|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""INSERT TITLE""" |
|
|
|
import logging |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
*REDO* |
|
@inproceedings{wang2019crossweigh, |
|
title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations}, |
|
author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei}, |
|
booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)}, |
|
pages={5157--5166}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
**REWRITE* |
|
EpiSet4NER is a dataset generated from 620 rare disease abstracts labeled using statistical and rule-base methods. The test set was then manually corrected by a rare disease expert. |
|
For more details see *INSERT PAPER* and https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard |
|
""" |
|
|
|
_URL = "https://github.com/NCATS/epi4GARD/raw/master/EpiExtract4GARD/datasets/EpiCustomV3/" |
|
_TRAINING_FILE = "train.tsv" |
|
_VAL_FILE = "val.tsv" |
|
_TEST_FILE = "test.tsv" |
|
|
|
|
|
class EpiSetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Conll2003""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig forConll2003. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(EpiSetConfig, self).__init__(**kwargs) |
|
|
|
|
|
class EpiSet(datasets.GeneratorBasedBuilder): |
|
"""EpiSet4NER by GARD.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
EpiSetConfig(name="EpiSet4NER", version=datasets.Version("3.2.1"), description="EpiSet4NER by NIH NCATS GARD"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-LOC", |
|
"I-LOC", |
|
"B-EPI", |
|
"I-EPI", |
|
"B-STAT", |
|
"I-STAT", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"val": f"{_URL}{_VAL_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logging.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split("\t") |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1].rstrip()) |
|
|
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |