.absolute_num) if self.season_num is not None and self.episode_num is not None: fragments.append('S%02dE%02d' % (self.season_num, self.episode_num)) elif self.season_num is not None: fragments.append('S%02d' % self.season_num) if attributes: fragments.append('(%s)' % (', '.join(attributes))) return '<%s%s>' % ( self.__class__.__name__, (' %s' % (' '.join(fragments))) if fragments else '' )
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/media/show/identifier.py", "copies": "1", "size": "2086", "license": "bsd-3-clause", "hash": -8820015782052436000, "line_mean": 27.9722222222, "line_max": 103, "alpha_frac": 0.5570469799, "autogenerated": false, "ratio": 3.9657794676806084, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003050147726073652, "num_lines": 72 }
from __future__ import absolute_import, division, print_function from oem.media.movie.identifier import MovieIdentifier from oem.media.movie.match import MovieMatch from oem.media.show import EpisodeIdentifier from copy import deepcopy class MovieMapper(object): def __init__(self, service): self._service = service def match(self, movie, identifier, resolve_mappings=True): if identifier is not None and not identifier.valid: raise ValueError('Invalid value provided for "identifier" parameter') if isinstance(identifier, EpisodeIdentifier) and identifier.season_num != 1: return None # Movie best = self._match_movie(movie, identifier) # Part result = self._match_part(movie, identifier) if result: best = result # Return best result return best def _match_movie(self, movie, identifier): if isinstance(identifier, MovieIdentifier) and identifier.part is not None and identifier.part > 1: return None if isinstance(identifier, EpisodeIdentifier) and identifier.episode_num != 1: return None # Retrieve progress progress = None if identifier: progress = identifier.progress # Create movie match return MovieMatch( self._get_identifiers(movie), progress=progress ) def _match_part(self, movie, identifier): if isinstance(identifier, MovieIdentifier): part_num = identifier.part elif isinstance(identifier, EpisodeIdentifier): part_num = identifier.episode_num else: part_num = 1 # Retrieve part part = movie.parts.get(str(part_num)) if not part: return None # Retrieve progress progress = None if identifier: progress = identifier.progress # Create movie match return MovieMatch( self._get_identifiers(part), progress=progress ) def _get_identifiers(self, movie): # Retrieve identifiers from objects identifiers = movie.identifiers # Copy identifiers if identifiers: identifiers = deepcopy(identifiers) else: identifiers = {} # Remove source identifier if self._service.source_key in identifiers: del identifiers[self._service.source_key] return identifiers
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/media/movie/mapper.py", "copies": "1", "size": "2523", "license": "bsd-3-clause", "hash": -6386671481307321000, "line_mean": 26.4239130435, "line_max": 107, "alpha_frac": 0.6155370591, "autogenerated": false, "ratio": 5.005952380952381, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00048746732684321634, "num_lines": 92 }
from __future__ import absolute_import, division, print_function from oem.media.movie.identifier import MovieIdentifier class MovieMatch(MovieIdentifier): def __init__(self, identifiers, progress=None): super(MovieMatch, self).__init__(progress) self.identifiers = identifiers or {} def to_dict(self): result = super(MovieMatch, self).to_dict() result['identifiers'] = self.identifiers return result def __repr__(self): fragments = [] # Identifiers if self.identifiers: fragments.append( '(' + (', '.join( ('%s: %r' % (key, value)) for key, value in self.identifiers.items() )) + ')' ) # Attributes attributes = [ ('%s: %r' % (key, getattr(self, key))) for key in ['progress'] if getattr(self, key) ] if attributes: fragments.append('(%s)' % (', '.join(attributes))) return '<%s%s>' % ( self.__class__.__name__, (' %s' % (' '.join(fragments))) if fragments else '' )
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/media/movie/match.py", "copies": "1", "size": "1147", "license": "bsd-3-clause", "hash": -5334837377906126000, "line_mean": 26.3095238095, "line_max": 96, "alpha_frac": 0.508282476, "autogenerated": false, "ratio": 4.361216730038023, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5369499206038023, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from oem.media.show.identifier import EpisodeIdentifier class EpisodeMatch(EpisodeIdentifier): def __init__(self, identifiers, season_num=None, episode_num=None, absolute_num=None, progress=None, part=None, mappings=None): super(EpisodeMatch, self).__init__( season_num=season_num, episode_num=episode_num, absolute_num=absolute_num, progress=progress, part=part ) self.identifiers = identifiers or {} self.mappings = mappings or [] @property def valid(self): return len(self.identifiers) > 0 and ( super(EpisodeMatch, self).valid or len(self.mappings) > 0 ) def to_dict(self): result = super(EpisodeMatch, self).to_dict() result['identifiers'] = self.identifiers if self.mappings: result['mappings'] = [m.to_dict(compact=False) for m in self.mappings] return result def __repr__(self): fragments = [] # Identifiers if self.identifiers: fragments.append( '(' + (', '.join( ('%s: %r' % (key, value)) for key, value in self.identifiers.items() )) + ')' ) if self.absolute_num is not None or self.season_num is not None: fragments.append('-') # Absolute if self.absolute_num is not None: fragments.append('[%03d]' % self.absolute_num) # Season + Episode if self.season_num is not None and self.episode_num is not None: fragments.append('S%02dE%02d' % (self.season_num, self.episode_num)) elif self.season_num is not None: fragments.append('S%02d' % self.season_num) # Attributes attributes = [ ('%s: %r' % (key, getattr(self, key))) for key in ['progress'] if getattr(self, key) ] if attributes: fragments.append('(%s)' % (', '.join(attributes))) return '<%s%s>' % ( self.__class__.__name__, (' %s' % (' '.join(fragments))) if fragments else '' )
{ "repo_name": "OpenEntityMap/oem-client", "path": "oem/media/show/match.py", "copies": "1", "size": "2241", "license": "bsd-3-clause", "hash": -9010289649903734000, "line_mean": 29.2837837838, "line_max": 96, "alpha_frac": 0.5408299866, "autogenerated": false, "ratio": 4.111926605504587, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5152756592104587, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from operator import add, getitem import inspect from collections import Iterable from bisect import bisect import operator import math from itertools import product, count from collections import Iterator from functools import partial, wraps from toolz.curried import (identity, pipe, partition, concat, unique, pluck, frequencies, join, first, memoize, map, groupby, valmap, accumulate, merge, curry, compose) import numpy as np from . import chunk from .slicing import slice_array, insert_many, remove_full_slices from ..utils import deepmap, ignoring from ..async import inline_functions from ..optimize import cull, inline from ..compatibility import unicode from .. import threaded, core names = ('x_%d' % i for i in count(1)) def getem(arr, blockdims=None, blockshape=None, shape=None): """ Dask getting various chunks from an array-like >>> getem('X', blockshape=(2, 3), shape=(4, 6)) # doctest: +SKIP {('X', 0, 0): (getitem, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getitem, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getitem, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getitem, 'X', (slice(0, 2), slice(3, 6)))} >>> getem('X', blockdims=((2, 2), (3, 3))) # doctest: +SKIP {('X', 0, 0): (getitem, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getitem, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getitem, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getitem, 'X', (slice(0, 2), slice(3, 6)))} """ if not blockdims: blockdims = blockdims_from_blockshape(shape, blockshape) cumdims = [list(accumulate(add, (0,) + bds[:-1])) for bds in blockdims] keys = list(product([arr], *[range(len(bds)) for bds in blockdims])) shapes = product(*blockdims) starts = product(*cumdims) values = ((getitem, arr) + (tuple(slice(s, s+dim) for s, dim in zip(start, shape)),) for start, shape in zip(starts, shapes)) return dict(zip(keys, values)) def dotmany(A, B, leftfunc=None, rightfunc=None, **kwargs): """ Dot product of many aligned chunks >>> x = np.array([[1, 2], [1, 2]]) >>> y = np.array([[10, 20], [10, 20]]) >>> dotmany([x, x, x], [y, y, y]) array([[ 90, 180], [ 90, 180]]) Optionally pass in functions to apply to the left and right chunks >>> dotmany([x, x, x], [y, y, y], rightfunc=np.transpose) array([[150, 150], [150, 150]]) """ if leftfunc: A = map(leftfunc, A) if rightfunc: B = map(rightfunc, B) return sum(map(partial(np.dot, **kwargs), A, B)) def lol_tuples(head, ind, values, dummies): """ List of list of tuple keys Parameters ---------- head : tuple The known tuple so far ind : Iterable An iterable of indices not yet covered values : dict Known values for non-dummy indices dummies : dict Ranges of values for dummy indices Examples -------- >>> lol_tuples(('x',), 'ij', {'i': 1, 'j': 0}, {}) ('x', 1, 0) >>> lol_tuples(('x',), 'ij', {'i': 1}, {'j': range(3)}) [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> lol_tuples(('x',), 'ij', {'i': 1}, {'j': range(3)}) [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> lol_tuples(('x',), 'ijk', {'i': 1}, {'j': [0, 1, 2], 'k': [0, 1]}) # doctest: +NORMALIZE_WHITESPACE [[('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 1, 0), ('x', 1, 1, 1)], [('x', 1, 2, 0), ('x', 1, 2, 1)]] """ if not ind: return head if ind[0] not in dummies: return lol_tuples(head + (values[ind[0]],), ind[1:], values, dummies) else: return [lol_tuples(head + (v,), ind[1:], values, dummies) for v in dummies[ind[0]]] def zero_broadcast_dimensions(lol, nblocks): """ >>> lol = [('x', 1, 0), ('x', 1, 1), ('x', 1, 2)] >>> nblocks = (4, 1, 2) # note singleton dimension in second place >>> lol = [[('x', 1, 0, 0), ('x', 1, 0, 1)], ... [('x', 1, 1, 0), ('x', 1, 1, 1)], ... [('x', 1, 2, 0), ('x', 1, 2, 1)]] >>> zero_broadcast_dimensions(lol, nblocks) # doctest: +NORMALIZE_WHITESPACE [[('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 0, 0), ('x', 1, 0, 1)], [('x', 1, 0, 0), ('x', 1, 0, 1)]] See Also -------- lol_tuples """ f = lambda t: (t[0],) + tuple(0 if d == 1 else i for i, d in zip(t[1:], nblocks)) return deepmap(f, lol) def broadcast_dimensions(argpairs, numblocks, sentinels=(1, (1,))): """ Find block dimensions from arguments Parameters ---------- argpairs: iterable name, ijk index pairs numblocks: dict maps {name: number of blocks} sentinels: iterable (optional) values for singleton dimensions Examples -------- >>> argpairs = [('x', 'ij'), ('y', 'ji')] >>> numblocks = {'x': (2, 3), 'y': (3, 2)} >>> broadcast_dimensions(argpairs, numblocks) {'i': 2, 'j': 3} Supports numpy broadcasting rules >>> argpairs = [('x', 'ij'), ('y', 'ij')] >>> numblocks = {'x': (2, 1), 'y': (1, 3)} >>> broadcast_dimensions(argpairs, numblocks) {'i': 2, 'j': 3} Works in other contexts too >>> argpairs = [('x', 'ij'), ('y', 'ij')] >>> d = {'x': ('Hello', 1), 'y': (1, (2, 3))} >>> broadcast_dimensions(argpairs, d) {'i': 'Hello', 'j': (2, 3)} """ # List like [('i', 2), ('j', 1), ('i', 1), ('j', 2)] L = concat([zip(inds, dims) for (x, inds), (x, dims) in join(first, argpairs, first, numblocks.items())]) g = groupby(0, L) g = dict((k, set([d for i, d in v])) for k, v in g.items()) g2 = dict((k, v - set(sentinels) if len(v) > 1 else v) for k, v in g.items()) if g2 and not set(map(len, g2.values())) == set([1]): raise ValueError("Shapes do not align %s" % g) return valmap(first, g2) def top(func, output, out_indices, *arrind_pairs, **kwargs): """ Tensor operation Applies a function, ``func``, across blocks from many different input dasks. We arrange the pattern with which those blocks interact with sets of matching indices. E.g. top(func, 'z', 'i', 'x', 'i', 'y', 'i') yield an embarassingly parallel communication pattern and is read as z_i = func(x_i, y_i) More complex patterns may emerge, including multiple indices top(func, 'z', 'ij', 'x', 'ij', 'y', 'ji') $$ z_{ij} = func(x_{ij}, y_{ji}) $$ Indices missing in the output but present in the inputs results in many inputs being sent to one function (see examples). Examples -------- Simple embarassing map operation >>> inc = lambda x: x + 1 >>> top(inc, 'z', 'ij', 'x', 'ij', numblocks={'x': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (inc, ('x', 0, 0)), ('z', 0, 1): (inc, ('x', 0, 1)), ('z', 1, 0): (inc, ('x', 1, 0)), ('z', 1, 1): (inc, ('x', 1, 1))} Simple operation on two datasets >>> add = lambda x, y: x + y >>> top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} Operation that flips one of the datasets >>> addT = lambda x, y: x + y.T # Transpose each chunk >>> # z_ij ~ x_ij y_ji >>> # .. .. .. notice swap >>> top(addT, 'z', 'ij', 'x', 'ij', 'y', 'ji', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 1, 0)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 0, 1)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} Dot product with contraction over ``j`` index. Yields list arguments >>> top(dotmany, 'z', 'ik', 'x', 'ij', 'y', 'jk', numblocks={'x': (2, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 0, 1): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 1), ('y', 1, 1)]), ('z', 1, 0): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 1, 1): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 1), ('y', 1, 1)])} Supports Broadcasting rules >>> top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (1, 2), ... 'y': (2, 2)}) # doctest: +SKIP {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 0, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 0, 1), ('y', 1, 1))} """ numblocks = kwargs['numblocks'] argpairs = list(partition(2, arrind_pairs)) assert set(numblocks) == set(pluck(0, argpairs)) all_indices = pipe(argpairs, pluck(1), concat, set) dummy_indices = all_indices - set(out_indices) # Dictionary mapping {i: 3, j: 4, ...} for i, j, ... the dimensions dims = broadcast_dimensions(argpairs, numblocks) # (0, 0), (0, 1), (0, 2), (1, 0), ... keytups = list(product(*[range(dims[i]) for i in out_indices])) # {i: 0, j: 0}, {i: 0, j: 1}, ... keydicts = [dict(zip(out_indices, tup)) for tup in keytups] # {j: [1, 2, 3], ...} For j a dummy index of dimension 3 dummies = dict((i, list(range(dims[i]))) for i in dummy_indices) # Create argument lists valtups = [] for kd in keydicts: args = [] for arg, ind in argpairs: tups = lol_tuples((arg,), ind, kd, dummies) tups2 = zero_broadcast_dimensions(tups, numblocks[arg]) args.append(tups2) valtups.append(tuple(args)) # Add heads to tuples keys = [(output,) + kt for kt in keytups] vals = [(func,) + vt for vt in valtups] return dict(zip(keys, vals)) def _concatenate2(arrays, axes=[]): """ Recursively Concatenate nested lists of arrays along axes Each entry in axes corresponds to each level of the nested list. The length of axes should correspond to the level of nesting of arrays. >>> x = np.array([[1, 2], [3, 4]]) >>> _concatenate2([x, x], axes=[0]) array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> _concatenate2([x, x], axes=[1]) array([[1, 2, 1, 2], [3, 4, 3, 4]]) >>> _concatenate2([[x, x], [x, x]], axes=[0, 1]) array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) Supports Iterators >>> _concatenate2(iter([x, x]), axes=[1]) array([[1, 2, 1, 2], [3, 4, 3, 4]]) """ if isinstance(arrays, Iterator): arrays = list(arrays) if len(axes) > 1: arrays = [_concatenate2(a, axes=axes[1:]) for a in arrays] return np.concatenate(arrays, axis=axes[0]) def rec_concatenate(arrays, axis=0): """ Recursive np.concatenate >>> x = np.array([1, 2]) >>> rec_concatenate([[x, x], [x, x], [x, x]]) array([[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]]) """ if isinstance(arrays, Iterator): arrays = list(arrays) if isinstance(arrays[0], Iterator): arrays = list(map(list, arrays)) if not isinstance(arrays[0], np.ndarray): arrays = [rec_concatenate(a, axis=axis + 1) for a in arrays] if arrays[0].ndim <= axis: arrays = [a[None, ...] for a in arrays] return np.concatenate(arrays, axis=axis) def map_blocks(x, func, blockshape=None, blockdims=None): """ Map a function across all blocks of a dask array You must also specify the blockdims/blockshape of the resulting array. If you don't then we assume that the resulting array has the same block structure as the input. >>> import dask.array as da >>> x = da.ones((8,), blockshape=(4,)) >>> np.array(x.map_blocks(lambda x: x + 1)) array([ 2., 2., 2., 2., 2., 2., 2., 2.]) If function changes shape of the blocks provide a blockshape >>> y = x.map_blocks(lambda x: x[::2], blockshape=(2,)) Or, if the result is ragged, provide a blockdims >>> y = x.map_blocks(lambda x: x[::2], blockdims=((2, 2),)) Your block function can learn where in the array it is if it supports a block_id keyword argument. This will receive entries like (2, 0, 1), the position of the block in the dask array. >>> def func(block, block_id=None): ... pass """ if blockshape is not None: blockdims = tuple([nb * (bs,) for nb, bs in zip(x.numblocks, blockshape)]) if blockdims is None: blockdims = x.blockdims name = next(names) try: spec = inspect.getargspec(func) except: spec = None if spec and 'block_id' in spec.args: dsk = dict(((name,) + k[1:], (partial(func, block_id=k[1:]), k)) for k in core.flatten(x._keys())) else: dsk = dict(((name,) + k[1:], (func, k)) for k in core.flatten(x._keys())) return Array(merge(dsk, x.dask), name, blockdims=blockdims) def blockdims_from_blockshape(shape, blockshape): """ >>> blockdims_from_blockshape((10, 10), (4, 3)) ((4, 4, 2), (3, 3, 3, 1)) """ return tuple((bd,) * (d // bd) + ((d % bd,) if d % bd else ()) for d, bd in zip(shape, blockshape)) class Array(object): """ Array object holding a dask Parameters ---------- dask : dict Task dependency graph name : string Name of array in dask shape : tuple of ints Shape of the entire array blockdims : iterable of tuples block sizes along each dimension """ __slots__ = 'dask', 'name', 'blockdims' def __init__(self, dask, name, shape=None, blockshape=None, blockdims=None): self.dask = dask self.name = name if blockdims is None: blockdims = blockdims_from_blockshape(shape, blockshape) if blockdims is None: raise ValueError("Either give shape and blockshape or blockdims") self.blockdims = tuple(map(tuple, blockdims)) @property def numblocks(self): return tuple(map(len, self.blockdims)) @property def shape(self): return tuple(map(sum, self.blockdims)) @property def dtype(self): if self.shape: return self[(0,) * self.ndim].compute().dtype else: return self.compute().dtype def __repr__(self): return ("dask.array<%s, shape=%s, blockdims=%s>" % (self.name, self.shape, self.blockdims)) def _get_block(self, *args): return core.get(self.dask, (self.name,) + args) @property def ndim(self): return len(self.shape) def _keys(self, *args): if self.ndim == 0: return [(self.name,)] ind = len(args) if ind + 1 == self.ndim: return [(self.name,) + args + (i,) for i in range(self.numblocks[ind])] else: return [self._keys(*(args + (i,))) for i in range(self.numblocks[ind])] def __array__(self, dtype=None, **kwargs): x = self.compute() if dtype and x.dtype != dtype: x = x.astype(dtype) return x def store(self, target, **kwargs): """ Store dask array in array-like object, overwrite data in target This stores a dask into an object that supports numpy-style setitem indexing. It stores values chunk by chunk so that it does not have to fill up memory. For best performance you can align the block size of the storage target with the block size of your array. If your data fits in memory then you may prefer calling ``np.array(myarray)`` instead. Examples -------- >>> x = ... # doctest: +SKIP >>> import h5py # doctest: +SKIP >>> f = h5py.File('myfile.hdf5') # doctest: +SKIP >>> dset = f.create_dataset('/data', shape=x.shape, ... chunks=x.blockshape, ... dtype='f8') # doctest: +SKIP >>> x.store(dset) # doctest: +SKIP """ update = insert_to_ooc(target, self) dsk = merge(self.dask, update) get(dsk, list(update.keys()), **kwargs) return target def compute(self, **kwargs): result = get(self.dask, self._keys(), **kwargs) if self.shape: result = rec_concatenate(result) else: while isinstance(result, Iterable): result = result[0] return result __float__ = __int__ = __bool__ = __complex__ = compute def __getitem__(self, index): # Field access, e.g. x['a'] or x[['a', 'b']] if (isinstance(index, (str, unicode)) or ( isinstance(index, list) and all(isinstance(i, (str, unicode)) for i in index))): return elemwise(getitem, self, index) # Slicing out = next(names) if not isinstance(index, tuple): index = (index,) if all(i == slice(None, None, None) for i in index): return self dsk, blockdims = slice_array(out, self.name, self.blockdims, index) return Array(merge(self.dask, dsk), out, blockdims=blockdims) @wraps(np.dot) def dot(self, other): return tensordot(self, other, axes=((self.ndim-1,), (other.ndim-2,))) @property def T(self): return transpose(self) def __abs__(self): return elemwise(operator.abs, self) def __add__(self, other): return elemwise(operator.add, self, other) def __radd__(self, other): return elemwise(operator.add, other, self) def __and__(self, other): return elemwise(operator.and_, self, other) def __rand__(self, other): return elemwise(operator.and_, other, self) def __div__(self, other): return elemwise(operator.div, self, other) def __rdiv__(self, other): return elemwise(operator.div, other, self) def __eq__(self, other): return elemwise(operator.eq, self, other) def __gt__(self, other): return elemwise(operator.gt, self, other) def __ge__(self, other): return elemwise(operator.ge, self, other) def __lshift__(self, other): return elemwise(operator.lshift, self, other) def __rlshift__(self, other): return elemwise(operator.lshift, other, self) def __lt__(self, other): return elemwise(operator.lt, self, other) def __le__(self, other): return elemwise(operator.le, self, other) def __mod__(self, other): return elemwise(operator.mod, self, other) def __rmod__(self, other): return elemwise(operator.mod, other, self) def __mul__(self, other): return elemwise(operator.mul, self, other) def __rmul__(self, other): return elemwise(operator.mul, other, self) def __ne__(self, other): return elemwise(operator.ne, self, other) def __neg__(self): return elemwise(operator.neg, self) def __or__(self, other): return elemwise(operator.or_, self, other) def __ror__(self, other): return elemwise(operator.or_, other, self) def __pow__(self, other): return elemwise(operator.pow, self, other) def __rpow__(self, other): return elemwise(operator.pow, other, self) def __rshift__(self, other): return elemwise(operator.rshift, self, other) def __rrshift__(self, other): return elemwise(operator.rshift, other, self) def __sub__(self, other): return elemwise(operator.sub, self, other) def __rsub__(self, other): return elemwise(operator.sub, other, self) def __truediv__(self, other): return elemwise(operator.truediv, self, other) def __rtruediv__(self, other): return elemwise(operator.truediv, other, self) def __floordiv__(self, other): return elemwise(operator.floordiv, self, other) def __rfloordiv__(self, other): return elemwise(operator.floordiv, other, self) def __xor__(self, other): return elemwise(operator.xor, self, other) def __rxor__(self, other): return elemwise(operator.xor, other, self) def any(self, axis=None, keepdims=False): from .reductions import any return any(self, axis=axis, keepdims=keepdims) def all(self, axis=None, keepdims=False): from .reductions import all return all(self, axis=axis, keepdims=keepdims) def min(self, axis=None, keepdims=False): from .reductions import min return min(self, axis=axis, keepdims=keepdims) def max(self, axis=None, keepdims=False): from .reductions import max return max(self, axis=axis, keepdims=keepdims) def argmin(self, axis=None): from .reductions import argmin return argmin(self, axis=axis) def argmax(self, axis=None): from .reductions import argmax return argmax(self, axis=axis) def sum(self, axis=None, keepdims=False): from .reductions import sum return sum(self, axis=axis, keepdims=keepdims) def prod(self, axis=None, keepdims=False): from .reductions import prod return prod(self, axis=axis, keepdims=keepdims) def mean(self, axis=None, keepdims=False): from .reductions import mean return mean(self, axis=axis, keepdims=keepdims) def std(self, axis=None, keepdims=False, ddof=0): from .reductions import std return std(self, axis=axis, keepdims=keepdims, ddof=ddof) def var(self, axis=None, keepdims=False, ddof=0): from .reductions import var return var(self, axis=axis, keepdims=keepdims, ddof=ddof) def vnorm(self, ord=None, axis=None, keepdims=False): from .reductions import vnorm return vnorm(self, ord=ord, axis=axis, keepdims=keepdims) @wraps(map_blocks) def map_blocks(self, func, blockshape=None, blockdims=None): return map_blocks(self, func, blockshape=blockshape, blockdims=blockdims) def from_array(x, blockdims=None, blockshape=None, name=None, **kwargs): """ Create dask array from something that looks like an array Input must have a ``.shape`` and support numpy-style slicing. Example ------- >>> x = h5py.File('...')['/data/path'] # doctest: +SKIP >>> a = da.from_array(x, blockshape=(1000, 1000)) # doctest: +SKIP """ if blockdims is None: blockdims = blockdims_from_blockshape(x.shape, blockshape) name = name or next(names) dask = merge({name: x}, getem(name, blockdims=blockdims)) return Array(dask, name, blockdims=blockdims) def atop(func, out, out_ind, *args): """ Array object version of dask.array.top """ arginds = list(partition(2, args)) # [x, ij, y, jk] -> [(x, ij), (y, jk)] numblocks = dict([(a.name, a.numblocks) for a, ind in arginds]) argindsstr = list(concat([(a.name, ind) for a, ind in arginds])) dsk = top(func, out, out_ind, *argindsstr, numblocks=numblocks) # Dictionary mapping {i: 3, j: 4, ...} for i, j, ... the dimensions shapes = dict((a.name, a.shape) for a, _ in arginds) nameinds = [(a.name, i) for a, i in arginds] dims = broadcast_dimensions(nameinds, shapes) shape = tuple(dims[i] for i in out_ind) blockdim_dict = dict((a.name, a.blockdims) for a, _ in arginds) blockdimss = broadcast_dimensions(nameinds, blockdim_dict) blockdims = tuple(blockdimss[i] for i in out_ind) dsks = [a.dask for a, _ in arginds] return Array(merge(dsk, *dsks), out, shape, blockdims=blockdims) def get(dsk, keys, get=threaded.get, **kwargs): """ Specialized get function 1. Handle inlining 2. Use custom score function """ fast_functions=kwargs.get('fast_functions', set([getitem, np.transpose])) dsk2 = cull(dsk, list(core.flatten(keys))) dsk3 = remove_full_slices(dsk2) dsk4 = inline_functions(dsk3, fast_functions=fast_functions) return get(dsk4, keys, **kwargs) stacked_names = ('stack-%d' % i for i in count(1)) def stack(seq, axis=0): """ Stack arrays along a new axis Given a sequence of dask Arrays form a new dask Array by stacking them along a new dimension (axis=0 by default) Example ------- Create slices >>> import dask.array as da >>> import numpy as np >>> data = [from_array(np.ones((4, 4)), blockshape=(2, 2)) ... for i in range(3)] >>> x = da.stack(data, axis=0) >>> x.shape (3, 4, 4) >>> da.stack(data, axis=1).shape (4, 3, 4) >>> da.stack(data, axis=-1).shape (4, 4, 3) Result is a new dask Array See Also: concatenate """ n = len(seq) ndim = len(seq[0].shape) if axis < 0: axis = ndim + axis + 1 if axis > ndim: raise ValueError("Axis must not be greater than number of dimensions" "\nData has %d dimensions, but got axis=%d" % (ndim, axis)) assert len(set(a.blockdims for a in seq)) == 1 # same blockshape shape = seq[0].shape[:axis] + (len(seq),) + seq[0].shape[axis:] blockdims = ( seq[0].blockdims[:axis] + ((1,) * n,) + seq[0].blockdims[axis:]) name = next(stacked_names) keys = list(product([name], *[range(len(bd)) for bd in blockdims])) names = [a.name for a in seq] values = [(names[key[axis+1]],) + key[1:axis + 1] + key[axis + 2:] for key in keys] dsk = dict(zip(keys, values)) dsk2 = merge(dsk, *[a.dask for a in seq]) return Array(dsk2, name, shape, blockdims=blockdims) concatenate_names = ('concatenate-%d' % i for i in count(1)) def concatenate(seq, axis=0): """ Concatenate arrays along an existing axis Given a sequence of dask Arrays form a new dask Array by stacking them along an existing dimension (axis=0 by default) Example ------- Create slices >>> import dask.array as da >>> import numpy as np >>> data = [from_array(np.ones((4, 4)), blockshape=(2, 2)) ... for i in range(3)] >>> x = da.concatenate(data, axis=0) >>> x.shape (12, 4) >>> da.concatenate(data, axis=1).shape (4, 12) Result is a new dask Array See Also: stack """ n = len(seq) ndim = len(seq[0].shape) if axis < 0: axis = ndim + axis if axis >= ndim: raise ValueError("Axis must be less than than number of dimensions" "\nData has %d dimensions, but got axis=%d" % (ndim, axis)) bds = [a.blockdims for a in seq] if not all(len(set(bds[i][j] for i in range(n))) == 1 for j in range(len(bds[0])) if j != axis): raise ValueError("Block shapes do not align") shape = (seq[0].shape[:axis] + (sum(a.shape[axis] for a in seq),) + seq[0].shape[axis + 1:]) blockdims = ( seq[0].blockdims[:axis] + (sum([bd[axis] for bd in bds], ()),) + seq[0].blockdims[axis + 1:]) name = next(concatenate_names) keys = list(product([name], *[range(len(bd)) for bd in blockdims])) cum_dims = [0] + list(accumulate(add, [len(a.blockdims[axis]) for a in seq])) names = [a.name for a in seq] values = [(names[bisect(cum_dims, key[axis + 1]) - 1],) + key[1:axis + 1] + (key[axis + 1] - cum_dims[bisect(cum_dims, key[axis+1]) - 1],) + key[axis + 2:] for key in keys] dsk = dict(zip(keys, values)) dsk2 = merge(dsk, *[a.dask for a in seq]) return Array(dsk2, name, shape, blockdims=blockdims) @wraps(np.transpose) def transpose(a, axes=None): axes = axes or tuple(range(a.ndim))[::-1] return atop(curry(np.transpose, axes=axes), next(names), axes, a, tuple(range(a.ndim))) @curry def many(a, b, binop=None, reduction=None, **kwargs): """ Apply binary operator to pairwise to sequences, then reduce. >>> many([1, 2, 3], [10, 20, 30], mul, sum) # dot product 140 """ return reduction(map(curry(binop, **kwargs), a, b)) alphabet = 'abcdefghijklmnopqrstuvwxyz' ALPHABET = alphabet.upper() @wraps(np.tensordot) def tensordot(lhs, rhs, axes=2): if isinstance(axes, Iterable): left_axes, right_axes = axes else: left_axes = tuple(range(lhs.ndim - 1, lhs.ndim - axes - 1, -1)) right_axes = tuple(range(0, axes)) if isinstance(left_axes, int): left_axes = (left_axes,) if isinstance(right_axes, int): right_axes = (right_axes,) if isinstance(left_axes, list): left_axes = tuple(left_axes) if isinstance(right_axes, list): right_axes = tuple(right_axes) if len(left_axes) > 1: raise NotImplementedError("Simultaneous Contractions of multiple " "indices not yet supported") left_index = list(alphabet[:lhs.ndim]) right_index = list(ALPHABET[:rhs.ndim]) out_index = left_index + right_index for l, r in zip(left_axes, right_axes): out_index.remove(right_index[r]) out_index.remove(left_index[l]) right_index[r] = left_index[l] func = many(binop=np.tensordot, reduction=sum, axes=(left_axes, right_axes)) return atop(func, next(names), out_index, lhs, tuple(left_index), rhs, tuple(right_index)) def insert_to_ooc(out, arr): from threading import Lock lock = Lock() locs = [[0] + list(accumulate(add, bl)) for bl in arr.blockdims] def store(x, *args): with lock: ind = tuple([slice(loc[i], loc[i+1]) for i, loc in zip(args, locs)]) out[ind] = x return None name = 'store-%s' % arr.name return dict(((name,) + t[1:], (store, t) + t[1:]) for t in core.flatten(arr._keys())) def partial_by_order(op, other): """ >>> f = partial_by_order(add, [(1, 10)]) >>> f(5) 15 """ def f(*args): args2 = list(args) for i, arg in other: args2.insert(i, arg) return op(*args2) return f def elemwise(op, *args, **kwargs): """ Apply elementwise function across arguments Respects broadcasting rules >>> elemwise(add, x, y) # doctest: +SKIP >>> elemwise(sin, x) # doctest: +SKIP See also: atop """ name = kwargs.get('name') or next(names) out_ndim = max(len(arg.shape) if isinstance(arg, Array) else 0 for arg in args) expr_inds = tuple(range(out_ndim))[::-1] arrays = [arg for arg in args if isinstance(arg, Array)] other = [(i, arg) for i, arg in enumerate(args) if not isinstance(arg, Array)] if other: op2 = partial_by_order(op, other) else: op2 = op return atop(op2, name, expr_inds, *concat((a, tuple(range(a.ndim)[::-1])) for a in arrays)) def wrap_elemwise(func): """ Wrap up numpy function into dask.array """ f = partial(elemwise, func) f.__doc__ = func.__doc__ f.__name__ = func.__name__ return f arccos = wrap_elemwise(np.arccos) arcsin = wrap_elemwise(np.arcsin) arctan = wrap_elemwise(np.arctan) arctanh = wrap_elemwise(np.arctanh) arccosh = wrap_elemwise(np.arccosh) arcsinh = wrap_elemwise(np.arcsinh) arctan2 = wrap_elemwise(np.arctan2) ceil = wrap_elemwise(np.ceil) copysign = wrap_elemwise(np.copysign) cos = wrap_elemwise(np.cos) cosh = wrap_elemwise(np.cosh) degrees = wrap_elemwise(np.degrees) exp = wrap_elemwise(np.exp) expm1 = wrap_elemwise(np.expm1) fabs = wrap_elemwise(np.fabs) floor = wrap_elemwise(np.floor) fmod = wrap_elemwise(np.fmod) frexp = wrap_elemwise(np.frexp) hypot = wrap_elemwise(np.hypot) isinf = wrap_elemwise(np.isinf) isnan = wrap_elemwise(np.isnan) ldexp = wrap_elemwise(np.ldexp) log = wrap_elemwise(np.log) log10 = wrap_elemwise(np.log10) log1p = wrap_elemwise(np.log1p) modf = wrap_elemwise(np.modf) radians = wrap_elemwise(np.radians) sin = wrap_elemwise(np.sin) sinh = wrap_elemwise(np.sinh) sqrt = wrap_elemwise(np.sqrt) tan = wrap_elemwise(np.tan) tanh = wrap_elemwise(np.tanh) trunc = wrap_elemwise(np.trunc) def variadic_choose(a, *choices): return np.choose(a, choices) @wraps(np.choose) def choose(a, choices): return elemwise(variadic_choose, a, *choices) @wraps(np.where) def where(condition, x, y): return choose(condition, [y, x]) @wraps(chunk.coarsen) def coarsen(reduction, x, axes): if not all(bd % div == 0 for i, div in axes.items() for bd in x.blockdims[i]): raise ValueError( "Coarsening factor does not align with block dimensions") if 'dask' in inspect.getfile(reduction): reduction = getattr(np, reduction.__name__) name = next(names) dsk = dict(((name,) + key[1:], (chunk.coarsen, reduction, key, axes)) for key in core.flatten(x._keys())) blockdims = tuple(tuple(int(bd / axes.get(i, 1)) for bd in bds) for i, bds in enumerate(x.blockdims)) return Array(merge(x.dask, dsk), name, blockdims=blockdims) constant_names = ('constant-%d' % i for i in count(1)) def constant(value, shape=None, blockshape=None, blockdims=None, dtype=None): """ An array with a constant value >>> x = constant(5, shape=(4, 4), blockshape=(2, 2)) >>> np.array(x) array([[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5]]) """ name = next(constant_names) if shape and blockshape and not blockdims: blockdims = blockdims_from_blockshape(shape, blockshape) keys = product([name], *[range(len(bd)) for bd in blockdims]) shapes = product(*blockdims) vals = [(chunk.constant, value, shape) for shape in shapes] dsk = dict(zip(keys, vals)) return Array(dsk, name, blockdims=blockdims) def offset_func(func, offset, *args): """ Offsets inputs by offset >>> double = lambda x: x * 2 >>> f = offset_func(double, (10,)) >>> f(1) 22 >>> f(300) 620 """ def _offset(*args): args2 = list(map(add, args, offset)) return func(*args2) with ignoring(Exception): _offset.__name__ = 'offset_' + func.__name__ return _offset fromfunction_names = ('fromfunction-%d' % i for i in count(1)) @wraps(np.fromfunction) def fromfunction(func, shape=None, blockshape=None, blockdims=None): name = next(fromfunction_names) if shape and blockshape and not blockdims: blockdims = blockdims_from_blockshape(shape, blockshape) keys = list(product([name], *[range(len(bd)) for bd in blockdims])) aggdims = [list(accumulate(add, (0,) + bd[:-1])) for bd in blockdims] offsets = list(product(*aggdims)) shapes = list(product(*blockdims)) values = [(np.fromfunction, offset_func(func, offset), shape) for offset, shape in zip(offsets, shapes)] dsk = dict(zip(keys, values)) return Array(dsk, name, blockdims=blockdims)
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/array/core.py", "copies": "1", "size": "35780", "license": "bsd-3-clause", "hash": 3056052325529438000, "line_mean": 30.719858156, "line_max": 107, "alpha_frac": 0.5531861375, "autogenerated": false, "ratio": 3.2726607518521904, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9315878436137403, "avg_score": 0.0019936906429576097, "num_lines": 1128 }
from __future__ import absolute_import, division, print_function from operator import add from copy import deepcopy import dask import pytest from dask.async import * fib_dask = {'f0': 0, 'f1': 1, 'f2': 1, 'f3': 2, 'f4': 3, 'f5': 5, 'f6': 8} def test_start_state(): dsk = {'x': 1, 'y': 2, 'z': (inc, 'x'), 'w': (add, 'z', 'y')} result = start_state_from_dask(dsk) expeted = {'cache': {'x': 1, 'y': 2}, 'dependencies': {'w': set(['y', 'z']), 'x': set([]), 'y': set([]), 'z': set(['x'])}, 'dependents': {'w': set([]), 'x': set(['z']), 'y': set(['w']), 'z': set(['w'])}, 'finished': set([]), 'released': set([]), 'running': set([]), 'ready': ['z'], 'waiting': {'w': set(['z'])}, 'waiting_data': {'x': set(['z']), 'y': set(['w']), 'z': set(['w'])}} def test_start_state_looks_at_cache(): dsk = {'b': (inc, 'a')} cache = {'a': 1} result = start_state_from_dask(dsk, cache) assert result['dependencies']['b'] == set(['a']) assert result['ready'] == ['b'] def test_start_state_with_redirects(): dsk = {'x': 1, 'y': 'x', 'z': (inc, 'y')} result = start_state_from_dask(dsk) assert result['cache'] == {'x': 1} def test_start_state_with_independent_but_runnable_tasks(): assert start_state_from_dask({'x': (inc, 1)})['ready'] == ['x'] def test_finish_task(): dsk = {'x': 1, 'y': 2, 'z': (inc, 'x'), 'w': (add, 'z', 'y')} sortkey = order(dsk).get state = start_state_from_dask(dsk) state['ready'].remove('z') state['running'] = set(['z', 'other-task']) task = 'z' result = 2 oldstate = deepcopy(state) state['cache']['z'] = result finish_task(dsk, task, state, set(), sortkey) assert state == { 'cache': {'y': 2, 'z': 2}, 'dependencies': {'w': set(['y', 'z']), 'x': set([]), 'y': set([]), 'z': set(['x'])}, 'finished': set(['z']), 'released': set(['x']), 'running': set(['other-task']), 'dependents': {'w': set([]), 'x': set(['z']), 'y': set(['w']), 'z': set(['w'])}, 'ready': ['w'], 'waiting': {}, 'waiting_data': {'y': set(['w']), 'z': set(['w'])}} def test_get(): dsk = {'x': 1, 'y': 2, 'z': (inc, 'x'), 'w': (add, 'z', 'y')} assert get_sync(dsk, 'w') == 4 assert get_sync(dsk, ['w', 'z']) == (4, 2) def test_nested_get(): dsk = {'x': 1, 'y': 2, 'a': (add, 'x', 'y'), 'b': (sum, ['x', 'y'])} assert get_sync(dsk, ['a', 'b']) == (3, 3) def test_get_sync_num_workers(): get_sync({'x': (inc, 'y'), 'y': 1}, 'x', num_workers=2) def test_cache_options(): try: from chest import Chest except ImportError: return cache = Chest() def inc2(x): assert 'y' in cache return x + 1 with dask.set_options(cache=cache): get_sync({'x': (inc2, 'y'), 'y': 1}, 'x') def test_sort_key(): L = ['x', ('x', 1), ('z', 0), ('x', 0)] assert sorted(L, key=sortkey) == ['x', ('x', 0), ('x', 1), ('z', 0)] def test_callback(): f = lambda x: x + 1 dsk = {'a': (f, 1)} from dask.threaded import get def start_callback(key, d, state): assert key == 'a' or key is None assert d == dsk assert isinstance(state, dict) def end_callback(key, value, d, state, worker_id): assert key == 'a' or key is None assert value == 2 or value is None assert d == dsk assert isinstance(state, dict) get(dsk, 'a', start_callback=start_callback, end_callback=end_callback) def test_order_of_startstate(): dsk = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b'), 'x': 1, 'y': (inc, 'x')} result = start_state_from_dask(dsk) assert result['ready'] == ['y', 'b'] dsk = {'x': 1, 'y': (inc, 'x'), 'z': (inc, 'y'), 'a': 1, 'b': (inc, 'a')} result = start_state_from_dask(dsk) assert result['ready'] == ['b', 'y'] def test_nonstandard_exceptions_propagate(): class MyException(Exception): def __init__(self, a, b): self.a = a self.b = b def __str__(self): return "My Exception!" def f(): raise MyException(1, 2) from dask.threaded import get try: get({'x': (f,)}, 'x') assert False except MyException as e: assert "My Exception!" in str(e) assert "Traceback" in str(e) assert 'a' in dir(e) assert 'traceback' in dir(e) assert e.exception.a == 1 and e.exception.b == 2 assert e.a == 1 and e.b == 2 def test_remote_exception(): e = TypeError("hello") a = remote_exception(e, 'traceback') b = remote_exception(e, 'traceback') assert type(a) == type(b) assert isinstance(a, TypeError) assert 'hello' in str(a) assert 'traceback' in str(a)
{ "repo_name": "vikhyat/dask", "path": "dask/tests/test_async.py", "copies": "1", "size": "5332", "license": "bsd-3-clause", "hash": 3231773629763026000, "line_mean": 27.2116402116, "line_max": 75, "alpha_frac": 0.4441110278, "autogenerated": false, "ratio": 3.210114388922336, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9150508744868409, "avg_score": 0.0007433343707853512, "num_lines": 189 }
from __future__ import absolute_import, division, print_function from operator import add from itertools import chain def inc(x): return x + 1 def ishashable(x): """ Is x hashable? Example ------- >>> ishashable(1) True >>> ishashable([1]) False """ try: hash(x) return True except TypeError: return False def istask(x): """ Is x a runnable task? A task is a tuple with a callable first argument Example ------- >>> inc = lambda x: x + 1 >>> istask((inc, 1)) True >>> istask(1) False """ return isinstance(x, tuple) and x and callable(x[0]) def _get_task(d, task, maxdepth=1000): # non-recursive. DAG property is checked upon reaching maxdepth. _iter = lambda *args: iter(args) # We construct a nested heirarchy of tuples to mimic the execution stack # of frames that Python would maintain for a recursive implementation. # A frame is associated with a single task from a Dask. # A frame tuple has three elements: # 1) The function for the task. # 2) The arguments for the task (typically keys in the Dask). # Arguments are stored in reverse order, and elements are popped # as they are evaluated. # 3) The calculated results of the arguments from (2). stack = [(task[0], list(task[:0:-1]), [])] while True: func, args, results = stack[-1] if not args: val = func(*results) if len(stack) == 1: return val stack.pop() stack[-1][2].append(val) continue elif maxdepth and len(stack) > maxdepth: cycle = getcycle(d, list(task[1:])) if cycle: cycle = '->'.join(cycle) raise RuntimeError('Cycle detected in Dask: %s' % cycle) maxdepth = None key = args.pop() if isinstance(key, list): # v = (get(d, k, concrete=False) for k in key) # recursive # Fake being lazy stack.append((_iter, key[::-1], [])) continue elif ishashable(key) and key in d: v = d[key] else: v = key if istask(v): stack.append((v[0], list(v[:0:-1]), [])) else: results.append(v) def get(d, key, get=None, concrete=True, **kwargs): """ Get value from Dask Example ------- >>> inc = lambda x: x + 1 >>> d = {'x': 1, 'y': (inc, 'x')} >>> get(d, 'x') 1 >>> get(d, 'y') 2 See Also -------- set """ get = get or _get if isinstance(key, list): v = (get(d, k, get=get, concrete=concrete) for k in key) if concrete: v = list(v) elif ishashable(key) and key in d: v = d[key] elif istask(key): v = key else: return key if istask(v): if get is _get: # use non-recursive method by default return _get_task(d, v) func, args = v[0], v[1:] args2 = [get(d, arg, get=get, concrete=False) for arg in args] return func(*[get(d, arg, get=get) for arg in args2]) else: return v _get = get def _deps(dsk, arg): """ Get dependencies from keys or tasks Helper function for get_dependencies. >>> dsk = {'x': 1, 'y': 2} >>> _deps(dsk, 'x') ['x'] >>> _deps(dsk, (add, 'x', 1)) ['x'] >>> _deps(dsk, (add, 'x', (inc, 'y'))) # doctest: +SKIP ['x', 'y'] """ if istask(arg): result = [] for a in arg[1:]: result.extend(_deps(dsk, a)) return result try: if arg not in dsk: return [] except TypeError: # not hashable return [] return [arg] def get_dependencies(dsk, task, as_list=False): """ Get the immediate tasks on which this task depends >>> dsk = {'x': 1, ... 'y': (inc, 'x'), ... 'z': (add, 'x', 'y'), ... 'w': (inc, 'z'), ... 'a': (add, (inc, 'x'), 1)} >>> get_dependencies(dsk, 'x') set([]) >>> get_dependencies(dsk, 'y') set(['x']) >>> get_dependencies(dsk, 'z') # doctest: +SKIP set(['x', 'y']) >>> get_dependencies(dsk, 'w') # Only direct dependencies set(['z']) >>> get_dependencies(dsk, 'a') # Ignore non-keys set(['x']) """ args = [dsk[task]] result = [] while args: arg = args.pop() if istask(arg): args.extend(arg[1:]) elif isinstance(arg, list): args.extend(arg) else: result.append(arg) if not result: return [] if as_list else set() rv = [] for x in result: rv.extend(_deps(dsk, x)) return rv if as_list else set(rv) def flatten(seq): """ >>> list(flatten([1])) [1] >>> list(flatten([[1, 2], [1, 2]])) [1, 2, 1, 2] >>> list(flatten([[[1], [2]], [[1], [2]]])) [1, 2, 1, 2] >>> list(flatten(((1, 2), (1, 2)))) # Don't flatten tuples [(1, 2), (1, 2)] >>> list(flatten((1, 2, [3, 4]))) # support heterogeneous [1, 2, 3, 4] """ for item in seq: if isinstance(item, list): for item2 in flatten(item): yield item2 else: yield item def reverse_dict(d): """ >>> a, b, c = 'abc' >>> d = {a: [b, c], b: [c]} >>> reverse_dict(d) # doctest: +SKIP {'a': set([]), 'b': set(['a']}, 'c': set(['a', 'b'])} """ terms = list(d.keys()) + list(chain.from_iterable(d.values())) result = dict((t, set()) for t in terms) for k, vals in d.items(): for val in vals: result[val].add(k) return result def subs(task, key, val): """ Perform a substitution on a task Example ------- >>> subs((inc, 'x'), 'x', 1) # doctest: +SKIP (inc, 1) """ if not istask(task): if task == key: return val elif isinstance(task, list): return [subs(x, key, val) for x in task] else: return task newargs = [] for arg in task[1:]: if istask(arg): arg = subs(arg, key, val) elif isinstance(arg, list): arg = [subs(x, key, val) for x in arg] elif arg == key: arg = val newargs.append(arg) return task[:1] + tuple(newargs) def _toposort(dsk, keys=None, returncycle=False): # Stack-based depth-first search traversal. This is based on Tarjan's # method for topological sorting (see wikipedia for pseudocode) if keys is None: keys = dsk elif not isinstance(keys, list): keys = [keys] if not returncycle: ordered = [] # Nodes whose descendents have been completely explored. # These nodes are guaranteed to not be part of a cycle. completed = set() # All nodes that have been visited in the current traversal. Because # we are doing depth-first search, going "deeper" should never result # in visiting a node that has already been seen. The `seen` and # `completed` sets are mutually exclusive; it is okay to visit a node # that has already been added to `completed`. seen = set() for key in keys: if key in completed: continue nodes = [key] while nodes: # Keep current node on the stack until all descendants are visited cur = nodes[-1] if cur in completed: # Already fully traversed descendants of cur nodes.pop() continue seen.add(cur) # Add direct descendants of cur to nodes stack next_nodes = [] for nxt in get_dependencies(dsk, cur): if nxt not in completed: if nxt in seen: # Cycle detected! cycle = [nxt] while nodes[-1] != nxt: cycle.append(nodes.pop()) cycle.append(nodes.pop()) cycle.reverse() if returncycle: return cycle else: cycle = '->'.join(cycle) raise RuntimeError('Cycle detected in Dask: %s' % cycle) next_nodes.append(nxt) if next_nodes: nodes.extend(next_nodes) else: # cur has no more descendants to explore, so we're done with it if not returncycle: ordered.append(cur) completed.add(cur) seen.remove(cur) nodes.pop() if returncycle: return [] return ordered def toposort(dsk): """ Return a list of keys of dask sorted in topological order.""" return _toposort(dsk) def getcycle(d, keys): """ Return a list of nodes that form a cycle if Dask is not a DAG. Returns an empty list if no cycle is found. ``keys`` may be a single key or list of keys. Example ------- >>> d = {'x': (inc, 'z'), 'y': (inc, 'x'), 'z': (inc, 'y')} >>> getcycle(d, 'x') ['x', 'z', 'y', 'x'] See Also -------- isdag """ return _toposort(d, keys=keys, returncycle=True) def isdag(d, keys): """ Does Dask form a directed acyclic graph when calculating keys? ``keys`` may be a single key or list of keys. Example ------- >>> inc = lambda x: x + 1 >>> isdag({'x': 0, 'y': (inc, 'x')}, 'y') True >>> isdag({'x': (inc, 'y'), 'y': (inc, 'x')}, 'y') False See Also -------- getcycle """ return not getcycle(d, keys)
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/core.py", "copies": "1", "size": "9803", "license": "bsd-3-clause", "hash": -4226190287708716000, "line_mean": 24.4623376623, "line_max": 84, "alpha_frac": 0.4957666021, "autogenerated": false, "ratio": 3.67016098839386, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.466592759049386, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from operator import add from itertools import chain def inc(x): return x + 1 def ishashable(x): """ Is x hashable? Examples -------- >>> ishashable(1) True >>> ishashable([1]) False """ try: hash(x) return True except TypeError: return False def istask(x): """ Is x a runnable task? A task is a tuple with a callable first argument Examples -------- >>> inc = lambda x: x + 1 >>> istask((inc, 1)) True >>> istask(1) False """ return type(x) is tuple and x and callable(x[0]) def preorder_traversal(task): """A generator to preorder-traverse a task.""" for item in task: if istask(item): for i in preorder_traversal(item): yield i elif isinstance(item, list): yield list for i in preorder_traversal(item): yield i else: yield item def _get_task(d, task, maxdepth=1000): # non-recursive. DAG property is checked upon reaching maxdepth. _iter = lambda *args: iter(args) # We construct a nested heirarchy of tuples to mimic the execution stack # of frames that Python would maintain for a recursive implementation. # A frame is associated with a single task from a Dask. # A frame tuple has three elements: # 1) The function for the task. # 2) The arguments for the task (typically keys in the Dask). # Arguments are stored in reverse order, and elements are popped # as they are evaluated. # 3) The calculated results of the arguments from (2). stack = [(task[0], list(task[:0:-1]), [])] while True: func, args, results = stack[-1] if not args: val = func(*results) if len(stack) == 1: return val stack.pop() stack[-1][2].append(val) continue elif maxdepth and len(stack) > maxdepth: cycle = getcycle(d, list(task[1:])) if cycle: cycle = '->'.join(cycle) raise RuntimeError('Cycle detected in Dask: %s' % cycle) maxdepth = None key = args.pop() if isinstance(key, list): # v = (get(d, k, concrete=False) for k in key) # recursive # Fake being lazy stack.append((_iter, key[::-1], [])) continue elif ishashable(key) and key in d: v = d[key] else: v = key if istask(v): stack.append((v[0], list(v[:0:-1]), [])) else: results.append(v) def get(d, key, get=None, **kwargs): """ Get value from Dask Examples -------- >>> inc = lambda x: x + 1 >>> d = {'x': 1, 'y': (inc, 'x')} >>> get(d, 'x') 1 >>> get(d, 'y') 2 See Also -------- set """ get = get or _get if isinstance(key, list): v = tuple(get(d, k, get=get) for k in key) elif istask(key): v = key elif ishashable(key): v = d[key] else: message = '%s is neither a task or a dask key' raise KeyError(message % key) if istask(v): if get is _get: # use non-recursive method by default return _get_task(d, v) func, args = v[0], v[1:] args2 = [] for arg in args: if not istask(arg) and arg not in d: args2.append(arg) else: args2.append(get(d, arg, get=get)) return func(*args2) else: return v _get = get def _deps(dsk, arg): """ Get dependencies from keys or tasks Helper function for get_dependencies. >>> dsk = {'x': 1, 'y': 2} >>> _deps(dsk, 'x') ['x'] >>> _deps(dsk, (add, 'x', 1)) ['x'] >>> _deps(dsk, ['x', 'y']) ['x', 'y'] >>> _deps(dsk, {'a': 'x'}) ['x'] >>> _deps(dsk, (add, 'x', (inc, 'y'))) # doctest: +SKIP ['x', 'y'] """ if istask(arg): result = [] for a in arg[1:]: result.extend(_deps(dsk, a)) return result if type(arg) is list: return sum([_deps(dsk, a) for a in arg], []) if type(arg) is dict: return sum([_deps(dsk, v) for v in arg.values()], []) try: if arg not in dsk: return [] except TypeError: # not hashable return [] return [arg] def get_dependencies(dsk, task, as_list=False): """ Get the immediate tasks on which this task depends >>> dsk = {'x': 1, ... 'y': (inc, 'x'), ... 'z': (add, 'x', 'y'), ... 'w': (inc, 'z'), ... 'a': (add, (inc, 'x'), 1)} >>> get_dependencies(dsk, 'x') set([]) >>> get_dependencies(dsk, 'y') set(['x']) >>> get_dependencies(dsk, 'z') # doctest: +SKIP set(['x', 'y']) >>> get_dependencies(dsk, 'w') # Only direct dependencies set(['z']) >>> get_dependencies(dsk, 'a') # Ignore non-keys set(['x']) """ args = [dsk[task]] result = [] while args: arg = args.pop() if istask(arg): args.extend(arg[1:]) elif type(arg) is list: args.extend(arg) else: result.append(arg) if not result: return [] if as_list else set() rv = [] for x in result: rv.extend(_deps(dsk, x)) return rv if as_list else set(rv) def get_deps(dsk): """ Get dependencies and dependents from dask dask graph >>> dsk = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')} >>> dependencies, dependents = get_deps(dsk) >>> dependencies {'a': set([]), 'c': set(['b']), 'b': set(['a'])} >>> dependents {'a': set(['b']), 'c': set([]), 'b': set(['c'])} """ dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) dependents = reverse_dict(dependencies) return dependencies, dependents def flatten(seq): """ >>> list(flatten([1])) [1] >>> list(flatten([[1, 2], [1, 2]])) [1, 2, 1, 2] >>> list(flatten([[[1], [2]], [[1], [2]]])) [1, 2, 1, 2] >>> list(flatten(((1, 2), (1, 2)))) # Don't flatten tuples [(1, 2), (1, 2)] >>> list(flatten((1, 2, [3, 4]))) # support heterogeneous [1, 2, 3, 4] """ if isinstance(seq, str): yield seq else: for item in seq: if isinstance(item, list): for item2 in flatten(item): yield item2 else: yield item def reverse_dict(d): """ >>> a, b, c = 'abc' >>> d = {a: [b, c], b: [c]} >>> reverse_dict(d) # doctest: +SKIP {'a': set([]), 'b': set(['a']}, 'c': set(['a', 'b'])} """ terms = list(d.keys()) + list(chain.from_iterable(d.values())) result = dict((t, set()) for t in terms) for k, vals in d.items(): for val in vals: result[val].add(k) return result def subs(task, key, val): """ Perform a substitution on a task Examples -------- >>> subs((inc, 'x'), 'x', 1) # doctest: +SKIP (inc, 1) """ if not istask(task): try: if task == key: return val except Exception: pass if isinstance(task, list): return [subs(x, key, val) for x in task] return task newargs = [] for arg in task[1:]: if istask(arg): arg = subs(arg, key, val) elif isinstance(arg, list): arg = [subs(x, key, val) for x in arg] elif type(arg) is type(key) and arg == key: arg = val newargs.append(arg) return task[:1] + tuple(newargs) def _toposort(dsk, keys=None, returncycle=False, dependencies=None): # Stack-based depth-first search traversal. This is based on Tarjan's # method for topological sorting (see wikipedia for pseudocode) if keys is None: keys = dsk elif not isinstance(keys, list): keys = [keys] if not returncycle: ordered = [] # Nodes whose descendents have been completely explored. # These nodes are guaranteed to not be part of a cycle. completed = set() # All nodes that have been visited in the current traversal. Because # we are doing depth-first search, going "deeper" should never result # in visiting a node that has already been seen. The `seen` and # `completed` sets are mutually exclusive; it is okay to visit a node # that has already been added to `completed`. seen = set() if dependencies is None: dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) for key in keys: if key in completed: continue nodes = [key] while nodes: # Keep current node on the stack until all descendants are visited cur = nodes[-1] if cur in completed: # Already fully traversed descendants of cur nodes.pop() continue seen.add(cur) # Add direct descendants of cur to nodes stack next_nodes = [] for nxt in dependencies[cur]: if nxt not in completed: if nxt in seen: # Cycle detected! cycle = [nxt] while nodes[-1] != nxt: cycle.append(nodes.pop()) cycle.append(nodes.pop()) cycle.reverse() if returncycle: return cycle else: cycle = '->'.join(cycle) raise RuntimeError('Cycle detected in Dask: %s' % cycle) next_nodes.append(nxt) if next_nodes: nodes.extend(next_nodes) else: # cur has no more descendants to explore, so we're done with it if not returncycle: ordered.append(cur) completed.add(cur) seen.remove(cur) nodes.pop() if returncycle: return [] return ordered def toposort(dsk, dependencies=None): """ Return a list of keys of dask sorted in topological order.""" return _toposort(dsk, dependencies=dependencies) def getcycle(d, keys): """ Return a list of nodes that form a cycle if Dask is not a DAG. Returns an empty list if no cycle is found. ``keys`` may be a single key or list of keys. Examples -------- >>> d = {'x': (inc, 'z'), 'y': (inc, 'x'), 'z': (inc, 'y')} >>> getcycle(d, 'x') ['x', 'z', 'y', 'x'] See Also -------- isdag """ return _toposort(d, keys=keys, returncycle=True) def isdag(d, keys): """ Does Dask form a directed acyclic graph when calculating keys? ``keys`` may be a single key or list of keys. Examples -------- >>> inc = lambda x: x + 1 >>> isdag({'x': 0, 'y': (inc, 'x')}, 'y') True >>> isdag({'x': (inc, 'y'), 'y': (inc, 'x')}, 'y') False See Also -------- getcycle """ return not getcycle(d, keys) def list2(L): return list(L) def quote(x): """ Ensure that this value remains this value in a dask graph Some values in dask graph take on special meaning. Lists become iterators, tasks get executed. Sometimes we want to ensure that our data is not interpreted but remains literal. >>> quote([1, 2, 3]) [1, 2, 3] >>> quote((add, 1, 2)) # doctest: +SKIP (tuple, [add, 1, 2]) """ if istask(x): return (tuple, list(map(quote, x))) return x
{ "repo_name": "mikegraham/dask", "path": "dask/core.py", "copies": "1", "size": "11813", "license": "bsd-3-clause", "hash": 8167303752778612000, "line_mean": 24.8490153173, "line_max": 84, "alpha_frac": 0.5012274613, "autogenerated": false, "ratio": 3.658408175905853, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9656231695394544, "avg_score": 0.0006807883622619651, "num_lines": 457 }
from __future__ import absolute_import, division, print_function from operator import attrgetter import os import re import subprocess from itertools import chain from collections import Iterator from datetime import datetime, date from distutils.spawn import find_executable import pandas as pd import sqlalchemy as sa from sqlalchemy import inspect from sqlalchemy.ext.compiler import compiles from sqlalchemy import event from sqlalchemy.schema import CreateSchema from multipledispatch import MDNotImplementedError import datashape from datashape import DataShape, Record, Option, var, dshape, Map from datashape.predicates import isdimension, isrecord, isscalar from datashape import discover, datetime_, date_, float64, int64, int_, string from datashape import float32 from datashape.dispatch import dispatch from toolz import (partition_all, keyfilter, memoize, valfilter, identity, concat, curry, merge) from toolz.curried import pluck, map from ..compatibility import unicode from ..utils import keywords, ignoring, iter_except, filter_kwargs from ..convert import convert, ooc_types from ..append import append from ..resource import resource from ..chunks import Chunks from .csv import CSV base = (int, float, datetime, date, bool, str) # http://docs.sqlalchemy.org/en/latest/core/types.html types = { 'int64': sa.BigInteger, 'int32': sa.Integer, 'int': sa.Integer, 'int16': sa.SmallInteger, 'float32': sa.REAL, 'float64': sa.FLOAT, 'float': sa.FLOAT, 'real': sa.FLOAT, 'string': sa.Text, 'date': sa.Date, 'time': sa.Time, 'datetime': sa.DateTime, 'bool': sa.Boolean, "timedelta[unit='D']": sa.Interval(second_precision=0, day_precision=9), "timedelta[unit='h']": sa.Interval(second_precision=0, day_precision=0), "timedelta[unit='m']": sa.Interval(second_precision=0, day_precision=0), "timedelta[unit='s']": sa.Interval(second_precision=0, day_precision=0), "timedelta[unit='ms']": sa.Interval(second_precision=3, day_precision=0), "timedelta[unit='us']": sa.Interval(second_precision=6, day_precision=0), "timedelta[unit='ns']": sa.Interval(second_precision=9, day_precision=0), # ??: sa.types.LargeBinary, } revtypes = dict(map(reversed, types.items())) revtypes.update({ sa.DATETIME: datetime_, sa.TIMESTAMP: datetime_, sa.FLOAT: float64, sa.DATE: date_, sa.BIGINT: int64, sa.INTEGER: int_, sa.BIGINT: int64, sa.types.NullType: string, sa.REAL: float32, sa.Float: float64, sa.Float(precision=24): float32, sa.Float(precision=53): float64, }) # interval types are special cased in discover_typeengine so remove them from # revtypes revtypes = valfilter(lambda x: not isinstance(x, sa.Interval), revtypes) units_of_power = { 0: 's', 3: 'ms', 6: 'us', 9: 'ns' } # these aren't loaded by sqlalchemy by default sa.dialects.registry.load('oracle') sa.dialects.registry.load('postgresql') def getbind(t, bind): if bind is None: return t.bind if isinstance(bind, sa.engine.base.Engine): return bind return sa.create_engine(bind) def batch(sel, chunksize=10000, bind=None): """Execute `sel`, streaming row at a time and fetching from the database in batches of size `chunksize`. Parameters ---------- sel : sa.sql.Selectable Selectable to execute chunksize : int, optional, default 10000 Number of rows to fetch from the database """ def rowterator(sel, chunksize=chunksize): with getbind(sel, bind).connect() as conn: result = conn.execute(sel) yield result.keys() for rows in iter_except(curry(result.fetchmany, size=chunksize), sa.exc.ResourceClosedError): if rows: yield rows else: return terator = rowterator(sel) return next(terator), concat(terator) @discover.register(sa.dialects.postgresql.base.INTERVAL) def discover_postgresql_interval(t): return discover(sa.Interval(day_precision=0, second_precision=t.precision)) @discover.register(sa.dialects.oracle.base.INTERVAL) def discover_oracle_interval(t): return discover(t.adapt(sa.Interval)) @discover.register(sa.sql.type_api.TypeEngine) def discover_typeengine(typ): if isinstance(typ, sa.Interval): if typ.second_precision is None and typ.day_precision is None: return datashape.TimeDelta(unit='us') elif typ.second_precision == 0 and typ.day_precision == 0: return datashape.TimeDelta(unit='s') if typ.second_precision in units_of_power and not typ.day_precision: units = units_of_power[typ.second_precision] elif typ.day_precision > 0: units = 'D' else: raise ValueError('Cannot infer INTERVAL type with parameters' 'second_precision=%d, day_precision=%d' % (typ.second_precision, typ.day_precision)) return datashape.TimeDelta(unit=units) if typ in revtypes: return dshape(revtypes[typ])[0] if type(typ) in revtypes: return revtypes[type(typ)] if isinstance(typ, (sa.NUMERIC, sa.DECIMAL)): return datashape.Decimal(precision=typ.precision, scale=typ.scale) if isinstance(typ, (sa.String, sa.Unicode)): return datashape.String(typ.length, typ.collation) else: for k, v in revtypes.items(): if isinstance(k, type) and (isinstance(typ, k) or hasattr(typ, 'impl') and isinstance(typ.impl, k)): return v if k == typ: return v raise NotImplementedError("No SQL-datashape match for type %s" % typ) @discover.register(sa.ForeignKey, sa.sql.FromClause) def discover_foreign_key_relationship(fk, parent, parent_measure=None): if fk.column.table is not parent: parent_measure = discover(fk.column.table).measure return {fk.parent.name: Map(discover(fk.parent.type), parent_measure)} @discover.register(sa.Column) def discover_sqlalchemy_column(c): meta = Option if c.nullable else identity return Record([(c.name, meta(discover(c.type)))]) @discover.register(sa.sql.FromClause) def discover_sqlalchemy_selectable(t): ordering = dict((c, i) for i, c in enumerate(c for c in t.columns.keys())) records = list(sum([discover(c).parameters[0] for c in t.columns], ())) fkeys = [discover(fkey, t, parent_measure=Record(records)) for fkey in t.foreign_keys] for name, column in merge(*fkeys).items(): records[ordering[name]] = (name, column) return var * Record(records) @memoize def metadata_of_engine(engine, schema=None): return sa.MetaData(engine, schema=schema) def create_engine(uri, *args, **kwargs): if ':memory:' in uri: return sa.create_engine(uri, *args, **kwargs) else: return memoized_create_engine(uri, *args, **kwargs) memoized_create_engine = memoize(sa.create_engine) @dispatch(sa.engine.base.Engine, str) def discover(engine, tablename): metadata = metadata_of_engine(engine) if tablename not in metadata.tables: try: metadata.reflect(engine, views=metadata.bind.dialect.supports_views) except NotImplementedError: metadata.reflect(engine) table = metadata.tables[tablename] return discover(table) @dispatch(sa.engine.base.Engine) def discover(engine): metadata = metadata_of_engine(engine) return discover(metadata) @dispatch(sa.MetaData) def discover(metadata): try: metadata.reflect(views=metadata.bind.dialect.supports_views) except NotImplementedError: metadata.reflect() pairs = [] for table in sorted(metadata.tables.values(), key=attrgetter('name')): name = table.name try: pairs.append([name, discover(table)]) except sa.exc.CompileError as e: print("Can not discover type of table %s.\n" % name + "SQLAlchemy provided this error message:\n\t%s" % e.message + "\nSkipping.") except NotImplementedError as e: print("Blaze does not understand a SQLAlchemy type.\n" "Blaze provided the following error:\n\t%s" % "\n\t".join(e.args) + "\nSkipping.") return DataShape(Record(pairs)) @discover.register(sa.engine.RowProxy) def discover_row_proxy(rp): return Record(list(zip(rp.keys(), map(discover, rp.values())))) def validate_foreign_keys(ds, foreign_keys): # passed foreign_keys and column in dshape, but not a ForeignKey type for field in foreign_keys: if field not in ds.measure.names: raise TypeError('Requested foreign key field %r is not a field in ' 'datashape %s' % (field, ds)) for field, typ in ds.measure.fields: if field in foreign_keys and not isinstance(getattr(typ, 'ty', typ), Map): raise TypeError('Foreign key %s passed in but not a Map ' 'datashape, got %s' % (field, typ)) if isinstance(typ, Map) and field not in foreign_keys: raise TypeError('Map type %s found on column %s, but %r ' "wasn't found in %s" % (typ, field, field, foreign_keys)) def dshape_to_table(name, ds, metadata=None, foreign_keys=None, primary_key=None): """ Create a SQLAlchemy table from a datashape and a name >>> dshape_to_table('bank', '{name: string, amount: int}') # doctest: +NORMALIZE_WHITESPACE Table('bank', MetaData(bind=None), Column('name', Text(), table=<bank>, nullable=False), Column('amount', Integer(), table=<bank>, nullable=False), schema=None) """ if isinstance(ds, str): ds = dshape(ds) if not isrecord(ds.measure): raise TypeError('dshape measure must be a record type e.g., ' '"{a: int64, b: int64}". Input measure is %r' % ds.measure) if metadata is None: metadata = sa.MetaData() if foreign_keys is None: foreign_keys = {} validate_foreign_keys(ds, foreign_keys) cols = dshape_to_alchemy(ds, primary_key=primary_key or frozenset()) cols.extend(sa.ForeignKeyConstraint([column_name], [referent]) for column_name, referent in foreign_keys.items()) t = sa.Table(name, metadata, *cols, schema=metadata.schema) return attach_schema(t, t.schema) @dispatch(object, str) def create_from_datashape(o, ds, **kwargs): return create_from_datashape(o, dshape(ds), **kwargs) @dispatch(sa.engine.base.Engine, DataShape) def create_from_datashape(engine, ds, schema=None, foreign_keys=None, primary_key=None, **kwargs): assert isrecord(ds), 'datashape must be Record type, got %s' % ds metadata = metadata_of_engine(engine, schema=schema) for name, sub_ds in ds[0].dict.items(): t = dshape_to_table(name, sub_ds, metadata=metadata, foreign_keys=foreign_keys, primary_key=primary_key) t.create() return engine def dshape_to_alchemy(dshape, primary_key=frozenset()): """ >>> dshape_to_alchemy('int') <class 'sqlalchemy.sql.sqltypes.Integer'> >>> dshape_to_alchemy('string') <class 'sqlalchemy.sql.sqltypes.Text'> >>> dshape_to_alchemy('{name: string, amount: int}') [Column('name', Text(), table=None, nullable=False), Column('amount', Integer(), table=None, nullable=False)] >>> dshape_to_alchemy('{name: ?string, amount: ?int}') [Column('name', Text(), table=None), Column('amount', Integer(), table=None)] """ if isinstance(dshape, str): dshape = datashape.dshape(dshape) if isinstance(dshape, Map): return dshape_to_alchemy(dshape.key.measure, primary_key=primary_key) if isinstance(dshape, Option): return dshape_to_alchemy(dshape.ty, primary_key=primary_key) if str(dshape) in types: return types[str(dshape)] if isinstance(dshape, datashape.Record): return [sa.Column(name, dshape_to_alchemy(getattr(typ, 'ty', typ), primary_key=primary_key), primary_key=name in primary_key, nullable=isinstance(typ[0], Option)) for name, typ in dshape.parameters[0]] if isinstance(dshape, datashape.DataShape): if isdimension(dshape[0]): return dshape_to_alchemy(dshape[1], primary_key=primary_key) else: return dshape_to_alchemy(dshape[0], primary_key=primary_key) if isinstance(dshape, datashape.String): fixlen = dshape[0].fixlen if fixlen is None: return sa.TEXT string_types = dict(U=sa.Unicode, A=sa.String) assert dshape.encoding is not None return string_types[dshape.encoding[0]](length=fixlen) if isinstance(dshape, datashape.DateTime): return sa.DATETIME(timezone=dshape.tz is not None) if isinstance(dshape, datashape.Decimal): return sa.NUMERIC(dshape.precision, dshape.scale) raise NotImplementedError("No SQLAlchemy dtype match for datashape: %s" % dshape) @convert.register(Iterator, sa.Table, cost=300.0) def sql_to_iterator(t, bind=None, **kwargs): _, rows = batch(sa.select([t]), bind=bind) return map(tuple, rows) @convert.register(Iterator, sa.sql.Select, cost=300.0) def select_to_iterator(sel, dshape=None, bind=None, **kwargs): func = pluck(0) if dshape and isscalar(dshape.measure) else map(tuple) _, rows = batch(sel, bind=bind) return func(rows) @convert.register(base, sa.sql.Select, cost=300.0) def select_to_base(sel, dshape=None, bind=None, **kwargs): assert not dshape or isscalar(dshape), \ 'dshape should be None or scalar, got %s' % dshape with getbind(sel, bind).connect() as conn: return conn.execute(sel).scalar() @append.register(sa.Table, Iterator) def append_iterator_to_table(t, rows, dshape=None, bind=None, **kwargs): assert not isinstance(t, type) engine = getbind(t, bind) if not t.exists(bind=engine): t.create(bind=engine) rows = iter(rows) # We see if the sequence is of tuples or dicts # If tuples then we coerce them to dicts try: row = next(rows) except StopIteration: return rows = chain([row], rows) if isinstance(row, (tuple, list)): dshape = dshape and datashape.dshape(dshape) if dshape and isinstance(dshape.measure, datashape.Record): names = dshape.measure.names if set(names) != set(discover(t).measure.names): raise ValueError("Column names of incoming data don't match " "column names of existing SQL table\n" "Names in SQL table: %s\n" "Names from incoming data: %s\n" % (discover(t).measure.names, names)) else: names = discover(t).measure.names rows = (dict(zip(names, row)) for row in rows) with engine.connect() as conn: for chunk in partition_all(1000, rows): # TODO: 1000 is hardcoded conn.execute(t.insert(), chunk) return t @append.register(sa.Table, Chunks) def append_anything_to_sql_Table(t, c, **kwargs): for item in c: append(t, item, **kwargs) return t @append.register(sa.Table, object) def append_anything_to_sql_Table(t, o, **kwargs): return append(t, convert(Iterator, o, **kwargs), **kwargs) @append.register(sa.Table, sa.Table) def append_table_to_sql_Table(t, o, **kwargs): s = sa.select([o]) return append(t, s, **kwargs) @append.register(sa.Table, sa.sql.Select) def append_select_statement_to_sql_Table(t, o, bind=None, **kwargs): t_bind = getbind(t, bind) o_bind = getbind(o, bind) if t_bind != o_bind: return append( t, convert(Iterator, o, bind=bind, **kwargs), bind=bind, **kwargs ) bind = t_bind assert bind.has_table(t.name, t.schema), \ 'tables must come from the same database' query = t.insert().from_select(o.columns.keys(), o) with bind.connect() as conn: conn.execute(query) return t def should_create_schema(ddl, target, bind, tables=None, state=None, checkfirst=None, **kwargs): return ddl.element not in inspect(target.bind).get_schema_names() def attach_schema(obj, schema): if schema is not None: ddl = CreateSchema(schema, quote=True) event.listen( obj, 'before_create', ddl.execute_if( callable_=should_create_schema, dialect='postgresql' ) ) return obj def fullname(table, compiler): preparer = compiler.dialect.identifier_preparer fullname = preparer.quote_identifier(table.name) schema = table.schema if schema is not None: fullname = '%s.%s' % (preparer.quote_schema(schema), fullname) return fullname @resource.register(r'(.*sql.*|oracle|redshift)(\+\w+)?://.+') def resource_sql(uri, *args, **kwargs): engine = create_engine(uri, **filter_kwargs(sa.create_engine, kwargs)) ds = kwargs.pop('dshape', None) schema = kwargs.pop('schema', None) foreign_keys = kwargs.pop('foreign_keys', None) primary_key = kwargs.pop('primary_key', None) # we were also given a table name if args and isinstance(args[0], (str, unicode)): table_name, args = args[0], args[1:] metadata = metadata_of_engine(engine, schema=schema) with ignoring(sa.exc.NoSuchTableError): return attach_schema( sa.Table(table_name, metadata, schema=schema, autoload_with=engine), schema ) if ds: t = dshape_to_table(table_name, ds, metadata=metadata, foreign_keys=foreign_keys, primary_key=primary_key) t.create() return t else: raise ValueError("Table does not exist and no dshape provided") # We were not given a table name if ds: create_from_datashape(engine, ds, schema=schema, foreign_keys=foreign_keys) return engine @resource.register('impala://.+') def resource_impala(uri, *args, **kwargs): try: import impala.sqlalchemy except ImportError: raise ImportError("Please install or update `impyla` library") return resource_sql(uri, *args, **kwargs) @resource.register('monetdb://.+') def resource_monet(uri, *args, **kwargs): try: import monetdb except ImportError: raise ImportError("Please install the `sqlalchemy_monetdb` library") return resource_sql(uri, *args, **kwargs) @resource.register('hive://.+') def resource_hive(uri, *args, **kwargs): try: import pyhive except ImportError: raise ImportError("Please install the `PyHive` library.") pattern = 'hive://((?P<user>[a-zA-Z_]\w*)@)?(?P<host>[\w.]+)(:(?P<port>\d*))?(/(?P<database>\w*))?' d = re.search(pattern, uri.split('::')[0]).groupdict() defaults = {'port': '10000', 'user': 'hdfs', 'database': 'default'} for k, v in d.items(): if not v: d[k] = defaults[k] if d['user']: d['user'] += '@' uri2 = 'hive://%(user)s%(host)s:%(port)s/%(database)s' % d if '::' in uri: uri2 += '::' + uri.split('::')[1] return resource_sql(uri2, *args, **kwargs) ooc_types.add(sa.Table) @dispatch(sa.Table) def drop(table, bind=None): bind = getbind(table, bind) table.drop(bind=bind, checkfirst=True) if table.exists(bind=bind): raise ValueError('table %r dropped but still exists' % table.name) @convert.register(pd.DataFrame, (sa.sql.Select, sa.sql.Selectable), cost=200.0) def select_or_selectable_to_frame(el, bind=None, **kwargs): columns, rows = batch(el, bind=bind) row = next(rows, None) if row is None: return pd.DataFrame(columns=columns) return pd.DataFrame(list(chain([tuple(row)], map(tuple, rows))), columns=columns) class CopyToCSV(sa.sql.expression.Executable, sa.sql.ClauseElement): def __init__(self, element, path, delimiter=',', quotechar='"', lineterminator=r'\n', escapechar='\\', header=True, na_value='', bind=None): self.element = element self.path = path self.delimiter = delimiter self.quotechar = quotechar self.lineterminator = lineterminator self._bind = bind = getbind(element, bind) # mysql cannot write headers self.header = header and bind.dialect.name != 'mysql' self.escapechar = escapechar self.na_value = na_value @property def bind(self): return self._bind @compiles(CopyToCSV, 'postgresql') def compile_copy_to_csv_postgres(element, compiler, **kwargs): selectable = element.element istable = isinstance(selectable, sa.Table) template = """COPY %s TO '{path}' WITH CSV {header} DELIMITER '{delimiter}' QUOTE '{quotechar}' NULL '{na_value}' ESCAPE '{escapechar}' """ % ('{query}' if istable else '({query})') processed = (fullname(selectable, compiler) if istable else compiler.process(selectable)) assert processed, ('got empty string from processing element of type %r' % type(selectable).__name__) return template.format(query=processed, path=element.path, header='HEADER' if element.header else '', delimiter=element.delimiter, quotechar=element.quotechar, na_value=element.na_value, escapechar=element.escapechar) @compiles(CopyToCSV, 'mysql') def compile_copy_to_csv_mysql(element, compiler, **kwargs): selectable = element.element if isinstance(selectable, sa.Table): processed = 'SELECT * FROM %(table)s' % dict(table=selectable.name) else: processed = compiler.process(selectable) assert processed, ('got empty string from processing element of type %r' % type(selectable).__name__) template = """{query} INTO OUTFILE '{path}' FIELDS TERMINATED BY '{delimiter}' OPTIONALLY ENCLOSED BY '{quotechar}' ESCAPED BY '{escapechar}' LINES TERMINATED BY '{lineterminator}'""" return template.format(query=processed, path=element.path, delimiter=element.delimiter, lineterminator=element.lineterminator, escapechar=element.escapechar.encode( 'unicode-escape').decode(), quotechar=element.quotechar) @compiles(CopyToCSV, 'sqlite') def compile_copy_to_csv_sqlite(element, compiler, **kwargs): if not find_executable('sqlite3'): raise MDNotImplementedError("Could not find sqlite executable") selectable = element.element sql = (compiler.process(sa.select([selectable]) if isinstance(selectable, sa.Table) else selectable) + ';') sql = re.sub(r'\s{2,}', ' ', re.sub(r'\s*\n\s*', ' ', sql)).encode() cmd = ['sqlite3', '-csv', '-%sheader' % ('no' if not element.header else ''), '-separator', element.delimiter, selectable.bind.url.database] with open(element.path, mode='at') as f: subprocess.Popen(cmd, stdout=f, stdin=subprocess.PIPE).communicate(sql) # This will be a no-op since we're doing the write during the compile return '' @append.register(CSV, sa.sql.Selectable) def append_table_to_csv(csv, selectable, dshape=None, bind=None, **kwargs): kwargs = keyfilter(keywords(CopyToCSV).__contains__, merge(csv.dialect, kwargs)) stmt = CopyToCSV( selectable, os.path.abspath(csv.path), bind=bind, **kwargs ) with getbind(selectable, bind).begin() as conn: conn.execute(stmt) return csv try: from .hdfs import HDFS except ImportError: pass else: @append.register(HDFS(CSV), sa.sql.Selectable) def append_selectable_to_hdfs_csv(*args, **kwargs): raise MDNotImplementedError()
{ "repo_name": "cowlicks/odo", "path": "odo/backends/sql.py", "copies": "1", "size": "25054", "license": "bsd-3-clause", "hash": 2545432010387069000, "line_mean": 33.462173315, "line_max": 113, "alpha_frac": 0.6141933424, "autogenerated": false, "ratio": 3.7607325127589313, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.987429938646226, "avg_score": 0.00012529373933440832, "num_lines": 727 }
from __future__ import absolute_import, division, print_function from operator import getitem from functools import partial import numpy as np from toolz import curry from .core import Array, elemwise, atop, apply_infer_dtype, asarray from ..base import Base from .. import core, sharedict from ..utils import skip_doctest def __array_wrap__(numpy_ufunc, x, *args, **kwargs): return x.__array_wrap__(numpy_ufunc(x, *args, **kwargs)) @curry def copy_docstring(target, source=None): target.__doc__ = skip_doctest(source.__doc__) return target def wrap_elemwise(numpy_ufunc, array_wrap=False): """ Wrap up numpy function into dask.array """ def wrapped(*args, **kwargs): dsk = [arg for arg in args if hasattr(arg, '_elemwise')] if len(dsk) > 0: if array_wrap: return dsk[0]._elemwise(__array_wrap__, numpy_ufunc, *args, **kwargs) else: return dsk[0]._elemwise(numpy_ufunc, *args, **kwargs) else: return numpy_ufunc(*args, **kwargs) # functools.wraps cannot wrap ufunc in Python 2.x wrapped.__name__ = numpy_ufunc.__name__ wrapped.__doc__ = skip_doctest(numpy_ufunc.__doc__) return wrapped class ufunc(object): _forward_attrs = {'nin', 'nargs', 'nout', 'ntypes', 'identity', 'signature', 'types'} def __init__(self, ufunc): if not isinstance(ufunc, np.ufunc): raise TypeError("must be an instance of `ufunc`, " "got `%s" % type(ufunc).__name__) self._ufunc = ufunc self.__name__ = ufunc.__name__ copy_docstring(self, ufunc) def __getattr__(self, key): if key in self._forward_attrs: return getattr(self._ufunc, key) raise AttributeError("%r object has no attribute " "%r" % (type(self).__name__, key)) def __dir__(self): return list(self._forward_attrs.union(dir(type(self)), self.__dict__)) def __repr__(self): return repr(self._ufunc) def __call__(self, *args, **kwargs): dsk = [arg for arg in args if hasattr(arg, '_elemwise')] if len(dsk) > 0: return dsk[0]._elemwise(self._ufunc, *args, **kwargs) else: return self._ufunc(*args, **kwargs) @copy_docstring(source=np.ufunc.outer) def outer(self, A, B, **kwargs): if self.nin != 2: raise ValueError("outer product only supported for binary functions") if 'out' in kwargs: raise ValueError("`out` kwarg not supported") A_is_dask = isinstance(A, Base) B_is_dask = isinstance(B, Base) if not A_is_dask and not B_is_dask: return self._ufunc.outer(A, B, **kwargs) elif (A_is_dask and not isinstance(A, Array) or B_is_dask and not isinstance(B, Array)): raise NotImplementedError("Dask objects besides `dask.array.Array` " "are not supported at this time.") A = asarray(A) B = asarray(B) ndim = A.ndim + B.ndim out_inds = tuple(range(ndim)) A_inds = out_inds[:A.ndim] B_inds = out_inds[A.ndim:] dtype = apply_infer_dtype(self._ufunc.outer, [A, B], kwargs, 'ufunc.outer', suggest_dtype=False) if 'dtype' in kwargs: func = partial(self._ufunc.outer, dtype=kwargs.pop('dtype')) else: func = self._ufunc.outer return atop(func, out_inds, A, A_inds, B, B_inds, dtype=dtype, token=self.__name__ + '.outer', **kwargs) # ufuncs, copied from this page: # http://docs.scipy.org/doc/numpy/reference/ufuncs.html # math operations add = ufunc(np.add) subtract = ufunc(np.subtract) multiply = ufunc(np.multiply) divide = ufunc(np.divide) logaddexp = ufunc(np.logaddexp) logaddexp2 = ufunc(np.logaddexp2) true_divide = ufunc(np.true_divide) floor_divide = ufunc(np.floor_divide) negative = ufunc(np.negative) power = ufunc(np.power) remainder = ufunc(np.remainder) mod = ufunc(np.mod) # fmod: see below conj = ufunc(np.conj) exp = ufunc(np.exp) exp2 = ufunc(np.exp2) log = ufunc(np.log) log2 = ufunc(np.log2) log10 = ufunc(np.log10) log1p = ufunc(np.log1p) expm1 = ufunc(np.expm1) sqrt = ufunc(np.sqrt) square = ufunc(np.square) cbrt = ufunc(np.cbrt) reciprocal = ufunc(np.reciprocal) # trigonometric functions sin = ufunc(np.sin) cos = ufunc(np.cos) tan = ufunc(np.tan) arcsin = ufunc(np.arcsin) arccos = ufunc(np.arccos) arctan = ufunc(np.arctan) arctan2 = ufunc(np.arctan2) hypot = ufunc(np.hypot) sinh = ufunc(np.sinh) cosh = ufunc(np.cosh) tanh = ufunc(np.tanh) arcsinh = ufunc(np.arcsinh) arccosh = ufunc(np.arccosh) arctanh = ufunc(np.arctanh) deg2rad = ufunc(np.deg2rad) rad2deg = ufunc(np.rad2deg) # comparison functions greater = ufunc(np.greater) greater_equal = ufunc(np.greater_equal) less = ufunc(np.less) less_equal = ufunc(np.less_equal) not_equal = ufunc(np.not_equal) equal = ufunc(np.equal) logical_and = ufunc(np.logical_and) logical_or = ufunc(np.logical_or) logical_xor = ufunc(np.logical_xor) logical_not = ufunc(np.logical_not) maximum = ufunc(np.maximum) minimum = ufunc(np.minimum) fmax = ufunc(np.fmax) fmin = ufunc(np.fmin) # floating functions isfinite = ufunc(np.isfinite) isinf = ufunc(np.isinf) isnan = ufunc(np.isnan) signbit = ufunc(np.signbit) copysign = ufunc(np.copysign) nextafter = ufunc(np.nextafter) spacing = ufunc(np.spacing) # modf: see below ldexp = ufunc(np.ldexp) # frexp: see below fmod = ufunc(np.fmod) floor = ufunc(np.floor) ceil = ufunc(np.ceil) trunc = ufunc(np.trunc) divide = ufunc(np.divide) # more math routines, from this page: # http://docs.scipy.org/doc/numpy/reference/routines.math.html degrees = ufunc(np.degrees) radians = ufunc(np.radians) rint = ufunc(np.rint) fabs = ufunc(np.fabs) sign = ufunc(np.sign) absolute = ufunc(np.absolute) # non-ufunc elementwise functions clip = wrap_elemwise(np.clip) isreal = wrap_elemwise(np.isreal, array_wrap=True) iscomplex = wrap_elemwise(np.iscomplex, array_wrap=True) real = wrap_elemwise(np.real, array_wrap=True) imag = wrap_elemwise(np.imag, array_wrap=True) fix = wrap_elemwise(np.fix, array_wrap=True) i0 = wrap_elemwise(np.i0, array_wrap=True) sinc = wrap_elemwise(np.sinc, array_wrap=True) nan_to_num = wrap_elemwise(np.nan_to_num, array_wrap=True) @copy_docstring(source=np.angle) def angle(x, deg=0): deg = bool(deg) if hasattr(x, '_elemwise'): return x._elemwise(__array_wrap__, np.angle, x, deg) return np.angle(x, deg=deg) @copy_docstring(source=np.frexp) def frexp(x): # Not actually object dtype, just need to specify something tmp = elemwise(np.frexp, x, dtype=object) left = 'mantissa-' + tmp.name right = 'exponent-' + tmp.name ldsk = dict(((left,) + key[1:], (getitem, key, 0)) for key in core.flatten(tmp._keys())) rdsk = dict(((right,) + key[1:], (getitem, key, 1)) for key in core.flatten(tmp._keys())) a = np.empty((1, ), dtype=x.dtype) l, r = np.frexp(a) ldt = l.dtype rdt = r.dtype L = Array(sharedict.merge(tmp.dask, (left, ldsk)), left, chunks=tmp.chunks, dtype=ldt) R = Array(sharedict.merge(tmp.dask, (right, rdsk)), right, chunks=tmp.chunks, dtype=rdt) return L, R @copy_docstring(source=np.modf) def modf(x): # Not actually object dtype, just need to specify something tmp = elemwise(np.modf, x, dtype=object) left = 'modf1-' + tmp.name right = 'modf2-' + tmp.name ldsk = dict(((left,) + key[1:], (getitem, key, 0)) for key in core.flatten(tmp._keys())) rdsk = dict(((right,) + key[1:], (getitem, key, 1)) for key in core.flatten(tmp._keys())) a = np.empty((1,), dtype=x.dtype) l, r = np.modf(a) ldt = l.dtype rdt = r.dtype L = Array(sharedict.merge(tmp.dask, (left, ldsk)), left, chunks=tmp.chunks, dtype=ldt) R = Array(sharedict.merge(tmp.dask, (right, rdsk)), right, chunks=tmp.chunks, dtype=rdt) return L, R
{ "repo_name": "mraspaud/dask", "path": "dask/array/ufunc.py", "copies": "1", "size": "8125", "license": "bsd-3-clause", "hash": 3994483543135494700, "line_mean": 30.25, "line_max": 92, "alpha_frac": 0.6235076923, "autogenerated": false, "ratio": 3.1190019193857967, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42425096116857963, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from operator import getitem from itertools import product from toolz import merge, pipe, concat, partial from toolz.curried import map from . import chunk, wrap from .core import Array, map_blocks, concatenate, concatenate3, reshapelist from .. import sharedict from ..base import tokenize from ..core import flatten from ..utils import concrete def fractional_slice(task, axes): """ >>> fractional_slice(('x', 5.1), {0: 2}) # doctest: +SKIP (getitem, ('x', 6), (slice(0, 2),)) >>> fractional_slice(('x', 3, 5.1), {0: 2, 1: 3}) # doctest: +SKIP (getitem, ('x', 3, 5), (slice(None, None, None), slice(-3, None))) >>> fractional_slice(('x', 2.9, 5.1), {0: 2, 1: 3}) # doctest: +SKIP (getitem, ('x', 3, 5), (slice(0, 2), slice(-3, None))) """ rounded = (task[0],) + tuple(int(round(i)) for i in task[1:]) index = [] for i, (t, r) in enumerate(zip(task[1:], rounded[1:])): depth = axes.get(i, 0) if t == r: index.append(slice(None, None, None)) elif t < r: index.append(slice(0, depth)) elif t > r and depth == 0: index.append(slice(0, 0)) else: index.append(slice(-depth, None)) index = tuple(index) if all(ind == slice(None, None, None) for ind in index): return task else: return (getitem, rounded, index) def expand_key(k, dims): """ Get all neighboring keys around center >>> expand_key(('x', 2, 3), dims=[5, 5]) # doctest: +NORMALIZE_WHITESPACE [[('x', 1.1, 2.1), ('x', 1.1, 3), ('x', 1.1, 3.9)], [('x', 2, 2.1), ('x', 2, 3), ('x', 2, 3.9)], [('x', 2.9, 2.1), ('x', 2.9, 3), ('x', 2.9, 3.9)]] >>> expand_key(('x', 0, 4), dims=[5, 5]) # doctest: +NORMALIZE_WHITESPACE [[('x', 0, 3.1), ('x', 0, 4)], [('x', 0.9, 3.1), ('x', 0.9, 4)]] """ def inds(i, ind): rv = [] if ind - 0.9 > 0: rv.append(ind - 0.9) rv.append(ind) if ind + 0.9 < dims[i] - 1: rv.append(ind + 0.9) return rv shape = [] for i, ind in enumerate(k[1:]): num = 1 if ind > 0: num += 1 if ind < dims[i] - 1: num += 1 shape.append(num) seq = list(product([k[0]], *[inds(i, ind) for i, ind in enumerate(k[1:])])) return reshapelist(shape, seq) def ghost_internal(x, axes): """ Share boundaries between neighboring blocks Parameters ---------- x: da.Array A dask array axes: dict The size of the shared boundary per axis The axes input informs how many cells to overlap between neighboring blocks {0: 2, 2: 5} means share two cells in 0 axis, 5 cells in 2 axis """ dims = list(map(len, x.chunks)) expand_key2 = partial(expand_key, dims=dims) interior_keys = pipe(x._keys(), flatten, map(expand_key2), map(flatten), concat, list) token = tokenize(x, axes) name = 'ghost-' + token interior_slices = {} ghost_blocks = {} for k in interior_keys: frac_slice = fractional_slice(k, axes) if k != frac_slice: interior_slices[k] = frac_slice ghost_blocks[(name,) + k[1:]] = (concatenate3, (concrete, expand_key2(k))) chunks = [] for i, bds in enumerate(x.chunks): if len(bds) == 1: chunks.append(bds) else: left = [bds[0] + axes.get(i, 0)] right = [bds[-1] + axes.get(i, 0)] mid = [] for bd in bds[1:-1]: mid.append(bd + axes.get(i, 0) * 2) chunks.append(left + mid + right) dsk = merge(interior_slices, ghost_blocks) dsk = sharedict.merge(x.dask, (name, dsk)) return Array(dsk, name, chunks, dtype=x.dtype) def trim_internal(x, axes): """ Trim sides from each block This couples well with the ghost operation, which may leave excess data on each block See also -------- dask.array.chunk.trim dask.array.map_blocks """ olist = [] for i, bd in enumerate(x.chunks): ilist = [] for d in bd: ilist.append(d - axes.get(i, 0) * 2) olist.append(tuple(ilist)) chunks = tuple(olist) return map_blocks(partial(chunk.trim, axes=axes), x, chunks=chunks, dtype=x.dtype) def periodic(x, axis, depth): """ Copy a slice of an array around to its other side Useful to create periodic boundary conditions for ghost """ left = ((slice(None, None, None),) * axis + (slice(0, depth),) + (slice(None, None, None),) * (x.ndim - axis - 1)) right = ((slice(None, None, None),) * axis + (slice(-depth, None),) + (slice(None, None, None),) * (x.ndim - axis - 1)) l = x[left] r = x[right] l, r = _remove_ghost_boundaries(l, r, axis, depth) return concatenate([r, x, l], axis=axis) def reflect(x, axis, depth): """ Reflect boundaries of array on the same side This is the converse of ``periodic`` """ if depth == 1: left = ((slice(None, None, None),) * axis + (slice(0, 1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) else: left = ((slice(None, None, None),) * axis + (slice(depth - 1, None, -1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) right = ((slice(None, None, None),) * axis + (slice(-1, -depth - 1, -1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) l = x[left] r = x[right] l, r = _remove_ghost_boundaries(l, r, axis, depth) return concatenate([l, x, r], axis=axis) def nearest(x, axis, depth): """ Each reflect each boundary value outwards This mimics what the skimage.filters.gaussian_filter(... mode="nearest") does. """ left = ((slice(None, None, None),) * axis + (slice(0, 1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) right = ((slice(None, None, None),) * axis + (slice(-1, -2, -1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) l = concatenate([x[left]] * depth, axis=axis) r = concatenate([x[right]] * depth, axis=axis) l, r = _remove_ghost_boundaries(l, r, axis, depth) return concatenate([l, x, r], axis=axis) def constant(x, axis, depth, value): """ Add constant slice to either side of array """ chunks = list(x.chunks) chunks[axis] = (depth,) c = wrap.full(tuple(map(sum, chunks)), value, chunks=tuple(chunks), dtype=x.dtype) return concatenate([c, x, c], axis=axis) def _remove_ghost_boundaries(l, r, axis, depth): lchunks = list(l.chunks) lchunks[axis] = (depth,) rchunks = list(r.chunks) rchunks[axis] = (depth,) l = l.rechunk(tuple(lchunks)) r = r.rechunk(tuple(rchunks)) return l, r def boundaries(x, depth=None, kind=None): """ Add boundary conditions to an array before ghosting See Also -------- periodic constant """ if not isinstance(kind, dict): kind = dict((i, kind) for i in range(x.ndim)) if not isinstance(depth, dict): depth = dict((i, depth) for i in range(x.ndim)) for i in range(x.ndim): d = depth.get(i, 0) if d == 0: continue this_kind = kind.get(i, 'none') if this_kind == 'none': continue elif this_kind == 'periodic': x = periodic(x, i, d) elif this_kind == 'reflect': x = reflect(x, i, d) elif this_kind == 'nearest': x = nearest(x, i, d) elif i in kind: x = constant(x, i, d, kind[i]) return x def ghost(x, depth, boundary): """ Share boundaries between neighboring blocks Parameters ---------- x: da.Array A dask array depth: dict The size of the shared boundary per axis boundary: dict The boundary condition on each axis. Options are 'reflect', 'periodic', 'nearest', 'none', or an array value. Such a value will fill the boundary with that value. The depth input informs how many cells to overlap between neighboring blocks ``{0: 2, 2: 5}`` means share two cells in 0 axis, 5 cells in 2 axis. Axes missing from this input will not be overlapped. Examples -------- >>> import numpy as np >>> import dask.array as da >>> x = np.arange(64).reshape((8, 8)) >>> d = da.from_array(x, chunks=(4, 4)) >>> d.chunks ((4, 4), (4, 4)) >>> g = da.ghost.ghost(d, depth={0: 2, 1: 1}, ... boundary={0: 100, 1: 'reflect'}) >>> g.chunks ((8, 8), (6, 6)) >>> np.array(g) array([[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100], [ 0, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 7], [ 8, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 15], [ 16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23], [ 24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31], [ 32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39], [ 40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47], [ 16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23], [ 24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31], [ 32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39], [ 40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47], [ 48, 48, 49, 50, 51, 52, 51, 52, 53, 54, 55, 55], [ 56, 56, 57, 58, 59, 60, 59, 60, 61, 62, 63, 63], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]]) """ depth2 = coerce_depth(x.ndim, depth) boundary2 = coerce_boundary(x.ndim, boundary) # is depth larger than chunk size? depth_values = [depth2.get(i, 0) for i in range(x.ndim)] for d, c in zip(depth_values, x.chunks): if d > min(c): raise ValueError("The overlapping depth %d is larger than your\n" "smallest chunk size %d. Rechunk your array\n" "with a larger chunk size or a chunk size that\n" "more evenly divides the shape of your array." % (d, min(c))) x2 = boundaries(x, depth2, boundary2) x3 = ghost_internal(x2, depth2) trim = dict((k, v * 2 if boundary2.get(k, 'none') != 'none' else 0) for k, v in depth2.items()) x4 = chunk.trim(x3, trim) return x4 def add_dummy_padding(x, depth, boundary): """ Pads an array which has 'none' as the boundary type. Used to simplify trimming arrays which use 'none'. >>> import dask.array as da >>> x = da.arange(6, chunks=3) >>> add_dummy_padding(x, {0: 1}, {0: 'none'}).compute() # doctest: +NORMALIZE_WHITESPACE array([..., 0, 1, 2, 3, 4, 5, ...]) """ for k, v in boundary.items(): d = depth[k] if v == 'none' and d > 0: empty_shape = list(x.shape) empty_shape[k] = d empty_chunks = list(x.chunks) empty_chunks[k] = (d,) empty = wrap.empty(empty_shape, chunks=empty_chunks, dtype=x.dtype) out_chunks = list(x.chunks) ax_chunks = list(out_chunks[k]) ax_chunks[0] += d ax_chunks[-1] += d out_chunks[k] = ax_chunks x = concatenate([empty, x, empty], axis=k) x = x.rechunk(out_chunks) return x def map_overlap(x, func, depth, boundary=None, trim=True, **kwargs): depth2 = coerce_depth(x.ndim, depth) boundary2 = coerce_boundary(x.ndim, boundary) g = ghost(x, depth=depth2, boundary=boundary2) g2 = g.map_blocks(func, **kwargs) if trim: g3 = add_dummy_padding(g2, depth2, boundary2) return trim_internal(g3, depth2) else: return g2 def coerce_depth(ndim, depth): if isinstance(depth, int): depth = (depth,) * ndim if isinstance(depth, tuple): depth = dict(zip(range(ndim), depth)) return depth def coerce_boundary(ndim, boundary): if boundary is None: boundary = 'reflect' if not isinstance(boundary, (tuple, dict)): boundary = (boundary,) * ndim if isinstance(boundary, tuple): boundary = dict(zip(range(ndim), boundary)) return boundary
{ "repo_name": "mraspaud/dask", "path": "dask/array/ghost.py", "copies": "1", "size": "12823", "license": "bsd-3-clause", "hash": -8458673774919209000, "line_mean": 30.199513382, "line_max": 93, "alpha_frac": 0.5181314825, "autogenerated": false, "ratio": 3.179518968509794, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9195150959211211, "avg_score": 0.0004998983597166154, "num_lines": 411 }
from __future__ import absolute_import, division, print_function from operator import getitem from itertools import product from toolz import merge, pipe, concat, partition, partial from toolz.curried import map from ..base import tokenize from ..core import flatten from ..utils import concrete from .core import Array, map_blocks, concatenate, concatenate3 from . import chunk, wrap def fractional_slice(task, axes): """ >>> fractional_slice(('x', 5.1), {0: 2}) # doctest: +SKIP (getitem, ('x', 6), (slice(0, 2),)) >>> fractional_slice(('x', 3, 5.1), {0: 2, 1: 3}) # doctest: +SKIP (getitem, ('x', 3, 5), (slice(None, None, None), slice(-3, None))) >>> fractional_slice(('x', 2.9, 5.1), {0: 2, 1: 3}) # doctest: +SKIP (getitem, ('x', 3, 5), (slice(0, 2), slice(-3, None))) """ rounded = (task[0],) + tuple(map(round, task[1:])) index = [] for i, (t, r) in enumerate(zip(task[1:], rounded[1:])): depth = axes.get(i, 0) if t == r: index.append(slice(None, None, None)) elif t < r: index.append(slice(0, depth)) elif t > r and depth == 0: index.append(slice(0, 0)) else: index.append(slice(-depth, None)) index = tuple(index) if all(ind == slice(None, None, None) for ind in index): return task else: return (getitem, rounded, index) def expand_key(k, dims): """ Get all neighboring keys around center >>> expand_key(('x', 2, 3), dims=[5, 5]) # doctest: +NORMALIZE_WHITESPACE [[('x', 1.1, 2.1), ('x', 1.1, 3), ('x', 1.1, 3.9)], [('x', 2, 2.1), ('x', 2, 3), ('x', 2, 3.9)], [('x', 2.9, 2.1), ('x', 2.9, 3), ('x', 2.9, 3.9)]] >>> expand_key(('x', 0, 4), dims=[5, 5]) # doctest: +NORMALIZE_WHITESPACE [[('x', 0, 3.1), ('x', 0, 4)], [('x', 0.9, 3.1), ('x', 0.9, 4)]] """ def inds(i, ind): rv = [] if ind - 0.9 > 0: rv.append(ind - 0.9) rv.append(ind) if ind + 0.9 < dims[i] - 1: rv.append(ind + 0.9) return rv shape = [] for i, ind in enumerate(k[1:]): num = 1 if ind > 0: num += 1 if ind < dims[i] - 1: num += 1 shape.append(num) seq = list(product([k[0]], *[inds(i, ind) for i, ind in enumerate(k[1:])])) return reshape(shape, seq) def reshape(shape, seq): """ Reshape iterator to nested shape >>> reshape((2, 3), range(6)) [[0, 1, 2], [3, 4, 5]] """ if len(shape) == 1: return list(seq) else: n = int(len(seq) / shape[0]) return [reshape(shape[1:], part) for part in partition(n, seq)] def ghost_internal(x, axes): """ Share boundaries between neighboring blocks Parameters ---------- x: da.Array A dask array axes: dict The size of the shared boundary per axis The axes dict informs how many cells to overlap between neighboring blocks {0: 2, 2: 5} means share two cells in 0 axis, 5 cells in 2 axis """ dims = list(map(len, x.chunks)) expand_key2 = partial(expand_key, dims=dims) interior_keys = pipe(x._keys(), flatten, map(expand_key2), map(flatten), concat, list) token = tokenize(x, axes) name = 'ghost-' + token interior_slices = {} ghost_blocks = {} for k in interior_keys: frac_slice = fractional_slice(k, axes) if k != frac_slice: interior_slices[k] = frac_slice ghost_blocks[(name,) + k[1:]] = (concatenate3, (concrete, expand_key2(k))) chunks = [] for i, bds in enumerate(x.chunks): if len(bds) == 1: chunks.append(bds) else: left = [bds[0] + axes.get(i, 0)] right = [bds[-1] + axes.get(i, 0)] mid = [] for bd in bds[1:-1]: mid.append(bd + axes.get(i, 0) * 2) chunks.append(left + mid + right) return Array(merge(interior_slices, ghost_blocks, x.dask), name, chunks) def trim_internal(x, axes): """ Trim sides from each block This couples well with the ghost operation, which may leave excess data on each block See also chunk.trim map_blocks """ olist = [] for i, bd in enumerate(x.chunks): ilist = [] for d in bd: ilist.append(d - axes.get(i, 0) * 2) olist.append(tuple(ilist)) chunks = tuple(olist) return map_blocks(partial(chunk.trim, axes=axes), x, chunks=chunks) def periodic(x, axis, depth): """ Copy a slice of an array around to its other side Useful to create periodic boundary conditions for ghost """ left = ((slice(None, None, None),) * axis + (slice(0, depth),) + (slice(None, None, None),) * (x.ndim - axis - 1)) right = ((slice(None, None, None),) * axis + (slice(-depth, None),) + (slice(None, None, None),) * (x.ndim - axis - 1)) l = x[left] r = x[right] l, r = _remove_ghost_boundaries(l, r, axis, depth) return concatenate([r, x, l], axis=axis) def reflect(x, axis, depth): """ Reflect boundaries of array on the same side This is the converse of ``periodic`` """ if depth == 1: left = ((slice(None, None, None),) * axis + (slice(0, 1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) else: left = ((slice(None, None, None),) * axis + (slice(depth - 1, None, -1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) right = ((slice(None, None, None),) * axis + (slice(-1, -depth-1, -1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) l = x[left] r = x[right] l, r = _remove_ghost_boundaries(l, r, axis, depth) return concatenate([l, x, r], axis=axis) def nearest(x, axis, depth): """ Each reflect each boundary value outwards This mimics what the skimage.filters.gaussian_filter(... mode="nearest") does. """ left = ((slice(None, None, None),) * axis + (slice(0, 1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) right = ((slice(None, None, None),) * axis + (slice(-1, -2, -1),) + (slice(None, None, None),) * (x.ndim - axis - 1)) l = concatenate([x[left]] * depth, axis=axis) r = concatenate([x[right]] * depth, axis=axis) l, r = _remove_ghost_boundaries(l, r, axis, depth) return concatenate([l, x, r], axis=axis) def constant(x, axis, depth, value): """ Add constant slice to either side of array """ chunks = list(x.chunks) chunks[axis] = (depth,) c = wrap.full(tuple(map(sum, chunks)), value, chunks=tuple(chunks), dtype=x._dtype) return concatenate([c, x, c], axis=axis) def _remove_ghost_boundaries(l, r, axis, depth): lchunks = list(l.chunks) lchunks[axis] = (depth,) rchunks = list(r.chunks) rchunks[axis] = (depth,) l = l.rechunk(tuple(lchunks)) r = r.rechunk(tuple(rchunks)) return l, r def boundaries(x, depth=None, kind=None): """ Add boundary conditions to an array before ghosting See Also -------- periodic constant """ if not isinstance(kind, dict): kind = dict((i, kind) for i in range(x.ndim)) if not isinstance(depth, dict): depth = dict((i, depth) for i in range(x.ndim)) for i in range(x.ndim): d = depth.get(i, 0) if d == 0: continue this_kind = kind.get(i, 'none') if this_kind == 'none': continue elif this_kind == 'periodic': x = periodic(x, i, d) elif this_kind == 'reflect': x = reflect(x, i, d) elif this_kind == 'nearest': x = nearest(x, i, d) elif i in kind: x = constant(x, i, d, kind[i]) return x def ghost(x, depth, boundary): """ Share boundaries between neighboring blocks Parameters ---------- x: da.Array A dask array depth: dict The size of the shared boundary per axis boundary: dict The boundary condition on each axis. Options are 'reflect', 'periodic', 'nearest', 'none', an integer will fill the boundary with that integer. The axes dict informs how many cells to overlap between neighboring blocks {0: 2, 2: 5} means share two cells in 0 axis, 5 cells in 2 axis Examples -------- >>> import numpy as np >>> import dask.array as da >>> x = np.arange(64).reshape((8, 8)) >>> d = da.from_array(x, chunks=(4, 4)) >>> d.chunks ((4, 4), (4, 4)) >>> g = da.ghost.ghost(d, depth={0: 2, 1: 1}, ... boundary={0: 100, 1: 'reflect'}) >>> g.chunks ((8, 8), (6, 6)) >>> np.array(g) array([[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100], [ 0, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 7], [ 8, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 15], [ 16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23], [ 24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31], [ 32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39], [ 40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47], [ 16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23], [ 24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31], [ 32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39], [ 40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47], [ 48, 48, 49, 50, 51, 52, 51, 52, 53, 54, 55, 55], [ 56, 56, 57, 58, 59, 60, 59, 60, 61, 62, 63, 63], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]]) """ depth2 = coerce_depth(x.ndim, depth) boundary2 = coerce_boundary(x.ndim, boundary) # is depth larger than chunk size? depth_values = [depth2.get(i, 0) for i in range(x.ndim)] for d, c in zip(depth_values, x.chunks): if d > min(c): raise ValueError("The overlapping depth %d is larger than your\n" "smallest chunk size %d. Rechunk your array\n" "with a larger chunk size or a chunk size that\n" "more evenly divides the shape of your array." % (d, min(c))) x2 = boundaries(x, depth2, boundary2) x3 = ghost_internal(x2, depth2) trim = dict((k, v*2 if boundary2.get(k, 'none') != 'none' else 0) for k, v in depth2.items()) x4 = chunk.trim(x3, trim) return x4 def add_dummy_padding(x, depth, boundary): """ Pads an array which has 'none' as the boundary type. Used to simplify trimming arrays which use 'none'. >>> import dask.array as da >>> x = da.arange(6, chunks=3) >>> add_dummy_padding(x, {0: 1}, {0: 'none'}).compute() # doctest: +NORMALIZE_WHITESPACE array([..., 0, 1, 2, 3, 4, 5, ...]) """ for k, v in boundary.items(): if v == 'none': d = depth[k] empty_shape = list(x.shape) empty_shape[k] = d empty_chunks = list(x.chunks) empty_chunks[k] = (d,) empty = wrap.empty(empty_shape, chunks=empty_chunks, dtype=x.dtype) out_chunks = list(x.chunks) ax_chunks = list(out_chunks[k]) ax_chunks[0] += d ax_chunks[-1] += d out_chunks[k] = ax_chunks x = concatenate([empty, x, empty], axis=k) x = x.rechunk(out_chunks) return x def map_overlap(x, func, depth, boundary=None, trim=True, **kwargs): depth2 = coerce_depth(x.ndim, depth) boundary2 = coerce_boundary(x.ndim, boundary) g = ghost(x, depth=depth2, boundary=boundary2) g2 = g.map_blocks(func, **kwargs) if trim: g3 = add_dummy_padding(g2, depth2, boundary2) return trim_internal(g3, depth2) else: return g2 def coerce_depth(ndim, depth): if isinstance(depth, int): depth = (depth,) * ndim if isinstance(depth, tuple): depth = dict(zip(range(ndim), depth)) return depth def coerce_boundary(ndim, boundary): if boundary is None: boundary = 'reflect' if not isinstance(boundary, (tuple, dict)): boundary = (boundary,) * ndim if isinstance(boundary, tuple): boundary = dict(zip(range(ndim), boundary)) return boundary
{ "repo_name": "cowlicks/dask", "path": "dask/array/ghost.py", "copies": "5", "size": "12873", "license": "bsd-3-clause", "hash": -7447980645462090000, "line_mean": 29.65, "line_max": 93, "alpha_frac": 0.5153421891, "autogenerated": false, "ratio": 3.184021766015335, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0005231998574505791, "num_lines": 420 }