license: cc-by-sa-4.0
dataset_info:
features:
- name: video_id
dtype: string
- name: chunk_idx
dtype: int64
- name: chunk_text
dtype: string
- name: video_metadata
dtype: string
- name: video_language
dtype: string
- name: chunk_media
dtype: string
splits:
- name: shard_10339
num_bytes: 1997009
num_examples: 631
- name: shard_10400
num_bytes: 2638827
num_examples: 722
- name: shard_10324
num_bytes: 1700655
num_examples: 515
- name: shard_10418
num_bytes: 3034319
num_examples: 947
- name: shard_1045
num_bytes: 2042334
num_examples: 648
- name: shard_10428
num_bytes: 2314345
num_examples: 706
- name: shard_10435
num_bytes: 2300183
num_examples: 677
- name: shard_10424
num_bytes: 1839226
num_examples: 552
- name: shard_10442
num_bytes: 1543285
num_examples: 419
- name: shard_10411
num_bytes: 2005599
num_examples: 604
- name: shard_10344
num_bytes: 1796239
num_examples: 589
- name: shard_10439
num_bytes: 1780546
num_examples: 567
- name: shard_10351
num_bytes: 2156111
num_examples: 677
- name: shard_10446
num_bytes: 2117151
num_examples: 525
- name: shard_10457
num_bytes: 1851306
num_examples: 555
- name: shard_10464
num_bytes: 1316832
num_examples: 440
- name: shard_10405
num_bytes: 1820556
num_examples: 613
- name: shard_10471
num_bytes: 2397197
num_examples: 682
- name: shard_10456
num_bytes: 1279577
num_examples: 430
- name: shard_1035
num_bytes: 2102014
num_examples: 687
- name: shard_10430
num_bytes: 2293697
num_examples: 686
- name: shard_10469
num_bytes: 2521584
num_examples: 743
- name: shard_10360
num_bytes: 2329044
num_examples: 680
- name: shard_10443
num_bytes: 2222280
num_examples: 641
- name: shard_10453
num_bytes: 3277011
num_examples: 931
- name: shard_10481
num_bytes: 2163505
num_examples: 709
- name: shard_10482
num_bytes: 1885620
num_examples: 503
- name: shard_10365
num_bytes: 1789825
num_examples: 453
- name: shard_10475
num_bytes: 2290432
num_examples: 635
- name: shard_10444
num_bytes: 1915386
num_examples: 550
- name: shard_10493
num_bytes: 2240928
num_examples: 752
- name: shard_10433
num_bytes: 1728758
num_examples: 554
- name: shard_10486
num_bytes: 1946726
num_examples: 564
- name: shard_1037
num_bytes: 1622214
num_examples: 464
- name: shard_1049
num_bytes: 2142677
num_examples: 691
- name: shard_10507
num_bytes: 1404701
num_examples: 444
- name: shard_10479
num_bytes: 2668644
num_examples: 706
- name: shard_10543
num_bytes: 1567113
num_examples: 498
- name: shard_10494
num_bytes: 2572169
num_examples: 834
- name: shard_10506
num_bytes: 2352799
num_examples: 689
- name: shard_10497
num_bytes: 2130672
num_examples: 640
- name: shard_10503
num_bytes: 2821589
num_examples: 657
- name: shard_10488
num_bytes: 2610372
num_examples: 824
- name: shard_1050
num_bytes: 2380295
num_examples: 610
- name: shard_10379
num_bytes: 2121338
num_examples: 596
- name: shard_10258
num_bytes: 2899614
num_examples: 881
- name: shard_10521
num_bytes: 1751228
num_examples: 578
- name: shard_10477
num_bytes: 1987455
num_examples: 610
- name: shard_10510
num_bytes: 1809438
num_examples: 536
- name: shard_10518
num_bytes: 1554268
num_examples: 534
- name: shard_10514
num_bytes: 2398872
num_examples: 659
- name: shard_10366
num_bytes: 2686341
num_examples: 715
- name: shard_10462
num_bytes: 3202984
num_examples: 912
- name: shard_10512
num_bytes: 2058849
num_examples: 697
- name: shard_10558
num_bytes: 2065125
num_examples: 572
- name: shard_10383
num_bytes: 2580580
num_examples: 859
- name: shard_10550
num_bytes: 2617491
num_examples: 643
- name: shard_10536
num_bytes: 2352902
num_examples: 649
- name: shard_10529
num_bytes: 1970611
num_examples: 633
- name: shard_10565
num_bytes: 1569669
num_examples: 522
- name: shard_10538
num_bytes: 2012923
num_examples: 564
- name: shard_10532
num_bytes: 1839647
num_examples: 594
- name: shard_10531
num_bytes: 2125990
num_examples: 618
- name: shard_10382
num_bytes: 1770026
num_examples: 493
- name: shard_1058
num_bytes: 1707150
num_examples: 491
- name: shard_10525
num_bytes: 3210740
num_examples: 892
- name: shard_10594
num_bytes: 1369358
num_examples: 458
- name: shard_10572
num_bytes: 1859423
num_examples: 489
- name: shard_1054
num_bytes: 2011157
num_examples: 601
- name: shard_10396
num_bytes: 3458836
num_examples: 956
- name: shard_10608
num_bytes: 2063015
num_examples: 625
- name: shard_10554
num_bytes: 2017977
num_examples: 529
- name: shard_10600
num_bytes: 1895994
num_examples: 568
- name: shard_10509
num_bytes: 1324378
num_examples: 402
- name: shard_10399
num_bytes: 2104822
num_examples: 713
- name: shard_10409
num_bytes: 1595466
num_examples: 476
- name: shard_10563
num_bytes: 2209694
num_examples: 792
- name: shard_10583
num_bytes: 2328975
num_examples: 681
- name: shard_10397
num_bytes: 1736501
num_examples: 585
- name: shard_10595
num_bytes: 2393314
num_examples: 705
- name: shard_10414
num_bytes: 1946475
num_examples: 625
- name: shard_10622
num_bytes: 2213391
num_examples: 641
- name: shard_10590
num_bytes: 2321541
num_examples: 778
- name: shard_1042
num_bytes: 1894737
num_examples: 584
- name: shard_10613
num_bytes: 2204566
num_examples: 656
- name: shard_1062
num_bytes: 2548349
num_examples: 795
- name: shard_10607
num_bytes: 2501284
num_examples: 706
- name: shard_10587
num_bytes: 3077388
num_examples: 876
- name: shard_10589
num_bytes: 1711464
num_examples: 519
- name: shard_10637
num_bytes: 2165818
num_examples: 687
- name: shard_10659
num_bytes: 1797910
num_examples: 617
- name: shard_10626
num_bytes: 1543683
num_examples: 469
- name: shard_10552
num_bytes: 1997256
num_examples: 581
- name: shard_10436
num_bytes: 1948404
num_examples: 648
- name: shard_10645
num_bytes: 1932871
num_examples: 599
- name: shard_10604
num_bytes: 2224582
num_examples: 580
- name: shard_10632
num_bytes: 3291451
num_examples: 839
- name: shard_10611
num_bytes: 2496793
num_examples: 744
- name: shard_10673
num_bytes: 2019733
num_examples: 571
- name: shard_10651
num_bytes: 2494834
num_examples: 814
- name: shard_1063
num_bytes: 2285316
num_examples: 567
- name: shard_10670
num_bytes: 1678940
num_examples: 520
- name: shard_10633
num_bytes: 1144822
num_examples: 317
- name: shard_10639
num_bytes: 1980963
num_examples: 591
- name: shard_10574
num_bytes: 2322077
num_examples: 650
- name: shard_10658
num_bytes: 2610634
num_examples: 804
- name: shard_10664
num_bytes: 2138512
num_examples: 664
- name: shard_10640
num_bytes: 2138491
num_examples: 632
- name: shard_10648
num_bytes: 2334731
num_examples: 637
- name: shard_10701
num_bytes: 2025707
num_examples: 644
- name: shard_10677
num_bytes: 1719218
num_examples: 559
- name: shard_10688
num_bytes: 1998554
num_examples: 607
- name: shard_10680
num_bytes: 1800096
num_examples: 546
- name: shard_10596
num_bytes: 1541386
num_examples: 471
- name: shard_10441
num_bytes: 1993580
num_examples: 597
- name: shard_10683
num_bytes: 2145354
num_examples: 638
- name: shard_10684
num_bytes: 2049918
num_examples: 600
- name: shard_10696
num_bytes: 2556611
num_examples: 704
- name: shard_10733
num_bytes: 1506424
num_examples: 562
- name: shard_10716
num_bytes: 1373410
num_examples: 382
- name: shard_10447
num_bytes: 1789843
num_examples: 552
- name: shard_10727
num_bytes: 1704350
num_examples: 542
- name: shard_1074
num_bytes: 2202555
num_examples: 627
- name: shard_10662
num_bytes: 2446389
num_examples: 678
- name: shard_10714
num_bytes: 2864249
num_examples: 997
- name: shard_10655
num_bytes: 2225408
num_examples: 664
- name: shard_10767
num_bytes: 1883617
num_examples: 587
- name: shard_10745
num_bytes: 1815089
num_examples: 506
- name: shard_1076
num_bytes: 1881592
num_examples: 567
- name: shard_10746
num_bytes: 2077697
num_examples: 569
- name: shard_10752
num_bytes: 1633548
num_examples: 480
- name: shard_10774
num_bytes: 1967064
num_examples: 525
- name: shard_10796
num_bytes: 3216389
num_examples: 1149
- name: shard_10741
num_bytes: 1741749
num_examples: 495
- name: shard_10771
num_bytes: 1431999
num_examples: 465
- name: shard_1081
num_bytes: 1902619
num_examples: 593
- name: shard_10691
num_bytes: 1615444
num_examples: 509
- name: shard_10781
num_bytes: 1758513
num_examples: 521
- name: shard_1072
num_bytes: 1666222
num_examples: 508
- name: shard_10789
num_bytes: 2290621
num_examples: 663
- name: shard_10824
num_bytes: 2303055
num_examples: 755
- name: shard_10720
num_bytes: 1521373
num_examples: 439
- name: shard_10699
num_bytes: 2219222
num_examples: 687
- name: shard_10809
num_bytes: 2491367
num_examples: 670
- name: shard_10868
num_bytes: 1502120
num_examples: 457
- name: shard_10860
num_bytes: 1598902
num_examples: 444
- name: shard_10756
num_bytes: 1741295
num_examples: 519
- name: shard_10875
num_bytes: 2376365
num_examples: 689
- name: shard_10628
num_bytes: 1590374
num_examples: 486
- name: shard_10759
num_bytes: 1968808
num_examples: 578
- name: shard_10784
num_bytes: 1980905
num_examples: 566
- name: shard_10712
num_bytes: 2114475
num_examples: 769
- name: shard_10734
num_bytes: 2503133
num_examples: 805
- name: shard_10846
num_bytes: 1390416
num_examples: 440
- name: shard_10705
num_bytes: 2401860
num_examples: 915
- name: shard_10831
num_bytes: 1444555
num_examples: 430
- name: shard_10778
num_bytes: 1798802
num_examples: 508
- name: shard_10882
num_bytes: 3060842
num_examples: 861
- name: shard_1089
num_bytes: 2117693
num_examples: 617
- name: shard_10897
num_bytes: 1800552
num_examples: 579
- name: shard_10853
num_bytes: 2401097
num_examples: 838
- name: shard_10463
num_bytes: 1953012
num_examples: 575
- name: shard_10815
num_bytes: 2002715
num_examples: 568
- name: shard_10763
num_bytes: 2020642
num_examples: 530
- name: shard_10797
num_bytes: 2748982
num_examples: 842
- name: shard_10918
num_bytes: 2450845
num_examples: 727
- name: shard_10910
num_bytes: 1797180
num_examples: 527
- name: shard_1065
num_bytes: 1683705
num_examples: 476
- name: shard_10474
num_bytes: 2879834
num_examples: 885
- name: shard_10932
num_bytes: 1565556
num_examples: 551
- name: shard_10770
num_bytes: 2959467
num_examples: 837
- name: shard_10840
num_bytes: 1508428
num_examples: 488
- name: shard_10821
num_bytes: 2731613
num_examples: 757
- name: shard_10925
num_bytes: 1745133
num_examples: 528
- name: shard_10660
num_bytes: 1743349
num_examples: 544
- name: shard_10947
num_bytes: 1676536
num_examples: 484
- name: shard_10866
num_bytes: 2890471
num_examples: 812
- name: shard_10872
num_bytes: 1577472
num_examples: 524
- name: shard_10879
num_bytes: 1872624
num_examples: 615
- name: shard_1094
num_bytes: 2318756
num_examples: 639
- name: shard_10983
num_bytes: 2303128
num_examples: 722
- name: shard_10929
num_bytes: 1707341
num_examples: 528
- name: shard_10857
num_bytes: 1610649
num_examples: 512
- name: shard_10485
num_bytes: 1242974
num_examples: 395
- name: shard_10969
num_bytes: 2438237
num_examples: 609
- name: shard_10976
num_bytes: 2679099
num_examples: 753
- name: shard_10990
num_bytes: 2114418
num_examples: 651
- name: shard_10885
num_bytes: 1644987
num_examples: 492
- name: shard_1085
num_bytes: 1778292
num_examples: 588
- name: shard_1048
num_bytes: 2360317
num_examples: 744
- name: shard_10922
num_bytes: 1937906
num_examples: 641
- name: shard_1091
num_bytes: 2080799
num_examples: 701
- name: shard_108
num_bytes: 1849042
num_examples: 553
- name: shard_10813
num_bytes: 2399853
num_examples: 736
- name: shard_10935
num_bytes: 3427617
num_examples: 848
- name: shard_10864
num_bytes: 2676369
num_examples: 731
- name: shard_11010
num_bytes: 1311128
num_examples: 452
- name: shard_10998
num_bytes: 1936638
num_examples: 516
- name: shard_11003
num_bytes: 3035444
num_examples: 850
- name: shard_10490
num_bytes: 2059200
num_examples: 636
- name: shard_10886
num_bytes: 1592390
num_examples: 462
- name: shard_10948
num_bytes: 2410338
num_examples: 766
- name: shard_11032
num_bytes: 2392294
num_examples: 661
- name: shard_1090
num_bytes: 1729394
num_examples: 518
- name: shard_10973
num_bytes: 1874095
num_examples: 543
- name: shard_10893
num_bytes: 2438998
num_examples: 752
- name: shard_10671
num_bytes: 2373850
num_examples: 581
- name: shard_10496
num_bytes: 2672925
num_examples: 772
- name: shard_10871
num_bytes: 2666803
num_examples: 744
- name: shard_10960
num_bytes: 2586483
num_examples: 789
- name: shard_10941
num_bytes: 2750219
num_examples: 937
- name: shard_11047
num_bytes: 1940080
num_examples: 545
- name: shard_11025
num_bytes: 1900405
num_examples: 569
- name: shard_10967
num_bytes: 4183264
num_examples: 996
- name: shard_10206
num_bytes: 3714862
num_examples: 891
- name: shard_11018
num_bytes: 3019471
num_examples: 871
- name: shard_10914
num_bytes: 1980877
num_examples: 552
- name: shard_10992
num_bytes: 1580255
num_examples: 484
- name: shard_10606
num_bytes: 2584262
num_examples: 640
- name: shard_10999
num_bytes: 1950388
num_examples: 551
- name: shard_10921
num_bytes: 2477762
num_examples: 743
- name: shard_10315
num_bytes: 2911312
num_examples: 743
- name: shard_10419
num_bytes: 2586408
num_examples: 667
- name: shard_11054
num_bytes: 2011864
num_examples: 594
- name: shard_10289
num_bytes: 3470407
num_examples: 963
- name: shard_10835
num_bytes: 3026775
num_examples: 806
- name: shard_10298
num_bytes: 2823620
num_examples: 791
- name: shard_10455
num_bytes: 3275368
num_examples: 750
- name: shard_10311
num_bytes: 4072154
num_examples: 1148
- name: shard_11090
num_bytes: 3270282
num_examples: 858
- name: shard_11035
num_bytes: 1447049
num_examples: 458
- name: shard_11022
num_bytes: 2185853
num_examples: 652
- name: shard_11111
num_bytes: 2068341
num_examples: 615
- name: shard_11119
num_bytes: 1970512
num_examples: 580
- name: shard_11126
num_bytes: 1703981
num_examples: 523
download_size: 314533805
dataset_size: 506056044
configs:
- config_name: default
data_files:
- split: train
path: data/*.parquet
- split: shard_10339
path: data/shard_10339-*
- split: shard_10400
path: data/shard_10400-*
- split: shard_10424
path: data/shard_10424-*
- split: shard_10324
path: data/shard_10324-*
- split: shard_10428
path: data/shard_10428-*
- split: shard_10258
path: data/shard_10258-*
- split: shard_10396
path: data/shard_10396-*
- split: shard_10411
path: data/shard_10411-*
- split: shard_10418
path: data/shard_10418-*
- split: shard_10206
path: data/shard_10206-*
- split: shard_10442
path: data/shard_10442-*
- split: shard_1045
path: data/shard_1045-*
- split: shard_10289
path: data/shard_10289-*
- split: shard_10298
path: data/shard_10298-*
- split: shard_10344
path: data/shard_10344-*
- split: shard_10435
path: data/shard_10435-*
- split: shard_10311
path: data/shard_10311-*
- split: shard_10405
path: data/shard_10405-*
- split: shard_10464
path: data/shard_10464-*
- split: shard_10457
path: data/shard_10457-*
- split: shard_10439
path: data/shard_10439-*
- split: shard_10351
path: data/shard_10351-*
- split: shard_10446
path: data/shard_10446-*
- split: shard_10315
path: data/shard_10315-*
- split: shard_10471
path: data/shard_10471-*
- split: shard_1035
path: data/shard_1035-*
- split: shard_10456
path: data/shard_10456-*
- split: shard_10486
path: data/shard_10486-*
- split: shard_10430
path: data/shard_10430-*
- split: shard_10469
path: data/shard_10469-*
- split: shard_10360
path: data/shard_10360-*
- split: shard_10443
path: data/shard_10443-*
- split: shard_10453
path: data/shard_10453-*
- split: shard_10462
path: data/shard_10462-*
- split: shard_10481
path: data/shard_10481-*
- split: shard_10482
path: data/shard_10482-*
- split: shard_10365
path: data/shard_10365-*
- split: shard_10475
path: data/shard_10475-*
- split: shard_10444
path: data/shard_10444-*
- split: shard_10493
path: data/shard_10493-*
- split: shard_10433
path: data/shard_10433-*
- split: shard_1037
path: data/shard_1037-*
- split: shard_1049
path: data/shard_1049-*
- split: shard_10507
path: data/shard_10507-*
- split: shard_10521
path: data/shard_10521-*
- split: shard_10479
path: data/shard_10479-*
- split: shard_10543
path: data/shard_10543-*
- split: shard_10494
path: data/shard_10494-*
- split: shard_10565
path: data/shard_10565-*
- split: shard_10558
path: data/shard_10558-*
- split: shard_10506
path: data/shard_10506-*
- split: shard_10497
path: data/shard_10497-*
- split: shard_10503
path: data/shard_10503-*
- split: shard_10488
path: data/shard_10488-*
- split: shard_1050
path: data/shard_1050-*
- split: shard_10379
path: data/shard_10379-*
- split: shard_10366
path: data/shard_10366-*
- split: shard_10512
path: data/shard_10512-*
- split: shard_10529
path: data/shard_10529-*
- split: shard_10477
path: data/shard_10477-*
- split: shard_10510
path: data/shard_10510-*
- split: shard_10518
path: data/shard_10518-*
- split: shard_10514
path: data/shard_10514-*
- split: shard_10383
path: data/shard_10383-*
- split: shard_10550
path: data/shard_10550-*
- split: shard_10525
path: data/shard_10525-*
- split: shard_10536
path: data/shard_10536-*
- split: shard_10531
path: data/shard_10531-*
- split: shard_10538
path: data/shard_10538-*
- split: shard_10532
path: data/shard_10532-*
- split: shard_10382
path: data/shard_10382-*
- split: shard_10509
path: data/shard_10509-*
- split: shard_10572
path: data/shard_10572-*
- split: shard_1058
path: data/shard_1058-*
- split: shard_10455
path: data/shard_10455-*
- split: shard_10594
path: data/shard_10594-*
- split: shard_10587
path: data/shard_10587-*
- split: shard_1054
path: data/shard_1054-*
- split: shard_10608
path: data/shard_10608-*
- split: shard_10554
path: data/shard_10554-*
- split: shard_10563
path: data/shard_10563-*
- split: shard_10600
path: data/shard_10600-*
- split: shard_10399
path: data/shard_10399-*
- split: shard_10409
path: data/shard_10409-*
- split: shard_10583
path: data/shard_10583-*
- split: shard_10397
path: data/shard_10397-*
- split: shard_10595
path: data/shard_10595-*
- split: shard_10414
path: data/shard_10414-*
- split: shard_10589
path: data/shard_10589-*
- split: shard_10622
path: data/shard_10622-*
- split: shard_1042
path: data/shard_1042-*
- split: shard_10613
path: data/shard_10613-*
- split: shard_1062
path: data/shard_1062-*
- split: shard_10626
path: data/shard_10626-*
- split: shard_10590
path: data/shard_10590-*
- split: shard_10659
path: data/shard_10659-*
- split: shard_10651
path: data/shard_10651-*
- split: shard_10607
path: data/shard_10607-*
- split: shard_10637
path: data/shard_10637-*
- split: shard_10552
path: data/shard_10552-*
- split: shard_10436
path: data/shard_10436-*
- split: shard_10645
path: data/shard_10645-*
- split: shard_10604
path: data/shard_10604-*
- split: shard_10632
path: data/shard_10632-*
- split: shard_10611
path: data/shard_10611-*
- split: shard_1063
path: data/shard_1063-*
- split: shard_10673
path: data/shard_10673-*
- split: shard_10419
path: data/shard_10419-*
- split: shard_10633
path: data/shard_10633-*
- split: shard_10670
path: data/shard_10670-*
- split: shard_10680
path: data/shard_10680-*
- split: shard_10639
path: data/shard_10639-*
- split: shard_10574
path: data/shard_10574-*
- split: shard_10658
path: data/shard_10658-*
- split: shard_10664
path: data/shard_10664-*
- split: shard_10640
path: data/shard_10640-*
- split: shard_10648
path: data/shard_10648-*
- split: shard_10688
path: data/shard_10688-*
- split: shard_10701
path: data/shard_10701-*
- split: shard_10677
path: data/shard_10677-*
- split: shard_10596
path: data/shard_10596-*
- split: shard_10441
path: data/shard_10441-*
- split: shard_10683
path: data/shard_10683-*
- split: shard_10684
path: data/shard_10684-*
- split: shard_10696
path: data/shard_10696-*
- split: shard_10606
path: data/shard_10606-*
- split: shard_10733
path: data/shard_10733-*
- split: shard_10691
path: data/shard_10691-*
- split: shard_10699
path: data/shard_10699-*
- split: shard_10716
path: data/shard_10716-*
- split: shard_10752
path: data/shard_10752-*
- split: shard_10447
path: data/shard_10447-*
- split: shard_1076
path: data/shard_1076-*
- split: shard_10727
path: data/shard_10727-*
- split: shard_10746
path: data/shard_10746-*
- split: shard_1074
path: data/shard_1074-*
- split: shard_10662
path: data/shard_10662-*
- split: shard_10714
path: data/shard_10714-*
- split: shard_10655
path: data/shard_10655-*
- split: shard_10767
path: data/shard_10767-*
- split: shard_10720
path: data/shard_10720-*
- split: shard_10745
path: data/shard_10745-*
- split: shard_1072
path: data/shard_1072-*
- split: shard_10774
path: data/shard_10774-*
- split: shard_10781
path: data/shard_10781-*
- split: shard_10789
path: data/shard_10789-*
- split: shard_10796
path: data/shard_10796-*
- split: shard_10778
path: data/shard_10778-*
- split: shard_10734
path: data/shard_10734-*
- split: shard_10741
path: data/shard_10741-*
- split: shard_10771
path: data/shard_10771-*
- split: shard_1081
path: data/shard_1081-*
- split: shard_10831
path: data/shard_10831-*
- split: shard_10705
path: data/shard_10705-*
- split: shard_10784
path: data/shard_10784-*
- split: shard_10846
path: data/shard_10846-*
- split: shard_10824
path: data/shard_10824-*
- split: shard_10809
path: data/shard_10809-*
- split: shard_10756
path: data/shard_10756-*
- split: shard_10853
path: data/shard_10853-*
- split: shard_10797
path: data/shard_10797-*
- split: shard_10868
path: data/shard_10868-*
- split: shard_10815
path: data/shard_10815-*
- split: shard_10860
path: data/shard_10860-*
- split: shard_10763
path: data/shard_10763-*
- split: shard_10875
path: data/shard_10875-*
- split: shard_10759
path: data/shard_10759-*
- split: shard_10628
path: data/shard_10628-*
- split: shard_10712
path: data/shard_10712-*
- split: shard_10882
path: data/shard_10882-*
- split: shard_1089
path: data/shard_1089-*
- split: shard_10897
path: data/shard_10897-*
- split: shard_10463
path: data/shard_10463-*
- split: shard_10918
path: data/shard_10918-*
- split: shard_10840
path: data/shard_10840-*
- split: shard_10932
path: data/shard_10932-*
- split: shard_10910
path: data/shard_10910-*
- split: shard_1065
path: data/shard_1065-*
- split: shard_10474
path: data/shard_10474-*
- split: shard_10770
path: data/shard_10770-*
- split: shard_10821
path: data/shard_10821-*
- split: shard_10925
path: data/shard_10925-*
- split: shard_1094
path: data/shard_1094-*
- split: shard_10660
path: data/shard_10660-*
- split: shard_10947
path: data/shard_10947-*
- split: shard_10866
path: data/shard_10866-*
- split: shard_10872
path: data/shard_10872-*
- split: shard_10879
path: data/shard_10879-*
- split: shard_10671
path: data/shard_10671-*
- split: shard_1091
path: data/shard_1091-*
- split: shard_10983
path: data/shard_10983-*
- split: shard_10929
path: data/shard_10929-*
- split: shard_10857
path: data/shard_10857-*
- split: shard_10485
path: data/shard_10485-*
- split: shard_10969
path: data/shard_10969-*
- split: shard_10976
path: data/shard_10976-*
- split: shard_10935
path: data/shard_10935-*
- split: shard_10948
path: data/shard_10948-*
- split: shard_10990
path: data/shard_10990-*
- split: shard_10998
path: data/shard_10998-*
- split: shard_10885
path: data/shard_10885-*
- split: shard_1085
path: data/shard_1085-*
- split: shard_10922
path: data/shard_10922-*
- split: shard_1048
path: data/shard_1048-*
- split: shard_108
path: data/shard_108-*
- split: shard_10813
path: data/shard_10813-*
- split: shard_10864
path: data/shard_10864-*
- split: shard_11010
path: data/shard_11010-*
- split: shard_11003
path: data/shard_11003-*
- split: shard_11018
path: data/shard_11018-*
- split: shard_11025
path: data/shard_11025-*
- split: shard_10490
path: data/shard_10490-*
- split: shard_10886
path: data/shard_10886-*
- split: shard_11032
path: data/shard_11032-*
- split: shard_1090
path: data/shard_1090-*
- split: shard_10973
path: data/shard_10973-*
- split: shard_10893
path: data/shard_10893-*
- split: shard_10496
path: data/shard_10496-*
- split: shard_10871
path: data/shard_10871-*
- split: shard_10960
path: data/shard_10960-*
- split: shard_10941
path: data/shard_10941-*
- split: shard_11047
path: data/shard_11047-*
- split: shard_10967
path: data/shard_10967-*
- split: shard_10835
path: data/shard_10835-*
- split: shard_10914
path: data/shard_10914-*
- split: shard_10992
path: data/shard_10992-*
- split: shard_10999
path: data/shard_10999-*
- split: shard_10921
path: data/shard_10921-*
- split: shard_11054
path: data/shard_11054-*
- split: shard_11090
path: data/shard_11090-*
- split: shard_11035
path: data/shard_11035-*
- split: shard_11022
path: data/shard_11022-*
- split: shard_11111
path: data/shard_11111-*
- split: shard_11119
path: data/shard_11119-*
- split: shard_11126
path: data/shard_11126-*
VALID (Video-Audio Large Interleaved Dataset)
Overview
The VALID (Video-Audio Large Interleaved Dataset) is a multimodal dataset comprising approximately 720,000 Creative Commons licensed videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.
- Please note the current version is a PREVIEW version. We are still in the process of uploading. Please be patient.
Features
- Audio-Video-Text Format: A combination of:
<video>
<caption><image> the caption </caption>
<caption><image> the caption </caption>
<caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well. Even though each audio video snippets are no more than 10 seconds, a data record may span over more than 10 secs (e.g., if a data item has two 10 second videos, then the corresponding English text corresponds roughly to 20 seconds of video). The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion.
Data Components:
- Images: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2.
- Audio: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English.
- Text: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.
Dataset Size:
- About 7,000,000 records.
- About 15,000,000 images, each captioned with FLorence-2.
- About 30,000,000 audio snippets, about half of which transcribed with Whisper-large, and half with Youtube ASR.
- Divided into about 12K shards of about 600 records, each in a parquet file and a corresponding .tar.gz file for the media.
- About 14TB in total.
File Organization
- Each data entry follows the
<video><image(s)><audio><text>
structure as described above. - Metadata includes alignment between modalities, and implicit ordering of audio/visual elements.
Multimodal Details
- Audio-Video Alignment: Snippets allow learning temporal relationships between audio and visual elements.
- Text Annotations: Text descriptions, including captions and Youtube ASR English translations, provide linguistic alignment.
Preprocessing
- Phashing for Images: Ensures that images within the dataset are dynamic and non-static.
- Audio Snippet Lengths: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns under fair use principles.
Licenses
All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the audio snippets of these videos and select image frames here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content. This dataset has only been lightly filtered for safety by removing data records with high proportions of children related words AND high proportions of sexual or violence related words. Moreover, we disclaim all warranties, whether express or implied and all laibilities with respect to infringment, fitness for a particular puprpose, or otherwise.
Intended Uses
- Primary Use Case: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP, CLAP).
- Not Recommended For: Generation tasks, as the dataset's quality may not meet generative model requirements.
Dataset Limitations
- Quality: Images and audio are sourced from YouTube and may vary in resolution and clarity.
- Rights Uncertainty: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
- Biases: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias.
Ethical Considerations
The dataset was built under the principles of fair use and CC-BY licensing. Its creation strives to align with the spirit of the EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.
Policy for Managing Video Deletion Requests
Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.
1. Respecting Content Owners' Rights: All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license. If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.
2. Deletion Request Process:
- Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: Here and Here.
- Then the onwers or users should verify that it has been removed from YouTube and provide this fact in a feedback to us Here.
- Requests must demonstrate that the video is no longer publicly available on YouTube.
- We will remove the videos confirmed to be deleted in the next release of this dataset.
3. Verification and Balancing Interests: All deletion requests will be verified by checking YouTube to ensure the video is no longer available. We may also remove a video in our sole discretion. Decisions on video removal will take into account:
The rights and wishes of content owners, including their ability to remove their videos from public availability.
The community's need for robust datasets for training and research.
The spirit of the CC-BY license, which permits redistribution and use with proper attribution.
4. Responsibilities for Derivative Datasets: Users creating derivative datasets must ensure compliance by deleting videos listed in
delete_these_videos.json
.5. Proactive Deletion: Videos may be removed proactively under the following circumstances:
Requests from the hosting provider (e.g., Hugging Face).
Legal requirements or enforcement actions.
Internal decisions.
6. Community Considerations:
The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.
Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.
7. Updates: Users are encouraged to check the
delete_these_videos.json
, from time to time to ensure their copy of the dataset is up to date.
Related Materials:
- If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ YouTube-Commons.
- Also, Huggingface has created an excellent CC-BY Youtube video dataset here: Finevideo
- LAION is also building a dataset Here which includes Youtube audio snippets paired with Gemini generated captions.
Acknowledgement and Thanks
This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of our SafeLLM/Aurora-M2 project in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank Huggingface and the open source community for their support.
About the Contributors:
- Grass is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io
- LAION, is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.
- Ontocord is dedicated to making legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.
- Alignment Lab AI: Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives. We believe everyone deserves to harness the power of personal intelligence.
- And many others ...
Citation
@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}