muellerzr's picture
muellerzr HF staff
Strip cr from docs
60de117

Helpful Utilities

Below are a variety of utility functions that 🤗 Accelerate provides, broken down by use-case.

Constants

Constants used throughout 🤗 Accelerate for reference

The following are constants used when utilizing [Accelerator.save_state]

utils.MODEL_NAME: "pytorch_model" utils.OPTIMIZER_NAME: "optimizer" utils.RNG_STATE_NAME: "random_states" utils.SCALER_NAME: "scaler.pt utils.SCHEDULER_NAME: "scheduler

The following are constants used when utilizing [Accelerator.save_model]

utils.WEIGHTS_NAME: "pytorch_model.bin" utils.SAFE_WEIGHTS_NAME: "model.safetensors" utils.WEIGHTS_INDEX_NAME: "pytorch_model.bin.index.json" utils.SAFE_WEIGHTS_INDEX_NAME: "model.safetensors.index.json"

Data Classes

These are basic dataclasses used throughout 🤗 Accelerate and they can be passed in as parameters.

[[autodoc]] utils.DistributedType

[[autodoc]] utils.DynamoBackend

[[autodoc]] utils.LoggerType

[[autodoc]] utils.PrecisionType

[[autodoc]] utils.FP8RecipeKwargs

[[autodoc]] utils.ProjectConfiguration

Environmental Variables

These are environmental variables that can be enabled for different use cases

  • ACCELERATE_DEBUG_MODE (str): Whether to run accelerate in debug mode. More info available here.

Plugins

These are plugins that can be passed to the [Accelerator] object. While they are defined elsewhere in the documentation, for convience all of them are available to see here:

[[autodoc]] utils.DeepSpeedPlugin

[[autodoc]] utils.FullyShardedDataParallelPlugin

[[autodoc]] utils.GradientAccumulationPlugin

[[autodoc]] utils.MegatronLMPlugin

[[autodoc]] utils.TorchDynamoPlugin

Data Manipulation and Operations

These include data operations that mimic the same torch ops but can be used on distributed processes.

[[autodoc]] utils.broadcast

[[autodoc]] utils.concatenate

[[autodoc]] utils.gather

[[autodoc]] utils.pad_across_processes

[[autodoc]] utils.reduce

[[autodoc]] utils.send_to_device

Environment Checks

These functionalities check the state of the current working environment including information about the operating system itself, what it can support, and if particular dependencies are installed.

[[autodoc]] utils.is_bf16_available

[[autodoc]] utils.is_ipex_available

[[autodoc]] utils.is_mps_available

[[autodoc]] utils.is_npu_available

[[autodoc]] utils.is_torch_version

[[autodoc]] utils.is_tpu_available

[[autodoc]] utils.is_xpu_available

Environment Manipulation

[[autodoc]] utils.patch_environment

[[autodoc]] utils.clear_environment

[[autodoc]] utils.write_basic_config

When setting up 🤗 Accelerate for the first time, rather than running accelerate config [~utils.write_basic_config] can be used as an alternative for quick configuration.

Memory

[[autodoc]] utils.get_max_memory

[[autodoc]] utils.find_executable_batch_size

Modeling

These utilities relate to interacting with PyTorch models

[[autodoc]] utils.extract_model_from_parallel

[[autodoc]] utils.get_max_layer_size

[[autodoc]] utils.offload_state_dict

Parallel

These include general utilities that should be used when working in parallel.

[[autodoc]] utils.extract_model_from_parallel

[[autodoc]] utils.save

[[autodoc]] utils.wait_for_everyone

Random

These utilities relate to setting and synchronizing of all the random states.

[[autodoc]] utils.set_seed

[[autodoc]] utils.synchronize_rng_state

[[autodoc]] utils.synchronize_rng_states

PyTorch XLA

These include utilities that are useful while using PyTorch with XLA.

[[autodoc]] utils.install_xla

Loading model weights

These include utilities that are useful to load checkpoints.

[[autodoc]] utils.load_checkpoint_in_model

Quantization

These include utilities that are useful to quantize model.

[[autodoc]] utils.load_and_quantize_model

[[autodoc]] utils.BnbQuantizationConfig