from typing import List, Dict import cv2 import datasets import numpy as np import pandas as pd from datasets import Sequence, Array3D, Value base_url = "." class BundestagSLR(datasets.GeneratorBasedBuilder): """BUNDESTAG SLR: Continuous Sign Language Recognition Dataset.""" VERSION = datasets.Version("1.0.0") DEFAULT_WRITER_BATCH_SIZE = 25 def _info(self): features_dict = { "id": Value("string"), "subtitle": Value("string"), "frames": Sequence(Array3D(shape=(3, 224, 224), dtype="uint8")), } return datasets.DatasetInfo( features=datasets.Features(features_dict), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, ) def _split_generators(self, dl_manager: datasets.DownloadManager): frames = {} other_data = {} data_csv = dl_manager.download(f"{base_url}/metadata.csv") df = pd.read_csv(data_csv, sep=",") video_ids_all = df['VideoID'].unique().tolist() video_ids = { datasets.Split.TRAIN: video_ids_all[:int(len(video_ids_all) * 0.9)], datasets.Split.VALIDATION: video_ids_all[int(len(video_ids_all) * 0.9):int(len(video_ids_all) * 0.95)], datasets.Split.TEST: video_ids_all[int(len(video_ids_all) * 0.95):], } for split in [ datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ]: video_frames_split = [] other_data_split = {} for idx in video_ids[split]: video_file_name = f"{base_url}/videos/{idx}.mp4" video = dl_manager.download(video_file_name) video_frames_split.append(video) video_examples = df[df['VideoID'] == idx] video_other_data = [] for _, row in video_examples.iterrows(): video_other_data.append({ "id": idx, "subtitle_line": row['SubtitleLine'], "start_frame": int(row['StartFrame']), "end_frame": int(row['EndFrame']), }) other_data_split[video] = video_other_data other_data[split] = other_data_split frames[split] = video_frames_split return [ datasets.SplitGenerator( name=split, gen_kwargs={ "videos": frames[split], "other_data": other_data[split], }, ) for split in [ datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ] ] def _generate_examples(self, videos: List[any], other_data: Dict[dict, List[dict]]): """ _generate_examples generates examples for the HuggingFace dataset. It takes a list of frame_archives and the corresponding dict of other data. Each frame_archive acts as a key for the further data. :param frame_archives: list of ArchiveIterables :param other_data: Dict from ArchiveIterables to other data """ for key, video_path in enumerate(videos): examples = other_data[video_path] if len(examples) == 0: # no examples for this video, don't bother reading it continue cap = cv2.VideoCapture(video_path) current_read_frames = 0 current_example_idx = 0 frames = None while cap.isOpened(): ret, frame = cap.read() if not ret: break current_read_frames += 1 ex = examples[current_example_idx] if current_read_frames < ex['start_frame']: # skip until the start frame continue if frames is None: # initialize the frames numpy array to the final size frames = np.ndarray((ex['end_frame'] - ex['start_frame'], *frame.shape)) # save the read frame to the frames array frames[current_read_frames - ex['start_frame'] - 1] = frame if current_read_frames == ex['end_frame']: # frames list is complete, yield the example yield key, { "id": ex['id'], "subtitle": ex['subtitle_line'], "frames": frames, } frames = None current_example_idx += 1 if current_example_idx >= len(examples): # no more examples. break cap.release()