Datasets:

License:
VALID / README.md
huu-ontocord's picture
Update README.md
18d6d68 verified
metadata
license: cc-by-sa-4.0
dataset_info:
  features:
    - name: video_id
      dtype: string
    - name: chunk_idx
      dtype: int64
    - name: chunk_text
      dtype: string
    - name: video_metadata
      dtype: string
    - name: video_language
      dtype: string
    - name: chunk_media
      dtype: string
  splits:
    - name: shard_10339
      num_bytes: 1997009
      num_examples: 631
    - name: shard_10400
      num_bytes: 2638827
      num_examples: 722
    - name: shard_10324
      num_bytes: 1700655
      num_examples: 515
    - name: shard_10418
      num_bytes: 3034319
      num_examples: 947
    - name: shard_1045
      num_bytes: 2042334
      num_examples: 648
    - name: shard_10428
      num_bytes: 2314345
      num_examples: 706
    - name: shard_10435
      num_bytes: 2300183
      num_examples: 677
    - name: shard_10424
      num_bytes: 1839226
      num_examples: 552
    - name: shard_10442
      num_bytes: 1543285
      num_examples: 419
    - name: shard_10411
      num_bytes: 2005599
      num_examples: 604
    - name: shard_10344
      num_bytes: 1796239
      num_examples: 589
    - name: shard_10439
      num_bytes: 1780546
      num_examples: 567
    - name: shard_10351
      num_bytes: 2156111
      num_examples: 677
    - name: shard_10446
      num_bytes: 2117151
      num_examples: 525
    - name: shard_10457
      num_bytes: 1851306
      num_examples: 555
    - name: shard_10464
      num_bytes: 1316832
      num_examples: 440
    - name: shard_10405
      num_bytes: 1820556
      num_examples: 613
    - name: shard_10471
      num_bytes: 2397197
      num_examples: 682
    - name: shard_10456
      num_bytes: 1279577
      num_examples: 430
    - name: shard_1035
      num_bytes: 2102014
      num_examples: 687
    - name: shard_10430
      num_bytes: 2293697
      num_examples: 686
    - name: shard_10469
      num_bytes: 2521584
      num_examples: 743
    - name: shard_10360
      num_bytes: 2329044
      num_examples: 680
    - name: shard_10443
      num_bytes: 2222280
      num_examples: 641
    - name: shard_10453
      num_bytes: 3277011
      num_examples: 931
    - name: shard_10481
      num_bytes: 2163505
      num_examples: 709
    - name: shard_10482
      num_bytes: 1885620
      num_examples: 503
    - name: shard_10365
      num_bytes: 1789825
      num_examples: 453
    - name: shard_10475
      num_bytes: 2290432
      num_examples: 635
    - name: shard_10444
      num_bytes: 1915386
      num_examples: 550
    - name: shard_10493
      num_bytes: 2240928
      num_examples: 752
    - name: shard_10433
      num_bytes: 1728758
      num_examples: 554
    - name: shard_10486
      num_bytes: 1946726
      num_examples: 564
    - name: shard_1037
      num_bytes: 1622214
      num_examples: 464
    - name: shard_1049
      num_bytes: 2142677
      num_examples: 691
    - name: shard_10507
      num_bytes: 1404701
      num_examples: 444
    - name: shard_10479
      num_bytes: 2668644
      num_examples: 706
    - name: shard_10543
      num_bytes: 1567113
      num_examples: 498
    - name: shard_10494
      num_bytes: 2572169
      num_examples: 834
    - name: shard_10506
      num_bytes: 2352799
      num_examples: 689
    - name: shard_10497
      num_bytes: 2130672
      num_examples: 640
    - name: shard_10503
      num_bytes: 2821589
      num_examples: 657
    - name: shard_10488
      num_bytes: 2610372
      num_examples: 824
    - name: shard_1050
      num_bytes: 2380295
      num_examples: 610
    - name: shard_10379
      num_bytes: 2121338
      num_examples: 596
    - name: shard_10258
      num_bytes: 2899614
      num_examples: 881
    - name: shard_10521
      num_bytes: 1751228
      num_examples: 578
    - name: shard_10477
      num_bytes: 1987455
      num_examples: 610
    - name: shard_10510
      num_bytes: 1809438
      num_examples: 536
    - name: shard_10518
      num_bytes: 1554268
      num_examples: 534
    - name: shard_10514
      num_bytes: 2398872
      num_examples: 659
    - name: shard_10366
      num_bytes: 2686341
      num_examples: 715
    - name: shard_10462
      num_bytes: 3202984
      num_examples: 912
    - name: shard_10512
      num_bytes: 2058849
      num_examples: 697
    - name: shard_10558
      num_bytes: 2065125
      num_examples: 572
    - name: shard_10383
      num_bytes: 2580580
      num_examples: 859
    - name: shard_10550
      num_bytes: 2617491
      num_examples: 643
    - name: shard_10536
      num_bytes: 2352902
      num_examples: 649
    - name: shard_10529
      num_bytes: 1970611
      num_examples: 633
    - name: shard_10565
      num_bytes: 1569669
      num_examples: 522
    - name: shard_10538
      num_bytes: 2012923
      num_examples: 564
    - name: shard_10532
      num_bytes: 1839647
      num_examples: 594
    - name: shard_10531
      num_bytes: 2125990
      num_examples: 618
    - name: shard_10382
      num_bytes: 1770026
      num_examples: 493
    - name: shard_1058
      num_bytes: 1707150
      num_examples: 491
    - name: shard_10525
      num_bytes: 3210740
      num_examples: 892
    - name: shard_10594
      num_bytes: 1369358
      num_examples: 458
    - name: shard_10572
      num_bytes: 1859423
      num_examples: 489
    - name: shard_1054
      num_bytes: 2011157
      num_examples: 601
    - name: shard_10396
      num_bytes: 3458836
      num_examples: 956
    - name: shard_10608
      num_bytes: 2063015
      num_examples: 625
    - name: shard_10554
      num_bytes: 2017977
      num_examples: 529
    - name: shard_10600
      num_bytes: 1895994
      num_examples: 568
    - name: shard_10509
      num_bytes: 1324378
      num_examples: 402
    - name: shard_10399
      num_bytes: 2104822
      num_examples: 713
    - name: shard_10409
      num_bytes: 1595466
      num_examples: 476
    - name: shard_10563
      num_bytes: 2209694
      num_examples: 792
    - name: shard_10583
      num_bytes: 2328975
      num_examples: 681
    - name: shard_10397
      num_bytes: 1736501
      num_examples: 585
    - name: shard_10595
      num_bytes: 2393314
      num_examples: 705
    - name: shard_10414
      num_bytes: 1946475
      num_examples: 625
    - name: shard_10622
      num_bytes: 2213391
      num_examples: 641
    - name: shard_10590
      num_bytes: 2321541
      num_examples: 778
    - name: shard_1042
      num_bytes: 1894737
      num_examples: 584
    - name: shard_10613
      num_bytes: 2204566
      num_examples: 656
    - name: shard_1062
      num_bytes: 2548349
      num_examples: 795
    - name: shard_10607
      num_bytes: 2501284
      num_examples: 706
    - name: shard_10587
      num_bytes: 3077388
      num_examples: 876
    - name: shard_10589
      num_bytes: 1711464
      num_examples: 519
    - name: shard_10637
      num_bytes: 2165818
      num_examples: 687
    - name: shard_10659
      num_bytes: 1797910
      num_examples: 617
    - name: shard_10626
      num_bytes: 1543683
      num_examples: 469
    - name: shard_10552
      num_bytes: 1997256
      num_examples: 581
    - name: shard_10436
      num_bytes: 1948404
      num_examples: 648
    - name: shard_10645
      num_bytes: 1932871
      num_examples: 599
    - name: shard_10604
      num_bytes: 2224582
      num_examples: 580
    - name: shard_10632
      num_bytes: 3291451
      num_examples: 839
    - name: shard_10611
      num_bytes: 2496793
      num_examples: 744
    - name: shard_10673
      num_bytes: 2019733
      num_examples: 571
    - name: shard_10651
      num_bytes: 2494834
      num_examples: 814
    - name: shard_1063
      num_bytes: 2285316
      num_examples: 567
    - name: shard_10670
      num_bytes: 1678940
      num_examples: 520
    - name: shard_10633
      num_bytes: 1144822
      num_examples: 317
    - name: shard_10639
      num_bytes: 1980963
      num_examples: 591
    - name: shard_10574
      num_bytes: 2322077
      num_examples: 650
    - name: shard_10658
      num_bytes: 2610634
      num_examples: 804
    - name: shard_10664
      num_bytes: 2138512
      num_examples: 664
    - name: shard_10640
      num_bytes: 2138491
      num_examples: 632
    - name: shard_10648
      num_bytes: 2334731
      num_examples: 637
    - name: shard_10701
      num_bytes: 2025707
      num_examples: 644
    - name: shard_10677
      num_bytes: 1719218
      num_examples: 559
    - name: shard_10688
      num_bytes: 1998554
      num_examples: 607
    - name: shard_10680
      num_bytes: 1800096
      num_examples: 546
    - name: shard_10596
      num_bytes: 1541386
      num_examples: 471
    - name: shard_10441
      num_bytes: 1993580
      num_examples: 597
    - name: shard_10683
      num_bytes: 2145354
      num_examples: 638
    - name: shard_10684
      num_bytes: 2049918
      num_examples: 600
    - name: shard_10696
      num_bytes: 2556611
      num_examples: 704
    - name: shard_10733
      num_bytes: 1506424
      num_examples: 562
    - name: shard_10716
      num_bytes: 1373410
      num_examples: 382
    - name: shard_10447
      num_bytes: 1789843
      num_examples: 552
    - name: shard_10727
      num_bytes: 1704350
      num_examples: 542
    - name: shard_1074
      num_bytes: 2202555
      num_examples: 627
    - name: shard_10662
      num_bytes: 2446389
      num_examples: 678
    - name: shard_10714
      num_bytes: 2864249
      num_examples: 997
    - name: shard_10655
      num_bytes: 2225408
      num_examples: 664
    - name: shard_10767
      num_bytes: 1883617
      num_examples: 587
    - name: shard_10745
      num_bytes: 1815089
      num_examples: 506
    - name: shard_1076
      num_bytes: 1881592
      num_examples: 567
    - name: shard_10746
      num_bytes: 2077697
      num_examples: 569
    - name: shard_10752
      num_bytes: 1633548
      num_examples: 480
    - name: shard_10774
      num_bytes: 1967064
      num_examples: 525
    - name: shard_10796
      num_bytes: 3216389
      num_examples: 1149
    - name: shard_10741
      num_bytes: 1741749
      num_examples: 495
    - name: shard_10771
      num_bytes: 1431999
      num_examples: 465
    - name: shard_1081
      num_bytes: 1902619
      num_examples: 593
    - name: shard_10691
      num_bytes: 1615444
      num_examples: 509
    - name: shard_10781
      num_bytes: 1758513
      num_examples: 521
    - name: shard_1072
      num_bytes: 1666222
      num_examples: 508
    - name: shard_10789
      num_bytes: 2290621
      num_examples: 663
    - name: shard_10824
      num_bytes: 2303055
      num_examples: 755
    - name: shard_10720
      num_bytes: 1521373
      num_examples: 439
    - name: shard_10699
      num_bytes: 2219222
      num_examples: 687
    - name: shard_10809
      num_bytes: 2491367
      num_examples: 670
    - name: shard_10868
      num_bytes: 1502120
      num_examples: 457
    - name: shard_10860
      num_bytes: 1598902
      num_examples: 444
    - name: shard_10756
      num_bytes: 1741295
      num_examples: 519
    - name: shard_10875
      num_bytes: 2376365
      num_examples: 689
    - name: shard_10628
      num_bytes: 1590374
      num_examples: 486
    - name: shard_10759
      num_bytes: 1968808
      num_examples: 578
    - name: shard_10784
      num_bytes: 1980905
      num_examples: 566
    - name: shard_10712
      num_bytes: 2114475
      num_examples: 769
    - name: shard_10734
      num_bytes: 2503133
      num_examples: 805
    - name: shard_10846
      num_bytes: 1390416
      num_examples: 440
    - name: shard_10705
      num_bytes: 2401860
      num_examples: 915
    - name: shard_10831
      num_bytes: 1444555
      num_examples: 430
    - name: shard_10778
      num_bytes: 1798802
      num_examples: 508
    - name: shard_10882
      num_bytes: 3060842
      num_examples: 861
    - name: shard_1089
      num_bytes: 2117693
      num_examples: 617
    - name: shard_10897
      num_bytes: 1800552
      num_examples: 579
    - name: shard_10853
      num_bytes: 2401097
      num_examples: 838
    - name: shard_10463
      num_bytes: 1953012
      num_examples: 575
    - name: shard_10815
      num_bytes: 2002715
      num_examples: 568
    - name: shard_10763
      num_bytes: 2020642
      num_examples: 530
    - name: shard_10797
      num_bytes: 2748982
      num_examples: 842
    - name: shard_10918
      num_bytes: 2450845
      num_examples: 727
    - name: shard_10910
      num_bytes: 1797180
      num_examples: 527
    - name: shard_1065
      num_bytes: 1683705
      num_examples: 476
    - name: shard_10474
      num_bytes: 2879834
      num_examples: 885
    - name: shard_10932
      num_bytes: 1565556
      num_examples: 551
    - name: shard_10770
      num_bytes: 2959467
      num_examples: 837
    - name: shard_10840
      num_bytes: 1508428
      num_examples: 488
    - name: shard_10821
      num_bytes: 2731613
      num_examples: 757
    - name: shard_10925
      num_bytes: 1745133
      num_examples: 528
    - name: shard_10660
      num_bytes: 1743349
      num_examples: 544
    - name: shard_10947
      num_bytes: 1676536
      num_examples: 484
    - name: shard_10866
      num_bytes: 2890471
      num_examples: 812
    - name: shard_10872
      num_bytes: 1577472
      num_examples: 524
    - name: shard_10879
      num_bytes: 1872624
      num_examples: 615
    - name: shard_1094
      num_bytes: 2318756
      num_examples: 639
    - name: shard_10983
      num_bytes: 2303128
      num_examples: 722
    - name: shard_10929
      num_bytes: 1707341
      num_examples: 528
    - name: shard_10857
      num_bytes: 1610649
      num_examples: 512
    - name: shard_10485
      num_bytes: 1242974
      num_examples: 395
    - name: shard_10969
      num_bytes: 2438237
      num_examples: 609
    - name: shard_10976
      num_bytes: 2679099
      num_examples: 753
    - name: shard_10990
      num_bytes: 2114418
      num_examples: 651
    - name: shard_10885
      num_bytes: 1644987
      num_examples: 492
    - name: shard_1085
      num_bytes: 1778292
      num_examples: 588
    - name: shard_1048
      num_bytes: 2360317
      num_examples: 744
    - name: shard_10922
      num_bytes: 1937906
      num_examples: 641
    - name: shard_1091
      num_bytes: 2080799
      num_examples: 701
    - name: shard_108
      num_bytes: 1849042
      num_examples: 553
    - name: shard_10813
      num_bytes: 2399853
      num_examples: 736
    - name: shard_10935
      num_bytes: 3427617
      num_examples: 848
    - name: shard_10864
      num_bytes: 2676369
      num_examples: 731
    - name: shard_11010
      num_bytes: 1311128
      num_examples: 452
    - name: shard_10998
      num_bytes: 1936638
      num_examples: 516
    - name: shard_11003
      num_bytes: 3035444
      num_examples: 850
    - name: shard_10490
      num_bytes: 2059200
      num_examples: 636
    - name: shard_10886
      num_bytes: 1592390
      num_examples: 462
    - name: shard_10948
      num_bytes: 2410338
      num_examples: 766
    - name: shard_11032
      num_bytes: 2392294
      num_examples: 661
    - name: shard_1090
      num_bytes: 1729394
      num_examples: 518
    - name: shard_10973
      num_bytes: 1874095
      num_examples: 543
    - name: shard_10893
      num_bytes: 2438998
      num_examples: 752
    - name: shard_10671
      num_bytes: 2373850
      num_examples: 581
    - name: shard_10496
      num_bytes: 2672925
      num_examples: 772
    - name: shard_10871
      num_bytes: 2666803
      num_examples: 744
    - name: shard_10960
      num_bytes: 2586483
      num_examples: 789
    - name: shard_10941
      num_bytes: 2750219
      num_examples: 937
    - name: shard_11047
      num_bytes: 1940080
      num_examples: 545
    - name: shard_11025
      num_bytes: 1900405
      num_examples: 569
    - name: shard_10967
      num_bytes: 4183264
      num_examples: 996
    - name: shard_10206
      num_bytes: 3714862
      num_examples: 891
    - name: shard_11018
      num_bytes: 3019471
      num_examples: 871
    - name: shard_10914
      num_bytes: 1980877
      num_examples: 552
    - name: shard_10992
      num_bytes: 1580255
      num_examples: 484
    - name: shard_10606
      num_bytes: 2584262
      num_examples: 640
    - name: shard_10999
      num_bytes: 1950388
      num_examples: 551
    - name: shard_10921
      num_bytes: 2477762
      num_examples: 743
    - name: shard_10315
      num_bytes: 2911312
      num_examples: 743
    - name: shard_10419
      num_bytes: 2586408
      num_examples: 667
    - name: shard_11054
      num_bytes: 2011864
      num_examples: 594
    - name: shard_10289
      num_bytes: 3470407
      num_examples: 963
    - name: shard_10835
      num_bytes: 3026775
      num_examples: 806
    - name: shard_10298
      num_bytes: 2823620
      num_examples: 791
    - name: shard_10455
      num_bytes: 3275368
      num_examples: 750
    - name: shard_10311
      num_bytes: 4072154
      num_examples: 1148
    - name: shard_11090
      num_bytes: 3270282
      num_examples: 858
    - name: shard_11035
      num_bytes: 1447049
      num_examples: 458
    - name: shard_11022
      num_bytes: 2185853
      num_examples: 652
    - name: shard_11111
      num_bytes: 2068341
      num_examples: 615
    - name: shard_11119
      num_bytes: 1970512
      num_examples: 580
    - name: shard_11126
      num_bytes: 1703981
      num_examples: 523
  download_size: 314533805
  dataset_size: 506056044
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/*.parquet
      - split: shard_10339
        path: data/shard_10339-*
      - split: shard_10400
        path: data/shard_10400-*
      - split: shard_10424
        path: data/shard_10424-*
      - split: shard_10324
        path: data/shard_10324-*
      - split: shard_10428
        path: data/shard_10428-*
      - split: shard_10258
        path: data/shard_10258-*
      - split: shard_10396
        path: data/shard_10396-*
      - split: shard_10411
        path: data/shard_10411-*
      - split: shard_10418
        path: data/shard_10418-*
      - split: shard_10206
        path: data/shard_10206-*
      - split: shard_10442
        path: data/shard_10442-*
      - split: shard_1045
        path: data/shard_1045-*
      - split: shard_10289
        path: data/shard_10289-*
      - split: shard_10298
        path: data/shard_10298-*
      - split: shard_10344
        path: data/shard_10344-*
      - split: shard_10435
        path: data/shard_10435-*
      - split: shard_10311
        path: data/shard_10311-*
      - split: shard_10405
        path: data/shard_10405-*
      - split: shard_10464
        path: data/shard_10464-*
      - split: shard_10457
        path: data/shard_10457-*
      - split: shard_10439
        path: data/shard_10439-*
      - split: shard_10351
        path: data/shard_10351-*
      - split: shard_10446
        path: data/shard_10446-*
      - split: shard_10315
        path: data/shard_10315-*
      - split: shard_10471
        path: data/shard_10471-*
      - split: shard_1035
        path: data/shard_1035-*
      - split: shard_10456
        path: data/shard_10456-*
      - split: shard_10486
        path: data/shard_10486-*
      - split: shard_10430
        path: data/shard_10430-*
      - split: shard_10469
        path: data/shard_10469-*
      - split: shard_10360
        path: data/shard_10360-*
      - split: shard_10443
        path: data/shard_10443-*
      - split: shard_10453
        path: data/shard_10453-*
      - split: shard_10462
        path: data/shard_10462-*
      - split: shard_10481
        path: data/shard_10481-*
      - split: shard_10482
        path: data/shard_10482-*
      - split: shard_10365
        path: data/shard_10365-*
      - split: shard_10475
        path: data/shard_10475-*
      - split: shard_10444
        path: data/shard_10444-*
      - split: shard_10493
        path: data/shard_10493-*
      - split: shard_10433
        path: data/shard_10433-*
      - split: shard_1037
        path: data/shard_1037-*
      - split: shard_1049
        path: data/shard_1049-*
      - split: shard_10507
        path: data/shard_10507-*
      - split: shard_10521
        path: data/shard_10521-*
      - split: shard_10479
        path: data/shard_10479-*
      - split: shard_10543
        path: data/shard_10543-*
      - split: shard_10494
        path: data/shard_10494-*
      - split: shard_10565
        path: data/shard_10565-*
      - split: shard_10558
        path: data/shard_10558-*
      - split: shard_10506
        path: data/shard_10506-*
      - split: shard_10497
        path: data/shard_10497-*
      - split: shard_10503
        path: data/shard_10503-*
      - split: shard_10488
        path: data/shard_10488-*
      - split: shard_1050
        path: data/shard_1050-*
      - split: shard_10379
        path: data/shard_10379-*
      - split: shard_10366
        path: data/shard_10366-*
      - split: shard_10512
        path: data/shard_10512-*
      - split: shard_10529
        path: data/shard_10529-*
      - split: shard_10477
        path: data/shard_10477-*
      - split: shard_10510
        path: data/shard_10510-*
      - split: shard_10518
        path: data/shard_10518-*
      - split: shard_10514
        path: data/shard_10514-*
      - split: shard_10383
        path: data/shard_10383-*
      - split: shard_10550
        path: data/shard_10550-*
      - split: shard_10525
        path: data/shard_10525-*
      - split: shard_10536
        path: data/shard_10536-*
      - split: shard_10531
        path: data/shard_10531-*
      - split: shard_10538
        path: data/shard_10538-*
      - split: shard_10532
        path: data/shard_10532-*
      - split: shard_10382
        path: data/shard_10382-*
      - split: shard_10509
        path: data/shard_10509-*
      - split: shard_10572
        path: data/shard_10572-*
      - split: shard_1058
        path: data/shard_1058-*
      - split: shard_10455
        path: data/shard_10455-*
      - split: shard_10594
        path: data/shard_10594-*
      - split: shard_10587
        path: data/shard_10587-*
      - split: shard_1054
        path: data/shard_1054-*
      - split: shard_10608
        path: data/shard_10608-*
      - split: shard_10554
        path: data/shard_10554-*
      - split: shard_10563
        path: data/shard_10563-*
      - split: shard_10600
        path: data/shard_10600-*
      - split: shard_10399
        path: data/shard_10399-*
      - split: shard_10409
        path: data/shard_10409-*
      - split: shard_10583
        path: data/shard_10583-*
      - split: shard_10397
        path: data/shard_10397-*
      - split: shard_10595
        path: data/shard_10595-*
      - split: shard_10414
        path: data/shard_10414-*
      - split: shard_10589
        path: data/shard_10589-*
      - split: shard_10622
        path: data/shard_10622-*
      - split: shard_1042
        path: data/shard_1042-*
      - split: shard_10613
        path: data/shard_10613-*
      - split: shard_1062
        path: data/shard_1062-*
      - split: shard_10626
        path: data/shard_10626-*
      - split: shard_10590
        path: data/shard_10590-*
      - split: shard_10659
        path: data/shard_10659-*
      - split: shard_10651
        path: data/shard_10651-*
      - split: shard_10607
        path: data/shard_10607-*
      - split: shard_10637
        path: data/shard_10637-*
      - split: shard_10552
        path: data/shard_10552-*
      - split: shard_10436
        path: data/shard_10436-*
      - split: shard_10645
        path: data/shard_10645-*
      - split: shard_10604
        path: data/shard_10604-*
      - split: shard_10632
        path: data/shard_10632-*
      - split: shard_10611
        path: data/shard_10611-*
      - split: shard_1063
        path: data/shard_1063-*
      - split: shard_10673
        path: data/shard_10673-*
      - split: shard_10419
        path: data/shard_10419-*
      - split: shard_10633
        path: data/shard_10633-*
      - split: shard_10670
        path: data/shard_10670-*
      - split: shard_10680
        path: data/shard_10680-*
      - split: shard_10639
        path: data/shard_10639-*
      - split: shard_10574
        path: data/shard_10574-*
      - split: shard_10658
        path: data/shard_10658-*
      - split: shard_10664
        path: data/shard_10664-*
      - split: shard_10640
        path: data/shard_10640-*
      - split: shard_10648
        path: data/shard_10648-*
      - split: shard_10688
        path: data/shard_10688-*
      - split: shard_10701
        path: data/shard_10701-*
      - split: shard_10677
        path: data/shard_10677-*
      - split: shard_10596
        path: data/shard_10596-*
      - split: shard_10441
        path: data/shard_10441-*
      - split: shard_10683
        path: data/shard_10683-*
      - split: shard_10684
        path: data/shard_10684-*
      - split: shard_10696
        path: data/shard_10696-*
      - split: shard_10606
        path: data/shard_10606-*
      - split: shard_10733
        path: data/shard_10733-*
      - split: shard_10691
        path: data/shard_10691-*
      - split: shard_10699
        path: data/shard_10699-*
      - split: shard_10716
        path: data/shard_10716-*
      - split: shard_10752
        path: data/shard_10752-*
      - split: shard_10447
        path: data/shard_10447-*
      - split: shard_1076
        path: data/shard_1076-*
      - split: shard_10727
        path: data/shard_10727-*
      - split: shard_10746
        path: data/shard_10746-*
      - split: shard_1074
        path: data/shard_1074-*
      - split: shard_10662
        path: data/shard_10662-*
      - split: shard_10714
        path: data/shard_10714-*
      - split: shard_10655
        path: data/shard_10655-*
      - split: shard_10767
        path: data/shard_10767-*
      - split: shard_10720
        path: data/shard_10720-*
      - split: shard_10745
        path: data/shard_10745-*
      - split: shard_1072
        path: data/shard_1072-*
      - split: shard_10774
        path: data/shard_10774-*
      - split: shard_10781
        path: data/shard_10781-*
      - split: shard_10789
        path: data/shard_10789-*
      - split: shard_10796
        path: data/shard_10796-*
      - split: shard_10778
        path: data/shard_10778-*
      - split: shard_10734
        path: data/shard_10734-*
      - split: shard_10741
        path: data/shard_10741-*
      - split: shard_10771
        path: data/shard_10771-*
      - split: shard_1081
        path: data/shard_1081-*
      - split: shard_10831
        path: data/shard_10831-*
      - split: shard_10705
        path: data/shard_10705-*
      - split: shard_10784
        path: data/shard_10784-*
      - split: shard_10846
        path: data/shard_10846-*
      - split: shard_10824
        path: data/shard_10824-*
      - split: shard_10809
        path: data/shard_10809-*
      - split: shard_10756
        path: data/shard_10756-*
      - split: shard_10853
        path: data/shard_10853-*
      - split: shard_10797
        path: data/shard_10797-*
      - split: shard_10868
        path: data/shard_10868-*
      - split: shard_10815
        path: data/shard_10815-*
      - split: shard_10860
        path: data/shard_10860-*
      - split: shard_10763
        path: data/shard_10763-*
      - split: shard_10875
        path: data/shard_10875-*
      - split: shard_10759
        path: data/shard_10759-*
      - split: shard_10628
        path: data/shard_10628-*
      - split: shard_10712
        path: data/shard_10712-*
      - split: shard_10882
        path: data/shard_10882-*
      - split: shard_1089
        path: data/shard_1089-*
      - split: shard_10897
        path: data/shard_10897-*
      - split: shard_10463
        path: data/shard_10463-*
      - split: shard_10918
        path: data/shard_10918-*
      - split: shard_10840
        path: data/shard_10840-*
      - split: shard_10932
        path: data/shard_10932-*
      - split: shard_10910
        path: data/shard_10910-*
      - split: shard_1065
        path: data/shard_1065-*
      - split: shard_10474
        path: data/shard_10474-*
      - split: shard_10770
        path: data/shard_10770-*
      - split: shard_10821
        path: data/shard_10821-*
      - split: shard_10925
        path: data/shard_10925-*
      - split: shard_1094
        path: data/shard_1094-*
      - split: shard_10660
        path: data/shard_10660-*
      - split: shard_10947
        path: data/shard_10947-*
      - split: shard_10866
        path: data/shard_10866-*
      - split: shard_10872
        path: data/shard_10872-*
      - split: shard_10879
        path: data/shard_10879-*
      - split: shard_10671
        path: data/shard_10671-*
      - split: shard_1091
        path: data/shard_1091-*
      - split: shard_10983
        path: data/shard_10983-*
      - split: shard_10929
        path: data/shard_10929-*
      - split: shard_10857
        path: data/shard_10857-*
      - split: shard_10485
        path: data/shard_10485-*
      - split: shard_10969
        path: data/shard_10969-*
      - split: shard_10976
        path: data/shard_10976-*
      - split: shard_10935
        path: data/shard_10935-*
      - split: shard_10948
        path: data/shard_10948-*
      - split: shard_10990
        path: data/shard_10990-*
      - split: shard_10998
        path: data/shard_10998-*
      - split: shard_10885
        path: data/shard_10885-*
      - split: shard_1085
        path: data/shard_1085-*
      - split: shard_10922
        path: data/shard_10922-*
      - split: shard_1048
        path: data/shard_1048-*
      - split: shard_108
        path: data/shard_108-*
      - split: shard_10813
        path: data/shard_10813-*
      - split: shard_10864
        path: data/shard_10864-*
      - split: shard_11010
        path: data/shard_11010-*
      - split: shard_11003
        path: data/shard_11003-*
      - split: shard_11018
        path: data/shard_11018-*
      - split: shard_11025
        path: data/shard_11025-*
      - split: shard_10490
        path: data/shard_10490-*
      - split: shard_10886
        path: data/shard_10886-*
      - split: shard_11032
        path: data/shard_11032-*
      - split: shard_1090
        path: data/shard_1090-*
      - split: shard_10973
        path: data/shard_10973-*
      - split: shard_10893
        path: data/shard_10893-*
      - split: shard_10496
        path: data/shard_10496-*
      - split: shard_10871
        path: data/shard_10871-*
      - split: shard_10960
        path: data/shard_10960-*
      - split: shard_10941
        path: data/shard_10941-*
      - split: shard_11047
        path: data/shard_11047-*
      - split: shard_10967
        path: data/shard_10967-*
      - split: shard_10835
        path: data/shard_10835-*
      - split: shard_10914
        path: data/shard_10914-*
      - split: shard_10992
        path: data/shard_10992-*
      - split: shard_10999
        path: data/shard_10999-*
      - split: shard_10921
        path: data/shard_10921-*
      - split: shard_11054
        path: data/shard_11054-*
      - split: shard_11090
        path: data/shard_11090-*
      - split: shard_11035
        path: data/shard_11035-*
      - split: shard_11022
        path: data/shard_11022-*
      - split: shard_11111
        path: data/shard_11111-*
      - split: shard_11119
        path: data/shard_11119-*
      - split: shard_11126
        path: data/shard_11126-*

VALID Dataset

VALID (Video-Audio Large Interleaved Dataset)

Overview

The VALID (Video-Audio Large Interleaved Dataset) is a multimodal dataset comprising approximately 720,000 Creative Commons licensed videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.

  • Please note the current version is a PREVIEW version. We are still in the process of uploading. Please be patient.

Features

  • Audio-Video-Text Format: A combination of:
<video>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
  • The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well. Even though each audio video snippets are no more than 10 seconds, a data record may span over more than 10 secs (e.g., if a data item has two 10 second videos, then the corresponding English text corresponds roughly to 20 seconds of video). The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion.

  • Data Components:

    • Images: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2.
    • Audio: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English.
    • Text: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.
  • Dataset Size:

    • About 7,000,000 records.
    • About 15,000,000 images, each captioned with FLorence-2.
    • About 30,000,000 audio snippets, about half of which transcribed with Whisper-large, and half with Youtube ASR.
    • Divided into about 12K shards of about 600 records, each in a parquet file and a corresponding .tar.gz file for the media.
    • About 14TB in total.

File Organization

  • Each data entry follows the <video><image(s)><audio><text> structure as described above.
  • Metadata includes alignment between modalities, and implicit ordering of audio/visual elements.

Multimodal Details

  • Audio-Video Alignment: Snippets allow learning temporal relationships between audio and visual elements.
  • Text Annotations: Text descriptions, including captions and Youtube ASR English translations, provide linguistic alignment.

Preprocessing

  • Phashing for Images: Ensures that images within the dataset are dynamic and non-static.
  • Audio Snippet Lengths: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns under fair use principles.

Licenses

All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the audio snippets of these videos and select image frames here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content. This dataset has only been lightly filtered for safety by removing data records with high proportions of children related words AND high proportions of sexual or violence related words. Moreover, we disclaim all warranties, whether express or implied and all laibilities with respect to infringment, fitness for a particular puprpose, or otherwise.

Intended Uses

  • Primary Use Case: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP, CLAP).
  • Not Recommended For: Generation tasks, as the dataset's quality may not meet generative model requirements.

Dataset Limitations

  • Quality: Images and audio are sourced from YouTube and may vary in resolution and clarity.
  • Rights Uncertainty: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
  • Biases: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias.

Ethical Considerations

The dataset was built under the principles of fair use and CC-BY licensing. Its creation strives to align with the spirit of the EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.


Policy for Managing Video Deletion Requests

Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.

  • 1. Respecting Content Owners' Rights: All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license. If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.

  • 2. Deletion Request Process:

    • Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: Here and Here.
    • Then the onwers or users should verify that it has been removed from YouTube and provide this fact in a feedback to us Here.
    • Requests must demonstrate that the video is no longer publicly available on YouTube.
    • We will remove the videos confirmed to be deleted in the next release of this dataset.
  • 3. Verification and Balancing Interests: All deletion requests will be verified by checking YouTube to ensure the video is no longer available. We may also remove a video in our sole discretion. Decisions on video removal will take into account:

  • The rights and wishes of content owners, including their ability to remove their videos from public availability.

  • The community's need for robust datasets for training and research.

  • The spirit of the CC-BY license, which permits redistribution and use with proper attribution.

  • 4. Responsibilities for Derivative Datasets: Users creating derivative datasets must ensure compliance by deleting videos listed in delete_these_videos.json.

  • 5. Proactive Deletion: Videos may be removed proactively under the following circumstances:

  • Requests from the hosting provider (e.g., Hugging Face).

  • Legal requirements or enforcement actions.

  • Internal decisions.

  • 6. Community Considerations:

  • The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.

  • Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.

  • 7. Updates: Users are encouraged to check the delete_these_videos.json, from time to time to ensure their copy of the dataset is up to date.


Related Materials:

  • If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ YouTube-Commons.
  • Also, Huggingface has created an excellent CC-BY Youtube video dataset here: Finevideo
  • LAION is also building a dataset Here which includes Youtube audio snippets paired with Gemini generated captions.

Acknowledgement and Thanks

This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of our SafeLLM/Aurora-M2 project in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank Huggingface and the open source community for their support.

About the Contributors:

  • Grass is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io
  • LAION, is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.
  • Ontocord is dedicated to making legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.
  • Alignment Lab AI: Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives. We believe everyone deserves to harness the power of personal intelligence.
  • And many others ...

Citation

@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}