license: mit
task_categories:
- tabular-classification
- tabular-regression
language:
- en
tags:
- HTS
pretty_name: Assay-Interfering-Compounds Finder
size_categories:
- 1M<n<10M
dataset_summary: >-
The assay-interfering-compounds finder consists of 17 different datasets. The
datasets are uploaded after molecular sanitization using RDKit and MolVS.
citation: |-
@article{Boldini2024,
title = {Machine Learning Assisted Hit Prioritization for High Throughput Screening in Drug Discovery},
ISSN = {2374-7951},
url = {http://dx.doi.org/10.1021/acscentsci.3c01517},
DOI = {10.1021/acscentsci.3c01517},
journal = {ACS Central Science},
publisher = {American Chemical Society (ACS)},
author = {Boldini, Davide and Friedrich, Lukas and Kuhn, Daniel and Sieber, Stephan A.},
year = {2024},
month = mar
}
config_names:
- Boldini2024
configs:
- config_name: Boldini2024
data_files:
- GPCR.csv
- GPCR2.csv
- GPCR3.csv
- channel_atp.csv
- cysteine_protease.csv
- IonChannel.csv
- IonChannel2.csv
- IonChannel3.csv
- kinase.csv
- serine.csv
- splicing.csv
- transcrption.csv
- transcription2.csv
- transcription3.csv
- transporter.csv
- ubiquitin.csv
- zinc_finger.csv
dataset_info:
- config_name: GPCR_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: GPCR2_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: GPCR3_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: channel_atp_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: cysteine_protease_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: IonChannel_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: IonChannel2_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: IonChannel3_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: kinase_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: serine_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: splicing_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: transcription_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: transcription2_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: transcription3_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: transporter_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: ubiquitin_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
- config_name: zinc_finger_sanitized
features:
- name: SMILES
dtype: string
- name: Primary
dtype: int64
- name: Score
dtype: float64
- name: Confirmatory
dtype: float64
Boldini2024 (Assay-Interfering-Compounds Finder)
17 Datasets that are used to employ Minimum Variance Sampling Analysis (MVS-A) to find Assay Interfering Compounds (AIC) in High Throughput Screening data. In this study, they present the first data-driven approach to simultaneously detect assay interferents and prioritize true bioactive compounds. Their method enables false positive and true positive detection without relying on prior screens or assay interference mechanisms, making it applicable to any high throughput screening campaign.
The datasets uploaded to our Hugging Face repository have been sanitized using RDKit and MolVS. If you want to try these processes with the original dataset, please follow the instructions in the Processing Script.py file in the maomlab/Boldini2024.
Citation
ACS Cent. Sci. 2024, 10, 4, 823–832 Publication Date:March 15, 2024 https://doi.org/10.1021/acscentsci.3c01517