mstz commited on
Commit
d458ca1
1 Parent(s): 126e1fd

Upload 2 files

Browse files
Files changed (2) hide show
  1. heloc.csv +0 -0
  2. heloc.py +154 -0
heloc.csv ADDED
The diff for this file is too large to render. See raw diff
 
heloc.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Heloc Dataset"""
2
+
3
+ from typing import List
4
+
5
+ import datasets
6
+
7
+ import pandas
8
+
9
+
10
+ VERSION = datasets.Version("1.0.0")
11
+ _ORIGINAL_FEATURE_NAMES = [
12
+ "RiskPerformance",
13
+ "ExternalRiskEstimate",
14
+ "MSinceOldestTradeOpen",
15
+ "MSinceMostRecentTradeOpen",
16
+ "AverageMInFile",
17
+ "NumSatisfactoryTrades",
18
+ "NumTrades60Ever2DerogPubRec",
19
+ "NumTrades90Ever2DerogPubRec",
20
+ "PercentTradesNeverDelq",
21
+ "MSinceMostRecentDelq",
22
+ "MaxDelq2PublicRecLast12M",
23
+ "MaxDelqEver",
24
+ "NumTotalTrades",
25
+ "NumTradesOpeninLast12M",
26
+ "PercentInstallTrades",
27
+ "MSinceMostRecentInqexcl7days",
28
+ "NumInqLast6M",
29
+ "NumInqLast6Mexcl7days",
30
+ "NetFractionRevolvingBurden",
31
+ "NetFractionInstallBurden",
32
+ "NumRevolvingTradesWBalance",
33
+ "NumInstallTradesWBalance",
34
+ "NumBank2NatlTradesWHighUtilization",
35
+ "PercentTradesWBalance",
36
+ ]
37
+ _BASE_FEATURE_NAMES = [
38
+ "is_at_risk",
39
+ "estimate_of_risk",
40
+ "months_since_first_trade",
41
+ "months_since_last_trade",
42
+ "average_duration_of_resolution",
43
+ "number_of_satisfactory_trades",
44
+ "nr_trades_insolvent_for_over_60_days",
45
+ "nr_trades_insolvent_for_over_90_days",
46
+ "percentage_of_legal_trades",
47
+ "months_since_last_illegal_trade",
48
+ "maximum_illegal_trades_over_last_year",
49
+ "maximum_illegal_trades",
50
+ "nr_total_trades",
51
+ "nr_trades_initiated_in_last_year",
52
+ "percentage_of_installment_trades",
53
+ "months_since_last_inquiry_not_recent",
54
+ "nr_inquiries_in_last_6_months",
55
+ "nr_inquiries_in_last_6_months_not_recent",
56
+ "net_fraction_of_revolving_burden",
57
+ "net_fraction_of_installment_burden",
58
+ "nr_revolving_trades_with_balance",
59
+ "nr_installment_trades_with_balance",
60
+ "nr_banks_with_high_ratio",
61
+ "percentage_trades_with_balance"
62
+ ]
63
+
64
+ DESCRIPTION = "Heloc dataset for cancer prediction."
65
+ _HOMEPAGE = "https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a"
66
+ _URLS = ("https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a")
67
+ _CITATION = """
68
+
69
+ """
70
+
71
+ # Dataset info
72
+ urls_per_split = {
73
+ "train": "https://huggingface.co/datasets/mstz/heloc/raw/main/heloc.csv",
74
+ }
75
+ features_types_per_config = {
76
+ "risk": {
77
+ "estimate_of_risk": datasets.Value("int8"),
78
+ "months_since_first_trade": datasets.Value("int32"),
79
+ "months_since_last_trade": datasets.Value("int32"),
80
+ "average_duration_of_resolution": datasets.Value("int32"),
81
+ "number_of_satisfactory_trades": datasets.Value("int16"),
82
+ "nr_trades_insolvent_for_over_60_days": datasets.Value("int16"),
83
+ "nr_trades_insolvent_for_over_90_days": datasets.Value("int16"),
84
+ "percentage_of_legal_trades": datasets.Value("int16"),
85
+ "months_since_last_illegal_trade": datasets.Value("int32"),
86
+ "maximum_illegal_trades_over_last_year": datasets.Value("int8"),
87
+ "maximum_illegal_trades": datasets.Value("int16"),
88
+ "nr_total_trades": datasets.Value("int16"),
89
+ "nr_trades_initiated_in_last_year": datasets.Value("int16"),
90
+ "percentage_of_installment_trades": datasets.Value("int16"),
91
+ "months_since_last_inquiry_not_recent": datasets.Value("int16"),
92
+ "nr_inquiries_in_last_6_months": datasets.Value("int16"),
93
+ "nr_inquiries_in_last_6_months_not_recent": datasets.Value("int16"),
94
+ "net_fraction_of_revolving_burden": datasets.Value("int32"),
95
+ "net_fraction_of_installment_burden": datasets.Value("int32"),
96
+ "nr_revolving_trades_with_balance": datasets.Value("int16"),
97
+ "nr_installment_trades_with_balance": datasets.Value("int16"),
98
+ "nr_banks_with_high_ratio": datasets.Value("int16"),
99
+ "percentage_trades_with_balance": datasets.Value("int16"),
100
+ "is_at_risk": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
101
+ }
102
+
103
+ }
104
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
105
+
106
+
107
+ class HelocConfig(datasets.BuilderConfig):
108
+ def __init__(self, **kwargs):
109
+ super(HelocConfig, self).__init__(version=VERSION, **kwargs)
110
+ self.features = features_per_config[kwargs["name"]]
111
+
112
+
113
+ class Heloc(datasets.GeneratorBasedBuilder):
114
+ # dataset versions
115
+ DEFAULT_CONFIG = "risk"
116
+ BUILDER_CONFIGS = [
117
+ HelocConfig(name="risk",
118
+ description="Binary classification of trade risk."),
119
+ ]
120
+
121
+
122
+ def _info(self):
123
+ if self.config.name not in features_per_config:
124
+ raise ValueError(f"Unknown configuration: {self.config.name}")
125
+
126
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
127
+ features=features_per_config[self.config.name])
128
+
129
+ return info
130
+
131
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
132
+ downloads = dl_manager.download_and_extract(urls_per_split)
133
+
134
+ return [
135
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
136
+ ]
137
+
138
+ def _generate_examples(self, filepath: str):
139
+ data = pandas.read_csv(filepath)
140
+ data.columns=_ORIGINAL_FEATURE_NAMES
141
+ data = self.preprocess(data, config=self.config.name)
142
+
143
+ for row_id, row in data.iterrows():
144
+ data_row = dict(row)
145
+
146
+ yield row_id, data_row
147
+
148
+ def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame:
149
+ data = data[features_types_per_config["risk"]]
150
+
151
+ if config == "risk":
152
+ return data
153
+ else:
154
+ raise ValueError(f"Unknown config: {config}")