wzkariampuzha
commited on
Commit
•
90233b4
1
Parent(s):
667c52f
Create EpiSet4NER-v1.py
Browse files- EpiSet4NER-v1.py +135 -0
EpiSet4NER-v1.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""INSERT TITLE"""
|
18 |
+
|
19 |
+
import logging
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
*REDO*
|
26 |
+
@inproceedings{wang2019crossweigh,
|
27 |
+
title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
|
28 |
+
author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
|
29 |
+
booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
|
30 |
+
pages={5157--5166},
|
31 |
+
year={2019}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
**REWRITE*
|
37 |
+
EpiSet4NER is a dataset generated from 620 rare disease abstracts labeled using statistical and rule-base methods. The test set was then manually corrected by a rare disease expert.
|
38 |
+
For more details see *INSERT PAPER* and https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard
|
39 |
+
"""
|
40 |
+
|
41 |
+
_URL = "https://github.com/NCATS/epi4GARD/raw/master/EpiExtract4GARD/datasets/EpiCustomV3/"
|
42 |
+
_TRAINING_FILE = "train.tsv"
|
43 |
+
_VAL_FILE = "val.tsv"
|
44 |
+
_TEST_FILE = "test.tsv"
|
45 |
+
|
46 |
+
|
47 |
+
class EpiSetConfig(datasets.BuilderConfig):
|
48 |
+
"""BuilderConfig for Conll2003"""
|
49 |
+
|
50 |
+
def __init__(self, **kwargs):
|
51 |
+
"""BuilderConfig forConll2003.
|
52 |
+
Args:
|
53 |
+
**kwargs: keyword arguments forwarded to super.
|
54 |
+
"""
|
55 |
+
super(EpiSetConfig, self).__init__(**kwargs)
|
56 |
+
|
57 |
+
|
58 |
+
class EpiSet(datasets.GeneratorBasedBuilder):
|
59 |
+
"""EpiSet4NER by GARD."""
|
60 |
+
|
61 |
+
BUILDER_CONFIGS = [
|
62 |
+
EpiSetConfig(name="EpiSet4NER", version=datasets.Version("3.2.1"), description="EpiSet4NER by NIH NCATS GARD"),
|
63 |
+
]
|
64 |
+
|
65 |
+
def _info(self):
|
66 |
+
return datasets.DatasetInfo(
|
67 |
+
description=_DESCRIPTION,
|
68 |
+
features=datasets.Features(
|
69 |
+
{
|
70 |
+
"id": datasets.Value("string"),
|
71 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
72 |
+
"ner_tags": datasets.Sequence(
|
73 |
+
datasets.features.ClassLabel(
|
74 |
+
names=[
|
75 |
+
"O", #(0)
|
76 |
+
"B-LOC", #(1)
|
77 |
+
"I-LOC", #(2)
|
78 |
+
"B-EPI", #(3)
|
79 |
+
"I-EPI", #(4)
|
80 |
+
"B-STAT", #(5)
|
81 |
+
"I-STAT", #(6)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
),
|
85 |
+
}
|
86 |
+
),
|
87 |
+
supervised_keys=None,
|
88 |
+
homepage="https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard",
|
89 |
+
citation=_CITATION,
|
90 |
+
)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager):
|
93 |
+
"""Returns SplitGenerators."""
|
94 |
+
urls_to_download = {
|
95 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
96 |
+
"val": f"{_URL}{_VAL_FILE}",
|
97 |
+
"test": f"{_URL}{_TEST_FILE}",
|
98 |
+
}
|
99 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
100 |
+
|
101 |
+
return [
|
102 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
103 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
|
104 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
105 |
+
]
|
106 |
+
|
107 |
+
def _generate_examples(self, filepath):
|
108 |
+
logging.info("⏳ Generating examples from = %s", filepath)
|
109 |
+
with open(filepath, encoding="utf-8") as f:
|
110 |
+
guid = 0
|
111 |
+
tokens = []
|
112 |
+
ner_tags = []
|
113 |
+
for line in f:
|
114 |
+
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
115 |
+
if tokens:
|
116 |
+
yield guid, {
|
117 |
+
"id": str(guid),
|
118 |
+
"tokens": tokens,
|
119 |
+
"ner_tags": ner_tags,
|
120 |
+
}
|
121 |
+
guid += 1
|
122 |
+
tokens = []
|
123 |
+
ner_tags = []
|
124 |
+
else:
|
125 |
+
# EpiSet tokens are space separated
|
126 |
+
splits = line.split("\t")
|
127 |
+
tokens.append(splits[0])
|
128 |
+
ner_tags.append(splits[1].rstrip())
|
129 |
+
# last example
|
130 |
+
if tokens:
|
131 |
+
yield guid, {
|
132 |
+
"id": str(guid),
|
133 |
+
"tokens": tokens,
|
134 |
+
"ner_tags": ner_tags,
|
135 |
+
}
|