bundestag_slr / bundestag_slr.py
Lukas Braach
updated loader script: more train/less val
bbc8976
from typing import List, Dict
import cv2
import datasets
import numpy as np
import pandas as pd
from datasets import Sequence, Array3D, Value
base_url = "."
class BundestagSLR(datasets.GeneratorBasedBuilder):
"""BUNDESTAG SLR: Continuous Sign Language Recognition Dataset."""
VERSION = datasets.Version("1.0.0")
DEFAULT_WRITER_BATCH_SIZE = 25
def _info(self):
features_dict = {
"id": Value("string"),
"subtitle": Value("string"),
"frames": Sequence(Array3D(shape=(3, 224, 224), dtype="uint8")),
}
return datasets.DatasetInfo(
features=datasets.Features(features_dict),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
frames = {}
other_data = {}
data_csv = dl_manager.download(f"{base_url}/metadata.csv")
df = pd.read_csv(data_csv, sep=",")
video_ids_all = df['VideoID'].unique().tolist()
video_ids = {
datasets.Split.TRAIN: video_ids_all[:int(len(video_ids_all) * 0.9)],
datasets.Split.VALIDATION: video_ids_all[int(len(video_ids_all) * 0.9):int(len(video_ids_all) * 0.95)],
datasets.Split.TEST: video_ids_all[int(len(video_ids_all) * 0.95):],
}
for split in [
datasets.Split.TRAIN,
datasets.Split.VALIDATION,
datasets.Split.TEST,
]:
video_frames_split = []
other_data_split = {}
for idx in video_ids[split]:
video_file_name = f"{base_url}/videos/{idx}.mp4"
video = dl_manager.download(video_file_name)
video_frames_split.append(video)
video_examples = df[df['VideoID'] == idx]
video_other_data = []
for _, row in video_examples.iterrows():
video_other_data.append({
"id": idx,
"subtitle_line": row['SubtitleLine'],
"start_frame": int(row['StartFrame']),
"end_frame": int(row['EndFrame']),
})
other_data_split[video] = video_other_data
other_data[split] = other_data_split
frames[split] = video_frames_split
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"videos": frames[split],
"other_data": other_data[split],
},
)
for split in [
datasets.Split.TRAIN,
datasets.Split.VALIDATION,
datasets.Split.TEST,
]
]
def _generate_examples(self, videos: List[any], other_data: Dict[dict, List[dict]]):
"""
_generate_examples generates examples for the HuggingFace dataset.
It takes a list of frame_archives and the corresponding dict of other data.
Each frame_archive acts as a key for the further data.
:param frame_archives: list of ArchiveIterables
:param other_data: Dict from ArchiveIterables to other data
"""
for key, video_path in enumerate(videos):
examples = other_data[video_path]
if len(examples) == 0:
# no examples for this video, don't bother reading it
continue
cap = cv2.VideoCapture(video_path)
current_read_frames = 0
current_example_idx = 0
frames = None
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
current_read_frames += 1
ex = examples[current_example_idx]
if current_read_frames < ex['start_frame']:
# skip until the start frame
continue
if frames is None:
# initialize the frames numpy array to the final size
frames = np.ndarray((ex['end_frame'] - ex['start_frame'], *frame.shape))
# save the read frame to the frames array
frames[current_read_frames - ex['start_frame'] - 1] = frame
if current_read_frames == ex['end_frame']:
# frames list is complete, yield the example
yield key, {
"id": ex['id'],
"subtitle": ex['subtitle_line'],
"frames": frames,
}
frames = None
current_example_idx += 1
if current_example_idx >= len(examples):
# no more examples.
break
cap.release()