Datasets:

Languages:
English
License:
albertvillanova's picture
Fix language and license tag names (#1)
956069b
|
raw
history blame
6.29 kB
---
annotations_creators:
- unknown
language_creators:
- unknown
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- unknown
paperswithcode_id: glue
pretty_name: GLUE (General Language Understanding Evaluation benchmark)
---
# DOCUMENTATION UPDATES IN PROGRESS! IGNORE BELOW
# Dataset Card for GLUE
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://nyu-mll.github.io/CoLA/](https://nyu-mll.github.io/CoLA/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 955.33 MB
- **Size of the generated dataset:** 229.68 MB
- **Total amount of disk used:** 1185.01 MB
### Dataset Summary
GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems.
### Supported Tasks and Leaderboards
The leaderboard for the GLUE benchmark can be found [at this address](https://gluebenchmark.com/). It comprises the following tasks:
#### cola
The Corpus of Linguistic Acceptability consists of English acceptability judgments drawn from books and journal articles on linguistic theory. Each example is a sequence of words annotated with whether it is a grammatical English sentence.
### Languages
The language data in is in English
## Dataset Structure
### Data Instances
#### cola
- **Size of downloaded dataset files:** 0.36 MB
- **Size of the generated dataset:** 0.58 MB
- **Total amount of disk used:** 0.94 MB
An example of 'train' looks as follows.
```
{
"sentence": "Our friends won't buy this analysis, let alone the next one we propose.",
"label": 1,
"id": 0
}
```
### Data Fields
The data fields are the same among all splits.
#### cola
- `abstract`: a `string` feature.
- `label`: a classification label, with possible values including `unacceptable` (0), `acceptable` (1).
- `idx`: a `int32` feature.
### Data Splits
|train|validation|test|
|----:|---------:|---:|
| 8551| 1043|1063|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
Rare Disease Curators from the [National Institutes of Health (NIH) Genetic and Rare Diseases Information Center (GARD)](https://rarediseases.info.nih.gov/)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
Rare Disease Curators from the [National Institutes of Health (NIH) Genetic and Rare Diseases Information Center (GARD)](https://rarediseases.info.nih.gov/)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{john2021recurrent,
title={Recurrent Neural Networks to Automatically Identify Rare Disease Epidemiologic Studies from PubMed},
author={John, Jennifer N and Sid, Eric and Zhu, Qian},
booktitle={AMIA Annual Symposium Proceedings},
volume={2021},
pages={325},
year={2021},
organization={American Medical Informatics Association}
}
```
### Contributions
Thanks to [@patpizio](https://github.com/patpizio), [@jeswan](https://github.com/jeswan), [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.
```
from datasets import load_dataset
epiclassify = load_dataset("ncats/EpiSet4BinaryClassification")
```