Datasets:

Languages:
English
License:
File size: 5,056 Bytes
90233b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""INSERT TITLE"""

import logging

import datasets


_CITATION = """\
*REDO*
@inproceedings{wang2019crossweigh,
  title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
  author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
  booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
  pages={5157--5166},
  year={2019}
}
"""

_DESCRIPTION = """\
**REWRITE*
EpiSet4NER is a dataset generated from 620 rare disease abstracts labeled using statistical and rule-base methods. The test set was then manually corrected by a rare disease expert.
For more details see *INSERT PAPER* and https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard
"""

_URL = "https://github.com/NCATS/epi4GARD/raw/master/EpiExtract4GARD/datasets/EpiCustomV3/"
_TRAINING_FILE = "train.tsv"
_VAL_FILE = "val.tsv"
_TEST_FILE = "test.tsv"


class EpiSetConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(EpiSetConfig, self).__init__(**kwargs)


class EpiSet(datasets.GeneratorBasedBuilder):
    """EpiSet4NER by GARD."""

    BUILDER_CONFIGS = [
        EpiSetConfig(name="EpiSet4NER", version=datasets.Version("3.2.1"), description="EpiSet4NER by NIH NCATS GARD"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O", #(0)
                                "B-LOC", #(1)
                                "I-LOC", #(2)
                                "B-EPI", #(3)
                                "I-EPI", #(4)
                                "B-STAT", #(5)
                                "I-STAT", #(6)
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "val": f"{_URL}{_VAL_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logging.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # EpiSet tokens are space separated
                    splits = line.split("\t")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            # last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                }