ticker
large_stringlengths
1
5
question
large_stringlengths
3.27k
285k
response
large_stringlengths
20
574
system_prompt
large_stringclasses
1 value
GTH
{'date': '2022-07-11', 'ticker': 'GTH', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 4.230000019073486, 'high': 4.619999885559082, 'open': 4.590000152587891, 'close': 4.349999904632568, 'ema_50': 5.145158645920961, 'rsi_14': 53.260866748362474, 'target': 4.260000228881836, 'volume': 49333.0, 'ema_200': 16.12153974592324, 'adj_close': 4.349999904632568, 'rsi_lag_1': 56.97674826929329, 'rsi_lag_2': 60.71428706586523, 'rsi_lag_3': 60.24096177890568, 'rsi_lag_4': 75.00001379737702, 'rsi_lag_5': 68.83117459493079, 'macd_lag_1': 0.0411572332710648, 'macd_lag_2': 0.05393476010372389, 'macd_lag_3': 0.0572408549480663, 'macd_lag_4': 0.07590077691482922, 'macd_lag_5': 0.052795400521412184, 'macd_12_26_9': 0.006745682978638534, 'macds_12_26_9': 0.010741651792928611}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 4.260000228881836, '2022-07-13': 3.900000095367432, '2022-07-14': 3.7799999713897705, '2022-07-15': 3.630000114440918, '2022-07-18': 3.690000057220459, '2022-07-19': 3.839999914169312, '2022-07-20': 3.7200000286102295, '2022-07-21': 3.7200000286102295, '2022-07-22': 3.630000114440918, '2022-07-25': 3.5850000381469727}, '1_month_later': {'2022-08-11': 2.7780001163482666}, '3_months_later': {'2022-10-11': 2.438999891281128}, '6_months_later': {'2023-01-11': 3.359999895095825}, '12_months_later': {'2023-07-11': 2.8350000381469727}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GTIM
{'date': '2022-07-11', 'ticker': 'GTIM', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 2.8499999046325684, 'high': 2.990000009536743, 'open': 2.9100000858306885, 'close': 2.9100000858306885, 'ema_50': 2.9962321102082896, 'rsi_14': 57.66423560908818, 'target': 2.8399999141693115, 'volume': 5600.0, 'ema_200': 3.6381351515331475, 'adj_close': 2.9100000858306885, 'rsi_lag_1': 61.764704335519454, 'rsi_lag_2': 51.79855991709206, 'rsi_lag_3': 48.854962665644074, 'rsi_lag_4': 52.71317628876822, 'rsi_lag_5': 46.25849832604183, 'macd_lag_1': -0.013031192030607208, 'macd_lag_2': -0.024062482769314553, 'macd_lag_3': -0.025574226939621525, 'macd_lag_4': -0.018986326693256395, 'macd_lag_5': -0.01641069070991108, 'macd_12_26_9': -0.009026259485194643, 'macds_12_26_9': -0.02297132131232973}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 2.8399999141693115, '2022-07-13': 2.900000095367432, '2022-07-14': 2.930000066757202, '2022-07-15': 2.8399999141693115, '2022-07-18': 3.009999990463257, '2022-07-19': 2.9600000381469727, '2022-07-20': 3.069999933242798, '2022-07-21': 3.180000066757202, '2022-07-22': 3.180000066757202, '2022-07-25': 3.240000009536743}, '1_month_later': {'2022-08-11': 3.5}, '3_months_later': {'2022-10-11': 2.200000047683716}, '6_months_later': {'2023-01-11': 2.539999961853028}, '12_months_later': {'2023-07-11': 3.440000057220459}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GTLS
{'date': '2022-07-11', 'ticker': 'GTLS', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 163.89999389648438, 'high': 167.35000610351562, 'open': 167.35000610351562, 'close': 164.00999450683594, 'ema_50': 166.57341838838306, 'rsi_14': 51.00305196035999, 'target': 159.02000427246094, 'volume': 268500.0, 'ema_200': 161.01315315456276, 'adj_close': 164.00999450683594, 'rsi_lag_1': 57.25586507166657, 'rsi_lag_2': 47.1770917227455, 'rsi_lag_3': 42.263694217780035, 'rsi_lag_4': 45.329707410224536, 'rsi_lag_5': 36.87491019429743, 'macd_lag_1': -2.849244193968758, 'macd_lag_2': -3.798510624876087, 'macd_lag_3': -4.168832226946222, 'macd_lag_4': -3.7123507273044254, 'macd_lag_5': -3.4952069236599073, 'macd_12_26_9': -2.514984917565414, 'macds_12_26_9': -3.1504710242054386}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 159.02000427246094, '2022-07-13': 160.50999450683594, '2022-07-14': 149.3699951171875, '2022-07-15': 148.50999450683594, '2022-07-18': 146.80999755859375, '2022-07-19': 155.97999572753906, '2022-07-20': 162.97999572753906, '2022-07-21': 167.50999450683594, '2022-07-22': 163.0800018310547, '2022-07-25': 166.47000122070312}, '1_month_later': {'2022-08-11': 203.3099975585937}, '3_months_later': {'2022-10-11': 198.27999877929688}, '6_months_later': {'2023-01-11': 127.41999816894533}, '12_months_later': {'2023-07-11': 161.19000244140625}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GTN
{'date': '2022-07-11', 'ticker': 'GTN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 16.459999084472656, 'high': 16.829999923706055, 'open': 16.790000915527344, 'close': 16.520000457763672, 'ema_50': 18.576124498549063, 'rsi_14': 36.57657218012116, 'target': 16.93000030517578, 'volume': 491900.0, 'ema_200': 20.339028045515665, 'adj_close': 15.707524299621582, 'rsi_lag_1': 38.81452576107071, 'rsi_lag_2': 34.76026351466324, 'rsi_lag_3': 33.15791305302227, 'rsi_lag_4': 42.83276394968246, 'rsi_lag_5': 40.5492732201188, 'macd_lag_1': -0.6052083493844194, 'macd_lag_2': -0.6248117974020921, 'macd_lag_3': -0.6499084059004758, 'macd_lag_4': -0.6195422842557861, 'macd_lag_5': -0.6186088170955131, 'macd_12_26_9': -0.6188499059489345, 'macds_12_26_9': -0.613109118231441}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 16.93000030517578, '2022-07-13': 16.649999618530273, '2022-07-14': 16.25, '2022-07-15': 16.8799991607666, '2022-07-18': 17.200000762939453, '2022-07-19': 17.81999969482422, '2022-07-20': 18.290000915527344, '2022-07-21': 18.440000534057617, '2022-07-22': 18.3700008392334, '2022-07-25': 18.600000381469727}, '1_month_later': {'2022-08-11': 19.6299991607666}, '3_months_later': {'2022-10-11': 14.40999984741211}, '6_months_later': {'2023-01-11': 11.829999923706056}, '12_months_later': {'2023-07-11': 8.550000190734863}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GXC
{'date': '2022-07-11', 'ticker': 'GXC', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 87.44000244140625, 'high': 88.62999725341797, 'open': 88.62999725341797, 'close': 87.69000244140625, 'ema_50': 88.0819817519661, 'rsi_14': 49.26141419605721, 'target': 87.19000244140625, 'volume': 56000.0, 'ema_200': 96.81835305519678, 'adj_close': 83.19950103759766, 'rsi_lag_1': 67.92168614133784, 'rsi_lag_2': 58.6475743456113, 'rsi_lag_3': 57.880799721097986, 'rsi_lag_4': 68.73491932615072, 'rsi_lag_5': 58.18458755215777, 'macd_lag_1': 1.6202187635415015, 'macd_lag_2': 1.7019539345626669, 'macd_lag_3': 1.6990495623792015, 'macd_lag_4': 1.8579741608338622, 'macd_lag_5': 1.9146675742294264, 'macd_12_26_9': 1.247346883213467, 'macds_12_26_9': 1.617138631020371}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 87.19000244140625, '2022-07-13': 86.80000305175781, '2022-07-14': 85.7300033569336, '2022-07-15': 84.77999877929688, '2022-07-18': 86.20999908447266, '2022-07-19': 86.94999694824219, '2022-07-20': 86.5199966430664, '2022-07-21': 86.70999908447266, '2022-07-22': 84.88999938964844, '2022-07-25': 85.30000305175781}, '1_month_later': {'2022-08-11': 82.55000305175781}, '3_months_later': {'2022-10-11': 67.8499984741211}, '6_months_later': {'2023-01-11': 87.58000183105469}, '12_months_later': {'2023-07-11': 74.69000244140625}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GWX
{'date': '2022-07-11', 'ticker': 'GWX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 28.559999465942383, 'high': 28.809999465942383, 'open': 28.809999465942383, 'close': 28.57999992370605, 'ema_50': 30.836877050822096, 'rsi_14': 39.948442585598436, 'target': 28.440000534057617, 'volume': 82500.0, 'ema_200': 34.07745493722874, 'adj_close': 27.45863342285156, 'rsi_lag_1': 44.540238232390905, 'rsi_lag_2': 34.085198775472065, 'rsi_lag_3': 32.21650181370214, 'rsi_lag_4': 31.328322599118792, 'rsi_lag_5': 25.77319384913541, 'macd_lag_1': -0.7595492449847825, 'macd_lag_2': -0.8160327813506179, 'macd_lag_3': -0.8569112365702267, 'macd_lag_4': -0.8477501662181766, 'macd_lag_5': -0.835944664909416, 'macd_12_26_9': -0.7473237091675351, 'macds_12_26_9': -0.7933219722243624}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 28.440000534057617, '2022-07-13': 28.5, '2022-07-14': 28.18000030517578, '2022-07-15': 28.459999084472656, '2022-07-18': 28.75, '2022-07-19': 29.43000030517578, '2022-07-20': 29.440000534057617, '2022-07-21': 29.809999465942383, '2022-07-22': 29.75, '2022-07-25': 29.88999938964844}, '1_month_later': {'2022-08-11': 31.38999938964844}, '3_months_later': {'2022-10-11': 25.850000381469727}, '6_months_later': {'2023-01-11': 30.559999465942383}, '12_months_later': {'2023-07-11': 30.950000762939453}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GWW
{'date': '2022-07-11', 'ticker': 'GWW', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 472.5499877929688, 'high': 478.9100036621094, 'open': 472.5499877929688, 'close': 477.7099914550781, 'ema_50': 474.9237328919351, 'rsi_14': 71.60883432602496, 'target': 474.1700134277344, 'volume': 248600.0, 'ema_200': 474.0521674821654, 'adj_close': 469.9029541015625, 'rsi_lag_1': 60.40239829488259, 'rsi_lag_2': 50.34703642265984, 'rsi_lag_3': 50.100955046786055, 'rsi_lag_4': 38.74878548711921, 'rsi_lag_5': 37.14741494345769, 'macd_lag_1': -3.410496689135641, 'macd_lag_2': -4.747679603382437, 'macd_lag_3': -6.251972522824076, 'macd_lag_4': -7.704331005863537, 'macd_lag_5': -7.92382561029541, 'macd_12_26_9': -2.11816930395662, 'macds_12_26_9': -5.369556453679148}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 474.1700134277344, '2022-07-13': 454.3500061035156, '2022-07-14': 456.3500061035156, '2022-07-15': 457.3999938964844, '2022-07-18': 453.260009765625, '2022-07-19': 465.9299926757813, '2022-07-20': 471.4500122070313, '2022-07-21': 473.3200073242188, '2022-07-22': 473.8800048828125, '2022-07-25': 482.1199951171875}, '1_month_later': {'2022-08-11': 566.3599853515625}, '3_months_later': {'2022-10-11': 514.0900268554688}, '6_months_later': {'2023-01-11': 582.280029296875}, '12_months_later': {'2023-07-11': 795.7000122070312}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GWRE
{'date': '2022-07-11', 'ticker': 'GWRE', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 73.4800033569336, 'high': 75.13999938964844, 'open': 74.87999725341797, 'close': 74.0, 'ema_50': 78.1852428302271, 'rsi_14': 52.427640931042994, 'target': 72.48999786376953, 'volume': 342700.0, 'ema_200': 92.9059895797984, 'adj_close': 74.0, 'rsi_lag_1': 61.53168869240804, 'rsi_lag_2': 53.14286096274557, 'rsi_lag_3': 54.97802917435215, 'rsi_lag_4': 53.81583432584781, 'rsi_lag_5': 42.37987992288121, 'macd_lag_1': -1.0780142153493841, 'macd_lag_2': -1.2732447224476005, 'macd_lag_3': -1.5008554980162216, 'macd_lag_4': -1.6198661382083372, 'macd_lag_5': -1.8388234220801962, 'macd_12_26_9': -1.0284400507834874, 'macds_12_26_9': -1.4292160354896035}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 72.48999786376953, '2022-07-13': 71.33999633789062, '2022-07-14': 69.5999984741211, '2022-07-15': 70.62999725341797, '2022-07-18': 70.31999969482422, '2022-07-19': 72.22000122070312, '2022-07-20': 75.62999725341797, '2022-07-21': 77.19999694824219, '2022-07-22': 76.06999969482422, '2022-07-25': 75.31999969482422}, '1_month_later': {'2022-08-11': 81.06999969482422}, '3_months_later': {'2022-10-11': 58.40999984741211}, '6_months_later': {'2023-01-11': 67.23999786376953}, '12_months_later': {'2023-07-11': 76.91999816894531}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GVI
{'date': '2022-07-11', 'ticker': 'GVI', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 105.37000274658205, 'high': 105.62999725341795, 'open': 105.5, 'close': 105.38999938964844, 'ema_50': 105.96639894368931, 'rsi_14': 60.46509794025816, 'target': 105.63999938964844, 'volume': 62400.0, 'ema_200': 109.60405238018943, 'adj_close': 101.6295928955078, 'rsi_lag_1': 61.06866079609899, 'rsi_lag_2': 64.82939947895679, 'rsi_lag_3': 75.32753965041321, 'rsi_lag_4': 74.99995853588538, 'rsi_lag_5': 60.43552670567687, 'macd_lag_1': -0.06285877820242547, 'macd_lag_2': -0.05717416644981199, 'macd_lag_3': -0.06843261360766917, 'macd_lag_4': -0.10318882765572823, 'macd_lag_5': -0.19695855791114525, 'macd_12_26_9': -0.06021428204751089, 'macds_12_26_9': -0.17010878998870566}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 105.63999938964844, '2022-07-13': 105.66999816894533, '2022-07-14': 105.4499969482422, '2022-07-15': 105.66000366210938, '2022-07-18': 105.4000015258789, '2022-07-19': 105.29000091552734, '2022-07-20': 105.16000366210938, '2022-07-21': 105.91000366210938, '2022-07-22': 106.51000213623048, '2022-07-25': 106.30999755859376}, '1_month_later': {'2022-08-11': 106.02999877929688}, '3_months_later': {'2022-10-11': 101.25}, '6_months_later': {'2023-01-11': 103.94000244140624}, '12_months_later': {'2023-07-11': 102.41999816894533}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GVAL
{'date': '2022-07-11', 'ticker': 'GVAL', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 17.06999969482422, 'high': 17.260000228881836, 'open': 17.09000015258789, 'close': 17.06999969482422, 'ema_50': 19.34652802653993, 'rsi_14': 20.200572204627207, 'target': 16.90999984741211, 'volume': 22800.0, 'ema_200': 21.160648200840765, 'adj_close': 15.782594680786133, 'rsi_lag_1': 22.038125492637008, 'rsi_lag_2': 19.478729711048544, 'rsi_lag_3': 20.875814404753598, 'rsi_lag_4': 21.03804583456622, 'rsi_lag_5': 21.38225397368548, 'macd_lag_1': -0.7578763098352681, 'macd_lag_2': -0.7588147553510609, 'macd_lag_3': -0.747957236630004, 'macd_lag_4': -0.6901287297939476, 'macd_lag_5': -0.6291894202031116, 'macd_12_26_9': -0.7732335955623455, 'macds_12_26_9': -0.672381673315978}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 16.90999984741211, '2022-07-13': 16.922000885009766, '2022-07-14': 16.583999633789062, '2022-07-15': 16.93000030517578, '2022-07-18': 17.204999923706055, '2022-07-19': 17.59000015258789, '2022-07-20': 17.518999099731445, '2022-07-21': 17.56399917602539, '2022-07-22': 17.5, '2022-07-25': 17.709999084472656}, '1_month_later': {'2022-08-11': 18.700000762939453}, '3_months_later': {'2022-10-11': 16.42799949645996}, '6_months_later': {'2023-01-11': 20.190000534057617}, '12_months_later': {'2023-07-11': 20.1299991607666}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GVA
{'date': '2022-07-11', 'ticker': 'GVA', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 28.420000076293945, 'high': 28.920000076293945, 'open': 28.520000457763672, 'close': 28.809999465942383, 'ema_50': 30.406171663082365, 'rsi_14': 56.06059730327045, 'target': 28.540000915527344, 'volume': 144300.0, 'ema_200': 33.456381714616036, 'adj_close': 28.208637237548828, 'rsi_lag_1': 54.31191819333227, 'rsi_lag_2': 48.05195046468387, 'rsi_lag_3': 39.145915203093516, 'rsi_lag_4': 39.8550692087375, 'rsi_lag_5': 33.48554378147885, 'macd_lag_1': -0.6152528622746516, 'macd_lag_2': -0.635084199461307, 'macd_lag_3': -0.6888314214729618, 'macd_lag_4': -0.6700312135875386, 'macd_lag_5': -0.6841438788667844, 'macd_12_26_9': -0.593501800261155, 'macds_12_26_9': -0.6422112888841423}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 28.540000915527344, '2022-07-13': 28.479999542236328, '2022-07-14': 28.440000534057617, '2022-07-15': 28.75, '2022-07-18': 28.700000762939453, '2022-07-19': 29.540000915527344, '2022-07-20': 29.959999084472656, '2022-07-21': 30.26000022888184, '2022-07-22': 29.959999084472656, '2022-07-25': 29.96999931335449}, '1_month_later': {'2022-08-11': 31.190000534057617}, '3_months_later': {'2022-10-11': 27.01000022888184}, '6_months_later': {'2023-01-11': 36.650001525878906}, '12_months_later': {'2023-07-11': 40.810001373291016}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GUSH
{'date': '2022-07-11', 'ticker': 'GUSH', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 28.27750015258789, 'high': 30.302499771118164, 'open': 29.405000686645508, 'close': 29.39999961853028, 'ema_50': 40.305732110554544, 'rsi_14': 39.09757308785419, 'target': 27.98500061035156, 'volume': 5563200.0, 'ema_200': 39.70678680796911, 'adj_close': 26.519052505493164, 'rsi_lag_1': 33.45874915207976, 'rsi_lag_2': 28.709789420352323, 'rsi_lag_3': 22.64828997000056, 'rsi_lag_4': 22.74609818350092, 'rsi_lag_5': 20.857067157375823, 'macd_lag_1': -5.084560822139473, 'macd_lag_2': -5.17912460723592, 'macd_lag_3': -5.236198729894902, 'macd_lag_4': -4.921319397827908, 'macd_lag_5': -4.546599801583753, 'macd_12_26_9': -5.013554417939588, 'macds_12_26_9': -4.355460955165247}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 27.98500061035156, '2022-07-13': 28.427499771118164, '2022-07-14': 27.48500061035156, '2022-07-15': 28.81999969482422, '2022-07-18': 30.4950008392334, '2022-07-19': 32.79750061035156, '2022-07-20': 34.787498474121094, '2022-07-21': 32.814998626708984, '2022-07-22': 31.33749961853028, '2022-07-25': 34.84000015258789}, '1_month_later': {'2022-08-11': 40.532501220703125}, '3_months_later': {'2022-10-11': 38.77000045776367}, '6_months_later': {'2023-01-11': 35.3849983215332}, '12_months_later': {'2023-07-11': 32.31999969482422}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GUNR
{'date': '2022-07-11', 'ticker': 'GUNR', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/should-you-invest-in-the-invesco-sp-500-equal-weight-materials-etf-rtm-2', 'news_author': None, 'news_article': "The Invesco S&P 500 Equal Weight Materials ETF (RTM) was launched on 11/01/2006, and is a passively managed exchange traded fund designed to offer broad exposure to the Materials - Broad segment of the equity market.\nWhile an excellent vehicle for long term investors, passively managed ETFs are a popular choice among institutional and retail investors due to their low costs, transparency, flexibility, and tax efficiency.\nSector ETFs are also funds of convenience, offering many ways to gain low risk and diversified exposure to a broad group of companies in particular sectors. Materials - Broad is one of the 16 broad Zacks sectors within the Zacks Industry classification. It is currently ranked 5, placing it in top 31%.\nIndex Details\nThe fund is sponsored by Invesco. It has amassed assets over $426.80 million, making it one of the average sized ETFs attempting to match the performance of the Materials - Broad segment of the equity market. RTM seeks to match the performance of the S&P 500 Equal Weight Materials Index before fees and expenses.\nThe S&P 500 Equal Weight Materials Index equally weights stocks in the materials sector of the S&P 500 Index.\nCosts\nExpense ratios are an important factor in the return of an ETF and in the long term, cheaper funds can significantly outperform their more expensive counterparts, other things remaining the same.\nAnnual operating expenses for this ETF are 0.40%, making it one of the cheaper products in the space.\nIt has a 12-month trailing dividend yield of 1.89%.\nSector Exposure and Top Holdings\nEven though ETFs offer diversified exposure which minimizes single stock risk, it is still important to look into a fund's holdings before investing. Luckily, most ETFs are very transparent products that disclose their holdings on a daily basis.\nThis ETF has heaviest allocation in the Materials sector--about 100% of the portfolio.\nLooking at individual holdings, Mosaic Co/the (MOS) accounts for about 5.81% of total assets, followed by Cf Industries Holdings Inc (CF) and Newmont Corp (NEM).\nThe top 10 holdings account for about 44.56% of total assets under management.\nPerformance and Risk\nThe ETF has lost about -12.10% so far this year and is down about -2.45% in the last one year (as of 07/11/2022). In that past 52-week period, it has traded between $153.51 and $190.46.\nThe ETF has a beta of 1.08 and standard deviation of 28.79% for the trailing three-year period, making it a medium risk choice in the space. With about 29 holdings, it has more concentrated exposure than peers.\nAlternatives\nInvesco S&P 500 Equal Weight Materials ETF carries a Zacks ETF Rank of 3 (Hold), which is based on expected asset class return, expense ratio, and momentum, among other factors. Thus, RTM is a reasonable option for those seeking exposure to the Materials ETFs area of the market. Investors might also want to consider some other ETF options in the space.\nMaterials Select Sector SPDR ETF (XLB) tracks Materials Select Sector Index and the FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR) tracks Morningstar Global Upstream Natural Resources Index. Materials Select Sector SPDR ETF has $6.07 billion in assets, FlexShares Morningstar Global Upstream Natural Resources ETF has $7.36 billion. XLB has an expense ratio of 0.10% and GUNR charges 0.46%.\nBottom Line\nTo learn more about this product and other ETFs, screen for products that match your investment objectives and read articles on latest developments in the ETF investing universe, please visit Zacks ETF Center.\n\nWant key ETF info delivered straight to your inbox?\nZacks’ free Fund Newsletter will brief you on top news and analysis, as well as top-performing ETFs, each week.\nGet it free >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nInvesco S&P 500 Equal Weight Materials ETF (RTM): ETF Research Reports\n \nNewmont Corporation (NEM): Free Stock Analysis Report\n \nCF Industries Holdings, Inc. (CF): Free Stock Analysis Report\n \nThe Mosaic Company (MOS): Free Stock Analysis Report\n \nMaterials Select Sector SPDR ETF (XLB): ETF Research Reports\n \nFlexShares Morningstar Global Upstream Natural Resources ETF (GUNR): ETF Research Reports\n \nTo read this article on Zacks.com click here.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': 'Materials Select Sector SPDR ETF (XLB) tracks Materials Select Sector Index and the FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR) tracks Morningstar Global Upstream Natural Resources Index. XLB has an expense ratio of 0.10% and GUNR charges 0.46%. FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR): ETF Research Reports', 'news_luhn_summary': 'Materials Select Sector SPDR ETF (XLB) tracks Materials Select Sector Index and the FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR) tracks Morningstar Global Upstream Natural Resources Index. FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR): ETF Research Reports XLB has an expense ratio of 0.10% and GUNR charges 0.46%.', 'news_article_title': 'Should You Invest in the Invesco S&P 500 Equal Weight Materials ETF (RTM)?', 'news_lexrank_summary': 'Materials Select Sector SPDR ETF (XLB) tracks Materials Select Sector Index and the FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR) tracks Morningstar Global Upstream Natural Resources Index. XLB has an expense ratio of 0.10% and GUNR charges 0.46%. FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR): ETF Research Reports', 'news_textrank_summary': 'Materials Select Sector SPDR ETF (XLB) tracks Materials Select Sector Index and the FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR) tracks Morningstar Global Upstream Natural Resources Index. XLB has an expense ratio of 0.10% and GUNR charges 0.46%. FlexShares Morningstar Global Upstream Natural Resources ETF (GUNR): ETF Research Reports'}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 38.02000045776367, 'high': 38.47999954223633, 'open': 38.22999954223633, 'close': 38.18999862670898, 'ema_50': 42.817310787031424, 'rsi_14': 39.69119332050678, 'target': 37.72999954223633, 'volume': 630600.0, 'ema_200': 42.23457757643691, 'adj_close': 36.13341522216797, 'rsi_lag_1': 35.73180853661998, 'rsi_lag_2': 32.53909281269422, 'rsi_lag_3': 27.52002485349287, 'rsi_lag_4': 27.76435228559896, 'rsi_lag_5': 26.68738064283957, 'macd_lag_1': -1.7215174529984694, 'macd_lag_2': -1.7617450313366447, 'macd_lag_3': -1.8037555607871738, 'macd_lag_4': -1.7130307530287965, 'macd_lag_5': -1.6059162829714495, 'macd_12_26_9': -1.7262222037315524, 'macds_12_26_9': -1.6115419935478865}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 37.72999954223633, '2022-07-13': 37.86000061035156, '2022-07-14': 36.619998931884766, '2022-07-15': 37.16999816894531, '2022-07-18': 37.7599983215332, '2022-07-19': 38.63999938964844, '2022-07-20': 38.619998931884766, '2022-07-21': 38.52000045776367, '2022-07-22': 38.310001373291016, '2022-07-25': 39.220001220703125}, '1_month_later': {'2022-08-11': 42.27999877929688}, '3_months_later': {'2022-10-11': 38.86000061035156}, '6_months_later': {'2023-01-11': 44.959999084472656}, '12_months_later': {'2023-07-11': 40.369998931884766}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GTX
{'date': '2022-07-11', 'ticker': 'GTX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 7.309999942779541, 'high': 7.5, 'open': 7.449999809265137, 'close': 7.320000171661377, 'ema_50': 7.107708801187104, 'rsi_14': 45.497631295687924, 'target': 7.659999847412109, 'volume': 182100.0, 'ema_200': 6.978042951033827, 'adj_close': 7.320000171661377, 'rsi_lag_1': 57.07964461732475, 'rsi_lag_2': 39.811917005273166, 'rsi_lag_3': 46.91011691210597, 'rsi_lag_4': 59.8915939081178, 'rsi_lag_5': 64.09574225241514, 'macd_lag_1': 0.2738977502463831, 'macd_lag_2': 0.3097148782287995, 'macd_lag_3': 0.352961975955548, 'macd_lag_4': 0.3999724396778479, 'macd_lag_5': 0.41241166615158154, 'macd_12_26_9': 0.22835559529016702, 'macds_12_26_9': 0.32538375161177985}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 7.659999847412109, '2022-07-13': 7.400000095367432, '2022-07-14': 6.769999980926514, '2022-07-15': 6.630000114440918, '2022-07-18': 6.409999847412109, '2022-07-19': 6.599999904632568, '2022-07-20': 6.769999980926514, '2022-07-21': 6.619999885559082, '2022-07-22': 6.519999980926514, '2022-07-25': 6.650000095367432}, '1_month_later': {'2022-08-11': 6.96999979019165}, '3_months_later': {'2022-10-11': 6.199999809265137}, '6_months_later': {'2023-01-11': 7.789999961853027}, '12_months_later': {'2023-07-11': 7.440000057220459}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GTN-A
{'date': '2022-07-11', 'ticker': 'GTN-A', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 15.920000076293944, 'high': 15.920000076293944, 'open': 15.920000076293944, 'close': 15.920000076293944, 'ema_50': 16.866753350636458, 'rsi_14': 56.24999740096029, 'target': 15.649999618530272, 'volume': 0.0, 'ema_200': 18.705342660543817, 'adj_close': 15.141274452209473, 'rsi_lag_1': 48.67925085092951, 'rsi_lag_2': 32.72251161853629, 'rsi_lag_3': 38.590212158877776, 'rsi_lag_4': 39.82737912269987, 'rsi_lag_5': 38.5902077619265, 'macd_lag_1': -0.6038766652586034, 'macd_lag_2': -0.6957109806109205, 'macd_lag_3': -0.6633146314129732, 'macd_lag_4': -0.6123168965252237, 'macd_lag_5': -0.5688642885575028, 'macd_12_26_9': -0.5250449177289145, 'macds_12_26_9': -0.5825689706479784}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 15.649999618530272, '2022-07-13': 15.56999969482422, '2022-07-14': 15.56999969482422, '2022-07-15': 15.56999969482422, '2022-07-18': 15.56999969482422, '2022-07-19': 15.56999969482422, '2022-07-20': 15.56999969482422, '2022-07-21': 15.56999969482422, '2022-07-22': 17.100000381469727, '2022-07-25': 17.549999237060547}, '1_month_later': {'2022-08-11': 16.770000457763672}, '3_months_later': {'2022-10-11': 13.75}, '6_months_later': {'2023-01-11': 11.279999732971191}, '12_months_later': {'2023-07-11': 9.789999961853027}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GUT
{'date': '2022-07-11', 'ticker': 'GUT', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 7.150000095367432, 'high': 7.239999771118164, 'open': 7.230000019073486, 'close': 7.239999771118164, 'ema_50': 7.045116731913949, 'rsi_14': 72.67758267127695, 'target': 7.239999771118164, 'volume': 97800.0, 'ema_200': 7.466229988226544, 'adj_close': 6.353616237640381, 'rsi_lag_1': 70.81080064014714, 'rsi_lag_2': 55.60537752221033, 'rsi_lag_3': 55.20361688295856, 'rsi_lag_4': 50.0, 'rsi_lag_5': 48.93616675899041, 'macd_lag_1': 0.02052216595679024, 'macd_lag_2': -0.0011926708019665, 'macd_lag_3': -0.021764109216648286, 'macd_lag_4': -0.03955872951816719, 'macd_lag_5': -0.05456844588631604, 'macd_12_26_9': 0.038896783936198887, 'macds_12_26_9': -0.019781898911539794}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 7.239999771118164, '2022-07-13': 7.349999904632568, '2022-07-14': 7.389999866485596, '2022-07-15': 7.230000019073486, '2022-07-18': 7.300000190734863, '2022-07-19': 7.409999847412109, '2022-07-20': 7.610000133514404, '2022-07-21': 7.630000114440918, '2022-07-22': 7.659999847412109, '2022-07-25': 7.699999809265137}, '1_month_later': {'2022-08-11': 7.889999866485596}, '3_months_later': {'2022-10-11': 6.789999961853027}, '6_months_later': {'2023-01-11': 7.809999942779541}, '12_months_later': {'2023-07-11': 6.960000038146973}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GSBC
{'date': '2022-07-11', 'ticker': 'GSBC', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 59.119998931884766, 'high': 59.68000030517578, 'open': 59.119998931884766, 'close': 59.63999938964844, 'ema_50': 58.69491233200174, 'rsi_14': 67.76177835150474, 'target': 59.7400016784668, 'volume': 28300.0, 'ema_200': 57.897796436646495, 'adj_close': 57.44643783569336, 'rsi_lag_1': 67.95914697234042, 'rsi_lag_2': 64.69428646024181, 'rsi_lag_3': 69.69177377539407, 'rsi_lag_4': 71.07841884510646, 'rsi_lag_5': 68.39623688322291, 'macd_lag_1': 0.2665990102342022, 'macd_lag_2': 0.24031943069057604, 'macd_lag_3': 0.2083724070364923, 'macd_lag_4': 0.16252910613426508, 'macd_lag_5': 0.13525251060086418, 'macd_12_26_9': 0.2985092577512276, 'macds_12_26_9': 0.18126766056628676}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 59.7400016784668, '2022-07-13': 58.959999084472656, '2022-07-14': 59.06999969482422, '2022-07-15': 60.18000030517578, '2022-07-18': 60.20000076293945, '2022-07-19': 61.16999816894531, '2022-07-20': 60.709999084472656, '2022-07-21': 60.5099983215332, '2022-07-22': 61.38999938964844, '2022-07-25': 62.27999877929688}, '1_month_later': {'2022-08-11': 61.90999984741211}, '3_months_later': {'2022-10-11': 58.9900016784668}, '6_months_later': {'2023-01-11': 58.75}, '12_months_later': {'2023-07-11': 52.27000045776367}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GOLD
{'date': '2022-07-11', 'ticker': 'GOLD', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 16.90999984741211, 'high': 17.270000457763672, 'open': 17.010000228881836, 'close': 16.979999542236328, 'ema_50': 19.91393415154998, 'rsi_14': 20.861705661317387, 'target': 16.440000534057617, 'volume': 19286200.0, 'ema_200': 20.95865339464369, 'adj_close': 16.202001571655273, 'rsi_lag_1': 19.616228797033443, 'rsi_lag_2': 27.308479372741544, 'rsi_lag_3': 28.155362458825408, 'rsi_lag_4': 25.892876605577086, 'rsi_lag_5': 24.701891814786592, 'macd_lag_1': -0.9329620993252199, 'macd_lag_2': -0.9174095043293988, 'macd_lag_3': -0.891341841035679, 'macd_lag_4': -0.8420504359218164, 'macd_lag_5': -0.7872523865532841, 'macd_12_26_9': -0.9504696109743804, 'macds_12_26_9': -0.8386458156087667}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 16.440000534057617, '2022-07-13': 16.489999771118164, '2022-07-14': 15.770000457763672, '2022-07-15': 15.65999984741211, '2022-07-18': 15.81999969482422, '2022-07-19': 16.030000686645508, '2022-07-20': 15.449999809265137, '2022-07-21': 15.5, '2022-07-22': 15.329999923706056, '2022-07-25': 14.90999984741211}, '1_month_later': {'2022-08-11': 16.399999618530273}, '3_months_later': {'2022-10-11': 15.010000228881836}, '6_months_later': {'2023-01-11': 19.21999931335449}, '12_months_later': {'2023-07-11': 16.709999084472656}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GOLF
{'date': '2022-07-11', 'ticker': 'GOLF', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 43.93000030517578, 'high': 45.119998931884766, 'open': 44.619998931884766, 'close': 44.40999984741211, 'ema_50': 41.85151376005807, 'rsi_14': 81.84080085897145, 'target': 44.54999923706055, 'volume': 167400.0, 'ema_200': 44.43166079524679, 'adj_close': 43.411163330078125, 'rsi_lag_1': 85.54912912422907, 'rsi_lag_2': 64.34782752918659, 'rsi_lag_3': 57.61193769249051, 'rsi_lag_4': 58.19431898285707, 'rsi_lag_5': 47.783687703416724, 'macd_lag_1': 0.6535129269154893, 'macd_lag_2': 0.490255796140751, 'macd_lag_3': 0.27271292739937536, 'macd_lag_4': 0.15500972177036942, 'macd_lag_5': 0.07277734898850241, 'macd_12_26_9': 0.7572214308760508, 'macds_12_26_9': 0.3400069880283814}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 44.54999923706055, '2022-07-13': 45.220001220703125, '2022-07-14': 45.38999938964844, '2022-07-15': 47.02999877929688, '2022-07-18': 46.400001525878906, '2022-07-19': 46.91999816894531, '2022-07-20': 46.43999862670898, '2022-07-21': 47.09000015258789, '2022-07-22': 47.52000045776367, '2022-07-25': 47.09999847412109}, '1_month_later': {'2022-08-11': 51.34999847412109}, '3_months_later': {'2022-10-11': 44.43999862670898}, '6_months_later': {'2023-01-11': 44.2400016784668}, '12_months_later': {'2023-07-11': 54.09000015258789}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GOOD
{'date': '2022-07-11', 'ticker': 'GOOD', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 18.850000381469727, 'high': 19.270000457763672, 'open': 19.11000061035156, 'close': 18.940000534057617, 'ema_50': 19.568408225929264, 'rsi_14': 63.2652981784847, 'target': 18.8700008392334, 'volume': 138000.0, 'ema_200': 21.03916020813007, 'adj_close': 16.604812622070312, 'rsi_lag_1': 76.59571877754473, 'rsi_lag_2': 57.04467128712603, 'rsi_lag_3': 62.76923708944301, 'rsi_lag_4': 55.9888682982395, 'rsi_lag_5': 46.13583096329179, 'macd_lag_1': -0.16777437157680453, 'macd_lag_2': -0.20067854324093304, 'macd_lag_3': -0.22550259329630506, 'macd_lag_4': -0.2579798908636377, 'macd_lag_5': -0.29262568234220154, 'macd_12_26_9': -0.1536440508995618, 'macds_12_26_9': -0.25297170262277124}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 18.8700008392334, '2022-07-13': 18.729999542236328, '2022-07-14': 18.64999961853028, '2022-07-15': 18.950000762939453, '2022-07-18': 18.81999969482422, '2022-07-19': 19.26000022888184, '2022-07-20': 19.18000030517578, '2022-07-21': 19.06999969482422, '2022-07-22': 19.030000686645508, '2022-07-25': 19.13999938964844}, '1_month_later': {'2022-08-11': 20.170000076293945}, '3_months_later': {'2022-10-11': 15.43000030517578}, '6_months_later': {'2023-01-11': 16.760000228881836}, '12_months_later': {'2023-07-11': 13.260000228881836}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GOODN
{'date': '2022-07-11', 'ticker': 'GOODN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 24.25, 'high': 24.68899917602539, 'open': 24.56999969482422, 'close': 24.5, 'ema_50': 24.50774211030549, 'rsi_14': 59.04726889054647, 'target': 24.69700050354004, 'volume': 6100.0, 'ema_200': 25.388802352944566, 'adj_close': 21.760225296020508, 'rsi_lag_1': 66.21138392926377, 'rsi_lag_2': 66.71037155824001, 'rsi_lag_3': 65.61392617088701, 'rsi_lag_4': 63.59346219842085, 'rsi_lag_5': 60.37907126335479, 'macd_lag_1': 0.08945961508045386, 'macd_lag_2': 0.08537067339202409, 'macd_lag_3': 0.07381891604779511, 'macd_lag_4': 0.04690283765885184, 'macd_lag_5': 0.013393121458861401, 'macd_12_26_9': 0.08605969784090561, 'macds_12_26_9': 0.023748409112594213}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 24.69700050354004, '2022-07-13': 24.53499984741211, '2022-07-14': 24.299999237060547, '2022-07-15': 24.059999465942383, '2022-07-18': 24.14999961853028, '2022-07-19': 24.25, '2022-07-20': 24.458999633789062, '2022-07-21': 24.739999771118164, '2022-07-22': 24.670000076293945, '2022-07-25': 24.584999084472656}, '1_month_later': {'2022-08-11': 25.0}, '3_months_later': {'2022-10-11': 23.86000061035156}, '6_months_later': {'2023-01-11': 22.25}, '12_months_later': {'2023-07-11': 18.299999237060547}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GOOG
{'date': '2022-07-11', 'ticker': 'GOOG', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/better-advertising-stock%3A-alphabet-vs.-amazon', 'news_author': None, 'news_article': "Advertising on the internet has become a lucrative business that has boosted some of the biggest tech companies. Google parent Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) used ads to monetize its sites, and this strategy has become enormously successful.\nNow, after seeing the success of Alphabet and Facebook parent Meta Platforms in the ad space, Amazon (NASDAQ: AMZN) has begun to monetize its extensive web presence by selling ads. The question for investors is whether such a move makes Amazon a better ad stock than Alphabet.\nThe case for Alphabet\nAlphabet is one of the leading pioneers of internet advertising. The company became the dominant search engine soon after its founding in 1998. Beginning in 2000, it attached ads to its searches, and its business was born. After buying YouTube, that site evolved into another primary platform for advertising.\nSo profitable was this business that it has since invested in dozens of other business ventures and holds almost $140 billion in liquidity at the end of the first quarter of 2022. This gives it one of the most solid balance sheets in corporate America.\nToday, it has gradually diversified its revenue base away from advertising, increasingly emphasizing its Google Cloud offering. Nonetheless, advertising made up $55 billion of its $68 billion total revenue in Q1, or about 80%. That total revenue surged 23% compared with the same quarter last year.\nAdmittedly, its Q1 net income fell 8% year over year amid losses in equity investments. Still, the company earned more than $16 billion during that quarter, which helped to add more than $15 billion to its quarterly free cash flow.\nAlphabet is not immune from the Nasdaq bear market as the stock price has fallen 6% over the last 12 months. However, its P/E ratio of 22 is near a multi-year low, an indication that this lucrative advertising play has become a bargain.\nWhere Amazon currently stands\nAlthough most consumers regard Amazon as one of the top e-commerce companies, it pioneered the cloud through Amazon Web Services (AWS). AWS remains the leading cloud company by market share according to Synergy Research Group, and the AWS segment has usually accounted for the majority of the company's net income.\nAlso, while Alphabet is the ad company increasingly moving into the cloud, Amazon is the cloud leader looking to fulfill its potential as an internet advertiser. The company initially launched Amazon Advertising years ago to better monetize its sprawling web presence.\nAmazon had not emphasized this segment in its earnings reports and did not publish any advertising revenue figures until the fourth quarter of 2021. Nonetheless, in Q1 it reported ad revenue of almost $7.9 billion, a 23% increase compared with the year-ago quarter. In total, advertising accounted for about 7% of the company's $116 billion net sales for the quarter.\nStill, Amazon has struggled with profitability as inflation hit its e-commerce segment. The company lost $3.8 billion in Q1, a sharp reversal from its $8.1 billion of net income in the first quarter of 2021.\nAdditionally, Amazon's stock price has fallen by more than 35% year over year. And while its P/E ratio of 56 is just above multi-year lows, its earnings multiple far exceeds that of Alphabet. Although these conditions are not necessarily a reason to turn negative on Amazon, it has remained a comparatively pricey stock.\nAlphabet or Amazon -- which to choose?\nDespite efforts to diversify away from advertising, Alphabet looks like a better choice for advertising investors. Admittedly, both stocks lead critical parts of the tech sector and should beat the market long term.\nHowever, Alphabet has kept its net income positive in this environment. Moreover, ads are still the primary driver of the company's considerable cash flows. After adding the Google parent's much lower valuation to the list of considerations, many prospective Alphabet investors may decide to buy now and hold forever.\n10 stocks we like better than Alphabet (A shares)\nWhen our award-winning analyst team has a stock tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*\nThey just revealed what they believe are the ten best stocks for investors to buy right now... and Alphabet (A shares) wasn't one of them! That's right -- they think these 10 stocks are even better buys.\nSee the 10 stocks\n*Stock Advisor returns as of June 2, 2022\nSuzanne Frey, an executive at Alphabet, is a member of The Motley Fool's board of directors. John Mackey, CEO of Whole Foods Market, an Amazon subsidiary, is a member of The Motley Fool's board of directors. Randi Zuckerberg, a former director of market development and spokeswoman for Facebook and sister to Meta Platforms CEO Mark Zuckerberg, is a member of The Motley Fool's board of directors. Will Healy has no position in any of the stocks mentioned. The Motley Fool has positions in and recommends Alphabet (A shares), Alphabet (C shares), Amazon, and Meta Platforms, Inc. The Motley Fool has a disclosure policy.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': "After adding the Google parent's much lower valuation to the list of considerations, many prospective Alphabet investors may decide to buy now and hold forever. Google parent Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) used ads to monetize its sites, and this strategy has become enormously successful. Today, it has gradually diversified its revenue base away from advertising, increasingly emphasizing its Google Cloud offering.", 'news_luhn_summary': "Google parent Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) used ads to monetize its sites, and this strategy has become enormously successful. Today, it has gradually diversified its revenue base away from advertising, increasingly emphasizing its Google Cloud offering. After adding the Google parent's much lower valuation to the list of considerations, many prospective Alphabet investors may decide to buy now and hold forever.", 'news_article_title': 'Better Advertising Stock: Alphabet vs. Amazon', 'news_lexrank_summary': "Google parent Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) used ads to monetize its sites, and this strategy has become enormously successful. Today, it has gradually diversified its revenue base away from advertising, increasingly emphasizing its Google Cloud offering. After adding the Google parent's much lower valuation to the list of considerations, many prospective Alphabet investors may decide to buy now and hold forever.", 'news_textrank_summary': "Google parent Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) used ads to monetize its sites, and this strategy has become enormously successful. Today, it has gradually diversified its revenue base away from advertising, increasingly emphasizing its Google Cloud offering. After adding the Google parent's much lower valuation to the list of considerations, many prospective Alphabet investors may decide to buy now and hold forever."}, {'news_url': 'https://www.nasdaq.com/articles/is-it-too-late-to-buy-alphabet-before-the-split', 'news_author': None, 'news_article': "In this video, I will be talking about stock splits but more specifically the upcoming Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) split happening on July 15, 2022, and whether it is too late to buy shares. I've talked about the past two stock splits, which were Amazon and Shopify, and what investors should focus on.\nFor the full insights, do watch the video, consider subscribing, and click the special offer link below.\n*Stock prices used were the closing prices of July 8, 2022. The video was published on July 11, 2022.\n10 stocks we like better than Alphabet (A shares)\nWhen our award-winning analyst team has a stock tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*\nThey just revealed what they believe are the ten best stocks for investors to buy right now... and Alphabet (A shares) wasn't one of them! That's right -- they think these 10 stocks are even better buys.\nSee the 10 stocks\n*Stock Advisor returns as of June 2, 2022\nSuzanne Frey, an executive at Alphabet, is a member of The Motley Fool's board of directors. John Mackey, CEO of Whole Foods Market, an Amazon subsidiary, is a member of The Motley Fool's board of directors. Neil Rozenbaum has positions in Amazon and Shopify. The Motley Fool has positions in and recommends Alphabet (A shares), Alphabet (C shares), Amazon, and Shopify. The Motley Fool recommends the following options: long January 2023 $1,140 calls on Shopify and short January 2023 $1,160 calls on Shopify. The Motley Fool has a disclosure policy. Neil is an affiliate of The Motley Fool and may be compensated for promoting its services. If you choose to subscribe through his link, he will earn some extra money that supports his channel. His opinions remain his own and are unaffected by The Motley Fool.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': 'In this video, I will be talking about stock splits but more specifically the upcoming Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) split happening on July 15, 2022, and whether it is too late to buy shares. For the full insights, do watch the video, consider subscribing, and click the special offer link below. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.', 'news_luhn_summary': "In this video, I will be talking about stock splits but more specifically the upcoming Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) split happening on July 15, 2022, and whether it is too late to buy shares. John Mackey, CEO of Whole Foods Market, an Amazon subsidiary, is a member of The Motley Fool's board of directors. The Motley Fool has positions in and recommends Alphabet (A shares), Alphabet (C shares), Amazon, and Shopify.", 'news_article_title': 'Is It Too Late to Buy Alphabet Before the Split?', 'news_lexrank_summary': 'In this video, I will be talking about stock splits but more specifically the upcoming Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) split happening on July 15, 2022, and whether it is too late to buy shares. Neil Rozenbaum has positions in Amazon and Shopify. The Motley Fool has positions in and recommends Alphabet (A shares), Alphabet (C shares), Amazon, and Shopify.', 'news_textrank_summary': "In this video, I will be talking about stock splits but more specifically the upcoming Alphabet (NASDAQ: GOOGL) (NASDAQ: GOOG) split happening on July 15, 2022, and whether it is too late to buy shares. See the 10 stocks *Stock Advisor returns as of June 2, 2022 Suzanne Frey, an executive at Alphabet, is a member of The Motley Fool's board of directors. The Motley Fool has positions in and recommends Alphabet (A shares), Alphabet (C shares), Amazon, and Shopify."}, {'news_url': 'https://www.nasdaq.com/articles/tips-for-contractor-workforce-success', 'news_author': None, 'news_article': 'Two members of The Motley Fool\'s people team join the podcast to talk about creating success with a contractor workforce. And Motley Fool senior analyst Tim Beyers stops by to talk about Rule Breakers.\nTo catch full episodes of all The Motley Fool\'s free podcasts, check out our podcast center. To get started investing, check out our quick-start guide to investing in stocks. A full transcript follows the video.\n10 stocks we like better than Walmart\nWhen our award-winning analyst team has an investing tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*\nThey just revealed what they believe are the ten best stocks for investors to buy right now... and Walmart wasn\'t one of them! That\'s right -- they think these 10 stocks are even better buys.\nSee the 10 stocks\nStock Advisor returns as of 2/14/21\nThis video was recorded on June 28, 2022.\nDavid Gardner: A few weeks ago on this podcast, I welcomed back Kara Chambers and Lee Burbage from the Motley Fool\'s people and culture team, and they banged down 10 new company culture tips. This time focused on progress and growth. You had questions while Lee and Kara are back with answers. Plus is there a solution to the constant deadlock tie games we\'re recently having on the Market Cap Game Show? Yes, you bet there is, penalty kicks, kidding. Well, kind of it\'s the last Wednesday of the month, which means it\'s your Mailbag only on this week\'s Rule Breaker Investing.\nWelcome back to Rule Breaker Investing, doing some calendar math. This is June 2022. We are ending the month, of course, with our Mailbag, and some of you may have been with us from the very beginning of this podcast, which means you remember those first few Rule Breaker Investing podcasts in July of 2015. The calendar math is that this week\'s podcast represents the completion of our seventh full year of Rule Breaker Investing the podcast as we start with next week with an independent\'s day podcast. That will be the beginning of the eighth year of this podcast. I want to, of course, thank my incredible producer, Rick Engdahl. Rick, who\'s such a delight to work with anybody who\'s worked with them at the Fool knows that for a few decades now. But in particular, for me, it\'s an opportunity to work with somebody who cares meticulously about the work that we do every week. He edits relentlessly from one week to the next. I thank him for that. He also tends to title the podcast and writes the blurbs to explain what the podcast is about on iTunes or Spotify, you\'ll see a sentence or two.\nThat\'s Rick, almost every week, week-in and week-out and so saying that phrase reminds me to remind you that this podcast has been published weekly without a single exception, fresh content every week, for now, seven full years and no one is to thank more than Rick Engdahl. Rick, thank you very much and thank you as well to so many guests. I\'m already looking for the authors in August, we\'re going to have some spectacular authors joining me once again this August. But how many external guests and how many internal guests like Lee and Kara today, Motley Fool employees or analysts, have breathe life into this podcast through good markets and at present, bad. I like to be with you through thick and thin and I hope you\'re with us through thick and thin. It has been a true joy ride from the first week right through to this one and beyond, so thus much for the end of the lucky seventh year of Rule Breaker Investing. Thanks for joining with me. This week we usually lead it off with some hot takes from Twitter for this Mailbag.\nI just picked one this week and it\'s emblematic of where we\'re headed with this week\'s podcasts. It\'s from at Thomas Costa. Thomas writes, "A must-listen episode of Rule Breaker Investing. If you are an employee or employer, this is a truly inspirational and uplifting list of actions we all can take for life." Thank you, David, Kara, and Lee. Thomas Costa was, of course, referencing the podcast, that I did Company Culture Tips Volume 9, progress and growth. That was on June 8th. If you didn\'t have a chance to listen, listen, maybe share it out with your head of HR, and maybe you are the head of HR, in which case, share it out with your employees. Whenever saying all 10 of our tips are great, maybe not even all 10 are good but maybe one of them from one episode in this series which has been running nine episodes, maybe one of them from one episode to the next, could improve your workplace and work experience in those around you forever. Thank you, at Thomas Costa. Rule Breaker, Mailbag Item Number 1 up seven this week.\nThis one comes from Sam Stevens. Hi David. Here\'s the tiebreaker idea for the Market Cap Game show. I\'m going to pause for a second. Just mentioned that four times a year we play the Market Cap Game Show. If you\'re a regular listener, you know that we just did it last week. It\'s a game show. It quizzes you about market caps. Why do we quiz you about market caps? Because I think it\'s a much more intelligent way of following the market to know the price tags of each of the companies out there, not the price per share, big difference, the price tags of companies and so I bring on talented analysts to make their best guesses at what the live streaming market cap is for 10 different companies as we go over an episode, they don\'t know which one is going to come next. For the last few Market Cap Game Shows, we\'ve tied at five to five. Now Sam Stevens, who I know personally, a former Motley Fool Summer Intern Sam, shouts out to you. Sam, you\'re still listening to the podcast. Well past your Summer internships. I continue to wish you the best I trust as well with you. You\'re sharing a blessing, a gift back in the form of these Mailbag items.\nLet\'s return now to Sam\'s note. "Hi David, here\'s a tiebreaker idea for the Market Cap Game Show. An 11th stock is presented to ensure no advantage is given to either player by going first or second, both players must simultaneously and secretly write down a range of market caps. The contestants, then reveal their written answers one after another, but the correct answer is of course not revealed until after both players have revealed there\'s for maximum suspense," Sam explains. "If one contestant provides a correct range and the other does not well that player wins. If both are correct, the tighter range wins, and if neither is correct while the range with the closest bound to the correct answer, wins. You can actually play the whole game this way," Sam concludes. But I like it better as the tiebreaker. Fool-on. Sam. Sam, you have just created the newest and latest rule for the Market Cap Game Show and in honor of you, I\'m going to name it the Stevens\' sudden death rule. For now on, if at the end of 10 companies in the Market Cap Game Show, the contestants are tied, we will invoke the Stevens\' sudden death rule, and we will be played by the exact rules which were well thought out and well expressed in your notes, so Sam, please know that you\'ve made a permanent addition, a permanent I would say improvement to our world.\nStriking one more small blow on this podcast for financial freedom. Thank you, Sam Stevens, and I\'m almost already looking forward to having a tie when I welcome back Yasser El-Shimmy and Brian Stoffel in September. In the meantime, Fool on. Onto Rule Breaker Mailbag Item Number 2, this from Mark Minor. Thank you for writing it, Mark. "Hi, David, I\'m a longtime Fool member and Rule Breaker investing podcast listener, and this is my first time writing. I\'m surprised it\'s a four-minute podcast that I\'m responding to. However, I felt the need to write in regards to your May 25th, special podcast, we have met the enemy again." You asked your listeners to do something without saying what you think should be done. Well, I don\'t expect you to have all the answers and I respect your ability to remain apolitical is a pet peeve of mine," Mark writes, "When someone asks that others do something on a topic without providing any direction as to what that something is that should be done." Pause there. Of course, this was referring to that brief podcast I did about a month ago after the Uvalde shooting tragedy. I\'m just going to pick it up there and then to answer, Mark\'s note. "For some," Mark rights to answer, "Is to arm every American with guns to provide protection. For others. The answer is to restrict gun ownership.\nEither camp could use your prescription to support their argument. You have a powerful platform. If you\'re going to speak on the topic, then speak on a topic." "For the record," Mark concludes, \'\'I\'m squarely in the camp that calls for common sense gun control to start with banning the ownership of assault rifles, background checks, and removal of guns from person\'s deemed dangerous. I believe such is in line with the right of persons to have the liberty to be free of the everyday occurrences of mass murders via guns in this country. I hope you feel the same. It would be nice to know.\'\' Mark Minor. Well Mark, first of all, I really like your pet peeve. In fact, I think your pet peeve is a lot better than a lot of my pet peeve, so thank you. I think it does make sense if I\'m going to say something and encourage everybody to think or do something on a topic, I think it is a good show of leadership on my part to say what I intend to do. I didn\'t do that on that podcast and I think it\'s better for me to do so. I\'ll let you know straight up that in general, I agree with how you think about things. I\'m not a big fan of guns. I think that\'s pretty obvious to anybody who knows me. I did learn how to shoot one and Summer camp years ago.\nI haven\'t wanted to shoot one since. I\'m not a hunter, but I\'m awfully grateful for hunters because I\'m a meat eater and I frankly don\'t have the guts to kill an animal myself that I regularly eat at supper time. I think there\'s some hypocrisy there, but we\'re all flawed individuals, aren\'t we? I think my own contribution in some ways was just to make that four minute podcast with Rick a month ago. That was an important contribution. I wanted to get people thinking for my own part, I went and researched further. I just spend some time online wondering how much this is a federal decision and how much this is a state or local community decision. I\'ll also tell you that I went back to an essay that I\'d read years ago. In fact, I couldn\'t find the book, so I had to just read about the essay. It was a satirical essay by Paul Fussell from his book, Thank God for the Atom Bomb. I laughed out loud as I thought about it again because I think he has a pretty good point. I\'ll just contribute this for this podcast and then move back to Rule Breaker Investing. But what I found was from the Albany Times Union, an article that was written 10 years ago.\nIn fact, the month before Paul Fussell, the Author, had died at the age of 88. This opinion piece, I\'m going to quote from it said this, I\'m quoting now from Casey Seiler\'s article in the Albany Times Union written in July of 2012. \'\'One of the best pieces,\'\' he writes, \'\'In Fussell\'s 1988 collection, Thank God for the Atom Bomb and other assays is a short wicked satire aimed at the National Rifle Association\'s veneration of the second amendment, or rather half of it. Surveying the NRAs headquarters, Fussell noted, the entrants inscribed with the words, "the right of the people to keep and bear arms shall not be infringed." "Somehow neglecting," the writer goes on, "the opening clause of the amendment, \'\'a well-regulated militia being necessary to the security of free state.\'\' Fussell then proceeded to offer a modest proposal that the nation should start taking those words seriously. Meaning literally, with automatic militia membership for any gun purchase, that would oblige the buyer to take part in intensive training and \'\'Weekly, supervised target practice, separation for the service publicly announced for those who can\'t hit a barn door and quote again, there are some of the Fussell\'s satirical tone.\'\' Fussell continued in that essay. "If interstate bus fares can be regulated.\nIt\'s hard to see why the militia can\'t be, especially since the constitution says it must be.\'\' Fussell wrote. I\'ve always loved that point because the context for this amendment was within the context of a well-regulated militia. Fussell has people showing up on Saturday mornings if they want to be a gun owner, learning how to work within a militia, digging latrines. He even mentioned that, I appreciate the humor of that, but I think he has a serious point. We are living through times right now where landmark Supreme Court decisions are being made, sometimes reexamining what we did before or what we thought before. I\'m taking no stance on that, but I can tell you for this one, it might be worth reconsidering why we all have that freedom. What was the context that these so-called founding fathers had when they created the second amendment? Well, I hope that makes some sense to many of my listeners anyway. But Mark, thank you very much for asking me to do that and I\'m happy to share my own viewpoint. But the reason I did the podcast, the way I did is because i don\'t presume anyone to either start with the assumptions that I make or end with the conclusions that I make. Mine is really to challenge your thinking in my thinking, help us be transparent and share our knowledge and challenge people with different viewpoints, not silo ourselves away from different viewpoints. I think that\'s such an important thing for Fools.\nAfter all, capital F Fools for years online we\'ve had articles where we have a bull and a bear and they take opposite sides of the same stock and we publish them both in our little newspaper, if you will, the digital newspaper that is Fool.com, but that\'s the spirit of our enterprise. For many years on this podcast and at Fool.com, and in my speeches and writings, I\'ve said Make your portfolio reflect your best vision for our future and that line means a lot to me. It\'s very important to me and it\'s an investing line. But we\'ve always talked about this podcast being about investing and business and life. As I\'ve thought about it recently, I think I have a version of that line. That line is dedicated to your portfolio and investing. But if I were to take that same sentiments and translated into life, I would say something like make your life reflect your best vision for your community, and for each of us that\'s going to suggest something different. Whether we\'re talking about gun control or we talking about immigration or you\'re talking about my right to sell cars through my own store in each state, which Tesla was not afforded for quite a while, by the way. But I think we all come at things from different angles, different backgrounds, and context.\nI think part of being a pluralistic society is that we need to celebrate that diversity. I sure do. I\'ll always remember Nick Applebee on this podcast, I\'m checking now is May tenth, 2017. You can see that interview with the author of the book Mind Wise, which I recommend. Nick Applebee gave me a great question that you can use too dear Fool. Whenever you talk with somebody in a political context, especially if it seems a little touchy, like, should we be talking politics right now? Is that comfortable, it\'s a cocktail party or whatever it is, the great question Nick gave me and you to ask people is after they\'ve given their viewpoint, the question to them is, how did you arrive at the conclusion that you have reached? I think out of each of our own stories and backgrounds, we have arrived to conclusions, but asking people to make those explicit, to explain how they got to where they got is so much more interesting and valuable than merely hearing whether they are pro this or anti that. There\'s a concluding thoughts for you. Thanks Mark.\nRule Breaker Mailbag Item Number 3 speaking of newspapers, this one from Eric, \'\'Dear David, I usually make it a rule not to correct people, but I know you love the origins of expressions.\'\' By the way, Eric, I also love being corrected, so that works too. Returning to his note, \'\'I wanted to offer a clarification to something you said on the June 1st episode, you mentioned how the phrase below the fold was an online expression. Well as a former newspaper reporter, I can say it\'s definitely an analog one going back to the days of print newspapers. \'\'In contrast to a Tabloid newspaper,\'\' Eric writes, \'\'which is more square, that\'s in shape. A traditional "broad sheet", newspapers much taller than it is wide, and of course folds in the middle. When placed in the newspapers stand only the top half of the front page is visible. Anything below the fold is hidden from view. As a reporter, any page one story was a point of pride," Eric concludes, "but getting it above the fold was so much sweeter.\nThanks for the chance to go down memory lane. Eric" Well, Eric, I really appreciate that note. I don\'t think I have to say too much more than good on you. Thank you for sharing that. I\'m sorry that I referred to below the fold, is it online expression? I also grew up with newspapers and I think I knew what you wrote, but I did misspeak. I\'m all about trying to get things right even if we have to patch it up later, which by the way, is what the Mailbag has often represented for this podcast for years and years, an opportunity to revisit whether it was something I said wrong about a stock or in this case, about a phrase from the English language, and for my brilliant worldwide listenership to help me get smarter and all of us to share it out. Eric, you nailed it. Thank you. May you always live above the fold. Well, without further ado, let me welcome back Kara Chambers and Lee Burbage. Kara and Lee great to have you joining me for this Mailbag.\nKara Chambers: Hello.\nLee Burbage: Hi. So good to be back.\nDavid Gardner: Thank you. I\'m not surprised at all that you are back. You\'re probably not surprised that you\'re back is typically when you both come on, we get questions or tips or thoughts, and I find myself at the end of that month saying, well we have to have you back for Mailbag to react, and that\'s what we\'re going to do with the next few items. Before we get started it is Summer, Kara. It is Summer, Lee. Quick icebreaker, I will turn to you first, Kara, your second favorite flavor of ice cream. It\'s Summer.\nKara Chambers: Second favorite?\nDavid Gardner: Yes.\nKara Chambers: I\'m only a mint chocolate chip person pretty much. I\'d rather die on a mint chocolate chip and that\'s it.\nDavid Gardner: I love mint too, I totally do. You do not have a second favorite flavor ice cream?\nKara Chambers: I\'ll take anything chocolate flavored it after that but I would opt for no ice cream if I was.\nDavid Gardner: I don\'t think it\'s possible to answer the second favorite question without saying what one\'s favorite is. Lee, what\'s your second favorite flavor of ice cream? [laughs]\nLee Burbage: Well I\'ll say that like Kara, I\'m not a big ice cream person. I think I\'d rather have two helpings of my entree. But if I\'m going to ice cream, my second favorite typically is the bubblegum, where you\'re like, it\'s like vanilla ice cream, but there\'s actual pieces of gum inside.\nKara Chambers: [laughs] I\'ve had it.\nLee Burbage: Yeah, the concept is great but when you\'re actually eating, you\'re like this might have been a mistake. [laughs]\nDavid Gardner: In my experience, that flavor starts looking like vanilla, but it doesn\'t look too wide after another three or five minutes. It starts looking purpley and then orange and then it ends up brown.\nLee Burbage: Something like that. [laughs]\nDavid Gardner: The bubble gum still tastes like bubblegum. Thank you. Lee, I feel somewhat duty-bound. What is your favorite flavor of ice cream?\nLee Burbage: Well I will go with the Sherbet. There\'s a few good flavors of Sherbet, but I\'m a sucker. I grew up on the pop-up. I think that\'s what it\'s called, but you get from the ice cream man and especially Sherbet and a tube, that was always my favorite as a kid.\nDavid Gardner: Push-ups.\nLee Burbage: Push ups. There we go. Yes.\nDavid Gardner: Those are pretty timeless. I had them as a kid. My kids had them as kids. I bet their kids will have them as kids, Push-ups.\nKara Chambers: Push Pops?\nDavid Gardner: Push Pops. Let\'s get to a slightly more important topic. Mike McMahon wrote, Rule Breaker, Mailbag Item Number 4, \'\'Being a newish listener to the RBI podcast, listening to the company culture number nine was new for me.\'\' Mike writes. By the way, Kara, Lee, didn\'t we have a former employee named Mike McMahon?\nLee Burbage: We\'ve had a lot of Mikes and we\'ve had a lot of McMahons. [laughs] But I\'m not sure we\'ve ever had a Mike and a McMahon together.\nDavid Gardner: I thought he was a techie, but if we did have a techie named Mike McMahon, this clearly isn\'t he because he did not at all refers to that and he is a new listener still.\nLee Burbage: We do have a Mike Mulligan who is one of my favorites because one of my favorite child books was Mike Mulligan and Steam Shovel. I will have a fun that sorts Mike Mulligan.\nDavid Gardner: Mike is a great guy with a lovely sense of humor, so I like that about that techie too. But back to the question. \'\'I have a question,\'\' writes Mike McMahon. \'\'For Lee Burbage and Kara Chambers.\'\' He spelled your names right? \'\'What ideas/recommendations, do they have for companies who are using contractors or gig workers and the integration of those workers as part of the company culture?\'\' That seems a very ocher on question, a good question to ask, Mike. So many companies, including ours, are making use in lots of different ways of contractors. Lee, Kara who wants to take that one first?\nLee Burbage: I can start out David, this is something that we\'ve been working on for 27 years since the Fools started, and you and Tom started the company we almost right away hired people out in our community that were contributing to our content and so forth. The first thing I would say is I think we\'ve learned that you might need to recognize that someone who\'s choosing the life of a contractor may not want the same company culture that your full-timers want. A couple of years ago, I think largely based on your encouragement, David, we hired someone to solely focus on our contract workforce and that\'s been a big deal for us, so having someone who at least part of their job is fully focused on the needs of our contractors, which we find can be different than those of our full-timers. That\'s the job that you\'ve chosen, has been powerful and Michael McCoy, who does that for us, has created surveys. We\'re now surveying our contractors to find out exactly what their needs are. He\'s created a social Slack channel for them, just for them where they can talk to one another. Andy works with our editorial staff on an annual conference just for our contract staff to give them a little bit more information if they\'d like, about things that are going on at the company and our initiatives and so forth. Those are the things that we\'ve done but I would just say recognizing that a lot of times the person that\'s chosen the path of individual contractor, doesn\'t necessarily want to be part of a big company culture. Again, just make sure you understand what those people actually want and then you can serve it to them.\nDavid Gardner: Really glad you\'re pointing that out and the work of Mike McCoy at the Fool. By the way not to be confused with another Scott Irish Mike McMahon who wrote this, no but yeah, Mike McCoy, the Fool, I love the work that he is doing. One thing I think not a lot of our listeners may not know that we three know, I think we have as many or more contractors than employees at The Motley Fool. This is a very substantial number of people and contribution that\'s been made for, as you mentioned Lee, more than two decades. I would say especially would make sense for the Motley Fool to have somebody full-time thinking about supporting in part, empathizing, overseeing a large contract labor force. Now, most of our contractors, as you both know are writers, so many of the articles that go out from the Motley Fool, you\'ll find them on many different sites over the course of the day saying why has the stock done what it just did this day, so many of those are written by our contractors. We have contractors helping us in all kinds of ways. I know we have techies too, and Mike McCoy knows that a lot better than I do, but I\'m so glad that we\'ve been doing that Lee and we are crazily. We\'re actually a bigger contracting company than company company. Kara what would you like to add or subtract?\nKara Chambers: There\'s some universal needs for people, feeling connected, feeling like you have a voice. But I think going the contractor path means you\'re not necessarily tied to any one company, so that identity is again, by nature, is independent and it\'s temporary so you\'re on your own. I think we\'ve had to do some work on differentiating the two experiences. That\'s an interesting and fun though. There\'s things we can learn from each other and we do.\nDavid Gardner: I\'m curious whether either of you has reflections, because many a time has it happened that the one became the other. Many times had contractors who then become full-time employees. We\'ve had full-time employees who go to become contractors. Have you noticed any trends or obtained any insights, any anecdotes from any of those? Any learnings that we could share back out for when butterflies become other types of butterflies?\nLee Burbage: A lot of it has to do I think with, who you are and how you like to work, how you\'re motivated. Some people just really prefer what is often more task oriented. Again, independent lifestyle of a contractor and others want to be part of a bigger, oftentimes more murky navigation of a big organization. There\'s different types of ways people like to work and that can shift in your lifetime as well based on your personal situation. Again, or how you\'ve grown as a human.\nDavid Gardner: Another huge change, obviously, that was brought on by COVID is work from home. I think it was a fair generalization about The Motley Fool anyway, in our first 20 years before COVID, that most if not all of our contractors were working from home and most, if not all, not quite all, but most of our employees were working from the office. There was a real, I think bifurcation, a real siloing or difference. They were two different types of individuals. Lee and Kara, these days and Mike McMahon\'s question closes with integration of those workers as part of the company culture. Now Lee, you\'ve been speaking to the importance of recognizing they have different needs often. But maybe we\'re a little bit more similar than we were three years ago. I have to admit I would be sitting in a conference room sometimes thinking, do we have to ask Tony to Zoom in. They\'re working from home. It\'s much more convenient just to be around the table. But now we\'re more of a hybrid workplace and I\'m not talking about our company anymore. I\'m talking about so many different companies so it does seem as if integration is even more necessary.\nKara Chambers: I might add, it\'s the separation that\'s interesting to me that the contractor is the type of work you\'re doing where it tends to be, as employees, what you don\'t want us to treat your work transactionally, but as a contractor, you do because that is the nature of it. I think for us, it\'s really been better at helping us think about what the difference between the jobs are. You\'re right, it\'s not just because of contractor is someone that just doesn\'t come to the office because that it\'s not true any more. But to me, I felt like it was more about the understanding what\'s the contactor role and what isn\'t. We\'ve been forced to make that clear, which is good.\nLee Burbage: I think the tools, evolution is also a big one because everyone is now working and maybe more disjointed or remote way, there\'s a lot of cool new tools that have come about to serve the full-time employee that are also great for the contract workforce. I know that we\'ve upgraded really, I think all of our tools that we use in the way that we\'re working with signing people up, on-boarding, giving out projects, managing projects, all those types of ways that we work together with our contract workforce has just gotten better. I think that\'s in part because we all need those same types of technical tools now.\nDavid Gardner: Would you like to give an unsolicited unpaid for a plug? That\'s what every plug ever on this show has ever been about a tool or particular site that\'s been helpful in some of what you just described, Lee, for contractors.\nLee Burbage: Sure. For many years, we worked with a large company called Upwork that still exists today. They were a huge partner for us and getting us set up to where we are. Then recently, we\'ve pivoted to a company called Worksuite. That\'s a little bit more of a start-up than Upwork, but real specific to our types of needs in the way that we work. Now we actually work with both those companies again, depending on the relationship with individual contracts and what our needs are. But they\'re both great companies and they\'ve both been awesome partners for us.\nDavid Gardner: Let\'s move on to Eric Eason and Rule Breaker Mailbag Item Number 5. "Hi, David. I\'ve so enjoyed hearing the workplace culture ideas that Kara and Lee have shared with us over nine Rule Breaker episodes. Not only do they have enough material for an Episode 10 best of which, by the way, is going to be our next one. It\'s time for the best off. We\'ve talked about it. But Eric goes on, they actually have enough material to write a book replete with real life results within the Motley Fool and no doubt within other companies. I encourage them to write such a book as it would be of inestimable value to so many people around the world and the companies for which they work. Cheers, Eric Eason." Well, Eric, that is a delightful sentiment. Kara, Lee, are you inspired? Is it book deal time? Are you already working with an agent? Sounds like I agree with Eric, you should be.\nKara Chambers: I love that idea. [laughs] Yeah, you could just go through all of the Slacks and PowerPoints and email we\'ve all centered over time and probably just all add up like oral history of the Fool, I guess that\'s happening. I do love that. We have day jobs right now. But for now, we looked at this question. Said, well, let\'s suggest some others if you want to read them.\nDavid Gardner: That\'s nice.\nKara Chambers: We have really liked Work Rules! by Laszlo Bock, he is the Head of People at [Alphabet\'s] Google. What we really liked about that and we talk to him, we met him, similar to our philosophy, if you listen to any of our podcast, we as HR people do not have an adversarial relationship. You don\'t want to create a defensive relationship with Fools or people who work for you. I really loved reading Laszlo\'s book because he\'s very much about that. I would recommend that one. Then the other one we\'ve read and just gobbled up was by a woman named Liz Wiseman. It was called Impact Player. That one is probably appeals to really broad group of listeners how to achieve where you want to be in your job and just really collaborating a way that when we read it, we said, oh, this sounds like what helps Fools succeed. Things that feel very well fit into our culture, those would be the two that came to me off the top of my head.\nDavid Gardner: Well, thank you very much, Kara. That\'s great. I just want to say ahead of time, I can\'t wait for your book that you\'re going to write with Lee and I guarantee you\'ll be on Authors in August that year, maybe it\'s next year. Not sure. Sounds like you\'re not itching to write a book or you\'re not right about to I don\'t know block off time together to put something out there. But I\'ll say this, the value that you\'ve contributed through nine podcasts on this podcast over the years is clearly very high. I love that Eric called that out, and I think you both deserve our thanks. Thank you again for all of the insights that you shared. If I\'m right, my math as we talked about it earlier this month when we did our ninth, it\'s 10 tips each episode, that means 90 tips that we\'re going to get to come through as we put together a best off for Episode 10 at the end, I\'ve been saying, of this year-ish. There\'s a lot to come through. There\'s a lot there. I do think there\'s a book there. I think the world would love it and let\'s move onto Rule Breaker Mailbag Item Number 6, which comes from Germany. Andreas Holm.\nThank you, Andreas. "Hi, David. Foremost, I\'m sending you gratitude from Germany all the way over the pond to you and the team at The Motley Fool. I listen to the Rule Breaker Investing podcast regularly since the pandemic and I appreciate those company culture-related episodes, whether it\'s about the Motley Fool company or any other company for that matter. The tip I appreciate the most in the latest Company Culture Tips was the definition of my role. I\'ve never heard someone asking whether a senior consultant or a financial analysts can help to solve a problem. Instead, the questions revolve around what people do know, what do they care about or what do they simply great at. Putting that on display will lead to more efficient communication because I can search for a topic of interest and find the right person in my company." I\'m going to pause it right there. Kara and Lee, not everybody did get to hear you a few weeks ago. Can you just briefly reiterate the tip that Andreas is referencing?\nLee Burbage: Yeah. Andreas is talking about my role, which we discussed in the previous podcast. Essentially, this is our efforts to fill in the gap where we don\'t use job titles at The Motley Fool and instead have individuals describe what it is they are actually doing, the impact that they\'re making at the company in 60 characters or less. It\'s an easy place, hopefully, for people to look to see what others are doing. That will be a lot more helpful and descriptive than Senior Vice President of Executive Programming Drafting. [laughs]\nDavid Gardner: You\'re right, which is about 60 characters itself but. Andreas, he\'s really underlining this, it\'s about roles, not titles and role in one\'s own words can be much more helpful often to people who are trying to figure out who is this person and how do they work and what do they do at this company, whether it\'s your own company or somebody else\'s? Yes, that\'s what we\'ve been, I\'m not going to say pioneering because I\'m quite sure somebody else, the Greeks anyway, had done this at some point. [laughs]But that\'s the train we\'re on at the Fool, real de-emphasis on job titles and emphasis on my role, which leads to the first of Andreas\'s two questions. He said, "I have one question about this to Kara and Lee because it wasn\'t mentioned on the podcasts. How would it look if teammates were able to collectively add a second line to describe my role from their perspective? I believe it\'s also important to understand which values I delivered to others and the best opportunity to gather this knowledge," Andreas writes, is to receive it from people I work with regularly and make it visible through their contribution. It\'s also a learning opportunity for me when I don\'t know which additional values I bring to the table. I love that point, team. Andreas has suggested maybe there\'s a second 60 characters. You, in other people\'s words, what you\'re good at in. Andreas has even mentioned, he\'s curious what people think he\'s good at. But I bet there\'d be a lot of additional info, maybe some hobbies or personality that pop through that. Any thoughts back on Andreas\'s first question?\nLee Burbage: Well, I\'ll say think I will give Andreas feedback that he\'s good at asking questions and also good at looking at what\'s the next level of things. I like where he\'s going. I think I\'ll just speak maybe more generally and Kara can talk maybe more specifically about how we see that in our work. But if you\'ve listened to prior podcast, you\'ve heard Kara and I perhaps talk about the signals that one is getting. She and I spend a lot of time talking about people are inflow state we know when their self-aware of the impact they\'re making. That view is shared by their boss, so they are aligned with their boss about their impact and with the people that are working around them. You have this beautiful spot where you know what you\'re good at, your boss agrees and everyone around you is also in alignment then you\'re in-flow state. It\'s important to pay attention to the signals that you\'re getting from all of those parties to try to get to that perfect zone.\nKara Chambers: I like this idea and I think one of the pieces of training we give our managers is that telling people what they do best helps people create an identity for themselves. A lot of times when you don\'t want to give negative feedback that is critical and put a critical label on a person that tends to backfire and people reject it. But the opposite happens when someone says, David, you\'re very conscientious person. Andreas, you\'re really great at asking questions. He start to adopting that as part of his identity and does more of that. Anytime that you have an opportunity as a leader or a peer to give a positive label to someone, they will absorb that into their identity and they will do that even more and they will excel. I was just thinking as we were putting that together, there\'s a couple of ways we do that here with our Gold program where we share with people, praise and thanks somethings.\nI do encourage people to frame it that way, is give people a positive label about themselves. That\'s fun. Then you just inspired me too just thinking about company, you probably know, called Lastian. They were framework you can google called roles and responsibilities where you do exactly that, where you sit with your team and we just did this recently on our team. Type in what other people are doing in their roles. Then our team, because we all like each other so much we have lots of complements in there. But that is a helpful exercise to deep blur, but it also is a nice way to do what Eric\'s talked about is to get together and say, what do you think my role is? Because it\'s a different.\nDavid Gardner: All right, thank you for that. Andreas, you clearly, sir, are a fellow Fool. You get it. I love what Lee said about you asking good questions and also going to the next level of thought which can lead to next-level actions. Let me finish out Andreas\' note because he takes a different angle here at the end. I\'d love for you both to comment on this. He continues, wait have we mentioned that or are we not hyping that enough? Yes, we have mentioned that a few times. I\'m the one hyping this up and it\'s going to be great. "Looking into the future, you David mentioned the top 10 Culture Tips episode might be up next with so many years running." This episodes. I was wondering about a question, the episode could answer. "Which company culture tips do you not follow today anymore and how did you identify that it does not work?" Now, when we put together that top 10, maybe there\'s a bloopers the 11 or 12 the thing we said three years ago that we no longer agree with and that will be a fun exploration, Lee and Kara, if you have anything like that, queue it up and speak to in a minute. If not, we will try to share that during the top 10 that comes at the end of this year.\nBut I really like that question, but I want to continue because Andreas goes onto say, "It\'s great to come up with new solutions to solve old problems and it\'s better to learn from mistakes early on when the solution to the problem does not work out" in other words it fail fast friends. "In my personal experience," he mentioned, "I noticed that managers take cultural ideas and terminologies from other companies without creating or having the appropriate environment where these ideas could flourish." Therefore, I\'m seeking more universal ideas like the my role culture tip, which can be implemented anywhere because it doesn\'t matter what culture or environment you already have. Let\'s call it right there. I think that\'s true. Isn\'t it Lee and Kara? We talked about this ahead of this podcast, but we were saying every company has its own culture and if we think of that as soil rich loam, you need to have the right soil for the seed that we planted in a podcast to grow. Sometimes I can imagine, these wouldn\'t grow in other cultures because their soils just flat out different. It might be richer or thinner than ours or a different color altogether. I think the nutrients of a company culture are different from one to the next. I guess that\'s why he\'s emphasizing the benefits of the more universal ones.\nLee Burbage: Yes, I think that\'s true. Kara and I always like to tell people that, we\'re trying to talk about things that worked for us. Hey, by the way, a lot of times they\'re things that we\'ve learned from other companies that we\'ve worked a little bit. You have to think about your own culture and what\'s going to work there. We have of course, made mistakes. I look forward to going through those 90 to see which ones don\'t work anymore. I do know one of your favorites, David a few years ago, tried to have a virtual assistant in our office. The company I mentioned earlier, Upwork, which is all about remote work and contractors. They had it and I was like, that\'s a great idea we should emulate that and that will work great in our office and it was pretty much a disaster. Did not go well, we had virtual person on a screen when you came into our office and it just didn\'t work for our culture. It freaked people out a little bit. That\'s OK. We\'re going to have some things that we tried, some things that fail and it gives us something to laugh about later.\nDavid Gardner: Absolutely. Back in those days, you walked into the Fool and there wasn\'t the traditional receptionist upfront in the office, well there was except it was a computer screen and it was somebody who might be living on the other coast.\nLee Burbage: Yes.\nDavid Gardner: Maybe a West Coast person. Maybe her head was a little too big like larger than life.\nKara Chambers: Don\'t look at me. [laughs]\nDavid Gardner: Normal receptionist have normal sized human heads but maybe we like had two biggest screen, and he wouldn\'t say hi necessarily, but leer at you initially and you\'d leer back and it was uncomfortable for a good nine or 12 months and it is worth laughing about. These days, I can imagine max headroom might make even more sense in an increasingly hybrid world, but maybe we were ahead of our time, Lee. Andreas closes out his note and I have to read this because I love it. It\'s German, of course, next up. "Listen to the Reviewapalooza episode, he writes, and you should know that schadenfreude is not the most beautiful freude, that\'s pleasant anticipation." Andreas writes, "Ist dechenes der freude. Have a fantastic day." Thank you, David, everyone at the RBI podcast for your time, effort and great content. Well Lee and Kara, I was full up fur freude prior to your arrival today. I\'m delighted to have you both joining it again at the end of this June 2022, you didn\'t hear me at the start, but this is the final week of the 7th year of this podcast.\nLee Burbage: Well congrats.\nDavid Gardner: Thank you lucky seven, thanks for being with the right here all the way through next week we\'ll start the 8th year and I look forward to a top-10 cultural tips episode. Kara, I was thinking this maybe as you and Lee look over the 90, you find the five, count them up or down that we least believe in now, and we could call that the Andreas-Tom list. I think we should present it in that podcast that will make it even better. It sounds like you\'re up for that.\nKara Chambers: Yes.\nLee Burbage: Absolutely.\nDavid Gardner: Let\'s do it. While in the meantime, keep enjoying that mint chocolate chip ice cream and that bubblegum ice cream even if you don\'t eat ice cream that often\nLee Burbage: Oh yes.\nDavid Gardner: Thank you both and Fool-on.\nLee Burbage: Thank you.\nKara Chambers: Thank you.\nDavid Gardner: All right. Closing it out this week, Rule Breakers Mailbag Item Number 7. This one is from Tim. "Hi David. Can I run an idea by you? How would you feel about a Rule Breaker Investing podcast interview, talking about Rule Breakers where it is now. What\'s similar? What\'s different, etc. I want people to know how much the product means to me personally and to all of us as a team. It may also just be fun to talk through some of the past lessons learned that we\'re applying now as we build out the scorecard. Do you think that would be interesting and or valuable? Signed, Tim Beyers," who is helping to head up Motley Fool Rule Breakers and in a rule-breaking moment for this podcast, I think Tim, for the first time ever we\'re having the corresponded join us to be part of the answer on the podcasts. Tim Beyers, welcome back to Rule Breaker Investing.\nTim Beyers: Thanks for having me, David. I have to admit I\'m a little bit surprised that you read my mail on the air, but you know what? I love it. That\'s great. I\'m so glad that we got this going because it is really important to me. I love Rule Breakers for so many reasons.\nDavid Gardner: Thank you, Tim, it was a little unfair me I guess I didn\'t quite play by the rules, but we don\'t expect that on this podcast.\nTim Beyers: No we never do.\nDavid Gardner: You didn\'t actually write this into our Mailbag. This is just what you Slacked me on our corporate Slack yesterday.\nTim Beyers: Right.\nDavid Gardner: I said Tim, that sounds like a great idea. Obviously, the Rule Breakers service from The Motley Fool is of a biding interest to me into so many others who listen in each week. I think it does make great sense to have you back. Not only are you hearing here briefly as a cameo on the Mailbag that you yourself wrote but more importantly, Tim, you and I talked about in two weeks from today, we will do a podcast together, just looking, as you said at the Rule Breakers service where it is now? What\'s similar? What\'s different? I mostly just want you to come on so I could thank you for your leadership over this past year, it has been a market that I didn\'t expect to be this bad. Nobody could have known that it would be this bad.\nTim Beyers: Yeah.\nDavid Gardner: Anytime you\'re succeeded, you always want the best conditions for those who succeed you. I feel as if outside of our control, I didn\'t leave you a very good market to pick in. I know that because I still own all the stocks that I always have, most of which are Rule Breakers and they\'re all cut in half just about.\nTim Beyers: Yeah.\nDavid Gardner: I\'m sure we\'ll talk about that a little bit in two weeks. But Tim, do you want to share anything now previewing our conversation in two weeks?\nTim Beyers: Yeah. Rule Breakers has changed over the years that I\'ve been on it. What I said to you before we were on the air, going back to my days contracting, it goes all the way back to 2003 when I started as a contractor and then Motley Fool Rule Breakers started the very next year, the end of I think it was September. Do I have that right? Was this September 2004\nDavid Gardner: Our first issue was in was October 2004, but of course we wrote it in September and the planning was probably for the year before that, but yes, Rule Breakers debuted October 2004.\nTim Beyers: Okay. Then I came on board in April 2005. We\'re now on 17 years for me and of all of the relationships I\'ve had, so that stretches for my time as a contractor to joining full-time.\nDavid Gardner: I\'m so glad you mentioned that, Tim, I want to interrupt you briefly because of course, we just had a conversation with Kara and Lee about how some people at the Fool go from contractor to full-time or vice versa. Without cutting off where you were going because we\'re going to get there. But I\'d love to just quickly ask you, in light of that conversation, any reflections on the transition that you made from a contractor, as you mentioned back in the early 2000s to a full-time employee in the 2010s?\nTim Beyers: I am so grateful that I made that transition. There are some people who are built for it. The Fool is such a great culture and it extends all the way out to the contractors, and so you always feel like you\'re a part of that culture and you really want to contribute like an employee, but there\'s this practical legal reality that you can\'t because legally that\'s just not available to either you or to the Fool, and so you\'re always left with a little bit of, I would say for me personally, I won\'t speak for everybody, but for me, it was like a little bit of longing. This is great and we love each other but we\'re just going to be really close. But there\'s just going to be this thing between us that where we just can\'t get closer. Then that changes when you come inside and you get the full benefits of being part of this very vibrant culture that you are a part of but you got to experience more deeply. The good part of that is it\'s a wonderful culture. The bad part about that is you are exposed to everything. When things are like they are right now, you feel it way more intensely. Getting back to what I was saying about how much I care about Rule Breakers, I feel it more intensely, although I always felt it because again, these are you, Rick, and Karl.\nDavid Gardner: Rick Munarriz and Karl Thiel, yeah?\nTim Beyers: Karl Thiel. I\'ve known all of you for over 17 years and we\'ve had experiences that go way back. I don\'t know if you\'ll remember this day because you didn\'t go with us, but it was me and Karl, Sarah Goddard, Austin Edwards, our former Fool Product Manager, Ursula Mead, who was with us and we all went out to Silicon Valley and we did like a Rule Breakers tour and that was like 2010. We\'ve had many adventures together. I\'ve done a lot of important things at The Motley Fool, and I will diminish none of them because they are amazing. But the thing that I\'m doing right now, leading Rule Breakers, I think may be the most important thing I\'ve ever done in my Fool career. Right now for a lot of people, a lot of Rule Breakers members, it feels shaky, it feels like some things are different and some things are the same and it\'s weird. I felt like, well, let\'s get into that because I think there\'s a lot of long-term members who are deeply invested in the product too. I love Rule Breakers. I want it to be better than it\'s ever been. It\'s been so good to me. There are certain things that you internalize and that are deeply personal. This is one of those things, if that makes sense.\nDavid Gardner: It does. Chris, you\'ve been on this podcast a number of times before so some may remember this, but one of the contributions you made to Rule Breakers was Salesforce, which I\'m now checking our records, January 21st, 2009, you nudge that one forward. Tim, that was your pick for the Rule Breakers scorecard. The cost basis was below $7 a share, so $6.89. These days with a ranking closer to 168 instead of 6.8, it\'s been a spectacular investment at 20 plus bagger. Those great things have happened over time. I\'ll just close by saying, Tim, it\'s that relationship that we\'ve had over time. The relationship we have with our members and each of us with our portfolios, it\'s making sure you put in the time to get the success, to get the 22 baggers to happen. They rarely happens overnight and most of the time it takes time to really appreciate the power of time and not being a little bit circular in my thinking. But part of what we love about this service has always been the relationships that we have with each other and with our members. I\'m going to look forward to looking at the Rule Breakers service more. We\'re going to talk stocks in two weeks and some of what\'s different and some of what\'s remained the same. I don\'t even know what we\'re going to be talking about, Tim, because you\'re bringing your viewpoint, your story, and some of your experience over the last year to bear. I think it\'s a great way to end this Mailbag to let everybody know that we\'ll talk Rule Breakers, the service with Tim, Mailbag Item number 7 corresponded, Tim Beyers ahead of Motley Fool Rule Breakers in two weeks. In the meantime, Tim, I do need to ask you before we close, what is your second favorite flavor of ice cream?\nTim Beyers: Second favorite? If pecan praline is number one, I think just a really good, creamy vanilla is number two. I tend to like more of the vanillas. But boy, if you get me like caramel, pralines, creamy vanilla, oh man, you have me at hello at that point.\nDavid Gardner: Have you ever done like a vanilla ice cream taste test like lined up five different brands.\nTim Beyers: Oh, my God.\nDavid Gardner: Ever seen with the brand labels, and just had it out?\nTim Beyers: Well now I need to. [laughs]\nDavid Gardner: I\'ve never done it myself, but I\'ve always imagined because I also love vanilla ice cream. I often pick it first. It\'s not my favorite, it\'s probably my second favorite, but it does taste very differently from one vanilla to the next.\nTim Beyers: That is so true.\nDavid Gardner: Who is the real vanilla?\nTim Beyers: Right. Is it French vanilla? Is it regular vanilla? That is so true. There\'s lots of variations.\nDavid Gardner: We\'re going to have to leave that rhetorical as time ends for this particular podcast. But Tim Beyers, again, great to be with you. Thanks for joining in. See you in two weeks. To all of our fellow Fools, it\'s Summer time, whether the market is up or down today, tomorrow, yesterday, I hope that you\'re making sure you have some Summer in your Summer. For me, that means you owe it to yourself to enjoy your second favorite flavor of ice cream at some point in the month of July. For Rick Engdahl and all of us here at The Fool. Fool on!\nSuzanne Frey, an executive at Alphabet, is a member of The Motley Fool’s board of directors. David Gardner has positions in Alphabet (A shares), Alphabet (C shares), and Tesla. Kara Chambers has positions in Alphabet (A shares), Alphabet (C shares), Salesforce, Inc., and Tesla. Lee Burbage has positions in Alphabet (C shares), Salesforce, Inc., and Tesla. Tim Beyers has positions in Alphabet (A shares), Alphabet (C shares), and Salesforce, Inc. The Motley Fool has positions in and recommends Alphabet (A shares), Alphabet (C shares), Salesforce, Inc., Tesla, and Twitter. The Motley Fool recommends Upwork. The Motley Fool has a disclosure policy.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': "by Laszlo Bock, he is the Head of People at [Alphabet's] Google. They were framework you can google called roles and responsibilities where you do exactly that, where you sit with your team and we just did this recently on our team. ''One of the best pieces,'' he writes, ''In Fussell's 1988 collection, Thank God for the Atom Bomb and other assays is a short wicked satire aimed at the National Rifle Association's veneration of the second amendment, or rather half of it.", 'news_luhn_summary': "by Laszlo Bock, he is the Head of People at [Alphabet's] Google. They were framework you can google called roles and responsibilities where you do exactly that, where you sit with your team and we just did this recently on our team. David Gardner: A few weeks ago on this podcast, I welcomed back Kara Chambers and Lee Burbage from the Motley Fool's people and culture team, and they banged down 10 new company culture tips.", 'news_article_title': 'Tips for Contractor Workforce Success', 'news_lexrank_summary': "by Laszlo Bock, he is the Head of People at [Alphabet's] Google. They were framework you can google called roles and responsibilities where you do exactly that, where you sit with your team and we just did this recently on our team. David Gardner: A few weeks ago on this podcast, I welcomed back Kara Chambers and Lee Burbage from the Motley Fool's people and culture team, and they banged down 10 new company culture tips.", 'news_textrank_summary': "by Laszlo Bock, he is the Head of People at [Alphabet's] Google. They were framework you can google called roles and responsibilities where you do exactly that, where you sit with your team and we just did this recently on our team. David Gardner: A few weeks ago on this podcast, I welcomed back Kara Chambers and Lee Burbage from the Motley Fool's people and culture team, and they banged down 10 new company culture tips."}, {'news_url': 'https://www.nasdaq.com/articles/2-growth-stocks-that-a-pair-of-the-worlds-smartest-investors-are-buying', 'news_author': None, 'news_article': "Jim Simons and Josh Resnick might not be familiar names to many investors, but both hedge fund managers have beaten the S&P 500 over the past three years. During that time, Simons' Renaissance Technologies and Resnick's Jericho Capital Asset Management delivered returns of 76% and 100%, respectively, topping the 68% total return of the broader market.\nBoth money managers are clearly doing something right, so investors could find it helpful to track their portfolios. For instance, Resnick started a position in Tesla (NASDAQ: TSLA) during the first quarter, and Simons added to his position in Alphabet (NASDAQ: GOOG) (NASDAQ: GOOGL).\nIs it time to buy these growth stocks?\n1. Tesla\nTesla recently lost its leadership position in electric vehicle (EV) sales. The company captured 12.6% market share through the first five months of the year, while Chinese automaker BYD (OTC: BYDDY) took the top spot with a 15.6% share. Tesla also missed second-quarter delivery estimates due to lockdowns and supply chain issues affecting its Gigafactory in Shanghai. Deliveries totaled 254,695 cars in the quarter, up 27% from the prior year, but down 18% from the prior quarter.\nThat certainly isn't great news for Tesla, but BYD has multiple factories outside of lockdown zones in China, so it was able to maintain production throughout the quarter. Meanwhile, Tesla had to shutter its Shanghai factory for 22 days. That's particularly significant because China is the world's largest EV market by a wide margin. However, this isn't a winner-take-all market, and Tesla investors still have good reason to be bullish.\nIn the latestearnings call management expressed confidence in its ability to grow production by at least 50% this year, and CEO Elon Musk noted that demand was not a limiting factor.\nTesla has also posted stunning financial results over the past year. Revenue climbed 73% to $62.2 billion, operating margin hit an industry leading 15.5%, and free cash flow soared 188% to $6.9 billion. Looking ahead, Tesla stands to become even more efficient as it outfits vehicles with its 4680 battery cell and ramps up production at new factories in Texas and Germany.\nHowever, many stakeholders see Tesla's true value in artificial intelligence (AI) and robotics, and management has said full self-driving technology would eventually be the greatest source of profitability. With well over 2 million autopilot-enabled cars on the road, Tesla has access to more driving data than any other automaker. That makes the company a front-runner in the race to build an autonomous vehicle. In fact, Tesla has a robo-taxi slated for production in 2024.\nDespite losing 43% of its value in the ongoing sell-off, Tesla is still worth more than the next nine automakers combined. And at 12.6 times sales, the stock certainly isn't cheap. But Simons and Resnick both hold Tesla in their hedge funds -- it's the second-largest position in both portfolios. If you can handle volatility and your time horizon is at least five years, I think it's worth buying this growth stock now.\n2. Alphabet\nAlphabet is a collection of many different businesses, though Google is the best known of the bunch. Google ranks as the third-most-valuable brand in the world, according to the brand-valuation consultancy Brand Finance.\nIt owes that brand authority to ultra-popular services like Google Search and YouTube, and Alphabet has used those content platforms to build an advertising empire. Last year, the company captured nearly $0.29 of every $1 spent on digital advertising, according to eMarketer.\nAlphabet's status as a juggernaut in the ad industry has fueled consistently solid financial results. Revenue climbed 37% to $270 billion in the past year, and the company generated $69 billion in free cash flow, up 36% from the prior year.\nInvestors should look for Alphabet to maintain that momentum. Its relentless testing and tweaking of search algorithms have made Google Search the gateway to the internet, and the company is working to reinforce that edge with AI. In the future, Google Search might be able to answer complex questions.\nYouTube (including YouTube TV) is the second-most-popular streaming service as measured by viewing time, and the Google Play Store is the second-most-popular mobile app store based on consumer spending. As a whole, Alphabet's arsenal of popular web properties should keep it at the forefront of digital advertising, an industry that will surpass $600 billion this year.\nIt is also investing aggressively in Google Cloud, especially in areas like data analytics, AI, and cybersecurity. That continued to pay off in the first quarter, with cloud revenue rising 44% to $5.8 billion. And the cloud industry is expected to grow by 16% per year to reach $1.6 trillion by 2030, according to Grand View Research. That leaves a long runway for growth, and Alphabet -- as the third-largest cloud service provider -- should be a big beneficiary of that trend.\nSo Simons' decision to buy more Alphabet makes sense, and investors looking to add a blue chip tech company to their portfolios should strongly consider buying this growth stock.\n10 stocks we like better than Tesla\nWhen our award-winning analyst team has a stock tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*\nThey just revealed what they believe are the ten best stocks for investors to buy right now... and Tesla wasn't one of them! That's right -- they think these 10 stocks are even better buys.\nSee the 10 stocks\n*Stock Advisor returns as of June 2, 2022\nSuzanne Frey, an executive at Alphabet, is a member of The Motley Fool's board of directors. Trevor Jennewine has positions in Tesla. The Motley Fool has positions in and recommends Alphabet (A shares), Alphabet (C shares), BYD, and Tesla. The Motley Fool has a disclosure policy.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': 'It owes that brand authority to ultra-popular services like Google Search and YouTube, and Alphabet has used those content platforms to build an advertising empire. For instance, Resnick started a position in Tesla (NASDAQ: TSLA) during the first quarter, and Simons added to his position in Alphabet (NASDAQ: GOOG) (NASDAQ: GOOGL). Alphabet Alphabet is a collection of many different businesses, though Google is the best known of the bunch.', 'news_luhn_summary': 'For instance, Resnick started a position in Tesla (NASDAQ: TSLA) during the first quarter, and Simons added to his position in Alphabet (NASDAQ: GOOG) (NASDAQ: GOOGL). Alphabet Alphabet is a collection of many different businesses, though Google is the best known of the bunch. Google ranks as the third-most-valuable brand in the world, according to the brand-valuation consultancy Brand Finance.', 'news_article_title': "2 Growth Stocks That a Pair of the World's Smartest Investors Are Buying", 'news_lexrank_summary': 'It owes that brand authority to ultra-popular services like Google Search and YouTube, and Alphabet has used those content platforms to build an advertising empire. For instance, Resnick started a position in Tesla (NASDAQ: TSLA) during the first quarter, and Simons added to his position in Alphabet (NASDAQ: GOOG) (NASDAQ: GOOGL). Alphabet Alphabet is a collection of many different businesses, though Google is the best known of the bunch.', 'news_textrank_summary': 'For instance, Resnick started a position in Tesla (NASDAQ: TSLA) during the first quarter, and Simons added to his position in Alphabet (NASDAQ: GOOG) (NASDAQ: GOOGL). Alphabet Alphabet is a collection of many different businesses, though Google is the best known of the bunch. Google ranks as the third-most-valuable brand in the world, according to the brand-valuation consultancy Brand Finance.'}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 116.2344970703125, 'high': 118.79450225830078, 'open': 118.6500015258789, 'close': 116.52249908447266, 'ema_50': 116.09708611659853, 'rsi_14': 62.415735943297854, 'target': 114.84950256347656, 'volume': 26718000.0, 'ema_200': 133.1063079881495, 'adj_close': 116.52249908447266, 'rsi_lag_1': 70.85355909056281, 'rsi_lag_2': 62.61442418296815, 'rsi_lag_3': 61.64186629240164, 'rsi_lag_4': 60.48424123430353, 'rsi_lag_5': 46.463829329291144, 'macd_lag_1': 0.6745618912660802, 'macd_lag_2': 0.1665261346636271, 'macd_lag_3': -0.3965159368160158, 'macd_lag_4': -0.6927040732588381, 'macd_lag_5': -0.9256103325584064, 'macd_12_26_9': 0.7740589888517349, 'macds_12_26_9': -0.14039988997186753}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 114.84950256347656, '2022-07-13': 112.18699645996094, '2022-07-14': 111.44000244140624, '2022-07-15': 112.76699829101562, '2022-07-18': 109.91000366210938, '2022-07-19': 114.62000274658205, '2022-07-20': 114.6999969482422, '2022-07-21': 115.04000091552734, '2022-07-22': 108.36000061035156, '2022-07-25': 108.20999908447266}, '1_month_later': {'2022-08-11': 119.81999969482422}, '3_months_later': {'2022-10-11': 98.0500030517578}, '6_months_later': {'2023-01-11': 92.26000213623048}, '12_months_later': {'2023-07-11': 117.70999908447266}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GPI
{'date': '2022-07-11', 'ticker': 'GPI', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 163.2100067138672, 'high': 168.6699981689453, 'open': 166.4499969482422, 'close': 163.72000122070312, 'ema_50': 174.8135157555912, 'rsi_14': 47.96649063473067, 'target': 165.38999938964844, 'volume': 73600.0, 'ema_200': 175.87845116391188, 'adj_close': 161.8672637939453, 'rsi_lag_1': 56.922174115868025, 'rsi_lag_2': 45.7166491895876, 'rsi_lag_3': 36.978268185911766, 'rsi_lag_4': 53.27535180925429, 'rsi_lag_5': 44.84406658219836, 'macd_lag_1': -2.1287191917450627, 'macd_lag_2': -1.9915613236381091, 'macd_lag_3': -2.085856370626317, 'macd_lag_4': -1.0599450079651263, 'macd_lag_5': -1.1554549942373171, 'macd_12_26_9': -2.6012082905519094, 'macds_12_26_9': -1.7638560752318948}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 165.38999938964844, '2022-07-13': 163.67999267578125, '2022-07-14': 160.16000366210938, '2022-07-15': 165.07000732421875, '2022-07-18': 169.00999450683594, '2022-07-19': 177.6999969482422, '2022-07-20': 174.3699951171875, '2022-07-21': 173.5500030517578, '2022-07-22': 174.33999633789062, '2022-07-25': 171.30999755859375}, '1_month_later': {'2022-08-11': 183.4900054931641}, '3_months_later': {'2022-10-11': 159.0800018310547}, '6_months_later': {'2023-01-11': 190.7700042724609}, '12_months_later': {'2023-07-11': 264.70001220703125}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GPMT
{'date': '2022-07-11', 'ticker': 'GPMT', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 9.46500015258789, 'high': 9.68000030517578, 'open': 9.630000114440918, 'close': 9.520000457763672, 'ema_50': 10.10416904925505, 'rsi_14': 52.10528561282341, 'target': 9.479999542236328, 'volume': 232500.0, 'ema_200': 11.123355725456046, 'adj_close': 7.610508918762207, 'rsi_lag_1': 65.12605530268945, 'rsi_lag_2': 52.233679791436955, 'rsi_lag_3': 53.820607164345354, 'rsi_lag_4': 50.943403016550455, 'rsi_lag_5': 39.225177740179866, 'macd_lag_1': -0.1760542889726544, 'macd_lag_2': -0.1751629275313178, 'macd_lag_3': -0.16842278643274078, 'macd_lag_4': -0.15533381630244314, 'macd_lag_5': -0.1567317467696352, 'macd_12_26_9': -0.18112809268845353, 'macds_12_26_9': -0.16517403299902414}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 9.479999542236328, '2022-07-13': 9.5600004196167, '2022-07-14': 9.329999923706056, '2022-07-15': 9.529999732971191, '2022-07-18': 9.579999923706056, '2022-07-19': 9.9399995803833, '2022-07-20': 9.869999885559082, '2022-07-21': 9.859999656677246, '2022-07-22': 9.93000030517578, '2022-07-25': 9.970000267028809}, '1_month_later': {'2022-08-11': 9.970000267028809}, '3_months_later': {'2022-10-11': 6.510000228881836}, '6_months_later': {'2023-01-11': 5.929999828338623}, '12_months_later': {'2023-07-11': 5.420000076293945}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GPN
{'date': '2022-07-11', 'ticker': 'GPN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/the-implied-analyst-12-month-target-for-dynf', 'news_author': None, 'news_article': "Looking at the underlying holdings of the ETFs in our coverage universe at ETF Channel, we have compared the trading price of each holding against the average analyst 12-month forward target price, and computed the weighted average implied analyst target price for the ETF itself. For the BlackRock U.S. Equity Factor Rotation ETF (Symbol: DYNF), we found that the implied analyst target price for the ETF based upon its underlying holdings is $37.45 per unit.\nWith DYNF trading at a recent price near $30.09 per unit, that means that analysts see 24.46% upside for this ETF looking through to the average analyst targets of the underlying holdings. Three of DYNF's underlying holdings with notable upside to their analyst target prices are Boeing Co. (Symbol: BA), Mosaic Co (Symbol: MOS), and Global Payments Inc (Symbol: GPN). Although BA has traded at a recent price of $139.07/share, the average analyst target is 61.45% higher at $224.53/share. Similarly, MOS has 54.36% upside from the recent share price of $45.22 if the average analyst target price of $69.80/share is reached, and analysts on average are expecting GPN to reach a target price of $174.80/share, which is 54.31% above the recent price of $113.28. Below is a twelve month price history chart comparing the stock performance of BA, MOS, and GPN:\nBelow is a summary table of the current analyst target prices discussed above:\nNAME SYMBOL RECENT PRICE AVG. ANALYST 12-MO. TARGET % UPSIDE TO TARGET\nBlackRock U.S. Equity Factor Rotation ETF DYNF $30.09 $37.45 24.46%\nBoeing Co. BA $139.07 $224.53 61.45%\nMosaic Co MOS $45.22 $69.80 54.36%\nGlobal Payments Inc GPN $113.28 $174.80 54.31%\nAre analysts justified in these targets, or overly optimistic about where these stocks will be trading 12 months from now? Do the analysts have a valid justification for their targets, or are they behind the curve on recent company and industry developments? A high price target relative to a stock's trading price can reflect optimism about the future, but can also be a precursor to target price downgrades if the targets were a relic of the past. These are questions that require further investor research.\n10 ETFs With Most Upside To Analyst Targets »\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': "BlackRock U.S. Equity Factor Rotation ETF DYNF $30.09 $37.45 24.46% Boeing Co. BA $139.07 $224.53 61.45% Mosaic Co MOS $45.22 $69.80 54.36% Global Payments Inc GPN $113.28 $174.80 54.31% Are analysts justified in these targets, or overly optimistic about where these stocks will be trading 12 months from now? Three of DYNF's underlying holdings with notable upside to their analyst target prices are Boeing Co. (Symbol: BA), Mosaic Co (Symbol: MOS), and Global Payments Inc (Symbol: GPN). Similarly, MOS has 54.36% upside from the recent share price of $45.22 if the average analyst target price of $69.80/share is reached, and analysts on average are expecting GPN to reach a target price of $174.80/share, which is 54.31% above the recent price of $113.28.", 'news_luhn_summary': "Three of DYNF's underlying holdings with notable upside to their analyst target prices are Boeing Co. (Symbol: BA), Mosaic Co (Symbol: MOS), and Global Payments Inc (Symbol: GPN). Similarly, MOS has 54.36% upside from the recent share price of $45.22 if the average analyst target price of $69.80/share is reached, and analysts on average are expecting GPN to reach a target price of $174.80/share, which is 54.31% above the recent price of $113.28. BlackRock U.S. Equity Factor Rotation ETF DYNF $30.09 $37.45 24.46% Boeing Co. BA $139.07 $224.53 61.45% Mosaic Co MOS $45.22 $69.80 54.36% Global Payments Inc GPN $113.28 $174.80 54.31% Are analysts justified in these targets, or overly optimistic about where these stocks will be trading 12 months from now?", 'news_article_title': 'The Implied Analyst 12-Month Target For DYNF', 'news_lexrank_summary': "BlackRock U.S. Equity Factor Rotation ETF DYNF $30.09 $37.45 24.46% Boeing Co. BA $139.07 $224.53 61.45% Mosaic Co MOS $45.22 $69.80 54.36% Global Payments Inc GPN $113.28 $174.80 54.31% Are analysts justified in these targets, or overly optimistic about where these stocks will be trading 12 months from now? Three of DYNF's underlying holdings with notable upside to their analyst target prices are Boeing Co. (Symbol: BA), Mosaic Co (Symbol: MOS), and Global Payments Inc (Symbol: GPN). Similarly, MOS has 54.36% upside from the recent share price of $45.22 if the average analyst target price of $69.80/share is reached, and analysts on average are expecting GPN to reach a target price of $174.80/share, which is 54.31% above the recent price of $113.28.", 'news_textrank_summary': "Similarly, MOS has 54.36% upside from the recent share price of $45.22 if the average analyst target price of $69.80/share is reached, and analysts on average are expecting GPN to reach a target price of $174.80/share, which is 54.31% above the recent price of $113.28. Three of DYNF's underlying holdings with notable upside to their analyst target prices are Boeing Co. (Symbol: BA), Mosaic Co (Symbol: MOS), and Global Payments Inc (Symbol: GPN). Below is a twelve month price history chart comparing the stock performance of BA, MOS, and GPN: Below is a summary table of the current analyst target prices discussed above:"}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 111.05999755859376, 'high': 112.56999969482422, 'open': 111.98999786376952, 'close': 111.54000091552734, 'ema_50': 120.16596471806108, 'rsi_14': 52.88332954193935, 'target': 112.11000061035156, 'volume': 967800.0, 'ema_200': 137.26437422867335, 'adj_close': 110.05756378173828, 'rsi_lag_1': 63.17991431450807, 'rsi_lag_2': 51.343083019332916, 'rsi_lag_3': 52.01206888258706, 'rsi_lag_4': 52.77227954623451, 'rsi_lag_5': 41.12836499842278, 'macd_lag_1': -2.7089869957395507, 'macd_lag_2': -2.9058498105694355, 'macd_lag_3': -3.151506050034385, 'macd_lag_4': -3.389685287188186, 'macd_lag_5': -3.4896207965931723, 'macd_12_26_9': -2.6626813493702173, 'macds_12_26_9': -3.095504576735413}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 112.11000061035156, '2022-07-13': 112.7300033569336, '2022-07-14': 111.33000183105467, '2022-07-15': 114.8000030517578, '2022-07-18': 113.23999786376952, '2022-07-19': 118.2699966430664, '2022-07-20': 119.87000274658205, '2022-07-21': 120.2699966430664, '2022-07-22': 118.70999908447266, '2022-07-25': 118.47000122070312}, '1_month_later': {'2022-08-11': 133.5500030517578}, '3_months_later': {'2022-10-11': 107.80999755859376}, '6_months_later': {'2023-01-11': 105.5999984741211}, '12_months_later': {'2023-07-11': 108.33000183105467}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GPOR
{'date': '2022-07-11', 'ticker': 'GPOR', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 76.83999633789062, 'high': 79.69999694824219, 'open': 77.79000091552734, 'close': 78.70999908447266, 'ema_50': 88.02763616126437, 'rsi_14': 38.01670582855363, 'target': 75.01000213623047, 'volume': 103700.0, 'ema_200': 78.10282824305261, 'adj_close': 78.70999908447266, 'rsi_lag_1': 32.38756395013398, 'rsi_lag_2': 29.80576543668431, 'rsi_lag_3': 27.679060763650355, 'rsi_lag_4': 27.412473889201195, 'rsi_lag_5': 27.679060763650327, 'macd_lag_1': -5.182467209369122, 'macd_lag_2': -5.297931034339911, 'macd_lag_3': -5.331589439203711, 'macd_lag_4': -4.774672418311596, 'macd_lag_5': -4.126757950831049, 'macd_12_26_9': -4.992260712164267, 'macds_12_26_9': -4.255075208553332}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 75.01000213623047, '2022-07-13': 77.23999786376953, '2022-07-14': 76.9800033569336, '2022-07-15': 78.7300033569336, '2022-07-18': 80.11000061035156, '2022-07-19': 83.51000213623047, '2022-07-20': 87.30999755859375, '2022-07-21': 84.88999938964844, '2022-07-22': 83.58000183105469, '2022-07-25': 87.98999786376953}, '1_month_later': {'2022-08-11': 87.62999725341797}, '3_months_later': {'2022-10-11': 93.0999984741211}, '6_months_later': {'2023-01-11': 73.2699966430664}, '12_months_later': {'2023-07-11': 105.58999633789062}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GPP
{'date': '2022-07-11', 'ticker': 'GPP', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 12.324000358581545, 'high': 12.609999656677246, 'open': 12.399999618530272, 'close': 12.460000038146973, 'ema_50': 12.574505757346591, 'rsi_14': 71.63120543391327, 'target': 12.399999618530272, 'volume': 53700.0, 'ema_200': 13.198722956427432, 'adj_close': 10.198891639709473, 'rsi_lag_1': 66.0899634568006, 'rsi_lag_2': 53.43282859770036, 'rsi_lag_3': 51.4969969262573, 'rsi_lag_4': 45.6140336200769, 'rsi_lag_5': 41.823061989589355, 'macd_lag_1': -0.1278502090870699, 'macd_lag_2': -0.16465927383993773, 'macd_lag_3': -0.19702771432852373, 'macd_lag_4': -0.22834851541616707, 'macd_lag_5': -0.24871292048001692, 'macd_12_26_9': -0.0887793144137099, 'macds_12_26_9': -0.20658324850625356}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 12.399999618530272, '2022-07-13': 12.5, '2022-07-14': 12.5, '2022-07-15': 12.5, '2022-07-18': 12.4399995803833, '2022-07-19': 12.670000076293944, '2022-07-20': 12.760000228881836, '2022-07-21': 12.732000350952148, '2022-07-22': 12.829999923706056, '2022-07-25': 13.140000343322754}, '1_month_later': {'2022-08-11': 13.270000457763672}, '3_months_later': {'2022-10-11': 12.279999732971191}, '6_months_later': {'2023-01-11': 13.1899995803833}, '12_months_later': {'2023-07-11': 13.640000343322754}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GPRK
{'date': '2022-07-11', 'ticker': 'GPRK', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 11.579999923706056, 'high': 12.06999969482422, 'open': 11.970000267028809, 'close': 11.600000381469728, 'ema_50': 14.369456432133031, 'rsi_14': 29.807689662514733, 'target': 11.289999961853027, 'volume': 288500.0, 'ema_200': 14.259099900014174, 'adj_close': 10.791264533996582, 'rsi_lag_1': 27.09789653064192, 'rsi_lag_2': 22.620894252213475, 'rsi_lag_3': 24.73443998174271, 'rsi_lag_4': 24.219903456397034, 'rsi_lag_5': 21.30717963460185, 'macd_lag_1': -1.0197131203994871, 'macd_lag_2': -1.0342595690685243, 'macd_lag_3': -1.0276004946154522, 'macd_lag_4': -0.9766633192482086, 'macd_lag_5': -0.9208610841635618, 'macd_12_26_9': -1.0349862295648258, 'macds_12_26_9': -0.9238815039687238}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 11.289999961853027, '2022-07-13': 11.029999732971191, '2022-07-14': 10.920000076293944, '2022-07-15': 10.949999809265137, '2022-07-18': 11.43000030517578, '2022-07-19': 11.90999984741211, '2022-07-20': 12.0, '2022-07-21': 11.779999732971191, '2022-07-22': 11.699999809265137, '2022-07-25': 11.979999542236328}, '1_month_later': {'2022-08-11': 12.550000190734863}, '3_months_later': {'2022-10-11': 13.960000038146973}, '6_months_later': {'2023-01-11': 14.479999542236328}, '12_months_later': {'2023-07-11': 9.699999809265137}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRAM
{'date': '2022-07-11', 'ticker': 'GRAM', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 0.656000018119812, 'high': 0.7099999785423279, 'open': 0.7099999785423279, 'close': 0.6899999976158142, 'ema_50': 0.9820519258699587, 'rsi_14': 10.869568315931588, 'target': 0.6800000071525574, 'volume': 18900.0, 'ema_200': 1.9393031335518267, 'adj_close': 0.6899999976158142, 'rsi_lag_1': 18.21861972040351, 'rsi_lag_2': 16.071423819782808, 'rsi_lag_3': 19.658128192350375, 'rsi_lag_4': 16.666674945086754, 'rsi_lag_5': 13.644219674035782, 'macd_lag_1': -0.11689638756819765, 'macd_lag_2': -0.11965871327274402, 'macd_lag_3': -0.12185122853157782, 'macd_lag_4': -0.12236820335062792, 'macd_lag_5': -0.11972087880018167, 'macd_12_26_9': -0.11387865077894854, 'macds_12_26_9': -0.10629342913995493}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 0.6800000071525574, '2022-07-13': 0.675000011920929, '2022-07-14': 0.6700000166893005, '2022-07-15': 0.6539999842643738, '2022-07-18': 0.6499999761581421, '2022-07-19': 0.6800000071525574, '2022-07-20': 0.6679999828338623, '2022-07-21': 0.675000011920929, '2022-07-22': 0.6800000071525574, '2022-07-25': 0.6600000262260437}, '1_month_later': {'2022-08-11': 0.7850000262260437}, '3_months_later': {'2022-10-11': 0.3499999940395355}, '6_months_later': {'2023-01-11': 0.2450000047683715}, '12_months_later': {'2023-07-11': 0.1589999943971634}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRBK
{'date': '2022-07-11', 'ticker': 'GRBK', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/monday-sector-leaders%3A-general-contractors-builders-food-stocks', 'news_author': None, 'news_article': 'In trading on Monday, general contractors & builders shares were relative leaders, up on the day by about 0.2%. Leading the group were shares of Taylor Morrison Home, up about 1.9% and shares of Green Brick Partners up about 1.5% on the day.\nAlso showing relative strength are food shares, down on the day by about 0.4% as a group, led by Bridgford Foods, trading up by about 11.1% and Kura Sushi USA, trading higher by about 3.9% on Monday.\nVIDEO: Monday Sector Leaders: General Contractors & Builders, Food Stocks\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'In trading on Monday, general contractors & builders shares were relative leaders, up on the day by about 0.2%. Also showing relative strength are food shares, down on the day by about 0.4% as a group, led by Bridgford Foods, trading up by about 11.1% and Kura Sushi USA, trading higher by about 3.9% on Monday. VIDEO: Monday Sector Leaders: General Contractors & Builders, Food Stocks The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_luhn_summary': 'In trading on Monday, general contractors & builders shares were relative leaders, up on the day by about 0.2%. Also showing relative strength are food shares, down on the day by about 0.4% as a group, led by Bridgford Foods, trading up by about 11.1% and Kura Sushi USA, trading higher by about 3.9% on Monday. VIDEO: Monday Sector Leaders: General Contractors & Builders, Food Stocks The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_article_title': 'Monday Sector Leaders: General Contractors & Builders, Food Stocks', 'news_lexrank_summary': 'In trading on Monday, general contractors & builders shares were relative leaders, up on the day by about 0.2%. Leading the group were shares of Taylor Morrison Home, up about 1.9% and shares of Green Brick Partners up about 1.5% on the day. Also showing relative strength are food shares, down on the day by about 0.4% as a group, led by Bridgford Foods, trading up by about 11.1% and Kura Sushi USA, trading higher by about 3.9% on Monday.', 'news_textrank_summary': 'In trading on Monday, general contractors & builders shares were relative leaders, up on the day by about 0.2%. Also showing relative strength are food shares, down on the day by about 0.4% as a group, led by Bridgford Foods, trading up by about 11.1% and Kura Sushi USA, trading higher by about 3.9% on Monday. VIDEO: Monday Sector Leaders: General Contractors & Builders, Food Stocks The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.'}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 21.440000534057617, 'high': 22.0, 'open': 21.440000534057617, 'close': 21.530000686645508, 'ema_50': 21.091004014998717, 'rsi_14': 85.66178352569277, 'target': 21.530000686645508, 'volume': 316700.0, 'ema_200': 22.37775552248161, 'adj_close': 21.530000686645508, 'rsi_lag_1': 85.79236643343037, 'rsi_lag_2': 57.814483539845654, 'rsi_lag_3': 52.736310854288476, 'rsi_lag_4': 54.76804196562197, 'rsi_lag_5': 39.75636200264494, 'macd_lag_1': -0.20663800205414873, 'macd_lag_2': -0.318411872328511, 'macd_lag_3': -0.4401536368719512, 'macd_lag_4': -0.5575743872541743, 'macd_lag_5': -0.7288631562356578, 'macd_12_26_9': -0.10873379403473038, 'macds_12_26_9': -0.4473347477017997}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 21.530000686645508, '2022-07-13': 21.709999084472656, '2022-07-14': 23.6200008392334, '2022-07-15': 23.920000076293945, '2022-07-18': 23.309999465942383, '2022-07-19': 23.89999961853028, '2022-07-20': 24.11000061035156, '2022-07-21': 24.75, '2022-07-22': 25.200000762939453, '2022-07-25': 25.1299991607666}, '1_month_later': {'2022-08-11': 29.64999961853028}, '3_months_later': {'2022-10-11': 22.43000030517578}, '6_months_later': {'2023-01-11': 27.209999084472656}, '12_months_later': {'2023-07-11': 51.34000015258789}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GREK
{'date': '2022-07-11', 'ticker': 'GREK', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 21.670000076293945, 'high': 22.0, 'open': 22.0, 'close': 21.709999084472656, 'ema_50': 24.697876672061074, 'rsi_14': 33.27999877929693, 'target': 21.93000030517578, 'volume': 20900.0, 'ema_200': 26.21831651352058, 'adj_close': 20.613561630249023, 'rsi_lag_1': 41.56304417055706, 'rsi_lag_2': 32.95818027769427, 'rsi_lag_3': 37.0090627912706, 'rsi_lag_4': 35.92374853977316, 'rsi_lag_5': 36.08247277883683, 'macd_lag_1': -0.8439198976775621, 'macd_lag_2': -0.8502546954836134, 'macd_lag_3': -0.8164454940771577, 'macd_lag_4': -0.7084717810531771, 'macd_lag_5': -0.5908983928425187, 'macd_12_26_9': -0.8995389316372524, 'macds_12_26_9': -0.7277546022756279}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 21.93000030517578, '2022-07-13': 22.200000762939453, '2022-07-14': 22.09000015258789, '2022-07-15': 22.01000022888184, '2022-07-18': 22.07999992370605, '2022-07-19': 22.81999969482422, '2022-07-20': 22.81999969482422, '2022-07-21': 23.3799991607666, '2022-07-22': 23.07999992370605, '2022-07-25': 23.15999984741211}, '1_month_later': {'2022-08-11': 25.040000915527344}, '3_months_later': {'2022-10-11': 21.739999771118164}, '6_months_later': {'2023-01-11': 28.1200008392334}, '12_months_later': {'2023-07-11': 38.540000915527344}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GSAT
{'date': '2022-07-11', 'ticker': 'GSAT', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 1.2699999809265137, 'high': 1.340000033378601, 'open': 1.3200000524520874, 'close': 1.2699999809265137, 'ema_50': 1.2469489889735874, 'rsi_14': 58.69564766694361, 'target': 1.2300000190734863, 'volume': 3711700.0, 'ema_200': 1.26160737210072, 'adj_close': 1.2699999809265137, 'rsi_lag_1': 74.41861883507526, 'rsi_lag_2': 58.823534911617976, 'rsi_lag_3': 61.11111479041124, 'rsi_lag_4': 60.377362734400954, 'rsi_lag_5': 53.57142553037496, 'macd_lag_1': 0.01882230812421759, 'macd_lag_2': 0.012997620088639694, 'macd_lag_3': 0.0074105054890036826, 'macd_lag_4': 0.006280623631763627, 'macd_lag_5': 0.006783490684578286, 'macd_12_26_9': 0.016789541103298333, 'macds_12_26_9': 0.012057724777201769}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 1.2300000190734863, '2022-07-13': 1.2799999713897705, '2022-07-14': 1.2799999713897705, '2022-07-15': 1.309999942779541, '2022-07-18': 1.3200000524520874, '2022-07-19': 1.3799999952316284, '2022-07-20': 1.350000023841858, '2022-07-21': 1.3799999952316284, '2022-07-22': 1.309999942779541, '2022-07-25': 1.350000023841858}, '1_month_later': {'2022-08-11': 1.659999966621399}, '3_months_later': {'2022-10-11': 1.7100000381469729}, '6_months_later': {'2023-01-11': 1.309999942779541}, '12_months_later': {'2023-07-11': 1.0800000429153442}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GS
{'date': '2022-07-11', 'ticker': 'GS', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/mercadolibre-receives-%24233-mln-from-goldman-sachs-to-expand-loans-in-brazil-mexico', 'news_author': None, 'news_article': 'SAO PAULO, July 11 (Reuters) - Argentine online marketplace MercadoLibre Inc MELI.O said on Monday it received a private financing line of $233 million from Goldman Sachs GS.N to expand its credit offer in Brazil and Mexico.\nThe company intends to, through its lending unit Mercado Credito, increase its loan offers to individuals and small and medium-sized companies in both countries.\nOf the total figure, $106 million will be destined for Brazil and $127 million for Mexico, MercadoLibre said in a statement.\nSince 2021, Goldman Sachs has already provided the South American firm with $485 million in credit lines.\n(Reporting by Alberto Alerigi Jr.; Writing by Peter Frontini; Editing by Sam Holmes)\n(([email protected]; +55 11 56447727;))\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'SAO PAULO, July 11 (Reuters) - Argentine online marketplace MercadoLibre Inc MELI.O said on Monday it received a private financing line of $233 million from Goldman Sachs GS.N to expand its credit offer in Brazil and Mexico. Since 2021, Goldman Sachs has already provided the South American firm with $485 million in credit lines. (Reporting by Alberto Alerigi Jr.; Writing by Peter Frontini; Editing by Sam Holmes) (([email protected]; +55 11 56447727;)) The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_luhn_summary': 'SAO PAULO, July 11 (Reuters) - Argentine online marketplace MercadoLibre Inc MELI.O said on Monday it received a private financing line of $233 million from Goldman Sachs GS.N to expand its credit offer in Brazil and Mexico. Of the total figure, $106 million will be destined for Brazil and $127 million for Mexico, MercadoLibre said in a statement. Since 2021, Goldman Sachs has already provided the South American firm with $485 million in credit lines.', 'news_article_title': 'MercadoLibre receives $233 mln from Goldman Sachs to expand loans in Brazil, Mexico', 'news_lexrank_summary': 'SAO PAULO, July 11 (Reuters) - Argentine online marketplace MercadoLibre Inc MELI.O said on Monday it received a private financing line of $233 million from Goldman Sachs GS.N to expand its credit offer in Brazil and Mexico. The company intends to, through its lending unit Mercado Credito, increase its loan offers to individuals and small and medium-sized companies in both countries. (Reporting by Alberto Alerigi Jr.; Writing by Peter Frontini; Editing by Sam Holmes) (([email protected]; +55 11 56447727;)) The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_textrank_summary': 'SAO PAULO, July 11 (Reuters) - Argentine online marketplace MercadoLibre Inc MELI.O said on Monday it received a private financing line of $233 million from Goldman Sachs GS.N to expand its credit offer in Brazil and Mexico. Of the total figure, $106 million will be destined for Brazil and $127 million for Mexico, MercadoLibre said in a statement. (Reporting by Alberto Alerigi Jr.; Writing by Peter Frontini; Editing by Sam Holmes) (([email protected]; +55 11 56447727;)) The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.'}, {'news_url': 'https://www.nasdaq.com/articles/goldman-sachs-gs-stock-moves-1.11%3A-what-you-should-know', 'news_author': None, 'news_article': 'Goldman Sachs (GS) closed at $293.18 in the latest trading session, marking a -1.11% move from the prior day. This move was narrower than the S&P 500\'s daily loss of 1.15%. At the same time, the Dow lost 0.52%, and the tech-heavy Nasdaq lost 0.34%.\nHeading into today, shares of the investment bank had gained 3.29% over the past month, outpacing the Finance sector\'s loss of 7.08% and the S&P 500\'s loss of 5.08% in that time.\nWall Street will be looking for positivity from Goldman Sachs as it approaches its next earnings report date. This is expected to be July 18, 2022. In that report, analysts expect Goldman Sachs to post earnings of $7.45 per share. This would mark a year-over-year decline of 50.4%. Our most recent consensus estimate is calling for quarterly revenue of $11.32 billion, down 26.41% from the year-ago period.\nLooking at the full year, our Zacks Consensus Estimates suggest analysts are expecting earnings of $35.65 per share and revenue of $47.22 billion. These totals would mark changes of -40.03% and -20.43%, respectively, from last year.\nInvestors should also note any recent changes to analyst estimates for Goldman Sachs. These revisions help to show the ever-changing nature of near-term business trends. With this in mind, we can consider positive estimate revisions a sign of optimism about the company\'s business outlook.\nBased on our research, we believe these estimate revisions are directly related to near-team stock moves. Investors can capitalize on this by using the Zacks Rank. This model considers these estimate changes and provides a simple, actionable rating system.\nRanging from #1 (Strong Buy) to #5 (Strong Sell), the Zacks Rank system has a proven, outside-audited track record of outperformance, with #1 stocks returning an average of +25% annually since 1988. Over the past month, the Zacks Consensus EPS estimate has moved 5.08% lower. Goldman Sachs is currently a Zacks Rank #3 (Hold).\nValuation is also important, so investors should note that Goldman Sachs has a Forward P/E ratio of 8.32 right now. Its industry sports an average Forward P/E of 10.81, so we one might conclude that Goldman Sachs is trading at a discount comparatively.\nAlso, we should mention that GS has a PEG ratio of 0.65. This popular metric is similar to the widely-known P/E ratio, with the difference being that the PEG ratio also takes into account the company\'s expected earnings growth rate. The Financial - Investment Bank was holding an average PEG ratio of 0.74 at yesterday\'s closing price.\nThe Financial - Investment Bank industry is part of the Finance sector. This industry currently has a Zacks Industry Rank of 148, which puts it in the bottom 42% of all 250+ industries.\nThe Zacks Industry Rank includes is listed in order from best to worst in terms of the average Zacks Rank of the individual companies within each of these sectors. Our research shows that the top 50% rated industries outperform the bottom half by a factor of 2 to 1.\nMake sure to utilize Zacks.com to follow all of these stock-moving metrics, and more, in the coming trading sessions.\n\nZacks Names "Single Best Pick to Double"\nFrom thousands of stocks, 5 Zacks experts each have chosen their favorite to skyrocket +100% or more in months to come. From those 5, Director of Research Sheraz Mian hand-picks one to have the most explosive upside of all.\nIt’s a little-known chemical company that’s up 65% over last year, yet still dirt cheap. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.\nThis company could rival or surpass other recent Zacks’ Stocks Set to Double like Boston Beer Company which shot up +143.0% in little more than 9 months and NVIDIA which boomed +175.9% in one year.\nFree: See Our Top Stock and 4 Runners Up >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nThe Goldman Sachs Group, Inc. (GS): Free Stock Analysis Report\n \nTo read this article on Zacks.com click here.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Goldman Sachs (GS) closed at $293.18 in the latest trading session, marking a -1.11% move from the prior day. Looking at the full year, our Zacks Consensus Estimates suggest analysts are expecting earnings of $35.65 per share and revenue of $47.22 billion. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.', 'news_luhn_summary': 'Goldman Sachs (GS) closed at $293.18 in the latest trading session, marking a -1.11% move from the prior day. Looking at the full year, our Zacks Consensus Estimates suggest analysts are expecting earnings of $35.65 per share and revenue of $47.22 billion. Wall Street will be looking for positivity from Goldman Sachs as it approaches its next earnings report date.', 'news_article_title': 'Goldman Sachs (GS) Stock Moves -1.11%: What You Should Know', 'news_lexrank_summary': 'Goldman Sachs (GS) closed at $293.18 in the latest trading session, marking a -1.11% move from the prior day. In that report, analysts expect Goldman Sachs to post earnings of $7.45 per share. Wall Street will be looking for positivity from Goldman Sachs as it approaches its next earnings report date.', 'news_textrank_summary': 'Looking at the full year, our Zacks Consensus Estimates suggest analysts are expecting earnings of $35.65 per share and revenue of $47.22 billion. Goldman Sachs (GS) closed at $293.18 in the latest trading session, marking a -1.11% move from the prior day. Wall Street will be looking for positivity from Goldman Sachs as it approaches its next earnings report date.'}, {'news_url': 'https://www.nasdaq.com/articles/exclusive-french-nationalisation-of-edf-set-to-cost-more-than-8-bln-euros-0', 'news_author': None, 'news_article': 'By Mathieu Rosemain and Pamela Barbaglia\nPARIS, July 11 (Reuters) - The French government is poised to pay more than 8 billion euros ($8.05 billion) to bring power giant EDF EDF.PA back under full state control, two sources with knowledge of the matter said, adding the aim is to complete the deal in the fourth quarter.\nOne of the sources said the cost of buying the 16% stake the state does not already own could be as high as almost 10 billion euros, when accounting for outstanding convertible bonds and a premium to current market prices. EDF and the economy ministry declined to comment.\nThe French government, which already has 84% of EDF, announced last week it would nationalise the company, which would give it more control over a revamp of the debt-laden group while contending with a European energy crisis.\nThe sources said the state would likely launch a public offer on the market at a premium to the stock price because the other option - a nationalisation law to be pushed through parliament - would take too long.\nWhen Prime Minister Elisabeth Borne announced the nationalisation plan on July 6, the stake held by minority shareholders was worth around 5 billion euros.\nIn addition, the French government would also have to buy 2.4 billion euros of convertible bonds and offer a premium tocurrent stock marketprices to entice minority shareholders, with the cost of the transaction going well beyond 8 billion euros, the sources said.\nThey did not give details of the size of the premium, with one of them saying no final decision had been taken.\nTIMELINE\nFrance wants the buyout to take place in October or November, and for that to happen it would have to move quickly, the sources said, asking not to be named because the matter is confidential.\nThe next step will be for the government to announce the offer price and make an official filing, the sources said. Then EDF will need to give its opinion while an independent expert will be drafted in to review the offer price.\nAll this will take some time, given the holiday season lull.\nFrance may have to announce the terms of the offer over the coming weeks, before the holiday period in August, to ensure it can have a deal in the fourth quarter, one of the sources said.\nFrench Economy Minister Bruno Le Maire said at the weekend: "It won\'t be an operation that will be fulfilled in days and weeks, it will take months. I will provide all the necessary precisions in the coming weeks, but not now."\nThe government last week increased the amount of money available for financial operations related to its state shareholding portfolio by 12.7 billion euros in the second half of the year, with officials saying this would cover the EDF deal and other, unspecified transactions.\nGoldman Sachs GS.N and Societe Generale SOGN.PA are working with the government to secure a deal, sources had previously said, while EDF is being advised by Lazard LAZ.N and BNP Paribas BNPP.PA.\n($1 = 0.9921 euros)\nUPDATE 5-France launches hunt for new EDF CEO, sets money aside for full nationalisation\n(Reporting by Mathieu Rosemain and Pamela Barbaglia, additional reporting by Leigh Thomas and Michel Rose, writing by Silvia Aloisi, editing by Barbara Lewis)\n(([email protected]; +393487607044; Reuters Messaging: [email protected]))\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Goldman Sachs GS.N and Societe Generale SOGN.PA are working with the government to secure a deal, sources had previously said, while EDF is being advised by Lazard LAZ.N and BNP Paribas BNPP.PA. One of the sources said the cost of buying the 16% stake the state does not already own could be as high as almost 10 billion euros, when accounting for outstanding convertible bonds and a premium to current market prices. The French government, which already has 84% of EDF, announced last week it would nationalise the company, which would give it more control over a revamp of the debt-laden group while contending with a European energy crisis.', 'news_luhn_summary': 'Goldman Sachs GS.N and Societe Generale SOGN.PA are working with the government to secure a deal, sources had previously said, while EDF is being advised by Lazard LAZ.N and BNP Paribas BNPP.PA. By Mathieu Rosemain and Pamela Barbaglia PARIS, July 11 (Reuters) - The French government is poised to pay more than 8 billion euros ($8.05 billion) to bring power giant EDF EDF.PA back under full state control, two sources with knowledge of the matter said, adding the aim is to complete the deal in the fourth quarter. In addition, the French government would also have to buy 2.4 billion euros of convertible bonds and offer a premium tocurrent stock marketprices to entice minority shareholders, with the cost of the transaction going well beyond 8 billion euros, the sources said.', 'news_article_title': 'EXCLUSIVE-French nationalisation of EDF set to cost more than 8 bln euros', 'news_lexrank_summary': 'Goldman Sachs GS.N and Societe Generale SOGN.PA are working with the government to secure a deal, sources had previously said, while EDF is being advised by Lazard LAZ.N and BNP Paribas BNPP.PA. In addition, the French government would also have to buy 2.4 billion euros of convertible bonds and offer a premium tocurrent stock marketprices to entice minority shareholders, with the cost of the transaction going well beyond 8 billion euros, the sources said. The next step will be for the government to announce the offer price and make an official filing, the sources said.', 'news_textrank_summary': 'Goldman Sachs GS.N and Societe Generale SOGN.PA are working with the government to secure a deal, sources had previously said, while EDF is being advised by Lazard LAZ.N and BNP Paribas BNPP.PA. By Mathieu Rosemain and Pamela Barbaglia PARIS, July 11 (Reuters) - The French government is poised to pay more than 8 billion euros ($8.05 billion) to bring power giant EDF EDF.PA back under full state control, two sources with knowledge of the matter said, adding the aim is to complete the deal in the fourth quarter. In addition, the French government would also have to buy 2.4 billion euros of convertible bonds and offer a premium tocurrent stock marketprices to entice minority shareholders, with the cost of the transaction going well beyond 8 billion euros, the sources said.'}, {'news_url': 'https://www.nasdaq.com/articles/what-lies-ahead-for-dow-etf-in-q2-earnings', 'news_author': None, 'news_article': 'After suffering its biggest first-half percentage plunge since 1962, the Dow Jones Industrial Average kicked off the second half with stability. A strong jobs report and a drop in commodity prices brought back the lure for riskier assets.\n\nThe blue-chip index gained 0.8% last week and SPDR Dow Jones Industrial Average ETF Trust DIA, which tracks the Dow Jones Industrial Average Index, is also up 8.5%. The trend is likely to continue heading into the earnings season.\n\nTotal S&P 500 earnings are expected to be up 1.8% from the same-period last year, while the revenues are estimated to rise 9.7%. In addition to inflation, logistical challenges and macroeconomic uncertainty, which were the recurring themes in the last couple of quarterly reporting cycles, the companies are expected to cite the strong U.S. dollar as another headwind this earnings season (read: Tap Dollar Strength With These ETFs).\n\nOf the 16 Zacks sectors, 10 are expected to record earnings growth in the second quarter, with the strongest gains in energy (up 191.3%). This will be followed by transportation (132.5%), autos (22.1%), construction (20.7%), basic materials (18.4%) and business services (8.2%) sectors.\nDIA in Focus\nSPDR Dow Jones Industrial Average ETF Trust is one of the largest and most popular ETFs in the large-cap space with an AUM of $26.7 billion and an average daily volume of 4.7 million shares. Holding 30 blue-chip stocks, the fund is widely spread across components with each holding less than 11% share. Healthcare (21.7%), information technology (21.3%), financials (15.2%), consumer discretionary (13.6%) and industrials (13.1%) are the top five sectors.\n\nSPDR Dow Jones Industrial Average ETF charges 16 bps as annual fees and has a Zacks ETF Rank #1 (Strong Buy) with a Medium risk. \n\nNearly one-fourth of the blue-chip firms are expected to announce results this week and in the next. JPMorgan Chase JPM is expected to report on Jul 14 while UnitedHealth UNH will announce earnings on Jul 15. Both Goldman GS and International Business Machines IBM are scheduled to report on Jul 18 each while Johnson & Johnson JNJ will report on Jul 19. Dow Inc. DOW and Intel INTC will release earnings on Jul 21 and Jul 28, respectively (read: Tap Q2 Earnings Growth With Sector ETFs).\n\nLet’s delve deeper into the second-quarter earnings picture that will likely aid the fund in the coming days.\nEarnings Whispers\nAccording to our methodology, the combination of a positive Earnings ESP and a Zacks Rank #1, 2 (Buy) or 3 (Hold) increases the chances of an earnings beat. You can uncover the best stocks to buy or sell before they’re reported with our Earnings ESP Filter.\n\nJPMorgan has a Zacks Rank #2 and an Earnings ESP of +1.32%. The stock has seen a positive earnings estimate revision of 3 cents over the past 30 days for the to-be-reported quarter. Analysts raising estimates right before earnings — with the most up-to-date information — is a good indicator for the stock. JPM delivered an earnings surprise of 13.67%, on average, in the last four quarters.\n\nUnitedHealth has a Zacks Rank #3 and an Earnings ESP of 0.00%. The stock has witnessed no earnings estimate revision over the past 30 days for the to-be-reported quarter and delivered an earnings surprise of 3.73%, on average, over the last four quarters (read: 5 ETFs Riding High on the Biotech Comeback).\n\nGoldman has a Zacks Rank of 3 and an Earnings ESP of -9.56%. The stock has witnessed a negative earnings estimate revision of 5 cents over the past seven days for the yet-to-be-reported quarter. GS’s earnings surprise track over the preceding four quarters was robust, the average being 29.67%.\n\nInternational Business Machines has a Zacks Rank #3 and an Earnings ESP of 0.00%. The stock has seen zero earnings estimate revision in the past 30 days for the to-be-reported quarter. IBM delivered an earnings surprise of 2.02%, on average, in the last four quarters.\n\nJohnson & Johnson has a Zacks Rank #3 and an Earnings ESP of 0.00%. The stock has witnessed no earnings estimate revision over the past 30 days for the yet-to-be-reported quarter. JNJ’s earnings surprise track over the preceding four quarters was also robust, the average being 5.41%.\n\nDow has a Zacks Rank #3 and an Earnings ESP of -0.12%. The stock has seen a negative earnings estimate revision of a couple of cents over the past seven days for the to-be-reported quarter. DOW came up with a beat in each of the last four quarters, the average being 9.17%.\n\nIntel has a Zacks Rank #4 and an Earnings ESP of +12.25%. The stock has witnessed a positive earnings estimate revision of 4 cents over the past 30 days for the soon-to-be-reported quarter and delivered an earnings surprise of 26.17%, on average, over the last four quarters.\nBottom Line\nWith some of the blue-chip companies expected to report an earnings surprise, investors should closely monitor the movement of the Dow ETF and grab an opportunity that arises from a surge in any of the 30 stocks.\n \nWant key ETF info delivered straight to your inbox?\nZacks’ free Fund Newsletter will brief you on top news and analysis, as well as top-performing ETFs, each week.\nGet it free >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nThe Goldman Sachs Group, Inc. (GS): Free Stock Analysis Report\n \nJPMorgan Chase & Co. (JPM): Free Stock Analysis Report\n \nIntel Corporation (INTC): Free Stock Analysis Report\n \nUnitedHealth Group Incorporated (UNH): Free Stock Analysis Report\n \nInternational Business Machines Corporation (IBM): Free Stock Analysis Report\n \nJohnson & Johnson (JNJ): Free Stock Analysis Report\n \nDow Inc. (DOW): Free Stock Analysis Report\n \nSPDR Dow Jones Industrial Average ETF (DIA): ETF Research Reports\n \nTo read this article on Zacks.com click here.\n \nZacks Investment Research\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Bottom Line With some of the blue-chip companies expected to report an earnings surprise, investors should closely monitor the movement of the Dow ETF and grab an opportunity that arises from a surge in any of the 30 stocks. The trend is likely to continue heading into the earnings season. Total S&P 500 earnings are expected to be up 1.8% from the same-period last year, while the revenues are estimated to rise 9.7%.', 'news_luhn_summary': 'The trend is likely to continue heading into the earnings season. Total S&P 500 earnings are expected to be up 1.8% from the same-period last year, while the revenues are estimated to rise 9.7%. In addition to inflation, logistical challenges and macroeconomic uncertainty, which were the recurring themes in the last couple of quarterly reporting cycles, the companies are expected to cite the strong U.S. dollar as another headwind this earnings season (read: Tap Dollar Strength With These ETFs).', 'news_article_title': 'What Lies Ahead for Dow ETF in Q2 Earnings?', 'news_lexrank_summary': 'Dow Inc. DOW and Intel INTC will release earnings on Jul 21 and Jul 28, respectively (read: Tap Q2 Earnings Growth With Sector ETFs). The stock has witnessed no earnings estimate revision over the past 30 days for the to-be-reported quarter and delivered an earnings surprise of 3.73%, on average, over the last four quarters (read: 5 ETFs Riding High on the Biotech Comeback). The trend is likely to continue heading into the earnings season.', 'news_textrank_summary': 'Earnings Whispers According to our methodology, the combination of a positive Earnings ESP and a Zacks Rank #1, 2 (Buy) or 3 (Hold) increases the chances of an earnings beat. The stock has witnessed no earnings estimate revision over the past 30 days for the to-be-reported quarter and delivered an earnings surprise of 3.73%, on average, over the last four quarters (read: 5 ETFs Riding High on the Biotech Comeback). The stock has witnessed a positive earnings estimate revision of 4 cents over the past 30 days for the soon-to-be-reported quarter and delivered an earnings surprise of 26.17%, on average, over the last four quarters.'}, {'news_url': 'https://www.nasdaq.com/articles/earnings-preview%3A-goldman-sachs-gs-q2-earnings-expected-to-decline', 'news_author': None, 'news_article': 'Wall Street expects a year-over-year decline in earnings on lower revenues when Goldman Sachs (GS) reports results for the quarter ended June 2022. While this widely-known consensus outlook is important in gauging the company\'s earnings picture, a powerful factor that could impact its near-term stock price is how the actual results compare to these estimates.\nThe earnings report, which is expected to be released on July 18, 2022, might help the stock move higher if these key numbers are better than expectations. On the other hand, if they miss, the stock may move lower.\nWhile the sustainability of the immediate price change and future earnings expectations will mostly depend on management\'s discussion of business conditions on theearnings call it\'s worth handicapping the probability of a positive EPS surprise.\nZacks Consensus Estimate\nThis investment bank is expected to post quarterly earnings of $7.45 per share in its upcoming report, which represents a year-over-year change of -50.4%.\nRevenues are expected to be $11.32 billion, down 26.4% from the year-ago quarter.\nEstimate Revisions Trend\nThe consensus EPS estimate for the quarter has been revised 3.68% lower over the last 30 days to the current level. This is essentially a reflection of how the covering analysts have collectively reassessed their initial estimates over this period.\nInvestors should keep in mind that an aggregate change may not always reflect the direction of estimate revisions by each of the covering analysts.\nEarnings Whisper\nEstimate revisions ahead of a company\'s earnings release offer clues to the business conditions for the period whose results are coming out. Our proprietary surprise prediction model -- the Zacks Earnings ESP (Expected Surprise Prediction) -- has this insight at its core.\nThe Zacks Earnings ESP compares the Most Accurate Estimate to the Zacks Consensus Estimate for the quarter; the Most Accurate Estimate is a more recent version of the Zacks Consensus EPS estimate. The idea here is that analysts revising their estimates right before an earnings release have the latest information, which could potentially be more accurate than what they and others contributing to the consensus had predicted earlier.\nThus, a positive or negative Earnings ESP reading theoretically indicates the likely deviation of the actual earnings from the consensus estimate. However, the model\'s predictive power is significant for positive ESP readings only.\nA positive Earnings ESP is a strong predictor of an earnings beat, particularly when combined with a Zacks Rank #1 (Strong Buy), 2 (Buy) or 3 (Hold). Our research shows that stocks with this combination produce a positive surprise nearly 70% of the time, and a solid Zacks Rank actually increases the predictive power of Earnings ESP.\nPlease note that a negative Earnings ESP reading is not indicative of an earnings miss. Our research shows that it is difficult to predict an earnings beat with any degree of confidence for stocks with negative Earnings ESP readings and/or Zacks Rank of 4 (Sell) or 5 (Strong Sell).\nHow Have the Numbers Shaped Up for Goldman?\nFor Goldman, the Most Accurate Estimate is lower than the Zacks Consensus Estimate, suggesting that analysts have recently become bearish on the company\'s earnings prospects. This has resulted in an Earnings ESP of -9.56%.\nOn the other hand, the stock currently carries a Zacks Rank of #3.\nSo, this combination makes it difficult to conclusively predict that Goldman will beat the consensus EPS estimate.\nDoes Earnings Surprise History Hold Any Clue?\nWhile calculating estimates for a company\'s future earnings, analysts often consider to what extent it has been able to match past consensus estimates. So, it\'s worth taking a look at the surprise history for gauging its influence on the upcoming number.\nFor the last reported quarter, it was expected that Goldman would post earnings of $8.61 per share when it actually produced earnings of $10.76, delivering a surprise of +24.97%.\nOver the last four quarters, the company has beaten consensus EPS estimates three times.\nBottom Line\nAn earnings beat or miss may not be the sole basis for a stock moving higher or lower. Many stocks end up losing ground despite an earnings beat due to other factors that disappoint investors. Similarly, unforeseen catalysts help a number of stocks gain despite an earnings miss.\nThat said, betting on stocks that are expected to beat earnings expectations does increase the odds of success. This is why it\'s worth checking a company\'s Earnings ESP and Zacks Rank ahead of its quarterly release. Make sure to utilize our Earnings ESP Filter to uncover the best stocks to buy or sell before they\'ve reported.\nGoldman doesn\'t appear a compelling earnings-beat candidate. However, investors should pay attention to other factors too for betting on this stock or staying away from it ahead of its earnings release.\nStay on top of upcoming earnings announcements with the Zacks Earnings Calendar.\n\nZacks Names "Single Best Pick to Double"\nFrom thousands of stocks, 5 Zacks experts each have chosen their favorite to skyrocket +100% or more in months to come. From those 5, Director of Research Sheraz Mian hand-picks one to have the most explosive upside of all.\nIt’s a little-known chemical company that’s up 65% over last year, yet still dirt cheap. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.\nThis company could rival or surpass other recent Zacks’ Stocks Set to Double like Boston Beer Company which shot up +143.0% in little more than 9 months and NVIDIA which boomed +175.9% in one year.\nFree: See Our Top Stock and 4 Runners Up >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nThe Goldman Sachs Group, Inc. (GS): Free Stock Analysis Report\n \nTo read this article on Zacks.com click here.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': "While this widely-known consensus outlook is important in gauging the company's earnings picture, a powerful factor that could impact its near-term stock price is how the actual results compare to these estimates. While the sustainability of the immediate price change and future earnings expectations will mostly depend on management's discussion of business conditions on theearnings call it's worth handicapping the probability of a positive EPS surprise. Our research shows that stocks with this combination produce a positive surprise nearly 70% of the time, and a solid Zacks Rank actually increases the predictive power of Earnings ESP.", 'news_luhn_summary': 'Our proprietary surprise prediction model -- the Zacks Earnings ESP (Expected Surprise Prediction) -- has this insight at its core. The Zacks Earnings ESP compares the Most Accurate Estimate to the Zacks Consensus Estimate for the quarter; the Most Accurate Estimate is a more recent version of the Zacks Consensus EPS estimate. Our research shows that stocks with this combination produce a positive surprise nearly 70% of the time, and a solid Zacks Rank actually increases the predictive power of Earnings ESP.', 'news_article_title': 'Earnings Preview: Goldman Sachs (GS) Q2 Earnings Expected to Decline', 'news_lexrank_summary': 'The earnings report, which is expected to be released on July 18, 2022, might help the stock move higher if these key numbers are better than expectations. For the last reported quarter, it was expected that Goldman would post earnings of $8.61 per share when it actually produced earnings of $10.76, delivering a surprise of +24.97%. Wall Street expects a year-over-year decline in earnings on lower revenues when Goldman Sachs (GS) reports results for the quarter ended June 2022.', 'news_textrank_summary': "The Zacks Earnings ESP compares the Most Accurate Estimate to the Zacks Consensus Estimate for the quarter; the Most Accurate Estimate is a more recent version of the Zacks Consensus EPS estimate. Our research shows that it is difficult to predict an earnings beat with any degree of confidence for stocks with negative Earnings ESP readings and/or Zacks Rank of 4 (Sell) or 5 (Strong Sell). For Goldman, the Most Accurate Estimate is lower than the Zacks Consensus Estimate, suggesting that analysts have recently become bearish on the company's earnings prospects."}, {'news_url': 'https://www.nasdaq.com/articles/big-u.s.-banks-second-quarter-profits-to-tumble-on-higher-bad-loan-reserves-0', 'news_author': None, 'news_article': 'By David Henry\nNEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.\nAnalysts expect JPMorgan Chase & Co JPM.N will report a 25% drop in profit on Thursday, while Citigroup Inc C.N and Wells Fargo & Co WFC.N will show 38% and 42% profit declines, respectively on Friday, according to Refinitiv I/B/E/S data.\nBank of America Corp, BAC.N which like its peers has big consumer and business lending franchises, is expected to show a 29% drop in profit when it reports on July 18.\nThe plunge in profit stems from lenders adding to their reserves for expected loan losses, a reversal from a year earlier when they benefited from reducing those cushions as anticipated pandemic losses failed to materialize and the economy strengthened.\n"Its going to be a shaky quarter for the sector," said Jason Ware, chief investment officer for Albion Financial Group, which owns shares of JPMorgan and Morgan Stanley MS.N.\nInvestors will want to hear executives\' insights into the health of the economy and if borrowers are "more shaky now," Ware said.\nBanks must factor the economic outlook into loan loss reserves under an accounting standard which took effect in January 2020.\nWhile data on Friday showed the U.S. economy added more jobs than expected in June, it could still be on the verge of a recession. Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks.\nTIME TO BUILD UP\nLast month, JPMorgan CEO Jamie Dimon warned of an economic "hurricane," while Morgan Stanley CEO James Gorman has said there is a 50% chance of a recession.\n"The banks are going to have to build up their reserves," said Gerard Cassidy, a bank analyst at RBC Capital Markets.\nJPMorgan, Citi, Wells Fargo and Bank of America, the country\'s largest four lenders, could record $3.5 billion of loss provisions compared with $6.2 billion of benefits last year when they released reserves, Cassidy estimated.\nAs a result, the banks\' bottom lines will look worse than their underlying businesses. Pre-provision, pre-tax profits for the big four will be down only 7%, according to estimates by analysts led by Jason Goldberg at Barclays.\nTo be sure, banks are also adding to reserves for additional loans they have been making as companies have started to borrow more and consumers have been using credit cards to travel and eat out again. And actual loan losses and delinquency rates are still near record lows.\nBut bank executives have said more loans will go bad. Analysts will press the banks for clues on the timing and magnitude and how much they might eventually offset gains in net interest income - the difference between banks\' cost of funds and the interest they receive.\nNet interest income growth is the highest it has been in a decade, powered by loan growth and higher interest rates, said Goldberg. Net interest income rose 14% in the second quarter, on average, for the four biggest banks, he estimates.\n"You have really strong loan growth and very low loan losses," he added.\nBut a severe recession could cause actual loan losses and negate such gains, said Cassidy.\nWALL STREET WIPEOUT\nMorgan Stanley, the sixth-biggest U.S. bank by assets and a major Wall Street player and investment manager, also reports on Thursday and is expected to show a 17% decline in profits.\nThe fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18.\nGoldman, like Morgan Stanley, does less consumer and business lending than the four biggest banks and changes in its loan loss provisions are less important for profits.\nBut fees Goldman makes on deals, including stock and bond underwriting, are expected to be down sharply, partially offset by more trading revenue due to increased volatility. L4N2YO3FW\nMortgage business revenue is expected to decline as higher interest rates dampen home loan demand and refinancing.\nBanks\' asset management businesses will also report lower revenue on lower stock and bond prices, Goldberg said.\n(Reporting by David Henry in New York. Additional reporting by Megan Davies. Editing by Michelle Price and Deepa Babington)\n(([email protected]; +1-332-219-1974; Reuters Messaging: [email protected]))\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.', 'news_luhn_summary': 'Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.', 'news_article_title': "Big U.S. banks' second quarter profits to tumble on higher bad loan reserves", 'news_lexrank_summary': 'The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.', 'news_textrank_summary': 'Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.'}, {'news_url': 'https://www.nasdaq.com/articles/big-u.s.-banks-second-quarter-profits-to-tumble-on-higher-bad-loan-reserves', 'news_author': None, 'news_article': 'By David Henry\nNEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.\nAnalysts expect JPMorgan Chase & Co JPM.N will report a 25% drop in profit on Thursday, while Citigroup Inc C.N and Wells Fargo & Co WFC.N will show 38% and 42% profit declines, respectively on Friday, according to Refinitiv I/B/E/S data.\nBank of America Corp, BAC.N which like its peers has big consumer and business lending franchises, is expected to show a 29% drop in profit when it reports on July 18.\nThe plunge in profit stems from lenders adding to their reserves for expected loan losses, a reversal from a year earlier when they benefited from reducing those cushions as anticipated pandemic losses failed to materialize and the economy strengthened.\n"Its going to be a shaky quarter for the sector," said Jason Ware, chief investment officer for Albion Financial Group, which owns shares of JPMorgan and Morgan Stanley MS.N.\nInvestors will want to hear executives\' insights into the health of the economy and if borrowers are "more shaky now," Ware said.\nBanks must factor the economic outlook into loan loss reserves under an accounting standard which took effect in January 2020.\nWhile data on Friday showed the U.S. economy added more jobs than expected in June, it could still be on the verge of a recession. Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks.\nTIME TO BUILD UP\nLast month, JPMorgan CEO Jamie Dimon warned of an economic "hurricane," while Morgan Stanley CEO James Gorman has said there is a 50% chance of a recession.\n"The banks are going to have to build up their reserves," said Gerard Cassidy, a bank analyst at RBC Capital Markets.\nJPMorgan, Citi, Wells Fargo and Bank of America, the country\'s largest four lenders, could record $3.5 billion of loss provisions compared with $6.2 billion of benefits last year when they released reserves, Cassidy estimated.\nAs a result, the banks\' bottom lines will look worse than their underlying businesses. Pre-provision, pre-tax profits for the big four will be down only 7%, according to estimates by analysts led by Jason Goldberg at Barclays.\nTo be sure, banks are also adding to reserves for additional loans they have been making as companies have started to borrow more and consumers have been using credit cards to travel and eat out again. And actual loan losses and delinquency rates are still near record lows.\nBut bank executives have said more loans will go bad. Analysts will press the banks for clues on the timing and magnitude and how much they might eventually offset gains in net interest income - the difference between banks\' cost of funds and the interest they receive.\nNet interest income growth is the highest it has been in a decade, powered by loan growth and higher interest rates, said Goldberg. Net interest income rose 14% in the second quarter, on average, for the four biggest banks, he estimates.\n"You have really strong loan growth and very low loan losses," he added.\nBut a severe recession could cause actual loan losses and negate such gains, said Cassidy.\nWALL STREET WIPEOUT\nMorgan Stanley, the sixth-biggest U.S. bank by assets and a major Wall Street player and investment manager, also reports on Thursday and is expected to show a 17% decline in profits.\nThe fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18.\nGoldman, like Morgan Stanley, does less consumer and business lending than the four biggest banks and changes in its loan loss provisions are less important for profits.\nBut fees Goldman makes on deals, including stock and bond underwriting, are expected to be down sharply, partially offset by more trading revenue due to increased volatility. L4N2YO3FW\nMortgage business revenue is expected to decline as higher interest rates dampen home loan demand and refinancing.\nBanks\' asset management businesses will also report lower revenue on lower stock and bond prices, Goldberg said.\n(Reporting by David Henry in New York. Additional reporting by Megan Davies. Editing by Michelle Price and Deepa Babington)\n(([email protected]; +1-332-219-1974; Reuters Messaging: [email protected]))\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.', 'news_luhn_summary': 'Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.', 'news_article_title': "Big U.S. banks' second quarter profits to tumble on higher bad loan reserves", 'news_lexrank_summary': 'The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.', 'news_textrank_summary': 'Gross domestic product contracted in the first quarter, with tepid consumer spending and manufacturing readings in the last two weeks. The fifth-biggest bank, Goldman Sachs Group Inc. GS.N, is expected to report a 51% profit drop when it reports on July 18. By David Henry NEW YORK, July 11 (Reuters) - Second quarter profits at big U.S. banks are expected to fall sharply from a year earlier on increased loan loss reserves, as the pandemic recovery gives way to a possible recession.'}, {'news_url': 'https://www.nasdaq.com/articles/wall-street-banks-q2-trading-revenue-likely-to-surge-softening-blow-from-deal-slump', 'news_author': None, 'news_article': 'By Saeed Azhar\nNEW YORK, July 11 (Reuters) - A surge in trading revenue powered by volatile markets should partially offset a slump in M&A and equity and debt deals when Wall Street banks report second-quarter earnings this month.\nRussia\'s invasion of Ukraine, a surge in the price of oil above $100 a barrel and Federal Reserve rate hikes contributed to upheaval in the markets with the S&P 500 index .SPX recording its third-worst half year since 1945.\nWhile that has been bad for deals which drove bumper profits for investment banks last year, it has been good news for Wall Street traders, boosting transaction fees and brokerage commissions as investors rushed to rebalance portfolios and hedge their risks.\n"This is the type of quarter that justifies Wall Street\'s reason to exist: getting in the middle of many counterparties to help them manage and trade their risk," said Mike Mayo, senior banking analyst at Wells Fargo. "We\'ve already had guidance for trading to be up 15% to 25% year over year for the largest banks."\nRBC Capital Markets analysts said they expect markets revenue at the big U.S. banks to increase 17% year-on-year, driven primarily by fixed-income commodities and currencies, or FICC, business.\nCitigroup Inc\'s C.N global head of markets, Andy Morton, told a conference last month that while he expected the investment banking business to be down in the second quarter, the bank\'s market business revenue would be up over 25%.\nBarclays has projected trading revenue for Goldman Sachs GS.N, a Wall Street powerhouse, to be up 21% year-on-year in the second quarter with FICC business up 28% and equities up 14%.\nThe FICC business has benefited in particular because the Ukraine conflict has pushed up commodities prices, sending investors scrambling to cover their exposure, while central bank rate hikes aimed at dampening inflation have also driven fixed-income and currency trading.\n"Looking out, we expect trading activity levels to remain elevated," Barclays\' banking analysts, led by Jason Goldberg, wrote in a note.\nDEALS DOWNER\nThe anticipated trading gains are a bonus for Wall Street banks which, prior to the Ukraine conflict, were expecting trading revenue to settle somewhere between the highs of the past two years, which had been driven by massive Fed monetary easing, and pre-pandemic levels.\nIn contrast, Wall Street bank investment bank revenue is expected to suffer from a slump in global equity capital market transactions, which dropped nearly 69% to $263.8 billion in the first half of the year on the same period in 2021, while debt deals slumped by nearly 26%, data from Dealogic showed. Mergers and acquisitions had a mixed first half with the impact of Russia\'s invasion felt more severely in the second quarter when the value of announced deals dropped 25.5% year-on-year to $1 trillion, according to Dealogic.\n"We\'ve already seen a stall in M&A and CEO confidence is near an all-time low," said Kenneth Leon, research director, industry and equities, at CFRA Research.\n"The ability to get higher fees from (initial public offerings) has been very difficult so I would say more of the same for the second half of the year for investment banking."\nGoldman Sachs and Morgan Stanley overall are expected to report a 51% and 17% drop in profit, respectively, partly due to the decline in deals, according to Refinitiv I/B/E/S data.\nAnalysts expect the weak environment for deals could trigger cost-cutting measures by either freezing hiring or reducing jobs.\n"We believe, if investment banking revenue trends do not improve in H2, cost initiatives will move into focus to improve profitability," RBC Capital Markets analysts wrote in a separate report.\n(Reporting by Saeed Azhar in New York Additional reporting by David Henry in New York and Noor Zainab Hussain in Bengalaru; Editing by Michelle Price and Matthew Lewis)\n(([email protected]; +971 44536787; Reuters Messaging: [email protected]))\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'By Saeed Azhar NEW YORK, July 11 (Reuters) - A surge in trading revenue powered by volatile markets should partially offset a slump in M&A and equity and debt deals when Wall Street banks report second-quarter earnings this month. Barclays has projected trading revenue for Goldman Sachs GS.N, a Wall Street powerhouse, to be up 21% year-on-year in the second quarter with FICC business up 28% and equities up 14%. "The ability to get higher fees from (initial public offerings) has been very difficult so I would say more of the same for the second half of the year for investment banking."', 'news_luhn_summary': 'By Saeed Azhar NEW YORK, July 11 (Reuters) - A surge in trading revenue powered by volatile markets should partially offset a slump in M&A and equity and debt deals when Wall Street banks report second-quarter earnings this month. Barclays has projected trading revenue for Goldman Sachs GS.N, a Wall Street powerhouse, to be up 21% year-on-year in the second quarter with FICC business up 28% and equities up 14%. "The ability to get higher fees from (initial public offerings) has been very difficult so I would say more of the same for the second half of the year for investment banking."', 'news_article_title': "Wall Street banks' Q2 trading revenue likely to surge, softening blow from deal slump", 'news_lexrank_summary': 'Barclays has projected trading revenue for Goldman Sachs GS.N, a Wall Street powerhouse, to be up 21% year-on-year in the second quarter with FICC business up 28% and equities up 14%. By Saeed Azhar NEW YORK, July 11 (Reuters) - A surge in trading revenue powered by volatile markets should partially offset a slump in M&A and equity and debt deals when Wall Street banks report second-quarter earnings this month. "The ability to get higher fees from (initial public offerings) has been very difficult so I would say more of the same for the second half of the year for investment banking."', 'news_textrank_summary': 'By Saeed Azhar NEW YORK, July 11 (Reuters) - A surge in trading revenue powered by volatile markets should partially offset a slump in M&A and equity and debt deals when Wall Street banks report second-quarter earnings this month. Barclays has projected trading revenue for Goldman Sachs GS.N, a Wall Street powerhouse, to be up 21% year-on-year in the second quarter with FICC business up 28% and equities up 14%. "The ability to get higher fees from (initial public offerings) has been very difficult so I would say more of the same for the second half of the year for investment banking."'}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 291.8800048828125, 'high': 296.5400085449219, 'open': 293.20001220703125, 'close': 293.17999267578125, 'ema_50': 305.6895663998887, 'rsi_14': 62.22828919388492, 'target': 292.5299987792969, 'volume': 1519400.0, 'ema_200': 334.7046007606708, 'adj_close': 280.2064208984375, 'rsi_lag_1': 60.14120501554701, 'rsi_lag_2': 57.154836863340584, 'rsi_lag_3': 59.0048137424092, 'rsi_lag_4': 61.636486815631734, 'rsi_lag_5': 59.95761087821542, 'macd_lag_1': -2.6912980077182738, 'macd_lag_2': -2.871582010522218, 'macd_lag_3': -3.276794714743346, 'macd_lag_4': -3.2535313796951186, 'macd_lag_5': -3.526769606017524, 'macd_12_26_9': -2.781830618703623, 'macds_12_26_9': -3.6895488372740965}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 292.5299987792969, '2022-07-13': 290.1499938964844, '2022-07-14': 281.5899963378906, '2022-07-15': 293.8699951171875, '2022-07-18': 301.260009765625, '2022-07-19': 318.04998779296875, '2022-07-20': 321.45001220703125, '2022-07-21': 326.5400085449219, '2022-07-22': 323.92999267578125, '2022-07-25': 324.1199951171875}, '1_month_later': {'2022-08-11': 351.67999267578125}, '3_months_later': {'2022-10-11': 294.2099914550781}, '6_months_later': {'2023-01-11': 364.4800109863281}, '12_months_later': {'2023-07-11': 320.8800048828125}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRVY
{'date': '2022-07-11', 'ticker': 'GRVY', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 50.06999969482422, 'high': 51.29999923706055, 'open': 50.59999847412109, 'close': 50.900001525878906, 'ema_50': 52.40528886141477, 'rsi_14': 43.83177976585611, 'target': 48.20000076293945, 'volume': 27000.0, 'ema_200': 65.57879574282623, 'adj_close': 50.900001525878906, 'rsi_lag_1': 52.61293137906486, 'rsi_lag_2': 39.999994241966384, 'rsi_lag_3': 35.10203458824934, 'rsi_lag_4': 38.80100331951761, 'rsi_lag_5': 35.736192639858075, 'macd_lag_1': -0.968760491831155, 'macd_lag_2': -1.1103023521811721, 'macd_lag_3': -1.2096474207355357, 'macd_lag_4': -1.153907636324142, 'macd_lag_5': -1.1270704334631318, 'macd_12_26_9': -0.8994754267712182, 'macds_12_26_9': -0.9630016440035651}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 48.20000076293945, '2022-07-13': 48.369998931884766, '2022-07-14': 47.59000015258789, '2022-07-15': 47.720001220703125, '2022-07-18': 47.959999084472656, '2022-07-19': 49.0099983215332, '2022-07-20': 50.400001525878906, '2022-07-21': 52.04999923706055, '2022-07-22': 50.310001373291016, '2022-07-25': 49.900001525878906}, '1_month_later': {'2022-08-11': 52.45000076293945}, '3_months_later': {'2022-10-11': 48.060001373291016}, '6_months_later': {'2023-01-11': 44.88999938964844}, '12_months_later': {'2023-07-11': 79.54000091552734}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRPN
{'date': '2022-07-11', 'ticker': 'GRPN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 9.59000015258789, 'high': 10.550000190734863, 'open': 10.470000267028809, 'close': 9.720000267028809, 'ema_50': 14.586270477646384, 'rsi_14': 23.756345806747433, 'target': 9.739999771118164, 'volume': 1120400.0, 'ema_200': 20.784006821406717, 'adj_close': 9.720000267028809, 'rsi_lag_1': 32.512818115154346, 'rsi_lag_2': 30.33492951342805, 'rsi_lag_3': 30.06724457559936, 'rsi_lag_4': 34.43497288382672, 'rsi_lag_5': 26.60151790572708, 'macd_lag_1': -1.2092479133511453, 'macd_lag_2': -1.148029413376884, 'macd_lag_3': -1.0847574155761368, 'macd_lag_4': -0.9556392615927045, 'macd_lag_5': -0.891991894719208, 'macd_12_26_9': -1.317618505036501, 'macds_12_26_9': -0.956177554625551}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 9.739999771118164, '2022-07-13': 9.520000457763672, '2022-07-14': 8.890000343322754, '2022-07-15': 9.640000343322754, '2022-07-18': 10.18000030517578, '2022-07-19': 11.279999732971191, '2022-07-20': 12.050000190734863, '2022-07-21': 11.760000228881836, '2022-07-22': 10.579999923706056, '2022-07-25': 10.479999542236328}, '1_month_later': {'2022-08-11': 12.84000015258789}, '3_months_later': {'2022-10-11': 7.550000190734863}, '6_months_later': {'2023-01-11': 8.1899995803833}, '12_months_later': {'2023-07-11': 6.869999885559082}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GSBD
{'date': '2022-07-11', 'ticker': 'GSBD', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 16.459999084472656, 'high': 16.889999389648438, 'open': 16.799999237060547, 'close': 16.530000686645508, 'ema_50': 17.74037849430989, 'rsi_14': 46.41640291478915, 'target': 16.559999465942383, 'volume': 249800.0, 'ema_200': 18.72734794591793, 'adj_close': 13.734893798828123, 'rsi_lag_1': 56.071424678884576, 'rsi_lag_2': 44.69915825302252, 'rsi_lag_3': 42.04203154972366, 'rsi_lag_4': 47.93652100778259, 'rsi_lag_5': 37.46835369690145, 'macd_lag_1': -0.3062152204490829, 'macd_lag_2': -0.3172726686752618, 'macd_lag_3': -0.32575291319887967, 'macd_lag_4': -0.3094384404545458, 'macd_lag_5': -0.31364168387158387, 'macd_12_26_9': -0.3211848646897266, 'macds_12_26_9': -0.3184205346729737}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 16.559999465942383, '2022-07-13': 16.25, '2022-07-14': 15.989999771118164, '2022-07-15': 16.219999313354492, '2022-07-18': 16.31999969482422, '2022-07-19': 16.65999984741211, '2022-07-20': 16.65999984741211, '2022-07-21': 16.700000762939453, '2022-07-22': 16.670000076293945, '2022-07-25': 16.6200008392334}, '1_month_later': {'2022-08-11': 17.84000015258789}, '3_months_later': {'2022-10-11': 14.390000343322754}, '6_months_later': {'2023-01-11': 14.600000381469728}, '12_months_later': {'2023-07-11': 13.869999885559082}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRNQ
{'date': '2022-07-11', 'ticker': 'GRNQ', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 2.009999990463257, 'high': 2.25, 'open': 2.220000028610229, 'close': 2.009999990463257, 'ema_50': 2.9880085074078098, 'rsi_14': 30.985917857752085, 'target': 1.9900000095367432, 'volume': 53450.0, 'ema_200': 5.555721741200235, 'adj_close': 2.009999990463257, 'rsi_lag_1': 33.000000357627826, 'rsi_lag_2': 32.35294220769272, 'rsi_lag_3': 22.90503016527468, 'rsi_lag_4': 27.68362266834771, 'rsi_lag_5': 24.500006556509376, 'macd_lag_1': -0.3143575147975257, 'macd_lag_2': -0.33449538051491556, 'macd_lag_3': -0.35838777521912535, 'macd_lag_4': -0.3561793387622485, 'macd_lag_5': -0.3583615888651539, 'macd_12_26_9': -0.3101542625772997, 'macds_12_26_9': -0.33602263905933344}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 1.9900000095367432, '2022-07-13': 2.049999952316284, '2022-07-14': 2.049999952316284, '2022-07-15': 2.069999933242798, '2022-07-18': 2.180000066757202, '2022-07-19': 2.319999933242798, '2022-07-20': 2.220000028610229, '2022-07-21': 2.049999952316284, '2022-07-22': 1.9700000286102293, '2022-07-25': 1.919999957084656}, '1_month_later': {'2022-08-11': 1.8899999856948853}, '3_months_later': {'2022-10-11': 1.149999976158142}, '6_months_later': {'2023-01-11': 1.3799999952316284}, '12_months_later': {'2023-07-11': 1.7599999904632568}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRMN
{'date': '2022-07-11', 'ticker': 'GRMN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 100.3000030517578, 'high': 103.02999877929688, 'open': 102.62999725341795, 'close': 100.5999984741211, 'ema_50': 102.79383967769868, 'rsi_14': 68.31021982616573, 'target': 101.75, 'volume': 710100.0, 'ema_200': 118.28886918414979, 'adj_close': 96.36505889892578, 'rsi_lag_1': 78.68394166127788, 'rsi_lag_2': 66.8099151512325, 'rsi_lag_3': 60.93310152107497, 'rsi_lag_4': 56.744698549649776, 'rsi_lag_5': 46.18643519865512, 'macd_lag_1': -0.1852751281760021, 'macd_lag_2': -0.4720772074866204, 'macd_lag_3': -0.9371646002858967, 'macd_lag_4': -1.1699541550327552, 'macd_lag_5': -1.3828603897853355, 'macd_12_26_9': -0.14831918628320295, 'macds_12_26_9': -0.8980764193423307}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 101.75, '2022-07-13': 100.1999969482422, '2022-07-14': 97.95999908447266, '2022-07-15': 99.9000015258789, '2022-07-18': 99.7699966430664, '2022-07-19': 103.23999786376952, '2022-07-20': 106.22000122070312, '2022-07-21': 107.88999938964844, '2022-07-22': 104.9499969482422, '2022-07-25': 104.08000183105467}, '1_month_later': {'2022-08-11': 98.66999816894533}, '3_months_later': {'2022-10-11': 78.5}, '6_months_later': {'2023-01-11': 99.93000030517578}, '12_months_later': {'2023-07-11': 107.11000061035156}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRIN
{'date': '2022-07-11', 'ticker': 'GRIN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 15.279999732971191, 'high': 16.055999755859375, 'open': 15.920000076293944, 'close': 15.300000190734863, 'ema_50': 21.171188857285557, 'rsi_14': 27.2727322610846, 'target': 15.09000015258789, 'volume': 222100.0, 'ema_200': 19.59641293862636, 'adj_close': 10.463604927062988, 'rsi_lag_1': 28.692496686386704, 'rsi_lag_2': 25.391510443852113, 'rsi_lag_3': 21.744190018004474, 'rsi_lag_4': 29.705513798232886, 'rsi_lag_5': 27.358498629318632, 'macd_lag_1': -2.0973568230213004, 'macd_lag_2': -2.096411622261389, 'macd_lag_3': -2.0545301825012245, 'macd_lag_4': -1.9304628293828507, 'macd_lag_5': -1.8702828342164075, 'macd_12_26_9': -2.1228568039439644, 'macds_12_26_9': -1.9569938484717435}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 15.09000015258789, '2022-07-13': 15.050000190734863, '2022-07-14': 15.329999923706056, '2022-07-15': 15.920000076293944, '2022-07-18': 16.0, '2022-07-19': 17.450000762939453, '2022-07-20': 17.639999389648438, '2022-07-21': 17.600000381469727, '2022-07-22': 16.690000534057617, '2022-07-25': 17.049999237060547}, '1_month_later': {'2022-08-11': 19.780000686645508}, '3_months_later': {'2022-10-11': 24.34000015258789}, '6_months_later': {'2023-01-11': 15.8100004196167}, '12_months_later': {'2023-07-11': 8.220000267028809}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
grid
{'date': '2022-07-11', 'ticker': 'grid', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 77.55999755859375, 'high': 78.72000122070312, 'open': 78.72000122070312, 'close': 77.62999725341797, 'ema_50': 82.25860359119281, 'rsi_14': 49.64084628391441, 'target': 77.0, 'volume': 28700.0, 'ema_200': 88.47032664598882, 'adj_close': 76.1474838256836, 'rsi_lag_1': 59.74361331896138, 'rsi_lag_2': 46.45986877237244, 'rsi_lag_3': 44.16316807459848, 'rsi_lag_4': 42.2611233276053, 'rsi_lag_5': 35.28091370945654, 'macd_lag_1': -1.4169739604647589, 'macd_lag_2': -1.5627316492244603, 'macd_lag_3': -1.715858381076501, 'macd_lag_4': -1.7000191509284122, 'macd_lag_5': -1.6835839488724957, 'macd_12_26_9': -1.4142643041902971, 'macds_12_26_9': -1.5345589231700245}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 77.0, '2022-07-13': 77.11000061035156, '2022-07-14': 76.37999725341797, '2022-07-15': 77.66000366210938, '2022-07-18': 78.02999877929688, '2022-07-19': 80.9800033569336, '2022-07-20': 81.11000061035156, '2022-07-21': 82.7300033569336, '2022-07-22': 82.30000305175781, '2022-07-25': 82.69999694824219}, '1_month_later': {'2022-08-11': 90.61000061035156}, '3_months_later': {'2022-10-11': 74.38999938964844}, '6_months_later': {'2023-01-11': 92.11000061035156}, '12_months_later': {'2023-07-11': 104.69000244140624}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRFS
{'date': '2022-07-11', 'ticker': 'GRFS', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 10.869999885559082, 'high': 11.220000267028809, 'open': 10.9399995803833, 'close': 11.039999961853027, 'ema_50': 11.895415154116815, 'rsi_14': 45.485520310751696, 'target': 10.56999969482422, 'volume': 859500.0, 'ema_200': 12.500728005539054, 'adj_close': 11.039999961853027, 'rsi_lag_1': 47.01986106663787, 'rsi_lag_2': 47.57118815590108, 'rsi_lag_3': 48.30508543067715, 'rsi_lag_4': 51.444042699843074, 'rsi_lag_5': 55.44746829031346, 'macd_lag_1': -0.23201508045294084, 'macd_lag_2': -0.1797008948010692, 'macd_lag_3': -0.12762423804914214, 'macd_lag_4': -0.06744458129149322, 'macd_lag_5': -0.06805249027433646, 'macd_12_26_9': -0.2631784321908093, 'macds_12_26_9': -0.16516406820460072}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 10.56999969482422, '2022-07-13': 10.390000343322754, '2022-07-14': 9.68000030517578, '2022-07-15': 10.140000343322754, '2022-07-18': 10.3100004196167, '2022-07-19': 10.619999885559082, '2022-07-20': 10.600000381469728, '2022-07-21': 10.5, '2022-07-22': 10.5600004196167, '2022-07-25': 10.5600004196167}, '1_month_later': {'2022-08-11': 8.979999542236328}, '3_months_later': {'2022-10-11': 6.010000228881836}, '6_months_later': {'2023-01-11': 9.050000190734863}, '12_months_later': {'2023-07-11': 9.369999885559082}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRF
{'date': '2022-07-11', 'ticker': 'GRF', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 8.710000038146973, 'high': 8.760000228881836, 'open': 8.760000228881836, 'close': 8.710000038146973, 'ema_50': 9.042760470743168, 'rsi_14': 50.2242204245434, 'target': 8.630000114440918, 'volume': 400.0, 'ema_200': 9.249132092064938, 'adj_close': 8.055785179138184, 'rsi_lag_1': 57.58928989573443, 'rsi_lag_2': 53.30578186710509, 'rsi_lag_3': 44.736848709653934, 'rsi_lag_4': 47.05883767188168, 'rsi_lag_5': 34.309631945757914, 'macd_lag_1': -0.13688654825146962, 'macd_lag_2': -0.16822717585610647, 'macd_lag_3': -0.2220731660864388, 'macd_lag_4': -0.2600792162391663, 'macd_lag_5': -0.30480578619789256, 'macd_12_26_9': -0.12353548541175385, 'macds_12_26_9': -0.21908355230607376}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 8.630000114440918, '2022-07-13': 8.5600004196167, '2022-07-14': 8.199999809265137, '2022-07-15': 8.399999618530273, '2022-07-18': 8.380000114440918, '2022-07-19': 8.470000267028809, '2022-07-20': 8.390000343322754, '2022-07-21': 8.449999809265137, '2022-07-22': 8.300000190734863, '2022-07-25': 8.59000015258789}, '1_month_later': {'2022-08-11': 9.100000381469728}, '3_months_later': {'2022-10-11': 9.199999809265137}, '6_months_later': {'2023-01-11': 8.75}, '12_months_later': {'2023-07-11': 8.600000381469727}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
gres
{'date': '2022-07-11', 'ticker': 'gres', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 29.79949951171875, 'high': 30.07999992370605, 'open': 29.989999771118164, 'close': 29.940000534057617, 'ema_50': 32.65015899187404, 'rsi_14': 42.15115803586207, 'target': 29.709999084472656, 'volume': 7193.0, 'ema_200': 32.217960568122, 'adj_close': 28.268537521362305, 'rsi_lag_1': 40.53562130701262, 'rsi_lag_2': 36.20474032418758, 'rsi_lag_3': 30.570647490888916, 'rsi_lag_4': 30.69575309066026, 'rsi_lag_5': 29.182872543019286, 'macd_lag_1': -0.9760627583138053, 'macd_lag_2': -1.0005932386338934, 'macd_lag_3': -1.031603451535581, 'macd_lag_4': -0.9777787661200534, 'macd_lag_5': -0.9172565884058521, 'macd_12_26_9': -0.9832133214267742, 'macds_12_26_9': -0.93111650801171}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 29.709999084472656, '2022-07-13': 29.770000457763672, '2022-07-14': 29.049999237060547, '2022-07-15': 29.34000015258789, '2022-07-18': 29.75, '2022-07-19': 30.440000534057617, '2022-07-20': 30.43000030517578, '2022-07-21': 30.43000030517578, '2022-07-22': 30.270000457763672, '2022-07-25': 30.82999992370605}, '1_month_later': {'2022-08-11': 32.619998931884766}, '3_months_later': {'2022-10-11': 29.690000534057617}, '6_months_later': {'2023-01-11': 35.65299987792969}, '12_months_later': {'2023-07-11': 33.08250045776367}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
GRN
{'date': '2022-07-11', 'ticker': 'GRN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 32.77000045776367, 'high': 32.90999984741211, 'open': 32.779998779296875, 'close': 32.86000061035156, 'ema_50': 32.88553072162043, 'rsi_14': 54.354350340906905, 'target': 33.52000045776367, 'volume': 1600.0, 'ema_200': 30.319622495204506, 'adj_close': 32.86000061035156, 'rsi_lag_1': 50.56524452829182, 'rsi_lag_2': 45.76744857795385, 'rsi_lag_3': 50.4293920365349, 'rsi_lag_4': 52.90790983335679, 'rsi_lag_5': 59.59962734721617, 'macd_lag_1': 0.08368453942296128, 'macd_lag_2': 0.17068257849678048, 'macd_lag_3': 0.21305908277427932, 'macd_lag_4': 0.2853278333793696, 'macd_lag_5': 0.40915717459726864, 'macd_12_26_9': 0.05525394372912018, 'macds_12_26_9': 0.13412702781086824}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 33.52000045776367, '2022-07-13': 32.4900016784668, '2022-07-14': 32.80500030517578, '2022-07-15': 33.5, '2022-07-18': 32.93000030517578, '2022-07-19': 32.599998474121094, '2022-07-20': 30.770000457763672, '2022-07-21': 30.559999465942383, '2022-07-22': 29.81999969482422, '2022-07-25': 29.93000030517578}, '1_month_later': {'2022-08-11': 34.31100082397461}, '3_months_later': {'2022-10-11': 26.249000549316406}, '6_months_later': {'2023-01-11': 30.489999771118164}, '12_months_later': {'2023-07-11': 34.314998626708984}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
FEX
{'date': '2022-07-11', 'ticker': 'FEX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/implied-fex-analyst-target-price%3A-%2498', 'news_author': None, 'news_article': "Looking at the underlying holdings of the ETFs in our coverage universe at ETF Channel, we have compared the trading price of each holding against the average analyst 12-month forward target price, and computed the weighted average implied analyst target price for the ETF itself. For the First Trust Large Cap Core AlphaDEX Fund ETF (Symbol: FEX), we found that the implied analyst target price for the ETF based upon its underlying holdings is $97.62 per unit.\nWith FEX trading at a recent price near $77.44 per unit, that means that analysts see 26.06% upside for this ETF looking through to the average analyst targets of the underlying holdings. Three of FEX's underlying holdings with notable upside to their analyst target prices are Ally Financial Inc (Symbol: ALLY), FMC Corp. (Symbol: FMC), and Xylem Inc (Symbol: XYL). Although ALLY has traded at a recent price of $34.74/share, the average analyst target is 63.29% higher at $56.73/share. Similarly, FMC has 30.56% upside from the recent share price of $104.93 if the average analyst target price of $137.00/share is reached, and analysts on average are expecting XYL to reach a target price of $101.38/share, which is 28.71% above the recent price of $78.76. Below is a twelve month price history chart comparing the stock performance of ALLY, FMC, and XYL:\nBelow is a summary table of the current analyst target prices discussed above:\nNAME SYMBOL RECENT PRICE AVG. ANALYST 12-MO. TARGET % UPSIDE TO TARGET\nFirst Trust Large Cap Core AlphaDEX Fund ETF FEX $77.44 $97.62 26.06%\nAlly Financial Inc ALLY $34.74 $56.73 63.29%\nFMC Corp. FMC $104.93 $137.00 30.56%\nXylem Inc XYL $78.76 $101.38 28.71%\nAre analysts justified in these targets, or overly optimistic about where these stocks will be trading 12 months from now? Do the analysts have a valid justification for their targets, or are they behind the curve on recent company and industry developments? A high price target relative to a stock's trading price can reflect optimism about the future, but can also be a precursor to target price downgrades if the targets were a relic of the past. These are questions that require further investor research.\n10 ETFs With Most Upside To Analyst Targets »\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': 'First Trust Large Cap Core AlphaDEX Fund ETF FEX $77.44 $97.62 26.06% Ally Financial Inc ALLY $34.74 $56.73 63.29% FMC Corp. FMC $104.93 $137.00 30.56% Xylem Inc XYL $78.76 $101.38 28.71% Are analysts justified in these targets, or overly optimistic about where these stocks will be trading 12 months from now? For the First Trust Large Cap Core AlphaDEX Fund ETF (Symbol: FEX), we found that the implied analyst target price for the ETF based upon its underlying holdings is $97.62 per unit. With FEX trading at a recent price near $77.44 per unit, that means that analysts see 26.06% upside for this ETF looking through to the average analyst targets of the underlying holdings.', 'news_luhn_summary': "For the First Trust Large Cap Core AlphaDEX Fund ETF (Symbol: FEX), we found that the implied analyst target price for the ETF based upon its underlying holdings is $97.62 per unit. Three of FEX's underlying holdings with notable upside to their analyst target prices are Ally Financial Inc (Symbol: ALLY), FMC Corp. (Symbol: FMC), and Xylem Inc (Symbol: XYL). First Trust Large Cap Core AlphaDEX Fund ETF FEX $77.44 $97.62 26.06% Ally Financial Inc ALLY $34.74 $56.73 63.29% FMC Corp. FMC $104.93 $137.00 30.56% Xylem Inc XYL $78.76 $101.38 28.71% Are analysts justified in these targets, or overly optimistic about where these stocks will be trading 12 months from now?", 'news_article_title': 'Implied FEX Analyst Target Price: $98', 'news_lexrank_summary': "With FEX trading at a recent price near $77.44 per unit, that means that analysts see 26.06% upside for this ETF looking through to the average analyst targets of the underlying holdings. Three of FEX's underlying holdings with notable upside to their analyst target prices are Ally Financial Inc (Symbol: ALLY), FMC Corp. (Symbol: FMC), and Xylem Inc (Symbol: XYL). For the First Trust Large Cap Core AlphaDEX Fund ETF (Symbol: FEX), we found that the implied analyst target price for the ETF based upon its underlying holdings is $97.62 per unit.", 'news_textrank_summary': "For the First Trust Large Cap Core AlphaDEX Fund ETF (Symbol: FEX), we found that the implied analyst target price for the ETF based upon its underlying holdings is $97.62 per unit. With FEX trading at a recent price near $77.44 per unit, that means that analysts see 26.06% upside for this ETF looking through to the average analyst targets of the underlying holdings. Three of FEX's underlying holdings with notable upside to their analyst target prices are Ally Financial Inc (Symbol: ALLY), FMC Corp. (Symbol: FMC), and Xylem Inc (Symbol: XYL)."}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 76.7699966430664, 'high': 77.33000183105469, 'open': 76.87000274658203, 'close': 76.81999969482422, 'ema_50': 80.12732207079668, 'rsi_14': 62.525672819788156, 'target': 76.44999694824219, 'volume': 19500.0, 'ema_200': 84.03257492099766, 'adj_close': 74.87921905517578, 'rsi_lag_1': 67.2928388250905, 'rsi_lag_2': 52.00683582933622, 'rsi_lag_3': 49.369372465461545, 'rsi_lag_4': 47.950092035573945, 'rsi_lag_5': 38.23736581456396, 'macd_lag_1': -1.188676251846914, 'macd_lag_2': -1.3181303846446895, 'macd_lag_3': -1.4814970312043272, 'macd_lag_4': -1.5462817230837658, 'macd_lag_5': -1.5962967378434314, 'macd_12_26_9': -1.1287488354155784, 'macds_12_26_9': -1.4180058076732278}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 76.44999694824219, '2022-07-13': 76.05999755859375, '2022-07-14': 75.29000091552734, '2022-07-15': 76.80999755859375, '2022-07-18': 76.48999786376953, '2022-07-19': 78.62000274658203, '2022-07-20': 78.87999725341797, '2022-07-21': 79.22000122070312, '2022-07-22': 78.73999786376953, '2022-07-25': 79.33999633789062}, '1_month_later': {'2022-08-11': 83.79000091552734}, '3_months_later': {'2022-10-11': 73.4800033569336}, '6_months_later': {'2023-01-11': 83.23999786376953}, '12_months_later': {'2023-07-11': 85.02999877929688}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DXCM
{'date': '2022-07-11', 'ticker': 'DXCM', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/2-dividend-stocks-you-can-confidently-buy-in-a-bear-market', 'news_author': None, 'news_article': "Did you know that a bad market technically isn't a bear market until the benchmark S&P 500 index is at least 20% below its latest peak? We're not quite there at the moment. After recovering from steep losses for a few days, the index is about 19% below the high water mark it set in January.\nWe may have emerged from a bear market already but it would be pretty irresponsible of us not to prepare for more rough weather ahead. These two giants of the healthcare sector are about as reliable as businesses get. Here's why you can count on steadily growing dividend payments from these two healthcare stocks.\nAbbott Laboratories\nYou've more than likely seen some of Abbott Laboratories' (NYSE: ABT) COVID-19 diagnostic products. If you've been having a hard time finding baby formula you're also aware of this company's nutrition business.\nWhat you probably don't know is that Abbott Laboratories recently paid its 394th consecutive quarterly dividend. The company's also raised the payout for 50 consecutive years.\nIf you're one of an estimated 37.3 million Americans living with diabetes, it's just a matter of time before you're also familiar with the most important new product Abbott Laboratories has launched in a long time.\nIn May, the Freestyle Libre 3 received clearance from the FDA to monitor blood sugar levels 24 hours a day for 14 days at a time. The device is about the size of two pennies stacked on top of each other which is a little smaller than the constant glucose monitor (CGM) it could end up competing with, the new G7 from Dexcom (NASDAQ: DXCM).\nDexcom developed the G7 for just 10 days of use at a time and it still hasn't received clearance from the FDA. Without a significant competitor for the Freestyle Libre 3 in the U.S., Abbott's CGM sales could shoot through the roof and easily offset slackening demand for COVID-19 tests.\nShares of Abbott are about 23% below the peak they reached in January even though the Freestyle Libre 3 seems destined to gain and maintain a leading share of the lucrative CGM market.\nAbbott Laboratories shares offer a 1.7% yield at recent prices. While this yield isn't very tempting at first glance, CGM sales could help it grow the payout by leaps and bounds.\nJohnson & Johnson\nIf you're willing to trade slower growth in the future for a higher yield in the present, consider Johnson & Johnson (NYSE: JNJ). With a AAA credit rating and a 60-year record of consecutive dividend raises, this healthcare conglomerate is a dividend investor's dream come true.\nRight now is a particularly good time to buy Johnson & Johnson because in 2023 it will spin off its consumer goods segment into a separate new business. This means existing shareholders will end up with two dividend-paying stocks in their portfolio for the price of one.\nThe company's consumer goods segment hasn't been a major source of growth in a long time but its pharmaceutical business is stronger than ever. For example, Tremfya is a recently launched psoriasis treatment with sales that rose 41% year over year in the first quarter and it's already on pace to generate $2.4 billion in revenue this year,\nJohnson & Johnson's quarterly payouts have risen about 35% over the past five years. The stock currently offers a 2.5% yield and after it spins off its consumer segment, both stocks will pay dividends that meet or exceed the payments investors are currently receiving.\nWithout a stodgy consumer health segment holding it back, J&J's soon-to-be streamlined operation could deliver impressive growth in 2023 and beyond. That makes it a solid addition now for just about any income-seeking investor's portfolio.\n10 stocks we like better than Johnson & Johnson\nWhen our award-winning analyst team has a stock tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*\nThey just revealed what they believe are the ten best stocks for investors to buy right now... and Johnson & Johnson wasn't one of them! That's right -- they think these 10 stocks are even better buys.\nSee the 10 stocks\n*Stock Advisor returns as of June 2, 2022\nCory Renauer has no position in any of the stocks mentioned. The Motley Fool recommends DexCom and Johnson & Johnson. The Motley Fool has a disclosure policy.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': "The device is about the size of two pennies stacked on top of each other which is a little smaller than the constant glucose monitor (CGM) it could end up competing with, the new G7 from Dexcom (NASDAQ: DXCM). Without a significant competitor for the Freestyle Libre 3 in the U.S., Abbott's CGM sales could shoot through the roof and easily offset slackening demand for COVID-19 tests. The company's consumer goods segment hasn't been a major source of growth in a long time but its pharmaceutical business is stronger than ever.", 'news_luhn_summary': "The device is about the size of two pennies stacked on top of each other which is a little smaller than the constant glucose monitor (CGM) it could end up competing with, the new G7 from Dexcom (NASDAQ: DXCM). Abbott Laboratories shares offer a 1.7% yield at recent prices. For example, Tremfya is a recently launched psoriasis treatment with sales that rose 41% year over year in the first quarter and it's already on pace to generate $2.4 billion in revenue this year, Johnson & Johnson's quarterly payouts have risen about 35% over the past five years.", 'news_article_title': '2 Dividend Stocks You Can Confidently Buy in a Bear Market', 'news_lexrank_summary': "The device is about the size of two pennies stacked on top of each other which is a little smaller than the constant glucose monitor (CGM) it could end up competing with, the new G7 from Dexcom (NASDAQ: DXCM). Here's why you can count on steadily growing dividend payments from these two healthcare stocks. The company's consumer goods segment hasn't been a major source of growth in a long time but its pharmaceutical business is stronger than ever.", 'news_textrank_summary': "The device is about the size of two pennies stacked on top of each other which is a little smaller than the constant glucose monitor (CGM) it could end up competing with, the new G7 from Dexcom (NASDAQ: DXCM). Johnson & Johnson If you're willing to trade slower growth in the future for a higher yield in the present, consider Johnson & Johnson (NYSE: JNJ). For example, Tremfya is a recently launched psoriasis treatment with sales that rose 41% year over year in the first quarter and it's already on pace to generate $2.4 billion in revenue this year, Johnson & Johnson's quarterly payouts have risen about 35% over the past five years."}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 77.6500015258789, 'high': 80.47000122070312, 'open': 80.0999984741211, 'close': 78.43000030517578, 'ema_50': 82.21846316111356, 'rsi_14': 69.55285232375554, 'target': 78.05000305175781, 'volume': 1758700.0, 'ema_200': 104.05482864993382, 'adj_close': 78.43000030517578, 'rsi_lag_1': 79.30119337089654, 'rsi_lag_2': 70.45185493181062, 'rsi_lag_3': 68.77075864603647, 'rsi_lag_4': 70.61855249079073, 'rsi_lag_5': 56.994200202613904, 'macd_lag_1': 0.17258167749000108, 'macd_lag_2': -0.20850632170724737, 'macd_lag_3': -0.7611167616211532, 'macd_lag_4': -1.0918869649237735, 'macd_lag_5': -1.5093880943396698, 'macd_12_26_9': 0.24502880406737404, 'macds_12_26_9': -1.0818157141431541}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 78.05000305175781, '2022-07-13': 76.3499984741211, '2022-07-14': 76.5, '2022-07-15': 79.13999938964844, '2022-07-18': 76.98999786376953, '2022-07-19': 80.63999938964844, '2022-07-20': 82.19000244140625, '2022-07-21': 83.98999786376953, '2022-07-22': 83.77999877929688, '2022-07-25': 82.5999984741211}, '1_month_later': {'2022-08-11': 88.23999786376953}, '3_months_later': {'2022-10-11': 99.68000030517578}, '6_months_later': {'2023-01-11': 106.16000366210938}, '12_months_later': {'2023-07-11': 131.22999572753906}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DXD
{'date': '2022-07-11', 'ticker': 'DXD', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 50.33000183105469, 'high': 51.130001068115234, 'open': 50.9900016784668, 'close': 50.970001220703125, 'ema_50': 49.52133311559314, 'rsi_14': 31.500390160055545, 'target': 51.54999923706055, 'volume': 604400.0, 'ema_200': 46.94335064115035, 'adj_close': 49.1650276184082, 'rsi_lag_1': 29.50686460749003, 'rsi_lag_2': 40.92142007032381, 'rsi_lag_3': 41.116405117146776, 'rsi_lag_4': 43.79610225435563, 'rsi_lag_5': 51.504630728309046, 'macd_lag_1': 0.4905459033848345, 'macd_lag_2': 0.6131066451877203, 'macd_lag_3': 0.7769116979862503, 'macd_lag_4': 0.8596317112394871, 'macd_lag_5': 0.9252178384741967, 'macd_12_26_9': 0.4344023245977837, 'macds_12_26_9': 0.7775680814545446}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 51.54999923706055, '2022-07-13': 52.310001373291016, '2022-07-14': 52.77000045776367, '2022-07-15': 50.56999969482422, '2022-07-18': 51.220001220703125, '2022-07-19': 48.7599983215332, '2022-07-20': 48.59000015258789, '2022-07-21': 48.060001373291016, '2022-07-22': 48.45000076293945, '2022-07-25': 48.20000076293945}, '1_month_later': {'2022-08-11': 44.27000045776367}, '3_months_later': {'2022-10-11': 56.47999954223633}, '6_months_later': {'2023-01-11': 41.130001068115234}, '12_months_later': {'2023-07-11': 40.61000061035156}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DXJ
{'date': '2022-07-11', 'ticker': 'DXJ', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 63.130001068115234, 'high': 63.720001220703125, 'open': 63.65999984741211, 'close': 63.20000076293945, 'ema_50': 63.46169832927032, 'rsi_14': 53.08124656063173, 'target': 62.88999938964844, 'volume': 609000.0, 'ema_200': 62.67509251870098, 'adj_close': 59.79469680786133, 'rsi_lag_1': 58.13007688828586, 'rsi_lag_2': 45.26700523594142, 'rsi_lag_3': 38.069704545466145, 'rsi_lag_4': 40.49932779947312, 'rsi_lag_5': 35.69684112741393, 'macd_lag_1': -0.3595241334584145, 'macd_lag_2': -0.4363830779054254, 'macd_lag_3': -0.47111771626416044, 'macd_lag_4': -0.41798061618118965, 'macd_lag_5': -0.37767882227458927, 'macd_12_26_9': -0.3159504774645825, 'macds_12_26_9': -0.32588753679162175}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 62.88999938964844, '2022-07-13': 62.79999923706055, '2022-07-14': 62.84000015258789, '2022-07-15': 63.43999862670898, '2022-07-18': 63.29999923706055, '2022-07-19': 64.33000183105469, '2022-07-20': 64.44000244140625, '2022-07-21': 64.80999755859375, '2022-07-22': 64.23999786376953, '2022-07-25': 64.79000091552734}, '1_month_later': {'2022-08-11': 64.87999725341797}, '3_months_later': {'2022-10-11': 62.7599983215332}, '6_months_later': {'2023-01-11': 65.63999938964844}, '12_months_later': {'2023-07-11': 81.2699966430664}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
dxjs
{'date': '2022-07-11', 'ticker': 'dxjs', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 21.63500022888184, 'high': 21.670000076293945, 'open': 21.63500022888184, 'close': 21.670000076293945, 'ema_50': 21.327828084445574, 'rsi_14': 61.609170001236485, 'target': 21.354999542236328, 'volume': 36400.0, 'ema_200': 21.422364861913955, 'adj_close': 20.09891700744629, 'rsi_lag_1': 61.252866553789495, 'rsi_lag_2': 52.795036942554354, 'rsi_lag_3': 45.23281483924991, 'rsi_lag_4': 50.20161739993163, 'rsi_lag_5': 47.70117042484903, 'macd_lag_1': 0.014299423367656772, 'macd_lag_2': -0.0001363530814550984, 'macd_lag_3': -0.01397784393629209, 'macd_lag_4': -0.005477754528435241, 'macd_lag_5': 0.005451126927095373, 'macd_12_26_9': 0.03781127537936513, 'macds_12_26_9': 0.01124862704962748}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 21.354999542236328, '2022-07-13': 21.415000915527344, '2022-07-14': 21.549999237060547, '2022-07-15': 21.46999931335449, '2022-07-18': 21.4950008392334, '2022-07-19': 21.69499969482422, '2022-07-20': 21.895000457763672, '2022-07-21': 22.100000381469727, '2022-07-22': 21.895000457763672, '2022-07-25': 22.239999771118164}, '1_month_later': {'2022-08-11': 22.190000534057617}, '3_months_later': {'2022-10-11': 22.15999984741211}, '6_months_later': {'2023-01-11': 22.440000534057617}, '12_months_later': {'2023-07-11': 26.350000381469727}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DXPE
{'date': '2022-07-11', 'ticker': 'DXPE', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/fast-paced-momentum-stock-dxp-enterprises-dxpe-is-still-trading-at-a-bargain', 'news_author': None, 'news_article': 'Momentum investing is essentially the opposite of the tried-and-tested Wall Street adage -- "buy low and sell high." Investors following this investing style typically avoid betting on cheap stocks and waiting long for them to recover. They believe instead that one could make far more money in lesser time by "buying high and selling higher."\nWho doesn\'t like betting on fast-moving trending stocks? But determining the right entry point isn\'t easy. Often, these stocks lose momentum once their valuation moves ahead of their future growth potential. In such a situation, investors find themselves loaded up on expensive shares with limited to no upside or even a downside. So, going all-in on momentum could be risky at times.\nA safer approach could be investing in bargain stocks with recent price momentum. While the Zacks Momentum Style Score (part of the Zacks Style Scores system) helps identify great momentum stocks by paying close attention to trends in a stock\'s price or earnings, our \'Fast-Paced Momentum at a Bargain\' screen comes handy in spotting fast-moving stocks that are still attractively priced.\nThere are several stocks that currently pass through the screen and DXP Enterprises (DXPE) is one of them. Here are the key reasons why this stock is a great candidate.\nInvestors\' growing interest in a stock is reflected in its recent price increase. A price change of 0.1% over the past four weeks positions the stock of this industrial products supplier well in this regard.\nWhile any stock can see a spike in price for a short period, it takes a real momentum player to deliver positive returns for a longer time frame. DXPE meets this criterion too, as the stock gained 20.2% over the past 12 weeks.\nMoreover, the momentum for DXPE is fast paced, as the stock currently has a beta of 2.03. This indicates that the stock moves 103% higher than the market in either direction.\nGiven this price performance, it is no surprise that DXPE has a Momentum Score of B, which indicates that this is the right time to enter the stock to take advantage of the momentum with the highest probability of success.\nIn addition to a favorable Momentum Score, an upward trend in earnings estimate revisions has helped DXPE earn a Zacks Rank #1 (Strong Buy). Our research shows that the momentum-effect is quite strong among Zacks Rank #1 and #2 stocks. That\'s because as covering analysts raise their earnings estimates for a stock, more and more investors take an interest in it, helping its price race to keep up. You can see the complete list of today\'s Zacks Rank #1 (Strong Buy) stocks here >>>>\nMost importantly, despite possessing fast-paced momentum features, DXPE is trading at a reasonable valuation. In terms of Price-to-Sales ratio, which is considered as one of the best valuation metrics, the stock looks quite cheap now. DXPE is currently trading at 0.47 times its sales. In other words, investors need to pay only 47 cents for each dollar of sales.\nSo, DXPE appears to have plenty of room to run, and that too at a fast pace.\nIn addition to DXPE, there are several other stocks that currently pass through our \'Fast-Paced Momentum at a Bargain\' screen. You may consider investing in them and start looking for the newest stocks that fit these criteria.\nThis is not the only screen that could help you find your next winning stock pick. Based on your personal investing style, you may choose from over 45 Zacks Premium Screens that are strategically created to beat the market.\nHowever, keep in mind that the key to a successful stock-picking strategy is to ensure that it produced profitable results in the past. You could easily do that with the help of the Zacks Research Wizard. In addition to allowing you to backtest the effectiveness of your strategy, the program comes loaded with some of our most successful stock-picking strategies.\nClick here to sign up for a free trial to the Research Wizard today.\n\nZacks Names "Single Best Pick to Double"\nFrom thousands of stocks, 5 Zacks experts each have chosen their favorite to skyrocket +100% or more in months to come. From those 5, Director of Research Sheraz Mian hand-picks one to have the most explosive upside of all.\nIt’s a little-known chemical company that’s up 65% over last year, yet still dirt cheap. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.\nThis company could rival or surpass other recent Zacks’ Stocks Set to Double like Boston Beer Company which shot up +143.0% in little more than 9 months and NVIDIA which boomed +175.9% in one year.\nFree: See Our Top Stock and 4 Runners Up >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nDXP Enterprises, Inc. (DXPE): Free Stock Analysis Report\n \nTo read this article on Zacks.com click here.\n \nZacks Investment Research\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': "You can see the complete list of today's Zacks Rank #1 (Strong Buy) stocks here >>>> Most importantly, despite possessing fast-paced momentum features, DXPE is trading at a reasonable valuation. There are several stocks that currently pass through the screen and DXP Enterprises (DXPE) is one of them. DXPE meets this criterion too, as the stock gained 20.2% over the past 12 weeks.", 'news_luhn_summary': "In addition to a favorable Momentum Score, an upward trend in earnings estimate revisions has helped DXPE earn a Zacks Rank #1 (Strong Buy). You can see the complete list of today's Zacks Rank #1 (Strong Buy) stocks here >>>> Most importantly, despite possessing fast-paced momentum features, DXPE is trading at a reasonable valuation. There are several stocks that currently pass through the screen and DXP Enterprises (DXPE) is one of them.", 'news_article_title': 'Fast-paced Momentum Stock DXP Enterprises (DXPE) Is Still Trading at a Bargain', 'news_lexrank_summary': "Given this price performance, it is no surprise that DXPE has a Momentum Score of B, which indicates that this is the right time to enter the stock to take advantage of the momentum with the highest probability of success. In addition to DXPE, there are several other stocks that currently pass through our 'Fast-Paced Momentum at a Bargain' screen. There are several stocks that currently pass through the screen and DXP Enterprises (DXPE) is one of them.", 'news_textrank_summary': "Given this price performance, it is no surprise that DXPE has a Momentum Score of B, which indicates that this is the right time to enter the stock to take advantage of the momentum with the highest probability of success. You can see the complete list of today's Zacks Rank #1 (Strong Buy) stocks here >>>> Most importantly, despite possessing fast-paced momentum features, DXPE is trading at a reasonable valuation. There are several stocks that currently pass through the screen and DXP Enterprises (DXPE) is one of them."}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 28.549999237060547, 'high': 30.700000762939453, 'open': 29.76000022888184, 'close': 30.57999992370605, 'ema_50': 29.139591979477, 'rsi_14': 62.88440744185213, 'target': 30.049999237060547, 'volume': 99500.0, 'ema_200': 28.585371742885894, 'adj_close': 30.57999992370605, 'rsi_lag_1': 62.92371819739436, 'rsi_lag_2': 52.65048556833233, 'rsi_lag_3': 47.11359109762193, 'rsi_lag_4': 50.34825708242932, 'rsi_lag_5': 55.97344904015452, 'macd_lag_1': 0.325423819994036, 'macd_lag_2': 0.3356384186494985, 'macd_lag_3': 0.3519393943485518, 'macd_lag_4': 0.44908071627825663, 'macd_lag_5': 0.4911908527906341, 'macd_12_26_9': 0.3432281322114292, 'macds_12_26_9': 0.3843156935625999}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 30.049999237060547, '2022-07-13': 29.700000762939453, '2022-07-14': 29.40999984741211, '2022-07-15': 30.209999084472656, '2022-07-18': 30.06999969482422, '2022-07-19': 31.88999938964844, '2022-07-20': 31.40999984741211, '2022-07-21': 31.51000022888184, '2022-07-22': 31.170000076293945, '2022-07-25': 31.530000686645508}, '1_month_later': {'2022-08-11': 27.89999961853028}, '3_months_later': {'2022-10-11': 25.26000022888184}, '6_months_later': {'2023-01-11': 29.299999237060547}, '12_months_later': {'2023-07-11': 37.5}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DXYN
{'date': '2022-07-11', 'ticker': 'DXYN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 1.2999999523162842, 'high': 1.4199999570846558, 'open': 1.4199999570846558, 'close': 1.2999999523162842, 'ema_50': 1.8810934352637172, 'rsi_14': 37.31342858688256, 'target': 1.2999999523162842, 'volume': 29800.0, 'ema_200': 3.143740643683967, 'adj_close': 1.2999999523162842, 'rsi_lag_1': 33.78378334839559, 'rsi_lag_2': 22.22222011976561, 'rsi_lag_3': 22.22222011976561, 'rsi_lag_4': 22.9508167888106, 'rsi_lag_5': 20.58823477850649, 'macd_lag_1': -0.18299168115675357, 'macd_lag_2': -0.20138607602784098, 'macd_lag_3': -0.21073475928273933, 'macd_lag_4': -0.21451094153903916, 'macd_lag_5': -0.21824692579993865, 'macd_12_26_9': -0.17526967285580541, 'macds_12_26_9': -0.20008646674220384}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 1.2999999523162842, '2022-07-13': 1.309999942779541, '2022-07-14': 1.2599999904632568, '2022-07-15': 1.25, '2022-07-18': 1.3600000143051147, '2022-07-19': 1.5, '2022-07-20': 1.5399999618530271, '2022-07-21': 1.600000023841858, '2022-07-22': 1.4299999475479126, '2022-07-25': 1.5399999618530271}, '1_month_later': {'2022-08-11': 1.7100000381469729}, '3_months_later': {'2022-10-11': 1.0199999809265137}, '6_months_later': {'2023-01-11': 0.9200000166893004}, '12_months_later': {'2023-07-11': 1.1100000143051147}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DY
{'date': '2022-07-11', 'ticker': 'DY', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 93.94000244140624, 'high': 95.33999633789062, 'open': 94.81999969482422, 'close': 94.8000030517578, 'ema_50': 91.07280792678272, 'rsi_14': 66.39033936710013, 'target': 94.79000091552734, 'volume': 86800.0, 'ema_200': 87.55969648611983, 'adj_close': 94.8000030517578, 'rsi_lag_1': 70.09377052028589, 'rsi_lag_2': 54.632154089635605, 'rsi_lag_3': 52.42857743866458, 'rsi_lag_4': 49.890228010846975, 'rsi_lag_5': 49.87654822301022, 'macd_lag_1': 1.1882148908132564, 'macd_lag_2': 1.034343081604959, 'macd_lag_3': 0.9125014297401606, 'macd_lag_4': 1.0013143035467351, 'macd_lag_5': 1.1174169357119155, 'macd_12_26_9': 1.2314115180008685, 'macds_12_26_9': 1.0766077479107898}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 94.79000091552734, '2022-07-13': 96.5, '2022-07-14': 97.5500030517578, '2022-07-15': 96.6999969482422, '2022-07-18': 96.25, '2022-07-19': 100.38999938964844, '2022-07-20': 99.0999984741211, '2022-07-21': 96.7300033569336, '2022-07-22': 96.66000366210938, '2022-07-25': 94.19000244140624}, '1_month_later': {'2022-08-11': 108.69000244140624}, '3_months_later': {'2022-10-11': 99.5}, '6_months_later': {'2023-01-11': 95.8499984741211}, '12_months_later': {'2023-07-11': 113.62999725341795}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DYNF
{'date': '2022-07-11', 'ticker': 'DYNF', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 29.71999931335449, 'high': 29.933000564575195, 'open': 29.76000022888184, 'close': 29.739999771118164, 'ema_50': 30.660466910535913, 'rsi_14': 67.7952841304037, 'target': 29.525999069213867, 'volume': 4200.0, 'ema_200': 33.30510353565402, 'adj_close': 29.110782623291016, 'rsi_lag_1': 74.83297420087275, 'rsi_lag_2': 59.77653964643925, 'rsi_lag_3': 59.40460069548998, 'rsi_lag_4': 57.266910838811114, 'rsi_lag_5': 44.903831944793495, 'macd_lag_1': -0.2780647477263045, 'macd_lag_2': -0.33856414870478346, 'macd_lag_3': -0.4095351286202451, 'macd_lag_4': -0.4502794205176386, 'macd_lag_5': -0.4827016805566515, 'macd_12_26_9': -0.2547782310782054, 'macds_12_26_9': -0.4012062582383759}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 29.525999069213867, '2022-07-13': 29.44700050354004, '2022-07-14': 29.350000381469727, '2022-07-15': 29.82999992370605, '2022-07-18': 29.57999992370605, '2022-07-19': 30.35099983215332, '2022-07-20': 30.51000022888184, '2022-07-21': 30.74300003051757, '2022-07-22': 30.44700050354004, '2022-07-25': 30.496000289916992}, '1_month_later': {'2022-08-11': 32.04199981689453}, '3_months_later': {'2022-10-11': 27.54899978637696}, '6_months_later': {'2023-01-11': 30.41200065612793}, '12_months_later': {'2023-07-11': 35.87200164794922}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DZSI
{'date': '2022-07-11', 'ticker': 'DZSI', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/has-aspen-technology-azpn-outpaced-other-computer-and-technology-stocks-this-year', 'news_author': None, 'news_article': 'The Computer and Technology group has plenty of great stocks, but investors should always be looking for companies that are outperforming their peers. Aspen Technology (AZPN) is a stock that can certainly grab the attention of many investors, but do its recent returns compare favorably to the sector as a whole? Let\'s take a closer look at the stock\'s year-to-date performance to find out.\nAspen Technology is one of 666 companies in the Computer and Technology group. The Computer and Technology group currently sits at #12 within the Zacks Sector Rank. The Zacks Sector Rank gauges the strength of our 16 individual sector groups by measuring the average Zacks Rank of the individual stocks within the groups.\nThe Zacks Rank is a proven system that emphasizes earnings estimates and estimate revisions, highlighting a variety of stocks that are displaying the right characteristics to beat the market over the next one to three months. Aspen Technology is currently sporting a Zacks Rank of #1 (Strong Buy).\nOver the past 90 days, the Zacks Consensus Estimate for AZPN\'s full-year earnings has moved 18.2% higher. This shows that analyst sentiment has improved and the company\'s earnings outlook is stronger.\nOur latest available data shows that AZPN has returned about 23.2% since the start of the calendar year. Meanwhile, the Computer and Technology sector has returned an average of -26.9% on a year-to-date basis. This means that Aspen Technology is performing better than its sector in terms of year-to-date returns.\nAnother Computer and Technology stock, which has outperformed the sector so far this year, is DZS Inc. (DZSI). The stock has returned 0.2% year-to-date.\nFor DZS Inc. the consensus EPS estimate for the current year has increased 21.8% over the past three months. The stock currently has a Zacks Rank #2 (Buy).\nTo break things down more, Aspen Technology belongs to the Internet - Software industry, a group that includes 148 individual companies and currently sits at #138 in the Zacks Industry Rank. Stocks in this group have lost about 48.6% so far this year, so AZPN is performing better this group in terms of year-to-date returns.\nDZS Inc. however, belongs to the Communication - Infrastructure industry. Currently, this 8-stock industry is ranked #33. The industry has moved -41.5% so far this year.\nInvestors with an interest in Computer and Technology stocks should continue to track Aspen Technology and DZS Inc. These stocks will be looking to continue their solid performance.\n\nZacks Names "Single Best Pick to Double"\nFrom thousands of stocks, 5 Zacks experts each have chosen their favorite to skyrocket +100% or more in months to come. From those 5, Director of Research Sheraz Mian hand-picks one to have the most explosive upside of all.\nIt’s a little-known chemical company that’s up 65% over last year, yet still dirt cheap. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.\nThis company could rival or surpass other recent Zacks’ Stocks Set to Double like Boston Beer Company which shot up +143.0% in little more than 9 months and NVIDIA which boomed +175.9% in one year.\nFree: See Our Top Stock and 4 Runners Up >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nAspen Technology, Inc. (AZPN): Free Stock Analysis Report\n \nDZS Inc. (DZSI): Free Stock Analysis Report\n \nTo read this article on Zacks.com click here.\n \nZacks Investment Research\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Another Computer and Technology stock, which has outperformed the sector so far this year, is DZS Inc. (DZSI). DZS Inc. (DZSI): Free Stock Analysis Report The Computer and Technology group has plenty of great stocks, but investors should always be looking for companies that are outperforming their peers.', 'news_luhn_summary': "DZS Inc. (DZSI): Free Stock Analysis Report Another Computer and Technology stock, which has outperformed the sector so far this year, is DZS Inc. (DZSI). Over the past 90 days, the Zacks Consensus Estimate for AZPN's full-year earnings has moved 18.2% higher.", 'news_article_title': 'Has Aspen Technology (AZPN) Outpaced Other Computer and Technology Stocks This Year?', 'news_lexrank_summary': 'Another Computer and Technology stock, which has outperformed the sector so far this year, is DZS Inc. (DZSI). DZS Inc. (DZSI): Free Stock Analysis Report Aspen Technology is one of 666 companies in the Computer and Technology group.', 'news_textrank_summary': 'Another Computer and Technology stock, which has outperformed the sector so far this year, is DZS Inc. (DZSI). DZS Inc. (DZSI): Free Stock Analysis Report The Zacks Sector Rank gauges the strength of our 16 individual sector groups by measuring the average Zacks Rank of the individual stocks within the groups.'}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 15.520000457763672, 'high': 16.110000610351562, 'open': 16.110000610351562, 'close': 15.850000381469728, 'ema_50': 15.791130915191436, 'rsi_14': 47.18693781247546, 'target': 15.81999969482422, 'volume': 46600.0, 'ema_200': 14.792641626937193, 'adj_close': 15.850000381469728, 'rsi_lag_1': 58.305647208966185, 'rsi_lag_2': 45.75071252029766, 'rsi_lag_3': 37.41829097792773, 'rsi_lag_4': 43.37120336387017, 'rsi_lag_5': 35.72543034015838, 'macd_lag_1': -0.081889443405057, 'macd_lag_2': -0.09535238448636107, 'macd_lag_3': -0.08263998542599182, 'macd_lag_4': 0.033551358169283674, 'macd_lag_5': 0.08972941944352542, 'macd_12_26_9': -0.10231714354143762, 'macds_12_26_9': 0.05638795145629032}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 15.81999969482422, '2022-07-13': 16.100000381469727, '2022-07-14': 15.84000015258789, '2022-07-15': 16.239999771118164, '2022-07-18': 17.0, '2022-07-19': 17.100000381469727, '2022-07-20': 17.299999237060547, '2022-07-21': 17.520000457763672, '2022-07-22': 17.6200008392334, '2022-07-25': 16.969999313354492}, '1_month_later': {'2022-08-11': 13.460000038146973}, '3_months_later': {'2022-10-11': 11.579999923706056}, '6_months_later': {'2023-01-11': 12.970000267028809}, '12_months_later': {'2023-07-11': 3.910000085830689}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DZZ
{'date': '2022-07-11', 'ticker': 'DZZ', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 2.940000057220459, 'high': 2.9600000381469727, 'open': 2.950000047683716, 'close': 2.950000047683716, 'ema_50': 2.660918942879772, 'rsi_14': 84.78261658284862, 'target': 2.990000009536743, 'volume': 7600.0, 'ema_200': 2.641280233992398, 'adj_close': 2.950000047683716, 'rsi_lag_1': 85.41668115390607, 'rsi_lag_2': 76.92306281547454, 'rsi_lag_3': 75.47168623047776, 'rsi_lag_4': 70.45452328753164, 'rsi_lag_5': 71.7391225475942, 'macd_lag_1': 0.08240793010899994, 'macd_lag_2': 0.07496625320564254, 'macd_lag_3': 0.06539573003135324, 'macd_lag_4': 0.0471381474162369, 'macd_lag_5': 0.035367381539158416, 'macd_12_26_9': 0.08809690207754217, 'macds_12_26_9': 0.060315251755953446}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 2.990000009536743, '2022-07-13': 2.950000047683716, '2022-07-14': 3.0199999809265137, '2022-07-15': 3.039999961853028, '2022-07-18': 3.039999961853028, '2022-07-19': 3.049999952316284, '2022-07-20': 3.069999933242798, '2022-07-21': 3.0199999809265137, '2022-07-22': 2.9800000190734863, '2022-07-25': 2.990000009536743}, '1_month_later': {'2022-08-11': 2.809999942779541}, '3_months_later': {'2022-10-11': 3.2699999809265137}, '6_months_later': {'2023-01-11': 2.640000104904175}, '12_months_later': {'2023-07-11': 2.539999961853028}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
E
{'date': '2022-07-11', 'ticker': 'E', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 22.39999961853028, 'high': 22.71999931335449, 'open': 22.59000015258789, 'close': 22.530000686645508, 'ema_50': 26.646510457224608, 'rsi_14': 27.5803676633616, 'target': 22.15999984741211, 'volume': 420600.0, 'ema_200': 27.60389677915229, 'adj_close': 20.36874008178711, 'rsi_lag_1': 23.935378687155904, 'rsi_lag_2': 15.803101319504961, 'rsi_lag_3': 17.929293719886147, 'rsi_lag_4': 18.7830663802617, 'rsi_lag_5': 19.694866587462798, 'macd_lag_1': -1.6412251928170143, 'macd_lag_2': -1.6735787933273976, 'macd_lag_3': -1.6487853492484703, 'macd_lag_4': -1.5636303947113745, 'macd_lag_5': -1.478016057748377, 'macd_12_26_9': -1.6187118552101722, 'macds_12_26_9': -1.495926504996416}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 22.15999984741211, '2022-07-13': 22.309999465942383, '2022-07-14': 21.38999938964844, '2022-07-15': 21.739999771118164, '2022-07-18': 22.229999542236328, '2022-07-19': 23.18000030517578, '2022-07-20': 22.600000381469727, '2022-07-21': 22.600000381469727, '2022-07-22': 22.350000381469727, '2022-07-25': 22.790000915527344}, '1_month_later': {'2022-08-11': 24.13999938964844}, '3_months_later': {'2022-10-11': 22.14999961853028}, '6_months_later': {'2023-01-11': 30.6299991607666}, '12_months_later': {'2023-07-11': 29.239999771118164}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EA
{'date': '2022-07-11', 'ticker': 'EA', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/why-take-two-interactive-stock-is-down-31-in-2022', 'news_author': None, 'news_article': "What happened\nTake-Two Interactive (NASDAQ: TTWO) shares are trailing a weak market this year. The video game developer's stock fell 31% in the first half of 2022, according to data provided by S&P Global Market Intelligence, compared to a 21% drop in the S&P 500.\nThat performance is partly driven by weakness in the wider video game industry, which is being pressured as consumers take a step back from digital entertainment following the pandemic demand spikes in 2020 and 2021. But Take-Two stock is also trailing its peers due to a few unique operating challenges.\nSo what\nTake-Two issued an earnings report in mid-May that pleased Wall Street but also failed to erase the stock's broader decline for the year. Sales were up 11% in fiscal Q4 thanks to solid demand in many of its major franchises such as Grand Theft Auto, Red Dead Redemption, and NBA 2K22. And Take-Two remained solidly profitable.\nHowever, its results didn't stack up well against those of industry rivals. Electronic Arts (NASDAQ: EA) reported an 18% sales boost in its comparable period. EA also noted improving profitability even as Take-Two's operating margin declined.\nTTWO Operating Margin (TTM) data by YCharts.\nGiven that growth and earnings trends are underperforming the wider industry today, it's no surprise that Take-Two's stock would trail the market.\nNow what\nFortunes can change quickly in the video game industry as new releases bring bigger audiences or, alternatively, fail to live up to the hype. Take-Two's results will also depend on how well the management team can capitalize on the acquisition of Zynga, which will bring new monetization opportunities in the casual gaming space.\nInvestors should get important updates on these points when Take-Two announces fiscal Q1 results in late July or early August. Keep an eye on the developer's release calendar, as any major delays would threaten its growth outlook for the year.\nEven an optimistic 2022 forecast might still leave investors wanting more, though, given the pressures that are expected to hit the industry in the second half of 2022. Booming year-ago results will create a high bar for video game developers to surpass, especially at a time when economic growth is slowing and consumers are prioritizing in-person entertainment.\nTake-Two's widening portfolio gives it a better chance to navigate any potential downturn. However, its relatively weaker sales and earnings trends heading into that slowdown have given investors reasons to feel more cautious about holding the stock.\n10 stocks we like better than Take-Two Interactive\nWhen our award-winning analyst team has a stock tip, it can pay to listen. After all, the newsletter they have run for over a decade, Motley Fool Stock Advisor, has tripled the market.*\nThey just revealed what they believe are the ten best stocks for investors to buy right now... and Take-Two Interactive wasn't one of them! That's right -- they think these 10 stocks are even better buys.\nSee the 10 stocks\n*Stock Advisor returns as of June 2, 2022\nDemitri Kalogeropoulos has no position in any of the stocks mentioned. The Motley Fool has positions in and recommends Take-Two Interactive. The Motley Fool recommends Electronic Arts and recommends the following options: long January 2023 $115 calls on Take-Two Interactive. The Motley Fool has a disclosure policy.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': "That performance is partly driven by weakness in the wider video game industry, which is being pressured as consumers take a step back from digital entertainment following the pandemic demand spikes in 2020 and 2021. So what Take-Two issued an earnings report in mid-May that pleased Wall Street but also failed to erase the stock's broader decline for the year. Booming year-ago results will create a high bar for video game developers to surpass, especially at a time when economic growth is slowing and consumers are prioritizing in-person entertainment.", 'news_luhn_summary': 'What happened Take-Two Interactive (NASDAQ: TTWO) shares are trailing a weak market this year. Electronic Arts (NASDAQ: EA) reported an 18% sales boost in its comparable period. That performance is partly driven by weakness in the wider video game industry, which is being pressured as consumers take a step back from digital entertainment following the pandemic demand spikes in 2020 and 2021.', 'news_article_title': 'Why Take-Two Interactive Stock is Down 31% in 2022', 'news_lexrank_summary': "EA also noted improving profitability even as Take-Two's operating margin declined. Given that growth and earnings trends are underperforming the wider industry today, it's no surprise that Take-Two's stock would trail the market. What happened Take-Two Interactive (NASDAQ: TTWO) shares are trailing a weak market this year.", 'news_textrank_summary': "Given that growth and earnings trends are underperforming the wider industry today, it's no surprise that Take-Two's stock would trail the market. 10 stocks we like better than Take-Two Interactive When our award-winning analyst team has a stock tip, it can pay to listen. What happened Take-Two Interactive (NASDAQ: TTWO) shares are trailing a weak market this year."}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 123.68000030517578, 'high': 125.61000061035156, 'open': 125.3000030517578, 'close': 123.83999633789062, 'ema_50': 128.06231273650832, 'rsi_14': 38.034621319124916, 'target': 121.9800033569336, 'volume': 1291300.0, 'ema_200': 130.34852657886177, 'adj_close': 122.71520233154295, 'rsi_lag_1': 43.617573243951966, 'rsi_lag_2': 40.6917536811117, 'rsi_lag_3': 42.56155017596498, 'rsi_lag_4': 40.58242274905428, 'rsi_lag_5': 27.64088202960717, 'macd_lag_1': -1.9029200778016815, 'macd_lag_2': -2.039526029063026, 'macd_lag_3': -2.1811646434490797, 'macd_lag_4': -2.2029482619061866, 'macd_lag_5': -2.239436624653223, 'macd_12_26_9': -1.9169990200429652, 'macds_12_26_9': -1.6672892569197155}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 121.9800033569336, '2022-07-13': 121.68000030517578, '2022-07-14': 122.29000091552734, '2022-07-15': 123.16000366210938, '2022-07-18': 123.62000274658205, '2022-07-19': 126.75, '2022-07-20': 127.58999633789062, '2022-07-21': 130.2100067138672, '2022-07-22': 130.16000366210938, '2022-07-25': 129.9199981689453}, '1_month_later': {'2022-08-11': 129.67999267578125}, '3_months_later': {'2022-10-11': 119.25}, '6_months_later': {'2023-01-11': 126.11000061035156}, '12_months_later': {'2023-07-11': 137.3300018310547}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EAD
{'date': '2022-07-11', 'ticker': 'EAD', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 6.429999828338623, 'high': 6.599999904632568, 'open': 6.550000190734863, 'close': 6.46999979019165, 'ema_50': 6.939164515287389, 'rsi_14': 47.674396039373384, 'target': 6.480000019073486, 'volume': 542200.0, 'ema_200': 7.752943429767348, 'adj_close': 5.655088901519775, 'rsi_lag_1': 64.61536542906839, 'rsi_lag_2': 36.14459977054403, 'rsi_lag_3': 31.168868164056462, 'rsi_lag_4': 31.578973785934465, 'rsi_lag_5': 25.000037252846, 'macd_lag_1': -0.14091299118823475, 'macd_lag_2': -0.1628212354823404, 'macd_lag_3': -0.1761976427901475, 'macd_lag_4': -0.17950791426460633, 'macd_lag_5': -0.18214015676543482, 'macd_12_26_9': -0.1396924451232069, 'macds_12_26_9': -0.1633339917271396}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 6.480000019073486, '2022-07-13': 6.480000019073486, '2022-07-14': 6.510000228881836, '2022-07-15': 6.53000020980835, '2022-07-18': 6.510000228881836, '2022-07-19': 6.650000095367432, '2022-07-20': 6.760000228881836, '2022-07-21': 6.820000171661377, '2022-07-22': 6.820000171661377, '2022-07-25': 6.820000171661377}, '1_month_later': {'2022-08-11': 7.329999923706055}, '3_months_later': {'2022-10-11': 6.190000057220459}, '6_months_later': {'2023-01-11': 6.71999979019165}, '12_months_later': {'2023-07-11': 6.460000038146973}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DXC
{'date': '2022-07-11', 'ticker': 'DXC', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/implied-volatility-surging-for-dxc-technology-dxc-stock-options', 'news_author': None, 'news_article': 'Investors in DXC Technology Company DXC need to pay close attention to the stock based on moves in the options market lately. That is because the Jan 20, 2023 $5.00 Call had some of the highest implied volatility of all equity options today.\nWhat is Implied Volatility?\nImplied volatility shows how much movement the market is expecting in the future. Options with high levels of implied volatility suggest that investors in the underlying stocks are expecting a big move in one direction or the other. It could also mean there is an event coming up soon that may cause a big rally or a huge sell-off. However, implied volatility is only one piece of the puzzle when putting together an options trading strategy.\nWhat do the Analysts Think?\nClearly, options traders are pricing in a big move for DXC Technology shares, but what is the fundamental picture for the company? Currently, DXC Technology is a Zacks Rank #3 (Hold) in the Computers - IT Services industry that ranks in the Top 32% of our Zacks Industry Rank. Over the last 60 days, no analysts have increased their earnings estimates for the current quarter, while two analysts have revised their estimates downward. The net effect has taken our Zacks Consensus Estimate for the current quarter from 95 cents per share to 82 cents in that period.\n\nGiven the way analysts feel about DXC Technology right now, this huge implied volatility could mean there’s a trade developing. Oftentimes, options traders look for options with high levels of implied volatility to sell premium. This is a strategy many seasoned traders use because it captures decay. At expiration, the hope for these traders is that the underlying stock does not move as much as originally expected.\nLooking to Trade Options?\nCheck out the simple yet high-powered approach that Zacks Executive VP Kevin Matras has used to close recent double and triple-digit winners. In addition to impressive profit potential, these trades can actually reduce your risk.\n\nClick to see the trades now >>\n\nZacks Names "Single Best Pick to Double"\nFrom thousands of stocks, 5 Zacks experts each have chosen their favorite to skyrocket +100% or more in months to come. From those 5, Director of Research Sheraz Mian hand-picks one to have the most explosive upside of all.\nIt’s a little-known chemical company that’s up 65% over last year, yet still dirt cheap. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.\nThis company could rival or surpass other recent Zacks’ Stocks Set to Double like Boston Beer Company which shot up +143.0% in little more than 9 months and NVIDIA which boomed +175.9% in one year.\nFree: See Our Top Stock and 4 Runners Up >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nDXC Technology Company. (DXC): Free Stock Analysis Report\n \nTo read this article on Zacks.com click here.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Investors in DXC Technology Company DXC need to pay close attention to the stock based on moves in the options market lately. Clearly, options traders are pricing in a big move for DXC Technology shares, but what is the fundamental picture for the company? Currently, DXC Technology is a Zacks Rank #3 (Hold) in the Computers - IT Services industry that ranks in the Top 32% of our Zacks Industry Rank.', 'news_luhn_summary': 'Investors in DXC Technology Company DXC need to pay close attention to the stock based on moves in the options market lately. Clearly, options traders are pricing in a big move for DXC Technology shares, but what is the fundamental picture for the company? Currently, DXC Technology is a Zacks Rank #3 (Hold) in the Computers - IT Services industry that ranks in the Top 32% of our Zacks Industry Rank.', 'news_article_title': 'Implied Volatility Surging for DXC Technology (DXC) Stock Options', 'news_lexrank_summary': 'Given the way analysts feel about DXC Technology right now, this huge implied volatility could mean there’s a trade developing. Investors in DXC Technology Company DXC need to pay close attention to the stock based on moves in the options market lately. Clearly, options traders are pricing in a big move for DXC Technology shares, but what is the fundamental picture for the company?', 'news_textrank_summary': 'Investors in DXC Technology Company DXC need to pay close attention to the stock based on moves in the options market lately. Given the way analysts feel about DXC Technology right now, this huge implied volatility could mean there’s a trade developing. Clearly, options traders are pricing in a big move for DXC Technology shares, but what is the fundamental picture for the company?'}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 29.07999992370605, 'high': 29.709999084472656, 'open': 29.420000076293945, 'close': 29.26000022888184, 'ema_50': 31.14307939519272, 'rsi_14': 43.422911277799564, 'target': 28.65999984741211, 'volume': 822300.0, 'ema_200': 32.00574576700038, 'adj_close': 29.26000022888184, 'rsi_lag_1': 50.8695713468674, 'rsi_lag_2': 36.986304673727815, 'rsi_lag_3': 41.141724855517374, 'rsi_lag_4': 48.76893824795929, 'rsi_lag_5': 39.31297304246703, 'macd_lag_1': -0.5578403599051711, 'macd_lag_2': -0.5463865477075558, 'macd_lag_3': -0.5238198776268455, 'macd_lag_4': -0.4313972858003261, 'macd_lag_5': -0.36519391336675966, 'macd_12_26_9': -0.6091180066418325, 'macds_12_26_9': -0.4097287661147235}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 28.65999984741211, '2022-07-13': 28.549999237060547, '2022-07-14': 27.950000762939453, '2022-07-15': 28.739999771118164, '2022-07-18': 29.01000022888184, '2022-07-19': 30.790000915527344, '2022-07-20': 30.799999237060547, '2022-07-21': 31.270000457763672, '2022-07-22': 31.0, '2022-07-25': 31.15999984741211}, '1_month_later': {'2022-08-11': 26.309999465942383}, '3_months_later': {'2022-10-11': 26.8799991607666}, '6_months_later': {'2023-01-11': 28.299999237060547}, '12_months_later': {'2023-07-11': 27.56999969482422}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EAF
{'date': '2022-07-11', 'ticker': 'EAF', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 6.739999771118164, 'high': 7.019999980926514, 'open': 6.909999847412109, 'close': 6.760000228881836, 'ema_50': 8.11901475502073, 'rsi_14': 30.303032492365773, 'target': 6.789999961853027, 'volume': 1218600.0, 'ema_200': 9.637085790460496, 'adj_close': 6.708819389343262, 'rsi_lag_1': 32.60869621554495, 'rsi_lag_2': 24.55356116501548, 'rsi_lag_3': 25.221243979404008, 'rsi_lag_4': 25.67568583473468, 'rsi_lag_5': 24.782614104012694, 'macd_lag_1': -0.4073156198831205, 'macd_lag_2': -0.41220278167849234, 'macd_lag_3': -0.40735397194352974, 'macd_lag_4': -0.39116725544669073, 'macd_lag_5': -0.38110835568960777, 'macd_12_26_9': -0.41799015440747667, 'macds_12_26_9': -0.38267430189634416}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 6.789999961853027, '2022-07-13': 6.46999979019165, '2022-07-14': 6.360000133514404, '2022-07-15': 6.460000038146973, '2022-07-18': 6.5, '2022-07-19': 7.28000020980835, '2022-07-20': 7.380000114440918, '2022-07-21': 7.619999885559082, '2022-07-22': 7.389999866485596, '2022-07-25': 7.369999885559082}, '1_month_later': {'2022-08-11': 6.920000076293945}, '3_months_later': {'2022-10-11': 4.269999980926514}, '6_months_later': {'2023-01-11': 5.46999979019165}, '12_months_later': {'2023-07-11': 4.610000133514404}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EAOK
{'date': '2022-07-11', 'ticker': 'EAOK', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 23.979999542236328, 'high': 23.979999542236328, 'open': 23.979999542236328, 'close': 23.979999542236328, 'ema_50': 24.481813310154354, 'rsi_14': 60.8695154853937, 'target': 23.97800064086914, 'volume': 100.0, 'ema_200': 25.90769806464512, 'adj_close': 23.037410736083984, 'rsi_lag_1': 64.00600354755053, 'rsi_lag_2': 58.21916466025062, 'rsi_lag_3': 63.862517203428595, 'rsi_lag_4': 62.13256027940732, 'rsi_lag_5': 50.35033438782573, 'macd_lag_1': -0.12580889344056345, 'macd_lag_2': -0.13225474343471433, 'macd_lag_3': -0.14354735577203925, 'macd_lag_4': -0.14925463778548576, 'macd_lag_5': -0.16465184773410613, 'macd_12_26_9': -0.12283502789907175, 'macds_12_26_9': -0.1607598291943953}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 23.97800064086914, '2022-07-13': 24.01300048828125, '2022-07-14': 23.915000915527344, '2022-07-15': 24.077999114990234, '2022-07-18': 24.00900077819824, '2022-07-19': 24.160999298095703, '2022-07-20': 24.167999267578125, '2022-07-21': 24.386999130249023, '2022-07-22': 24.45199966430664, '2022-07-25': 24.41699981689453}, '1_month_later': {'2022-08-11': 24.74399948120117}, '3_months_later': {'2022-10-11': 22.39800071716309}, '6_months_later': {'2023-01-11': 23.979999542236328}, '12_months_later': {'2023-07-11': 24.09199905395508}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EAOR
{'date': '2022-07-11', 'ticker': 'EAOR', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 26.31999969482422, 'high': 26.32699966430664, 'open': 26.31999969482422, 'close': 26.32699966430664, 'ema_50': 27.155606913402853, 'rsi_14': 59.23109388788704, 'target': 26.25300025939941, 'volume': 1100.0, 'ema_200': 28.958253114192637, 'adj_close': 25.39676284790039, 'rsi_lag_1': 65.89071146191338, 'rsi_lag_2': 54.60627245728186, 'rsi_lag_3': 56.92938412836851, 'rsi_lag_4': 55.23738087748827, 'rsi_lag_5': 46.07013928569167, 'macd_lag_1': -0.21878968994706582, 'macd_lag_2': -0.23894400667001747, 'macd_lag_3': -0.2647563152904304, 'macd_lag_4': -0.2704330712249323, 'macd_lag_5': -0.2790396542425633, 'macd_12_26_9': -0.21598174401355408, 'macds_12_26_9': -0.26788320568718227}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 26.25300025939941, '2022-07-13': 26.2549991607666, '2022-07-14': 26.107999801635746, '2022-07-15': 26.38400077819824, '2022-07-18': 26.316999435424805, '2022-07-19': 26.702999114990234, '2022-07-20': 26.746000289916992, '2022-07-21': 26.996999740600582, '2022-07-22': 26.937000274658203, '2022-07-25': 26.952999114990234}, '1_month_later': {'2022-08-11': 27.792999267578125}, '3_months_later': {'2022-10-11': 24.433000564575195}, '6_months_later': {'2023-01-11': 26.87700080871582}, '12_months_later': {'2023-07-11': 27.799999237060547}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EARN
{'date': '2022-07-11', 'ticker': 'EARN', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 7.650000095367432, 'high': 7.889999866485596, 'open': 7.730000019073486, 'close': 7.710000038146973, 'ema_50': 7.944084438304797, 'rsi_14': 79.01235803419394, 'target': 7.650000095367432, 'volume': 74200.0, 'ema_200': 9.500360980442363, 'adj_close': 6.266252040863037, 'rsi_lag_1': 83.33333333333333, 'rsi_lag_2': 70.31963112400966, 'rsi_lag_3': 70.18348603785999, 'rsi_lag_4': 62.96295133456474, 'rsi_lag_5': 45.94594671996932, 'macd_lag_1': -0.050912058720582465, 'macd_lag_2': -0.07099162874254894, 'macd_lag_3': -0.09456969967160056, 'macd_lag_4': -0.11717924767008636, 'macd_lag_5': -0.14738734541547238, 'macd_12_26_9': -0.036993148556110356, 'macds_12_26_9': -0.1226546405052804}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 7.650000095367432, '2022-07-13': 7.71999979019165, '2022-07-14': 7.610000133514404, '2022-07-15': 7.829999923706055, '2022-07-18': 7.639999866485596, '2022-07-19': 7.840000152587891, '2022-07-20': 7.929999828338623, '2022-07-21': 8.119999885559082, '2022-07-22': 8.069999694824219, '2022-07-25': 8.199999809265137}, '1_month_later': {'2022-08-11': 8.680000305175781}, '3_months_later': {'2022-10-11': 6.320000171661377}, '6_months_later': {'2023-01-11': 7.710000038146973}, '12_months_later': {'2023-07-11': 7.03000020980835}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EASG
{'date': '2022-07-11', 'ticker': 'EASG', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 24.177000045776367, 'high': 24.34000015258789, 'open': 24.239999771118164, 'close': 24.177000045776367, 'ema_50': 25.858440690537545, 'rsi_14': 43.16383701859286, 'target': 24.21999931335449, 'volume': 7700.0, 'ema_200': 28.257032187358856, 'adj_close': 23.58211708068848, 'rsi_lag_1': 47.39455562304277, 'rsi_lag_2': 39.83261649818549, 'rsi_lag_3': 41.326528295252345, 'rsi_lag_4': 37.535623078377824, 'rsi_lag_5': 33.741451008228495, 'macd_lag_1': -0.5206314682295101, 'macd_lag_2': -0.5495486052884502, 'macd_lag_3': -0.5780567100310314, 'macd_lag_4': -0.5683625079437142, 'macd_lag_5': -0.5446674745237203, 'macd_12_26_9': -0.5213188690022328, 'macds_12_26_9': -0.5387520004745284}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 24.21999931335449, '2022-07-13': 24.16900062561035, '2022-07-14': 23.850000381469727, '2022-07-15': 24.1879997253418, '2022-07-18': 24.3799991607666, '2022-07-19': 24.975000381469727, '2022-07-20': 24.809999465942383, '2022-07-21': 25.05500030517578, '2022-07-22': 24.989999771118164, '2022-07-25': 25.170000076293945}, '1_month_later': {'2022-08-11': 26.06999969482422}, '3_months_later': {'2022-10-11': 21.80699920654297}, '6_months_later': {'2023-01-11': 26.950000762939453}, '12_months_later': {'2023-07-11': 28.09000015258789}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EAST
{'date': '2022-07-11', 'ticker': 'EAST', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 13.020000457763672, 'high': 14.0, 'open': 14.0, 'close': 13.800000190734863, 'ema_50': 14.851278235636292, 'rsi_14': 56.30027244918935, 'target': 13.65999984741211, 'volume': 240.0, 'ema_200': 25.762302710546944, 'adj_close': 13.800000190734863, 'rsi_lag_1': 62.31527255592737, 'rsi_lag_2': 45.97990286897856, 'rsi_lag_3': 52.115813887348104, 'rsi_lag_4': 54.2923425917198, 'rsi_lag_5': 50.53995896110038, 'macd_lag_1': -0.34613563258938385, 'macd_lag_2': -0.44307989263724856, 'macd_lag_3': -0.4178258067732603, 'macd_lag_4': -0.3571149164381371, 'macd_lag_5': -0.31719498903031784, 'macd_12_26_9': -0.2821919876204486, 'macds_12_26_9': -0.41972340502444294}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 13.65999984741211, '2022-07-13': 12.359999656677246, '2022-07-14': 12.420000076293944, '2022-07-15': 12.619999885559082, '2022-07-18': 12.84000015258789, '2022-07-19': 12.859999656677246, '2022-07-20': 13.0, '2022-07-21': 12.9399995803833, '2022-07-22': 12.84000015258789, '2022-07-25': 12.68000030517578}, '1_month_later': {'2022-08-11': 12.81999969482422}, '3_months_later': {'2022-10-11': 5.860000133514404}, '6_months_later': {'2023-01-11': 5.699999809265137}, '12_months_later': {'2023-07-11': 3.430000066757202}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EB
{'date': '2022-07-11', 'ticker': 'EB', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 10.0600004196167, 'high': 10.390000343322754, 'open': 10.369999885559082, 'close': 10.229999542236328, 'ema_50': 11.448031990139707, 'rsi_14': 46.68674171013977, 'target': 10.359999656677246, 'volume': 523200.0, 'ema_200': 14.132436590322968, 'adj_close': 10.229999542236328, 'rsi_lag_1': 59.67303238259468, 'rsi_lag_2': 51.77304612765175, 'rsi_lag_3': 48.91040905035219, 'rsi_lag_4': 48.91040905035219, 'rsi_lag_5': 38.297860683918856, 'macd_lag_1': -0.318480431928613, 'macd_lag_2': -0.33022095797520556, 'macd_lag_3': -0.3505846844796583, 'macd_lag_4': -0.3541676922211625, 'macd_lag_5': -0.3749712050084302, 'macd_12_26_9': -0.32878658362159996, 'macds_12_26_9': -0.3359061477252784}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 10.359999656677246, '2022-07-13': 10.220000267028809, '2022-07-14': 10.3100004196167, '2022-07-15': 10.68000030517578, '2022-07-18': 10.68000030517578, '2022-07-19': 11.300000190734863, '2022-07-20': 11.5600004196167, '2022-07-21': 11.68000030517578, '2022-07-22': 11.449999809265137, '2022-07-25': 11.06999969482422}, '1_month_later': {'2022-08-11': 8.15999984741211}, '3_months_later': {'2022-10-11': 5.909999847412109}, '6_months_later': {'2023-01-11': 6.860000133514404}, '12_months_later': {'2023-07-11': 9.880000114440918}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EBAY
{'date': '2022-07-11', 'ticker': 'EBAY', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 42.38999938964844, 'high': 43.15999984741211, 'open': 43.02000045776367, 'close': 42.83000183105469, 'ema_50': 46.238182158010076, 'rsi_14': 52.724091879983746, 'target': 43.20000076293945, 'volume': 5986800.0, 'ema_200': 55.292035083756375, 'adj_close': 41.43198394775391, 'rsi_lag_1': 58.44262033660668, 'rsi_lag_2': 51.111117187895225, 'rsi_lag_3': 53.8565651580959, 'rsi_lag_4': 53.35121027289946, 'rsi_lag_5': 45.43663436568238, 'macd_lag_1': -0.8653999325528758, 'macd_lag_2': -0.904138977720649, 'macd_lag_3': -1.0096693685858469, 'macd_lag_4': -1.119496759291124, 'macd_lag_5': -1.2647745828024881, 'macd_12_26_9': -0.849915871268756, 'macds_12_26_9': -1.0634979150101682}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 43.20000076293945, '2022-07-13': 42.4900016784668, '2022-07-14': 42.02999877929688, '2022-07-15': 43.61000061035156, '2022-07-18': 43.59000015258789, '2022-07-19': 45.380001068115234, '2022-07-20': 46.18999862670898, '2022-07-21': 46.650001525878906, '2022-07-22': 46.68000030517578, '2022-07-25': 46.560001373291016}, '1_month_later': {'2022-08-11': 48.56999969482422}, '3_months_later': {'2022-10-11': 36.95000076293945}, '6_months_later': {'2023-01-11': 46.61000061035156}, '12_months_later': {'2023-07-11': 46.900001525878906}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EBIX
{'date': '2022-07-11', 'ticker': 'EBIX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 17.40999984741211, 'high': 18.700000762939453, 'open': 18.299999237060547, 'close': 17.959999084472656, 'ema_50': 23.759583780853475, 'rsi_14': 57.670122992032475, 'target': 18.43000030517578, 'volume': 322319.0, 'ema_200': 28.722471640429966, 'adj_close': 17.83921241760254, 'rsi_lag_1': 70.54108109192826, 'rsi_lag_2': 36.348865825056855, 'rsi_lag_3': 34.17367087455193, 'rsi_lag_4': 34.521790351622485, 'rsi_lag_5': 26.938984266739297, 'macd_lag_1': -2.505406800164284, 'macd_lag_2': -2.739894951352099, 'macd_lag_3': -2.965734090980259, 'macd_lag_4': -3.1100490293593666, 'macd_lag_5': -3.282610284331728, 'macd_12_26_9': -2.351373101620336, 'macds_12_26_9': -2.8145318572584967}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 18.43000030517578, '2022-07-13': 18.61000061035156, '2022-07-14': 18.450000762939453, '2022-07-15': 18.950000762939453, '2022-07-18': 19.170000076293945, '2022-07-19': 19.850000381469727, '2022-07-20': 20.90999984741211, '2022-07-21': 21.82999992370605, '2022-07-22': 22.13999938964844, '2022-07-25': 21.25}, '1_month_later': {'2022-08-11': 24.739999771118164}, '3_months_later': {'2022-10-11': 18.59000015258789}, '6_months_later': {'2023-01-11': 19.540000915527344}, '12_months_later': {'2023-07-11': 25.030000686645508}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EBIZ
{'date': '2022-07-11', 'ticker': 'EBIZ', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 16.690000534057617, 'high': 17.1299991607666, 'open': 17.1299991607666, 'close': 16.739999771118164, 'ema_50': 18.11293556980717, 'rsi_14': 50.545449879542225, 'target': 16.739999771118164, 'volume': 5200.0, 'ema_200': 22.92900409997747, 'adj_close': 16.723079681396484, 'rsi_lag_1': 62.57311507007, 'rsi_lag_2': 53.67891856513788, 'rsi_lag_3': 52.64956791220328, 'rsi_lag_4': 58.0382536949822, 'rsi_lag_5': 45.10733053010818, 'macd_lag_1': -0.13487694771111336, 'macd_lag_2': -0.15948948361176463, 'macd_lag_3': -0.2079294971191601, 'macd_lag_4': -0.21378663870183345, 'macd_lag_5': -0.25888028548481756, 'macd_12_26_9': -0.17787431773941975, 'macds_12_26_9': -0.20907493230211147}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 16.739999771118164, '2022-07-13': 16.84000015258789, '2022-07-14': 16.399999618530273, '2022-07-15': 16.600000381469727, '2022-07-18': 16.799999237060547, '2022-07-19': 17.329999923706055, '2022-07-20': 17.700000762939453, '2022-07-21': 17.989999771118164, '2022-07-22': 17.56999969482422, '2022-07-25': 17.540000915527344}, '1_month_later': {'2022-08-11': 19.290000915527344}, '3_months_later': {'2022-10-11': 14.895000457763672}, '6_months_later': {'2023-01-11': 18.239999771118164}, '12_months_later': {'2023-07-11': 19.0}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EBMT
{'date': '2022-07-11', 'ticker': 'EBMT', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 19.309999465942383, 'high': 19.600000381469727, 'open': 19.39999961853028, 'close': 19.56999969482422, 'ema_50': 19.945344753430852, 'rsi_14': 46.4566775400845, 'target': 19.5, 'volume': 4100.0, 'ema_200': 21.274901200528028, 'adj_close': 18.487041473388672, 'rsi_lag_1': 51.58726674649309, 'rsi_lag_2': 63.19021563607282, 'rsi_lag_3': 68.75004967058456, 'rsi_lag_4': 67.74196194730364, 'rsi_lag_5': 62.37625819122627, 'macd_lag_1': -0.034314574703238065, 'macd_lag_2': -0.038689212131245654, 'macd_lag_3': -0.04472829321269245, 'macd_lag_4': -0.04873134218151165, 'macd_lag_5': -0.04702263806217033, 'macd_12_26_9': -0.03608012417207718, 'macds_12_26_9': -0.06212897007689168}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 19.5, '2022-07-13': 19.39999961853028, '2022-07-14': 19.11000061035156, '2022-07-15': 19.13999938964844, '2022-07-18': 19.5, '2022-07-19': 19.270000457763672, '2022-07-20': 19.46999931335449, '2022-07-21': 19.479999542236328, '2022-07-22': 19.51000022888184, '2022-07-25': 19.600000381469727}, '1_month_later': {'2022-08-11': 19.200000762939453}, '3_months_later': {'2022-10-11': 18.600000381469727}, '6_months_later': {'2023-01-11': 16.790000915527344}, '12_months_later': {'2023-07-11': 12.920000076293944}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EAGG
{'date': '2022-07-11', 'ticker': 'EAGG', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 48.93000030517578, 'high': 49.08000183105469, 'open': 48.9900016784668, 'close': 49.0, 'ema_50': 49.33044861885313, 'rsi_14': 62.50000000000001, 'target': 49.060001373291016, 'volume': 222400.0, 'ema_200': 51.780114540962494, 'adj_close': 47.12397384643555, 'rsi_lag_1': 61.60003662109375, 'rsi_lag_2': 64.34103369351129, 'rsi_lag_3': 73.37888402540354, 'rsi_lag_4': 74.13794464219474, 'rsi_lag_5': 57.26258024987356, 'macd_lag_1': -0.06077536257264882, 'macd_lag_2': -0.06623056357197044, 'macd_lag_3': -0.07630246218911196, 'macd_lag_4': -0.1023028850529002, 'macd_lag_5': -0.16454621422624882, 'macd_12_26_9': -0.047831661716543294, 'macds_12_26_9': -0.13607059452566925}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 49.060001373291016, '2022-07-13': 49.22999954223633, '2022-07-14': 49.04999923706055, '2022-07-15': 49.2400016784668, '2022-07-18': 49.06999969482422, '2022-07-19': 49.0099983215332, '2022-07-20': 48.970001220703125, '2022-07-21': 49.43000030517578, '2022-07-22': 49.790000915527344, '2022-07-25': 49.59999847412109}, '1_month_later': {'2022-08-11': 49.560001373291016}, '3_months_later': {'2022-10-11': 45.9900016784668}, '6_months_later': {'2023-01-11': 47.95000076293945}, '12_months_later': {'2023-07-11': 46.75}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DX
{'date': '2022-07-11', 'ticker': 'DX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 16.09000015258789, 'high': 16.25, 'open': 16.100000381469727, 'close': 16.15999984741211, 'ema_50': 15.890599950016052, 'rsi_14': 80.30294984515471, 'target': 16.190000534057617, 'volume': 605200.0, 'ema_200': 16.427036164398057, 'adj_close': 13.433788299560549, 'rsi_lag_1': 83.5442327419257, 'rsi_lag_2': 65.98462416523165, 'rsi_lag_3': 65.8973950794886, 'rsi_lag_4': 64.5728431294086, 'rsi_lag_5': 50.0, 'macd_lag_1': 0.08483391619021674, 'macd_lag_2': 0.06853793623724869, 'macd_lag_3': 0.05285046110251024, 'macd_lag_4': 0.0371498299270705, 'macd_lag_5': -0.004812165103054156, 'macd_12_26_9': 0.09663465357569834, 'macds_12_26_9': 0.00958533562499815}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 16.190000534057617, '2022-07-13': 16.420000076293945, '2022-07-14': 16.25, '2022-07-15': 16.549999237060547, '2022-07-18': 16.100000381469727, '2022-07-19': 16.459999084472656, '2022-07-20': 16.440000534057617, '2022-07-21': 16.600000381469727, '2022-07-22': 16.479999542236328, '2022-07-25': 15.949999809265137}, '1_month_later': {'2022-08-11': 16.479999542236328}, '3_months_later': {'2022-10-11': 11.9399995803833}, '6_months_later': {'2023-01-11': 14.220000267028809}, '12_months_later': {'2023-07-11': 12.399999618530272}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DWX
{'date': '2022-07-11', 'ticker': 'DWX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 33.599998474121094, 'high': 33.79999923706055, 'open': 33.63999938964844, 'close': 33.720001220703125, 'ema_50': 35.67493659863881, 'rsi_14': 42.071222581059324, 'target': 33.720001220703125, 'volume': 36300.0, 'ema_200': 37.48948376699664, 'adj_close': 31.547422409057617, 'rsi_lag_1': 45.296157521801604, 'rsi_lag_2': 40.625014901175405, 'rsi_lag_3': 42.59814796673946, 'rsi_lag_4': 39.275779040138396, 'rsi_lag_5': 36.06135138114755, 'macd_lag_1': -0.6208657376281437, 'macd_lag_2': -0.6417888758150667, 'macd_lag_3': -0.6652685283696087, 'macd_lag_4': -0.6621423347352433, 'macd_lag_5': -0.6637938962625398, 'macd_12_26_9': -0.620531244384054, 'macds_12_26_9': -0.6638304455855412}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 33.720001220703125, '2022-07-13': 33.72999954223633, '2022-07-14': 33.15999984741211, '2022-07-15': 33.41999816894531, '2022-07-18': 33.58000183105469, '2022-07-19': 34.189998626708984, '2022-07-20': 33.7400016784668, '2022-07-21': 33.84000015258789, '2022-07-22': 33.959999084472656, '2022-07-25': 34.25}, '1_month_later': {'2022-08-11': 34.959999084472656}, '3_months_later': {'2022-10-11': 28.36000061035156}, '6_months_later': {'2023-01-11': 33.77000045776367}, '12_months_later': {'2023-07-11': 34.27000045776367}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DSGX
{'date': '2022-07-11', 'ticker': 'DSGX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 63.470001220703125, 'high': 65.83999633789062, 'open': 65.83999633789062, 'close': 63.880001068115234, 'ema_50': 63.150019800225756, 'rsi_14': 60.643429683198235, 'target': 62.52999877929688, 'volume': 268400.0, 'ema_200': 67.9779880762194, 'adj_close': 63.880001068115234, 'rsi_lag_1': 69.93045585385516, 'rsi_lag_2': 65.24323530733868, 'rsi_lag_3': 64.61199384694063, 'rsi_lag_4': 62.713662129312844, 'rsi_lag_5': 54.39468987845065, 'macd_lag_1': 0.9738765466436377, 'macd_lag_2': 0.8279667031650888, 'macd_lag_3': 0.6001621667709145, 'macd_lag_4': 0.5043074724383914, 'macd_lag_5': 0.3023358289267648, 'macd_12_26_9': 0.9055852784297969, 'macds_12_26_9': 0.5873593021260646}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 62.52999877929688, '2022-07-13': 62.20000076293945, '2022-07-14': 63.2599983215332, '2022-07-15': 64.41999816894531, '2022-07-18': 65.3499984741211, '2022-07-19': 66.83999633789062, '2022-07-20': 67.9000015258789, '2022-07-21': 69.16999816894531, '2022-07-22': 68.19000244140625, '2022-07-25': 65.5999984741211}, '1_month_later': {'2022-08-11': 70.66000366210938}, '3_months_later': {'2022-10-11': 66.08000183105469}, '6_months_later': {'2023-01-11': 70.7300033569336}, '12_months_later': {'2023-07-11': 78.63999938964844}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DSI
{'date': '2022-07-11', 'ticker': 'DSI', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 73.12000274658203, 'high': 73.76000213623047, 'open': 73.69000244140625, 'close': 73.26000213623047, 'ema_50': 75.6085630437778, 'rsi_14': 64.87455589182937, 'target': 72.43000030517578, 'volume': 161800.0, 'ema_200': 81.30041989615091, 'adj_close': 71.70407104492188, 'rsi_lag_1': 71.57694987151066, 'rsi_lag_2': 58.71417258619263, 'rsi_lag_3': 58.74611001210547, 'rsi_lag_4': 57.13172864334756, 'rsi_lag_5': 45.54973586714467, 'macd_lag_1': -0.6468689560932859, 'macd_lag_2': -0.7916543482996303, 'macd_lag_3': -0.9730838266296473, 'macd_lag_4': -1.0723904049869617, 'macd_lag_5': -1.1570711365944675, 'macd_12_26_9': -0.5986536576172199, 'macds_12_26_9': -0.9484238747634468}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 72.43000030517578, '2022-07-13': 72.11000061035156, '2022-07-14': 71.79000091552734, '2022-07-15': 73.05000305175781, '2022-07-18': 72.44999694824219, '2022-07-19': 74.45999908447266, '2022-07-20': 74.93000030517578, '2022-07-21': 75.77999877929688, '2022-07-22': 74.95999908447266, '2022-07-25': 74.87000274658203}, '1_month_later': {'2022-08-11': 79.68000030517578}, '3_months_later': {'2022-10-11': 66.51000213623047}, '6_months_later': {'2023-01-11': 74.4000015258789}, '12_months_later': {'2023-07-11': 84.18000030517578}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DSKE
{'date': '2022-07-11', 'ticker': 'DSKE', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 6.300000190734863, 'high': 6.460000038146973, 'open': 6.320000171661377, 'close': 6.360000133514404, 'ema_50': 7.289477864214123, 'rsi_14': 47.540985528771465, 'target': 6.289999961853027, 'volume': 195200.0, 'ema_200': 8.53884472047093, 'adj_close': 6.360000133514404, 'rsi_lag_1': 50.60729174811027, 'rsi_lag_2': 39.18918984227159, 'rsi_lag_3': 41.27516536893846, 'rsi_lag_4': 46.57039487467011, 'rsi_lag_5': 32.80756874768821, 'macd_lag_1': -0.3060858360295944, 'macd_lag_2': -0.32648107146861527, 'macd_lag_3': -0.33860034085319946, 'macd_lag_4': -0.35423476823920996, 'macd_lag_5': -0.3965283842591196, 'macd_12_26_9': -0.2914048255110133, 'macds_12_26_9': -0.3434708737716087}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 6.289999961853027, '2022-07-13': 6.059999942779541, '2022-07-14': 6.139999866485596, '2022-07-15': 6.360000133514404, '2022-07-18': 6.579999923706055, '2022-07-19': 6.949999809265137, '2022-07-20': 6.989999771118164, '2022-07-21': 6.980000019073486, '2022-07-22': 6.829999923706055, '2022-07-25': 7.0}, '1_month_later': {'2022-08-11': 7.0}, '3_months_later': {'2022-10-11': 5.960000038146973}, '6_months_later': {'2023-01-11': 6.070000171661377}, '12_months_later': {'2023-07-11': 7.239999771118164}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DSL
{'date': '2022-07-11', 'ticker': 'DSL', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 12.210000038146973, 'high': 12.550000190734863, 'open': 12.550000190734863, 'close': 12.279999732971191, 'ema_50': 12.842851191348835, 'rsi_14': 60.16947919697413, 'target': 12.300000190734863, 'volume': 305300.0, 'ema_200': 14.641328800536185, 'adj_close': 10.324637413024902, 'rsi_lag_1': 80.9524025776451, 'rsi_lag_2': 50.955405114000484, 'rsi_lag_3': 39.333343505859375, 'rsi_lag_4': 40.13605751109218, 'rsi_lag_5': 25.0, 'macd_lag_1': -0.16746858898575745, 'macd_lag_2': -0.2018504177842999, 'macd_lag_3': -0.23770719922639216, 'macd_lag_4': -0.258634109848769, 'macd_lag_5': -0.288709748554723, 'macd_12_26_9': -0.16016128283715503, 'macds_12_26_9': -0.22550983721067322}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 12.300000190734863, '2022-07-13': 12.220000267028809, '2022-07-14': 12.149999618530272, '2022-07-15': 12.010000228881836, '2022-07-18': 11.960000038146973, '2022-07-19': 12.050000190734863, '2022-07-20': 12.119999885559082, '2022-07-21': 12.149999618530272, '2022-07-22': 12.170000076293944, '2022-07-25': 12.109999656677246}, '1_month_later': {'2022-08-11': 13.050000190734863}, '3_months_later': {'2022-10-11': 11.489999771118164}, '6_months_later': {'2023-01-11': 12.300000190734863}, '12_months_later': {'2023-07-11': 11.960000038146973}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DSS
{'date': '2022-07-11', 'ticker': 'DSS', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 0.3231199979782104, 'high': 0.3416900038719177, 'open': 0.3231199979782104, 'close': 0.3249770104885101, 'ema_50': 0.36539485587041864, 'rsi_14': 44.31810845442002, 'target': 0.3314760029315948, 'volume': 917173.0, 'ema_200': 0.7682637945662523, 'adj_close': 0.3249770104885101, 'rsi_lag_1': 43.33325843874747, 'rsi_lag_2': 34.04217612323458, 'rsi_lag_3': 34.04219864573696, 'rsi_lag_4': 32.3226742715746, 'rsi_lag_5': 23.015645769467355, 'macd_lag_1': -0.012551612240764898, 'macd_lag_2': -0.013935666773879474, 'macd_lag_3': -0.014837704278644559, 'macd_lag_4': -0.014733343160607537, 'macd_lag_5': -0.014858475208042288, 'macd_12_26_9': -0.011916746960576707, 'macds_12_26_9': -0.013324063710599934}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 0.3314760029315948, '2022-07-13': 0.3240480124950409, '2022-07-14': 0.3156920075416565, '2022-07-15': 0.3175489902496338, '2022-07-18': 0.3389039933681488, '2022-07-19': 0.3342620134353637, '2022-07-20': 0.3342620134353637, '2022-07-21': 0.343546986579895, '2022-07-22': 0.356546014547348, '2022-07-25': 0.3370470106601715}, '1_month_later': {'2022-08-11': 0.363974004983902}, '3_months_later': {'2022-10-11': 0.224698007106781}, '6_months_later': {'2023-01-11': 0.1949860006570816}, '12_months_later': {'2023-07-11': 0.3109999895095825}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DSWL
{'date': '2022-07-11', 'ticker': 'DSWL', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 3.049999952316284, 'high': 3.0999999046325684, 'open': 3.0999999046325684, 'close': 3.0899999141693115, 'ema_50': 3.287414425210973, 'rsi_14': 43.85964985662822, 'target': 3.0299999713897705, 'volume': 3400.0, 'ema_200': 3.6384477690168096, 'adj_close': 2.7823591232299805, 'rsi_lag_1': 44.76744145751334, 'rsi_lag_2': 53.80434986830616, 'rsi_lag_3': 48.795182107234915, 'rsi_lag_4': 48.50298879718579, 'rsi_lag_5': 50.29239725314032, 'macd_lag_1': -0.044934974376452, 'macd_lag_2': -0.042760563486220704, 'macd_lag_3': -0.04954508540991531, 'macd_lag_4': -0.039156667171280635, 'macd_lag_5': -0.03347316314700288, 'macd_12_26_9': -0.04692421320915541, 'macds_12_26_9': -0.04302218242414134}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 3.0299999713897705, '2022-07-13': 3.0999999046325684, '2022-07-14': 3.049999952316284, '2022-07-15': 3.069999933242798, '2022-07-18': 3.3399999141693115, '2022-07-19': 3.130000114440918, '2022-07-20': 3.25, '2022-07-21': 3.289999961853028, '2022-07-22': 3.2100000381469727, '2022-07-25': 3.180000066757202}, '1_month_later': {'2022-08-11': 3.190000057220459}, '3_months_later': {'2022-10-11': 3.140000104904175}, '6_months_later': {'2023-01-11': 3.140000104904175}, '12_months_later': {'2023-07-11': 2.5799999237060547}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DSX
{'date': '2022-07-11', 'ticker': 'DSX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/diana-shipping-series-b-cumulative-redeemable-perpetual-preferred-shares-about-to-put-0', 'news_author': None, 'news_article': 'On 7/13/22, Diana Shipping Inc\'s 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) will trade ex-dividend, for its quarterly dividend of $0.5547, payable on 7/15/22. As a percentage of DSX.PRB\'s recent share price of $26.10, this dividend works out to approximately 2.13%, so look for shares of DSX.PRB to trade 2.13% lower — all else being equal — when DSX.PRB shares open for trading on 7/13/22. On an annualized basis, the current yield is approximately 8.56%, which compares to an average yield of 8.12% in the "Transportation" preferred stock category, according to Preferred Stock Channel. The chart below shows the one year performance of DSX.PRB shares, versus DSX:\nBelow is a dividend history chart for DSX.PRB, showing historical dividends prior to the most recent $0.5547 on Diana Shipping Inc\'s 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares :\nIn Monday trading, Diana Shipping Inc\'s 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) is currently up about 0.7% on the day, while the common shares (Symbol: DSX) are off about 1.8%.\nClick here to learn which S.A.F.E. dividend stocks also have preferred shares that should be on your radar screen »\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': "On 7/13/22, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) will trade ex-dividend, for its quarterly dividend of $0.5547, payable on 7/15/22. The chart below shows the one year performance of DSX.PRB shares, versus DSX: Below is a dividend history chart for DSX.PRB, showing historical dividends prior to the most recent $0.5547 on Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares : In Monday trading, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) is currently up about 0.7% on the day, while the common shares (Symbol: DSX) are off about 1.8%. As a percentage of DSX.PRB's recent share price of $26.10, this dividend works out to approximately 2.13%, so look for shares of DSX.PRB to trade 2.13% lower — all else being equal — when DSX.PRB shares open for trading on 7/13/22.", 'news_luhn_summary': "On 7/13/22, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) will trade ex-dividend, for its quarterly dividend of $0.5547, payable on 7/15/22. The chart below shows the one year performance of DSX.PRB shares, versus DSX: Below is a dividend history chart for DSX.PRB, showing historical dividends prior to the most recent $0.5547 on Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares : In Monday trading, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) is currently up about 0.7% on the day, while the common shares (Symbol: DSX) are off about 1.8%. As a percentage of DSX.PRB's recent share price of $26.10, this dividend works out to approximately 2.13%, so look for shares of DSX.PRB to trade 2.13% lower — all else being equal — when DSX.PRB shares open for trading on 7/13/22.", 'news_article_title': 'Diana Shipping Series B Cumulative Redeemable Perpetual Preferred Shares About To Put More Money In Your Pocket', 'news_lexrank_summary': "On 7/13/22, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) will trade ex-dividend, for its quarterly dividend of $0.5547, payable on 7/15/22. As a percentage of DSX.PRB's recent share price of $26.10, this dividend works out to approximately 2.13%, so look for shares of DSX.PRB to trade 2.13% lower — all else being equal — when DSX.PRB shares open for trading on 7/13/22. The chart below shows the one year performance of DSX.PRB shares, versus DSX: Below is a dividend history chart for DSX.PRB, showing historical dividends prior to the most recent $0.5547 on Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares : In Monday trading, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) is currently up about 0.7% on the day, while the common shares (Symbol: DSX) are off about 1.8%.", 'news_textrank_summary': "As a percentage of DSX.PRB's recent share price of $26.10, this dividend works out to approximately 2.13%, so look for shares of DSX.PRB to trade 2.13% lower — all else being equal — when DSX.PRB shares open for trading on 7/13/22. The chart below shows the one year performance of DSX.PRB shares, versus DSX: Below is a dividend history chart for DSX.PRB, showing historical dividends prior to the most recent $0.5547 on Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares : In Monday trading, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) is currently up about 0.7% on the day, while the common shares (Symbol: DSX) are off about 1.8%. On 7/13/22, Diana Shipping Inc's 8.875% Series B Cumulative Redeemable Perpetual Preferred Shares (Symbol: DSX.PRB) will trade ex-dividend, for its quarterly dividend of $0.5547, payable on 7/15/22."}, {'news_url': 'https://www.nasdaq.com/articles/5-reasons-why-investors-should-buy-golar-lng-glng-stock', 'news_author': None, 'news_article': 'Golar LNG Limited GLNG is benefiting from an improved FLNG (Floating Liquefied Natural Gas) performance.\nAgainst this backdrop, let’s look at the factors that make this stock an attractive pick.\nWhat Makes Golar LNG an Attractive Pick?\nAn Outperformer: A glimpse at the company’s price trend reveals that the stock has had an impressive run on the bourse over the past year. Shares of Golar LNG have gained 81.7% so far this year, outperforming the 4.9% growth of the industry it belongs to.\n\nImage Source: Zacks Investment Research\nSolid Zacks Rank: Golar LNG has a Zacks Rank #2 (Buy). Our research shows that stocks with a Zacks Rank #1 (Strong Buy) or #2 offer the best investment opportunities. Thus, the company is a compelling investment proposition at the moment. You can see the complete list of today’s Zacks #1 Rank stocks here.\nNorthward Estimate Revisions: The direction of estimate revisions serves as an important pointer regarding the price of a stock. Over the past 90 days, the Zacks Consensus Estimate for Golar LNG’s second-quarter 2022 earnings has moved up 33.3% year over year to 24 cents. For full-year 2022, the company’s earnings have increased 16.7% year over year.\nPositive Earnings Surprise History: Golar LNG has an impressive earnings surprise history. The company delivered an earnings surprise of 42.1% in the last four quarters, on average.\nGrowth Factors: Golar LNG is benefiting from an improved FLNG performance. The FLNG unit continues to perform well, aiding the company’s top line. Demand for LNG vessels is likely to get stronger owing to the Russia-Ukraine war, as the European countries look for gas supplies outside Russia. Improved shipping performance is aiding the company. The company anticipates a substantial improvement in cash generation in the next two years owing to strength in the LNG shipping market, increased utilization of Hilli, higher oil and gas price environment and the commencement of the Gimi contract in 2023. The company expects a significant increase in Adjusted EBITDA generation over the next two-three years, driven by its FLNG and shipping units.\nOther Stocks to Consider\nSome other stocks in the broader Zacks Transportation sector that investors can consider are Kirby KEX, C.H. Robinson Worldwide CHRW and Diana Shipping Inc. DSX, each carrying a Zacks Rank #2 as well.\nKirby has an expected earnings growth rate of 282.14% for the current year. KEX delivered a trailing four-quarter earnings surprise of 7.7%, on average.\nKEX has a long-term earnings growth rate of 12%.\nC.H. Robinson has an expected earnings growth rate of 15.9% for the current year. CHRW delivered a trailing four-quarter earnings surprise of 17.1%, on average.\nC.H. Robinson has a long-term earnings growth rate of 9%. Shares of CHRW have gained 8.8% over the past year.\nDiana has an expected earnings growth rate of 265.1% for the current year. The Zacks Consensus Estimate for DSX’s current-year earnings has improved 5.4% over the past 90 days.\nShares of DSX have gained 5.2% over the past year.\n\nZacks Names "Single Best Pick to Double"\nFrom thousands of stocks, 5 Zacks experts each have chosen their favorite to skyrocket +100% or more in months to come. From those 5, Director of Research Sheraz Mian hand-picks one to have the most explosive upside of all.\nIt’s a little-known chemical company that’s up 65% over last year, yet still dirt cheap. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.\nThis company could rival or surpass other recent Zacks’ Stocks Set to Double like Boston Beer Company which shot up +143.0% in little more than 9 months and NVIDIA which boomed +175.9% in one year.\nFree: See Our Top Stock and 4 Runners Up >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nC.H. Robinson Worldwide, Inc. (CHRW): Free Stock Analysis Report\n \nDiana Shipping inc. (DSX): Free Stock Analysis Report\n \nKirby Corporation (KEX): Free Stock Analysis Report\n \nGolar LNG Limited (GLNG): Free Stock Analysis Report\n \nTo read this article on Zacks.com click here.\n \nZacks Investment Research\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'Robinson Worldwide CHRW and Diana Shipping Inc. DSX, each carrying a Zacks Rank #2 as well. The Zacks Consensus Estimate for DSX’s current-year earnings has improved 5.4% over the past 90 days. Shares of DSX have gained 5.2% over the past year.', 'news_luhn_summary': 'Robinson Worldwide CHRW and Diana Shipping Inc. DSX, each carrying a Zacks Rank #2 as well. The Zacks Consensus Estimate for DSX’s current-year earnings has improved 5.4% over the past 90 days. Shares of DSX have gained 5.2% over the past year.', 'news_article_title': '5 Reasons Why Investors Should Buy Golar LNG (GLNG) Stock', 'news_lexrank_summary': 'Robinson Worldwide CHRW and Diana Shipping Inc. DSX, each carrying a Zacks Rank #2 as well. The Zacks Consensus Estimate for DSX’s current-year earnings has improved 5.4% over the past 90 days. Shares of DSX have gained 5.2% over the past year.', 'news_textrank_summary': 'Robinson Worldwide CHRW and Diana Shipping Inc. DSX, each carrying a Zacks Rank #2 as well. The Zacks Consensus Estimate for DSX’s current-year earnings has improved 5.4% over the past 90 days. Shares of DSX have gained 5.2% over the past year.'}, {'news_url': 'https://www.nasdaq.com/articles/is-diana-shipping-dsx-stock-undervalued-right-now', 'news_author': None, 'news_article': 'While the proven Zacks Rank places an emphasis on earnings estimates and estimate revisions to find strong stocks, we also know that investors tend to develop their own individual strategies. With this in mind, we are always looking at value, growth, and momentum trends to discover great companies.\nOf these, perhaps no stock market trend is more popular than value investing, which is a strategy that has proven to be successful in all sorts of market environments. Value investors rely on traditional forms of analysis on key valuation metrics to find stocks that they believe are undervalued, leaving room for profits.\nLuckily, Zacks has developed its own Style Scores system in an effort to find stocks with specific traits. Value investors will be interested in the system\'s "Value" category. Stocks with both "A" grades in the Value category and high Zacks Ranks are among the strongest value stocks on the market right now.\nOne company to watch right now is Diana Shipping (DSX). DSX is currently sporting a Zacks Rank of #2 (Buy), as well as an A grade for Value.\nInvestors should also recognize that DSX has a P/B ratio of 1.03. Investors use the P/B ratio to look at a stock\'s market value versus its book value, which is defined as total assets minus total liabilities. This stock\'s P/B looks solid versus its industry\'s average P/B of 1.07. Over the past 12 months, DSX\'s P/B has been as high as 1.49 and as low as 0.80, with a median of 1.06.\nFinally, we should also recognize that DSX has a P/CF ratio of 2.82. This figure highlights a company\'s operating cash flow and can be used to find firms that are undervalued when considering their impressive cash outlook. DSX\'s current P/CF looks attractive when compared to its industry\'s average P/CF of 2.90. Within the past 12 months, DSX\'s P/CF has been as high as 21.40 and as low as 2.67, with a median of 4.44.\nInvestors could also keep in mind Pangaea Logistics Solutions (PANL), an Transportation - Shipping stock with a Zacks Rank of # 1 (Strong Buy) and Value grade of A.\nAdditionally, Pangaea Logistics Solutions has a P/B ratio of 0.72 while its industry\'s price-to-book ratio sits at 1.07. For PANL, this valuation metric has been as high as 1.04, as low as 0.56, with a median of 0.76 over the past year.\nThese are only a few of the key metrics included in Diana Shipping and Pangaea Logistics Solutions strong Value grade, but they help show that the stocks are likely undervalued right now. When factoring in the strength of its earnings outlook, DSX and PANL look like an impressive value stock at the moment.\n\nZacks Names "Single Best Pick to Double"\nFrom thousands of stocks, 5 Zacks experts each have chosen their favorite to skyrocket +100% or more in months to come. From those 5, Director of Research Sheraz Mian hand-picks one to have the most explosive upside of all.\nIt’s a little-known chemical company that’s up 65% over last year, yet still dirt cheap. With unrelenting demand, soaring 2022 earnings estimates, and $1.5 billion for repurchasing shares, retail investors could jump in at any time.\nThis company could rival or surpass other recent Zacks’ Stocks Set to Double like Boston Beer Company which shot up +143.0% in little more than 9 months and NVIDIA which boomed +175.9% in one year.\nFree: See Our Top Stock and 4 Runners Up >>\n\nWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report\n \nDiana Shipping inc. (DSX): Free Stock Analysis Report\n \nPangaea Logistics Solutions Ltd. (PANL): Free Stock Analysis Report\n \nTo read this article on Zacks.com click here.\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.', 'news_publisher': None, 'news_lsa_summary': 'One company to watch right now is Diana Shipping (DSX). DSX is currently sporting a Zacks Rank of #2 (Buy), as well as an A grade for Value. Investors should also recognize that DSX has a P/B ratio of 1.03.', 'news_luhn_summary': 'Diana Shipping inc. (DSX): Free Stock Analysis Report One company to watch right now is Diana Shipping (DSX). DSX is currently sporting a Zacks Rank of #2 (Buy), as well as an A grade for Value.', 'news_article_title': 'Is Diana Shipping (DSX) Stock Undervalued Right Now?', 'news_lexrank_summary': 'One company to watch right now is Diana Shipping (DSX). DSX is currently sporting a Zacks Rank of #2 (Buy), as well as an A grade for Value. Investors should also recognize that DSX has a P/B ratio of 1.03.', 'news_textrank_summary': 'One company to watch right now is Diana Shipping (DSX). DSX is currently sporting a Zacks Rank of #2 (Buy), as well as an A grade for Value. Investors should also recognize that DSX has a P/B ratio of 1.03.'}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 4.409999847412109, 'high': 4.550000190734863, 'open': 4.429999828338623, 'close': 4.440000057220459, 'ema_50': 5.08653807015886, 'rsi_14': 36.57407489169615, 'target': 4.349999904632568, 'volume': 423000.0, 'ema_200': 4.765414470886237, 'adj_close': 3.649267435073853, 'rsi_lag_1': 36.07306453066804, 'rsi_lag_2': 31.34921100464689, 'rsi_lag_3': 31.075695546035703, 'rsi_lag_4': 37.55101429130009, 'rsi_lag_5': 34.20074000188252, 'macd_lag_1': -0.2828020911293141, 'macd_lag_2': -0.2883493753451436, 'macd_lag_3': -0.2932719161608439, 'macd_lag_4': -0.2698345494759975, 'macd_lag_5': -0.256358697676502, 'macd_12_26_9': -0.282412611780571, 'macds_12_26_9': -0.2543095056776281}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 4.349999904632568, '2022-07-13': 4.380000114440918, '2022-07-14': 4.360000133514404, '2022-07-15': 4.579999923706055, '2022-07-18': 4.739999771118164, '2022-07-19': 4.980000019073486, '2022-07-20': 5.090000152587891, '2022-07-21': 5.110000133514404, '2022-07-22': 4.900000095367432, '2022-07-25': 4.989999771118164}, '1_month_later': {'2022-08-11': 5.949999809265137}, '3_months_later': {'2022-10-11': 3.9800000190734863}, '6_months_later': {'2023-01-11': 3.5899999141693115}, '12_months_later': {'2023-07-11': 3.7699999809265137}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DT
{'date': '2022-07-11', 'ticker': 'DT', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 40.060001373291016, 'high': 41.95000076293945, 'open': 41.459999084472656, 'close': 41.34999847412109, 'ema_50': 40.639979829593386, 'rsi_14': 58.89230163935653, 'target': 36.93000030517578, 'volume': 1820500.0, 'ema_200': 47.309130338077104, 'adj_close': 41.34999847412109, 'rsi_lag_1': 63.77856861689734, 'rsi_lag_2': 56.20360446331615, 'rsi_lag_3': 56.20360446331611, 'rsi_lag_4': 58.018608702769384, 'rsi_lag_5': 49.103936911595724, 'macd_lag_1': 0.681890558000994, 'macd_lag_2': 0.6758023821628996, 'macd_lag_3': 0.6052563019257704, 'macd_lag_4': 0.6459009227324657, 'macd_lag_5': 0.6008196177229337, 'macd_12_26_9': 0.6262401032885521, 'macds_12_26_9': 0.6518645106445626}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 36.93000030517578, '2022-07-13': 37.27000045776367, '2022-07-14': 35.40999984741211, '2022-07-15': 36.27999877929688, '2022-07-18': 36.27999877929688, '2022-07-19': 36.900001525878906, '2022-07-20': 39.400001525878906, '2022-07-21': 39.90999984741211, '2022-07-22': 37.119998931884766, '2022-07-25': 36.90999984741211}, '1_month_later': {'2022-08-11': 42.84999847412109}, '3_months_later': {'2022-10-11': 34.25}, '6_months_later': {'2023-01-11': 37.27999877929688}, '12_months_later': {'2023-07-11': 54.970001220703125}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DTD
{'date': '2022-07-11', 'ticker': 'DTD', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 58.22999954223633, 'high': 58.52000045776367, 'open': 58.31999969482422, 'close': 58.29999923706055, 'ema_50': 60.09856550447748, 'rsi_14': 65.87535345348677, 'target': 57.91999816894531, 'volume': 21600.0, 'ema_200': 61.5578987228373, 'adj_close': 56.114540100097656, 'rsi_lag_1': 65.77777677308441, 'rsi_lag_2': 54.88257433940698, 'rsi_lag_3': 52.903229299616996, 'rsi_lag_4': 50.43370320614209, 'rsi_lag_5': 42.39583689305574, 'macd_lag_1': -0.6661395991850867, 'macd_lag_2': -0.737032427856164, 'macd_lag_3': -0.825960636672832, 'macd_lag_4': -0.8643242317825965, 'macd_lag_5': -0.8976633311446349, 'macd_12_26_9': -0.6277349045151794, 'macds_12_26_9': -0.8135011376783702}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 57.91999816894531, '2022-07-13': 57.63999938964844, '2022-07-14': 57.33000183105469, '2022-07-15': 58.2400016784668, '2022-07-18': 57.84999847412109, '2022-07-19': 59.11000061035156, '2022-07-20': 59.08000183105469, '2022-07-21': 59.2599983215332, '2022-07-22': 59.130001068115234, '2022-07-25': 59.459999084472656}, '1_month_later': {'2022-08-11': 62.040000915527344}, '3_months_later': {'2022-10-11': 55.150001525878906}, '6_months_later': {'2023-01-11': 62.20000076293945}, '12_months_later': {'2023-07-11': 62.209999084472656}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DTE
{'date': '2022-07-11', 'ticker': 'DTE', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 123.72000122070312, 'high': 126.0, 'open': 123.80999755859376, 'close': 126.0, 'ema_50': 126.78463501161052, 'rsi_14': 72.504364185155, 'target': 125.20999908447266, 'volume': 632000.0, 'ema_200': 123.56700272490856, 'adj_close': 119.83672332763672, 'rsi_lag_1': 68.24622323166554, 'rsi_lag_2': 62.41392214065456, 'rsi_lag_3': 64.70588796981087, 'rsi_lag_4': 54.3775103847083, 'rsi_lag_5': 53.26515299308192, 'macd_lag_1': -0.6341927710625725, 'macd_lag_2': -0.6828826323745432, 'macd_lag_3': -0.7849864541074538, 'macd_lag_4': -0.9873817293436247, 'macd_lag_5': -1.0307678402921425, 'macd_12_26_9': -0.4970801623171184, 'macds_12_26_9': -1.1514067673357458}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 125.20999908447266, '2022-07-13': 124.51000213623048, '2022-07-14': 124.51000213623048, '2022-07-15': 125.18000030517578, '2022-07-18': 123.66999816894533, '2022-07-19': 124.08999633789062, '2022-07-20': 121.45999908447266, '2022-07-21': 121.5199966430664, '2022-07-22': 123.75, '2022-07-25': 124.91000366210938}, '1_month_later': {'2022-08-11': 133.3300018310547}, '3_months_later': {'2022-10-11': 106.3000030517578}, '6_months_later': {'2023-01-11': 120.72000122070312}, '12_months_later': {'2023-07-11': 110.8499984741211}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DTEC
{'date': '2022-07-11', 'ticker': 'DTEC', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 33.82099914550781, 'high': 34.189998626708984, 'open': 34.189998626708984, 'close': 33.83000183105469, 'ema_50': 35.38365058712733, 'rsi_14': 59.83609865916992, 'target': 33.44499969482422, 'volume': 5000.0, 'ema_200': 40.68873890942889, 'adj_close': 33.72841262817383, 'rsi_lag_1': 71.43940451388738, 'rsi_lag_2': 60.33268168627709, 'rsi_lag_3': 60.20539130758405, 'rsi_lag_4': 58.048137688758544, 'rsi_lag_5': 45.15512908847728, 'macd_lag_1': -0.2946206320717053, 'macd_lag_2': -0.3748099724057994, 'macd_lag_3': -0.4844362217426976, 'macd_lag_4': -0.5424764091624681, 'macd_lag_5': -0.5974661657364635, 'macd_12_26_9': -0.2930519156057798, 'macds_12_26_9': -0.474748904129953}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 33.44499969482422, '2022-07-13': 33.38999938964844, '2022-07-14': 33.0, '2022-07-15': 33.74599838256836, '2022-07-18': 33.70899963378906, '2022-07-19': 34.72800064086914, '2022-07-20': 35.494998931884766, '2022-07-21': 36.06600189208984, '2022-07-22': 35.55699920654297, '2022-07-25': 35.36000061035156}, '1_month_later': {'2022-08-11': 38.24300003051758}, '3_months_later': {'2022-10-11': 30.96299934387207}, '6_months_later': {'2023-01-11': 34.88999938964844}, '12_months_later': {'2023-07-11': 39.39500045776367}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
dth
{'date': '2022-07-11', 'ticker': 'dth', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 33.45000076293945, 'high': 33.63999938964844, 'open': 33.599998474121094, 'close': 33.45000076293945, 'ema_50': 36.608508056882975, 'rsi_14': 24.824385471990567, 'target': 33.5099983215332, 'volume': 16300.0, 'ema_200': 38.249484158050016, 'adj_close': 31.20609664916992, 'rsi_lag_1': 25.298347390348013, 'rsi_lag_2': 21.097038942894642, 'rsi_lag_3': 24.74853341540937, 'rsi_lag_4': 24.02347227903283, 'rsi_lag_5': 24.356469000150327, 'macd_lag_1': -1.0658074047721442, 'macd_lag_2': -1.0847092394177125, 'macd_lag_3': -1.0869480341478095, 'macd_lag_4': -1.0200318850327434, 'macd_lag_5': -0.9442222527329278, 'macd_12_26_9': -1.0827269047467283, 'macds_12_26_9': -0.9813960579616373}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 33.5099983215332, '2022-07-13': 33.43000030517578, '2022-07-14': 32.7400016784668, '2022-07-15': 33.119998931884766, '2022-07-18': 33.36000061035156, '2022-07-19': 34.060001373291016, '2022-07-20': 33.7400016784668, '2022-07-21': 33.900001525878906, '2022-07-22': 33.810001373291016, '2022-07-25': 34.279998779296875}, '1_month_later': {'2022-08-11': 35.369998931884766}, '3_months_later': {'2022-10-11': 30.270000457763672}, '6_months_later': {'2023-01-11': 37.59000015258789}, '12_months_later': {'2023-07-11': 36.86000061035156}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
dtil
{'date': '2022-07-11', 'ticker': 'dtil', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 1.559999942779541, 'high': 1.7400000095367432, 'open': 1.7400000095367432, 'close': 1.5800000429153442, 'ema_50': 1.8360181947521068, 'rsi_14': 61.11111157102344, 'target': 1.5099999904632568, 'volume': 2369900.0, 'ema_200': 4.633535097224857, 'adj_close': 1.5800000429153442, 'rsi_lag_1': 71.22301936155803, 'rsi_lag_2': 64.06249694409857, 'rsi_lag_3': 62.903220534449744, 'rsi_lag_4': 67.24137523511715, 'rsi_lag_5': 57.37704613682313, 'macd_lag_1': -0.016830631680636587, 'macd_lag_2': -0.03551443622613726, 'macd_lag_3': -0.04153610477957703, 'macd_lag_4': -0.044545046501009766, 'macd_lag_5': -0.05588308126409536, 'macd_12_26_9': -0.014764051306459747, 'macds_12_26_9': -0.05183072516643705}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 1.5099999904632568, '2022-07-13': 1.5299999713897705, '2022-07-14': 1.5, '2022-07-15': 1.4199999570846558, '2022-07-18': 1.4800000190734863, '2022-07-19': 1.5399999618530271, '2022-07-20': 1.6799999475479126, '2022-07-21': 1.75, '2022-07-22': 1.590000033378601, '2022-07-25': 1.600000023841858}, '1_month_later': {'2022-08-11': 1.6299999952316284}, '3_months_later': {'2022-10-11': 1.3899999856948853}, '6_months_later': {'2023-01-11': 1.2999999523162842}, '12_months_later': {'2023-07-11': 0.6010000109672546}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DTSS
{'date': '2022-07-11', 'ticker': 'DTSS', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 1.809999942779541, 'high': 1.850000023841858, 'open': 1.8459999561309808, 'close': 1.850000023841858, 'ema_50': 1.8571977257869188, 'rsi_14': 72.58063833869967, 'target': 1.7869999408721924, 'volume': 32600.0, 'ema_200': 2.086993404174774, 'adj_close': 1.850000023841858, 'rsi_lag_1': 76.05633258914293, 'rsi_lag_2': 67.53247175475587, 'rsi_lag_3': 67.532466728222, 'rsi_lag_4': 66.21621665160441, 'rsi_lag_5': 63.63636645122297, 'macd_lag_1': -0.003524300933541946, 'macd_lag_2': -0.01772844320146283, 'macd_lag_3': -0.0335638639188891, 'macd_lag_4': -0.044123777669943465, 'macd_lag_5': -0.05288754379378169, 'macd_12_26_9': 0.007644463532020529, 'macds_12_26_9': -0.040246177828076844}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 1.7869999408721924, '2022-07-13': 1.7599999904632568, '2022-07-14': 1.7799999713897705, '2022-07-15': 2.180000066757202, '2022-07-18': 1.830000042915344, '2022-07-19': 1.850000023841858, '2022-07-20': 1.830000042915344, '2022-07-21': 2.220000028610229, '2022-07-22': 2.049999952316284, '2022-07-25': 1.809999942779541}, '1_month_later': {'2022-08-11': 1.399999976158142}, '3_months_later': {'2022-10-11': 1.4500000476837158}, '6_months_later': {'2023-01-11': 1.4800000190734863}, '12_months_later': {'2023-07-11': 0.8560000061988831}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DUG
{'date': '2022-07-11', 'ticker': 'DUG', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 22.600000381469727, 'high': 23.530000686645508, 'open': 23.030000686645508, 'close': 22.96999931335449, 'ema_50': 20.762345733966267, 'rsi_14': 51.86521867364725, 'target': 23.82999992370605, 'volume': 608800.0, 'ema_200': 35.99540023544567, 'adj_close': 22.02021789550781, 'rsi_lag_1': 56.355698209496715, 'rsi_lag_2': 60.629916677429904, 'rsi_lag_3': 67.82925212789459, 'rsi_lag_4': 66.12465931350353, 'rsi_lag_5': 66.01413366871134, 'macd_lag_1': 1.2092985525584226, 'macd_lag_2': 1.2458349686685217, 'macd_lag_3': 1.2804567164216927, 'macd_lag_4': 1.1207125772756434, 'macd_lag_5': 0.9850287762371117, 'macd_12_26_9': 1.2027893198405586, 'macds_12_26_9': 1.0198065335879987}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 23.82999992370605, '2022-07-13': 23.8799991607666, '2022-07-14': 24.709999084472656, '2022-07-15': 23.8700008392334, '2022-07-18': 22.90999984741211, '2022-07-19': 21.479999542236328, '2022-07-20': 20.979999542236328, '2022-07-21': 21.64999961853028, '2022-07-22': 22.049999237060547, '2022-07-25': 20.420000076293945}, '1_month_later': {'2022-08-11': 17.649999618530273}, '3_months_later': {'2022-10-11': 15.520000457763672}, '6_months_later': {'2023-01-11': 12.149999618530272}, '12_months_later': {'2023-07-11': 12.420000076293944}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DWAS
{'date': '2022-07-11', 'ticker': 'DWAS', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 67.23999786376953, 'high': 67.94999694824219, 'open': 67.87000274658203, 'close': 67.5, 'ema_50': 74.49405598776471, 'rsi_14': 43.03644784461372, 'target': 66.88999938964844, 'volume': 34500.0, 'ema_200': 80.68485276203118, 'adj_close': 66.14093017578125, 'rsi_lag_1': 44.09062218656954, 'rsi_lag_2': 34.31806827018073, 'rsi_lag_3': 28.548439363804917, 'rsi_lag_4': 31.02874528437239, 'rsi_lag_5': 25.675044807451044, 'macd_lag_1': -2.6907895718031654, 'macd_lag_2': -2.8523337399534796, 'macd_lag_3': -2.99361660428022, 'macd_lag_4': -2.881964788288201, 'macd_lag_5': -2.7861183036151544, 'macd_12_26_9': -2.6244994817222675, 'macds_12_26_9': -2.6366540030946943}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 66.88999938964844, '2022-07-13': 67.33999633789062, '2022-07-14': 66.30999755859375, '2022-07-15': 67.66999816894531, '2022-07-18': 68.12999725341797, '2022-07-19': 70.66999816894531, '2022-07-20': 71.72000122070312, '2022-07-21': 71.12999725341797, '2022-07-22': 69.80999755859375, '2022-07-25': 71.62000274658203}, '1_month_later': {'2022-08-11': 78.37999725341797}, '3_months_later': {'2022-10-11': 70.19999694824219}, '6_months_later': {'2023-01-11': 74.8499984741211}, '12_months_later': {'2023-07-11': 78.93000030517578}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
dvye
{'date': '2022-07-11', 'ticker': 'dvye', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 25.31999969482422, 'high': 25.59000015258789, 'open': 25.549999237060547, 'close': 25.51000022888184, 'ema_50': 28.489203146534834, 'rsi_14': 37.81904903517486, 'target': 25.309999465942383, 'volume': 92200.0, 'ema_200': 33.25825330477905, 'adj_close': 21.782733917236328, 'rsi_lag_1': 40.54727536615581, 'rsi_lag_2': 33.88774575912959, 'rsi_lag_3': 29.95595879628833, 'rsi_lag_4': 30.155226678147358, 'rsi_lag_5': 28.451897370416162, 'macd_lag_1': -0.916298411216026, 'macd_lag_2': -0.9534204638613595, 'macd_lag_3': -0.989988189110008, 'macd_lag_4': -0.954043886090389, 'macd_lag_5': -0.9034525347020761, 'macd_12_26_9': -0.9174558137412667, 'macds_12_26_9': -0.9256571296990923}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 25.309999465942383, '2022-07-13': 25.200000762939453, '2022-07-14': 24.6200008392334, '2022-07-15': 24.780000686645508, '2022-07-18': 25.01000022888184, '2022-07-19': 25.309999465942383, '2022-07-20': 25.25, '2022-07-21': 25.299999237060547, '2022-07-22': 25.11000061035156, '2022-07-25': 25.459999084472656}, '1_month_later': {'2022-08-11': 26.21999931335449}, '3_months_later': {'2022-10-11': 23.020000457763672}, '6_months_later': {'2023-01-11': 25.420000076293945}, '12_months_later': {'2023-07-11': 24.549999237060547}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DVYA
{'date': '2022-07-11', 'ticker': 'DVYA', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 32.66999816894531, 'high': 32.81999969482422, 'open': 32.81999969482422, 'close': 32.66999816894531, 'ema_50': 34.78385285231057, 'rsi_14': 52.36963140272344, 'target': 32.72999954223633, 'volume': 4300.0, 'ema_200': 36.99778659028832, 'adj_close': 29.355676651000977, 'rsi_lag_1': 53.640768383929014, 'rsi_lag_2': 43.69367627816025, 'rsi_lag_3': 44.32068620404307, 'rsi_lag_4': 43.07359235870743, 'rsi_lag_5': 41.2862980230829, 'macd_lag_1': -0.7088482330304373, 'macd_lag_2': -0.7706475765820002, 'macd_lag_3': -0.8108256364470421, 'macd_lag_4': -0.8065317743449256, 'macd_lag_5': -0.8005199357799242, 'macd_12_26_9': -0.6986198537162736, 'macds_12_26_9': -0.7776635867701491}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 32.72999954223633, '2022-07-13': 32.7599983215332, '2022-07-14': 32.470001220703125, '2022-07-15': 32.5, '2022-07-18': 32.779998779296875, '2022-07-19': 33.5, '2022-07-20': 33.5, '2022-07-21': 33.7599983215332, '2022-07-22': 33.959999084472656, '2022-07-25': 34.209999084472656}, '1_month_later': {'2022-08-11': 35.40999984741211}, '3_months_later': {'2022-10-11': 28.90999984741211}, '6_months_later': {'2023-01-11': 34.86000061035156}, '12_months_later': {'2023-07-11': 32.880001068115234}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DVY
{'date': '2022-07-11', 'ticker': 'DVY', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/noteworthy-etf-outflows%3A-dvy-vlo-oke-t', 'news_author': None, 'news_article': "Looking today at week-over-week shares outstanding changes among the universe of ETFs covered at ETF Channel, one standout is the iShares Select Dividend ETF (Symbol: DVY) where we have detected an approximate $117.9 million dollar outflow -- that's a 0.6% decrease week over week (from 181,550,000 to 180,550,000). Among the largest underlying components of DVY, in trading today Valero Energy Corp (Symbol: VLO) is down about 1.9%, ONEOK Inc (Symbol: OKE) is off about 3.7%, and AT&T Inc (Symbol: T) is lower by about 0.4%. For a complete list of holdings, visit the DVY Holdings page » The chart below shows the one year price performance of DVY, versus its 200 day moving average:\nLooking at the chart above, DVY's low point in its 52 week range is $111.53 per share, with $133.33 as the 52 week high point — that compares with a last trade of $117.23. Comparing the most recent share price to the 200 day moving average can also be a useful technical analysis technique -- learn more about the 200 day moving average ».\nFree Report: Top 7%+ Dividends (paid monthly)\nExchange traded funds (ETFs) trade just like stocks, but instead of ''shares'' investors are actually buying and selling ''units''. These ''units'' can be traded back and forth just like stocks, but can also be created or destroyed to accommodate investor demand. Each week we monitor the week-over-week change in shares outstanding data, to keep a lookout for those ETFs experiencing notable inflows (many new units created) or outflows (many old units destroyed). Creation of new units will mean the underlying holdings of the ETF need to be purchased, while destruction of units involves selling underlying holdings, so large flows can also impact the individual components held within ETFs.\nClick here to find out which 9 other ETFs experienced notable outflows »\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': "For a complete list of holdings, visit the DVY Holdings page » The chart below shows the one year price performance of DVY, versus its 200 day moving average: Looking at the chart above, DVY's low point in its 52 week range is $111.53 per share, with $133.33 as the 52 week high point — that compares with a last trade of $117.23. Looking today at week-over-week shares outstanding changes among the universe of ETFs covered at ETF Channel, one standout is the iShares Select Dividend ETF (Symbol: DVY) where we have detected an approximate $117.9 million dollar outflow -- that's a 0.6% decrease week over week (from 181,550,000 to 180,550,000). Among the largest underlying components of DVY, in trading today Valero Energy Corp (Symbol: VLO) is down about 1.9%, ONEOK Inc (Symbol: OKE) is off about 3.7%, and AT&T Inc (Symbol: T) is lower by about 0.4%.", 'news_luhn_summary': "For a complete list of holdings, visit the DVY Holdings page » The chart below shows the one year price performance of DVY, versus its 200 day moving average: Looking at the chart above, DVY's low point in its 52 week range is $111.53 per share, with $133.33 as the 52 week high point — that compares with a last trade of $117.23. Looking today at week-over-week shares outstanding changes among the universe of ETFs covered at ETF Channel, one standout is the iShares Select Dividend ETF (Symbol: DVY) where we have detected an approximate $117.9 million dollar outflow -- that's a 0.6% decrease week over week (from 181,550,000 to 180,550,000). Among the largest underlying components of DVY, in trading today Valero Energy Corp (Symbol: VLO) is down about 1.9%, ONEOK Inc (Symbol: OKE) is off about 3.7%, and AT&T Inc (Symbol: T) is lower by about 0.4%.", 'news_article_title': 'Noteworthy ETF Outflows: DVY, VLO, OKE, T', 'news_lexrank_summary': "For a complete list of holdings, visit the DVY Holdings page » The chart below shows the one year price performance of DVY, versus its 200 day moving average: Looking at the chart above, DVY's low point in its 52 week range is $111.53 per share, with $133.33 as the 52 week high point — that compares with a last trade of $117.23. Looking today at week-over-week shares outstanding changes among the universe of ETFs covered at ETF Channel, one standout is the iShares Select Dividend ETF (Symbol: DVY) where we have detected an approximate $117.9 million dollar outflow -- that's a 0.6% decrease week over week (from 181,550,000 to 180,550,000). Among the largest underlying components of DVY, in trading today Valero Energy Corp (Symbol: VLO) is down about 1.9%, ONEOK Inc (Symbol: OKE) is off about 3.7%, and AT&T Inc (Symbol: T) is lower by about 0.4%.", 'news_textrank_summary': "Looking today at week-over-week shares outstanding changes among the universe of ETFs covered at ETF Channel, one standout is the iShares Select Dividend ETF (Symbol: DVY) where we have detected an approximate $117.9 million dollar outflow -- that's a 0.6% decrease week over week (from 181,550,000 to 180,550,000). For a complete list of holdings, visit the DVY Holdings page » The chart below shows the one year price performance of DVY, versus its 200 day moving average: Looking at the chart above, DVY's low point in its 52 week range is $111.53 per share, with $133.33 as the 52 week high point — that compares with a last trade of $117.23. Among the largest underlying components of DVY, in trading today Valero Energy Corp (Symbol: VLO) is down about 1.9%, ONEOK Inc (Symbol: OKE) is off about 3.7%, and AT&T Inc (Symbol: T) is lower by about 0.4%."}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 117.06999969482422, 'high': 118.11000061035156, 'open': 117.2699966430664, 'close': 117.73999786376952, 'ema_50': 121.86950330637674, 'rsi_14': 65.98447199952616, 'target': 117.38999938964844, 'volume': 592600.0, 'ema_200': 121.80538066080737, 'adj_close': 110.88678741455078, 'rsi_lag_1': 63.30399864044897, 'rsi_lag_2': 52.293064375799716, 'rsi_lag_3': 48.98810632104309, 'rsi_lag_4': 46.18406270657587, 'rsi_lag_5': 40.20517732650777, 'macd_lag_1': -1.7893855663105285, 'macd_lag_2': -1.90494035302099, 'macd_lag_3': -2.062394287582947, 'macd_lag_4': -2.119328435218108, 'macd_lag_5': -2.161170515505603, 'macd_12_26_9': -1.6888300908351113, 'macds_12_26_9': -2.0448805397749075}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 117.38999938964844, '2022-07-13': 116.31999969482422, '2022-07-14': 115.25, '2022-07-15': 116.9800033569336, '2022-07-18': 116.51000213623048, '2022-07-19': 118.6500015258789, '2022-07-20': 118.12000274658205, '2022-07-21': 117.86000061035156, '2022-07-22': 117.77999877929688, '2022-07-25': 118.9499969482422}, '1_month_later': {'2022-08-11': 124.95999908447266}, '3_months_later': {'2022-10-11': 108.37000274658205}, '6_months_later': {'2023-01-11': 125.04000091552734}, '12_months_later': {'2023-07-11': 114.72000122070312}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
EBND
{'date': '2022-07-11', 'ticker': 'EBND', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': [{'news_url': 'https://www.nasdaq.com/articles/spdr-bloomberg-emerging-markets-local-bond-ebnd-enters-oversold-territory', 'news_author': None, 'news_article': "In trading on Monday, shares of the SPDR Bloomberg Emerging Markets Local Bond ETF (Symbol: EBND) entered into oversold territory, changing hands as low as $19.86 per share. We define oversold territory using the Relative Strength Index, or RSI, which is a technical analysis indicator used to measure momentum on a scale of zero to 100. A stock is considered to be oversold if the RSI reading falls below 30.\nIn the case of SPDR Bloomberg Emerging Markets Local Bond, the RSI reading has hit 29.96 — by comparison, the RSI reading for the S&P 500 is currently 49.4. A bullish investor could look at EBND's 29.96 reading as a sign that the recent heavy selling is in the process of exhausting itself, and begin to look for entry point opportunities on the buy side.\nLooking at a chart of one year performance (below), EBND's low point in its 52 week range is $19.85 per share, with $26.40 as the 52 week high point — that compares with a last trade of $19.86. SPDR Bloomberg Emerging Markets Local Bond shares are currently trading off about 0.8% on the day.\nClick here to find out what 9 other oversold dividend stocks you need to know about »\nThe views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.", 'news_publisher': None, 'news_lsa_summary': "A bullish investor could look at EBND's 29.96 reading as a sign that the recent heavy selling is in the process of exhausting itself, and begin to look for entry point opportunities on the buy side. In trading on Monday, shares of the SPDR Bloomberg Emerging Markets Local Bond ETF (Symbol: EBND) entered into oversold territory, changing hands as low as $19.86 per share. Looking at a chart of one year performance (below), EBND's low point in its 52 week range is $19.85 per share, with $26.40 as the 52 week high point — that compares with a last trade of $19.86.", 'news_luhn_summary': "In trading on Monday, shares of the SPDR Bloomberg Emerging Markets Local Bond ETF (Symbol: EBND) entered into oversold territory, changing hands as low as $19.86 per share. A bullish investor could look at EBND's 29.96 reading as a sign that the recent heavy selling is in the process of exhausting itself, and begin to look for entry point opportunities on the buy side. Looking at a chart of one year performance (below), EBND's low point in its 52 week range is $19.85 per share, with $26.40 as the 52 week high point — that compares with a last trade of $19.86.", 'news_article_title': 'SPDR Bloomberg Emerging Markets Local Bond (EBND) Enters Oversold Territory', 'news_lexrank_summary': "In trading on Monday, shares of the SPDR Bloomberg Emerging Markets Local Bond ETF (Symbol: EBND) entered into oversold territory, changing hands as low as $19.86 per share. A bullish investor could look at EBND's 29.96 reading as a sign that the recent heavy selling is in the process of exhausting itself, and begin to look for entry point opportunities on the buy side. Looking at a chart of one year performance (below), EBND's low point in its 52 week range is $19.85 per share, with $26.40 as the 52 week high point — that compares with a last trade of $19.86.", 'news_textrank_summary': "In trading on Monday, shares of the SPDR Bloomberg Emerging Markets Local Bond ETF (Symbol: EBND) entered into oversold territory, changing hands as low as $19.86 per share. Looking at a chart of one year performance (below), EBND's low point in its 52 week range is $19.85 per share, with $26.40 as the 52 week high point — that compares with a last trade of $19.86. A bullish investor could look at EBND's 29.96 reading as a sign that the recent heavy selling is in the process of exhausting itself, and begin to look for entry point opportunities on the buy side."}], 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 19.82999992370605, 'high': 19.959999084472656, 'open': 19.90999984741211, 'close': 19.86000061035156, 'ema_50': 20.904999129614907, 'rsi_14': 29.600021972622756, 'target': 19.84000015258789, 'volume': 2027400.0, 'ema_200': 22.86353776443095, 'adj_close': 18.314695358276367, 'rsi_lag_1': 30.57855668998056, 'rsi_lag_2': 29.60002197262284, 'rsi_lag_3': 39.72607392659616, 'rsi_lag_4': 44.27483805777074, 'rsi_lag_5': 35.80247931062502, 'macd_lag_1': -0.2680909368262334, 'macd_lag_2': -0.2645738794542041, 'macd_lag_3': -0.2592909091447986, 'macd_lag_4': -0.23452193050720993, 'macd_lag_5': -0.2249510242387629, 'macd_12_26_9': -0.28135255838245854, 'macds_12_26_9': -0.25385392398599765}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 19.84000015258789, '2022-07-13': 19.940000534057617, '2022-07-14': 19.76000022888184, '2022-07-15': 19.93000030517578, '2022-07-18': 19.959999084472656, '2022-07-19': 20.049999237060547, '2022-07-20': 20.01000022888184, '2022-07-21': 20.07999992370605, '2022-07-22': 20.15999984741211, '2022-07-25': 20.15999984741211}, '1_month_later': {'2022-08-11': 20.86000061035156}, '3_months_later': {'2022-10-11': 18.8799991607666}, '6_months_later': {'2023-01-11': 21.209999084472656}, '12_months_later': {'2023-07-11': 21.1200008392334}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DVAX
{'date': '2022-07-11', 'ticker': 'DVAX', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 14.170000076293944, 'high': 14.670000076293944, 'open': 14.649999618530272, 'close': 14.239999771118164, 'ema_50': 11.837828800820521, 'rsi_14': 81.74474650980596, 'target': 14.579999923706056, 'volume': 1453800.0, 'ema_200': 11.925071270258401, 'adj_close': 14.239999771118164, 'rsi_lag_1': 91.04730192329686, 'rsi_lag_2': 80.8176077052079, 'rsi_lag_3': 79.7678254045524, 'rsi_lag_4': 79.90115096065787, 'rsi_lag_5': 62.33552647057993, 'macd_lag_1': 0.8776282271032674, 'macd_lag_2': 0.7857453224495874, 'macd_lag_3': 0.682494846728714, 'macd_lag_4': 0.5947461054859939, 'macd_lag_5': 0.4781686739723412, 'macd_12_26_9': 0.8917515182434315, 'macds_12_26_9': 0.6523060111821497}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 14.579999923706056, '2022-07-13': 14.40999984741211, '2022-07-14': 14.0, '2022-07-15': 14.460000038146973, '2022-07-18': 13.920000076293944, '2022-07-19': 14.550000190734863, '2022-07-20': 15.149999618530272, '2022-07-21': 15.18000030517578, '2022-07-22': 14.779999732971191, '2022-07-25': 14.829999923706056}, '1_month_later': {'2022-08-11': 16.690000534057617}, '3_months_later': {'2022-10-11': 10.880000114440918}, '6_months_later': {'2023-01-11': 10.960000038146973}, '12_months_later': {'2023-07-11': 13.460000038146973}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DVA
{'date': '2022-07-11', 'ticker': 'DVA', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 81.44000244140625, 'high': 83.01000213623047, 'open': 82.37999725341797, 'close': 81.95999908447266, 'ema_50': 91.99353429580215, 'rsi_14': 40.04236979924353, 'target': 84.5, 'volume': 671500.0, 'ema_200': 104.72160358375011, 'adj_close': 81.95999908447266, 'rsi_lag_1': 43.681176182770976, 'rsi_lag_2': 41.91195085404098, 'rsi_lag_3': 36.65294631690763, 'rsi_lag_4': 39.048167545680116, 'rsi_lag_5': 36.524536405440955, 'macd_lag_1': -3.6779219857908316, 'macd_lag_2': -4.014743851622839, 'macd_lag_3': -4.4473455126262, 'macd_lag_4': -4.580486265235422, 'macd_lag_5': -4.870124484778785, 'macd_12_26_9': -3.464652474372315, 'macds_12_26_9': -4.285438396116727}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 84.5, '2022-07-13': 83.9800033569336, '2022-07-14': 82.62999725341797, '2022-07-15': 85.47000122070312, '2022-07-18': 84.95999908447266, '2022-07-19': 87.66999816894531, '2022-07-20': 86.16999816894531, '2022-07-21': 86.16999816894531, '2022-07-22': 87.0999984741211, '2022-07-25': 85.88999938964844}, '1_month_later': {'2022-08-11': 91.58999633789062}, '3_months_later': {'2022-10-11': 87.94000244140625}, '6_months_later': {'2023-01-11': 79.76000213623047}, '12_months_later': {'2023-07-11': 103.06999969482422}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DUST
{'date': '2022-07-11', 'ticker': 'DUST', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 21.15999984741211, 'high': 22.06999969482422, 'open': 21.93000030517578, 'close': 21.979999542236328, 'ema_50': 17.43710535344261, 'rsi_14': 72.25377554667827, 'target': 22.6299991607666, 'volume': 2340200.0, 'ema_200': 17.816982667908327, 'adj_close': 21.140625, 'rsi_lag_1': 71.47029217523087, 'rsi_lag_2': 66.57431674058007, 'rsi_lag_3': 67.25746427991905, 'rsi_lag_4': 68.8553674683849, 'rsi_lag_5': 69.66291856989403, 'macd_lag_1': 1.4064456366420934, 'macd_lag_2': 1.3875075540176454, 'macd_lag_3': 1.3563902183448278, 'macd_lag_4': 1.2317801019431691, 'macd_lag_5': 1.086379255351872, 'macd_12_26_9': 1.4626911379215244, 'macds_12_26_9': 1.2068166900075825}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 22.6299991607666, '2022-07-13': 21.6200008392334, '2022-07-14': 23.450000762939453, '2022-07-15': 23.729999542236328, '2022-07-18': 23.440000534057617, '2022-07-19': 22.950000762939453, '2022-07-20': 24.270000457763672, '2022-07-21': 23.299999237060547, '2022-07-22': 23.88999938964844, '2022-07-25': 25.5}, '1_month_later': {'2022-08-11': 21.46999931335449}, '3_months_later': {'2022-10-11': 24.93000030517578}, '6_months_later': {'2023-01-11': 11.93000030517578}, '12_months_later': {'2023-07-11': 11.989999771118164}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DUSL
{'date': '2022-07-11', 'ticker': 'DUSL', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 24.450000762939453, 'high': 24.99300003051757, 'open': 24.809999465942383, 'close': 24.600000381469727, 'ema_50': 28.893808644701952, 'rsi_14': 57.135926141557086, 'target': 24.32999992370605, 'volume': 4400.0, 'ema_200': 35.89535951757, 'adj_close': 24.061229705810547, 'rsi_lag_1': 60.60761300838629, 'rsi_lag_2': 48.20609607671891, 'rsi_lag_3': 47.79988924060848, 'rsi_lag_4': 44.76110826350116, 'rsi_lag_5': 40.42392799377864, 'macd_lag_1': -1.3780804846508445, 'macd_lag_2': -1.489584425713673, 'macd_lag_3': -1.638848241915177, 'macd_lag_4': -1.7146017558996363, 'macd_lag_5': -1.7405328650728826, 'macd_12_26_9': -1.3230379609715044, 'macds_12_26_9': -1.6073578963150257}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 24.32999992370605, '2022-07-13': 23.51000022888184, '2022-07-14': 23.100000381469727, '2022-07-15': 24.1200008392334, '2022-07-18': 23.770000457763672, '2022-07-19': 26.290000915527344, '2022-07-20': 26.88999938964844, '2022-07-21': 27.39999961853028, '2022-07-22': 27.1299991607666, '2022-07-25': 27.51000022888184}, '1_month_later': {'2022-08-11': 34.619998931884766}, '3_months_later': {'2022-10-11': 21.93000030517578}, '6_months_later': {'2023-01-11': 35.630001068115234}, '12_months_later': {'2023-07-11': 40.18999862670898}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DURA
{'date': '2022-07-11', 'ticker': 'DURA', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 30.040000915527344, 'high': 30.18000030517578, 'open': 30.14999961853028, 'close': 30.09000015258789, 'ema_50': 30.845091625425006, 'rsi_14': 68.40147908121119, 'target': 30.040000915527344, 'volume': 11300.0, 'ema_200': 31.26881719424931, 'adj_close': 29.054384231567383, 'rsi_lag_1': 72.20074717929863, 'rsi_lag_2': 61.111111111111256, 'rsi_lag_3': 59.52379871117756, 'rsi_lag_4': 52.95950896186202, 'rsi_lag_5': 44.38644378077342, 'macd_lag_1': -0.26208728114532676, 'macd_lag_2': -0.28449520358787694, 'macd_lag_3': -0.31303056939787055, 'macd_lag_4': -0.3245351867048285, 'macd_lag_5': -0.32940791866928976, 'macd_12_26_9': -0.25191477033387955, 'macds_12_26_9': -0.3211398164813576}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 30.040000915527344, '2022-07-13': 29.88999938964844, '2022-07-14': 29.690000534057617, '2022-07-15': 30.11000061035156, '2022-07-18': 29.739999771118164, '2022-07-19': 30.229999542236328, '2022-07-20': 30.07999992370605, '2022-07-21': 30.18000030517578, '2022-07-22': 30.1299991607666, '2022-07-25': 30.26000022888184}, '1_month_later': {'2022-08-11': 31.25}, '3_months_later': {'2022-10-11': 27.84000015258789}, '6_months_later': {'2023-01-11': 32.540000915527344}, '12_months_later': {'2023-07-11': 31.6299991607666}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DVLU
{'date': '2022-07-11', 'ticker': 'DVLU', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 21.46999931335449, 'high': 21.790000915527344, 'open': 21.46999931335449, 'close': 21.59000015258789, 'ema_50': 23.42573728892664, 'rsi_14': 47.35771924349533, 'target': 21.46999931335449, 'volume': 6700.0, 'ema_200': 24.136454632684618, 'adj_close': 20.99788856506348, 'rsi_lag_1': 47.45417309571867, 'rsi_lag_2': 36.75077858377176, 'rsi_lag_3': 31.91850533750204, 'rsi_lag_4': 32.7526108090218, 'rsi_lag_5': 28.528067699027787, 'macd_lag_1': -0.7849114179607639, 'macd_lag_2': -0.8242369941705476, 'macd_lag_3': -0.8716054797902331, 'macd_lag_4': -0.8491325888284038, 'macd_lag_5': -0.8294797134913843, 'macd_12_26_9': -0.7547284862321, 'macds_12_26_9': -0.7792664062270188}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 21.46999931335449, '2022-07-13': 21.440000534057617, '2022-07-14': 20.989999771118164, '2022-07-15': 21.46999931335449, '2022-07-18': 21.559999465942383, '2022-07-19': 22.170000076293945, '2022-07-20': 22.229999542236328, '2022-07-21': 22.21999931335449, '2022-07-22': 22.200000762939453, '2022-07-25': 22.440000534057617}, '1_month_later': {'2022-08-11': 23.46999931335449}, '3_months_later': {'2022-10-11': 21.14999961853028}, '6_months_later': {'2023-01-11': 22.68000030517578}, '12_months_later': {'2023-07-11': 23.950000762939453}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.
DRQ
{'date': '2022-07-11', 'ticker': 'DRQ', 'fred_data': {'fred_cpi': 294.977, 'fred_gdp': None, 'fred_nfp': 153038.0, 'fred_ppi': 272.274, 'fred_retail_sales': 671067.0, 'fred_interest_rate': None, 'fred_trade_balance': -71040.0, 'fred_unemployment_rate': 3.5, 'fred_consumer_confidence': 51.5, 'fred_industrial_production': 103.0505, 'fred_effective_federal_funds_rate': None}, 'news_data': None, 'sec_filings': {'sec_fp': None, 'sec_fy': None, 'sec_rn': None, 'sec_end': None, 'sec_form': None, 'sec_label': None, 'sec_units': None, 'sec_value': None, 'sec_entity': None}, 'stock_metrics': {'low': 24.600000381469727, 'high': 25.530000686645508, 'open': 25.26000022888184, 'close': 24.81999969482422, 'ema_50': 27.907226063933056, 'rsi_14': 54.40084691922815, 'target': 23.790000915527344, 'volume': 155800.0, 'ema_200': 28.495262789183116, 'adj_close': 24.81999969482422, 'rsi_lag_1': 52.5614748491905, 'rsi_lag_2': 45.5868102512113, 'rsi_lag_3': 35.60923557397368, 'rsi_lag_4': 31.830981324638458, 'rsi_lag_5': 31.417976842063226, 'macd_lag_1': -1.1952755036662985, 'macd_lag_2': -1.3261496310671639, 'macd_lag_3': -1.430121309789019, 'macd_lag_4': -1.4086432572074443, 'macd_lag_5': -1.3984129081658878, 'macd_12_26_9': -1.149316936308253, 'macds_12_26_9': -1.3332697187127844}, 'financial_markets': [{'Low': 25.790000915527344, 'Date': '2022-07-11', 'High': 26.739999771118164, 'Open': 26.420000076293945, 'Close': 26.170000076293945, 'Source': 'volatility_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 26.170000076293945}, {'Low': 1.0054292678833008, 'Date': '2022-07-11', 'High': 1.0167768001556396, 'Open': 1.0166114568710327, 'Close': 1.0166114568710327, 'Source': 'forex_usd_eur', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.0166114568710327}, {'Low': 1.1869436502456665, 'Date': '2022-07-11', 'High': 1.2019952535629272, 'Open': 1.2017786502838137, 'Close': 1.2016630172729492, 'Source': 'forex_usd_gbp', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 1.2016630172729492}, {'Low': 6.694200038909912, 'Date': '2022-07-11', 'High': 6.718200206756592, 'Open': 6.694300174713135, 'Close': 6.694300174713135, 'Source': 'forex_usd_cny', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 6.694300174713135}, {'Low': 100.88999938964844, 'Date': '2022-07-11', 'High': 105.0500030517578, 'Open': 104.79000091552734, 'Close': 104.08999633789062, 'Source': 'crude_oil_futures_data', 'Volume': 348566, 'date_str': '2022-07-11', 'Adj Close': 104.08999633789062}, {'Low': 0.6717901825904846, 'Date': '2022-07-11', 'High': 0.6845999956130981, 'Open': 0.6845798492431641, 'Close': 0.6845798492431641, 'Source': 'forex_aud_usd', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 0.6845798492431641}, {'Low': 2.969000101089477, 'Date': '2022-07-11', 'High': 3.049000024795532, 'Open': 3.049000024795532, 'Close': 2.990999937057495, 'Source': 'us_10yr_treasury_yield', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 2.990999937057495}, {'Low': 136.27000427246094, 'Date': '2022-07-11', 'High': 137.7449951171875, 'Open': 136.30099487304688, 'Close': 136.30099487304688, 'Source': 'forex_usd_jpy', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 136.30099487304688}, {'Low': 106.91999816894533, 'Date': '2022-07-11', 'High': 108.2699966430664, 'Open': 106.91999816894533, 'Close': 108.0199966430664, 'Source': 'us_dollar_index', 'Volume': 0, 'date_str': '2022-07-11', 'Adj Close': 108.0199966430664}, {'Low': 1730.0, 'Date': '2022-07-11', 'High': 1736.699951171875, 'Open': 1732.5, 'Close': 1730.0, 'Source': 'gold_futures_data', 'Volume': 75, 'date_str': '2022-07-11', 'Adj Close': 1730.0}]}
{'next_10_days': {'2022-07-12': 23.790000915527344, '2022-07-13': 23.739999771118164, '2022-07-14': 23.26000022888184, '2022-07-15': 23.75, '2022-07-18': 24.459999084472656, '2022-07-19': 25.39999961853028, '2022-07-20': 25.100000381469727, '2022-07-21': 23.420000076293945, '2022-07-22': 23.46999931335449, '2022-07-25': 24.76000022888184}, '1_month_later': {'2022-08-11': 23.81999969482422}, '3_months_later': {'2022-10-11': 20.51000022888184}, '6_months_later': {'2023-01-11': 29.40999984741211}, '12_months_later': {'2023-07-11': 25.63999938964844}}
YOU ARE A STOCK PRICE PREDICTION TOOL. YOUR ONLY TASK IS TO PREDICT FUTURE STOCK PRICES BASED ON PROVIDED DATA. RESPOND IN A JSON FORMAT WITH PREDICTIONS FOR THE NEXT 10 BUSINESS DAYS, 1 MONTH, 3 MONTHS, 6 MONTHS, AND 1 YEAR.