Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
mbrack commited on
Commit
38c5f89
1 Parent(s): 958418d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- license: apache-2.0
3
  pretty_name: Multilingual Tokenizer Wikipedia Benchmark
4
  dataset_info:
5
  - config_name: af
@@ -1243,7 +1243,7 @@ language:
1243
  - lv
1244
  - mr
1245
  - nl
1246
- - no
1247
  - pl
1248
  - pt
1249
  - ro
@@ -1263,10 +1263,10 @@ language:
1263
 
1264
  # Multilingual Tokenizer Benchmark
1265
 
1266
- This dataset includes pre-processed wikipedia data for tokenizer evaluation in 45 languages.
1267
 
1268
  ## Usage
1269
- The dataset allows us to easily calculate tokenizer fertility and the proportion of continued words on any of the supported languages. In the example below we take the Mistral tokenizer and evaluate its performance on Slovak.
1270
 
1271
  ```python
1272
  from transformers import AutoTokenizer
@@ -1294,4 +1294,7 @@ print('Prop. continued words:', df.cont_prop.mean())
1294
 
1295
  ## Dataset Creation
1296
 
1297
- We loosely follow the approach of [Rust _et al.](https://arxiv.org/abs/2012.15613) using the fast [UDPipe](https://ufal.mff.cuni.cz/udpipe) to pre-split documents into words and subsequently run the tokenizer over isolated words. For all languages we use the respective November 2023 snapshot from [Wikipedia](wikimedia/wikipedia). Since Wikipedia, by nature, contains significantly more numbers and dates than other text and most tokenizers split those into single digits, we filtered all lone-standing numbers from the documents. Additionally, we removed any documents that still contained non-parsed HTML code (less than 1%).
 
 
 
 
1
  ---
2
+ license: mit
3
  pretty_name: Multilingual Tokenizer Wikipedia Benchmark
4
  dataset_info:
5
  - config_name: af
 
1243
  - lv
1244
  - mr
1245
  - nl
1246
+ - 'no'
1247
  - pl
1248
  - pt
1249
  - ro
 
1263
 
1264
  # Multilingual Tokenizer Benchmark
1265
 
1266
+ This dataset includes pre-processed wikipedia data for tokenizer evaluation in 45 languages. We provide more informatino on this evalaution task in [this blogpost](https://occiglot.github.io/occiglot/posts/eu_tokenizer_perfomance/).
1267
 
1268
  ## Usage
1269
+ The dataset allows us to easily calculate *tokenizer fertility* and the *proportion of continued words* on any of the supported languages. In the example below we take the Mistral tokenizer and evaluate its performance on Slovak.
1270
 
1271
  ```python
1272
  from transformers import AutoTokenizer
 
1294
 
1295
  ## Dataset Creation
1296
 
1297
+ We loosely follow the approach of [Rust _et al.](https://arxiv.org/abs/2012.15613) using the fast [UDPipe](https://ufal.mff.cuni.cz/udpipe) to pre-split documents into words and subsequently run the tokenizer over isolated words. For all languages we use the respective November 2023 snapshot from [Wikipedia](wikimedia/wikipedia). Since Wikipedia, by nature, contains significantly more numbers and dates than other text and most tokenizers split those into single digits, we filtered all lone-standing numbers from the documents. Additionally, we removed any documents that still contained non-parsed HTML code (less than 1%).
1298
+
1299
+ ## Licensing
1300
+ We release our curated benchmark and any associated code under [MIT](https://opensource.org/license/mit) license. However, depending on your use case, the licensing conditions of the original [Wikipedia data](https://huggingface.co/datasets/wikimedia/wikipedia#licensing-information) and [UDPipe](https://github.com/ufal/udpipe/tree/udpipe-2?tab=License-1-ov-file) may apply.