Datasets:
We do not maintain this repository further. For accessing the most recent Indonesian Fake News dataset that we created, please visit BRIN's dataverse: https://data.brin.go.id/dataset.xhtml?persistentId=hdl:20.500.12690/RIN/7QBRKQ
Dataset for "Fact-Aware Fake-news Classification for Indonesian Language"
Disclaimer: Beta version, contains imbalanced representation of domain-specific NON-HOAX samples. We will release a new training and evaluation suite soon as a replacement of this dataset.
Data originates from https://turnbackhoax.id/ (Mafindo data 2018-2023); https://saberhoaks.jabarprov.go.id/v2/ ; https://opendata.jabarprov.go.id/id/dataset/ ; https://klinikhoaks.jatimprov.go.id/
The attributes of data are:
- Label_id: Binary class labels ("HOAX"==1 ; "NON-HOAX"==0).
- Label: Binary class labels ("HOAX" or "NON-HOAX").
- Title: Claim or headline of news article.
- Content: the content of news article.
- Fact: The summary of factual evidence that is either supporting or contradicting the correponding claim.
- References: URL link of news article and the corresponding verdict or factual evidence as the justification of the news article.
- Classification: Fine-grained classification labels for the news article:
Class labels for saberhoax_data.csv: 'DISINFORMASI', ,'MISINFORMASI', 'FABRICATED CONTENT', 'FALSE CONNECTION', 'FALSE CONTEXT', 'IMPOSTER CONTENT',
'MANIPULATED CONTENT', 'MISLEADING CONTENT', 'SATIRE OR PARODI', 'BENAR'.
Class labels for opendata_jabar.csv: 'BENAR', 'DISINFORMASI (HOAKS)', 'FABRICATED CONTENT',
'FALSE CONNECTION', 'FALSE CONTEXT', 'IMPOSTER CONTENT',
'MANIPULATED CONTENT', 'MISINFORMASI (HOAKS)',
'MISLEADING CONTENT'
8. Datasource: Original source where dataset is extracted.
Example of usage:
>>> from datasets import load_dataset
>>> train_dataset = load_dataset(
... "nlp-brin-id/id-hoax-report-merge",
... split="train",
... keep_default_na=False,
... ).select_columns(['Label_id', 'Title', 'Content', 'Fact'])
- Downloads last month
- 28