text
stringlengths
96
319k
id
stringlengths
14
178
metadata
dict
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def get_dataloaders(model_name: str, batch_size: int = 16): from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad( examples, padding="longest", pad_to_multiple_of=16, # Specific for FP8 return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=16, drop_last=True, ) return train_dataloader, eval_dataloader def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None): """ Returns a tuple of: - Model - Optimizer - Train dataloader (prepared) - Eval dataloader (prepared) - LR Scheduler Suitable for training on the MRPC dataset """ from torch.optim import AdamW from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup from accelerate import Accelerator if accelerator is None: accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(model_name) train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size) optimizer = AdamW(model.parameters(), lr=0.0001) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=len(train_dataloader) * 2, ) train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader) return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler def get_named_parameters(model): """ Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted from parallel) """ from accelerate.utils import extract_model_from_parallel model = extract_model_from_parallel(model) return {n: p for n, p in model.named_parameters()} def evaluate_model(model, dataloader, metric, accelerator=None): "Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on" model.eval() for step, batch in enumerate(dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) references = batch["labels"] if accelerator is not None and accelerator.num_processes > 1: predictions, references = accelerator.gather_for_metrics((predictions, references)) metric.add_batch(predictions=predictions, references=references) return metric.compute()
accelerate/benchmarks/fp8/transformer_engine/fp8_utils.py/0
{ "file_path": "accelerate/benchmarks/fp8/transformer_engine/fp8_utils.py", "repo_id": "accelerate", "token_count": 1601 }
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # The Command Line Below is a list of all the available commands 🤗 Accelerate with their parameters ## accelerate config **Command**: `accelerate config` or `accelerate-config` Launches a series of prompts to create and save a `default_config.yml` configuration file for your training system. Should always be ran first on your machine. **Usage**: ```bash accelerate config [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit ## accelerate config default **Command**: `accelerate config default` or `accelerate-config default` Create a default config file for Accelerate with only a few flags set. **Usage**: ```bash accelerate config default [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit * `--mixed_precision {no,fp16,bf16}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later. ## accelerate config update **Command**: `accelerate config update` or `accelerate-config update` Update an existing config file with the latest defaults while maintaining the old configuration. **Usage**: ```bash accelerate config update [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to the config file to update. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit ## accelerate env **Command**: `accelerate env` or `accelerate-env` or `python -m accelerate.commands.env` Lists the contents of the passed 🤗 Accelerate configuration file. Should always be used when opening an issue on the [GitHub repository](https://github.com/huggingface/accelerate). **Usage**: ```bash accelerate env [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit ## accelerate launch **Command**: `accelerate launch` or `accelerate-launch` or `python -m accelerate.commands.launch` Launches a specified script on a distributed system with the right parameters. **Usage**: ```bash accelerate launch [arguments] {training_script} --{training_script-argument-1} --{training_script-argument-2} ... ``` **Positional Arguments**: - `{training_script}` -- The full path to the script to be launched in parallel - `--{training_script-argument-1}` -- Arguments of the training script **Optional Arguments**: * `-h`, `--help` (`bool`) -- Show a help message and exit * `--config_file CONFIG_FILE` (`str`)-- The config file to use for the default values in the launching script. * `-m`, `--module` (`bool`) -- Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'. * `--no_python` (`bool`) -- Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script. * `--debug` (`bool`) -- Whether to print out the torch.distributed stack trace when something fails. * `-q`, `--quiet` (`bool`) -- Silence subprocess errors from the launch stack trace to only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations). The rest of these arguments are configured through `accelerate config` and are read in from the specified `--config_file` (or default configuration) for their values. They can also be passed in manually. **Hardware Selection Arguments**: * `--cpu` (`bool`) -- Whether or not to force the training on the CPU. * `--multi_gpu` (`bool`) -- Whether or not this should launch a distributed GPU training. * `--tpu` (`bool`) -- Whether or not this should launch a TPU training. * `--ipex` (`bool`) -- Whether or not this should launch an Intel Pytorch Extension (IPEX) training. **Resource Selection Arguments**: The following arguments are useful for fine-tuning how available hardware should be used * `--mixed_precision {no,fp16,bf16,fp8}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later. * `--num_processes NUM_PROCESSES` (`int`) -- The total number of processes to be launched in parallel. * `--num_machines NUM_MACHINES` (`int`) -- The total number of machines used in this training. * `--num_cpu_threads_per_process NUM_CPU_THREADS_PER_PROCESS` (`int`) -- The number of CPU threads per process. Can be tuned for optimal performance. * `--enable_cpu_affinity` (`bool`) -- Whether or not CPU affinity and balancing should be enabled. Currently only supported on NVIDIA hardware. **Training Paradigm Arguments**: The following arguments are useful for selecting which training paradigm to use. * `--use_deepspeed` (`bool`) -- Whether or not to use DeepSpeed for training. * `--use_fsdp` (`bool`) -- Whether or not to use FullyShardedDataParallel for training. * `--use_megatron_lm` (`bool`) -- Whether or not to use Megatron-LM for training. * `--use_xpu` (`bool`) -- Whether to use IPEX plugin to speed up training on XPU specifically. **Distributed GPU Arguments**: The following arguments are only useful when `multi_gpu` is passed or multi-gpu training is configured through `accelerate config`: * `--gpu_ids` (`str`) -- What GPUs (by id) should be used for training on this machine as a comma-seperated list * `--same_network` (`bool`) -- Whether all machines used for multinode training exist on the same local network. * `--machine_rank` (`int`) -- The rank of the machine on which this script is launched. * `--main_process_ip` (`str`) -- The IP address of the machine of rank 0. * `--main_process_port` (`int`) -- The port to use to communicate with the machine of rank 0. * `-t`, `--tee` (`str`) -- Tee std streams into a log file and also to console. * `--log_dir` (`str`) -- Base directory to use for log files when using torchrun/torch.distributed.run as launcher. Use with --tee to redirect std streams info log files. * `--role` (`str`) -- User-defined role for the workers. * `--rdzv_backend` (`str`) -- The rendezvous method to use, such as 'static' (the default) or 'c10d' * `--rdzv_conf` (`str`) -- Additional rendezvous configuration (<key1>=<value1>,<key2>=<value2>,...). * `--max_restarts` (`int`) -- Maximum number of worker group restarts before failing. * `--monitor_interval` (`int`) -- Interval, in seconds, to monitor the state of workers. **TPU Arguments**: The following arguments are only useful when `tpu` is passed or TPU training is configured through `accelerate config`: * `--tpu_cluster` (`bool`) -- Whether to use a GCP TPU pod for training. * `--tpu_use_sudo` (`bool`) -- Whether to use `sudo` when running the TPU training script in each pod. * `--vm` (`str`) -- List of single Compute VM instance names. If not provided we assume usage of instance groups. For TPU pods. * `--env` (`str`) -- List of environment variables to set on the Compute VM instances. For TPU pods. * `--main_training_function` (`str`) -- The name of the main function to be executed in your script (only for TPU training). * `--downcast_bf16` (`bool`) -- Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32. **DeepSpeed Arguments**: The following arguments are only useful when `use_deepspeed` is passed or `deepspeed` is configured through `accelerate config`: * `--deepspeed_config_file` (`str`) -- DeepSpeed config file. * `--zero_stage` (`int`) -- DeepSpeed's ZeRO optimization stage. * `--offload_optimizer_device` (`str`) -- Decides where (none|cpu|nvme) to offload optimizer states. * `--offload_param_device` (`str`) -- Decides where (none|cpu|nvme) to offload parameters. * `--offload_optimizer_nvme_path` (`str`) -- Decides Nvme Path to offload optimizer states. * `--gradient_accumulation_steps` (`int`) -- No of gradient_accumulation_steps used in your training script. * `--gradient_clipping` (`float`) -- Gradient clipping value used in your training script. * `--zero3_init_flag` (`str`) -- Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with DeepSpeed ZeRO Stage-3. * `--zero3_save_16bit_model` (`str`) -- Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. Only applicable with DeepSpeed ZeRO Stage-3. * `--deepspeed_hostfile` (`str`) -- DeepSpeed hostfile for configuring multi-node compute resources. * `--deepspeed_exclusion_filter` (`str`) -- DeepSpeed exclusion filter string when using mutli-node setup. * `--deepspeed_inclusion_filter` (`str`) -- DeepSpeed inclusion filter string when using mutli-node setup. * `--deepspeed_multinode_launcher` (`str`) -- DeepSpeed multi-node launcher to use. * `--deepspeed_moe_layer_cls_names` (`str`) -- comma-separated list of transformer MoE layer class names (case-sensitive) to wrap, e.g, `MixtralSparseMoeBlock` `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` **Fully Sharded Data Parallelism Arguments**: The following arguments are only useful when `use_fsdp` is passed or Fully Sharded Data Parallelism is configured through `accelerate config`: * `--fsdp_offload_params` (`str`) -- Decides Whether (true|false) to offload parameters and gradients to CPU. * `--fsdp_min_num_params` (`int`) -- FSDP's minimum number of parameters for Default Auto Wrapping. * `--fsdp_sharding_strategy` (`int`) -- FSDP's Sharding Strategy. * `--fsdp_auto_wrap_policy` (`str`) -- FSDP's auto wrap policy. * `--fsdp_transformer_layer_cls_to_wrap` (`str`) -- Transformer layer class name (case-sensitive) to wrap, e.g, `BertLayer`, `GPTJBlock`, `T5Block` ... * `--fsdp_backward_prefetch_policy` (`str`) -- FSDP's backward prefetch policy. * `--fsdp_state_dict_type` (`str`) -- FSDP's state dict type. * `--fsdp_forward_prefetch` (`str`) -- FSDP forward prefetch. * `--fsdp_use_orig_params` (`str`) -- If True, allows non-uniform `requires_grad` mixed in a FSDP unit. * `--fsdp_cpu_ram_efficient_loading` (`str`) -- If true, only the first process loads the pretrained model checkoint while all other processes have empty weights. When using this, `--fsdp_sync_module_states` needs to True. * `--fsdp_sync_module_states` (`str`) -- If true, each individually wrapped FSDP unit will broadcast module parameters from rank 0. * `--fsdp_activation_checkpointing` (`bool`) -- Decides Whether intermediate activations are freed during the forward pass, and a checkpoint is left as a placeholder **Megatron-LM Arguments**: The following arguments are only useful when `use_megatron_lm` is passed or Megatron-LM is configured through `accelerate config`: * `--megatron_lm_tp_degree` (``) -- Megatron-LM's Tensor Parallelism (TP) degree. * `--megatron_lm_pp_degree` (``) -- Megatron-LM's Pipeline Parallelism (PP) degree. * `--megatron_lm_num_micro_batches` (``) -- Megatron-LM's number of micro batches when PP degree > 1. * `--megatron_lm_sequence_parallelism` (``) -- Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1. * `--megatron_lm_recompute_activations` (``) -- Decides Whether (true|false) to enable Selective Activation Recomputation. * `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Parallel (DP) ranks. * `--megatron_lm_gradient_clipping` (``) -- Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable). **FP8 Arguments**: * `--fp8_backend` (`str`) -- Choose a backend to train with FP8 (`te` or `msamp`) * `--fp8_use_autocast_during_eval` (`bool`) -- Whether to use FP8 autocast during eval mode (useful only when `--fp8_backend=te` is passed). Generally better metrics are found when this is not passed. * `--fp8_margin` (`int`) -- The margin to use for the gradient scaling (useful only when `--fp8_backend=te` is passed). * `--fp8_interval` (`int`) -- The interval to use for how often the scaling factor is recomputed (useful only when `--fp8_backend=te` is passed). * `--fp8_format` (`str`) -- The format to use for the FP8 recipe (useful only when `--fp8_backend=te` is passed). * `--fp8_amax_history_len` (`int`) -- The length of the history to use for the scaling factor computation (useful only when `--fp8_backend=te` is passed). * `--fp8_amax_compute_algo` (`str`) -- The algorithm to use for the scaling factor computation. (useful only when `--fp8_backend=te` is passed). * `--fp8_override_linear_precision` (`Tuple[bool, bool, bool]`) -- Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision. * `--fp8_opt_level` (`str`) -- What level of 8-bit collective communication should be used with MS-AMP (useful only when `--fp8_backend=msamp` is passed) **AWS SageMaker Arguments**: The following arguments are only useful when training in SageMaker * `--aws_access_key_id AWS_ACCESS_KEY_ID` (`str`) -- The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job * `--aws_secret_access_key AWS_SECRET_ACCESS_KEY` (`str`) -- The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job ## accelerate estimate-memory **Command**: `accelerate estimate-memory` or `accelerate-estimate-memory` or `python -m accelerate.commands.estimate` Estimates the total vRAM a particular model hosted on the Hub needs to be loaded in with an estimate for training. Requires that `huggingface_hub` be installed. <Tip> When performing inference, typically add ≤20% to the result as overall allocation [as referenced here](https://blog.eleuther.ai/transformer-math/). We will have more extensive estimations in the future that will automatically be included in the calculation. </Tip> **Usage**: ```bash accelerate estimate-memory {MODEL_NAME} --library_name {LIBRARY_NAME} --dtypes {dtype_1} {dtype_2} ... ``` **Required Arguments**: * `MODEL_NAME` (`str`)-- The model name on the Hugging Face Hub **Optional Arguments**: * `--library_name {timm,transformers}` (`str`) -- The library the model has an integration with, such as `transformers`, needed only if this information is not stored on the Hub * `--dtypes {float32,float16,int8,int4}` (`[{float32,float16,int8,int4} ...]`) -- The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4` * `--trust_remote_code` (`bool`) -- Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be passed for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. ## accelerate tpu-config `accelerate tpu-config` **Usage**: ```bash accelerate tpu-config [arguments] ``` **Optional Arguments**: * `-h`, `--help` (`bool`) -- Show a help message and exit **Config Arguments**: Arguments that can be configured through `accelerate config`. * `--config_file` (`str`) -- Path to the config file to use for accelerate. * `--tpu_name` (`str`) -- The name of the TPU to use. If not specified, will use the TPU specified in the config file. * `--tpu_zone` (`str`) -- The zone of the TPU to use. If not specified, will use the zone specified in the config file. **TPU Arguments**: Arguments for options ran inside the TPU. * `--command_file` (`str`) -- The path to the file containing the commands to run on the pod on startup. * `--command` (`str`) -- A command to run on the pod. Can be passed multiple times. * `--install_accelerate` (`bool`) -- Whether to install accelerate on the pod. Defaults to False. * `--accelerate_version` (`str`) -- The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub. * `--debug` (`bool`) -- If set, will print the command that would be run instead of running it. ## accelerate test `accelerate test` or `accelerate-test` Runs `accelerate/test_utils/test_script.py` to verify that 🤗 Accelerate has been properly configured on your system and runs. **Usage**: ```bash accelerate test [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit
accelerate/docs/source/package_reference/cli.md/0
{ "file_path": "accelerate/docs/source/package_reference/cli.md", "repo_id": "accelerate", "token_count": 5970 }
<!-- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DDP Communication Hooks Distributed Data Parallel (DDP) communication hooks provide a generic interface to control how gradients are communicated across workers by overriding the vanilla allreduce in `DistributedDataParallel`. A few built-in communication hooks are provided, and users can easily apply any of these hooks to optimize communication. - **FP16 Compression Hook**: Compresses gradients by casting them to half-precision floating-point format (`torch.float16`), reducing communication overhead. - **BF16 Compression Hook**: Similar to FP16, but uses the Brain Floating Point format (`torch.bfloat16`), which can be more efficient on certain hardware. - **PowerSGD Hook**: An advanced gradient compression algorithm that provides high compression rates and can accelerate bandwidth-bound distributed training. In this tutorial, you will see how to quickly set up DDP communication hooks and perform training with the utilities provided in Accelerate, which can be as simple as adding just one new line of code! This demonstrates how to use DDP communication hooks to optimize gradient communication in distributed training with the Accelerate library. ## FP16 Compression Hook <hfoptions id="fp16"> <hfoption id="PyTorch"> ```python import torch from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed.algorithms.ddp_comm_hooks import default_hooks class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) model = MyModel() model = DDP(model, device_ids=[torch.cuda.current_device()]) model.register_comm_hook(state=None, hook=default_hooks.fp16_compress_hook) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) loss.backward() optimizer.step() optimizer.zero_grad() ``` </hfoption> <hfoption id="Accelerate"> ```python from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs import torch class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) # DDP Communication Hook setup ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.FP16) accelerator = Accelerator(kwargs_handlers=[ddp_kwargs]) model = MyModel() optimizer = torch.optim.Adam(model.parameters()) data_loader = DataLoader(dataset, batch_size=16) model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() ``` </hfoption> </hfoptions> ### BF16 Compression Hook <Tip warning={true}> BF16 Compression Hook API is experimental, and it requires NCCL version later than 2.9.6. </Tip> <hfoptions id="bf16"> <hfoption id="PyTorch"> ```python import torch from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed.algorithms.ddp_comm_hooks import default_hooks class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) model = MyModel() model = DDP(model, device_ids=[torch.cuda.current_device()]) model.register_comm_hook(state=None, hook=default_hooks.bf16_compress_hook) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) loss.backward() optimizer.step() optimizer.zero_grad() ``` </hfoption> <hfoption id="Accelerate"> ```python from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs import torch class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) # DDP Communication Hook setup ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.BF16) accelerator = Accelerator(kwargs_handlers=[ddp_kwargs]) model = MyModel() optimizer = torch.optim.Adam(model.parameters()) data_loader = DataLoader(dataset, batch_size=16) model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() ``` </hfoption> </hfoptions> ### PowerSGD Hook <Tip warning={true}> PowerSGD typically requires extra memory of the same size as the model’s gradients to enable error feedback, which can compensate for biased compressed communication and improve accuracy. </Tip> <hfoptions id="powerSGD"> <hfoption id="PyTorch"> ```python import torch from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) model = MyModel() model = DDP(model, device_ids=[torch.cuda.current_device()]) state = powerSGD_hook.PowerSGDState(process_group=None) model.register_comm_hook(state=state, hook=powerSGD_hook.powerSGD_hook) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) loss.backward() optimizer.step() optimizer.zero_grad() ``` </hfoption> <hfoption id="Accelerate"> ```python from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs import torch class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) # DDP Communication Hook setup ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.POWER_SGD) accelerator = Accelerator(kwargs_handlers=[ddp_kwargs]) model = MyModel() optimizer = torch.optim.Adam(model.parameters()) data_loader = DataLoader(dataset, batch_size=16) model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() ``` </hfoption> </hfoptions> ## DDP Communication Hooks utilities There are two additional utilities for supporting optional functionalities with the communication hooks. ### comm_wrapper `comm_wrapper` is an option to wrap a communication hook with additional functionality. For example, it can be used to combine FP16 compression with other communication strategies. Currently supported wrappers are `no`, `fp16`, and `bf16`. ```python from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs import torch class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) # DDP Communication Hook setup ddp_kwargs = DistributedDataParallelKwargs( comm_hook=DDPCommunicationHookType.POWER_SGD, comm_wrapper=DDPCommunicationHookType.FP16 ) accelerator = Accelerator(kwargs_handlers=[ddp_kwargs]) model = MyModel() optimizer = torch.optim.Adam(model.parameters()) data_loader = DataLoader(dataset, batch_size=16) model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() ``` ### comm_state_option `comm_state_option` allows you to pass additional state information required by certain communication hooks. This is particularly useful for stateful hooks like `PowerSGD`, which require maintaining hyperparameters and internal states across training steps. Below is an example showcasing the use of `comm_state_option` with the `PowerSGD` hook. ```python from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs import torch class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.layer = torch.nn.Linear(10, 10) def forward(self, x): return self.layer(x) # DDP Communication Hook setup ddp_kwargs = DistributedDataParallelKwargs( comm_hook=DDPCommunicationHookType.POWER_SGD, comm_state_option={"matrix_approximation_rank": 2} ) accelerator = Accelerator(kwargs_handlers=[ddp_kwargs]) model = MyModel() optimizer = torch.optim.Adam(model.parameters()) data_loader = DataLoader(dataset, batch_size=16) model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader) # Training loop for data, targets in data_loader: outputs = model(data) loss = criterion(outputs, targets) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() ``` For more advanced usage and additional hooks, refer to the [PyTorch DDP Communication Hooks documentation](https://pytorch.org/docs/stable/ddp_comm_hooks.html).
accelerate/docs/source/usage_guides/ddp_comm_hook.md/0
{ "file_path": "accelerate/docs/source/usage_guides/ddp_comm_hook.md", "repo_id": "accelerate", "token_count": 3366 }
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Experiment trackers There are a large number of experiment tracking APIs available, however getting them all to work in a multi-processing environment can oftentimes be complex. Accelerate provides a general tracking API that can be used to log useful items during your script through [`Accelerator.log`] ## Integrated Trackers Currently `Accelerate` supports seven trackers out-of-the-box: - TensorBoard - WandB - CometML - Aim - MLFlow - ClearML - DVCLive To use any of them, pass in the selected type(s) to the `log_with` parameter in [`Accelerate`]: ```python from accelerate import Accelerator from accelerate.utils import LoggerType accelerator = Accelerator(log_with="all") # For all available trackers in the environment accelerator = Accelerator(log_with="wandb") accelerator = Accelerator(log_with=["wandb", LoggerType.TENSORBOARD]) ``` At the start of your experiment [`Accelerator.init_trackers`] should be used to setup your project, and potentially add any experiment hyperparameters to be logged: ```python hps = {"num_iterations": 5, "learning_rate": 1e-2} accelerator.init_trackers("my_project", config=hps) ``` When you are ready to log any data, [`Accelerator.log`] should be used. A `step` can also be passed in to correlate the data with a particular step in the training loop. ```python accelerator.log({"train_loss": 1.12, "valid_loss": 0.8}, step=1) ``` Once you've finished training, make sure to run [`Accelerator.end_training`] so that all the trackers can run their finish functionalities if they have any. ```python accelerator.end_training() ``` A full example is below: ```python from accelerate import Accelerator accelerator = Accelerator(log_with="all") config = { "num_iterations": 5, "learning_rate": 1e-2, "loss_function": str(my_loss_function), } accelerator.init_trackers("example_project", config=config) my_model, my_optimizer, my_training_dataloader = accelerator.prepare(my_model, my_optimizer, my_training_dataloader) device = accelerator.device my_model.to(device) for iteration in range(config["num_iterations"]): for step, batch in enumerate(my_training_dataloader): my_optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = my_model(inputs) loss = my_loss_function(outputs, targets) accelerator.backward(loss) my_optimizer.step() accelerator.log({"training_loss": loss}, step=step) accelerator.end_training() ``` If a tracker requires a directory to save data to, such as `TensorBoard`, then pass the directory path to `project_dir`. The `project_dir` parameter is useful when there are other configurations to be combined with in the [`~utils.ProjectConfiguration`] data class. For example, you can save the TensorBoard data to `project_dir` and everything else can be logged in the `logging_dir` parameter of [`~utils.ProjectConfiguration`: ```python accelerator = Accelerator(log_with="tensorboard", project_dir=".") # use with ProjectConfiguration config = ProjectConfiguration(project_dir=".", logging_dir="another/directory") accelerator = Accelerator(log_with="tensorboard", project_config=config) ``` ## Implementing Custom Trackers To implement a new tracker to be used in `Accelerator`, a new one can be made through implementing the [`GeneralTracker`] class. Every tracker must implement three functions and have three properties: - `__init__`: - Should store a `run_name` and initialize the tracker API of the integrated library. - If a tracker stores their data locally (such as TensorBoard), a `logging_dir` parameter can be added. - `store_init_configuration`: - Should take in a `values` dictionary and store them as a one-time experiment configuration - `log`: - Should take in a `values` dictionary and a `step`, and should log them to the run - `name` (`str`): - A unique string name for the tracker, such as `"wandb"` for the wandb tracker. - This will be used for interacting with this tracker specifically - `requires_logging_directory` (`bool`): - Whether a `logging_dir` is needed for this particular tracker and if it uses one. - `tracker`: - This should be implemented as a `@property` function - Should return the internal tracking mechanism the library uses, such as the `run` object for `wandb`. Each method should also utilize the [`state.PartialState`] class if the logger should only be executed on the main process for instance. A brief example can be seen below with an integration with Weights and Biases, containing only the relevant information and logging just on the main process: ```python from accelerate.tracking import GeneralTracker, on_main_process from typing import Optional import wandb class MyCustomTracker(GeneralTracker): name = "wandb" requires_logging_directory = False @on_main_process def __init__(self, run_name: str): self.run_name = run_name run = wandb.init(self.run_name) @property def tracker(self): return self.run.run @on_main_process def store_init_configuration(self, values: dict): wandb.config(values) @on_main_process def log(self, values: dict, step: Optional[int] = None): wandb.log(values, step=step) ``` When you are ready to build your `Accelerator` object, pass in an **instance** of your tracker to [`Accelerator.log_with`] to have it automatically be used with the API: ```python tracker = MyCustomTracker("some_run_name") accelerator = Accelerator(log_with=tracker) ``` These also can be mixed with existing trackers, including with `"all"`: ```python tracker = MyCustomTracker("some_run_name") accelerator = Accelerator(log_with=[tracker, "all"]) ``` ## Accessing the internal tracker If some custom interactions with a tracker might be wanted directly, you can quickly access one using the [`Accelerator.get_tracker`] method. Just pass in the string corresponding to a tracker's `.name` attribute and it will return that tracker on the main process. This example shows doing so with wandb: ```python wandb_tracker = accelerator.get_tracker("wandb") ``` From there you can interact with `wandb`'s `run` object like normal: ```python wandb_tracker.log_artifact(some_artifact_to_log) ``` <Tip> Trackers built in Accelerate will automatically execute on the correct process, so if a tracker is only meant to be ran on the main process it will do so automatically. </Tip> If you want to truly remove Accelerate's wrapping entirely, you can achieve the same outcome with: ```python wandb_tracker = accelerator.get_tracker("wandb", unwrap=True) if accelerator.is_main_process: wandb_tracker.log_artifact(some_artifact_to_log) ``` ## When a wrapper cannot work If a library has an API that does not follow a strict `.log` with an overall dictionary such as Neptune.AI, logging can be done manually under an `if accelerator.is_main_process` statement: ```diff from accelerate import Accelerator + import neptune accelerator = Accelerator() + run = neptune.init_run(...) my_model, my_optimizer, my_training_dataloader = accelerate.prepare(my_model, my_optimizer, my_training_dataloader) device = accelerator.device my_model.to(device) for iteration in config["num_iterations"]: for batch in my_training_dataloader: my_optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = my_model(inputs) loss = my_loss_function(outputs, targets) total_loss += loss accelerator.backward(loss) my_optimizer.step() + if accelerator.is_main_process: + run["logs/training/batch/loss"].log(loss) ```
accelerate/docs/source/usage_guides/tracking.md/0
{ "file_path": "accelerate/docs/source/usage_guides/tracking.md", "repo_id": "accelerate", "token_count": 2703 }
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather((predictions, batch["labels"])) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(eval_dataloader) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] references = references[: len(eval_dataloader.dataset) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/by_feature/multi_process_metrics.py/0
{ "file_path": "accelerate/examples/by_feature/multi_process_metrics.py", "repo_id": "accelerate", "token_count": 3665 }
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import runhouse as rh import torch from nlp_example import training_function from accelerate.utils import PrepareForLaunch, patch_environment def launch_train(*args): num_processes = torch.cuda.device_count() print(f"Device count: {num_processes}") with patch_environment( world_size=num_processes, master_addr="127.0.0.1", master_port="29500", mixed_precision=args[1].mixed_precision ): launcher = PrepareForLaunch(training_function, distributed_type="MULTI_GPU") torch.multiprocessing.start_processes(launcher, args=args, nprocs=num_processes, start_method="spawn") if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/main/rh_primitives/cluster.html#hardware-setup # for cloud access setup instructions (if using on-demand hardware), and for API specifications. # on-demand GPU # gpu = rh.cluster(name='rh-cluster', instance_type='V100:1', provider='cheapest', use_spot=False) # single GPU gpu = rh.cluster(name="rh-cluster", instance_type="V100:4", provider="cheapest", use_spot=False) # multi GPU gpu.up_if_not() # on-prem GPU # gpu = rh.cluster( # ips=["ip_addr"], ssh_creds={ssh_user:"<username>", ssh_private_key:"<key_path>"}, name="rh-cluster" # ) # Set up remote function reqs = [ "pip:./", "transformers", "datasets", "evaluate", "tqdm", "scipy", "scikit-learn", "tensorboard", "torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117", ] launch_train_gpu = rh.function(fn=launch_train, system=gpu, reqs=reqs, name="train_bert_glue") # Define train args/config, run train function train_args = argparse.Namespace(cpu=False, mixed_precision="fp16") config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} launch_train_gpu(config, train_args, stream_logs=True) # Alternatively, we can just run as instructed in the README (but only because there's already a wrapper CLI): # gpu.install_packages(reqs) # gpu.run(['accelerate launch --multi_gpu accelerate/examples/nlp_example.py'])
accelerate/examples/multigpu_remote_launcher.py/0
{ "file_path": "accelerate/examples/multigpu_remote_launcher.py", "repo_id": "accelerate", "token_count": 1026 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from manim import * class Stage3(Scene): def construct(self): step_1 = MarkupText( f"To combat this, Accelerate employs one of two different\nSampler wrapper methods depending on the scenario:", font_size=24 ) step_1.move_to([0, 1.5, 0]) self.add(step_1) step_2 = MarkupText( f"1. Sharding the dataset before drawing:\n\t● <span fgcolor='{RED}'>IterableDatasetShard</span>\n\t● <span fgcolor='{RED}'>BatchSamplerShard</span>", font_size=24, ).next_to(step_1, direction=DOWN, aligned_edge=LEFT) self.add(step_2) step_3 = MarkupText( f"\n\n2. Splitting the batch after drawing:\n\t● <span fgcolor='{BLUE}'>DataLoaderDispatcher</span>", font_size=24, ).next_to(step_2, direction=DOWN, aligned_edge=LEFT) self.add(step_3)
accelerate/manim_animations/dataloaders/stage_3.py/0
{ "file_path": "accelerate/manim_animations/dataloaders/stage_3.py", "repo_id": "accelerate", "token_count": 577 }
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import yaml from ...utils import ComputeEnvironment, DistributedType, SageMakerDistributedType from ...utils.constants import SAGEMAKER_PYTHON_VERSION, SAGEMAKER_PYTORCH_VERSION, SAGEMAKER_TRANSFORMERS_VERSION hf_cache_home = os.path.expanduser( os.environ.get("HF_HOME", os.path.join(os.environ.get("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) cache_dir = os.path.join(hf_cache_home, "accelerate") default_json_config_file = os.path.join(cache_dir, "default_config.yaml") default_yaml_config_file = os.path.join(cache_dir, "default_config.yaml") # For backward compatibility: the default config is the json one if it's the only existing file. if os.path.isfile(default_yaml_config_file) or not os.path.isfile(default_json_config_file): default_config_file = default_yaml_config_file else: default_config_file = default_json_config_file def load_config_from_file(config_file): if config_file is not None: if not os.path.isfile(config_file): raise FileNotFoundError( f"The passed configuration file `{config_file}` does not exist. " "Please pass an existing file to `accelerate launch`, or use the default one " "created through `accelerate config` and run `accelerate launch` " "without the `--config_file` argument." ) else: config_file = default_config_file with open(config_file, encoding="utf-8") as f: if config_file.endswith(".json"): if ( json.load(f).get("compute_environment", ComputeEnvironment.LOCAL_MACHINE) == ComputeEnvironment.LOCAL_MACHINE ): config_class = ClusterConfig else: config_class = SageMakerConfig return config_class.from_json_file(json_file=config_file) else: if ( yaml.safe_load(f).get("compute_environment", ComputeEnvironment.LOCAL_MACHINE) == ComputeEnvironment.LOCAL_MACHINE ): config_class = ClusterConfig else: config_class = SageMakerConfig return config_class.from_yaml_file(yaml_file=config_file) @dataclass class BaseConfig: compute_environment: ComputeEnvironment distributed_type: Union[DistributedType, SageMakerDistributedType] mixed_precision: str use_cpu: bool debug: bool def to_dict(self): result = self.__dict__ # For serialization, it's best to convert Enums to strings (or their underlying value type). def _convert_enums(value): if isinstance(value, Enum): return value.value if isinstance(value, dict): if not bool(value): return None for key1, value1 in value.items(): value[key1] = _convert_enums(value1) return value for key, value in result.items(): result[key] = _convert_enums(value) result = {k: v for k, v in result.items() if v is not None} return result @staticmethod def process_config(config_dict): """ Processes `config_dict` and sets default values for any missing keys """ if "compute_environment" not in config_dict: config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE if "distributed_type" not in config_dict: raise ValueError("A `distributed_type` must be specified in the config file.") if "num_processes" not in config_dict and config_dict["distributed_type"] == DistributedType.NO: config_dict["num_processes"] = 1 if "mixed_precision" not in config_dict: config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else None if "fp16" in config_dict: # Convert the config to the new format. del config_dict["fp16"] if "dynamo_backend" in config_dict: # Convert the config to the new format. dynamo_backend = config_dict.pop("dynamo_backend") config_dict["dynamo_config"] = {} if dynamo_backend == "NO" else {"dynamo_backend": dynamo_backend} if "use_cpu" not in config_dict: config_dict["use_cpu"] = False if "debug" not in config_dict: config_dict["debug"] = False if "enable_cpu_affinity" not in config_dict: config_dict["enable_cpu_affinity"] = False return config_dict @classmethod def from_json_file(cls, json_file=None): json_file = default_json_config_file if json_file is None else json_file with open(json_file, encoding="utf-8") as f: config_dict = json.load(f) config_dict = cls.process_config(config_dict) extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys())) if len(extra_keys) > 0: raise ValueError( f"The config file at {json_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate`" " version or fix (and potentially remove) these keys from your config file." ) return cls(**config_dict) def to_json_file(self, json_file): with open(json_file, "w", encoding="utf-8") as f: content = json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" f.write(content) @classmethod def from_yaml_file(cls, yaml_file=None): yaml_file = default_yaml_config_file if yaml_file is None else yaml_file with open(yaml_file, encoding="utf-8") as f: config_dict = yaml.safe_load(f) config_dict = cls.process_config(config_dict) extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys())) if len(extra_keys) > 0: raise ValueError( f"The config file at {yaml_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate`" " version or fix (and potentially remove) these keys from your config file." ) return cls(**config_dict) def to_yaml_file(self, yaml_file): with open(yaml_file, "w", encoding="utf-8") as f: yaml.safe_dump(self.to_dict(), f) def __post_init__(self): if isinstance(self.compute_environment, str): self.compute_environment = ComputeEnvironment(self.compute_environment) if isinstance(self.distributed_type, str): if self.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: self.distributed_type = SageMakerDistributedType(self.distributed_type) else: self.distributed_type = DistributedType(self.distributed_type) if getattr(self, "dynamo_config", None) is None: self.dynamo_config = {} @dataclass class ClusterConfig(BaseConfig): num_processes: int = -1 # For instance if we use SLURM and the user manually passes it in machine_rank: int = 0 num_machines: int = 1 gpu_ids: Optional[str] = None main_process_ip: Optional[str] = None main_process_port: Optional[int] = None rdzv_backend: Optional[str] = "static" same_network: Optional[bool] = False main_training_function: str = "main" enable_cpu_affinity: bool = False # args for FP8 training fp8_config: dict = None # args for deepspeed_plugin deepspeed_config: dict = None # args for fsdp fsdp_config: dict = None # args for tp tp_config: dict = None # args for megatron_lm megatron_lm_config: dict = None # args for ipex ipex_config: dict = None # args for mpirun mpirun_config: dict = None # args for TPU downcast_bf16: bool = False # args for TPU pods tpu_name: str = None tpu_zone: str = None tpu_use_cluster: bool = False tpu_use_sudo: bool = False command_file: str = None commands: List[str] = None tpu_vm: List[str] = None tpu_env: List[str] = None # args for dynamo dynamo_config: dict = None def __post_init__(self): if self.deepspeed_config is None: self.deepspeed_config = {} if self.fsdp_config is None: self.fsdp_config = {} if self.tp_config is None: self.tp_config = {} if self.megatron_lm_config is None: self.megatron_lm_config = {} if self.ipex_config is None: self.ipex_config = {} if self.mpirun_config is None: self.mpirun_config = {} if self.fp8_config is None: self.fp8_config = {} return super().__post_init__() @dataclass class SageMakerConfig(BaseConfig): ec2_instance_type: str iam_role_name: str image_uri: Optional[str] = None profile: Optional[str] = None region: str = "us-east-1" num_machines: int = 1 gpu_ids: str = "all" base_job_name: str = f"accelerate-sagemaker-{num_machines}" pytorch_version: str = SAGEMAKER_PYTORCH_VERSION transformers_version: str = SAGEMAKER_TRANSFORMERS_VERSION py_version: str = SAGEMAKER_PYTHON_VERSION sagemaker_inputs_file: str = None sagemaker_metrics_file: str = None additional_args: dict = None dynamo_config: dict = None enable_cpu_affinity: bool = False
accelerate/src/accelerate/commands/config/config_args.py/0
{ "file_path": "accelerate/src/accelerate/commands/config/config_args.py", "repo_id": "accelerate", "token_count": 4284 }
#!/usr/bin/env python # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _description = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def tpu_command_parser(subparsers=None): if subparsers is not None: parser = subparsers.add_parser("tpu-config", description=_description) else: parser = argparse.ArgumentParser("Accelerate tpu-config command", description=_description) # Core arguments config_args = parser.add_argument_group( "Config Arguments", "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file", type=str, default=None, help="Path to the config file to use for accelerate.", ) config_args.add_argument( "--tpu_name", default=None, help="The name of the TPU to use. If not specified, will use the TPU specified in the config file.", ) config_args.add_argument( "--tpu_zone", default=None, help="The zone of the TPU to use. If not specified, will use the zone specified in the config file.", ) pod_args = parser.add_argument_group("TPU Arguments", "Arguments for options ran inside the TPU.") pod_args.add_argument( "--use_alpha", action="store_true", help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.", ) pod_args.add_argument( "--command_file", default=None, help="The path to the file containing the commands to run on the pod on startup.", ) pod_args.add_argument( "--command", action="append", nargs="+", help="A command to run on the pod. Can be passed multiple times.", ) pod_args.add_argument( "--install_accelerate", action="store_true", help="Whether to install accelerate on the pod. Defaults to False.", ) pod_args.add_argument( "--accelerate_version", default="latest", help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.", ) pod_args.add_argument( "--debug", action="store_true", help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=tpu_command_launcher) return parser def tpu_command_launcher(args): defaults = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(default_config_file): defaults = load_config_from_file(args.config_file) if not args.command_file and defaults.command_file is not None and not args.command: args.command_file = defaults.command_file if not args.command and defaults.commands is not None: args.command = defaults.commands if not args.tpu_name: args.tpu_name = defaults.tpu_name if not args.tpu_zone: args.tpu_zone = defaults.tpu_zone if args.accelerate_version == "dev": args.accelerate_version = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": args.accelerate_version = "accelerate -U" elif isinstance(parse(args.accelerate_version), Version): args.accelerate_version = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod.") if args.command_file: with open(args.command_file) as f: args.command = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], list): args.command = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate new_cmd = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command args.command = "; ".join(new_cmd) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess cmd = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(cmd)}") return subprocess.run(cmd) print("Successfully setup pod.") def main(): parser = tpu_command_parser() args = parser.parse_args() tpu_command_launcher(args)
accelerate/src/accelerate/commands/tpu.py/0
{ "file_path": "accelerate/src/accelerate/commands/tpu.py", "repo_id": "accelerate", "token_count": 2114 }
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"): """ Creates a set of `DataLoader`s for the `glue` dataset. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. model_name (`str`, *optional*): """ tokenizer = AutoTokenizer.from_pretrained(model_name) datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.XLA: return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader def evaluation_loop(accelerator, model, eval_dataloader, metric): model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times predictions, references = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(eval_dataloader) - 1: predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] references = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() return eval_metric["accuracy"] def training_function(config, args): # Initialize accelerator accelerator = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) model_name = args.model_name_or_path set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True) # Instantiate optimizer optimizer_cls = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) optimizer = optimizer_cls(params=model.parameters(), lr=lr) if accelerator.state.deepspeed_plugin is not None: gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: gradient_accumulation_steps = 1 max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=max_training_steps, ) else: lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the stating epoch so files are named properly starting_epoch = 0 metric = evaluate.load("glue", "mrpc") ending_epoch = num_epochs if args.partial_train_epoch is not None: ending_epoch = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint) epoch_string = args.resume_from_checkpoint.split("epoch_")[1] state_epoch_num = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break starting_epoch = int(state_epoch_num) + 1 accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric) accelerator.print("resumed checkpoint performance:", accuracy) accelerator.print("resumed checkpoint's scheduler's lr:", lr_scheduler.get_lr()[0]) accelerator.print("resumed optimizers's lr:", optimizer.param_groups[0]["lr"]) with open(os.path.join(args.output_dir, f"state_{starting_epoch - 1}.json")) as f: resumed_state = json.load(f) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model state = {} for epoch in range(starting_epoch, ending_epoch): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 output_dir = f"epoch_{epoch}" output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric) state["accuracy"] = accuracy state["lr"] = lr_scheduler.get_lr()[0] state["optimizer_lr"] = optimizer.param_groups[0]["lr"] state["epoch"] = epoch state["step"] = overall_step accelerator.print(f"epoch {epoch}:", state) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, f"state_{epoch}.json"), "w") as f: json.dump(state, f) accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path", type=str, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--partial_train_epoch", type=int, default=None, help="If passed, the training will stop after this number of epochs.", ) parser.add_argument( "--num_epochs", type=int, default=2, help="Number of train epochs.", ) args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/external_deps/test_checkpointing.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/external_deps/test_checkpointing.py", "repo_id": "accelerate", "token_count": 4199 }
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class RegressionDataset: def __init__(self, a=2, b=3, length=64, seed=None): rng = np.random.default_rng(seed) self.length = length self.x = rng.normal(size=(length,)).astype(np.float32) self.y = a * self.x + b + rng.normal(scale=0.1, size=(length,)).astype(np.float32) def __len__(self): return self.length def __getitem__(self, i): return {"x": self.x[i], "y": self.y[i]} class RegressionModel4XPU(torch.nn.Module): def __init__(self, a=0, b=0, double_output=False): super().__init__() self.a = torch.nn.Parameter(torch.tensor([2, 3]).float()) self.b = torch.nn.Parameter(torch.tensor([2, 3]).float()) self.first_batch = True def forward(self, x=None): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") self.first_batch = False return x * self.a[0] + self.b[0] class RegressionModel(torch.nn.Module): def __init__(self, a=0, b=0, double_output=False): super().__init__() self.a = torch.nn.Parameter(torch.tensor(a).float()) self.b = torch.nn.Parameter(torch.tensor(b).float()) self.first_batch = True def forward(self, x=None): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") self.first_batch = False return x * self.a + self.b def mocked_dataloaders(accelerator, batch_size: int = 16): from datasets import load_dataset from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} datasets = load_dataset("csv", data_files=data_files) label_list = datasets["train"].unique("label") label_to_id = {v: i for i, v in enumerate(label_list)} def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer( examples["sentence1"], examples["sentence2"], truncation=True, max_length=None, padding="max_length" ) if "label" in examples: outputs["labels"] = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["sentence1", "sentence2", "label"], ) def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.XLA: return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=2) eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1) return train_dataloader, eval_dataloader def mocked_dataloaders_for_autoregressive_models(accelerator, batch_size: int = 16): from datasets import load_dataset from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-360M") tokenizer.pad_token = tokenizer.eos_token data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} datasets = load_dataset("csv", data_files=data_files) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], truncation=True, max_length=None, return_attention_mask=False) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["sentence1", "sentence2", "label"], ) def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = ( 128 if accelerator.distributed_type == DistributedType.XLA else max([len(e["input_ids"]) for e in examples]) ) # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None batch = tokenizer.pad( examples, padding="max_length", max_length=max_length + 1, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) batch["labels"] = batch["input_ids"][:, 1:] batch["input_ids"] = batch["input_ids"][:, :-1] batch["labels"] = torch.where(batch["labels"] == tokenizer.pad_token_id, -100, batch["labels"]) return batch # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=False, collate_fn=collate_fn, batch_size=2) eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1) return train_dataloader, eval_dataloader
accelerate/src/accelerate/test_utils/training.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/training.py", "repo_id": "accelerate", "token_count": 2582 }
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import platform import re import socket from codecs import encode from functools import partial, reduce from types import MethodType from typing import OrderedDict import numpy as np import torch from packaging.version import Version from safetensors.torch import save_file as safe_save_file from ..commands.config.default import write_basic_config # noqa: F401 from ..logging import get_logger from ..state import PartialState from .constants import FSDP_PYTORCH_VERSION from .dataclasses import DistributedType from .imports import ( is_deepspeed_available, is_numpy_available, is_torch_distributed_available, is_torch_xla_available, is_weights_only_available, ) from .modeling import id_tensor_storage from .transformer_engine import convert_model from .versions import is_torch_version logger = get_logger(__name__) if is_torch_xla_available(): import torch_xla.core.xla_model as xm def is_compiled_module(module): """ Check whether the module was compiled with torch.compile() """ if not hasattr(torch, "_dynamo"): return False return isinstance(module, torch._dynamo.eval_frame.OptimizedModule) def extract_model_from_parallel( model, keep_fp32_wrapper: bool = True, keep_torch_compile: bool = True, recursive: bool = False ): """ Extract a model from its distributed containers. Args: model (`torch.nn.Module`): The model to extract. keep_fp32_wrapper (`bool`, *optional*): Whether to remove mixed precision hooks from the model. keep_torch_compile (`bool`, *optional*): Whether to unwrap compiled model. recursive (`bool`, *optional*, defaults to `False`): Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers recursively, not just the top-level distributed containers. Returns: `torch.nn.Module`: The extracted model. """ options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) is_compiled = is_compiled_module(model) if is_compiled: compiled_model = model model = model._orig_mod if is_deepspeed_available(): from deepspeed import DeepSpeedEngine options += (DeepSpeedEngine,) if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available(): from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP options += (FSDP,) while isinstance(model, options): model = model.module if recursive: # This is needed in cases such as using FSDPv2 on XLA def _recursive_unwrap(module): # Wrapped modules are standardly wrapped as `module`, similar to the cases earlier # with DDP, DataParallel, DeepSpeed, and FSDP if hasattr(module, "module"): unwrapped_module = _recursive_unwrap(module.module) else: unwrapped_module = module # Next unwrap child sublayers recursively for name, child in unwrapped_module.named_children(): setattr(unwrapped_module, name, _recursive_unwrap(child)) return unwrapped_module # Start with top-level model = _recursive_unwrap(model) if not keep_fp32_wrapper: forward = model.forward original_forward = model.__dict__.pop("_original_forward", None) if original_forward is not None: while hasattr(forward, "__wrapped__"): forward = forward.__wrapped__ if forward == original_forward: break model.forward = MethodType(forward, model) if getattr(model, "_converted_to_transformer_engine", False): convert_model(model, to_transformer_engine=False) if keep_torch_compile and is_compiled: compiled_model._orig_mod = model model = compiled_model return model def wait_for_everyone(): """ Introduces a blocking point in the script, making sure all processes have reached this point before continuing. <Tip warning={true}> Make sure all processes will reach this instruction otherwise one of your processes will hang forever. </Tip> """ PartialState().wait_for_everyone() def clean_state_dict_for_safetensors(state_dict: dict): """ Cleans the state dictionary from a model and removes tensor aliasing if present. Args: state_dict (`dict`): The state dictionary from a model """ ptrs = collections.defaultdict(list) # When bnb serialization is used, weights in state dict can be strings for name, tensor in state_dict.items(): if not isinstance(tensor, str): ptrs[id_tensor_storage(tensor)].append(name) # These are all pointers of tensors with shared memory shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1} warn_names = set() for names in shared_ptrs.values(): # When not all duplicates have been cleaned, we still remove those keys but put a clear warning. # If the link between tensors was done at runtime then `from_pretrained` will not get # the key back leading to random tensor. A proper warning will be shown # during reload (if applicable), but since the file is not necessarily compatible with # the config, better show a proper warning. found_names = [name for name in names if name in state_dict] warn_names.update(found_names[1:]) for name in found_names[1:]: del state_dict[name] if len(warn_names) > 0: logger.warning( f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading", ) state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()} return state_dict def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False): """ Save the data to disk. Use in place of `torch.save()`. Args: obj: The data to save f: The file (or file-like object) to use to save the data save_on_each_node (`bool`, *optional*, defaults to `False`): Whether to only save on the global main process safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`). """ # When TorchXLA is enabled, it's necessary to transfer all data to the CPU before saving. # Another issue arises with `id_tensor_storage`, which treats all XLA tensors as identical. # If tensors remain on XLA, calling `clean_state_dict_for_safetensors` will result in only # one XLA tensor remaining. if PartialState().distributed_type == DistributedType.XLA: obj = xm._maybe_convert_to_cpu(obj) # Check if it's a model and remove duplicates if safe_serialization: save_func = partial(safe_save_file, metadata={"format": "pt"}) if isinstance(obj, OrderedDict): obj = clean_state_dict_for_safetensors(obj) else: save_func = torch.save if PartialState().is_main_process and not save_on_each_node: save_func(obj, f) elif PartialState().is_local_main_process and save_on_each_node: save_func(obj, f) # The following are considered "safe" globals to reconstruct various types of objects when using `weights_only=True` # These should be added and then removed after loading in the file np_core = np._core if is_numpy_available("2.0.0") else np.core TORCH_SAFE_GLOBALS = [ # numpy arrays are just numbers, not objects, so we can reconstruct them safely np_core.multiarray._reconstruct, np.ndarray, # The following are needed for the RNG states encode, np.dtype, ] if is_numpy_available("1.25.0"): TORCH_SAFE_GLOBALS.append(np.dtypes.UInt32DType) def load(f, map_location=None, **kwargs): """ Compatible drop-in replacement of `torch.load()` which allows for `weights_only` to be used if `torch` version is 2.4.0 or higher. Otherwise will ignore the kwarg. Will also add (and then remove) an exception for numpy arrays Args: f: The file (or file-like object) to use to load the data map_location: a function, `torch.device`, string or a dict specifying how to remap storage locations **kwargs: Additional keyword arguments to pass to `torch.load()`. """ try: if is_weights_only_available(): old_safe_globals = torch.serialization.get_safe_globals() if "weights_only" not in kwargs: kwargs["weights_only"] = True torch.serialization.add_safe_globals(TORCH_SAFE_GLOBALS) else: kwargs.pop("weights_only", None) loaded_obj = torch.load(f, map_location=map_location, **kwargs) finally: if is_weights_only_available(): torch.serialization.clear_safe_globals() if old_safe_globals: torch.serialization.add_safe_globals(old_safe_globals) return loaded_obj def get_pretty_name(obj): """ Gets a pretty name from `obj`. """ if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"): obj = getattr(obj, "__class__", obj) if hasattr(obj, "__qualname__"): return obj.__qualname__ if hasattr(obj, "__name__"): return obj.__name__ return str(obj) def merge_dicts(source, destination): """ Recursively merges two dictionaries. Args: source (`dict`): The dictionary to merge into `destination`. destination (`dict`): The dictionary to merge `source` into. """ for key, value in source.items(): if isinstance(value, dict): node = destination.setdefault(key, {}) merge_dicts(value, node) else: destination[key] = value return destination def is_port_in_use(port: int = None) -> bool: """ Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been run and need to see if the port is already in use. """ if port is None: port = 29500 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(("localhost", port)) == 0 def convert_bytes(size): "Converts `size` from bytes to the largest possible unit" for x in ["bytes", "KB", "MB", "GB", "TB"]: if size < 1024.0: return f"{round(size, 2)} {x}" size /= 1024.0 return f"{round(size, 2)} PB" def check_os_kernel(): """Warns if the kernel version is below the recommended minimum on Linux.""" # see issue #1929 info = platform.uname() system = info.system if system != "Linux": return _, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release) min_version = "5.5.0" if Version(version) < Version(min_version): msg = ( f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can " "cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher." ) logger.warning(msg, main_process_only=True) def recursive_getattr(obj, attr: str): """ Recursive `getattr`. Args: obj: A class instance holding the attribute. attr (`str`): The attribute that is to be retrieved, e.g. 'attribute1.attribute2'. """ def _getattr(obj, attr): return getattr(obj, attr) return reduce(_getattr, [obj] + attr.split("."))
accelerate/src/accelerate/utils/other.py/0
{ "file_path": "accelerate/src/accelerate/utils/other.py", "repo_id": "accelerate", "token_count": 4783 }
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from unittest.mock import patch import torch from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError import accelerate.commands.test as accelerate_test_cmd from accelerate.commands.config.config_args import BaseConfig, ClusterConfig, SageMakerConfig, load_config_from_file from accelerate.commands.estimate import estimate_command, estimate_command_parser, gather_data from accelerate.commands.launch import _validate_launch_command, launch_command, launch_command_parser from accelerate.commands.tpu import tpu_command_launcher, tpu_command_parser from accelerate.test_utils.testing import ( capture_call_output, path_in_accelerate_package, require_multi_device, require_timm, require_transformers, run_command, ) from accelerate.utils import patch_environment from accelerate.utils.launch import prepare_simple_launcher_cmd_env class AccelerateLauncherTester(unittest.TestCase): """ Test case for verifying the `accelerate launch` CLI operates correctly. If a `default_config.yaml` file is located in the cache it will temporarily move it for the duration of the tests. """ test_file_path = path_in_accelerate_package("test_utils", "scripts", "test_cli.py") notebook_launcher_path = path_in_accelerate_package("test_utils", "scripts", "test_notebook.py") config_folder = Path.home() / ".cache/huggingface/accelerate" config_file = "default_config.yaml" config_path = config_folder / config_file changed_path = config_folder / "_default_config.yaml" test_config_path = Path("tests/test_configs") parser = launch_command_parser() @classmethod def setUpClass(cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def tearDownClass(cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def test_no_config(self): args = ["--monitor_interval", "0.1", str(self.test_file_path)] if torch.cuda.is_available() and (torch.cuda.device_count() > 1): args = ["--multi_gpu"] + args args = self.parser.parse_args(["--monitor_interval", "0.1", str(self.test_file_path)]) launch_command(args) def test_config_compatibility(self): invalid_configs = ["fp8", "invalid", "mpi", "sagemaker"] for config in sorted(self.test_config_path.glob("**/*.yaml")): if any(invalid_config in str(config) for invalid_config in invalid_configs): continue with self.subTest(config_file=config): args = self.parser.parse_args(["--config_file", str(config), str(self.test_file_path)]) launch_command(args) def test_invalid_keys(self): config_path = self.test_config_path / "invalid_keys.yaml" with self.assertRaises( ValueError, msg="The config file at 'invalid_keys.yaml' had unknown keys ('another_invalid_key', 'invalid_key')", ): args = self.parser.parse_args(["--config_file", str(config_path), str(self.test_file_path)]) launch_command(args) def test_accelerate_test(self): args = accelerate_test_cmd.test_command_parser().parse_args([]) accelerate_test_cmd.test_command(args) @require_multi_device def test_notebook_launcher(self): """ This test checks a variety of situations and scenarios with the `notebook_launcher` """ cmd = ["python", self.notebook_launcher_path] with patch_environment(omp_num_threads=1, accelerate_num_processes=2): run_command(cmd) def test_mpi_multicpu_config_cmd(self): """ Parses a launch command with a test file and the 0_28_0_mpi.yaml config. Tests getting the command and environment vars and verifies the mpirun command arg values. """ mpi_config_path = str(self.test_config_path / "0_28_0_mpi.yaml") test_file_arg = "--cpu" with patch("sys.argv", ["accelerate", str(self.test_file_path), test_file_arg]): parser = launch_command_parser() args = parser.parse_args() args.config_file = mpi_config_path args, _, _ = _validate_launch_command(args) # Mock out the check for mpirun version to simulate Intel MPI with patch("accelerate.utils.launch.which", return_value=True): with patch("accelerate.utils.launch.subprocess.check_output", return_value=b"Intel MPI"): cmd, _ = prepare_simple_launcher_cmd_env(args) # Verify the mpirun command args expected_mpirun_cmd = ["mpirun", "-f", "/home/user/hostfile", "-ppn", "4", "-n", "16"] self.assertGreater(len(cmd), len(expected_mpirun_cmd)) generated_mpirun_cmd = cmd[0 : len(expected_mpirun_cmd)] self.assertEqual(expected_mpirun_cmd, generated_mpirun_cmd) # Verify the python script and args in the mpirun command python_script_cmd = cmd[len(expected_mpirun_cmd) :] self.assertEqual(len(python_script_cmd), 3) self.assertEqual(python_script_cmd[1], str(self.test_file_path)) self.assertEqual(python_script_cmd[2], test_file_arg) class LaunchArgTester(unittest.TestCase): """ Test cases revolving around the CLI wrappers """ parser = launch_command_parser() def test_hyphen(self): # Try a little from each cluster args = ["--config-file", "test.yaml", "test.py"] result = self.parser.parse_args(args) assert result.config_file == "test.yaml" assert result.multi_gpu is False args = ["--multi-gpu", "--num-processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.num_processes == 4 # And use a mix args = ["--multi-gpu", "--use-deepspeed", "--use-fsdp", "--num_processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.use_deepspeed is True assert result.use_fsdp is True assert result.num_processes == 4 def test_underscore(self): # Try a little from each cluster args = ["--config_file", "test.yaml", "test.py"] result = self.parser.parse_args(args) assert result.config_file == "test.yaml" args = ["--multi_gpu", "--num_processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.num_processes == 4 # And use a mix args = ["--multi_gpu", "--use_deepspeed", "--use_fsdp", "--num-processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.use_deepspeed is True assert result.use_fsdp is True assert result.num_processes == 4 def test_duplicate_entities(self): help_return = self.parser.format_help() args = self.parser.parse_args(["test.py"]) for arg in args.__dict__: if "_" in arg: bad_arg = f'--{arg.replace("_", "-")}' # Need an exception for `num-processes` since it's in the docstring if bad_arg == "--num-processes": assert help_return.count(bad_arg) == 1, f"Found {bad_arg} in `accelerate launch -h`" else: assert bad_arg not in help_return, f"Found {bad_arg} in `accelerate launch -h`" class ClusterConfigTester(unittest.TestCase): """ Test case for verifying the config dataclasses work """ test_config_path = Path("tests/test_configs") def test_base_config(self): # Tests that all the dataclasses can be initialized config = BaseConfig( compute_environment="LOCAL_MACHINE", distributed_type="NO", mixed_precision="fp16", debug=False, use_cpu=False, ) assert config.compute_environment == "LOCAL_MACHINE" assert config.distributed_type == "NO" assert config.mixed_precision == "fp16" assert config.debug is False def test_cluster_config(self): # First normally config = ClusterConfig( compute_environment="LOCAL_MACHINE", distributed_type="NO", mixed_precision="fp16", num_processes=2, debug=False, use_cpu=False, ) assert config.compute_environment == "LOCAL_MACHINE" assert config.distributed_type == "NO" assert config.mixed_precision == "fp16" assert config.debug is False # Then check with other compute environments config = ClusterConfig( compute_environment="LOCAL_MACHINE", distributed_type="MULTI_GPU", mixed_precision="fp16", debug=False, num_processes=2, enable_cpu_affinity=True, use_cpu=False, ) assert config.distributed_type == "MULTI_GPU" assert config.num_processes == 2 assert config.enable_cpu_affinity is True def test_sagemaker_config(self): config = SageMakerConfig( compute_environment="AMAZON_SAGEMAKER", distributed_type="NO", mixed_precision="fp16", debug=False, use_cpu=False, ec2_instance_type="MY_TYPE", iam_role_name="MY_ROLE", ) assert config.compute_environment == "AMAZON_SAGEMAKER" assert config.ec2_instance_type == "MY_TYPE" assert config.iam_role_name == "MY_ROLE" config = load_config_from_file(str(self.test_config_path / "0_30_0_sagemaker.yaml")) class TpuConfigTester(unittest.TestCase): """ Test case for verifying the `accelerate tpu-config` CLI passes the right `gcloud` command. """ tpu_name = "test-tpu" tpu_zone = "us-central1-a" command = "ls" cmd = ["accelerate", "tpu-config"] base_output = "cd /usr/share" command_file = "tests/test_samples/test_command_file.sh" gcloud = "Running gcloud compute tpus tpu-vm ssh" def setUp(self): self.parser = tpu_command_parser() def test_base(self): args = self.parser.parse_args( ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] ) output = capture_call_output(tpu_command_launcher, args) assert f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" in output def test_base_backward_compatibility(self): args = self.parser.parse_args( [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] ) output = capture_call_output(tpu_command_launcher, args) assert f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" in output def test_with_config_file(self): args = self.parser.parse_args(["--config_file", "tests/test_configs/latest.yaml", "--debug"]) output = capture_call_output(tpu_command_launcher, args) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_with_config_file_and_command(self): args = self.parser.parse_args( ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] ) output = capture_call_output(tpu_command_launcher, args) assert f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" in output def test_with_config_file_and_multiple_command(self): args = self.parser.parse_args( [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", 'echo "Hello World"', "--debug", ] ) output = capture_call_output(tpu_command_launcher, args) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' in output ) def test_with_config_file_and_command_file(self): args = self.parser.parse_args( ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] ) output = capture_call_output(tpu_command_launcher, args) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_with_config_file_and_command_file_backward_compatibility(self): args = self.parser.parse_args( [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] ) output = capture_call_output(tpu_command_launcher, args) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_accelerate_install(self): args = self.parser.parse_args( ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] ) output = capture_call_output(tpu_command_launcher, args) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_accelerate_install_version(self): args = self.parser.parse_args( [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] ) output = capture_call_output(tpu_command_launcher, args) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' in output ) class ModelEstimatorTester(unittest.TestCase): """ Test case for checking the output of `accelerate estimate-memory` is correct. - Uses `estimate_command` when trying to catch raised errors - Uses `gather_data` when just verifying the calculations are correct """ parser = estimate_command_parser() def test_invalid_model_name(self): with self.assertRaises( RepositoryNotFoundError, msg="Repo for model `somebrokenname` does not exist on the Hub" ): args = self.parser.parse_args(["somebrokenname"]) estimate_command(args) @require_timm def test_invalid_model_name_timm(self): with self.assertRaises(RuntimeError, msg="Tried to load `muellerzr/dummy` with `timm` but"): args = self.parser.parse_args(["muellerzr/dummy", "--library_name", "timm"]) estimate_command(args) @require_transformers def test_invalid_model_name_transformers(self): with self.assertRaises(RuntimeError, msg="Tried to load `muellerzr/dummy` with `transformers` but"): args = self.parser.parse_args(["muellerzr/dummy", "--library_name", "transformers"]) estimate_command(args) def test_no_metadata(self): with self.assertRaises( ValueError, msg="Model `muellerzr/dummy` does not have any library metadata on the Hub" ): args = self.parser.parse_args(["muellerzr/dummy"]) estimate_command(args) def test_gated(self): with self.assertRaises( (GatedRepoError, EnvironmentError), msg="Repo for model `meta-llama/Llama-2-7b-hf` is gated or environment error occurred", ): args = self.parser.parse_args(["meta-llama/Llama-2-7b-hf"]) with patch_environment(hf_hub_disable_implicit_token="1"): estimate_command(args) @require_transformers def test_remote_code(self): # Also tests that custom `Auto` classes work args = self.parser.parse_args(["hf-internal-testing/test_dynamic_model"]) with self.assertRaises(ValueError, msg="--trust_remote_code"): gather_data(args) # Verify it works with the flag args = self.parser.parse_args(["hf-internal-testing/test_dynamic_model", "--trust_remote_code"]) gather_data(args) @require_transformers def test_explicit_dtypes(self): args = self.parser.parse_args(["bert-base-cased", "--dtypes", "float32", "float16"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 90669056, 433249280 # Check that full precision -> int4 is calculating correctly assert len(output) == 2, f"Output was missing a precision, expected 2 but received {len(output)}" for i, factor in enumerate([1, 2]): precision = 32 // factor precision_str = f"float{precision}" largest_layer_estimate = largest_layer / factor total_size_estimate = total_size / factor total_training_size_estimate = total_size_estimate * 4 assert precision_str == output[i][0], f"Output is missing precision `{precision_str}`" assert ( largest_layer_estimate == output[i][1] ), f"Calculation for largest layer size in `{precision_str}` is incorrect." assert ( total_size_estimate == output[i][2] ), f"Calculation for total size in `{precision_str}` is incorrect." assert total_training_size_estimate == max( output[i][3].values() ), f"Calculation for total training size in `{precision_str}` is incorrect." @require_transformers def test_transformers_model(self): args = self.parser.parse_args(["bert-base-cased", "--dtypes", "float32"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 90669056, 433249280 assert ( largest_layer == output[0][1] ), f"Calculation for largest layer size in `fp32` is incorrect, expected {largest_layer} but received {output[0][1]}" assert ( total_size == output[0][2] ), f"Calculation for total size in `fp32` is incorrect, expected {total_size} but received {output[0][2]}" @require_transformers def test_no_split_modules(self): # idefics-80b-instruct has ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"] args = self.parser.parse_args(["HuggingFaceM4/idefics-80b-instruct", "--dtypes", "float32"]) output = gather_data(args) # without factoring in `no_split` modules, the largest layer is 721420288 bytes assert output[0][1] != 721420288, "Largest layer calculation incorrect, did not factor in `no_split` modules." # the real answer is 3240165632 bytes assert output[0][1] == 3240165632 @require_timm def test_timm_model(self): args = self.parser.parse_args(["timm/resnet50.a1_in1k", "--library_name", "timm"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 9437184, 102441032 assert ( largest_layer == output[0][1] ), f"Calculation for largest layer size in `fp32` is incorrect, expected {largest_layer} but received {output[0][1]}" assert ( total_size == output[0][2] ), f"Calculation for total size in `fp32` is incorrect, expected {total_size} but received {output[0][2]}"
accelerate/tests/test_cli.py/0
{ "file_path": "accelerate/tests/test_cli.py", "repo_id": "accelerate", "token_count": 9247 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import logging import os import pytest from accelerate import Accelerator from accelerate.logging import get_logger def current_lineno() -> int: # A simple helper that returns the lineno of its call-site. caller_frame = inspect.currentframe().f_back caller_info = inspect.getframeinfo(caller_frame) return caller_info.lineno class CustomLogger(logging.LoggerAdapter): # Mocks a user-defined custom logger wrapper that sets `stacklevel=3`. def log(self, level, msg, *args, **kwargs): # E.g. the user wants to modify `stacklevel`, `accelerate.logging` # should respect the user's `stacklevel`. For the specific value # of `3`, calling `CustomLogger.log()`, etc., should log that callsite, # rather than the callsite of the following `self.logger.log()`. kwargs["stacklevel"] = 3 self.logger.log(level, msg, *args, **kwargs) @pytest.fixture(scope="module") def accelerator(): return Accelerator() @pytest.mark.usefixtures("accelerator") def test_log_stack(caplog): logger = get_logger(__name__) logging.basicConfig( format="%(filename)s:%(name)s:%(lineno)s:%(funcName)s - %(message)s", datefmt="%m/%d %H:%M:%S", ) message = "Test" lineno = current_lineno() + 1 # the next line is the actual callsite logger.warning(message) assert len(caplog.records) == 1 rec = caplog.records[0] assert rec.levelname == logging.getLevelName(logging.WARNING) assert rec.filename == os.path.basename(__file__) assert rec.name == __name__ assert rec.lineno == lineno assert rec.funcName == test_log_stack.__name__ assert rec.message == message @pytest.mark.usefixtures("accelerator") def test_custom_stacklevel(caplog): wrapped_logger = get_logger(__name__) logging.basicConfig( format="%(filename)s:%(name)s:%(lineno)s:%(funcName)s - %(message)s", datefmt="%m/%d %H:%M:%S", ) logger = CustomLogger(wrapped_logger, {}) message = "Test" lineno = current_lineno() + 1 # the next line is the actual callsite logger.warning(message) # `CustomLogger.log` set custom `stacklevel=3`, so `logger.warning` should # log its callsite (rather than those of the `warpped_logger`). assert len(caplog.records) == 1 rec = caplog.records[0] assert rec.levelname == logging.getLevelName(logging.WARNING) assert rec.filename == os.path.basename(__file__) assert rec.name == __name__ assert rec.lineno == lineno assert rec.funcName == test_custom_stacklevel.__name__ assert rec.message == message
accelerate/tests/test_logging.py/0
{ "file_path": "accelerate/tests/test_logging.py", "repo_id": "accelerate", "token_count": 1156 }
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import tempfile import unittest import warnings from collections import UserDict, namedtuple from typing import NamedTuple, Optional from unittest.mock import Mock, patch import numpy as np import pytest import torch from torch import nn from accelerate.big_modeling import cpu_offload_with_hook from accelerate.hooks import attach_align_device_hook, remove_hook_from_module from accelerate.state import PartialState from accelerate.test_utils.testing import ( require_huggingface_suite, require_non_cpu, require_non_torch_xla, require_torch_min_version, require_tpu, require_triton, torch_device, ) from accelerate.test_utils.training import RegressionModel from accelerate.utils import ( CannotPadNestedTensorWarning, check_os_kernel, clear_environment, convert_dict_to_env_variables, convert_outputs_to_fp32, convert_to_fp32, extract_model_from_parallel, find_device, has_offloaded_params, is_torch_xla_available, listify, pad_across_processes, pad_input_tensors, patch_environment, purge_accelerate_environment, recursively_apply, save, send_to_device, ) from accelerate.utils.operations import is_namedtuple if is_torch_xla_available(): import torch_xla.distributed.spmd as xs import torch_xla.runtime as xr from torch_xla.experimental.spmd_fully_sharded_data_parallel import SpmdFullyShardedDataParallel as FSDPv2 ExampleNamedTuple = namedtuple("ExampleNamedTuple", "a b c") class UtilsTester(unittest.TestCase): def setUp(self): # logging requires initialized state PartialState() def test_send_to_device(self): tensor = torch.randn(5, 2) device = torch.device(f"{torch_device}:0") result1 = send_to_device(tensor, device) assert torch.equal(result1.cpu(), tensor) result2 = send_to_device((tensor, [tensor, tensor], 1), device) assert isinstance(result2, tuple) assert torch.equal(result2[0].cpu(), tensor) assert isinstance(result2[1], list) assert torch.equal(result2[1][0].cpu(), tensor) assert torch.equal(result2[1][1].cpu(), tensor) assert result2[2] == 1 result2 = send_to_device({"a": tensor, "b": [tensor, tensor], "c": 1}, device) assert isinstance(result2, dict) assert torch.equal(result2["a"].cpu(), tensor) assert isinstance(result2["b"], list) assert torch.equal(result2["b"][0].cpu(), tensor) assert torch.equal(result2["b"][1].cpu(), tensor) assert result2["c"] == 1 result3 = send_to_device(ExampleNamedTuple(a=tensor, b=[tensor, tensor], c=1), device) assert isinstance(result3, ExampleNamedTuple) assert torch.equal(result3.a.cpu(), tensor) assert isinstance(result3.b, list) assert torch.equal(result3.b[0].cpu(), tensor) assert torch.equal(result3.b[1].cpu(), tensor) assert result3.c == 1 result4 = send_to_device(UserDict({"a": tensor, "b": [tensor, tensor], "c": 1}), device) assert isinstance(result4, UserDict) assert torch.equal(result4["a"].cpu(), tensor) assert isinstance(result4["b"], list) assert torch.equal(result4["b"][0].cpu(), tensor) assert torch.equal(result4["b"][1].cpu(), tensor) assert result4["c"] == 1 def test_honor_type(self): with self.assertRaises(TypeError) as cm: _ = recursively_apply(torch.tensor, (torch.tensor(1), 1), error_on_other_type=True) assert ( str(cm.exception) == "Unsupported types (<class 'int'>) passed to `tensor`. Only nested list/tuple/dicts of objects that are valid for `is_torch_tensor` should be passed." ) def test_listify(self): tensor = torch.tensor([1, 2, 3, 4, 5]) assert listify(tensor) == [1, 2, 3, 4, 5] tensor = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) assert listify(tensor) == [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] tensor = torch.tensor([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]) assert listify(tensor) == [[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]] def test_patch_environment(self): with patch_environment(aa=1, BB=2): assert os.environ.get("AA") == "1" assert os.environ.get("BB") == "2" assert "AA" not in os.environ assert "BB" not in os.environ def test_patch_environment_key_exists(self): # check that patch_environment correctly restores pre-existing env vars with patch_environment(aa=1, BB=2): assert os.environ.get("AA") == "1" assert os.environ.get("BB") == "2" with patch_environment(Aa=10, bb="20", cC=30): assert os.environ.get("AA") == "10" assert os.environ.get("BB") == "20" assert os.environ.get("CC") == "30" assert os.environ.get("AA") == "1" assert os.environ.get("BB") == "2" assert "CC" not in os.environ assert "AA" not in os.environ assert "BB" not in os.environ assert "CC" not in os.environ def test_patch_environment_restores_on_error(self): # we need to find an upper-case envvar # because `patch_environment upper-cases all keys... key, orig_value = next(kv for kv in os.environ.items() if kv[0].isupper()) new_value = f"{orig_value}_foofoofoo" with pytest.raises(RuntimeError), patch_environment(**{key: new_value}): assert os.environ[key] == os.getenv(key) == new_value # noqa: TID251 raise RuntimeError("Oopsy daisy!") assert os.environ[key] == os.getenv(key) == orig_value # noqa: TID251 def test_clear_environment(self): key, value = os.environ.copy().popitem() with pytest.raises(RuntimeError), clear_environment(): assert key not in os.environ assert not os.getenv(key) # test the environment is actually cleared # noqa: TID251 raise RuntimeError("Oopsy daisy!") # Test values are restored assert os.getenv(key) == os.environ[key] == value # noqa: TID251 def test_can_undo_convert_outputs(self): model = RegressionModel() model._original_forward = model.forward model.forward = convert_outputs_to_fp32(model.forward) model = extract_model_from_parallel(model, keep_fp32_wrapper=False) _ = pickle.dumps(model) @require_non_cpu def test_can_undo_fp16_conversion(self): model = RegressionModel() model._original_forward = model.forward model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward) model.forward = convert_outputs_to_fp32(model.forward) model = extract_model_from_parallel(model, keep_fp32_wrapper=False) _ = pickle.dumps(model) @require_triton @require_non_cpu def test_dynamo(self): model = RegressionModel() model._original_forward = model.forward model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward) model.forward = convert_outputs_to_fp32(model.forward) model.forward = torch.compile(model.forward, backend="inductor") inputs = torch.randn(4, 10).to(torch_device) _ = model(inputs) def test_extract_model(self): model = RegressionModel() # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU distributed_model = torch.nn.parallel.DataParallel(model) model_unwrapped = extract_model_from_parallel(distributed_model) assert model == model_unwrapped @require_tpu @require_huggingface_suite def test_extract_model_recursive_fsdpv2(self): # Specifically tests for FSDPv2 extraction # reported in https://github.com/huggingface/transformers/pull/29780 xr.use_spmd() from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("gpt2") orig_state_dict_keys = list(model.state_dict().keys()) num_devices = xr.global_runtime_device_count() # Set environment for FSDPv2 to be active xs.set_global_mesh(xs.Mesh(np.array(range(num_devices)), (num_devices, 1), axis_names=("fsdp", "tensor"))) def nested_wrap(model): layer = model.wte wrapped_layer = FSDPv2(layer) model.wte = wrapped_layer return model wrapped_model = nested_wrap(model) unwrapped_model = extract_model_from_parallel(wrapped_model, recursive=True) unwrapped_state_dict_keys = list(unwrapped_model.state_dict().keys()) for original_key, new_key in zip(orig_state_dict_keys, unwrapped_state_dict_keys): assert original_key == new_key, f"Keys did not align: {original_key} != {new_key}" def test_dynamo_extract_model_keep_torch_compile(self): model = RegressionModel() compiled_model = torch.compile(model) # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU distributed_model = torch.nn.parallel.DataParallel(model) distributed_compiled_model = torch.compile(distributed_model) compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=True) assert compiled_model._orig_mod == compiled_model_unwrapped._orig_mod def test_dynamo_extract_model_remove_torch_compile(self): model = RegressionModel() compiled_model = torch.compile(model) # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU distributed_model = torch.nn.parallel.DataParallel(model) distributed_compiled_model = torch.compile(distributed_model) compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=False) assert compiled_model._orig_mod == compiled_model_unwrapped def test_find_device(self): assert find_device([1, "a", torch.tensor([1, 2, 3])]) == torch.device("cpu") assert find_device({"a": 1, "b": torch.tensor([1, 2, 3])}) == torch.device("cpu") assert find_device([1, "a"]) is None def test_check_os_kernel_no_warning_when_release_gt_min(self): # min version is 5.5 with patch("platform.uname", return_value=Mock(release="5.15.0-35-generic", system="Linux")): with warnings.catch_warnings(record=True) as w: check_os_kernel() assert len(w) == 0 def test_check_os_kernel_no_warning_when_not_linux(self): # system must be Linux with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Darwin")): with warnings.catch_warnings(record=True) as w: check_os_kernel() assert len(w) == 0 def test_check_os_kernel_warning_when_release_lt_min(self): # min version is 5.5 with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Linux")): with self.assertLogs() as ctx: check_os_kernel() assert len(ctx.records) == 1 assert ctx.records[0].levelname == "WARNING" assert "5.4.0" in ctx.records[0].msg assert "5.5.0" in ctx.records[0].msg @require_non_torch_xla def test_save_safetensor_shared_memory(self): class Model(nn.Module): def __init__(self): super().__init__() self.a = nn.Linear(100, 100) self.b = self.a def forward(self, x): return self.b(self.a(x)) model = Model() with tempfile.TemporaryDirectory() as tmp_dir: save_path = os.path.join(tmp_dir, "model.safetensors") with self.assertLogs(level="WARNING") as log: save(model.state_dict(), save_path, safe_serialization=True) assert len(log.records) == 1 assert "Removed shared tensor" in log.output[0] @require_torch_min_version(version="1.12") def test_pad_across_processes(self): from torch.nested import nested_tensor nt = nested_tensor([[1, 2, 3], [1], [1, 2]]) with self.assertWarns(CannotPadNestedTensorWarning): nt2 = pad_across_processes(nt) assert nt is nt2 # Basic functionality tensor = torch.randn(4, 3, 100) padded_tensor = pad_across_processes(tensor, dim=-1) assert padded_tensor.shape[-1] == 100 # dim = -4 is out of bounds padded_tensor = pad_across_processes(tensor, dim=-4) assert padded_tensor is tensor def test_slice_and_concatenate(self): # First base case: 2 processes, batch size of 1 num_processes = 2 batch_size = 1 batch = torch.rand(batch_size, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 2 items now assert result.shape == torch.Size([2, 4]) # Second base case: 2 processes, batch size of 3 num_processes = 2 batch_size = 3 batch = torch.rand(batch_size, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 4 items now assert result.shape == torch.Size([4, 4]) # Third base case: 3 processes, batch size of 4 num_processes = 3 batch_size = 4 batch = torch.rand(batch_size, 4, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 6 items now assert result.shape == torch.Size([6, 4, 4]) # Fourth base case: 4 processes, batch size of 3 num_processes = 4 batch_size = 3 batch = torch.rand(batch_size, 4, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 4 items now assert result.shape == torch.Size([4, 4, 4]) # Fifth base case: 6 processes, batch size of 4 num_processes = 6 batch_size = 4 batch = torch.rand(batch_size, 4, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 6 items now assert result.shape == torch.Size([6, 4, 4]) # Sixth base case: 6 processes, batch size of 1 num_processes = 6 batch_size = 1 batch = torch.rand(batch_size, 4, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 6 items now assert result.shape == torch.Size([6, 4, 4]) # Seventh base case: 6 processes, batch size of 2 num_processes = 6 batch_size = 2 batch = torch.rand(batch_size, 4, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 6 items now assert result.shape == torch.Size([6, 4, 4]) # Eighth base case: 6 processes, batch size of 61 num_processes = 6 batch_size = 61 batch = torch.rand(batch_size, 4, 4) result = pad_input_tensors(batch, batch_size, num_processes) # We should expect there to be 66 items now assert result.shape == torch.Size([66, 4, 4]) def test_send_to_device_compiles(self): compiled_send_to_device = torch.compile(send_to_device, fullgraph=True) compiled_send_to_device(torch.zeros([1], dtype=torch.bfloat16), "cpu") def test_convert_to_fp32(self): compiled_convert_to_fp32 = torch.compile(convert_to_fp32, fullgraph=True) compiled_convert_to_fp32(torch.zeros([1], dtype=torch.bfloat16)) def test_named_tuples(self): class QuantTensorBase(NamedTuple): value: torch.Tensor scale: Optional[torch.Tensor] zero_point: Optional[torch.Tensor] class Second(QuantTensorBase): pass a = QuantTensorBase(torch.tensor(1.0), None, None) b = Second(torch.tensor(1.0), None, None) point = namedtuple("Point", ["x", "y"]) p = point(11, y=22) self.assertTrue(is_namedtuple(a)) self.assertTrue(is_namedtuple(b)) self.assertTrue(is_namedtuple(p)) self.assertFalse(is_namedtuple((1, 2))) self.assertFalse(is_namedtuple("hey")) self.assertFalse(is_namedtuple(object())) def test_convert_dict_to_env_variables(self): env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"} with self.assertLogs("accelerate.utils.environment", level="WARNING"): valid_env_items = convert_dict_to_env_variables(env) assert valid_env_items == ["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"] def test_has_offloaded_params(self): model = RegressionModel() assert not has_offloaded_params(model) attach_align_device_hook(model, offload=False) assert not has_offloaded_params(model) remove_hook_from_module(model) model, _ = cpu_offload_with_hook(model) assert not has_offloaded_params(model) remove_hook_from_module(model) attach_align_device_hook(model, offload=True) assert has_offloaded_params(model) def set_dummy_accelerate_env_var(): """Set an accelerate env var This class emulates the behavior of, for instance, transformers.TrainingArguments, which is allowed to set accelerate env vars but does not clean them up. E.g. TrainingArguments(fp16=True, output_dir="/tmp/test") leaves ACCELERATE_MIXED_PRECISION=fp16 as an env var. """ os.environ["ACCELERATE_SOME_ENV_VAR"] = "true" @purge_accelerate_environment class MyUnittest(unittest.TestCase): def test_purge_env_vars_unittest_1(self): os.environ.pop("ACCELERATE_SOME_ENV_VAR", None) set_dummy_accelerate_env_var() assert "ACCELERATE_SOME_ENV_VAR" in os.environ def test_purge_env_vars_unittest_2(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @unittest.skipIf(False, "dummy unittest wrapper") @purge_accelerate_environment @unittest.skipUnless(True, "dummy unittest wrapper") class MyUnittestWithDecorators(unittest.TestCase): def test_purge_env_vars_unittest_with_wrapper_1(self): os.environ.pop("ACCELERATE_SOME_ENV_VAR", None) set_dummy_accelerate_env_var() assert "ACCELERATE_SOME_ENV_VAR" in os.environ def test_purge_env_vars_unittest_with_wrapper_2(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @unittest.skipIf(False, "dummy unittest wrapper") def test_purge_env_vars_unittest_with_wrapper_3(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @unittest.skipIf(True, "this is always skipped") def test_purge_env_vars_unittest_with_wrapper_4(self): # ensure that unittest markers still do their job assert False @purge_accelerate_environment class _BaseCls(unittest.TestCase): def test_purge_env_vars_unittest_with_inheritance_3(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ class MyUnittestWithInheritance(_BaseCls): def test_purge_env_vars_unittest_with_inheritance_1(self): os.environ.pop("ACCELERATE_SOME_ENV_VAR", None) set_dummy_accelerate_env_var() assert "ACCELERATE_SOME_ENV_VAR" in os.environ def test_purge_env_vars_unittest_with_inheritance_2(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @purge_accelerate_environment class TestMyPytest: def test_purge_env_vars_pytest_1(self): os.environ.pop("ACCELERATE_SOME_ENV_VAR", None) set_dummy_accelerate_env_var() assert "ACCELERATE_SOME_ENV_VAR" in os.environ def test_purge_env_vars_pytest_2(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @pytest.fixture def dummy_fixture(): pass @pytest.mark.skipif(False, reason="dummy pytest wrapper") @pytest.mark.usefixtures("dummy_fixture") @purge_accelerate_environment @pytest.mark.skipif(False, reason="dummy pytest wrapper") @pytest.mark.usefixtures("dummy_fixture") class TestPytestWithWrapper: def test_purge_env_vars_pytest_with_wrapper_1(self): os.environ.pop("ACCELERATE_SOME_ENV_VAR", None) set_dummy_accelerate_env_var() assert "ACCELERATE_SOME_ENV_VAR" in os.environ def test_purge_env_vars_pytest_with_wrapper_2(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @pytest.mark.skipif(False, reason="dummy pytest wrapper") @pytest.mark.usefixtures("dummy_fixture") def test_purge_env_vars_pytest_with_wrapper_3(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @pytest.mark.skipif(True, reason="this is always skipped") def test_purge_env_vars_pytest_with_wrapper_4_should_be_skipped(self): # ensure that pytest markers still do their job assert False @purge_accelerate_environment class _PytestBaseCls: def test_purge_env_vars_pytest_with_inheritance_3(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ class TestPytestWithInheritance(_PytestBaseCls): def test_purge_env_vars_pytest_with_inheritance_1(self): os.environ.pop("ACCELERATE_SOME_ENV_VAR", None) set_dummy_accelerate_env_var() assert "ACCELERATE_SOME_ENV_VAR" in os.environ def test_purge_env_vars_pytest_with_inheritance_2(self): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ @purge_accelerate_environment def test_purge_env_vars_standalone_1(): os.environ.pop("ACCELERATE_SOME_ENV_VAR", None) set_dummy_accelerate_env_var() assert "ACCELERATE_SOME_ENV_VAR" in os.environ def test_purge_env_vars_standalone_2(): assert "ACCELERATE_SOME_ENV_VAR" not in os.environ def test_purge_env_vars_restores_previous_values(): # Ensure that purge_accelerate_environment restores values of previous accelerate env vars and does not delete # untouched env vars. @purge_accelerate_environment def dummy_func(): os.environ["ACCELERATE_SOME_ENV_VAR"] = "456" os.environ["ACCELERATE_SOME_ENV_VAR"] = "1" os.environ["ACCELERATE_ANOTHER_ENV_VAR"] = "2" dummy_func() assert os.environ["ACCELERATE_SOME_ENV_VAR"] == "1" assert os.environ["ACCELERATE_ANOTHER_ENV_VAR"] == "2" del os.environ["ACCELERATE_SOME_ENV_VAR"] del os.environ["ACCELERATE_ANOTHER_ENV_VAR"]
accelerate/tests/test_utils.py/0
{ "file_path": "accelerate/tests/test_utils.py", "repo_id": "accelerate", "token_count": 10075 }
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
candle/LICENSE-MIT/0
{ "file_path": "candle/LICENSE-MIT", "repo_id": "candle", "token_count": 263 }
# Training Training starts with data. We're going to use the huggingface hub and start with the Hello world dataset of machine learning, MNIST. Let's start with downloading `MNIST` from [huggingface](https://huggingface.co/datasets/mnist). This requires [`hf-hub`](https://github.com/huggingface/hf-hub). ```bash cargo add hf-hub ``` This is going to be very hands-on for now. ```rust,ignore {{#include ../../../candle-examples/src/lib.rs:book_training_1}} ``` This uses the standardized `parquet` files from the `refs/convert/parquet` branch on every dataset. Our handles are now [`parquet::file::serialized_reader::SerializedFileReader`]. We can inspect the content of the files with: ```rust,ignore {{#include ../../../candle-examples/src/lib.rs:book_training_2}} ``` You should see something like: ```bash Column id 1, name label, value 6 Column id 0, name image, value {bytes: [137, ....] Column id 1, name label, value 8 Column id 0, name image, value {bytes: [137, ....] ``` So each row contains 2 columns (image, label) with image being saved as bytes. Let's put them into a useful struct.
candle/candle-book/src/training/training.md/0
{ "file_path": "candle/candle-book/src/training/training.md", "repo_id": "candle", "token_count": 361 }
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use std::str::FromStr; use anyhow::Result; use candle_core::{Device, Tensor}; fn cos_sin(n: usize, device: &Device) -> Result<Tensor> { let thetas: Vec<_> = (0..n).map(|i| (i as f32 / n as f32)).collect(); let xs: Vec<_> = thetas.iter().map(|t| t.cos().abs()).collect(); let ys: Vec<_> = thetas.iter().map(|t| t.sin().abs()).collect(); let xs = Tensor::from_vec(xs, (n, 1), device)?; let ys = Tensor::from_vec(ys, (1, n), device)?; let ys = Tensor::cat(&[&ys, &ys, &ys, &ys, &ys, &ys], 1)?; Ok(xs.matmul(&ys)?) } fn main() -> Result<()> { let device = Device::new_cuda(0)?; let args = std::env::args().collect::<Vec<String>>(); let n = if args.len() < 2 { 2000usize } else { usize::from_str(&args[1])? }; let xys_cpu = cos_sin(n, &Device::Cpu)?; let xys = cos_sin(n, &device)?; println!("{xys_cpu:?} {xys:?}"); let sum_keepdim_cpu = xys_cpu.sum_keepdim(1)?; println!("{sum_keepdim_cpu}"); let sum_keepdim = xys.sum_keepdim(1)?; println!("{sum_keepdim}"); let start = std::time::Instant::now(); let n_iters = 100; let mut v = 0f32; for _i in 0..n_iters { let sum_keepdim = xys.sum_keepdim(1)?; let sum_keepdim = sum_keepdim.sum_keepdim(0)?; let sum_keepdim: f32 = sum_keepdim.reshape(&[])?.to_scalar()?; v += sum_keepdim; } let elapsed = start.elapsed(); if v > 0. { println!( "ran {n_iters} iterations, time per iter: {:?} ({v})", elapsed.div_f64(n_iters as f64) ); } Ok(()) }
candle/candle-core/examples/cuda_sum_benchmark.rs/0
{ "file_path": "candle/candle-core/examples/cuda_sum_benchmark.rs", "repo_id": "candle", "token_count": 827 }
use crate::backend::BackendDevice; use crate::{CpuStorage, CpuStorageRef, DType, Layout, Result, Shape}; pub use candle_kernels as kernels; pub use cudarc; use cudarc::driver::{CudaFunction, LaunchAsync, LaunchConfig}; use half::{bf16, f16}; use std::sync::{Arc, Mutex}; use super::{CudaError, CudaStorage, CudaStorageSlice, WrapErr}; /// Unique identifier for cuda devices. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct DeviceId(usize); impl DeviceId { fn new() -> Self { // https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805 use std::sync::atomic; static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1); Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed)) } } struct CudaRng(cudarc::curand::CudaRng); unsafe impl Send for CudaRng {} #[derive(Clone)] pub struct CudaDevice { id: DeviceId, device: Arc<cudarc::driver::CudaDevice>, pub(crate) blas: Arc<cudarc::cublas::CudaBlas>, curand: Arc<Mutex<CudaRng>>, } impl std::fmt::Debug for CudaDevice { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "CudaDevice({:?})", self.id) } } impl std::ops::Deref for CudaDevice { type Target = Arc<cudarc::driver::CudaDevice>; fn deref(&self) -> &Self::Target { &self.device } } impl CudaDevice { pub fn cuda_device(&self) -> Arc<cudarc::driver::CudaDevice> { self.device.clone() } #[cfg(not(target_arch = "wasm32"))] pub fn compile( &self, func_name: &'static str, kernel: ug::lang::ssa::Kernel, ) -> Result<CudaFunction> { let mut buf = vec![]; ug_cuda::code_gen::gen(&mut buf, func_name, &kernel)?; let cuda_code = String::from_utf8(buf)?; let opts = cudarc::nvrtc::CompileOptions { use_fast_math: Some(true), ..Default::default() }; let ptx = cudarc::nvrtc::safe::compile_ptx_with_opts(cuda_code, opts).w()?; self.device.load_ptx(ptx, "ug", &[func_name]).w()?; let func = match self.device.get_func("ug", func_name) { Some(func) => func, None => crate::bail!("unknown function ug::{func_name}"), }; Ok(func) } pub fn id(&self) -> DeviceId { self.id } fn const_impl(&self, v: f64, shape: &Shape, dtype: DType) -> Result<CudaStorage> { let elem_count = shape.elem_count(); let cfg = LaunchConfig::for_num_elems(elem_count as u32); let slice = match dtype { DType::U8 => { // SAFETY: Set later by running the fill kernel. let data = unsafe { self.alloc::<u8>(elem_count) }.w()?; let func = self.get_or_load_func("fill_u8", kernels::FILL)?; let params = (&data, v as u8, elem_count); unsafe { func.launch(cfg, params) }.w()?; CudaStorageSlice::U8(data) } DType::U32 => { // SAFETY: Set later by running the fill kernel. let data = unsafe { self.alloc::<u32>(elem_count) }.w()?; let func = self.get_or_load_func("fill_u32", kernels::FILL)?; let params = (&data, v as u32, elem_count); unsafe { func.launch(cfg, params) }.w()?; CudaStorageSlice::U32(data) } DType::I64 => { // SAFETY: Set later by running the fill kernel. let data = unsafe { self.alloc::<i64>(elem_count) }.w()?; let func = self.get_or_load_func("fill_i64", kernels::FILL)?; let params = (&data, v as i64, elem_count); unsafe { func.launch(cfg, params) }.w()?; CudaStorageSlice::I64(data) } DType::BF16 => { // SAFETY: Set later by running the fill kernel. let data = unsafe { self.alloc::<bf16>(elem_count) }.w()?; let func = self.get_or_load_func("fill_bf16", kernels::FILL)?; let params = (&data, bf16::from_f64(v), elem_count); unsafe { func.launch(cfg, params) }.w()?; CudaStorageSlice::BF16(data) } DType::F16 => { // SAFETY: Set later by running the fill kernel. let data = unsafe { self.alloc::<f16>(elem_count) }.w()?; let func = self.get_or_load_func("fill_f16", kernels::FILL)?; let params = (&data, f16::from_f64(v), elem_count); unsafe { func.launch(cfg, params) }.w()?; CudaStorageSlice::F16(data) } DType::F32 => { // SAFETY: Set later by running the fill kernel. let data = unsafe { self.alloc::<f32>(elem_count) }.w()?; let func = self.get_or_load_func("fill_f32", kernels::FILL)?; let params = (&data, v as f32, elem_count); unsafe { func.launch(cfg, params) }.w()?; CudaStorageSlice::F32(data) } DType::F64 => { // SAFETY: Set later by running the fill kernel. let data = unsafe { self.alloc::<f64>(elem_count) }.w()?; let func = self.get_or_load_func("fill_f64", kernels::FILL)?; let params = (&data, v, elem_count); unsafe { func.launch(cfg, params) }.w()?; CudaStorageSlice::F64(data) } }; Ok(CudaStorage { slice, device: self.clone(), }) } pub fn get_or_load_func(&self, module_name: &str, ptx: &'static str) -> Result<CudaFunction> { if !self.has_func(module_name, module_name) { // Leaking the string here is a bit sad but we need a &'static str and this is only // done once per kernel name. let static_module_name = Box::leak(module_name.to_string().into_boxed_str()); self.load_ptx(ptx.into(), module_name, &[static_module_name]) .map_err(|cuda| CudaError::Load { cuda, module_name: module_name.to_string(), }) .w()?; } self.get_func(module_name, module_name) // Clippy recommends this `ok_or` rather than `ok_or_else` so hopefully the compiler is // able to only build the error value if needed. .ok_or(CudaError::MissingKernel { module_name: module_name.to_string(), }) .w() } } impl CudaDevice { pub fn new_with_stream(ordinal: usize) -> Result<Self> { let device = cudarc::driver::CudaDevice::new_with_stream(ordinal).w()?; let blas = cudarc::cublas::CudaBlas::new(device.clone()).w()?; let curand = cudarc::curand::CudaRng::new(299792458, device.clone()).w()?; Ok(Self { id: DeviceId::new(), device, blas: Arc::new(blas), curand: Arc::new(Mutex::new(CudaRng(curand))), }) } } impl BackendDevice for CudaDevice { type Storage = CudaStorage; fn new(ordinal: usize) -> Result<Self> { let device = cudarc::driver::CudaDevice::new(ordinal).w()?; let blas = cudarc::cublas::CudaBlas::new(device.clone()).w()?; let curand = cudarc::curand::CudaRng::new(299792458, device.clone()).w()?; Ok(Self { id: DeviceId::new(), device, blas: Arc::new(blas), curand: Arc::new(Mutex::new(CudaRng(curand))), }) } fn set_seed(&self, seed: u64) -> Result<()> { // We do not call set_seed but instead create a new curand object. This ensures that the // state will be identical and the same random numbers will be generated. let mut curand = self.curand.lock().unwrap(); curand.0 = cudarc::curand::CudaRng::new(seed, self.device.clone()).w()?; Ok(()) } fn location(&self) -> crate::DeviceLocation { crate::DeviceLocation::Cuda { gpu_id: self.device.ordinal(), } } fn same_device(&self, rhs: &Self) -> bool { self.id == rhs.id } fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> { let elem_count = shape.elem_count(); let slice = match dtype { DType::U8 => { let data = self.alloc_zeros::<u8>(elem_count).w()?; CudaStorageSlice::U8(data) } DType::U32 => { let data = self.alloc_zeros::<u32>(elem_count).w()?; CudaStorageSlice::U32(data) } DType::I64 => { let data = self.alloc_zeros::<i64>(elem_count).w()?; CudaStorageSlice::I64(data) } DType::BF16 => { let data = self.alloc_zeros::<bf16>(elem_count).w()?; CudaStorageSlice::BF16(data) } DType::F16 => { let data = self.alloc_zeros::<f16>(elem_count).w()?; CudaStorageSlice::F16(data) } DType::F32 => { let data = self.alloc_zeros::<f32>(elem_count).w()?; CudaStorageSlice::F32(data) } DType::F64 => { let data = self.alloc_zeros::<f64>(elem_count).w()?; CudaStorageSlice::F64(data) } }; Ok(CudaStorage { slice, device: self.clone(), }) } fn rand_uniform(&self, shape: &Shape, dtype: DType, lo: f64, up: f64) -> Result<CudaStorage> { let elem_count = shape.elem_count(); let curand = self.curand.lock().unwrap(); let slice = match dtype { // TODO: Add support for F16 and BF16 though this is likely to require some upstream // cudarc changes. DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => { Err(CudaError::UnsupportedDtype { dtype, op: "rand_uniform", }) .w()? } DType::F32 => { let mut data = unsafe { self.alloc::<f32>(elem_count) }.w()?; curand.0.fill_with_uniform(&mut data).w()?; CudaStorageSlice::F32(data) } DType::F64 => { let mut data = unsafe { self.alloc::<f64>(elem_count) }.w()?; curand.0.fill_with_uniform(&mut data).w()?; CudaStorageSlice::F64(data) } }; let slice = if lo == 0. && up == 1.0 { slice } else { use super::utils::Map1; let layout = Layout::contiguous(shape); super::Affine(up - lo, lo).map(&slice, self, &layout)? }; Ok(CudaStorage { slice, device: self.clone(), }) } fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CudaStorage> { // TODO: Add support for F16 and BF16 though this is likely to require some upstream // cudarc changes. let elem_count = shape.elem_count(); let curand = self.curand.lock().unwrap(); // curand can only generate an odd number of values. // https://github.com/huggingface/candle/issues/734 let elem_count_round = if elem_count % 2 == 1 { elem_count + 1 } else { elem_count }; let slice = match dtype { DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => { Err(CudaError::UnsupportedDtype { dtype, op: "rand_normal", }) .w()? } DType::F32 => { let mut data = unsafe { self.alloc::<f32>(elem_count_round) }.w()?; curand .0 .fill_with_normal(&mut data, mean as f32, std as f32) .w()?; CudaStorageSlice::F32(data) } DType::F64 => { let mut data = unsafe { self.alloc::<f64>(elem_count_round) }.w()?; curand.0.fill_with_normal(&mut data, mean, std).w()?; CudaStorageSlice::F64(data) } }; Ok(CudaStorage { slice, device: self.clone(), }) } fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> { self.const_impl(1., shape, dtype) } unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> { let elem_count = shape.elem_count(); let slice = match dtype { DType::U8 => { let data = self.alloc::<u8>(elem_count).w()?; CudaStorageSlice::U8(data) } DType::U32 => { let data = self.alloc::<u32>(elem_count).w()?; CudaStorageSlice::U32(data) } DType::I64 => { let data = self.alloc::<i64>(elem_count).w()?; CudaStorageSlice::I64(data) } DType::BF16 => { let data = self.alloc::<bf16>(elem_count).w()?; CudaStorageSlice::BF16(data) } DType::F16 => { let data = self.alloc::<f16>(elem_count).w()?; CudaStorageSlice::F16(data) } DType::F32 => { let data = self.alloc::<f32>(elem_count).w()?; CudaStorageSlice::F32(data) } DType::F64 => { let data = self.alloc::<f64>(elem_count).w()?; CudaStorageSlice::F64(data) } }; Ok(CudaStorage { slice, device: self.clone(), }) } fn storage_from_slice<T: crate::WithDType>(&self, s: &[T]) -> Result<Self::Storage> { let slice = match T::cpu_storage_ref(s) { CpuStorageRef::U8(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::U8(data) } CpuStorageRef::U32(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::U32(data) } CpuStorageRef::I64(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::I64(data) } CpuStorageRef::BF16(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::BF16(data) } CpuStorageRef::F16(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::F16(data) } CpuStorageRef::F32(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::F32(data) } CpuStorageRef::F64(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::F64(data) } }; Ok(CudaStorage { slice, device: self.clone(), }) } fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> { let slice = match storage { CpuStorage::U8(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::U8(data) } CpuStorage::U32(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::U32(data) } CpuStorage::I64(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::I64(data) } CpuStorage::BF16(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::BF16(data) } CpuStorage::F16(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::F16(data) } CpuStorage::F32(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::F32(data) } CpuStorage::F64(storage) => { let data = self.htod_sync_copy(storage).w()?; CudaStorageSlice::F64(data) } }; Ok(CudaStorage { slice, device: self.clone(), }) } fn storage_from_cpu_storage_owned(&self, storage: CpuStorage) -> Result<CudaStorage> { let slice = match storage { CpuStorage::U8(storage) => { let data = self.htod_copy(storage).w()?; CudaStorageSlice::U8(data) } CpuStorage::U32(storage) => { let data = self.htod_copy(storage).w()?; CudaStorageSlice::U32(data) } CpuStorage::I64(storage) => { let data = self.htod_copy(storage).w()?; CudaStorageSlice::I64(data) } CpuStorage::BF16(storage) => { let data = self.htod_copy(storage).w()?; CudaStorageSlice::BF16(data) } CpuStorage::F16(storage) => { let data = self.htod_copy(storage).w()?; CudaStorageSlice::F16(data) } CpuStorage::F32(storage) => { let data = self.htod_copy(storage).w()?; CudaStorageSlice::F32(data) } CpuStorage::F64(storage) => { let data = self.htod_copy(storage).w()?; CudaStorageSlice::F64(data) } }; Ok(CudaStorage { slice, device: self.clone(), }) } fn synchronize(&self) -> Result<()> { self.device.synchronize().map_err(crate::Error::wrap)?; Ok(()) } }
candle/candle-core/src/cuda_backend/device.rs/0
{ "file_path": "candle/candle-core/src/cuda_backend/device.rs", "repo_id": "candle", "token_count": 9908 }
#![allow(dead_code)] use libc::{c_char, c_double, c_float, c_int}; mod ffi { use super::*; extern "C" { pub fn vsTanh(n: c_int, a: *const c_float, y: *mut c_float); pub fn vdTanh(n: c_int, a: *const c_double, y: *mut c_double); pub fn vsExp(n: c_int, a: *const c_float, y: *mut c_float); pub fn vdExp(n: c_int, a: *const c_double, y: *mut c_double); pub fn vsLn(n: c_int, a: *const c_float, y: *mut c_float); pub fn vdLn(n: c_int, a: *const c_double, y: *mut c_double); pub fn vsSin(n: c_int, a: *const c_float, y: *mut c_float); pub fn vdSin(n: c_int, a: *const c_double, y: *mut c_double); pub fn vsCos(n: c_int, a: *const c_float, y: *mut c_float); pub fn vdCos(n: c_int, a: *const c_double, y: *mut c_double); pub fn vsSqrt(n: c_int, a: *const c_float, y: *mut c_float); pub fn vdSqrt(n: c_int, a: *const c_double, y: *mut c_double); pub fn vsAdd(n: c_int, a: *const c_float, b: *const c_float, y: *mut c_float); pub fn vdAdd(n: c_int, a: *const c_double, b: *const c_double, y: *mut c_double); pub fn vsSub(n: c_int, a: *const c_float, b: *const c_float, y: *mut c_float); pub fn vdSub(n: c_int, a: *const c_double, b: *const c_double, y: *mut c_double); pub fn vsMul(n: c_int, a: *const c_float, b: *const c_float, y: *mut c_float); pub fn vdMul(n: c_int, a: *const c_double, b: *const c_double, y: *mut c_double); pub fn vsDiv(n: c_int, a: *const c_float, b: *const c_float, y: *mut c_float); pub fn vdDiv(n: c_int, a: *const c_double, b: *const c_double, y: *mut c_double); pub fn vsFmax(n: c_int, a: *const c_float, b: *const c_float, y: *mut c_float); pub fn vdFmax(n: c_int, a: *const c_double, b: *const c_double, y: *mut c_double); pub fn vsFmin(n: c_int, a: *const c_float, b: *const c_float, y: *mut c_float); pub fn vdFmin(n: c_int, a: *const c_double, b: *const c_double, y: *mut c_double); pub fn sgemm_( transa: *const c_char, transb: *const c_char, m: *const c_int, n: *const c_int, k: *const c_int, alpha: *const c_float, a: *const c_float, lda: *const c_int, b: *const c_float, ldb: *const c_int, beta: *const c_float, c: *mut c_float, ldc: *const c_int, ); pub fn dgemm_( transa: *const c_char, transb: *const c_char, m: *const c_int, n: *const c_int, k: *const c_int, alpha: *const c_double, a: *const c_double, lda: *const c_int, b: *const c_double, ldb: *const c_int, beta: *const c_double, c: *mut c_double, ldc: *const c_int, ); pub fn hgemm_( transa: *const c_char, transb: *const c_char, m: *const c_int, n: *const c_int, k: *const c_int, alpha: *const half::f16, a: *const half::f16, lda: *const c_int, b: *const half::f16, ldb: *const c_int, beta: *const half::f16, c: *mut half::f16, ldc: *const c_int, ); } } #[allow(clippy::too_many_arguments)] #[inline] pub unsafe fn sgemm( transa: u8, transb: u8, m: i32, n: i32, k: i32, alpha: f32, a: &[f32], lda: i32, b: &[f32], ldb: i32, beta: f32, c: &mut [f32], ldc: i32, ) { ffi::sgemm_( &(transa as c_char), &(transb as c_char), &m, &n, &k, &alpha, a.as_ptr(), &lda, b.as_ptr(), &ldb, &beta, c.as_mut_ptr(), &ldc, ) } #[allow(clippy::too_many_arguments)] #[inline] pub unsafe fn dgemm( transa: u8, transb: u8, m: i32, n: i32, k: i32, alpha: f64, a: &[f64], lda: i32, b: &[f64], ldb: i32, beta: f64, c: &mut [f64], ldc: i32, ) { ffi::dgemm_( &(transa as c_char), &(transb as c_char), &m, &n, &k, &alpha, a.as_ptr(), &lda, b.as_ptr(), &ldb, &beta, c.as_mut_ptr(), &ldc, ) } #[allow(clippy::too_many_arguments)] #[inline] pub unsafe fn hgemm( transa: u8, transb: u8, m: i32, n: i32, k: i32, alpha: half::f16, a: &[half::f16], lda: i32, b: &[half::f16], ldb: i32, beta: half::f16, c: &mut [half::f16], ldc: i32, ) { ffi::hgemm_( &(transa as c_char), &(transb as c_char), &m, &n, &k, &alpha, a.as_ptr(), &lda, b.as_ptr(), &ldb, &beta, c.as_mut_ptr(), &ldc, ) } #[inline] pub fn vs_exp(a: &[f32], y: &mut [f32]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vsExp(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_exp(a: &[f64], y: &mut [f64]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vdExp(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_ln(a: &[f32], y: &mut [f32]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vsLn(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_ln(a: &[f64], y: &mut [f64]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vdLn(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_sin(a: &[f32], y: &mut [f32]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vsSin(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_sin(a: &[f64], y: &mut [f64]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vdSin(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_cos(a: &[f32], y: &mut [f32]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vsCos(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_cos(a: &[f64], y: &mut [f64]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vdCos(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_sqrt(a: &[f32], y: &mut [f32]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vsSqrt(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_sqrt(a: &[f64], y: &mut [f64]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vdSqrt(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_sqr(a: &[f32], y: &mut [f32]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vsMul(a_len as i32, a.as_ptr(), a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_sqr(a: &[f64], y: &mut [f64]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vdMul(a_len as i32, a.as_ptr(), a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_tanh(a: &[f32], y: &mut [f32]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vsTanh(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_tanh(a: &[f64], y: &mut [f64]) { let a_len = a.len(); let y_len = y.len(); if a_len != y_len { panic!("a and y have different lengths {a_len} <> {y_len}") } unsafe { ffi::vdTanh(a_len as i32, a.as_ptr(), y.as_mut_ptr()) } } // The vector functions from mkl can be performed in place by using the same array for input and // output. // https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/vector-mathematical-functions.html #[inline] pub fn vs_tanh_inplace(y: &mut [f32]) { unsafe { ffi::vsTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_tanh_inplace(y: &mut [f64]) { unsafe { ffi::vdTanh(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_exp_inplace(y: &mut [f32]) { unsafe { ffi::vsExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vd_exp_inplace(y: &mut [f64]) { unsafe { ffi::vdExp(y.len() as i32, y.as_ptr(), y.as_mut_ptr()) } } #[inline] pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) { for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = (2.0f32 / std::f32::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v) } vs_tanh_inplace(ys); for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = 0.5 * v * (1.0 + *y) } } #[inline] pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) { for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = (2.0f64 / std::f64::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v) } vd_tanh_inplace(ys); for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = 0.5 * v * (1.0 + *y) } } #[inline] pub fn vs_silu(vs: &[f32], ys: &mut [f32]) { for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = -v } vs_exp_inplace(ys); for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = v / (1.0 + *y) } } #[inline] pub fn vd_silu(vs: &[f64], ys: &mut [f64]) { for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = -v } vd_exp_inplace(ys); for (&v, y) in vs.iter().zip(ys.iter_mut()) { *y = v / (1.0 + *y) } } macro_rules! binary_op { ($fn_name:ident, $ty:ty, $mkl_name:ident) => { #[inline] pub fn $fn_name(a: &[$ty], b: &[$ty], y: &mut [$ty]) { let a_len = a.len(); let b_len = b.len(); let y_len = y.len(); if a_len != y_len || b_len != y_len { panic!( "{} a,b,y len mismatch {a_len} {b_len} {y_len}", stringify!($fn_name) ); } unsafe { ffi::$mkl_name(a_len as i32, a.as_ptr(), b.as_ptr(), y.as_mut_ptr()) } } }; } binary_op!(vs_add, f32, vsAdd); binary_op!(vd_add, f64, vdAdd); binary_op!(vs_sub, f32, vsSub); binary_op!(vd_sub, f64, vdSub); binary_op!(vs_mul, f32, vsMul); binary_op!(vd_mul, f64, vdMul); binary_op!(vs_div, f32, vsDiv); binary_op!(vd_div, f64, vdDiv); binary_op!(vs_max, f32, vsFmax); binary_op!(vd_max, f64, vdFmax); binary_op!(vs_min, f32, vsFmin); binary_op!(vd_min, f64, vdFmin);
candle/candle-core/src/mkl.rs/0
{ "file_path": "candle/candle-core/src/mkl.rs", "repo_id": "candle", "token_count": 6463 }
README.md exists but content is empty.
Downloads last month
7