|
"""Promoters""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DESCRIPTION = "Promoters dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Promoters" |
|
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Promoters") |
|
_CITATION = """ |
|
@misc{misc_molecular_biology_(promoter_gene_sequences)_67, |
|
author = {Harley,C., Reynolds,R. & Noordewier,M.}, |
|
title = {{Molecular Biology (Promoter Gene Sequences)}}, |
|
year = {1990}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5S01D}} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/promoters/raw/main/promoters.data" |
|
} |
|
features_types_per_config = { |
|
"promoters": { |
|
"seq_0": datasets.Value("string"), |
|
"seq_1": datasets.Value("string"), |
|
"seq_2": datasets.Value("string"), |
|
"seq_3": datasets.Value("string"), |
|
"seq_4": datasets.Value("string"), |
|
"seq_5": datasets.Value("string"), |
|
"seq_6": datasets.Value("string"), |
|
"seq_7": datasets.Value("string"), |
|
"seq_8": datasets.Value("string"), |
|
"seq_9": datasets.Value("string"), |
|
"seq_10": datasets.Value("string"), |
|
"seq_11": datasets.Value("string"), |
|
"seq_12": datasets.Value("string"), |
|
"seq_13": datasets.Value("string"), |
|
"seq_14": datasets.Value("string"), |
|
"seq_15": datasets.Value("string"), |
|
"seq_16": datasets.Value("string"), |
|
"seq_17": datasets.Value("string"), |
|
"seq_18": datasets.Value("string"), |
|
"seq_19": datasets.Value("string"), |
|
"seq_20": datasets.Value("string"), |
|
"seq_21": datasets.Value("string"), |
|
"seq_22": datasets.Value("string"), |
|
"seq_23": datasets.Value("string"), |
|
"seq_24": datasets.Value("string"), |
|
"seq_25": datasets.Value("string"), |
|
"seq_26": datasets.Value("string"), |
|
"seq_27": datasets.Value("string"), |
|
"seq_28": datasets.Value("string"), |
|
"seq_29": datasets.Value("string"), |
|
"seq_30": datasets.Value("string"), |
|
"seq_31": datasets.Value("string"), |
|
"seq_32": datasets.Value("string"), |
|
"seq_33": datasets.Value("string"), |
|
"seq_34": datasets.Value("string"), |
|
"seq_35": datasets.Value("string"), |
|
"seq_36": datasets.Value("string"), |
|
"seq_37": datasets.Value("string"), |
|
"seq_38": datasets.Value("string"), |
|
"seq_39": datasets.Value("string"), |
|
"seq_40": datasets.Value("string"), |
|
"seq_41": datasets.Value("string"), |
|
"seq_42": datasets.Value("string"), |
|
"seq_43": datasets.Value("string"), |
|
"seq_44": datasets.Value("string"), |
|
"seq_45": datasets.Value("string"), |
|
"seq_46": datasets.Value("string"), |
|
"seq_47": datasets.Value("string"), |
|
"seq_48": datasets.Value("string"), |
|
"seq_49": datasets.Value("string"), |
|
"seq_50": datasets.Value("string"), |
|
"seq_51": datasets.Value("string"), |
|
"seq_52": datasets.Value("string"), |
|
"seq_53": datasets.Value("string"), |
|
"seq_54": datasets.Value("string"), |
|
"seq_55": datasets.Value("string"), |
|
"seq_56": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class PromotersConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(PromotersConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Promoters(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "promoters" |
|
BUILDER_CONFIGS = [ |
|
PromotersConfig(name="promoters", |
|
description="Promoters for binary classification.") |
|
] |
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|