Datasets:

ArXiv:
Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Part of MONSTER: https://arxiv.org/abs/2502.15122.

TimeSen2Crop consists of pixel-level Sentinel-2 data at a 10m resolution, extracted from the 15 Sentinel-2 tiles that cover Austria [1]. The dataset contains 16 classes representing different land cover types. The original data contains all Sentinel 2 images covering Austria acquired between September 2017 and August 2018 plus images for one tile acquired between September 2018 and August 2019. As the tiles are from different Sentinel-2 tracks and have been processed to remove images with cloud cover greater than 80%, the image acquisition dates for each tile differ and are irregular. This version of the dataset has been processed to interpolate each pixel to a daily time series representing one year of data (thus each pixel has a time series length of 365) and removing the "other crops" class. The processed dataset contains 1,135,511 multivariate time series, each with 9 channels (representing 9 spectral bands) and 15 classes. Classes are unbalanced and unevenly distributed across the Sentinel-2 tiles. The dataset has been split into cross-validation folds based on geographic location by Sentinel-2 tile (i.e., such that, for each fold, time series from a given location appear in either the training set or test set but not both).

[1] Giulio Weikmann, Claudia Paris, and Lorenzo Bruzzone. (2021). TimeSen2Crop: A million labeled samples dataset of Sentinel 2 image time series for crop-type classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14:4699–4708.

Downloads last month
7