Datasets:
File size: 5,720 Bytes
d458ca1 8299064 ff49b46 d458ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
"""Heloc Dataset"""
from typing import List
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
"RiskPerformance",
"ExternalRiskEstimate",
"MSinceOldestTradeOpen",
"MSinceMostRecentTradeOpen",
"AverageMInFile",
"NumSatisfactoryTrades",
"NumTrades60Ever2DerogPubRec",
"NumTrades90Ever2DerogPubRec",
"PercentTradesNeverDelq",
"MSinceMostRecentDelq",
"MaxDelq2PublicRecLast12M",
"MaxDelqEver",
"NumTotalTrades",
"NumTradesOpeninLast12M",
"PercentInstallTrades",
"MSinceMostRecentInqexcl7days",
"NumInqLast6M",
"NumInqLast6Mexcl7days",
"NetFractionRevolvingBurden",
"NetFractionInstallBurden",
"NumRevolvingTradesWBalance",
"NumInstallTradesWBalance",
"NumBank2NatlTradesWHighUtilization",
"PercentTradesWBalance",
]
_BASE_FEATURE_NAMES = [
"is_at_risk",
"estimate_of_risk",
"months_since_first_trade",
"months_since_last_trade",
"average_duration_of_resolution",
"number_of_satisfactory_trades",
"nr_trades_insolvent_for_over_60_days",
"nr_trades_insolvent_for_over_90_days",
"percentage_of_legal_trades",
"months_since_last_illegal_trade",
"maximum_illegal_trades_over_last_year",
"maximum_illegal_trades",
"nr_total_trades",
"nr_trades_initiated_in_last_year",
"percentage_of_installment_trades",
"months_since_last_inquiry_not_recent",
"nr_inquiries_in_last_6_months",
"nr_inquiries_in_last_6_months_not_recent",
"net_fraction_of_revolving_burden",
"net_fraction_of_installment_burden",
"nr_revolving_trades_with_balance",
"nr_installment_trades_with_balance",
"nr_banks_with_high_ratio",
"percentage_trades_with_balance"
]
DESCRIPTION = "Heloc dataset for cancer prediction."
_HOMEPAGE = "https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a"
_URLS = ("https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a")
_CITATION = """
"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/heloc/raw/main/heloc.csv",
}
features_types_per_config = {
"risk": {
"estimate_of_risk": datasets.Value("int8"),
"months_since_first_trade": datasets.Value("int32"),
"months_since_last_trade": datasets.Value("int32"),
"average_duration_of_resolution": datasets.Value("int32"),
"number_of_satisfactory_trades": datasets.Value("int16"),
"nr_trades_insolvent_for_over_60_days": datasets.Value("int16"),
"nr_trades_insolvent_for_over_90_days": datasets.Value("int16"),
"percentage_of_legal_trades": datasets.Value("int16"),
"months_since_last_illegal_trade": datasets.Value("int32"),
"maximum_illegal_trades_over_last_year": datasets.Value("int8"),
"maximum_illegal_trades": datasets.Value("int16"),
"nr_total_trades": datasets.Value("int16"),
"nr_trades_initiated_in_last_year": datasets.Value("int16"),
"percentage_of_installment_trades": datasets.Value("int16"),
"months_since_last_inquiry_not_recent": datasets.Value("int16"),
"nr_inquiries_in_last_6_months": datasets.Value("int16"),
"nr_inquiries_in_last_6_months_not_recent": datasets.Value("int16"),
"net_fraction_of_revolving_burden": datasets.Value("int32"),
"net_fraction_of_installment_burden": datasets.Value("int32"),
"nr_revolving_trades_with_balance": datasets.Value("int16"),
"nr_installment_trades_with_balance": datasets.Value("int16"),
"nr_banks_with_high_ratio": datasets.Value("int16"),
"percentage_trades_with_balance": datasets.Value("int16"),
"is_at_risk": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class HelocConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(HelocConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Heloc(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "risk"
BUILDER_CONFIGS = [
HelocConfig(name="risk",
description="Binary classification of trade risk."),
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data.columns=_ORIGINAL_FEATURE_NAMES
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame:
print(list(features_types_per_config["risk"].keys()))
data = data[list(features_types_per_config["risk"].keys())]
if config == "risk":
return data
else:
raise ValueError(f"Unknown config: {config}")
|