Datasets:

Modalities:
Text
Formats:
csv
Languages:
Indonesian
Libraries:
Datasets
pandas
License:

You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

We do not maintain this repository further. For accessing the most recent Indonesian Fake News dataset that we created, please visit BRIN's dataverse: https://data.brin.go.id/dataset.xhtml?persistentId=hdl:20.500.12690/RIN/7QBRKQ

Dataset for "Fact-Aware Fake-news Classification for Indonesian Language"

Disclaimer: Beta version, contains imbalanced representation of domain-specific NON-HOAX samples. We will release a new training and evaluation suite soon as a replacement of this dataset.

Data originates from https://turnbackhoax.id/ (Mafindo data 2018-2023); https://saberhoaks.jabarprov.go.id/v2/ ; https://opendata.jabarprov.go.id/id/dataset/ ; https://klinikhoaks.jatimprov.go.id/
The attributes of data are:

  1. Label_id: Binary class labels ("HOAX"==1 ; "NON-HOAX"==0).
  2. Label: Binary class labels ("HOAX" or "NON-HOAX").
  3. Title: Claim or headline of news article.
  4. Content: the content of news article.
  5. Fact: The summary of factual evidence that is either supporting or contradicting the correponding claim.
  6. References: URL link of news article and the corresponding verdict or factual evidence as the justification of the news article.
  7. Classification: Fine-grained classification labels for the news article:
    Class labels for saberhoax_data.csv: 'DISINFORMASI', ,'MISINFORMASI', 'FABRICATED CONTENT', 'FALSE CONNECTION', 'FALSE CONTEXT', 'IMPOSTER CONTENT',
    'MANIPULATED CONTENT', 'MISLEADING CONTENT', 'SATIRE OR PARODI', 'BENAR'.

Class labels for opendata_jabar.csv: 'BENAR', 'DISINFORMASI (HOAKS)', 'FABRICATED CONTENT', 'FALSE CONNECTION', 'FALSE CONTEXT', 'IMPOSTER CONTENT',
'MANIPULATED CONTENT', 'MISINFORMASI (HOAKS)', 'MISLEADING CONTENT'

8. Datasource: Original source where dataset is extracted.

Example of usage:

>>> from datasets import load_dataset
>>> train_dataset = load_dataset(
...     "nlp-brin-id/id-hoax-report-merge",
...     split="train",
...     keep_default_na=False,
... ).select_columns(['Label_id', 'Title', 'Content', 'Fact'])
Downloads last month
28

Collection including nlp-brin-id/id-hoax-report-merge