adult / adult.py
mstz's picture
Upload 2 files
b42d454
raw
history blame
9.03 kB
"""Adult: A Census Dataset"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
"age",
"workclass",
"final_weight",
"education",
"education-num",
"marital_status",
"occupation",
"relationship",
"race",
"sex",
"capital_gain",
"capital_loss",
"hours_per_week",
"native_country",
"threshold"
]
_BASE_FEATURE_NAMES = [
"age",
"capital_gain",
"capital_loss",
"education",
"final_weight",
"hours_per_week",
"marital_status",
"native_country",
"occupation",
"race",
"relationship",
"sex",
"workclass",
"over_threshold",
]
_ENCODINGS = {
"sex": {
"Male": 0,
"Female": 1
}
}
_RACE_ENCODING = {
"White": 0,
"Black": 1,
"Asian-Pac-Islander": 2,
"Amer-Indian-Eskimo": 3,
"Other": 4,
}
DESCRIPTION = "Adult dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Adult"
_URLS = ("https://huggingface.co/datasets/mstz/adult/raw/adult.csv")
_CITATION = """
@inproceedings{DBLP:conf/kdd/Kohavi96,
author = {Ron Kohavi},
editor = {Evangelos Simoudis and
Jiawei Han and
Usama M. Fayyad},
title = {Scaling Up the Accuracy of Naive-Bayes Classifiers: {A} Decision-Tree
Hybrid},
booktitle = {Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96), Portland, Oregon, {USA}},
pages = {202--207},
publisher = {{AAAI} Press},
year = {1996},
url = {http://www.aaai.org/Library/KDD/1996/kdd96-033.php},
timestamp = {Mon, 05 Jun 2017 13:20:21 +0200},
biburl = {https://dblp.org/rec/conf/kdd/Kohavi96.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_tr.csv",
"test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
}
features_types_per_config = {
"income": {"age": datasets.Value("int64"),
"capital_gain": datasets.Value("float64"),
"capital_loss": datasets.Value("float64"),
"education": datasets.Value("int8"),
"final_weight": datasets.Value("int64"),
"hours_per_week": datasets.Value("int64"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"race": datasets.Value("string"),
"relationship": datasets.Value("string"),
"sex": datasets.Value("int8"),
"workclass": datasets.Value("string"),
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))},
"income-no race": {"age": datasets.Value("int64"),
"capital_gain": datasets.Value("float64"),
"capital_loss": datasets.Value("float64"),
"education": datasets.Value("int64"),
"final_weight": datasets.Value("int64"),
"hours_per_week": datasets.Value("int64"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"relationship": datasets.Value("string"),
"sex": datasets.Value("int8"),
"workclass": datasets.Value("string"),
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))},
"race": {"age": datasets.Value("int64"),
"capital_gain": datasets.Value("float64"),
"capital_loss": datasets.Value("float64"),
"education": datasets.Value("int64"),
"final_weight": datasets.Value("int64"),
"hours_per_week": datasets.Value("int64"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"relationship": datasets.Value("string"),
"sex": datasets.Value("int8"),
"workclass": datasets.Value("string"),
"over_threshold": datasets.Value("int8"),
"race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class AdultConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(AdultConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Adult(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "income"
BUILDER_CONFIGS = [
AdultConfig(name="encoding",
description="Encoding dictionaries."),
AdultConfig(name="income",
description="Adult for income threshold binary classification."),
AdultConfig(name="income-no race",
description="Adult for income threshold binary classification, race excluded from features."),
AdultConfig(name="race",
description="Adult for race (multiclass) classification."),
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}),
]
def _generate_examples(self, filepath: str):
if self.config.name == "encoding":
data = self.encodings()
elif self.config.name in ["income", "income-no race", "race"]:
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
else:
raise ValueError(f"Unknown config: {self.config.name}")
def encodings(self):
data = [pandas.DataFrame([(feature, original_value, encoded_value)
for original_value, encoded_value in d.items()],
columns=["feature", "original_value", "encoded_value"])
for feature in _ENCODINGS]
data.append(pandas.DataFrame([("race", original_value, encoded_value)
for original_value, encoded_value in _RACE_ENCODING.items()],
columns=["feature", "original_value", "encoded_value"]))
data = pandas.concat(data, axis="rows").reset_index()
data.drop("index", axis="columns", inplace=True)
return data
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
data.drop("education", axis="columns", inplace=True)
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
"hours_per_week", "marital_status", "native_country", "occupation",
"race", "relationship", "sex", "workclass", "over_threshold"]]
data.columns = _BASE_FEATURE_NAMES
for feature in _ENCODINGS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
if config == "income":
return data[list(features_types_per_config["income"].keys())]
elif config == "income-no race":
return data[list(features_types_per_config["income-no race"].keys())]
elif config =="race":
data.loc[:, "race"] = data.race.apply(self.encode_race)
data = data[list(features_types_per_config["race"].keys())]
return self.race_preprocessing(data)
else:
raise ValueError(f"Unknown config: {config}")
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")
def encode_race(self, race):
return _RACE_ENCODING[race]