Datasets:
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- found
- machine-generated
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
license:
- other
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-sts-b
task_categories:
- text-classification
task_ids:
- text-scoring
- semantic-similarity-scoring
pretty_name: STSb Multi MT
dataset_info:
- config_name: de
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 867465
num_examples: 5749
- name: test
num_bytes: 193325
num_examples: 1379
- name: dev
num_bytes: 247069
num_examples: 1500
download_size: 823156
dataset_size: 1307859
- config_name: en
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 731795
num_examples: 5749
- name: test
num_bytes: 164458
num_examples: 1379
- name: dev
num_bytes: 210064
num_examples: 1500
download_size: 720594
dataset_size: 1106317
- config_name: es
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 887093
num_examples: 5749
- name: test
num_bytes: 194608
num_examples: 1379
- name: dev
num_bytes: 245242
num_examples: 1500
download_size: 803220
dataset_size: 1326943
- config_name: fr
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 910187
num_examples: 5749
- name: test
num_bytes: 200438
num_examples: 1379
- name: dev
num_bytes: 254075
num_examples: 1500
download_size: 828209
dataset_size: 1364700
- config_name: it
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 871518
num_examples: 5749
- name: test
num_bytes: 191639
num_examples: 1379
- name: dev
num_bytes: 243136
num_examples: 1500
download_size: 813106
dataset_size: 1306293
- config_name: nl
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 833659
num_examples: 5749
- name: test
num_bytes: 182896
num_examples: 1379
- name: dev
num_bytes: 234879
num_examples: 1500
download_size: 786341
dataset_size: 1251434
- config_name: pl
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 828425
num_examples: 5749
- name: test
num_bytes: 181258
num_examples: 1379
- name: dev
num_bytes: 231750
num_examples: 1500
download_size: 832282
dataset_size: 1241433
- config_name: pt
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 854348
num_examples: 5749
- name: test
num_bytes: 189155
num_examples: 1379
- name: dev
num_bytes: 240551
num_examples: 1500
download_size: 799737
dataset_size: 1284054
- config_name: ru
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 1391666
num_examples: 5749
- name: test
num_bytes: 299999
num_examples: 1379
- name: dev
num_bytes: 386260
num_examples: 1500
download_size: 1088400
dataset_size: 2077925
- config_name: zh
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: similarity_score
dtype: float32
splits:
- name: train
num_bytes: 694416
num_examples: 5749
- name: test
num_bytes: 154826
num_examples: 1379
- name: dev
num_bytes: 195813
num_examples: 1500
download_size: 715580
dataset_size: 1045055
configs:
- config_name: default
data_files:
- path: test/*.parquet
split: test
- path: train/*.parquet
split: train
- path: dev/*.parquet
split: dev
- config_name: de
data_files:
- path: stsb_multi_mt/test/de.parquet
split: test
- path: stsb_multi_mt/train/de.parquet
split: train
- path: stsb_multi_mt/dev/de.parquet
split: dev
- config_name: fr
data_files:
- path: stsb_multi_mt/test/fr.parquet
split: test
- path: stsb_multi_mt/train/fr.parquet
split: train
- path: stsb_multi_mt/dev/fr.parquet
split: dev
- config_name: ru
data_files:
- path: stsb_multi_mt/test/ru.parquet
split: test
- path: stsb_multi_mt/train/ru.parquet
split: train
- path: stsb_multi_mt/dev/ru.parquet
split: dev
- config_name: zh
data_files:
- path: stsb_multi_mt/test/zh.parquet
split: test
- path: stsb_multi_mt/train/zh.parquet
split: train
- path: stsb_multi_mt/dev/zh.parquet
split: dev
- config_name: es
data_files:
- path: stsb_multi_mt/test/es.parquet
split: test
- path: stsb_multi_mt/train/es.parquet
split: train
- path: stsb_multi_mt/dev/es.parquet
split: dev
- config_name: it
data_files:
- path: stsb_multi_mt/test/it.parquet
split: test
- path: stsb_multi_mt/train/it.parquet
split: train
- path: stsb_multi_mt/dev/it.parquet
split: dev
- config_name: en
data_files:
- path: stsb_multi_mt/test/en.parquet
split: test
- path: stsb_multi_mt/train/en.parquet
split: train
- path: stsb_multi_mt/dev/en.parquet
split: dev
- config_name: pt
data_files:
- path: stsb_multi_mt/test/pt.parquet
split: test
- path: stsb_multi_mt/train/pt.parquet
split: train
- path: stsb_multi_mt/dev/pt.parquet
split: dev
- config_name: nl
data_files:
- path: stsb_multi_mt/test/nl.parquet
split: test
- path: stsb_multi_mt/train/nl.parquet
split: train
- path: stsb_multi_mt/dev/nl.parquet
split: dev
- config_name: pl
data_files:
- path: stsb_multi_mt/test/pl.parquet
split: test
- path: stsb_multi_mt/train/pl.parquet
split: train
- path: stsb_multi_mt/dev/pl.parquet
split: dev
Dataset Card for STSb Multi MT
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Repository: https://github.com/PhilipMay/stsb-multi-mt
- Homepage (original dataset): https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
- Paper about original dataset: https://arxiv.org/abs/1708.00055
- Leaderboard: https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark#Results
- Point of Contact: Open an issue on GitHub
Dataset Summary
STS Benchmark comprises a selection of the English datasets used in the STS tasks organized in the context of SemEval between 2012 and 2017. The selection of datasets include text from image captions, news headlines and user forums. (source)
These are different multilingual translations and the English original of the STSbenchmark dataset. Translation has been done with deepl.com. It can be used to train sentence embeddings like T-Systems-onsite/cross-en-de-roberta-sentence-transformer.
Examples of Use
Load German dev Dataset:
from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="de", split="dev")
Load English train Dataset:
from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="en", split="train")
Supported Tasks and Leaderboards
[More Information Needed]
Languages
Available languages are: de, en, es, fr, it, nl, pl, pt, ru, zh
Dataset Structure
Data Instances
This dataset provides pairs of sentences and a score of their similarity.
score | 2 example sentences | explanation |
---|---|---|
5 | The bird is bathing in the sink. Birdie is washing itself in the water basin. |
The two sentences are completely equivalent, as they mean the same thing. |
4 | Two boys on a couch are playing video games. Two boys are playing a video game. |
The two sentences are mostly equivalent, but some unimportant details differ. |
3 | John said he is considered a witness but not a suspect. “He is not a suspect anymore.” John said. |
The two sentences are roughly equivalent, but some important information differs/missing. |
2 | They flew out of the nest in groups. They flew into the nest together. |
The two sentences are not equivalent, but share some details. |
1 | The woman is playing the violin. The young lady enjoys listening to the guitar. |
The two sentences are not equivalent, but are on the same topic. |
0 | The black dog is running through the snow. A race car driver is driving his car through the mud. |
The two sentences are completely dissimilar. |
An example:
{
"sentence1": "A man is playing a large flute.",
"sentence2": "A man is playing a flute.",
"similarity_score": 3.8
}
Data Fields
sentence1
: The 1st sentence as astr
.sentence2
: The 2nd sentence as astr
.similarity_score
: The similarity score as afloat
which is<= 5.0
and>= 0.0
.
Data Splits
- train with 5749 samples
- dev with 1500 samples
- test with 1379 sampples
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
See LICENSE and download at original dataset.
Citation Information
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}
Contributions
Thanks to @PhilipMay for adding this dataset.