File size: 4,753 Bytes
5280ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""Promoters"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

DESCRIPTION = "Promoters dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Promoters"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Promoters")
_CITATION = """
@misc{misc_molecular_biology_(promoter_gene_sequences)_67,
  author       = {Harley,C., Reynolds,R. & Noordewier,M.},
  title        = {{Molecular Biology (Promoter Gene Sequences)}},
  year         = {1990},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5S01D}}
}"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/promoters/raw/main/promoters.data"
}
features_types_per_config = {
    "promoters": {
        "seq_0": datasets.Value("string"),
        "seq_1": datasets.Value("string"),
        "seq_2": datasets.Value("string"),
        "seq_3": datasets.Value("string"),
        "seq_4": datasets.Value("string"),
        "seq_5": datasets.Value("string"),
        "seq_6": datasets.Value("string"),
        "seq_7": datasets.Value("string"),
        "seq_8": datasets.Value("string"),
        "seq_9": datasets.Value("string"),
        "seq_10": datasets.Value("string"),
        "seq_11": datasets.Value("string"),
        "seq_12": datasets.Value("string"),
        "seq_13": datasets.Value("string"),
        "seq_14": datasets.Value("string"),
        "seq_15": datasets.Value("string"),
        "seq_16": datasets.Value("string"),
        "seq_17": datasets.Value("string"),
        "seq_18": datasets.Value("string"),
        "seq_19": datasets.Value("string"),
        "seq_20": datasets.Value("string"),
        "seq_21": datasets.Value("string"),
        "seq_22": datasets.Value("string"),
        "seq_23": datasets.Value("string"),
        "seq_24": datasets.Value("string"),
        "seq_25": datasets.Value("string"),
        "seq_26": datasets.Value("string"),
        "seq_27": datasets.Value("string"),
        "seq_28": datasets.Value("string"),
        "seq_29": datasets.Value("string"),
        "seq_30": datasets.Value("string"),
        "seq_31": datasets.Value("string"),
        "seq_32": datasets.Value("string"),
        "seq_33": datasets.Value("string"),
        "seq_34": datasets.Value("string"),
        "seq_35": datasets.Value("string"),
        "seq_36": datasets.Value("string"),
        "seq_37": datasets.Value("string"),
        "seq_38": datasets.Value("string"),
        "seq_39": datasets.Value("string"),
        "seq_40": datasets.Value("string"),
        "seq_41": datasets.Value("string"),
        "seq_42": datasets.Value("string"),
        "seq_43": datasets.Value("string"),
        "seq_44": datasets.Value("string"),
        "seq_45": datasets.Value("string"),
        "seq_46": datasets.Value("string"),
        "seq_47": datasets.Value("string"),
        "seq_48": datasets.Value("string"),
        "seq_49": datasets.Value("string"),
        "seq_50": datasets.Value("string"),
        "seq_51": datasets.Value("string"),
        "seq_52": datasets.Value("string"),
        "seq_53": datasets.Value("string"),
        "seq_54": datasets.Value("string"),
        "seq_55": datasets.Value("string"),
        "seq_56": datasets.Value("string"),
        "class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    }
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class PromotersConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(PromotersConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Promoters(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "promoters"
    BUILDER_CONFIGS = [
        PromotersConfig(name="promoters",
                    description="Promoters for binary classification.")
    ]

    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
        ]
    
    def _generate_examples(self, filepath: str):              
        data = pandas.read_csv(filepath)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row