Dataset Viewer
Auto-converted to Parquet
hexsha
stringlengths
40
40
size
int64
38
969k
ext
stringclasses
1 value
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
106
max_stars_repo_name
stringlengths
8
104
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
sequencelengths
1
4
max_stars_count
int64
1
38.8k
βŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
βŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
βŒ€
max_issues_repo_path
stringlengths
4
106
max_issues_repo_name
stringlengths
8
104
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
sequencelengths
1
4
max_issues_count
int64
1
53.3k
βŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
βŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
βŒ€
max_forks_repo_path
stringlengths
4
106
max_forks_repo_name
stringlengths
8
104
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
sequencelengths
1
4
max_forks_count
int64
1
6.24k
βŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
βŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
βŒ€
content
stringlengths
38
969k
avg_line_length
float64
6.33
6.5k
max_line_length
int64
15
269k
alphanum_fraction
float64
0.18
0.91
test_functions
sequencelengths
1
212
f7005682f45127ca851469ce7a4ea680c9da5dc4
49
jl
Julia
AE/test/runtests.jl
foldfelis/ML101.jl
b4b217ac4af88ba460ec26c5c8a1ce322edae64a
[ "MIT" ]
6
2021-02-23T05:48:18.000Z
2021-02-23T11:52:24.000Z
AE/test/runtests.jl
foldfelis/ML101.jl
b4b217ac4af88ba460ec26c5c8a1ce322edae64a
[ "MIT" ]
5
2021-02-22T21:59:07.000Z
2021-05-05T07:29:55.000Z
AE/test/runtests.jl
foldfelis/ML101.jl
b4b217ac4af88ba460ec26c5c8a1ce322edae64a
[ "MIT" ]
1
2021-02-28T07:04:06.000Z
2021-02-28T07:04:06.000Z
using AE using Test @testset "AE.jl" begin end
7
22
0.714286
[ "@testset \"AE.jl\" begin\n\nend" ]
f702b1e015efb351ee28034b390c3e7d1c8857bc
7,933
jl
Julia
src/OrthoPolynomials.jl
OpenLibMathSeq/Sequences
e53c1f30b7bf81669805f21d408d407b727615b5
[ "MIT" ]
6
2019-06-25T08:54:44.000Z
2021-11-07T04:52:29.000Z
src/OrthoPolynomials.jl
OpenLibMathSeq/Sequences
e53c1f30b7bf81669805f21d408d407b727615b5
[ "MIT" ]
3
2019-04-30T19:07:41.000Z
2019-06-04T15:51:34.000Z
src/OrthoPolynomials.jl
PeterLuschny/IntegerSequences.jl
1b9440bc8b86e3ae74fd26ee48fba412befbbdb5
[ "MIT" ]
4
2019-04-30T17:00:10.000Z
2020-02-08T11:32:39.000Z
# This file is part of IntegerSequences. # Copyright Peter Luschny. License is MIT. (@__DIR__) βˆ‰ LOAD_PATH && push!(LOAD_PATH, (@__DIR__)) module OrthoPolynomials using Nemo, Triangles export ModuleOrthoPolynomials export OrthoPoly, InvOrthoPoly export T053121, T216916, T217537, T064189, T202327, T111062, T099174 export T066325, T049310, T137338, T104562, T037027, T049218, T159834, T137286 export T053120, T053117, T111593, T059419 export L217924, L005773, L108624, L005425, L000085, L001464, L003723, L006229 """ * OrthoPoly, InvOrthoPoly, T053121, T216916, T217537, T064189, T202327, T111062, T099174, T066325, T049310, T137338, T104562, T037027, T049218, T159834, T137286, T053120, T053117, T111593, T059419, L217924, L005773, L108624, L005425, L000085, L001464, L003723, L006229 """ const ModuleOrthoPolynomials = "" # Cf. http://oeis.org/wiki/User:Peter_Luschny/AignerTriangles """ By the theorem of Favard an orthogonal polynomial systems ``p_{n}(x)`` is a sequence of real polynomials with deg``(p_{n}(x)) = n`` for all ``n`` if and only if `` p_{n+1}(x) = (x - s_n)p_n(x) - t_n p_{n-1}(x) `` with ``p_{0}(x)=1`` for some pair of seq's ``s_k`` and ``t_k``. Return the coefficients of the polynomials as a triangular array with `dim` rows. """ function OrthoPoly(dim::Int, s::Function, t::Function) dim ≀ 0 && return ZZ[] T = fill(ZZ(0), dim, dim) for n ∈ 1:dim T[n, n] = 1 end for n ∈ 2:dim, k ∈ 1:n-1 T[n, k] = ((k > 1 ? T[n-1, k-1] : 0) + s(k - 1) * T[n-1, k] + t(k) * T[n-1, k+1]) end [T[n, k] for n ∈ 1:dim for k ∈ 1:n] # flatt format # [[T[n, k] for k ∈ 1:n] for n ∈ 1:dim] # triangle format end """ Return the inverse of the coefficients of the orthogonal polynomials generated by ``s`` and ``t`` as a triangular array with `dim` rows. """ function InvOrthoPoly(dim::Int, s::Function, t::Function) dim ≀ 0 && return ZZ[] T = fill(ZZ(0), dim, dim) for n ∈ 1:dim T[n, n] = 1 end for n ∈ 1:dim-1, k ∈ 1:n+1 T[n+1, k] = ((k > 1 ? T[n, k-1] : 0) - s(n - 1) * T[n, k] - (n > 1 ? t(n - 1) * T[n-1, k] : 0)) end [T[n, k] for n ∈ 1:dim for k ∈ 1:n] end """ Return the Catalan triangle (with 0's) read by rows. """ T053121(dim::Int) = OrthoPoly(dim, n -> 0, n -> 1) # """ # binomial(n, floor(n/2)). # """ # L001405(len::Int) = RowSums(T053121(len)) """ Return the coefficients of some orthogonal polynomials related to set partitions without singletons (cf. A000296). """ T216916(dim::Int) = OrthoPoly(dim, n -> n + 1, n -> n + 1) """ Return the triangle ``T(n,k)`` of tangent numbers, coefficient of ``x^n/n!`` in the expansion of ``(tan x)^k/k!``. """ T059419(dim::Int) = OrthoPoly(dim, n -> 0, n -> n * (n - 1)) """ Return the expansion of exp(tan(x)). """ L006229(len::Int) = RowSums(T059419(len)) """ Return the first len integers defined as ``a(n) = n! [x^n] \\exp(2 \\exp (x) - x - 2)``. """ L217924(len::Int) = RowSums(T217537(len)) """ Return the coefficients of some orthogonal polynomials related to indecomposable set partitions without singletons (cf. A098742). """ T217537(dim::Int) = OrthoPoly(dim, n -> n, n -> n) """ Return the (reflected) Motzkin triangle. """ T064189(dim::Int) = OrthoPoly(dim, n -> 1, n -> 1) """ Return the number of directed animals of size n as an array of length len. """ L005773(len::Int) = RowSums(T064189(len)) """ Return the coefficients of ``x^n`` in the expansion of ``((-1-x+√(1+2x+5x^2))/2)^k`` as a triangle with dim rows. """ T202327(dim::Int) = OrthoPoly(dim, n -> -1, n -> -1) """ Return the sequence with generating function satisfying ``x = (A(x)+(A(x))^2)/(1-A(x)-(A(x))^2)``. """ L108624(len::Int) = RowSums(T202327(len)) """ Return the triangle ``T(n, k) = \\binom{n}{k} \\times`` involutions``(n - k)``. """ T111062(dim::Int) = OrthoPoly(dim, n -> 1, n -> n) """ Return the number of self-inverse partial permutations. """ L005425(len::Int) = RowSums(T111062(len)) """ Return the coefficients of the modified Hermite polynomials. """ T099174(dim::Int) = OrthoPoly(dim, n -> 0, n -> n) # Also # T099174(dim::Int) = InvOrthoPoly(dim, n -> 0, n -> -n) """ Return the number of involutions. """ L000085(len::Int) = RowSums(T099174(len)) """ Return the coefficients of unitary Hermite polynomials He``_n(x)``. """ T066325(dim::Int) = InvOrthoPoly(dim, n -> 0, n -> n) """ Return the sequence defined by ``a(n) = n! [x^n] \\exp(-x-(x^2)/2)``. """ L001464(len::Int) = RowSums(T066325(len), true) """ Return the triangle of tanh numbers. """ T111593(dim::Int) = OrthoPoly(dim, n -> 0, n -> -n * (n - 1)) """ Return the sequence defined by ``A(n) = n! [x^n] \\exp \\tan(x)`` as an array of length `len`. """ L003723(len::Int) = RowSums(T111593(len)) """ Return the coefficients of Chebyshev's U``(n, x/2)`` polynomials. """ T049310(dim::Int) = InvOrthoPoly(dim, n -> 0, n -> 1) """ Return the coefficients of the Charlier polynomials with parameter ``a = 1``. """ T137338(dim::Int) = InvOrthoPoly(dim, n -> n + 1, n -> n + 1) """ Return the inverse of the Motzkin triangle (cf. A064189). """ T104562(dim::Int) = InvOrthoPoly(dim, n -> 1, n -> 1) """ Return the skew Fibonacci-Pascal triangle with `dim` rows. """ T037027(dim::Int) = InvOrthoPoly(dim, n -> -1, n -> -1) """ Return the arctangent numbers (expansion of arctan``(x)^n/n!``). """ T049218(dim::Int) = InvOrthoPoly(dim, n -> 0, n -> n * (n + 1)) """ Return the coefficients of Hermite polynomials ``H(n, (x-1)/√(2))/(√(2))^n``. """ T159834(dim::Int) = InvOrthoPoly(dim, n -> 1, n -> n) """ Return the coefficients of a variant of the Hermite polynomials. """ T137286(dim::Int) = InvOrthoPoly(dim, n -> 0, n -> n + 1) """ Return the coefficients of the Chebyshev-T polynomials. """ function T053120(len) T = ZTriangle(len) R, x = PolynomialRing(ZZ, "x") m = 1 for n ∈ 0:len-1 f = chebyshev_t(n, x) for k ∈ 0:n T[m] = coeff(f, k) m += 1 end end T end """ Return the coefficients of the Chebyshev-U polynomials. """ function T053117(len) T = ZTriangle(len) R, x = PolynomialRing(ZZ, "x") m = 1 for n ∈ 0:len-1 f = chebyshev_u(n, x) for k ∈ 0:n T[m] = coeff(f, k) m += 1 end end T end #START-TEST-######################################################## using Test, SeqTests function test() @testset "OrthoPoly" begin @test isa(OrthoPoly(10, n -> 1, n -> n + 1)[end], fmpz) @test isa(InvOrthoPoly(10, n -> 1, n -> n + 1)[end], fmpz) @test RowSums(T217537(8)) == L217924(8) if data_installed() T = [ T066325, T049310, T137338, T104562, T037027, T049218, T159834, T137286, T053120, T053117, T053121, T216916, T217537, T064189, T202327, T111062, T099174, T111593, T064189 ] SeqTest(T, 'T') L = [L217924, L005425, L000085, L001464, L003723, L108624, L006229] SeqTest(L, 'L') end end end function demo() T = T111593(8) ShowAsΞ”(T) println(RowSums(T)) T = T217537(8) ShowAsΞ”(T) println(RowSums(T)) T = T053117(8) ShowAsΞ”(T) println(RowSums(T)) end """ T111062(500) :: 0.339080 seconds (750.52 k allocations: 15.375 MiB) T066325(500) :: 0.157202 seconds (751.50 k allocations: 13.374 MiB) T053120(500) :: 0.061058 seconds (375.75 k allocations: 6.705 MiB) """ function perf() GC.gc() @time T111062(500) GC.gc() @time T066325(500) GC.gc() @time T053120(500) end function main() test() demo() perf() end main() end # module
23.680597
268
0.577209
[ "@testset \"OrthoPoly\" begin\n\n @test isa(OrthoPoly(10, n -> 1, n -> n + 1)[end], fmpz)\n @test isa(InvOrthoPoly(10, n -> 1, n -> n + 1)[end], fmpz)\n @test RowSums(T217537(8)) == L217924(8)\n\n if data_installed()\n\n T = [\n T066325,\n T049310,\n T137338,\n T104562,\n T037027,\n T049218,\n T159834,\n T137286,\n T053120,\n T053117,\n T053121,\n T216916,\n T217537,\n T064189,\n T202327,\n T111062,\n T099174,\n T111593,\n T064189\n ]\n SeqTest(T, 'T')\n\n L = [L217924, L005425, L000085, L001464, L003723, L108624, L006229]\n SeqTest(L, 'L')\n end\n end" ]
f702dea5779e5262fac4b7f8e161329cc0c3f6d4
2,303
jl
Julia
test/runtests.jl
felipenoris/SplitIterators.jl
6ad384e290feed1339e94ff169b58922a3785359
[ "MIT" ]
2
2021-08-22T14:45:30.000Z
2022-03-19T19:34:46.000Z
test/runtests.jl
felipenoris/SplitIterators.jl
6ad384e290feed1339e94ff169b58922a3785359
[ "MIT" ]
null
null
null
test/runtests.jl
felipenoris/SplitIterators.jl
6ad384e290feed1339e94ff169b58922a3785359
[ "MIT" ]
null
null
null
using Test import SplitIterators @testset "split 11 by 3" begin x = collect(1:11) for (i, part) in enumerate(SplitIterators.split(x, 3)) if i == 1 @test part == collect(1:4) elseif i == 2 @test part == collect(5:8) elseif i == 3 @test part == collect(9:11) else @test false end end @test length(SplitIterators.split(x, 3)) == 3 end @testset "split range 11 by 3" begin x = 1:11 for (i, part) in enumerate(SplitIterators.split(x, 3)) if i == 1 @test part == 1:4 elseif i == 2 @test part == 5:8 elseif i == 3 # TODO: should yield `9:11` @test part == collect(9:11) else @test false end end @test length(SplitIterators.split(x, 3)) == 3 end @testset "split 11 by 11" begin x = collect(1:11) for (i, part) in enumerate(SplitIterators.split(x, 11)) @test part == [i] end end @testset "split 11 by 15" begin x = collect(1:11) for (i, part) in enumerate(SplitIterators.split(x, 15)) @test part == [i] end end @testset "split 11 by 1" begin x = collect(1:11) for (i, part) in enumerate(SplitIterators.split(x, 1)) if i == 1 @test part == collect(1:11) else @test false end end end @testset "split 12 by 2" begin x = collect(1:12) for (i, part) in enumerate(SplitIterators.split(x, 2)) if i == 1 @test part == collect(1:6) elseif i == 2 @test part == collect(7:12) else @test false end end end @testset "split empty itr" begin x = [] @test_throws ArgumentError SplitIterators.split(x, 10) end @testset "eltype" begin x = [1] if VERSION < v"1.4" @test eltype(SplitIterators.split(x, 1)) == Vector{Int} else @test eltype(SplitIterators.split(x, 1)) == Union{SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}, Vector{Int64}} end x = 1:2 if VERSION < v"1.4" @test eltype(SplitIterators.split(x, 1)) == Vector{Int} else @test eltype(SplitIterators.split(x, 1)) == Union{UnitRange{Int64}, Vector{Int64}} end end
21.933333
138
0.539731
[ "@testset \"split 11 by 3\" begin\n x = collect(1:11)\n\n for (i, part) in enumerate(SplitIterators.split(x, 3))\n if i == 1\n @test part == collect(1:4)\n elseif i == 2\n @test part == collect(5:8)\n elseif i == 3\n @test part == collect(9:11)\n else\n @test false\n end\n end\n\n @test length(SplitIterators.split(x, 3)) == 3\nend", "@testset \"split range 11 by 3\" begin\n x = 1:11\n\n for (i, part) in enumerate(SplitIterators.split(x, 3))\n if i == 1\n @test part == 1:4\n elseif i == 2\n @test part == 5:8\n elseif i == 3\n # TODO: should yield `9:11`\n @test part == collect(9:11)\n else\n @test false\n end\n end\n\n @test length(SplitIterators.split(x, 3)) == 3\nend", "@testset \"split 11 by 11\" begin\n x = collect(1:11)\n\n for (i, part) in enumerate(SplitIterators.split(x, 11))\n @test part == [i]\n end\nend", "@testset \"split 11 by 15\" begin\n x = collect(1:11)\n\n for (i, part) in enumerate(SplitIterators.split(x, 15))\n @test part == [i]\n end\nend", "@testset \"split 11 by 1\" begin\n x = collect(1:11)\n\n for (i, part) in enumerate(SplitIterators.split(x, 1))\n if i == 1\n @test part == collect(1:11)\n else\n @test false\n end\n end\nend", "@testset \"split 12 by 2\" begin\n x = collect(1:12)\n\n for (i, part) in enumerate(SplitIterators.split(x, 2))\n if i == 1\n @test part == collect(1:6)\n elseif i == 2\n @test part == collect(7:12)\n else\n @test false\n end\n end\nend", "@testset \"split empty itr\" begin\n x = []\n @test_throws ArgumentError SplitIterators.split(x, 10)\nend", "@testset \"eltype\" begin\n x = [1]\n if VERSION < v\"1.4\"\n @test eltype(SplitIterators.split(x, 1)) == Vector{Int}\n else\n @test eltype(SplitIterators.split(x, 1)) == Union{SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}, Vector{Int64}}\n end\n\n x = 1:2\n if VERSION < v\"1.4\"\n @test eltype(SplitIterators.split(x, 1)) == Vector{Int}\n else\n @test eltype(SplitIterators.split(x, 1)) == Union{UnitRange{Int64}, Vector{Int64}}\n end\nend" ]
f7065123fa9d24e80182de827c92598269a8c321
122
jl
Julia
test/runtests.jl
Teslos/MyExample.jl
014079e8dd99a63c1ff8340d1d9ed670ed8e91ad
[ "MIT" ]
null
null
null
test/runtests.jl
Teslos/MyExample.jl
014079e8dd99a63c1ff8340d1d9ed670ed8e91ad
[ "MIT" ]
null
null
null
test/runtests.jl
Teslos/MyExample.jl
014079e8dd99a63c1ff8340d1d9ed670ed8e91ad
[ "MIT" ]
null
null
null
using MyExample using Test #2x + 3y @testset "MyExample.jl" begin @test my_f(2,1) == 7 @test my_f(2,3) == 13 end
13.555556
29
0.622951
[ "@testset \"MyExample.jl\" begin\n @test my_f(2,1) == 7\n @test my_f(2,3) == 13\nend" ]
f7071fefba07848f0e49c2ef170c0eb46f03133d
1,564
jl
Julia
test/Ocean/SplitExplicit/test_coriolis.jl
ErikQQY/ClimateMachine.jl
ad128d457dd877bf21b5bcd845d6c3fa42de3f8a
[ "Apache-2.0" ]
256
2020-05-06T08:03:16.000Z
2022-03-22T14:01:20.000Z
test/Ocean/SplitExplicit/test_coriolis.jl
ErikQQY/ClimateMachine.jl
ad128d457dd877bf21b5bcd845d6c3fa42de3f8a
[ "Apache-2.0" ]
1,174
2020-05-06T16:19:51.000Z
2022-02-25T17:51:13.000Z
test/Ocean/SplitExplicit/test_coriolis.jl
ErikQQY/ClimateMachine.jl
ad128d457dd877bf21b5bcd845d6c3fa42de3f8a
[ "Apache-2.0" ]
45
2020-05-08T02:28:36.000Z
2022-03-14T22:44:56.000Z
#!/usr/bin/env julia --project using Test include("hydrostatic_spindown.jl") ClimateMachine.init() const FT = Float64 ################# # RUN THE TESTS # ################# @testset "$(@__FILE__)" begin include("../refvals/hydrostatic_spindown_refvals.jl") # simulation time timeend = FT(15 * 24 * 3600) # s tout = FT(24 * 3600) # s timespan = (tout, timeend) # DG polynomial order N = Int(4) # Domain resolution NΛ£ = Int(5) NΚΈ = Int(5) NαΆ» = Int(8) resolution = (N, NΛ£, NΚΈ, NαΆ») # Domain size LΛ£ = 1e6 # m LΚΈ = 1e6 # m H = 400 # m dimensions = (LΛ£, LΚΈ, H) BC = ( OceanBC(Impenetrable(FreeSlip()), Insulating()), OceanBC(Penetrable(FreeSlip()), Insulating()), ) config = SplitConfig( "rotating_bla", resolution, dimensions, Coupled(), Rotating(); solver = SplitExplicitSolver, boundary_conditions = BC, ) #= BC = ( ClimateMachine.Ocean.SplitExplicit01.OceanFloorFreeSlip(), ClimateMachine.Ocean.SplitExplicit01.OceanSurfaceNoStressNoForcing(), ) config = SplitConfig( "rotating_jmc", resolution, dimensions, Coupled(), Rotating(); solver = SplitExplicitLSRK2nSolver, boundary_conditions = BC, ) =# run_split_explicit( config, timespan, dt_fast = 300, dt_slow = 300, # 90 * 60, # refDat = refVals.ninety_minutes, analytic_solution = true, ) end
20.578947
77
0.555627
[ "@testset \"$(@__FILE__)\" begin\n\n include(\"../refvals/hydrostatic_spindown_refvals.jl\")\n\n # simulation time\n timeend = FT(15 * 24 * 3600) # s\n tout = FT(24 * 3600) # s\n timespan = (tout, timeend)\n\n # DG polynomial order\n N = Int(4)\n\n # Domain resolution\n NΛ£ = Int(5)\n NΚΈ = Int(5)\n NαΆ» = Int(8)\n resolution = (N, NΛ£, NΚΈ, NαΆ»)\n\n # Domain size\n LΛ£ = 1e6 # m\n LΚΈ = 1e6 # m\n H = 400 # m\n dimensions = (LΛ£, LΚΈ, H)\n\n BC = (\n OceanBC(Impenetrable(FreeSlip()), Insulating()),\n OceanBC(Penetrable(FreeSlip()), Insulating()),\n )\n config = SplitConfig(\n \"rotating_bla\",\n resolution,\n dimensions,\n Coupled(),\n Rotating();\n solver = SplitExplicitSolver,\n boundary_conditions = BC,\n )\n\n #=\n BC = (\n ClimateMachine.Ocean.SplitExplicit01.OceanFloorFreeSlip(),\n ClimateMachine.Ocean.SplitExplicit01.OceanSurfaceNoStressNoForcing(),\n )\n\n config = SplitConfig(\n \"rotating_jmc\",\n resolution,\n dimensions,\n Coupled(),\n Rotating();\n solver = SplitExplicitLSRK2nSolver,\n boundary_conditions = BC,\n )\n =#\n\n run_split_explicit(\n config,\n timespan,\n dt_fast = 300,\n dt_slow = 300, # 90 * 60,\n # refDat = refVals.ninety_minutes,\n analytic_solution = true,\n )\nend" ]
f70bd5fdbd81a3e0a966c69edae9271ec76b4c57
396
jl
Julia
test/runtests.jl
hendri54/CollegeEntry
bcbd6434fdd7f66944075b0b85efbfd8f6e6ac29
[ "MIT" ]
null
null
null
test/runtests.jl
hendri54/CollegeEntry
bcbd6434fdd7f66944075b0b85efbfd8f6e6ac29
[ "MIT" ]
null
null
null
test/runtests.jl
hendri54/CollegeEntry
bcbd6434fdd7f66944075b0b85efbfd8f6e6ac29
[ "MIT" ]
null
null
null
using CollegeEntry, ModelObjectsLH, ModelParams using Test, TestSetExtensions include("test_helpers.jl") @testset "All" begin include("helpers_test.jl") include("admissions_test.jl"); include("admission_prob_test.jl"); include("student_rankings_test.jl") include("entry_test.jl"); include("entry_decisions_test.jl") include("entry_results_test.jl") end # ----------
24.75
47
0.719697
[ "@testset \"All\" begin\n include(\"helpers_test.jl\")\n include(\"admissions_test.jl\");\n include(\"admission_prob_test.jl\");\n include(\"student_rankings_test.jl\")\n include(\"entry_test.jl\");\n include(\"entry_decisions_test.jl\")\n include(\"entry_results_test.jl\")\nend" ]
f70c3ff4968c391bb44e7f54b612f4bd73c46365
1,192
jl
Julia
test/GLMesh.jl
cvdlab/ViewerGL.js
ae28d7808699f9c34add4ad265b68a84bfa14842
[ "MIT" ]
4
2019-07-25T23:07:18.000Z
2021-09-05T18:38:20.000Z
test/GLMesh.jl
cvdlab/ViewerGL.js
ae28d7808699f9c34add4ad265b68a84bfa14842
[ "MIT" ]
null
null
null
test/GLMesh.jl
cvdlab/ViewerGL.js
ae28d7808699f9c34add4ad265b68a84bfa14842
[ "MIT" ]
31
2019-10-09T14:09:51.000Z
2022-03-31T14:52:35.000Z
using Test using LinearAlgebraicRepresentation Lar = LinearAlgebraicRepresentation using ViewerGL GL = ViewerGL @testset "GLMesh.jl" begin # function GLMesh() @testset "GLMesh" begin @test @test @test @test end # function GLMesh(primitive) @testset "GLMesh" begin @test @test @test @test end # function releaseGpuResources(mesh::GLMesh) @testset "releaseGpuResources" begin @test @test @test @test end # function computeNormal(p1::Point2d, p2::Point2d) @testset "computeNormal" begin @test @test @test @test end # function computeNormal(p0::Point3d,p1::Point3d,p2::Point3d) @testset "computeNormal" begin @test @test @test @test end # function getBoundingBox(mesh::GLMesh) @testset "getBoundingBox" begin @test @test @test @test end # function GLCuboid(box::Box3d) @testset "GLCuboid" begin @test @test @test @test end # function GLAxis(p0::Point3d,p1::Point3d) @testset "GLAxis" begin @test @test @test @test end end
16.108108
64
0.589765
[ "@testset \"GLMesh.jl\" begin\n\n # function GLMesh()\n @testset \"GLMesh\" begin\n @test\n @test\n @test\n @test\n end\n\n # function GLMesh(primitive)\n @testset \"GLMesh\" begin\n @test\n @test\n @test\n @test\n end\n\n # function releaseGpuResources(mesh::GLMesh)\n @testset \"releaseGpuResources\" begin\n @test\n @test\n @test\n @test\n end\n\n # function computeNormal(p1::Point2d, p2::Point2d)\n @testset \"computeNormal\" begin\n @test\n @test\n @test\n @test\n end\n\n # function computeNormal(p0::Point3d,p1::Point3d,p2::Point3d)\n @testset \"computeNormal\" begin\n @test\n @test\n @test\n @test\n end\n\n # function getBoundingBox(mesh::GLMesh)\n @testset \"getBoundingBox\" begin\n @test\n @test\n @test\n @test\n end\n\n # function GLCuboid(box::Box3d)\n @testset \"GLCuboid\" begin\n @test\n @test\n @test\n @test\n end\n\n # function GLAxis(p0::Point3d,p1::Point3d)\n @testset \"GLAxis\" begin\n @test\n @test\n @test\n @test\n end\n\nend" ]
f70ccf8b21eeac0bbd8a4ce08b4cb71e0206dba4
3,529
jl
Julia
test/knr/testknr.jl
UnofficialJuliaMirrorSnapshots/SimilaritySearch.jl-053f045d-5466-53fd-b400-a066f88fe02a
70c46490431ca7d0e5cf41052bc36afc4ba3c8fa
[ "Apache-2.0" ]
null
null
null
test/knr/testknr.jl
UnofficialJuliaMirrorSnapshots/SimilaritySearch.jl-053f045d-5466-53fd-b400-a066f88fe02a
70c46490431ca7d0e5cf41052bc36afc4ba3c8fa
[ "Apache-2.0" ]
null
null
null
test/knr/testknr.jl
UnofficialJuliaMirrorSnapshots/SimilaritySearch.jl-053f045d-5466-53fd-b400-a066f88fe02a
70c46490431ca7d0e5cf41052bc36afc4ba3c8fa
[ "Apache-2.0" ]
null
null
null
using SimilaritySearch using SimilaritySearch.SimilarReferences using Test function test_vectors(create_index, dist::Function, ksearch, nick) @testset "indexing vectors with $nick and $dist" begin n = 1000 # number of items in the dataset m = 100 # number of queries dim = 3 # vector's dimension db = [rand(Float32, dim) |> normalize! for i in 1:n] queries = [rand(Float32, dim) |> normalize! for i in 1:m] index = create_index(db) optimize!(index, dist, recall=0.9, k=10) perf = Performance(dist, index.db, queries, expected_k=10) p = probe(perf, index, dist) @show dist, p @test p.recall > 0.8 @info "adding more items" for item in queries push!(index, dist, item) end perf = Performance(dist, index.db, queries, expected_k=1) p = probe(perf, index, dist) @show dist, p @test p.recall > 0.999 return p end end function test_sequences(create_index, dist::Function, ksearch, nick) @testset "indexing sequences with $nick and $dist" begin n = 1000 # number of items in the dataset m = 100 # number of queries dim = 5 # the length of sequences V = collect(1:10) # vocabulary of the sequences function create_item() s = rand(V, dim) if dist == jaccard_distance || dist == dice_distance || dist == intersection_distance sort!(s) s = unique(s) end return s end db = [create_item() for i in 1:n] queries = [create_item() for i in 1:m] @info "inserting items into the index" index = create_index(db) # optimize!(index, recall=0.9, k=10) perf = Performance(dist, index.db, queries, expected_k=10) p = probe(perf, index, dist) @show dist, p @test p.recall > 0.1 ## Performance object tests object identifiers, but sequence distances have a lot of distance collisions # for item in queries # push!(index, dist, item) # end # perf = Performance(dist, index.db, queries, expected_k=1) # p = probe(perf, index, dist) # @show dist, p # @test p.recall > 0.999 # return p end end @testset "indexing vectors" begin # NOTE: The following algorithms are complex enough to say we are testing it doesn't have syntax errors, a more grained test functions are required ksearch = 10 Οƒ = 127 ΞΊ = 3 for dist in [ l2_distance, # 1.0 -> metric, < 1.0 if dist is not a metric l1_distance, linf_distance, lp_distance(3), lp_distance(0.5), angle_distance ] p = test_vectors((db) -> fit(Knr, dist, db, numrefs=Οƒ, k=ΞΊ), dist, ksearch, "KNR") end end @testset "indexing sequences" begin # NOTE: The following algorithms are complex enough to say we are testing it doesn't have syntax errors, a more grained test functions are required ksearch = 10 Οƒ = 127 ΞΊ = 3 # metric distances should achieve recall=1 (perhaps lesser because of numerical inestability) for dist in [ jaccard_distance, dice_distance, intersection_distance, common_prefix_distance, levenshtein_distance, lcs_distance, hamming_distance, ] p = test_sequences((db) -> fit(Knr, dist, db, numrefs=Οƒ, k=ΞΊ), dist, ksearch, "KNR") end end
32.081818
151
0.597053
[ "@testset \"indexing vectors\" begin\n # NOTE: The following algorithms are complex enough to say we are testing it doesn't have syntax errors, a more grained test functions are required\n ksearch = 10\n Οƒ = 127\n ΞΊ = 3\n\n for dist in [\n l2_distance, # 1.0 -> metric, < 1.0 if dist is not a metric\n l1_distance,\n linf_distance,\n lp_distance(3),\n lp_distance(0.5),\n angle_distance\n ]\n p = test_vectors((db) -> fit(Knr, dist, db, numrefs=Οƒ, k=ΞΊ), dist, ksearch, \"KNR\")\n end\nend", "@testset \"indexing sequences\" begin\n # NOTE: The following algorithms are complex enough to say we are testing it doesn't have syntax errors, a more grained test functions are required\n ksearch = 10\n Οƒ = 127\n ΞΊ = 3\n \n # metric distances should achieve recall=1 (perhaps lesser because of numerical inestability)\n for dist in [\n jaccard_distance,\n dice_distance,\n intersection_distance,\n common_prefix_distance,\n levenshtein_distance,\n lcs_distance,\n hamming_distance,\n ] \n p = test_sequences((db) -> fit(Knr, dist, db, numrefs=Οƒ, k=ΞΊ), dist, ksearch, \"KNR\")\n end\nend", "@testset \"indexing vectors with $nick and $dist\" begin\n n = 1000 # number of items in the dataset\n m = 100 # number of queries\n dim = 3 # vector's dimension\n\n db = [rand(Float32, dim) |> normalize! for i in 1:n]\n queries = [rand(Float32, dim) |> normalize! for i in 1:m]\n\n index = create_index(db)\n optimize!(index, dist, recall=0.9, k=10)\n perf = Performance(dist, index.db, queries, expected_k=10)\n p = probe(perf, index, dist)\n @show dist, p\n @test p.recall > 0.8\n\n @info \"adding more items\"\n for item in queries\n push!(index, dist, item)\n end\n perf = Performance(dist, index.db, queries, expected_k=1)\n p = probe(perf, index, dist)\n @show dist, p\n @test p.recall > 0.999\n return p\n end", "@testset \"indexing sequences with $nick and $dist\" begin\n n = 1000 # number of items in the dataset\n m = 100 # number of queries\n dim = 5 # the length of sequences\n V = collect(1:10) # vocabulary of the sequences\n\n function create_item()\n s = rand(V, dim)\n if dist == jaccard_distance || dist == dice_distance || dist == intersection_distance\n sort!(s)\n s = unique(s)\n end\n\n return s\n end\n \n db = [create_item() for i in 1:n]\n queries = [create_item() for i in 1:m]\n\n @info \"inserting items into the index\"\n index = create_index(db)\n # optimize!(index, recall=0.9, k=10)\n perf = Performance(dist, index.db, queries, expected_k=10)\n p = probe(perf, index, dist)\n @show dist, p\n @test p.recall > 0.1 ## Performance object tests object identifiers, but sequence distances have a lot of distance collisions\n\n # for item in queries\n # push!(index, dist, item)\n # end\n # perf = Performance(dist, index.db, queries, expected_k=1)\n # p = probe(perf, index, dist)\n # @show dist, p\n # @test p.recall > 0.999\n # return p\n end" ]
f70e234e93c6e69904c72f38c7eaec1a83d715df
1,759
jl
Julia
test/rountines.jl
UnofficialJuliaMirror/YaoBlocks.jl-418bc28f-b43b-5e0b-a6e7-61bbc1a2c1df
703091b543e95e6e4a3d7fe451c29ce0dd423c73
[ "Apache-2.0" ]
null
null
null
test/rountines.jl
UnofficialJuliaMirror/YaoBlocks.jl-418bc28f-b43b-5e0b-a6e7-61bbc1a2c1df
703091b543e95e6e4a3d7fe451c29ce0dd423c73
[ "Apache-2.0" ]
null
null
null
test/rountines.jl
UnofficialJuliaMirror/YaoBlocks.jl-418bc28f-b43b-5e0b-a6e7-61bbc1a2c1df
703091b543e95e6e4a3d7fe451c29ce0dd423c73
[ "Apache-2.0" ]
null
null
null
using Test, YaoBlocks, LuxurySparse, YaoBase using YaoBlocks.ConstGate import YaoBlocks: u1mat, unmat, cunmat, unij! @testset "dense-u1mat-unmat" begin nbit = 4 mmm = Rx(0.5) |> mat m1 = u1mat(nbit, mmm, 2) m2 = linop2dense(v -> instruct!(v, mmm, 2), nbit) m3 = unmat(nbit, mmm, (2,)) @test m1 β‰ˆ m2 @test m1 β‰ˆ m3 # test control not βŠ— = kron res = mat(I2) βŠ— mat(I2) βŠ— mat(P1) βŠ— mat(I2) + mat(I2) βŠ— mat(I2) βŠ— mat(P0) βŠ— mat(Rx(0.5)) m3 = cunmat(nbit, (2,), (0,), mmm, (1,)) @test m3 β‰ˆ res end @testset "sparse-u1mat-unmat" begin nbit = 4 # test control not βŠ— = kron res = mat(I2) βŠ— mat(I2) βŠ— mat(P1) βŠ— mat(I2) + mat(I2) βŠ— mat(I2) βŠ— mat(P0) βŠ— mat(P1) m3 = cunmat(nbit, (2,), (0,), mat(P1), (1,)) @test m3 β‰ˆ res end @testset "perm-unij-unmat" begin perm = PermMatrix([1, 2, 3, 4], [1, 1, 1, 1.0]) pm = unij!(copy(perm), [2, 3, 4], PermMatrix([3, 1, 2], [0.1, 0.2, 0.3])) @test pm β‰ˆ PermMatrix([1, 4, 2, 3], [1, 0.1, 0.2, 0.3]) pm = unij!(copy(perm), [2, 3, 4], PermMatrix([3, 1, 2], [0.1, 0.2, 0.3]) |> staticize) @test pm β‰ˆ PermMatrix([1, 4, 2, 3], [1, 0.1, 0.2, 0.3]) nbit = 4 mmm = X |> mat m1 = unmat(nbit, mmm, (2,)) m2 = linop2dense(v -> instruct!(v, mmm, 2), nbit) @test m1 β‰ˆ m2 end @testset "identity-unmat" begin nbit = 4 mmm = Z |> mat m1 = unmat(nbit, mmm, (2,)) m2 = linop2dense(v -> instruct!(v, mmm, 2), nbit) @test m1 β‰ˆ m2 end @testset "fix-static and adjoint for mat" begin G1 = matblock(rand_unitary(2)) G6 = matblock(rand_unitary(1 << 6)) @test mat(put(3, 2 => G1')) β‰ˆ mat(put(3, 2 => matblock(G1)))' @test mat(put(7, (3, 2, 1, 5, 4, 6) => G6')) β‰ˆ mat(put(7, (3, 2, 1, 5, 4, 6) => G6))' end
30.327586
92
0.529847
[ "@testset \"dense-u1mat-unmat\" begin\n nbit = 4\n mmm = Rx(0.5) |> mat\n m1 = u1mat(nbit, mmm, 2)\n m2 = linop2dense(v -> instruct!(v, mmm, 2), nbit)\n m3 = unmat(nbit, mmm, (2,))\n @test m1 β‰ˆ m2\n @test m1 β‰ˆ m3\n\n # test control not\n βŠ— = kron\n res = mat(I2) βŠ— mat(I2) βŠ— mat(P1) βŠ— mat(I2) + mat(I2) βŠ— mat(I2) βŠ— mat(P0) βŠ— mat(Rx(0.5))\n m3 = cunmat(nbit, (2,), (0,), mmm, (1,))\n @test m3 β‰ˆ res\nend", "@testset \"sparse-u1mat-unmat\" begin\n nbit = 4\n # test control not\n βŠ— = kron\n res = mat(I2) βŠ— mat(I2) βŠ— mat(P1) βŠ— mat(I2) + mat(I2) βŠ— mat(I2) βŠ— mat(P0) βŠ— mat(P1)\n m3 = cunmat(nbit, (2,), (0,), mat(P1), (1,))\n @test m3 β‰ˆ res\nend", "@testset \"perm-unij-unmat\" begin\n perm = PermMatrix([1, 2, 3, 4], [1, 1, 1, 1.0])\n pm = unij!(copy(perm), [2, 3, 4], PermMatrix([3, 1, 2], [0.1, 0.2, 0.3]))\n @test pm β‰ˆ PermMatrix([1, 4, 2, 3], [1, 0.1, 0.2, 0.3])\n pm = unij!(copy(perm), [2, 3, 4], PermMatrix([3, 1, 2], [0.1, 0.2, 0.3]) |> staticize)\n @test pm β‰ˆ PermMatrix([1, 4, 2, 3], [1, 0.1, 0.2, 0.3])\n\n nbit = 4\n mmm = X |> mat\n m1 = unmat(nbit, mmm, (2,))\n m2 = linop2dense(v -> instruct!(v, mmm, 2), nbit)\n @test m1 β‰ˆ m2\nend", "@testset \"identity-unmat\" begin\n nbit = 4\n mmm = Z |> mat\n m1 = unmat(nbit, mmm, (2,))\n m2 = linop2dense(v -> instruct!(v, mmm, 2), nbit)\n @test m1 β‰ˆ m2\nend", "@testset \"fix-static and adjoint for mat\" begin\n G1 = matblock(rand_unitary(2))\n G6 = matblock(rand_unitary(1 << 6))\n @test mat(put(3, 2 => G1')) β‰ˆ mat(put(3, 2 => matblock(G1)))'\n @test mat(put(7, (3, 2, 1, 5, 4, 6) => G6')) β‰ˆ mat(put(7, (3, 2, 1, 5, 4, 6) => G6))'\nend" ]
f712c2d65d4c6d110cc2b0191f55497c456cc7a7
945
jl
Julia
Projects/Projet_Optinum/test/runtests.jl
faicaltoubali/ENSEEIHT
6db0aef64d68446b04f17d1eae574591026002b5
[ "Apache-2.0" ]
null
null
null
Projects/Projet_Optinum/test/runtests.jl
faicaltoubali/ENSEEIHT
6db0aef64d68446b04f17d1eae574591026002b5
[ "Apache-2.0" ]
null
null
null
Projects/Projet_Optinum/test/runtests.jl
faicaltoubali/ENSEEIHT
6db0aef64d68446b04f17d1eae574591026002b5
[ "Apache-2.0" ]
null
null
null
using Markdown using Test using LinearAlgebra using TestOptinum using Optinum include("../src/Algorithme_De_Newton.jl") include("../src/Gradient_Conjugue_Tronque.jl") include("../src/Lagrangien_Augmente.jl") include("../src/Pas_De_Cauchy.jl") include("../src/Regions_De_Confiance.jl") #TestOptinum.cacher_stacktrace() affiche = true println("affiche = ",affiche) # Tester l'ensemble des algorithmes @testset "Test SujetOptinum" begin # Tester l'algorithme de Newton tester_algo_newton(affiche,Algorithme_De_Newton) # Tester l'algorithme du pas de Cauchy tester_pas_de_cauchy(affiche,Pas_De_Cauchy) # Tester l'algorithme du gradient conjuguΓ© tronquΓ© tester_gct(affiche,Gradient_Conjugue_Tronque) # Tester l'algorithme des RΓ©gions de confiance avec PasdeCauchy | GCT tester_regions_de_confiance(affiche,Regions_De_Confiance) # Tester l'algorithme du Lagrangien AugmentΓ© tester_lagrangien_augmente(affiche,Lagrangien_Augmente) end
27.794118
70
0.812698
[ "@testset \"Test SujetOptinum\" begin\n\t# Tester l'algorithme de Newton\n\ttester_algo_newton(affiche,Algorithme_De_Newton)\n\n\t# Tester l'algorithme du pas de Cauchy\n\ttester_pas_de_cauchy(affiche,Pas_De_Cauchy)\n\n\t# Tester l'algorithme du gradient conjuguΓ© tronquΓ©\n\ttester_gct(affiche,Gradient_Conjugue_Tronque)\n\n\t# Tester l'algorithme des RΓ©gions de confiance avec PasdeCauchy | GCT\n\ttester_regions_de_confiance(affiche,Regions_De_Confiance)\n\n\t# Tester l'algorithme du Lagrangien AugmentΓ©\n\ttester_lagrangien_augmente(affiche,Lagrangien_Augmente)\nend" ]
f71360a2dafb0db950b40e740ced0cc7c4d67b27
1,820
jl
Julia
test/test_returning_original.jl
TheRoniOne/Cleaner
7279c8e8e92a9763ed72f8614f9a77ddbd40fade
[ "MIT" ]
16
2021-08-20T10:07:04.000Z
2022-02-07T18:09:40.000Z
test/test_returning_original.jl
TheRoniOne/Cleaner
7279c8e8e92a9763ed72f8614f9a77ddbd40fade
[ "MIT" ]
2
2021-08-17T06:09:49.000Z
2022-02-06T01:36:49.000Z
test/test_returning_original.jl
TheRoniOne/Cleaner
7279c8e8e92a9763ed72f8614f9a77ddbd40fade
[ "MIT" ]
null
null
null
using Test using Cleaner: materializer, compact_table_ROT, compact_columns_ROT, compact_rows_ROT, delete_const_columns_ROT, polish_names_ROT, reinfer_schema_ROT, row_as_names_ROT, rename_ROT, drop_missing_ROT, add_index_ROT using DataFrames: DataFrame @testset "ROT functions are working as expected" begin testRM1 = DataFrame(; A=[missing, missing, missing], B=[1, missing, 3], C=["x", "", "z"] ) @test compact_columns_ROT(testRM1) isa DataFrame @test compact_rows_ROT(testRM1) isa DataFrame @test compact_table_ROT(testRM1) isa DataFrame @test materializer(testRM1)((a=[1], b=[2])) isa DataFrame let testDF = DataFrame(; A=[1, 1, 1], B=[4, 5, 6], C=String["2", "2", "2"]) @test delete_const_columns_ROT(testDF) isa DataFrame end let testDF = DataFrame( " _aName with_loTsOfProblems" => [1, 2, 3], " _aName with_loTsOfProblems1" => [4, 5, 6], " _aName with_loTsOfProblems2" => [7, 8, 9], ) @test polish_names_ROT(testDF) isa DataFrame end let testDF = DataFrame(; A=[1, 2, 3], B=Any[4, missing, "z"], C=Any["5", "6", "9"]) @test reinfer_schema_ROT(testDF) isa DataFrame end let testDF = DataFrame(; A=[1, 2, "x", 4], B=[5, 6, "y", 7], C=["x", "y", "z", "a"]) @test row_as_names_ROT(testDF, 3) isa DataFrame end let testDF = DataFrame(; A=[1, 2, "x", 4], B=[5, 6, "y", 7], C=["x", "y", "z", "a"]) @test rename_ROT(testDF, [:a, :b, :c]) isa DataFrame end let testDF = DataFrame(; A=[1, 2, "x", 4], B=[5, 6, "y", 7], C=["x", "y", "z", "a"]) @test drop_missing_ROT(testDF) isa DataFrame end let testDF = DataFrame(; A=[4, 5, 6]) @test add_index_ROT(testDF) isa DataFrame end end
31.37931
88
0.590659
[ "@testset \"ROT functions are working as expected\" begin\n testRM1 = DataFrame(;\n A=[missing, missing, missing], B=[1, missing, 3], C=[\"x\", \"\", \"z\"]\n )\n\n @test compact_columns_ROT(testRM1) isa DataFrame\n @test compact_rows_ROT(testRM1) isa DataFrame\n @test compact_table_ROT(testRM1) isa DataFrame\n @test materializer(testRM1)((a=[1], b=[2])) isa DataFrame\n\n let testDF = DataFrame(; A=[1, 1, 1], B=[4, 5, 6], C=String[\"2\", \"2\", \"2\"])\n @test delete_const_columns_ROT(testDF) isa DataFrame\n end\n\n let testDF = DataFrame(\n \" _aName with_loTsOfProblems\" => [1, 2, 3],\n \" _aName with_loTsOfProblems1\" => [4, 5, 6],\n \" _aName with_loTsOfProblems2\" => [7, 8, 9],\n )\n @test polish_names_ROT(testDF) isa DataFrame\n end\n\n let testDF = DataFrame(; A=[1, 2, 3], B=Any[4, missing, \"z\"], C=Any[\"5\", \"6\", \"9\"])\n @test reinfer_schema_ROT(testDF) isa DataFrame\n end\n\n let testDF = DataFrame(; A=[1, 2, \"x\", 4], B=[5, 6, \"y\", 7], C=[\"x\", \"y\", \"z\", \"a\"])\n @test row_as_names_ROT(testDF, 3) isa DataFrame\n end\n\n let testDF = DataFrame(; A=[1, 2, \"x\", 4], B=[5, 6, \"y\", 7], C=[\"x\", \"y\", \"z\", \"a\"])\n @test rename_ROT(testDF, [:a, :b, :c]) isa DataFrame\n end\n\n let testDF = DataFrame(; A=[1, 2, \"x\", 4], B=[5, 6, \"y\", 7], C=[\"x\", \"y\", \"z\", \"a\"])\n @test drop_missing_ROT(testDF) isa DataFrame\n end\n\n let testDF = DataFrame(; A=[4, 5, 6])\n @test add_index_ROT(testDF) isa DataFrame\n end\nend" ]
f7139c61b9baf05db45b88230b03c8047a37b777
2,615
jl
Julia
test/testProductReproducable.jl
dehann/iSAM.jl
61869753a76717b1019756d09785a784fdafe3ab
[ "MIT" ]
null
null
null
test/testProductReproducable.jl
dehann/iSAM.jl
61869753a76717b1019756d09785a784fdafe3ab
[ "MIT" ]
null
null
null
test/testProductReproducable.jl
dehann/iSAM.jl
61869753a76717b1019756d09785a784fdafe3ab
[ "MIT" ]
null
null
null
# test for conv and product repeatability using Test using Statistics using IncrementalInference ## @testset "forward backward convolutions and products sequence" begin fg = initfg() addVariable!(fg, :a, ContinuousScalar) addVariable!(fg, :b, ContinuousScalar) addVariable!(fg, :c, ContinuousScalar) addVariable!(fg, :d, ContinuousScalar) addVariable!(fg, :e, ContinuousScalar) addFactor!(fg, [:a], Prior(Normal())) addFactor!(fg, [:a;:b], LinearRelative(Normal(10, 1))) addFactor!(fg, [:b;:c], LinearRelative(Normal(10, 1))) addFactor!(fg, [:c;:d], LinearRelative(Normal(10, 1))) addFactor!(fg, [:d;:e], LinearRelative(Normal(10, 1))) initAll!(fg) tree = solveTree!(fg) @test (Statistics.mean(getPoints(getBelief(fg, :a)))- 0 |> abs) < 3 @test (Statistics.mean(getPoints(getBelief(fg, :b)))-10 |> abs) < 4 @test (Statistics.mean(getPoints(getBelief(fg, :c)))-20 |> abs) < 4 @test (Statistics.mean(getPoints(getBelief(fg, :d)))-30 |> abs) < 5 @test (Statistics.mean(getPoints(getBelief(fg, :e)))-40 |> abs) < 5 @test 0.3 < Statistics.std(getPoints(getBelief(fg, :a))) < 2 @test 0.5 < Statistics.std(getPoints(getBelief(fg, :b))) < 4 @test 0.9 < Statistics.std(getPoints(getBelief(fg, :c))) < 6 @test 1.2 < Statistics.std(getPoints(getBelief(fg, :d))) < 7 @test 1.5 < Statistics.std(getPoints(getBelief(fg, :e))) < 8 # drawTree(tree, show=true) # using RoMEPlotting # plotKDE(fg, ls(fg)) # spyCliqMat(tree, :b) end @testset "Basic back and forth convolution over LinearRelative should spread" begin fg = initfg() addVariable!(fg, :a, ContinuousScalar) addVariable!(fg, :b, ContinuousScalar) addFactor!(fg, [:a;:b], LinearRelative(Normal(10, 1)), graphinit=false) initManual!(fg, :a, randn(1,100)) initManual!(fg, :b, 10 .+randn(1,100)) A = getBelief(fg, :a) B = getBelief(fg, :b) # plotKDE(fg, [:a; :b]) # repeat many times to ensure the means stay put and covariances spread out for i in 1:10 pts = approxConv(fg, :abf1, :b) B_ = manikde!(ContinuousScalar, pts) # plotKDE([B_; B]) initManual!(fg, :b, B_) pts = approxConv(fg, :abf1, :a) A_ = manikde!(ContinuousScalar, pts) # plotKDE([A_; A]) initManual!(fg, :a, A_) end A_ = getBelief(fg, :a) B_ = getBelief(fg, :b) # plotKDE([A_; B_; A; B]) @test (Statistics.mean(getPoints(A)) |> abs) < 1 @test (Statistics.mean(getPoints(A_))|> abs) < 2 @test (Statistics.mean(getPoints(B)) -10 |> abs) < 1 @test (Statistics.mean(getPoints(B_))-10 |> abs) < 2 @test Statistics.std(getPoints(A)) < 2 @test 3 < Statistics.std(getPoints(A_)) @test Statistics.std(getPoints(B)) < 2 @test 3 < Statistics.std(getPoints(B_)) ## end ##
25.144231
83
0.676482
[ "@testset \"forward backward convolutions and products sequence\" begin\n\nfg = initfg()\n\naddVariable!(fg, :a, ContinuousScalar)\naddVariable!(fg, :b, ContinuousScalar)\naddVariable!(fg, :c, ContinuousScalar)\naddVariable!(fg, :d, ContinuousScalar)\naddVariable!(fg, :e, ContinuousScalar)\n\naddFactor!(fg, [:a], Prior(Normal()))\naddFactor!(fg, [:a;:b], LinearRelative(Normal(10, 1)))\naddFactor!(fg, [:b;:c], LinearRelative(Normal(10, 1)))\naddFactor!(fg, [:c;:d], LinearRelative(Normal(10, 1)))\naddFactor!(fg, [:d;:e], LinearRelative(Normal(10, 1)))\n\ninitAll!(fg)\n\ntree = solveTree!(fg)\n\n\n@test (Statistics.mean(getPoints(getBelief(fg, :a)))- 0 |> abs) < 3\n@test (Statistics.mean(getPoints(getBelief(fg, :b)))-10 |> abs) < 4\n@test (Statistics.mean(getPoints(getBelief(fg, :c)))-20 |> abs) < 4\n@test (Statistics.mean(getPoints(getBelief(fg, :d)))-30 |> abs) < 5\n@test (Statistics.mean(getPoints(getBelief(fg, :e)))-40 |> abs) < 5\n\n@test 0.3 < Statistics.std(getPoints(getBelief(fg, :a))) < 2\n@test 0.5 < Statistics.std(getPoints(getBelief(fg, :b))) < 4\n@test 0.9 < Statistics.std(getPoints(getBelief(fg, :c))) < 6\n@test 1.2 < Statistics.std(getPoints(getBelief(fg, :d))) < 7\n@test 1.5 < Statistics.std(getPoints(getBelief(fg, :e))) < 8\n\n\n# drawTree(tree, show=true)\n# using RoMEPlotting\n# plotKDE(fg, ls(fg))\n# spyCliqMat(tree, :b)\n\nend", "@testset \"Basic back and forth convolution over LinearRelative should spread\" begin\n\nfg = initfg()\n\naddVariable!(fg, :a, ContinuousScalar)\naddVariable!(fg, :b, ContinuousScalar)\n\naddFactor!(fg, [:a;:b], LinearRelative(Normal(10, 1)), graphinit=false)\n\ninitManual!(fg, :a, randn(1,100))\ninitManual!(fg, :b, 10 .+randn(1,100))\n\nA = getBelief(fg, :a)\nB = getBelief(fg, :b)\n# plotKDE(fg, [:a; :b])\n\n# repeat many times to ensure the means stay put and covariances spread out\nfor i in 1:10\n pts = approxConv(fg, :abf1, :b)\n B_ = manikde!(ContinuousScalar, pts)\n # plotKDE([B_; B])\n initManual!(fg, :b, B_)\n\n pts = approxConv(fg, :abf1, :a)\n A_ = manikde!(ContinuousScalar, pts)\n # plotKDE([A_; A])\n initManual!(fg, :a, A_)\nend\n\nA_ = getBelief(fg, :a)\nB_ = getBelief(fg, :b)\n# plotKDE([A_; B_; A; B])\n\n@test (Statistics.mean(getPoints(A)) |> abs) < 1\n@test (Statistics.mean(getPoints(A_))|> abs) < 2\n\n@test (Statistics.mean(getPoints(B)) -10 |> abs) < 1\n@test (Statistics.mean(getPoints(B_))-10 |> abs) < 2\n\n@test Statistics.std(getPoints(A)) < 2\n@test 3 < Statistics.std(getPoints(A_))\n\n@test Statistics.std(getPoints(B)) < 2\n@test 3 < Statistics.std(getPoints(B_))\n\n##\n\nend" ]
f7153aaee71132dc4b60ff01c3f91af6c17752a3
5,750
jl
Julia
test/runtests.jl
burmecia/OpenAIGym.jl
087bec95d13ca85216a0eaa7d47f50cda2867367
[ "MIT" ]
86
2017-02-24T20:25:05.000Z
2022-03-31T04:50:07.000Z
test/runtests.jl
burmecia/OpenAIGym.jl
087bec95d13ca85216a0eaa7d47f50cda2867367
[ "MIT" ]
31
2017-08-06T17:27:08.000Z
2020-08-05T16:05:07.000Z
test/runtests.jl
burmecia/OpenAIGym.jl
087bec95d13ca85216a0eaa7d47f50cda2867367
[ "MIT" ]
30
2017-03-20T22:06:01.000Z
2021-09-24T04:38:33.000Z
using OpenAIGym using PyCall using Test """ `function time_steps(env::GymEnv{T}, num_eps::Int) where T` run through num_eps eps, recording the time taken for each step and how many steps were made. Doesn't time the `reset!` or the first step of each episode (since higher chance that it's slower/faster than the rest, and we want to compare the average time taken for each step as fairly as possible) """ function time_steps(env::GymEnv, num_eps::Int) t = 0.0 steps = 0 for i in 1:num_eps reset!(env) # step!(env, rand(env.actions)) # ignore the first step - it might be slow? t += (@elapsed steps += epstep(env)) end steps, t end """ Steps through an episode until it's `done` assumes env has been `reset!` """ function epstep(env::GymEnv) steps = 0 while true steps += 1 r, sβ€² = step!(env, rand(env.actions)) finished(env, sβ€²) && break end steps end @testset "Gym Basics" begin pong = GymEnv(:Pong, :v4) pongnf = GymEnv(:PongNoFrameskip, :v4) pacman = GymEnv(:MsPacman, :v4) pacmannf = GymEnv(:MsPacmanNoFrameskip, :v4) cartpole = GymEnv(:CartPole) bj = GymEnv(:Blackjack) allenvs = [pong, pongnf, pacman, pacmannf, cartpole, bj] eps2trial = Dict(pong=>2, pongnf=>1, pacman=>2, pacmannf=>1, cartpole=>400, bj=>30000) atarienvs = [pong, pongnf, pacman, pacmannf] envs = allenvs @testset "string constructor" begin for name ∈ ("Pong-v4", "PongNoFrameskip-v4", "MsPacman-v4", "MsPacmanNoFrameskip-v4", "CartPole-v0", "Blackjack-v0") env = GymEnv(name) @test !PyCall.ispynull(env.pyenv) end end @testset "envs load" begin # check they all work - no errors == no worries println("------------------------------ Check envs load ------------------------------") for (i, env) in enumerate(envs) a = rand(env.actions) |> OpenAIGym.pyaction action_type = a |> PyObject |> pytypeof println("env.pyenv: $(env.pyenv) action_type: $action_type (e.g. $a)") time_steps(env, 1) @test !ispynull(env.pyenv) println("------------------------------") end end @testset "julia speed test" begin println("------------------------------ Begin Julia Speed Check ------------------------------") for env in envs num_eps = eps2trial[env] steps, t = time_steps(env, num_eps) println("env.pyenv: $(env.pyenv) num_eps: $num_eps t: $t steps: $steps") println("microsecs/step (lower is better): ", t*1e6/steps) close(env) println("------------------------------") end println("------------------------------ End Julia Speed Check ------------------------------\n") end @testset "python speed test" begin println("------------------------------ Begin Python Speed Check ------------------------------") py""" import gym import numpy as np pong = gym.make("Pong-v4") pongnf = gym.make("PongNoFrameskip-v4") pacman = gym.make("MsPacman-v4"); pacmannf = gym.make("MsPacmanNoFrameskip-v4"); cartpole = gym.make("CartPole-v0") bj = gym.make("Blackjack-v0") allenvs = [pong, pongnf, pacman, pacmannf, cartpole, bj] eps2trial = {pong: 2, pongnf: 1, pacman: 2, pacmannf: 1, cartpole: 400, bj: 30000} atarienvs = [pong, pongnf, pacman, pacmannf]; envs = allenvs import time class Timer(object): elapsed = 0.0 def __init__(self, name=None): self.name = name def __enter__(self): self.tstart = time.time() def __exit__(self, type, value, traceback): Timer.elapsed = time.time() - self.tstart def time_steps(env, num_eps): t = 0.0 steps = 0 for i in range(num_eps): env.reset() with Timer(): steps += epstep(env) t += Timer.elapsed return steps, t def epstep(env): steps = 0 while True: steps += 1 action = env.action_space.sample() state, reward, done, info = env.step(action) if done == True: break return steps for env in envs: num_eps = eps2trial[env] with Timer(): steps, s = time_steps(env, num_eps) t = Timer.elapsed print("{env} num_eps: {num_eps} t: {t} steps: {steps} \n" "microsecs/step (lower is better): {time}".format( env=env, num_eps=num_eps, t=t, steps=steps, time=t*1e6/steps)) print("------------------------------") """ println("------------------------------ End Python Speed Check ------------------------------") end # @testset "python speed test" @testset "Base.show" begin let io = IOBuffer() env = GymEnv(:MsPacman, :v4) show(io, env) @test String(take!(io)) == "GymEnv MsPacman-v4\n" * " TimeLimit\n" * " r = 0.0\n" * " βˆ‘r = 0.0" end let io = IOBuffer() env = GymEnv(:Blackjack) show(io, env) @test String(take!(io)) == "GymEnv Blackjack-v0\n" * " r = 0.0\n" * " βˆ‘r = 0.0" end end # @testset "Base.show" end
33.430233
105
0.488348
[ "@testset \"Gym Basics\" begin\n\n pong = GymEnv(:Pong, :v4)\n pongnf = GymEnv(:PongNoFrameskip, :v4)\n pacman = GymEnv(:MsPacman, :v4)\n pacmannf = GymEnv(:MsPacmanNoFrameskip, :v4)\n cartpole = GymEnv(:CartPole)\n bj = GymEnv(:Blackjack)\n\n allenvs = [pong, pongnf, pacman, pacmannf, cartpole, bj]\n eps2trial = Dict(pong=>2, pongnf=>1, pacman=>2, pacmannf=>1, cartpole=>400, bj=>30000)\n atarienvs = [pong, pongnf, pacman, pacmannf]\n envs = allenvs\n\n @testset \"string constructor\" begin\n for name ∈ (\"Pong-v4\", \"PongNoFrameskip-v4\", \"MsPacman-v4\",\n \"MsPacmanNoFrameskip-v4\", \"CartPole-v0\", \"Blackjack-v0\")\n env = GymEnv(name)\n @test !PyCall.ispynull(env.pyenv)\n end\n end\n\n @testset \"envs load\" begin\n # check they all work - no errors == no worries\n println(\"------------------------------ Check envs load ------------------------------\")\n for (i, env) in enumerate(envs)\n a = rand(env.actions) |> OpenAIGym.pyaction\n action_type = a |> PyObject |> pytypeof\n println(\"env.pyenv: $(env.pyenv) action_type: $action_type (e.g. $a)\")\n time_steps(env, 1)\n @test !ispynull(env.pyenv)\n println(\"------------------------------\")\n end\n end\n\n @testset \"julia speed test\" begin\n println(\"------------------------------ Begin Julia Speed Check ------------------------------\")\n for env in envs\n num_eps = eps2trial[env]\n steps, t = time_steps(env, num_eps)\n println(\"env.pyenv: $(env.pyenv) num_eps: $num_eps t: $t steps: $steps\")\n println(\"microsecs/step (lower is better): \", t*1e6/steps)\n close(env)\n println(\"------------------------------\")\n end\n println(\"------------------------------ End Julia Speed Check ------------------------------\\n\")\n end\n\n @testset \"python speed test\" begin\n println(\"------------------------------ Begin Python Speed Check ------------------------------\")\n py\"\"\"\n import gym\n import numpy as np\n\n pong = gym.make(\"Pong-v4\")\n pongnf = gym.make(\"PongNoFrameskip-v4\")\n pacman = gym.make(\"MsPacman-v4\");\n pacmannf = gym.make(\"MsPacmanNoFrameskip-v4\");\n cartpole = gym.make(\"CartPole-v0\")\n bj = gym.make(\"Blackjack-v0\")\n\n allenvs = [pong, pongnf, pacman, pacmannf, cartpole, bj]\n eps2trial = {pong: 2, pongnf: 1, pacman: 2, pacmannf: 1, cartpole: 400, bj: 30000}\n atarienvs = [pong, pongnf, pacman, pacmannf];\n\n envs = allenvs\n\n import time\n class Timer(object):\n elapsed = 0.0\n def __init__(self, name=None):\n self.name = name\n\n def __enter__(self):\n self.tstart = time.time()\n\n def __exit__(self, type, value, traceback):\n Timer.elapsed = time.time() - self.tstart\n\n def time_steps(env, num_eps):\n t = 0.0\n steps = 0\n for i in range(num_eps):\n env.reset()\n with Timer():\n steps += epstep(env)\n t += Timer.elapsed\n return steps, t\n\n def epstep(env):\n steps = 0\n while True:\n steps += 1\n action = env.action_space.sample()\n state, reward, done, info = env.step(action)\n if done == True:\n break\n return steps\n\n for env in envs:\n num_eps = eps2trial[env]\n with Timer():\n steps, s = time_steps(env, num_eps)\n t = Timer.elapsed\n print(\"{env} num_eps: {num_eps} t: {t} steps: {steps} \\n\"\n \"microsecs/step (lower is better): {time}\".format(\n env=env, num_eps=num_eps, t=t, steps=steps,\n time=t*1e6/steps))\n print(\"------------------------------\")\n \"\"\"\n println(\"------------------------------ End Python Speed Check ------------------------------\")\n end # @testset \"python speed test\"\n\n @testset \"Base.show\" begin\n let\n io = IOBuffer()\n env = GymEnv(:MsPacman, :v4)\n show(io, env)\n @test String(take!(io)) == \"GymEnv MsPacman-v4\\n\" *\n \" TimeLimit\\n\" *\n \" r = 0.0\\n\" *\n \" βˆ‘r = 0.0\"\n end\n\n let\n io = IOBuffer()\n env = GymEnv(:Blackjack)\n show(io, env)\n @test String(take!(io)) == \"GymEnv Blackjack-v0\\n\" *\n \" r = 0.0\\n\" *\n \" βˆ‘r = 0.0\"\n end\n end # @testset \"Base.show\"\nend" ]
f7183b3be5ea2b30e86fc2f42f90233e708e517b
2,245
jl
Julia
test/runtests.jl
maarten-keijzer/AdaptiveWindow.jl
5bd90a475110ac5f6dd88226286455da0f8d87bf
[ "MIT" ]
1
2022-01-04T13:50:24.000Z
2022-01-04T13:50:24.000Z
test/runtests.jl
maarten-keijzer/AdaptiveWindow.jl
5bd90a475110ac5f6dd88226286455da0f8d87bf
[ "MIT" ]
null
null
null
test/runtests.jl
maarten-keijzer/AdaptiveWindow.jl
5bd90a475110ac5f6dd88226286455da0f8d87bf
[ "MIT" ]
null
null
null
using AdaptiveWindows using Test @testset verbose=true "Adaptive Mean" begin @testset "Mean Computation " begin m = AdaptiveMean(Ξ΄ = 1e-9) r = randn(1000) fit!(m, r) m1 = sum(r) / length(r) m2 = value(m) @test m1 β‰ˆ m2 ad = AdaptiveMean() # This should not trigger a truncated window fit!(ad, randn(10_000)) @test stats(ad).n == 10_000 # Changing the distribution should trigger a truncated window fit!(ad, 1 .+ randn(10_000)) @test 9_900 < stats(ad).n < 20_000 # check truncation of shifting using the callback function shifted = false m = AdaptiveMean(onshiftdetected = ad -> shifted = true) for i in 1:1_000 r = randn() if i > 500 r += 1 end fit!(m, r) end @test shifted end function consistent(ad) total = sum(nobs(v) for v in ad.window) total == nobs(ad.stats) end @testset "Memory Management" begin m = AdaptiveMean() fit!(m, 1) @test nobs(m.window[1]) == 0 @test nobs(m.window[2]) == 1 @test nobs(m.window[3]) == 0 fit!(m, 1) @test nobs(m.window[1]) == 0 @test nobs(m.window[2]) == 1 @test nobs(m.window[3]) == 1 fit!(m, 1) fit!(m, 1) fit!(m, 1) fit!(m, 1) fit!(m, 1) @test consistent(m) m = AdaptiveMean() n = AdaptiveWindows.M * ( 1 + 2 + 4) fit!(m, ones(n)) @test length(m.window) <= AdaptiveWindows.M * log2(n) @test nobs(m) == n @test consistent(m) mn = AdaptiveMean() n = 1<<12 # withoutdropping for speed fit!(withoutdropping(mn), ones(n)) m = AdaptiveWindows.M expected = m * ceil(log2(n) - log2(m)) @test length(mn.window) == expected @test nobs(mn) == n @test consistent(mn) # Maximum amount of memory mn = withmaxlength(AdaptiveMean(), 3) fit!(mn, rand(10000)) @test length(mn.ad.window) == AdaptiveWindows.M * 3 @test consistent(mn.ad) end end
23.385417
69
0.50245
[ "@testset verbose=true \"Adaptive Mean\" begin\n\n @testset \"Mean Computation \" begin\n m = AdaptiveMean(Ξ΄ = 1e-9)\n\n r = randn(1000)\n\n fit!(m, r)\n\n m1 = sum(r) / length(r)\n m2 = value(m)\n\n @test m1 β‰ˆ m2\n ad = AdaptiveMean()\n\n # This should not trigger a truncated window\n fit!(ad, randn(10_000))\n @test stats(ad).n == 10_000\n\n # Changing the distribution should trigger a truncated window\n fit!(ad, 1 .+ randn(10_000))\n @test 9_900 < stats(ad).n < 20_000\n\n # check truncation of shifting using the callback function\n shifted = false\n\n m = AdaptiveMean(onshiftdetected = ad -> shifted = true)\n\n for i in 1:1_000\n r = randn()\n if i > 500\n r += 1\n end\n fit!(m, r)\n end\n\n @test shifted\n end\n\n function consistent(ad)\n total = sum(nobs(v) for v in ad.window)\n total == nobs(ad.stats)\n end\n\n @testset \"Memory Management\" begin\n\n m = AdaptiveMean()\n fit!(m, 1)\n @test nobs(m.window[1]) == 0\n @test nobs(m.window[2]) == 1\n @test nobs(m.window[3]) == 0\n fit!(m, 1)\n @test nobs(m.window[1]) == 0\n @test nobs(m.window[2]) == 1\n @test nobs(m.window[3]) == 1\n fit!(m, 1)\n fit!(m, 1)\n fit!(m, 1)\n fit!(m, 1)\n fit!(m, 1)\n @test consistent(m)\n \n m = AdaptiveMean()\n n = AdaptiveWindows.M * ( 1 + 2 + 4)\n fit!(m, ones(n))\n\n @test length(m.window) <= AdaptiveWindows.M * log2(n)\n @test nobs(m) == n \n @test consistent(m)\n\n mn = AdaptiveMean()\n n = 1<<12\n\n # withoutdropping for speed\n fit!(withoutdropping(mn), ones(n))\n m = AdaptiveWindows.M \n expected = m * ceil(log2(n) - log2(m))\n @test length(mn.window) == expected\n @test nobs(mn) == n \n @test consistent(mn)\n \n # Maximum amount of memory\n mn = withmaxlength(AdaptiveMean(), 3)\n fit!(mn, rand(10000))\n @test length(mn.ad.window) == AdaptiveWindows.M * 3\n @test consistent(mn.ad)\n \n\n end\nend" ]
f71fdd500cffb77f7512f74f826a1a508b234e8f
34,448
jl
Julia
test/runtests.jl
bkamins/Statistics.jl
81a1cdd6c2105d3e50f76375630bbed4744e67c1
[ "MIT" ]
null
null
null
test/runtests.jl
bkamins/Statistics.jl
81a1cdd6c2105d3e50f76375630bbed4744e67c1
[ "MIT" ]
null
null
null
test/runtests.jl
bkamins/Statistics.jl
81a1cdd6c2105d3e50f76375630bbed4744e67c1
[ "MIT" ]
null
null
null
# This file is a part of Julia. License is MIT: https://julialang.org/license using Statistics, Test, Random, LinearAlgebra, SparseArrays using Test: guardseed Random.seed!(123) @testset "middle" begin @test middle(3) === 3.0 @test middle(2, 3) === 2.5 let x = ((floatmax(1.0)/4)*3) @test middle(x, x) === x end @test middle(1:8) === 4.5 @test middle([1:8;]) === 4.5 # ensure type-correctness for T in [Bool,Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128,Float16,Float32,Float64] @test middle(one(T)) === middle(one(T), one(T)) end end @testset "median" begin @test median([1.]) === 1. @test median([1.,3]) === 2. @test median([1.,3,2]) === 2. @test median([1,3,2]) === 2.0 @test median([1,3,2,4]) === 2.5 @test median([0.0,Inf]) == Inf @test median([0.0,-Inf]) == -Inf @test median([0.,Inf,-Inf]) == 0.0 @test median([1.,-1.,Inf,-Inf]) == 0.0 @test isnan(median([-Inf,Inf])) X = [2 3 1 -1; 7 4 5 -4] @test all(median(X, dims=2) .== [1.5, 4.5]) @test all(median(X, dims=1) .== [4.5 3.5 3.0 -2.5]) @test X == [2 3 1 -1; 7 4 5 -4] # issue #17153 @test_throws ArgumentError median([]) @test isnan(median([NaN])) @test isnan(median([0.0,NaN])) @test isnan(median([NaN,0.0])) @test isnan(median([NaN,0.0,1.0])) @test isnan(median(Any[NaN,0.0,1.0])) @test isequal(median([NaN 0.0; 1.2 4.5], dims=2), reshape([NaN; 2.85], 2, 1)) @test ismissing(median([1, missing])) @test ismissing(median([1, 2, missing])) @test ismissing(median([NaN, 2.0, missing])) @test ismissing(median([NaN, missing])) @test ismissing(median([missing, NaN])) @test ismissing(median(Any[missing, 2.0, 3.0, 4.0, NaN])) @test median(skipmissing([1, missing, 2])) === 1.5 @test median!([1 2 3 4]) == 2.5 @test median!([1 2; 3 4]) == 2.5 @test invoke(median, Tuple{AbstractVector}, 1:10) == median(1:10) == 5.5 @test @inferred(median(Float16[1, 2, NaN])) === Float16(NaN) @test @inferred(median(Float16[1, 2, 3])) === Float16(2) @test @inferred(median(Float32[1, 2, NaN])) === NaN32 @test @inferred(median(Float32[1, 2, 3])) === 2.0f0 end @testset "mean" begin @test mean((1,2,3)) === 2. @test mean([0]) === 0. @test mean([1.]) === 1. @test mean([1.,3]) == 2. @test mean([1,2,3]) == 2. @test mean([0 1 2; 4 5 6], dims=1) == [2. 3. 4.] @test mean([1 2 3; 4 5 6], dims=1) == [2.5 3.5 4.5] @test mean(-, [1 2 3 ; 4 5 6], dims=1) == [-2.5 -3.5 -4.5] @test mean(-, [1 2 3 ; 4 5 6], dims=2) == transpose([-2.0 -5.0]) @test mean(-, [1 2 3 ; 4 5 6], dims=(1, 2)) == -3.5 .* ones(1, 1) @test mean(-, [1 2 3 ; 4 5 6], dims=(1, 1)) == [-2.5 -3.5 -4.5] @test mean(-, [1 2 3 ; 4 5 6], dims=()) == Float64[-1 -2 -3 ; -4 -5 -6] @test mean(i->i+1, 0:2) === 2. @test mean(isodd, [3]) === 1. @test mean(x->3x, (1,1)) === 3. # mean of iterables: n = 10; a = randn(n); b = randn(n) @test mean(Tuple(a)) β‰ˆ mean(a) @test mean(Tuple(a + b*im)) β‰ˆ mean(a + b*im) @test mean(cos, Tuple(a)) β‰ˆ mean(cos, a) @test mean(x->x/2, a + b*im) β‰ˆ mean(a + b*im) / 2. @test ismissing(mean(Tuple((1, 2, missing, 4, 5)))) @test isnan(mean([NaN])) @test isnan(mean([0.0,NaN])) @test isnan(mean([NaN,0.0])) @test isnan(mean([0.,Inf,-Inf])) @test isnan(mean([1.,-1.,Inf,-Inf])) @test isnan(mean([-Inf,Inf])) @test isequal(mean([NaN 0.0; 1.2 4.5], dims=2), reshape([NaN; 2.85], 2, 1)) @test ismissing(mean([1, missing])) @test ismissing(mean([NaN, missing])) @test ismissing(mean([missing, NaN])) @test isequal(mean([missing 1.0; 2.0 3.0], dims=1), [missing 2.0]) @test mean(skipmissing([1, missing, 2])) === 1.5 @test isequal(mean(Complex{Float64}[]), NaN+NaN*im) @test mean(Complex{Float64}[]) isa Complex{Float64} @test isequal(mean(skipmissing(Complex{Float64}[])), NaN+NaN*im) @test mean(skipmissing(Complex{Float64}[])) isa Complex{Float64} @test isequal(mean(abs, Complex{Float64}[]), NaN) @test mean(abs, Complex{Float64}[]) isa Float64 @test isequal(mean(abs, skipmissing(Complex{Float64}[])), NaN) @test mean(abs, skipmissing(Complex{Float64}[])) isa Float64 @test isequal(mean(Int[]), NaN) @test mean(Int[]) isa Float64 @test isequal(mean(skipmissing(Int[])), NaN) @test mean(skipmissing(Int[])) isa Float64 @test_throws MethodError mean([]) @test_throws MethodError mean(skipmissing([])) @test_throws ArgumentError mean((1 for i in 2:1)) if VERSION >= v"1.6.0-DEV.83" @test_throws ArgumentError mean(()) @test_throws ArgumentError mean(Union{}[]) end # Check that small types are accumulated using wider type for T in (Int8, UInt8) x = [typemax(T) typemax(T)] g = (v for v in x) @test mean(x) == mean(g) == typemax(T) @test mean(identity, x) == mean(identity, g) == typemax(T) @test mean(x, dims=2) == [typemax(T)]' end # Check that mean avoids integer overflow (#22) let x = fill(typemax(Int), 10), a = tuple(x...) @test (mean(x) == mean(x, dims=1)[] == mean(float, x) == mean(a) == mean(v for v in x) == mean(v for v in a) β‰ˆ float(typemax(Int))) end let x = rand(10000) # mean should use sum's accurate pairwise algorithm @test mean(x) == sum(x) / length(x) end @test mean(Number[1, 1.5, 2+3im]) === 1.5+1im # mixed-type array @test mean(v for v in Number[1, 1.5, 2+3im]) === 1.5+1im @test (@inferred mean(Int[])) === 0/0 @test (@inferred mean(Float32[])) === 0.f0/0 @test (@inferred mean(Float64[])) === 0/0 @test (@inferred mean(Iterators.filter(x -> true, Int[]))) === 0/0 @test (@inferred mean(Iterators.filter(x -> true, Float32[]))) === 0.f0/0 @test (@inferred mean(Iterators.filter(x -> true, Float64[]))) === 0/0 end @testset "mean/median for ranges" begin for f in (mean, median) for n = 2:5 @test f(2:n) == f([2:n;]) @test f(2:0.1:n) β‰ˆ f([2:0.1:n;]) end end @test mean(2:1) === NaN @test mean(big(2):1) isa BigFloat end @testset "var & std" begin # edge case: empty vector # iterable; this has to throw for type stability @test_throws MethodError var(()) @test_throws MethodError var((); corrected=false) @test_throws MethodError var((); mean=2) @test_throws MethodError var((); mean=2, corrected=false) # reduction @test isnan(var(Int[])) @test isnan(var(Int[]; corrected=false)) @test isnan(var(Int[]; mean=2)) @test isnan(var(Int[]; mean=2, corrected=false)) # reduction across dimensions @test isequal(var(Int[], dims=1), [NaN]) @test isequal(var(Int[], dims=1; corrected=false), [NaN]) @test isequal(var(Int[], dims=1; mean=[2]), [NaN]) @test isequal(var(Int[], dims=1; mean=[2], corrected=false), [NaN]) # edge case: one-element vector # iterable @test isnan(@inferred(var((1,)))) @test var((1,); corrected=false) === 0.0 @test var((1,); mean=2) === Inf @test var((1,); mean=2, corrected=false) === 1.0 # reduction @test isnan(@inferred(var([1]))) @test var([1]; corrected=false) === 0.0 @test var([1]; mean=2) === Inf @test var([1]; mean=2, corrected=false) === 1.0 # reduction across dimensions @test isequal(@inferred(var([1], dims=1)), [NaN]) @test var([1], dims=1; corrected=false) β‰ˆ [0.0] @test var([1], dims=1; mean=[2]) β‰ˆ [Inf] @test var([1], dims=1; mean=[2], corrected=false) β‰ˆ [1.0] @test var(1:8) == 6. @test varm(1:8,1) == varm(Vector(1:8),1) @test isnan(varm(1:1,1)) @test isnan(var(1:1)) @test isnan(var(1:-1)) @test @inferred(var(1.0:8.0)) == 6. @test varm(1.0:8.0,1.0) == varm(Vector(1.0:8.0),1) @test isnan(varm(1.0:1.0,1.0)) @test isnan(var(1.0:1.0)) @test isnan(var(1.0:-1.0)) @test @inferred(var(1.0f0:8.0f0)) === 6.f0 @test varm(1.0f0:8.0f0,1.0f0) == varm(Vector(1.0f0:8.0f0),1) @test isnan(varm(1.0f0:1.0f0,1.0f0)) @test isnan(var(1.0f0:1.0f0)) @test isnan(var(1.0f0:-1.0f0)) @test varm([1,2,3], 2) β‰ˆ 1. @test var([1,2,3]) β‰ˆ 1. @test var([1,2,3]; corrected=false) β‰ˆ 2.0/3 @test var([1,2,3]; mean=0) β‰ˆ 7. @test var([1,2,3]; mean=0, corrected=false) β‰ˆ 14.0/3 @test varm((1,2,3), 2) β‰ˆ 1. @test var((1,2,3)) β‰ˆ 1. @test var((1,2,3); corrected=false) β‰ˆ 2.0/3 @test var((1,2,3); mean=0) β‰ˆ 7. @test var((1,2,3); mean=0, corrected=false) β‰ˆ 14.0/3 @test_throws ArgumentError var((1,2,3); mean=()) @test var([1 2 3 4 5; 6 7 8 9 10], dims=2) β‰ˆ [2.5 2.5]' @test var([1 2 3 4 5; 6 7 8 9 10], dims=2; corrected=false) β‰ˆ [2.0 2.0]' @test var(collect(1:99), dims=1) β‰ˆ [825] @test var(Matrix(transpose(collect(1:99))), dims=2) β‰ˆ [825] @test stdm([1,2,3], 2) β‰ˆ 1. @test std([1,2,3]) β‰ˆ 1. @test std([1,2,3]; corrected=false) β‰ˆ sqrt(2.0/3) @test std([1,2,3]; mean=0) β‰ˆ sqrt(7.0) @test std([1,2,3]; mean=0, corrected=false) β‰ˆ sqrt(14.0/3) @test stdm([1.0,2,3], 2) β‰ˆ 1. @test std([1.0,2,3]) β‰ˆ 1. @test std([1.0,2,3]; corrected=false) β‰ˆ sqrt(2.0/3) @test std([1.0,2,3]; mean=0) β‰ˆ sqrt(7.0) @test std([1.0,2,3]; mean=0, corrected=false) β‰ˆ sqrt(14.0/3) @test std([1.0,2,3]; dims=1)[] β‰ˆ 1. @test std([1.0,2,3]; dims=1, corrected=false)[] β‰ˆ sqrt(2.0/3) @test std([1.0,2,3]; dims=1, mean=[0])[] β‰ˆ sqrt(7.0) @test std([1.0,2,3]; dims=1, mean=[0], corrected=false)[] β‰ˆ sqrt(14.0/3) @test stdm((1,2,3), 2) β‰ˆ 1. @test std((1,2,3)) β‰ˆ 1. @test std((1,2,3); corrected=false) β‰ˆ sqrt(2.0/3) @test std((1,2,3); mean=0) β‰ˆ sqrt(7.0) @test std((1,2,3); mean=0, corrected=false) β‰ˆ sqrt(14.0/3) @test std([1 2 3 4 5; 6 7 8 9 10], dims=2) β‰ˆ sqrt.([2.5 2.5]') @test std([1 2 3 4 5; 6 7 8 9 10], dims=2; corrected=false) β‰ˆ sqrt.([2.0 2.0]') let A = ComplexF64[exp(i*im) for i in 1:10^4] @test varm(A, 0.) β‰ˆ sum(map(abs2, A)) / (length(A) - 1) @test varm(A, mean(A)) β‰ˆ var(A) end @test var([1//1, 2//1]) isa Rational{Int} @test var([1//1, 2//1], dims=1) isa Vector{Rational{Int}} @test std([1//1, 2//1]) isa Float64 @test std([1//1, 2//1], dims=1) isa Vector{Float64} @testset "var: empty cases" begin A = Matrix{Int}(undef, 0,1) @test var(A) === NaN @test isequal(var(A, dims=1), fill(NaN, 1, 1)) @test isequal(var(A, dims=2), fill(NaN, 0, 1)) @test isequal(var(A, dims=(1, 2)), fill(NaN, 1, 1)) @test isequal(var(A, dims=3), fill(NaN, 0, 1)) end # issue #6672 @test std(AbstractFloat[1,2,3], dims=1) == [1.0] for f in (var, std) @test ismissing(f([1, missing])) @test ismissing(f([NaN, missing])) @test ismissing(f([missing, NaN])) @test isequal(f([missing 1.0; 2.0 3.0], dims=1), [missing f([1.0, 3.0])]) @test f(skipmissing([1, missing, 2])) === f([1, 2]) end for f in (varm, stdm) @test ismissing(f([1, missing], 0)) @test ismissing(f([1, 2], missing)) @test ismissing(f([1, NaN], missing)) @test ismissing(f([NaN, missing], 0)) @test ismissing(f([missing, NaN], 0)) @test ismissing(f([NaN, missing], missing)) @test ismissing(f([missing, NaN], missing)) @test f(skipmissing([1, missing, 2]), 0) === f([1, 2], 0) end @test isequal(var(Complex{Float64}[]), NaN) @test var(Complex{Float64}[]) isa Float64 @test isequal(var(skipmissing(Complex{Float64}[])), NaN) @test var(skipmissing(Complex{Float64}[])) isa Float64 @test_throws MethodError var([]) @test_throws MethodError var(skipmissing([])) @test_throws MethodError var((1 for i in 2:1)) @test isequal(var(Int[]), NaN) @test var(Int[]) isa Float64 @test isequal(var(skipmissing(Int[])), NaN) @test var(skipmissing(Int[])) isa Float64 # over dimensions with provided means for x in ([1 2 3; 4 5 6], sparse([1 2 3; 4 5 6])) @test var(x, dims=1, mean=mean(x, dims=1)) == var(x, dims=1) @test var(x, dims=1, mean=reshape(mean(x, dims=1), 1, :, 1)) == var(x, dims=1) @test var(x, dims=2, mean=mean(x, dims=2)) == var(x, dims=2) @test var(x, dims=2, mean=reshape(mean(x, dims=2), :)) == var(x, dims=2) @test var(x, dims=2, mean=reshape(mean(x, dims=2), :, 1, 1)) == var(x, dims=2) @test_throws DimensionMismatch var(x, dims=1, mean=ones(size(x, 1))) @test_throws DimensionMismatch var(x, dims=1, mean=ones(size(x, 1), 1)) @test_throws DimensionMismatch var(x, dims=2, mean=ones(1, size(x, 2))) @test_throws DimensionMismatch var(x, dims=1, mean=ones(1, 1, size(x, 2))) @test_throws DimensionMismatch var(x, dims=2, mean=ones(1, size(x, 2), 1)) @test_throws DimensionMismatch var(x, dims=2, mean=ones(size(x, 1), 1, 5)) @test_throws DimensionMismatch var(x, dims=1, mean=ones(1, size(x, 2), 5)) end end function safe_cov(x, y, zm::Bool, cr::Bool) n = length(x) if !zm x = x .- mean(x) y = y .- mean(y) end dot(vec(x), vec(y)) / (n - Int(cr)) end X = [1.0 5.0; 2.0 4.0; 3.0 6.0; 4.0 2.0; 5.0 1.0] Y = [6.0 2.0; 1.0 7.0; 5.0 8.0; 3.0 4.0; 2.0 3.0] @testset "covariance" begin for vd in [1, 2], zm in [true, false], cr in [true, false] # println("vd = $vd: zm = $zm, cr = $cr") if vd == 1 k = size(X, 2) Cxx = zeros(k, k) Cxy = zeros(k, k) for i = 1:k, j = 1:k Cxx[i,j] = safe_cov(X[:,i], X[:,j], zm, cr) Cxy[i,j] = safe_cov(X[:,i], Y[:,j], zm, cr) end x1 = vec(X[:,1]) y1 = vec(Y[:,1]) else k = size(X, 1) Cxx = zeros(k, k) Cxy = zeros(k, k) for i = 1:k, j = 1:k Cxx[i,j] = safe_cov(X[i,:], X[j,:], zm, cr) Cxy[i,j] = safe_cov(X[i,:], Y[j,:], zm, cr) end x1 = vec(X[1,:]) y1 = vec(Y[1,:]) end c = zm ? Statistics.covm(x1, 0, corrected=cr) : cov(x1, corrected=cr) @test isa(c, Float64) @test c β‰ˆ Cxx[1,1] @inferred cov(x1, corrected=cr) @test cov(X) == Statistics.covm(X, mean(X, dims=1)) C = zm ? Statistics.covm(X, 0, vd, corrected=cr) : cov(X, dims=vd, corrected=cr) @test size(C) == (k, k) @test C β‰ˆ Cxx @inferred cov(X, dims=vd, corrected=cr) @test cov(x1, y1) == Statistics.covm(x1, mean(x1), y1, mean(y1)) c = zm ? Statistics.covm(x1, 0, y1, 0, corrected=cr) : cov(x1, y1, corrected=cr) @test isa(c, Float64) @test c β‰ˆ Cxy[1,1] @inferred cov(x1, y1, corrected=cr) if vd == 1 @test cov(x1, Y) == Statistics.covm(x1, mean(x1), Y, mean(Y, dims=1)) end C = zm ? Statistics.covm(x1, 0, Y, 0, vd, corrected=cr) : cov(x1, Y, dims=vd, corrected=cr) @test size(C) == (1, k) @test vec(C) β‰ˆ Cxy[1,:] @inferred cov(x1, Y, dims=vd, corrected=cr) if vd == 1 @test cov(X, y1) == Statistics.covm(X, mean(X, dims=1), y1, mean(y1)) end C = zm ? Statistics.covm(X, 0, y1, 0, vd, corrected=cr) : cov(X, y1, dims=vd, corrected=cr) @test size(C) == (k, 1) @test vec(C) β‰ˆ Cxy[:,1] @inferred cov(X, y1, dims=vd, corrected=cr) @test cov(X, Y) == Statistics.covm(X, mean(X, dims=1), Y, mean(Y, dims=1)) C = zm ? Statistics.covm(X, 0, Y, 0, vd, corrected=cr) : cov(X, Y, dims=vd, corrected=cr) @test size(C) == (k, k) @test C β‰ˆ Cxy @inferred cov(X, Y, dims=vd, corrected=cr) end @testset "floating point accuracy for `cov` of large numbers" begin A = [4.0, 7.0, 13.0, 16.0] C = A .+ 1.0e10 @test cov(A, A) β‰ˆ cov(C, C) end end function safe_cor(x, y, zm::Bool) if !zm x = x .- mean(x) y = y .- mean(y) end x = vec(x) y = vec(y) dot(x, y) / (sqrt(dot(x, x)) * sqrt(dot(y, y))) end @testset "correlation" begin for vd in [1, 2], zm in [true, false] # println("vd = $vd: zm = $zm") if vd == 1 k = size(X, 2) Cxx = zeros(k, k) Cxy = zeros(k, k) for i = 1:k, j = 1:k Cxx[i,j] = safe_cor(X[:,i], X[:,j], zm) Cxy[i,j] = safe_cor(X[:,i], Y[:,j], zm) end x1 = vec(X[:,1]) y1 = vec(Y[:,1]) else k = size(X, 1) Cxx = zeros(k, k) Cxy = zeros(k, k) for i = 1:k, j = 1:k Cxx[i,j] = safe_cor(X[i,:], X[j,:], zm) Cxy[i,j] = safe_cor(X[i,:], Y[j,:], zm) end x1 = vec(X[1,:]) y1 = vec(Y[1,:]) end c = zm ? Statistics.corm(x1, 0) : cor(x1) @test isa(c, Float64) @test c β‰ˆ Cxx[1,1] @inferred cor(x1) @test cor(X) == Statistics.corm(X, mean(X, dims=1)) C = zm ? Statistics.corm(X, 0, vd) : cor(X, dims=vd) @test size(C) == (k, k) @test C β‰ˆ Cxx @inferred cor(X, dims=vd) @test cor(x1, y1) == Statistics.corm(x1, mean(x1), y1, mean(y1)) c = zm ? Statistics.corm(x1, 0, y1, 0) : cor(x1, y1) @test isa(c, Float64) @test c β‰ˆ Cxy[1,1] @inferred cor(x1, y1) if vd == 1 @test cor(x1, Y) == Statistics.corm(x1, mean(x1), Y, mean(Y, dims=1)) end C = zm ? Statistics.corm(x1, 0, Y, 0, vd) : cor(x1, Y, dims=vd) @test size(C) == (1, k) @test vec(C) β‰ˆ Cxy[1,:] @inferred cor(x1, Y, dims=vd) if vd == 1 @test cor(X, y1) == Statistics.corm(X, mean(X, dims=1), y1, mean(y1)) end C = zm ? Statistics.corm(X, 0, y1, 0, vd) : cor(X, y1, dims=vd) @test size(C) == (k, 1) @test vec(C) β‰ˆ Cxy[:,1] @inferred cor(X, y1, dims=vd) @test cor(X, Y) == Statistics.corm(X, mean(X, dims=1), Y, mean(Y, dims=1)) C = zm ? Statistics.corm(X, 0, Y, 0, vd) : cor(X, Y, dims=vd) @test size(C) == (k, k) @test C β‰ˆ Cxy @inferred cor(X, Y, dims=vd) end @test cor(repeat(1:17, 1, 17))[2] <= 1.0 @test cor(1:17, 1:17) <= 1.0 @test cor(1:17, 18:34) <= 1.0 @test cor(Any[1, 2], Any[1, 2]) == 1.0 @test isnan(cor([0], Int8[81])) let tmp = range(1, stop=85, length=100) tmp2 = Vector(tmp) @test cor(tmp, tmp) <= 1.0 @test cor(tmp, tmp2) <= 1.0 end end @testset "quantile" begin @test quantile([1,2,3,4],0.5) β‰ˆ 2.5 @test quantile([1,2,3,4],[0.5]) β‰ˆ [2.5] @test quantile([1., 3],[.25,.5,.75])[2] β‰ˆ median([1., 3]) @test quantile(100.0:-1.0:0.0, 0.0:0.1:1.0) β‰ˆ 0.0:10.0:100.0 @test quantile(0.0:100.0, 0.0:0.1:1.0, sorted=true) β‰ˆ 0.0:10.0:100.0 @test quantile(100f0:-1f0:0.0, 0.0:0.1:1.0) β‰ˆ 0f0:10f0:100f0 @test quantile([Inf,Inf],0.5) == Inf @test quantile([-Inf,1],0.5) == -Inf # here it is required to introduce an absolute tolerance because the calculated value is 0 @test quantile([0,1],1e-18) β‰ˆ 1e-18 atol=1e-18 @test quantile([1, 2, 3, 4],[]) == [] @test quantile([1, 2, 3, 4], (0.5,)) == (2.5,) @test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11], (0.1, 0.2, 0.4, 0.9)) == (2.0, 3.0, 5.0, 11.0) @test quantile(Union{Int, Missing}[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11], [0.1, 0.2, 0.4, 0.9]) β‰ˆ [2.0, 3.0, 5.0, 11.0] @test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11], [0.1, 0.2, 0.4, 0.9]) β‰ˆ [2.0, 3.0, 5.0, 11.0] @test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11], Any[0.1, 0.2, 0.4, 0.9]) β‰ˆ [2.0, 3.0, 5.0, 11.0] @test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11], Any[0.1, 0.2, 0.4, 0.9]) isa Vector{Float64} @test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11], Any[0.1, 0.2, 0.4, 0.9]) β‰ˆ [2, 3, 5, 11] @test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11], Any[0.1, 0.2, 0.4, 0.9]) isa Vector{Float64} @test quantile([1, 2, 3, 4], ()) == () @test isempty(quantile([1, 2, 3, 4], Float64[])) @test quantile([1, 2, 3, 4], Float64[]) isa Vector{Float64} @test quantile([1, 2, 3, 4], []) isa Vector{Any} @test quantile([1, 2, 3, 4], [0, 1]) isa Vector{Int} @test quantile(Any[1, 2, 3], 0.5) isa Float64 @test quantile(Any[1, big(2), 3], 0.5) isa BigFloat @test quantile(Any[1, 2, 3], Float16(0.5)) isa Float16 @test quantile(Any[1, Float16(2), 3], Float16(0.5)) isa Float16 @test quantile(Any[1, big(2), 3], Float16(0.5)) isa BigFloat @test_throws ArgumentError quantile([1, missing], 0.5) @test_throws ArgumentError quantile([1, NaN], 0.5) @test quantile(skipmissing([1, missing, 2]), 0.5) === 1.5 # make sure that type inference works correctly in normal cases for T in [Int, BigInt, Float64, Float16, BigFloat, Rational{Int}, Rational{BigInt}] for S in [Float64, Float16, BigFloat, Rational{Int}, Rational{BigInt}] @inferred quantile(T[1, 2, 3], S(0.5)) @inferred quantile(T[1, 2, 3], S(0.6)) @inferred quantile(T[1, 2, 3], S[0.5, 0.6]) @inferred quantile(T[1, 2, 3], (S(0.5), S(0.6))) end end x = [3; 2; 1] y = zeros(3) @test quantile!(y, x, [0.1, 0.5, 0.9]) === y @test y β‰ˆ [1.2, 2.0, 2.8] #tests for quantile calculation with configurable alpha and beta parameters v = [2, 3, 4, 6, 9, 2, 6, 2, 21, 17] # tests against scipy.stats.mstats.mquantiles method @test quantile(v, 0.0, alpha=0.0, beta=0.0) β‰ˆ 2.0 @test quantile(v, 0.2, alpha=1.0, beta=1.0) β‰ˆ 2.0 @test quantile(v, 0.4, alpha=0.0, beta=0.0) β‰ˆ 3.4 @test quantile(v, 0.4, alpha=0.0, beta=0.2) β‰ˆ 3.32 @test quantile(v, 0.4, alpha=0.0, beta=0.4) β‰ˆ 3.24 @test quantile(v, 0.4, alpha=0.0, beta=0.6) β‰ˆ 3.16 @test quantile(v, 0.4, alpha=0.0, beta=0.8) β‰ˆ 3.08 @test quantile(v, 0.4, alpha=0.0, beta=1.0) β‰ˆ 3.0 @test quantile(v, 0.4, alpha=0.2, beta=0.0) β‰ˆ 3.52 @test quantile(v, 0.4, alpha=0.2, beta=0.2) β‰ˆ 3.44 @test quantile(v, 0.4, alpha=0.2, beta=0.4) β‰ˆ 3.36 @test quantile(v, 0.4, alpha=0.2, beta=0.6) β‰ˆ 3.28 @test quantile(v, 0.4, alpha=0.2, beta=0.8) β‰ˆ 3.2 @test quantile(v, 0.4, alpha=0.2, beta=1.0) β‰ˆ 3.12 @test quantile(v, 0.4, alpha=0.4, beta=0.0) β‰ˆ 3.64 @test quantile(v, 0.4, alpha=0.4, beta=0.2) β‰ˆ 3.56 @test quantile(v, 0.4, alpha=0.4, beta=0.4) β‰ˆ 3.48 @test quantile(v, 0.4, alpha=0.4, beta=0.6) β‰ˆ 3.4 @test quantile(v, 0.4, alpha=0.4, beta=0.8) β‰ˆ 3.32 @test quantile(v, 0.4, alpha=0.4, beta=1.0) β‰ˆ 3.24 @test quantile(v, 0.4, alpha=0.6, beta=0.0) β‰ˆ 3.76 @test quantile(v, 0.4, alpha=0.6, beta=0.2) β‰ˆ 3.68 @test quantile(v, 0.4, alpha=0.6, beta=0.4) β‰ˆ 3.6 @test quantile(v, 0.4, alpha=0.6, beta=0.6) β‰ˆ 3.52 @test quantile(v, 0.4, alpha=0.6, beta=0.8) β‰ˆ 3.44 @test quantile(v, 0.4, alpha=0.6, beta=1.0) β‰ˆ 3.36 @test quantile(v, 0.4, alpha=0.8, beta=0.0) β‰ˆ 3.88 @test quantile(v, 0.4, alpha=0.8, beta=0.2) β‰ˆ 3.8 @test quantile(v, 0.4, alpha=0.8, beta=0.4) β‰ˆ 3.72 @test quantile(v, 0.4, alpha=0.8, beta=0.6) β‰ˆ 3.64 @test quantile(v, 0.4, alpha=0.8, beta=0.8) β‰ˆ 3.56 @test quantile(v, 0.4, alpha=0.8, beta=1.0) β‰ˆ 3.48 @test quantile(v, 0.4, alpha=1.0, beta=0.0) β‰ˆ 4.0 @test quantile(v, 0.4, alpha=1.0, beta=0.2) β‰ˆ 3.92 @test quantile(v, 0.4, alpha=1.0, beta=0.4) β‰ˆ 3.84 @test quantile(v, 0.4, alpha=1.0, beta=0.6) β‰ˆ 3.76 @test quantile(v, 0.4, alpha=1.0, beta=0.8) β‰ˆ 3.68 @test quantile(v, 0.4, alpha=1.0, beta=1.0) β‰ˆ 3.6 @test quantile(v, 0.6, alpha=0.0, beta=0.0) β‰ˆ 6.0 @test quantile(v, 0.6, alpha=1.0, beta=1.0) β‰ˆ 6.0 @test quantile(v, 0.8, alpha=0.0, beta=0.0) β‰ˆ 15.4 @test quantile(v, 0.8, alpha=0.0, beta=0.2) β‰ˆ 14.12 @test quantile(v, 0.8, alpha=0.0, beta=0.4) β‰ˆ 12.84 @test quantile(v, 0.8, alpha=0.0, beta=0.6) β‰ˆ 11.56 @test quantile(v, 0.8, alpha=0.0, beta=0.8) β‰ˆ 10.28 @test quantile(v, 0.8, alpha=0.0, beta=1.0) β‰ˆ 9.0 @test quantile(v, 0.8, alpha=0.2, beta=0.0) β‰ˆ 15.72 @test quantile(v, 0.8, alpha=0.2, beta=0.2) β‰ˆ 14.44 @test quantile(v, 0.8, alpha=0.2, beta=0.4) β‰ˆ 13.16 @test quantile(v, 0.8, alpha=0.2, beta=0.6) β‰ˆ 11.88 @test quantile(v, 0.8, alpha=0.2, beta=0.8) β‰ˆ 10.6 @test quantile(v, 0.8, alpha=0.2, beta=1.0) β‰ˆ 9.32 @test quantile(v, 0.8, alpha=0.4, beta=0.0) β‰ˆ 16.04 @test quantile(v, 0.8, alpha=0.4, beta=0.2) β‰ˆ 14.76 @test quantile(v, 0.8, alpha=0.4, beta=0.4) β‰ˆ 13.48 @test quantile(v, 0.8, alpha=0.4, beta=0.6) β‰ˆ 12.2 @test quantile(v, 0.8, alpha=0.4, beta=0.8) β‰ˆ 10.92 @test quantile(v, 0.8, alpha=0.4, beta=1.0) β‰ˆ 9.64 @test quantile(v, 0.8, alpha=0.6, beta=0.0) β‰ˆ 16.36 @test quantile(v, 0.8, alpha=0.6, beta=0.2) β‰ˆ 15.08 @test quantile(v, 0.8, alpha=0.6, beta=0.4) β‰ˆ 13.8 @test quantile(v, 0.8, alpha=0.6, beta=0.6) β‰ˆ 12.52 @test quantile(v, 0.8, alpha=0.6, beta=0.8) β‰ˆ 11.24 @test quantile(v, 0.8, alpha=0.6, beta=1.0) β‰ˆ 9.96 @test quantile(v, 0.8, alpha=0.8, beta=0.0) β‰ˆ 16.68 @test quantile(v, 0.8, alpha=0.8, beta=0.2) β‰ˆ 15.4 @test quantile(v, 0.8, alpha=0.8, beta=0.4) β‰ˆ 14.12 @test quantile(v, 0.8, alpha=0.8, beta=0.6) β‰ˆ 12.84 @test quantile(v, 0.8, alpha=0.8, beta=0.8) β‰ˆ 11.56 @test quantile(v, 0.8, alpha=0.8, beta=1.0) β‰ˆ 10.28 @test quantile(v, 0.8, alpha=1.0, beta=0.0) β‰ˆ 17.0 @test quantile(v, 0.8, alpha=1.0, beta=0.2) β‰ˆ 15.72 @test quantile(v, 0.8, alpha=1.0, beta=0.4) β‰ˆ 14.44 @test quantile(v, 0.8, alpha=1.0, beta=0.6) β‰ˆ 13.16 @test quantile(v, 0.8, alpha=1.0, beta=0.8) β‰ˆ 11.88 @test quantile(v, 0.8, alpha=1.0, beta=1.0) β‰ˆ 10.6 @test quantile(v, 1.0, alpha=0.0, beta=0.0) β‰ˆ 21.0 @test quantile(v, 1.0, alpha=1.0, beta=1.0) β‰ˆ 21.0 end # StatsBase issue 164 let y = [0.40003674665581906, 0.4085630862624367, 0.41662034698690303, 0.41662034698690303, 0.42189053966652057, 0.42189053966652057, 0.42553514344518345, 0.43985732442991354] @test issorted(quantile(y, range(0.01, stop=0.99, length=17))) end @testset "variance of complex arrays (#13309)" begin z = rand(ComplexF64, 10) @test var(z) β‰ˆ invoke(var, Tuple{Any}, z) β‰ˆ cov(z) β‰ˆ var(z,dims=1)[1] β‰ˆ sum(abs2, z .- mean(z))/9 @test isa(var(z), Float64) @test isa(invoke(var, Tuple{Any}, z), Float64) @test isa(cov(z), Float64) @test isa(var(z,dims=1), Vector{Float64}) @test varm(z, 0.0) β‰ˆ invoke(varm, Tuple{Any,Float64}, z, 0.0) β‰ˆ sum(abs2, z)/9 @test isa(varm(z, 0.0), Float64) @test isa(invoke(varm, Tuple{Any,Float64}, z, 0.0), Float64) @test cor(z) === 1.0 v = varm([1.0+2.0im], 0; corrected = false) @test v β‰ˆ 5 @test isa(v, Float64) end @testset "cov and cor of complex arrays (issue #21093)" begin x = [2.7 - 3.3im, 0.9 + 5.4im, 0.1 + 0.2im, -1.7 - 5.8im, 1.1 + 1.9im] y = [-1.7 - 1.6im, -0.2 + 6.5im, 0.8 - 10.0im, 9.1 - 3.4im, 2.7 - 5.5im] @test cov(x, y) β‰ˆ 4.8365 - 12.119im @test cov(y, x) β‰ˆ 4.8365 + 12.119im @test cov(x, reshape(y, :, 1)) β‰ˆ reshape([4.8365 - 12.119im], 1, 1) @test cov(reshape(x, :, 1), y) β‰ˆ reshape([4.8365 - 12.119im], 1, 1) @test cov(reshape(x, :, 1), reshape(y, :, 1)) β‰ˆ reshape([4.8365 - 12.119im], 1, 1) @test cov([x y]) β‰ˆ [21.779 4.8365-12.119im; 4.8365+12.119im 54.548] @test cor(x, y) β‰ˆ 0.14032104449218274 - 0.35160772008699703im @test cor(y, x) β‰ˆ 0.14032104449218274 + 0.35160772008699703im @test cor(x, reshape(y, :, 1)) β‰ˆ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1) @test cor(reshape(x, :, 1), y) β‰ˆ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1) @test cor(reshape(x, :, 1), reshape(y, :, 1)) β‰ˆ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1) @test cor([x y]) β‰ˆ [1.0 0.14032104449218274-0.35160772008699703im 0.14032104449218274+0.35160772008699703im 1.0] end @testset "Issue #17153 and PR #17154" begin a = rand(10,10) b = copy(a) x = median(a, dims=1) @test b == a x = median(a, dims=2) @test b == a x = mean(a, dims=1) @test b == a x = mean(a, dims=2) @test b == a x = var(a, dims=1) @test b == a x = var(a, dims=2) @test b == a x = std(a, dims=1) @test b == a x = std(a, dims=2) @test b == a end # dimensional correctness const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test") isdefined(Main, :Furlongs) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Furlongs.jl")) using .Main.Furlongs Statistics.middle(x::Furlong{p}) where {p} = Furlong{p}(middle(x.val)) Statistics.middle(x::Furlong{p}, y::Furlong{p}) where {p} = Furlong{p}(middle(x.val, y.val)) @testset "Unitful elements" begin r = Furlong(1):Furlong(1):Furlong(2) a = Vector(r) @test sum(r) == sum(a) == Furlong(3) @test cumsum(r) == Furlong.([1,3]) @test mean(r) == mean(a) == median(a) == median(r) == Furlong(1.5) @test var(r) == var(a) == Furlong{2}(0.5) @test std(r) == std(a) == Furlong{1}(sqrt(0.5)) # Issue #21786 A = [Furlong{1}(rand(-5:5)) for i in 1:2, j in 1:2] @test mean(mean(A, dims=1), dims=2)[1] === mean(A) @test var(A, dims=1)[1] === var(A[:, 1]) @test std(A, dims=1)[1] === std(A[:, 1]) end # Issue #22901 @testset "var and quantile of Any arrays" begin x = Any[1, 2, 4, 10] y = Any[1, 2, 4, 10//1] @test var(x) === 16.25 @test var(y) === 16.25 @test std(x) === sqrt(16.25) @test quantile(x, 0.5) === 3.0 @test quantile(x, 1//2) === 3//1 end @testset "Promotion in covzm. Issue #8080" begin A = [1 -1 -1; -1 1 1; -1 1 -1; 1 -1 -1; 1 -1 1] @test Statistics.covzm(A) - mean(A, dims=1)'*mean(A, dims=1)*size(A, 1)/(size(A, 1) - 1) β‰ˆ cov(A) A = [1//1 -1 -1; -1 1 1; -1 1 -1; 1 -1 -1; 1 -1 1] @test (A'A - size(A, 1)*mean(A, dims=1)'*mean(A, dims=1))/4 == cov(A) end @testset "Mean along dimension of empty array" begin a0 = zeros(0) a00 = zeros(0, 0) a01 = zeros(0, 1) a10 = zeros(1, 0) @test isequal(mean(a0, dims=1) , fill(NaN, 1)) @test isequal(mean(a00, dims=(1, 2)), fill(NaN, 1, 1)) @test isequal(mean(a01, dims=1) , fill(NaN, 1, 1)) @test isequal(mean(a10, dims=2) , fill(NaN, 1, 1)) end @testset "cov/var/std of Vector{Vector}" begin x = [[2,4,6],[4,6,8]] @test var(x) β‰ˆ vec(var([x[1] x[2]], dims=2)) @test std(x) β‰ˆ vec(std([x[1] x[2]], dims=2)) @test cov(x) β‰ˆ cov([x[1] x[2]], dims=2) end @testset "var of sparse array" begin se33 = SparseMatrixCSC{Float64}(I, 3, 3) sA = sprandn(3, 7, 0.5) pA = sparse(rand(3, 7)) for arr in (se33, sA, pA) farr = Array(arr) @test var(arr) β‰ˆ var(farr) @test var(arr, dims=1) β‰ˆ var(farr, dims=1) @test var(arr, dims=2) β‰ˆ var(farr, dims=2) @test var(arr, dims=(1, 2)) β‰ˆ [var(farr)] @test isequal(var(arr, dims=3), var(farr, dims=3)) end @testset "empty cases" begin @test var(sparse(Int[])) === NaN @test isequal(var(spzeros(0, 1), dims=1), var(Matrix{Int}(I, 0, 1), dims=1)) @test isequal(var(spzeros(0, 1), dims=2), var(Matrix{Int}(I, 0, 1), dims=2)) @test isequal(var(spzeros(0, 1), dims=(1, 2)), var(Matrix{Int}(I, 0, 1), dims=(1, 2))) @test isequal(var(spzeros(0, 1), dims=3), var(Matrix{Int}(I, 0, 1), dims=3)) end end # Faster covariance function for sparse matrices # Prevents densifying the input matrix when subtracting the mean # Test against dense implementation # PR https://github.com/JuliaLang/julia/pull/22735 # Part of this test needed to be hacked due to the treatment # of Inf in sparse matrix algebra # https://github.com/JuliaLang/julia/issues/22921 # The issue will be resolved in # https://github.com/JuliaLang/julia/issues/22733 @testset "optimizing sparse $elty covariance" for elty in (Float64, Complex{Float64}) n = 10 p = 5 np2 = div(n*p, 2) nzvals, x_sparse = guardseed(1) do if elty <: Real nzvals = randn(np2) else nzvals = complex.(randn(np2), randn(np2)) end nzvals, sparse(rand(1:n, np2), rand(1:p, np2), nzvals, n, p) end x_dense = convert(Matrix{elty}, x_sparse) @testset "Test with no Infs and NaNs, vardim=$vardim, corrected=$corrected" for vardim in (1, 2), corrected in (true, false) @test cov(x_sparse, dims=vardim, corrected=corrected) β‰ˆ cov(x_dense , dims=vardim, corrected=corrected) end @testset "Test with $x11, vardim=$vardim, corrected=$corrected" for x11 in (NaN, Inf), vardim in (1, 2), corrected in (true, false) x_sparse[1,1] = x11 x_dense[1 ,1] = x11 cov_sparse = cov(x_sparse, dims=vardim, corrected=corrected) cov_dense = cov(x_dense , dims=vardim, corrected=corrected) @test cov_sparse[2:end, 2:end] β‰ˆ cov_dense[2:end, 2:end] @test isfinite.(cov_sparse) == isfinite.(cov_dense) @test isfinite.(cov_sparse) == isfinite.(cov_dense) end @testset "Test with NaN and Inf, vardim=$vardim, corrected=$corrected" for vardim in (1, 2), corrected in (true, false) x_sparse[1,1] = Inf x_dense[1 ,1] = Inf x_sparse[2,1] = NaN x_dense[2 ,1] = NaN cov_sparse = cov(x_sparse, dims=vardim, corrected=corrected) cov_dense = cov(x_dense , dims=vardim, corrected=corrected) @test cov_sparse[(1 + vardim):end, (1 + vardim):end] β‰ˆ cov_dense[ (1 + vardim):end, (1 + vardim):end] @test isfinite.(cov_sparse) == isfinite.(cov_dense) @test isfinite.(cov_sparse) == isfinite.(cov_dense) end end
40.102445
175
0.536054
[ "@testset \"middle\" begin\n @test middle(3) === 3.0\n @test middle(2, 3) === 2.5\n let x = ((floatmax(1.0)/4)*3)\n @test middle(x, x) === x\n end\n @test middle(1:8) === 4.5\n @test middle([1:8;]) === 4.5\n\n # ensure type-correctness\n for T in [Bool,Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128,Float16,Float32,Float64]\n @test middle(one(T)) === middle(one(T), one(T))\n end\nend", "@testset \"median\" begin\n @test median([1.]) === 1.\n @test median([1.,3]) === 2.\n @test median([1.,3,2]) === 2.\n\n @test median([1,3,2]) === 2.0\n @test median([1,3,2,4]) === 2.5\n\n @test median([0.0,Inf]) == Inf\n @test median([0.0,-Inf]) == -Inf\n @test median([0.,Inf,-Inf]) == 0.0\n @test median([1.,-1.,Inf,-Inf]) == 0.0\n @test isnan(median([-Inf,Inf]))\n\n X = [2 3 1 -1; 7 4 5 -4]\n @test all(median(X, dims=2) .== [1.5, 4.5])\n @test all(median(X, dims=1) .== [4.5 3.5 3.0 -2.5])\n @test X == [2 3 1 -1; 7 4 5 -4] # issue #17153\n\n @test_throws ArgumentError median([])\n @test isnan(median([NaN]))\n @test isnan(median([0.0,NaN]))\n @test isnan(median([NaN,0.0]))\n @test isnan(median([NaN,0.0,1.0]))\n @test isnan(median(Any[NaN,0.0,1.0]))\n @test isequal(median([NaN 0.0; 1.2 4.5], dims=2), reshape([NaN; 2.85], 2, 1))\n\n @test ismissing(median([1, missing]))\n @test ismissing(median([1, 2, missing]))\n @test ismissing(median([NaN, 2.0, missing]))\n @test ismissing(median([NaN, missing]))\n @test ismissing(median([missing, NaN]))\n @test ismissing(median(Any[missing, 2.0, 3.0, 4.0, NaN]))\n @test median(skipmissing([1, missing, 2])) === 1.5\n\n @test median!([1 2 3 4]) == 2.5\n @test median!([1 2; 3 4]) == 2.5\n\n @test invoke(median, Tuple{AbstractVector}, 1:10) == median(1:10) == 5.5\n\n @test @inferred(median(Float16[1, 2, NaN])) === Float16(NaN)\n @test @inferred(median(Float16[1, 2, 3])) === Float16(2)\n @test @inferred(median(Float32[1, 2, NaN])) === NaN32\n @test @inferred(median(Float32[1, 2, 3])) === 2.0f0\nend", "@testset \"mean\" begin\n @test mean((1,2,3)) === 2.\n @test mean([0]) === 0.\n @test mean([1.]) === 1.\n @test mean([1.,3]) == 2.\n @test mean([1,2,3]) == 2.\n @test mean([0 1 2; 4 5 6], dims=1) == [2. 3. 4.]\n @test mean([1 2 3; 4 5 6], dims=1) == [2.5 3.5 4.5]\n @test mean(-, [1 2 3 ; 4 5 6], dims=1) == [-2.5 -3.5 -4.5]\n @test mean(-, [1 2 3 ; 4 5 6], dims=2) == transpose([-2.0 -5.0])\n @test mean(-, [1 2 3 ; 4 5 6], dims=(1, 2)) == -3.5 .* ones(1, 1)\n @test mean(-, [1 2 3 ; 4 5 6], dims=(1, 1)) == [-2.5 -3.5 -4.5]\n @test mean(-, [1 2 3 ; 4 5 6], dims=()) == Float64[-1 -2 -3 ; -4 -5 -6]\n @test mean(i->i+1, 0:2) === 2.\n @test mean(isodd, [3]) === 1.\n @test mean(x->3x, (1,1)) === 3.\n\n # mean of iterables:\n n = 10; a = randn(n); b = randn(n)\n @test mean(Tuple(a)) β‰ˆ mean(a)\n @test mean(Tuple(a + b*im)) β‰ˆ mean(a + b*im)\n @test mean(cos, Tuple(a)) β‰ˆ mean(cos, a)\n @test mean(x->x/2, a + b*im) β‰ˆ mean(a + b*im) / 2.\n @test ismissing(mean(Tuple((1, 2, missing, 4, 5))))\n\n @test isnan(mean([NaN]))\n @test isnan(mean([0.0,NaN]))\n @test isnan(mean([NaN,0.0]))\n\n @test isnan(mean([0.,Inf,-Inf]))\n @test isnan(mean([1.,-1.,Inf,-Inf]))\n @test isnan(mean([-Inf,Inf]))\n @test isequal(mean([NaN 0.0; 1.2 4.5], dims=2), reshape([NaN; 2.85], 2, 1))\n\n @test ismissing(mean([1, missing]))\n @test ismissing(mean([NaN, missing]))\n @test ismissing(mean([missing, NaN]))\n @test isequal(mean([missing 1.0; 2.0 3.0], dims=1), [missing 2.0])\n @test mean(skipmissing([1, missing, 2])) === 1.5\n @test isequal(mean(Complex{Float64}[]), NaN+NaN*im)\n @test mean(Complex{Float64}[]) isa Complex{Float64}\n @test isequal(mean(skipmissing(Complex{Float64}[])), NaN+NaN*im)\n @test mean(skipmissing(Complex{Float64}[])) isa Complex{Float64}\n @test isequal(mean(abs, Complex{Float64}[]), NaN)\n @test mean(abs, Complex{Float64}[]) isa Float64\n @test isequal(mean(abs, skipmissing(Complex{Float64}[])), NaN)\n @test mean(abs, skipmissing(Complex{Float64}[])) isa Float64\n @test isequal(mean(Int[]), NaN)\n @test mean(Int[]) isa Float64\n @test isequal(mean(skipmissing(Int[])), NaN)\n @test mean(skipmissing(Int[])) isa Float64\n @test_throws MethodError mean([])\n @test_throws MethodError mean(skipmissing([]))\n @test_throws ArgumentError mean((1 for i in 2:1))\n if VERSION >= v\"1.6.0-DEV.83\"\n @test_throws ArgumentError mean(())\n @test_throws ArgumentError mean(Union{}[])\n end\n\n # Check that small types are accumulated using wider type\n for T in (Int8, UInt8)\n x = [typemax(T) typemax(T)]\n g = (v for v in x)\n @test mean(x) == mean(g) == typemax(T)\n @test mean(identity, x) == mean(identity, g) == typemax(T)\n @test mean(x, dims=2) == [typemax(T)]'\n end\n # Check that mean avoids integer overflow (#22)\n let x = fill(typemax(Int), 10), a = tuple(x...)\n @test (mean(x) == mean(x, dims=1)[] == mean(float, x)\n == mean(a) == mean(v for v in x) == mean(v for v in a)\n β‰ˆ float(typemax(Int)))\n end\n let x = rand(10000) # mean should use sum's accurate pairwise algorithm\n @test mean(x) == sum(x) / length(x)\n end\n @test mean(Number[1, 1.5, 2+3im]) === 1.5+1im # mixed-type array\n @test mean(v for v in Number[1, 1.5, 2+3im]) === 1.5+1im\n @test (@inferred mean(Int[])) === 0/0\n @test (@inferred mean(Float32[])) === 0.f0/0 \n @test (@inferred mean(Float64[])) === 0/0\n @test (@inferred mean(Iterators.filter(x -> true, Int[]))) === 0/0\n @test (@inferred mean(Iterators.filter(x -> true, Float32[]))) === 0.f0/0\n @test (@inferred mean(Iterators.filter(x -> true, Float64[]))) === 0/0\nend", "@testset \"mean/median for ranges\" begin\n for f in (mean, median)\n for n = 2:5\n @test f(2:n) == f([2:n;])\n @test f(2:0.1:n) β‰ˆ f([2:0.1:n;])\n end\n end\n @test mean(2:1) === NaN\n @test mean(big(2):1) isa BigFloat\nend", "@testset \"var & std\" begin\n # edge case: empty vector\n # iterable; this has to throw for type stability\n @test_throws MethodError var(())\n @test_throws MethodError var((); corrected=false)\n @test_throws MethodError var((); mean=2)\n @test_throws MethodError var((); mean=2, corrected=false)\n # reduction\n @test isnan(var(Int[]))\n @test isnan(var(Int[]; corrected=false))\n @test isnan(var(Int[]; mean=2))\n @test isnan(var(Int[]; mean=2, corrected=false))\n # reduction across dimensions\n @test isequal(var(Int[], dims=1), [NaN])\n @test isequal(var(Int[], dims=1; corrected=false), [NaN])\n @test isequal(var(Int[], dims=1; mean=[2]), [NaN])\n @test isequal(var(Int[], dims=1; mean=[2], corrected=false), [NaN])\n\n # edge case: one-element vector\n # iterable\n @test isnan(@inferred(var((1,))))\n @test var((1,); corrected=false) === 0.0\n @test var((1,); mean=2) === Inf\n @test var((1,); mean=2, corrected=false) === 1.0\n # reduction\n @test isnan(@inferred(var([1])))\n @test var([1]; corrected=false) === 0.0\n @test var([1]; mean=2) === Inf\n @test var([1]; mean=2, corrected=false) === 1.0\n # reduction across dimensions\n @test isequal(@inferred(var([1], dims=1)), [NaN])\n @test var([1], dims=1; corrected=false) β‰ˆ [0.0]\n @test var([1], dims=1; mean=[2]) β‰ˆ [Inf]\n @test var([1], dims=1; mean=[2], corrected=false) β‰ˆ [1.0]\n\n @test var(1:8) == 6.\n @test varm(1:8,1) == varm(Vector(1:8),1)\n @test isnan(varm(1:1,1))\n @test isnan(var(1:1))\n @test isnan(var(1:-1))\n\n @test @inferred(var(1.0:8.0)) == 6.\n @test varm(1.0:8.0,1.0) == varm(Vector(1.0:8.0),1)\n @test isnan(varm(1.0:1.0,1.0))\n @test isnan(var(1.0:1.0))\n @test isnan(var(1.0:-1.0))\n\n @test @inferred(var(1.0f0:8.0f0)) === 6.f0\n @test varm(1.0f0:8.0f0,1.0f0) == varm(Vector(1.0f0:8.0f0),1)\n @test isnan(varm(1.0f0:1.0f0,1.0f0))\n @test isnan(var(1.0f0:1.0f0))\n @test isnan(var(1.0f0:-1.0f0))\n\n @test varm([1,2,3], 2) β‰ˆ 1.\n @test var([1,2,3]) β‰ˆ 1.\n @test var([1,2,3]; corrected=false) β‰ˆ 2.0/3\n @test var([1,2,3]; mean=0) β‰ˆ 7.\n @test var([1,2,3]; mean=0, corrected=false) β‰ˆ 14.0/3\n\n @test varm((1,2,3), 2) β‰ˆ 1.\n @test var((1,2,3)) β‰ˆ 1.\n @test var((1,2,3); corrected=false) β‰ˆ 2.0/3\n @test var((1,2,3); mean=0) β‰ˆ 7.\n @test var((1,2,3); mean=0, corrected=false) β‰ˆ 14.0/3\n @test_throws ArgumentError var((1,2,3); mean=())\n\n @test var([1 2 3 4 5; 6 7 8 9 10], dims=2) β‰ˆ [2.5 2.5]'\n @test var([1 2 3 4 5; 6 7 8 9 10], dims=2; corrected=false) β‰ˆ [2.0 2.0]'\n\n @test var(collect(1:99), dims=1) β‰ˆ [825]\n @test var(Matrix(transpose(collect(1:99))), dims=2) β‰ˆ [825]\n\n @test stdm([1,2,3], 2) β‰ˆ 1.\n @test std([1,2,3]) β‰ˆ 1.\n @test std([1,2,3]; corrected=false) β‰ˆ sqrt(2.0/3)\n @test std([1,2,3]; mean=0) β‰ˆ sqrt(7.0)\n @test std([1,2,3]; mean=0, corrected=false) β‰ˆ sqrt(14.0/3)\n\n @test stdm([1.0,2,3], 2) β‰ˆ 1.\n @test std([1.0,2,3]) β‰ˆ 1.\n @test std([1.0,2,3]; corrected=false) β‰ˆ sqrt(2.0/3)\n @test std([1.0,2,3]; mean=0) β‰ˆ sqrt(7.0)\n @test std([1.0,2,3]; mean=0, corrected=false) β‰ˆ sqrt(14.0/3)\n\n @test std([1.0,2,3]; dims=1)[] β‰ˆ 1.\n @test std([1.0,2,3]; dims=1, corrected=false)[] β‰ˆ sqrt(2.0/3)\n @test std([1.0,2,3]; dims=1, mean=[0])[] β‰ˆ sqrt(7.0)\n @test std([1.0,2,3]; dims=1, mean=[0], corrected=false)[] β‰ˆ sqrt(14.0/3)\n\n @test stdm((1,2,3), 2) β‰ˆ 1.\n @test std((1,2,3)) β‰ˆ 1.\n @test std((1,2,3); corrected=false) β‰ˆ sqrt(2.0/3)\n @test std((1,2,3); mean=0) β‰ˆ sqrt(7.0)\n @test std((1,2,3); mean=0, corrected=false) β‰ˆ sqrt(14.0/3)\n\n @test std([1 2 3 4 5; 6 7 8 9 10], dims=2) β‰ˆ sqrt.([2.5 2.5]')\n @test std([1 2 3 4 5; 6 7 8 9 10], dims=2; corrected=false) β‰ˆ sqrt.([2.0 2.0]')\n\n let A = ComplexF64[exp(i*im) for i in 1:10^4]\n @test varm(A, 0.) β‰ˆ sum(map(abs2, A)) / (length(A) - 1)\n @test varm(A, mean(A)) β‰ˆ var(A)\n end\n\n @test var([1//1, 2//1]) isa Rational{Int}\n @test var([1//1, 2//1], dims=1) isa Vector{Rational{Int}}\n\n @test std([1//1, 2//1]) isa Float64\n @test std([1//1, 2//1], dims=1) isa Vector{Float64}\n\n @testset \"var: empty cases\" begin\n A = Matrix{Int}(undef, 0,1)\n @test var(A) === NaN\n\n @test isequal(var(A, dims=1), fill(NaN, 1, 1))\n @test isequal(var(A, dims=2), fill(NaN, 0, 1))\n @test isequal(var(A, dims=(1, 2)), fill(NaN, 1, 1))\n @test isequal(var(A, dims=3), fill(NaN, 0, 1))\n end\n\n # issue #6672\n @test std(AbstractFloat[1,2,3], dims=1) == [1.0]\n\n for f in (var, std)\n @test ismissing(f([1, missing]))\n @test ismissing(f([NaN, missing]))\n @test ismissing(f([missing, NaN]))\n @test isequal(f([missing 1.0; 2.0 3.0], dims=1), [missing f([1.0, 3.0])])\n @test f(skipmissing([1, missing, 2])) === f([1, 2])\n end\n for f in (varm, stdm)\n @test ismissing(f([1, missing], 0))\n @test ismissing(f([1, 2], missing))\n @test ismissing(f([1, NaN], missing))\n @test ismissing(f([NaN, missing], 0))\n @test ismissing(f([missing, NaN], 0))\n @test ismissing(f([NaN, missing], missing))\n @test ismissing(f([missing, NaN], missing))\n @test f(skipmissing([1, missing, 2]), 0) === f([1, 2], 0)\n end\n\n @test isequal(var(Complex{Float64}[]), NaN)\n @test var(Complex{Float64}[]) isa Float64\n @test isequal(var(skipmissing(Complex{Float64}[])), NaN)\n @test var(skipmissing(Complex{Float64}[])) isa Float64\n @test_throws MethodError var([])\n @test_throws MethodError var(skipmissing([]))\n @test_throws MethodError var((1 for i in 2:1))\n @test isequal(var(Int[]), NaN)\n @test var(Int[]) isa Float64\n @test isequal(var(skipmissing(Int[])), NaN)\n @test var(skipmissing(Int[])) isa Float64\n\n # over dimensions with provided means\n for x in ([1 2 3; 4 5 6], sparse([1 2 3; 4 5 6]))\n @test var(x, dims=1, mean=mean(x, dims=1)) == var(x, dims=1)\n @test var(x, dims=1, mean=reshape(mean(x, dims=1), 1, :, 1)) == var(x, dims=1)\n @test var(x, dims=2, mean=mean(x, dims=2)) == var(x, dims=2)\n @test var(x, dims=2, mean=reshape(mean(x, dims=2), :)) == var(x, dims=2)\n @test var(x, dims=2, mean=reshape(mean(x, dims=2), :, 1, 1)) == var(x, dims=2)\n @test_throws DimensionMismatch var(x, dims=1, mean=ones(size(x, 1)))\n @test_throws DimensionMismatch var(x, dims=1, mean=ones(size(x, 1), 1))\n @test_throws DimensionMismatch var(x, dims=2, mean=ones(1, size(x, 2)))\n @test_throws DimensionMismatch var(x, dims=1, mean=ones(1, 1, size(x, 2)))\n @test_throws DimensionMismatch var(x, dims=2, mean=ones(1, size(x, 2), 1))\n @test_throws DimensionMismatch var(x, dims=2, mean=ones(size(x, 1), 1, 5))\n @test_throws DimensionMismatch var(x, dims=1, mean=ones(1, size(x, 2), 5))\n end\nend", "@testset \"covariance\" begin\n for vd in [1, 2], zm in [true, false], cr in [true, false]\n # println(\"vd = $vd: zm = $zm, cr = $cr\")\n if vd == 1\n k = size(X, 2)\n Cxx = zeros(k, k)\n Cxy = zeros(k, k)\n for i = 1:k, j = 1:k\n Cxx[i,j] = safe_cov(X[:,i], X[:,j], zm, cr)\n Cxy[i,j] = safe_cov(X[:,i], Y[:,j], zm, cr)\n end\n x1 = vec(X[:,1])\n y1 = vec(Y[:,1])\n else\n k = size(X, 1)\n Cxx = zeros(k, k)\n Cxy = zeros(k, k)\n for i = 1:k, j = 1:k\n Cxx[i,j] = safe_cov(X[i,:], X[j,:], zm, cr)\n Cxy[i,j] = safe_cov(X[i,:], Y[j,:], zm, cr)\n end\n x1 = vec(X[1,:])\n y1 = vec(Y[1,:])\n end\n\n c = zm ? Statistics.covm(x1, 0, corrected=cr) :\n cov(x1, corrected=cr)\n @test isa(c, Float64)\n @test c β‰ˆ Cxx[1,1]\n @inferred cov(x1, corrected=cr)\n\n @test cov(X) == Statistics.covm(X, mean(X, dims=1))\n C = zm ? Statistics.covm(X, 0, vd, corrected=cr) :\n cov(X, dims=vd, corrected=cr)\n @test size(C) == (k, k)\n @test C β‰ˆ Cxx\n @inferred cov(X, dims=vd, corrected=cr)\n\n @test cov(x1, y1) == Statistics.covm(x1, mean(x1), y1, mean(y1))\n c = zm ? Statistics.covm(x1, 0, y1, 0, corrected=cr) :\n cov(x1, y1, corrected=cr)\n @test isa(c, Float64)\n @test c β‰ˆ Cxy[1,1]\n @inferred cov(x1, y1, corrected=cr)\n\n if vd == 1\n @test cov(x1, Y) == Statistics.covm(x1, mean(x1), Y, mean(Y, dims=1))\n end\n C = zm ? Statistics.covm(x1, 0, Y, 0, vd, corrected=cr) :\n cov(x1, Y, dims=vd, corrected=cr)\n @test size(C) == (1, k)\n @test vec(C) β‰ˆ Cxy[1,:]\n @inferred cov(x1, Y, dims=vd, corrected=cr)\n\n if vd == 1\n @test cov(X, y1) == Statistics.covm(X, mean(X, dims=1), y1, mean(y1))\n end\n C = zm ? Statistics.covm(X, 0, y1, 0, vd, corrected=cr) :\n cov(X, y1, dims=vd, corrected=cr)\n @test size(C) == (k, 1)\n @test vec(C) β‰ˆ Cxy[:,1]\n @inferred cov(X, y1, dims=vd, corrected=cr)\n\n @test cov(X, Y) == Statistics.covm(X, mean(X, dims=1), Y, mean(Y, dims=1))\n C = zm ? Statistics.covm(X, 0, Y, 0, vd, corrected=cr) :\n cov(X, Y, dims=vd, corrected=cr)\n @test size(C) == (k, k)\n @test C β‰ˆ Cxy\n @inferred cov(X, Y, dims=vd, corrected=cr)\n end\n\n @testset \"floating point accuracy for `cov` of large numbers\" begin\n A = [4.0, 7.0, 13.0, 16.0]\n C = A .+ 1.0e10\n @test cov(A, A) β‰ˆ cov(C, C)\n end\nend", "@testset \"correlation\" begin\n for vd in [1, 2], zm in [true, false]\n # println(\"vd = $vd: zm = $zm\")\n if vd == 1\n k = size(X, 2)\n Cxx = zeros(k, k)\n Cxy = zeros(k, k)\n for i = 1:k, j = 1:k\n Cxx[i,j] = safe_cor(X[:,i], X[:,j], zm)\n Cxy[i,j] = safe_cor(X[:,i], Y[:,j], zm)\n end\n x1 = vec(X[:,1])\n y1 = vec(Y[:,1])\n else\n k = size(X, 1)\n Cxx = zeros(k, k)\n Cxy = zeros(k, k)\n for i = 1:k, j = 1:k\n Cxx[i,j] = safe_cor(X[i,:], X[j,:], zm)\n Cxy[i,j] = safe_cor(X[i,:], Y[j,:], zm)\n end\n x1 = vec(X[1,:])\n y1 = vec(Y[1,:])\n end\n\n c = zm ? Statistics.corm(x1, 0) : cor(x1)\n @test isa(c, Float64)\n @test c β‰ˆ Cxx[1,1]\n @inferred cor(x1)\n\n @test cor(X) == Statistics.corm(X, mean(X, dims=1))\n C = zm ? Statistics.corm(X, 0, vd) : cor(X, dims=vd)\n @test size(C) == (k, k)\n @test C β‰ˆ Cxx\n @inferred cor(X, dims=vd)\n\n @test cor(x1, y1) == Statistics.corm(x1, mean(x1), y1, mean(y1))\n c = zm ? Statistics.corm(x1, 0, y1, 0) : cor(x1, y1)\n @test isa(c, Float64)\n @test c β‰ˆ Cxy[1,1]\n @inferred cor(x1, y1)\n\n if vd == 1\n @test cor(x1, Y) == Statistics.corm(x1, mean(x1), Y, mean(Y, dims=1))\n end\n C = zm ? Statistics.corm(x1, 0, Y, 0, vd) : cor(x1, Y, dims=vd)\n @test size(C) == (1, k)\n @test vec(C) β‰ˆ Cxy[1,:]\n @inferred cor(x1, Y, dims=vd)\n\n if vd == 1\n @test cor(X, y1) == Statistics.corm(X, mean(X, dims=1), y1, mean(y1))\n end\n C = zm ? Statistics.corm(X, 0, y1, 0, vd) : cor(X, y1, dims=vd)\n @test size(C) == (k, 1)\n @test vec(C) β‰ˆ Cxy[:,1]\n @inferred cor(X, y1, dims=vd)\n\n @test cor(X, Y) == Statistics.corm(X, mean(X, dims=1), Y, mean(Y, dims=1))\n C = zm ? Statistics.corm(X, 0, Y, 0, vd) : cor(X, Y, dims=vd)\n @test size(C) == (k, k)\n @test C β‰ˆ Cxy\n @inferred cor(X, Y, dims=vd)\n end\n\n @test cor(repeat(1:17, 1, 17))[2] <= 1.0\n @test cor(1:17, 1:17) <= 1.0\n @test cor(1:17, 18:34) <= 1.0\n @test cor(Any[1, 2], Any[1, 2]) == 1.0\n @test isnan(cor([0], Int8[81]))\n let tmp = range(1, stop=85, length=100)\n tmp2 = Vector(tmp)\n @test cor(tmp, tmp) <= 1.0\n @test cor(tmp, tmp2) <= 1.0\n end\nend", "@testset \"quantile\" begin\n @test quantile([1,2,3,4],0.5) β‰ˆ 2.5\n @test quantile([1,2,3,4],[0.5]) β‰ˆ [2.5]\n @test quantile([1., 3],[.25,.5,.75])[2] β‰ˆ median([1., 3])\n @test quantile(100.0:-1.0:0.0, 0.0:0.1:1.0) β‰ˆ 0.0:10.0:100.0\n @test quantile(0.0:100.0, 0.0:0.1:1.0, sorted=true) β‰ˆ 0.0:10.0:100.0\n @test quantile(100f0:-1f0:0.0, 0.0:0.1:1.0) β‰ˆ 0f0:10f0:100f0\n @test quantile([Inf,Inf],0.5) == Inf\n @test quantile([-Inf,1],0.5) == -Inf\n # here it is required to introduce an absolute tolerance because the calculated value is 0\n @test quantile([0,1],1e-18) β‰ˆ 1e-18 atol=1e-18\n @test quantile([1, 2, 3, 4],[]) == []\n @test quantile([1, 2, 3, 4], (0.5,)) == (2.5,)\n @test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],\n (0.1, 0.2, 0.4, 0.9)) == (2.0, 3.0, 5.0, 11.0)\n @test quantile(Union{Int, Missing}[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],\n [0.1, 0.2, 0.4, 0.9]) β‰ˆ [2.0, 3.0, 5.0, 11.0]\n @test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],\n [0.1, 0.2, 0.4, 0.9]) β‰ˆ [2.0, 3.0, 5.0, 11.0]\n @test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],\n Any[0.1, 0.2, 0.4, 0.9]) β‰ˆ [2.0, 3.0, 5.0, 11.0]\n @test quantile([4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],\n Any[0.1, 0.2, 0.4, 0.9]) isa Vector{Float64}\n @test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],\n Any[0.1, 0.2, 0.4, 0.9]) β‰ˆ [2, 3, 5, 11]\n @test quantile(Any[4, 9, 1, 5, 7, 8, 2, 3, 5, 17, 11],\n Any[0.1, 0.2, 0.4, 0.9]) isa Vector{Float64}\n @test quantile([1, 2, 3, 4], ()) == ()\n @test isempty(quantile([1, 2, 3, 4], Float64[]))\n @test quantile([1, 2, 3, 4], Float64[]) isa Vector{Float64}\n @test quantile([1, 2, 3, 4], []) isa Vector{Any}\n @test quantile([1, 2, 3, 4], [0, 1]) isa Vector{Int}\n\n @test quantile(Any[1, 2, 3], 0.5) isa Float64\n @test quantile(Any[1, big(2), 3], 0.5) isa BigFloat\n @test quantile(Any[1, 2, 3], Float16(0.5)) isa Float16\n @test quantile(Any[1, Float16(2), 3], Float16(0.5)) isa Float16\n @test quantile(Any[1, big(2), 3], Float16(0.5)) isa BigFloat\n\n @test_throws ArgumentError quantile([1, missing], 0.5)\n @test_throws ArgumentError quantile([1, NaN], 0.5)\n @test quantile(skipmissing([1, missing, 2]), 0.5) === 1.5\n\n # make sure that type inference works correctly in normal cases\n for T in [Int, BigInt, Float64, Float16, BigFloat, Rational{Int}, Rational{BigInt}]\n for S in [Float64, Float16, BigFloat, Rational{Int}, Rational{BigInt}]\n @inferred quantile(T[1, 2, 3], S(0.5))\n @inferred quantile(T[1, 2, 3], S(0.6))\n @inferred quantile(T[1, 2, 3], S[0.5, 0.6])\n @inferred quantile(T[1, 2, 3], (S(0.5), S(0.6)))\n end\n end\n x = [3; 2; 1]\n y = zeros(3)\n @test quantile!(y, x, [0.1, 0.5, 0.9]) === y\n @test y β‰ˆ [1.2, 2.0, 2.8]\n\n #tests for quantile calculation with configurable alpha and beta parameters\n v = [2, 3, 4, 6, 9, 2, 6, 2, 21, 17]\n\n # tests against scipy.stats.mstats.mquantiles method\n @test quantile(v, 0.0, alpha=0.0, beta=0.0) β‰ˆ 2.0\n @test quantile(v, 0.2, alpha=1.0, beta=1.0) β‰ˆ 2.0\n @test quantile(v, 0.4, alpha=0.0, beta=0.0) β‰ˆ 3.4\n @test quantile(v, 0.4, alpha=0.0, beta=0.2) β‰ˆ 3.32\n @test quantile(v, 0.4, alpha=0.0, beta=0.4) β‰ˆ 3.24\n @test quantile(v, 0.4, alpha=0.0, beta=0.6) β‰ˆ 3.16\n @test quantile(v, 0.4, alpha=0.0, beta=0.8) β‰ˆ 3.08\n @test quantile(v, 0.4, alpha=0.0, beta=1.0) β‰ˆ 3.0\n @test quantile(v, 0.4, alpha=0.2, beta=0.0) β‰ˆ 3.52\n @test quantile(v, 0.4, alpha=0.2, beta=0.2) β‰ˆ 3.44\n @test quantile(v, 0.4, alpha=0.2, beta=0.4) β‰ˆ 3.36\n @test quantile(v, 0.4, alpha=0.2, beta=0.6) β‰ˆ 3.28\n @test quantile(v, 0.4, alpha=0.2, beta=0.8) β‰ˆ 3.2\n @test quantile(v, 0.4, alpha=0.2, beta=1.0) β‰ˆ 3.12\n @test quantile(v, 0.4, alpha=0.4, beta=0.0) β‰ˆ 3.64\n @test quantile(v, 0.4, alpha=0.4, beta=0.2) β‰ˆ 3.56\n @test quantile(v, 0.4, alpha=0.4, beta=0.4) β‰ˆ 3.48\n @test quantile(v, 0.4, alpha=0.4, beta=0.6) β‰ˆ 3.4\n @test quantile(v, 0.4, alpha=0.4, beta=0.8) β‰ˆ 3.32\n @test quantile(v, 0.4, alpha=0.4, beta=1.0) β‰ˆ 3.24\n @test quantile(v, 0.4, alpha=0.6, beta=0.0) β‰ˆ 3.76\n @test quantile(v, 0.4, alpha=0.6, beta=0.2) β‰ˆ 3.68\n @test quantile(v, 0.4, alpha=0.6, beta=0.4) β‰ˆ 3.6\n @test quantile(v, 0.4, alpha=0.6, beta=0.6) β‰ˆ 3.52\n @test quantile(v, 0.4, alpha=0.6, beta=0.8) β‰ˆ 3.44\n @test quantile(v, 0.4, alpha=0.6, beta=1.0) β‰ˆ 3.36\n @test quantile(v, 0.4, alpha=0.8, beta=0.0) β‰ˆ 3.88\n @test quantile(v, 0.4, alpha=0.8, beta=0.2) β‰ˆ 3.8\n @test quantile(v, 0.4, alpha=0.8, beta=0.4) β‰ˆ 3.72\n @test quantile(v, 0.4, alpha=0.8, beta=0.6) β‰ˆ 3.64\n @test quantile(v, 0.4, alpha=0.8, beta=0.8) β‰ˆ 3.56\n @test quantile(v, 0.4, alpha=0.8, beta=1.0) β‰ˆ 3.48\n @test quantile(v, 0.4, alpha=1.0, beta=0.0) β‰ˆ 4.0\n @test quantile(v, 0.4, alpha=1.0, beta=0.2) β‰ˆ 3.92\n @test quantile(v, 0.4, alpha=1.0, beta=0.4) β‰ˆ 3.84\n @test quantile(v, 0.4, alpha=1.0, beta=0.6) β‰ˆ 3.76\n @test quantile(v, 0.4, alpha=1.0, beta=0.8) β‰ˆ 3.68\n @test quantile(v, 0.4, alpha=1.0, beta=1.0) β‰ˆ 3.6\n @test quantile(v, 0.6, alpha=0.0, beta=0.0) β‰ˆ 6.0\n @test quantile(v, 0.6, alpha=1.0, beta=1.0) β‰ˆ 6.0\n @test quantile(v, 0.8, alpha=0.0, beta=0.0) β‰ˆ 15.4\n @test quantile(v, 0.8, alpha=0.0, beta=0.2) β‰ˆ 14.12\n @test quantile(v, 0.8, alpha=0.0, beta=0.4) β‰ˆ 12.84\n @test quantile(v, 0.8, alpha=0.0, beta=0.6) β‰ˆ 11.56\n @test quantile(v, 0.8, alpha=0.0, beta=0.8) β‰ˆ 10.28\n @test quantile(v, 0.8, alpha=0.0, beta=1.0) β‰ˆ 9.0\n @test quantile(v, 0.8, alpha=0.2, beta=0.0) β‰ˆ 15.72\n @test quantile(v, 0.8, alpha=0.2, beta=0.2) β‰ˆ 14.44\n @test quantile(v, 0.8, alpha=0.2, beta=0.4) β‰ˆ 13.16\n @test quantile(v, 0.8, alpha=0.2, beta=0.6) β‰ˆ 11.88\n @test quantile(v, 0.8, alpha=0.2, beta=0.8) β‰ˆ 10.6\n @test quantile(v, 0.8, alpha=0.2, beta=1.0) β‰ˆ 9.32\n @test quantile(v, 0.8, alpha=0.4, beta=0.0) β‰ˆ 16.04\n @test quantile(v, 0.8, alpha=0.4, beta=0.2) β‰ˆ 14.76\n @test quantile(v, 0.8, alpha=0.4, beta=0.4) β‰ˆ 13.48\n @test quantile(v, 0.8, alpha=0.4, beta=0.6) β‰ˆ 12.2\n @test quantile(v, 0.8, alpha=0.4, beta=0.8) β‰ˆ 10.92\n @test quantile(v, 0.8, alpha=0.4, beta=1.0) β‰ˆ 9.64\n @test quantile(v, 0.8, alpha=0.6, beta=0.0) β‰ˆ 16.36\n @test quantile(v, 0.8, alpha=0.6, beta=0.2) β‰ˆ 15.08\n @test quantile(v, 0.8, alpha=0.6, beta=0.4) β‰ˆ 13.8\n @test quantile(v, 0.8, alpha=0.6, beta=0.6) β‰ˆ 12.52\n @test quantile(v, 0.8, alpha=0.6, beta=0.8) β‰ˆ 11.24\n @test quantile(v, 0.8, alpha=0.6, beta=1.0) β‰ˆ 9.96\n @test quantile(v, 0.8, alpha=0.8, beta=0.0) β‰ˆ 16.68\n @test quantile(v, 0.8, alpha=0.8, beta=0.2) β‰ˆ 15.4\n @test quantile(v, 0.8, alpha=0.8, beta=0.4) β‰ˆ 14.12\n @test quantile(v, 0.8, alpha=0.8, beta=0.6) β‰ˆ 12.84\n @test quantile(v, 0.8, alpha=0.8, beta=0.8) β‰ˆ 11.56\n @test quantile(v, 0.8, alpha=0.8, beta=1.0) β‰ˆ 10.28\n @test quantile(v, 0.8, alpha=1.0, beta=0.0) β‰ˆ 17.0\n @test quantile(v, 0.8, alpha=1.0, beta=0.2) β‰ˆ 15.72\n @test quantile(v, 0.8, alpha=1.0, beta=0.4) β‰ˆ 14.44\n @test quantile(v, 0.8, alpha=1.0, beta=0.6) β‰ˆ 13.16\n @test quantile(v, 0.8, alpha=1.0, beta=0.8) β‰ˆ 11.88\n @test quantile(v, 0.8, alpha=1.0, beta=1.0) β‰ˆ 10.6\n @test quantile(v, 1.0, alpha=0.0, beta=0.0) β‰ˆ 21.0\n @test quantile(v, 1.0, alpha=1.0, beta=1.0) β‰ˆ 21.0\nend", "@testset \"variance of complex arrays (#13309)\" begin\n z = rand(ComplexF64, 10)\n @test var(z) β‰ˆ invoke(var, Tuple{Any}, z) β‰ˆ cov(z) β‰ˆ var(z,dims=1)[1] β‰ˆ sum(abs2, z .- mean(z))/9\n @test isa(var(z), Float64)\n @test isa(invoke(var, Tuple{Any}, z), Float64)\n @test isa(cov(z), Float64)\n @test isa(var(z,dims=1), Vector{Float64})\n @test varm(z, 0.0) β‰ˆ invoke(varm, Tuple{Any,Float64}, z, 0.0) β‰ˆ sum(abs2, z)/9\n @test isa(varm(z, 0.0), Float64)\n @test isa(invoke(varm, Tuple{Any,Float64}, z, 0.0), Float64)\n @test cor(z) === 1.0\n v = varm([1.0+2.0im], 0; corrected = false)\n @test v β‰ˆ 5\n @test isa(v, Float64)\nend", "@testset \"cov and cor of complex arrays (issue #21093)\" begin\n x = [2.7 - 3.3im, 0.9 + 5.4im, 0.1 + 0.2im, -1.7 - 5.8im, 1.1 + 1.9im]\n y = [-1.7 - 1.6im, -0.2 + 6.5im, 0.8 - 10.0im, 9.1 - 3.4im, 2.7 - 5.5im]\n @test cov(x, y) β‰ˆ 4.8365 - 12.119im\n @test cov(y, x) β‰ˆ 4.8365 + 12.119im\n @test cov(x, reshape(y, :, 1)) β‰ˆ reshape([4.8365 - 12.119im], 1, 1)\n @test cov(reshape(x, :, 1), y) β‰ˆ reshape([4.8365 - 12.119im], 1, 1)\n @test cov(reshape(x, :, 1), reshape(y, :, 1)) β‰ˆ reshape([4.8365 - 12.119im], 1, 1)\n @test cov([x y]) β‰ˆ [21.779 4.8365-12.119im;\n 4.8365+12.119im 54.548]\n @test cor(x, y) β‰ˆ 0.14032104449218274 - 0.35160772008699703im\n @test cor(y, x) β‰ˆ 0.14032104449218274 + 0.35160772008699703im\n @test cor(x, reshape(y, :, 1)) β‰ˆ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1)\n @test cor(reshape(x, :, 1), y) β‰ˆ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1)\n @test cor(reshape(x, :, 1), reshape(y, :, 1)) β‰ˆ reshape([0.14032104449218274 - 0.35160772008699703im], 1, 1)\n @test cor([x y]) β‰ˆ [1.0 0.14032104449218274-0.35160772008699703im\n 0.14032104449218274+0.35160772008699703im 1.0]\nend", "@testset \"Issue #17153 and PR #17154\" begin\n a = rand(10,10)\n b = copy(a)\n x = median(a, dims=1)\n @test b == a\n x = median(a, dims=2)\n @test b == a\n x = mean(a, dims=1)\n @test b == a\n x = mean(a, dims=2)\n @test b == a\n x = var(a, dims=1)\n @test b == a\n x = var(a, dims=2)\n @test b == a\n x = std(a, dims=1)\n @test b == a\n x = std(a, dims=2)\n @test b == a\nend", "@testset \"Unitful elements\" begin\n r = Furlong(1):Furlong(1):Furlong(2)\n a = Vector(r)\n @test sum(r) == sum(a) == Furlong(3)\n @test cumsum(r) == Furlong.([1,3])\n @test mean(r) == mean(a) == median(a) == median(r) == Furlong(1.5)\n @test var(r) == var(a) == Furlong{2}(0.5)\n @test std(r) == std(a) == Furlong{1}(sqrt(0.5))\n\n # Issue #21786\n A = [Furlong{1}(rand(-5:5)) for i in 1:2, j in 1:2]\n @test mean(mean(A, dims=1), dims=2)[1] === mean(A)\n @test var(A, dims=1)[1] === var(A[:, 1])\n @test std(A, dims=1)[1] === std(A[:, 1])\nend", "@testset \"var and quantile of Any arrays\" begin\n x = Any[1, 2, 4, 10]\n y = Any[1, 2, 4, 10//1]\n @test var(x) === 16.25\n @test var(y) === 16.25\n @test std(x) === sqrt(16.25)\n @test quantile(x, 0.5) === 3.0\n @test quantile(x, 1//2) === 3//1\nend", "@testset \"Promotion in covzm. Issue #8080\" begin\n A = [1 -1 -1; -1 1 1; -1 1 -1; 1 -1 -1; 1 -1 1]\n @test Statistics.covzm(A) - mean(A, dims=1)'*mean(A, dims=1)*size(A, 1)/(size(A, 1) - 1) β‰ˆ cov(A)\n A = [1//1 -1 -1; -1 1 1; -1 1 -1; 1 -1 -1; 1 -1 1]\n @test (A'A - size(A, 1)*mean(A, dims=1)'*mean(A, dims=1))/4 == cov(A)\nend", "@testset \"Mean along dimension of empty array\" begin\n a0 = zeros(0)\n a00 = zeros(0, 0)\n a01 = zeros(0, 1)\n a10 = zeros(1, 0)\n @test isequal(mean(a0, dims=1) , fill(NaN, 1))\n @test isequal(mean(a00, dims=(1, 2)), fill(NaN, 1, 1))\n @test isequal(mean(a01, dims=1) , fill(NaN, 1, 1))\n @test isequal(mean(a10, dims=2) , fill(NaN, 1, 1))\nend", "@testset \"cov/var/std of Vector{Vector}\" begin\n x = [[2,4,6],[4,6,8]]\n @test var(x) β‰ˆ vec(var([x[1] x[2]], dims=2))\n @test std(x) β‰ˆ vec(std([x[1] x[2]], dims=2))\n @test cov(x) β‰ˆ cov([x[1] x[2]], dims=2)\nend", "@testset \"var of sparse array\" begin\n se33 = SparseMatrixCSC{Float64}(I, 3, 3)\n sA = sprandn(3, 7, 0.5)\n pA = sparse(rand(3, 7))\n\n for arr in (se33, sA, pA)\n farr = Array(arr)\n @test var(arr) β‰ˆ var(farr)\n @test var(arr, dims=1) β‰ˆ var(farr, dims=1)\n @test var(arr, dims=2) β‰ˆ var(farr, dims=2)\n @test var(arr, dims=(1, 2)) β‰ˆ [var(farr)]\n @test isequal(var(arr, dims=3), var(farr, dims=3))\n end\n\n @testset \"empty cases\" begin\n @test var(sparse(Int[])) === NaN\n @test isequal(var(spzeros(0, 1), dims=1), var(Matrix{Int}(I, 0, 1), dims=1))\n @test isequal(var(spzeros(0, 1), dims=2), var(Matrix{Int}(I, 0, 1), dims=2))\n @test isequal(var(spzeros(0, 1), dims=(1, 2)), var(Matrix{Int}(I, 0, 1), dims=(1, 2)))\n @test isequal(var(spzeros(0, 1), dims=3), var(Matrix{Int}(I, 0, 1), dims=3))\n end\nend", "@testset \"optimizing sparse $elty covariance\" for elty in (Float64, Complex{Float64})\n n = 10\n p = 5\n np2 = div(n*p, 2)\n nzvals, x_sparse = guardseed(1) do\n if elty <: Real\n nzvals = randn(np2)\n else\n nzvals = complex.(randn(np2), randn(np2))\n end\n nzvals, sparse(rand(1:n, np2), rand(1:p, np2), nzvals, n, p)\n end\n x_dense = convert(Matrix{elty}, x_sparse)\n @testset \"Test with no Infs and NaNs, vardim=$vardim, corrected=$corrected\" for vardim in (1, 2),\n corrected in (true, false)\n @test cov(x_sparse, dims=vardim, corrected=corrected) β‰ˆ\n cov(x_dense , dims=vardim, corrected=corrected)\n end\n\n @testset \"Test with $x11, vardim=$vardim, corrected=$corrected\" for x11 in (NaN, Inf),\n vardim in (1, 2),\n corrected in (true, false)\n x_sparse[1,1] = x11\n x_dense[1 ,1] = x11\n\n cov_sparse = cov(x_sparse, dims=vardim, corrected=corrected)\n cov_dense = cov(x_dense , dims=vardim, corrected=corrected)\n @test cov_sparse[2:end, 2:end] β‰ˆ cov_dense[2:end, 2:end]\n @test isfinite.(cov_sparse) == isfinite.(cov_dense)\n @test isfinite.(cov_sparse) == isfinite.(cov_dense)\n end\n\n @testset \"Test with NaN and Inf, vardim=$vardim, corrected=$corrected\" for vardim in (1, 2),\n corrected in (true, false)\n x_sparse[1,1] = Inf\n x_dense[1 ,1] = Inf\n x_sparse[2,1] = NaN\n x_dense[2 ,1] = NaN\n\n cov_sparse = cov(x_sparse, dims=vardim, corrected=corrected)\n cov_dense = cov(x_dense , dims=vardim, corrected=corrected)\n @test cov_sparse[(1 + vardim):end, (1 + vardim):end] β‰ˆ\n cov_dense[ (1 + vardim):end, (1 + vardim):end]\n @test isfinite.(cov_sparse) == isfinite.(cov_dense)\n @test isfinite.(cov_sparse) == isfinite.(cov_dense)\n end\nend" ]
f720458e4c141a29498437c4c4276797a74a93c1
1,913
jl
Julia
test/runtests.jl
JuliaGeo/GDAL.jl
3838e938642712cf8a98c52df5937dcfdb19221e
[ "MIT" ]
61
2018-07-30T12:45:24.000Z
2022-03-31T20:23:46.000Z
test/runtests.jl
JuliaGeo/GDAL.jl
3838e938642712cf8a98c52df5937dcfdb19221e
[ "MIT" ]
67
2018-06-11T15:59:17.000Z
2022-03-02T21:42:54.000Z
test/runtests.jl
JuliaGeo/GDAL.jl
3838e938642712cf8a98c52df5937dcfdb19221e
[ "MIT" ]
14
2018-12-03T22:05:51.000Z
2021-09-30T10:58:04.000Z
using GDAL using Test @testset "GDAL" begin # drivers # before being able to use any drivers, they must be registered first GDAL.gdalallregister() version = GDAL.gdalversioninfo("--version") n_gdal_driver = GDAL.gdalgetdrivercount() n_ogr_driver = GDAL.ogrgetdrivercount() @info """$version $n_gdal_driver GDAL drivers found $n_ogr_driver OGR drivers found """ @test n_gdal_driver > 0 @test n_ogr_driver > 0 srs = GDAL.osrnewspatialreference(C_NULL) GDAL.osrimportfromepsg(srs, 4326) # fails if GDAL_DATA is not set correctly xmlnode_pointer = GDAL.cplparsexmlstring("<a><b>hi</b></a>") @test GDAL.cplgetxmlvalue(xmlnode_pointer, "b", "") == "hi" # load into Julia struct, mutate, and put back as Ref into GDAL xmlnode = unsafe_load(xmlnode_pointer) @test GDAL.cplserializexmltree(Ref(xmlnode)) == "<a>\n <b>hi</b>\n</a>\n" GDAL.cpldestroyxmlnode(xmlnode_pointer) # ref https://github.com/JuliaGeo/GDAL.jl/pull/41#discussion_r143345433 gfld = GDAL.ogr_gfld_create("name-a", GDAL.wkbPoint) @test gfld isa GDAL.OGRGeomFieldDefnH @test GDAL.ogr_gfld_getnameref(gfld) == "name-a" @test GDAL.ogr_gfld_gettype(gfld) == GDAL.wkbPoint # same as above but for the lower level C API gfld = GDAL.ogr_gfld_create("name-b", GDAL.wkbPolygon) @test gfld isa Ptr{GDAL.OGRGeomFieldDefnHS} @test GDAL.ogr_gfld_getnameref(gfld) == "name-b" @test GDAL.ogr_gfld_gettype(gfld) == GDAL.wkbPolygon cd(dirname(@__FILE__)) do rm("tmp", recursive = true, force = true) mkpath("tmp") # ensure it exists include("tutorial_raster.jl") include("tutorial_vector.jl") include("tutorial_vrt.jl") include("gdal_utils.jl") include("gdal_jll_utils.jl") include("drivers.jl") include("error.jl") end GDAL.gdaldestroydrivermanager() end
33.561404
79
0.679038
[ "@testset \"GDAL\" begin\n\n # drivers\n # before being able to use any drivers, they must be registered first\n GDAL.gdalallregister()\n\n version = GDAL.gdalversioninfo(\"--version\")\n n_gdal_driver = GDAL.gdalgetdrivercount()\n n_ogr_driver = GDAL.ogrgetdrivercount()\n @info \"\"\"$version\n $n_gdal_driver GDAL drivers found\n $n_ogr_driver OGR drivers found\n \"\"\"\n\n @test n_gdal_driver > 0\n @test n_ogr_driver > 0\n\n srs = GDAL.osrnewspatialreference(C_NULL)\n GDAL.osrimportfromepsg(srs, 4326) # fails if GDAL_DATA is not set correctly\n\n xmlnode_pointer = GDAL.cplparsexmlstring(\"<a><b>hi</b></a>\")\n @test GDAL.cplgetxmlvalue(xmlnode_pointer, \"b\", \"\") == \"hi\"\n # load into Julia struct, mutate, and put back as Ref into GDAL\n xmlnode = unsafe_load(xmlnode_pointer)\n @test GDAL.cplserializexmltree(Ref(xmlnode)) == \"<a>\\n <b>hi</b>\\n</a>\\n\"\n GDAL.cpldestroyxmlnode(xmlnode_pointer)\n\n # ref https://github.com/JuliaGeo/GDAL.jl/pull/41#discussion_r143345433\n gfld = GDAL.ogr_gfld_create(\"name-a\", GDAL.wkbPoint)\n @test gfld isa GDAL.OGRGeomFieldDefnH\n @test GDAL.ogr_gfld_getnameref(gfld) == \"name-a\"\n @test GDAL.ogr_gfld_gettype(gfld) == GDAL.wkbPoint\n # same as above but for the lower level C API\n gfld = GDAL.ogr_gfld_create(\"name-b\", GDAL.wkbPolygon)\n @test gfld isa Ptr{GDAL.OGRGeomFieldDefnHS}\n @test GDAL.ogr_gfld_getnameref(gfld) == \"name-b\"\n @test GDAL.ogr_gfld_gettype(gfld) == GDAL.wkbPolygon\n\n cd(dirname(@__FILE__)) do\n rm(\"tmp\", recursive = true, force = true)\n mkpath(\"tmp\") # ensure it exists\n include(\"tutorial_raster.jl\")\n include(\"tutorial_vector.jl\")\n include(\"tutorial_vrt.jl\")\n include(\"gdal_utils.jl\")\n include(\"gdal_jll_utils.jl\")\n include(\"drivers.jl\")\n include(\"error.jl\")\n end\n\n GDAL.gdaldestroydrivermanager()\n\nend" ]
f7215512da0154c3cb3b231e83d4d4e0ca40097a
2,666
jl
Julia
test/test_fileio.jl
chenspc/OWEN.jl
842c8672dbc001180d980430e20652101929f32f
[ "MIT" ]
null
null
null
test/test_fileio.jl
chenspc/OWEN.jl
842c8672dbc001180d980430e20652101929f32f
[ "MIT" ]
2
2019-11-13T23:18:11.000Z
2020-02-08T16:40:57.000Z
test/test_fileio.jl
chenspc/OWEN.jl
842c8672dbc001180d980430e20652101929f32f
[ "MIT" ]
1
2020-02-08T10:46:07.000Z
2020-02-08T10:46:07.000Z
using Kahuna using Test @testset "kahuna_read" begin @testset ".dm3 files" begin @test 2 + 2 == 4 end @testset ".dm4 files" begin @test 2 + 2 == 4 end @testset ".hdf5/.h5 files" begin @test 2 + 2 == 4 end @testset ".mat files" begin # matfile = "test/sample_files/test_fileio_mat.mat"; matfile = "sample_files/test_fileio_mat.mat"; @test typeof(kahuna_read(matfile, "mat0d")) == Float64 @test typeof(kahuna_read(matfile, "mat1d")) == Array{Float64,2} && size(kahuna_read(matfile, "mat1d")) == (1,10) @test typeof(kahuna_read(matfile, "mat2d")) == Array{Float64,2} && size(kahuna_read(matfile, "mat2d")) == (10,10) @test typeof(kahuna_read(matfile, "mat3d")) == Array{Float64,3} && size(kahuna_read(matfile, "mat3d")) == (10,10,10) @test typeof(kahuna_read(matfile, "mat4d")) == Array{Float64,4} && size(kahuna_read(matfile, "mat4d")) == (10,10,10,10) @test kahuna_read(matfile; mode="list") == Set(["mat0d", "mat1d", "mat2d", "mat4d", "mat3d"]) @test kahuna_read(matfile) == Dict(map(x -> x => kahuna_read(matfile, x), collect(kahuna_read(matfile; mode="list")))) end @testset ".mib files" begin mibfile512_12bit = "sample_files/test_512_12bit_single.mib"; # mibfiles = [mibfile256_1bit, mibfile256_6bit, mibfile256_12bit, # mibfile256_1bit_raw, mibfile256_6bit_raw, mibfile256_12bit_raw, # mibfile512_1bit, mibfile512_6bit, mibfile512_12bit, # mibfile512_1bit_raw, mibfile512_6bit_raw, mibfile512_12bit_raw]; mibfiles = [mibfile512_12bit] for mibfile in mibfiles mib_images, mib_headers = kahuna_read(mibfile) @test typeof(mib_images) == Array{Array{UInt16,2},1} @test typeof(mib_headers) == Array{MIBHeader,1} # @test typeof(kahuna_read(mibfile, [1, 10])) == Array{Float64,2} && size(kahuna_read(mibfile, [1, 10])) == (1,10) # @test typeof(kahuna_read(mibfile, [1, 10])) == Array{Float64,2} && size(kahuna_read(mibfile, [1, 10])) == (10,10) # @test typeof(kahuna_read(mibfile, [1, 10])) == Array{Float64,2} && size(kahuna_read(mibfile, [1, 10])) == (10,10) end end @testset ".toml files" begin @test 2 + 2 == 4 end @testset ".jld files" begin @test 2 + 2 == 4 end end @testset "kahuna_write" begin @testset ".hdf5/.h5 files" begin @test 2 + 2 == 4 end @testset ".toml files" begin @test 2 + 2 == 4 end @testset ".jld files" begin @test 2 + 2 == 4 end end
33.746835
127
0.594524
[ "@testset \"kahuna_read\" begin\n\n @testset \".dm3 files\" begin\n @test 2 + 2 == 4\n end\n\n @testset \".dm4 files\" begin\n @test 2 + 2 == 4\n end\n\n @testset \".hdf5/.h5 files\" begin\n @test 2 + 2 == 4\n end\n\n @testset \".mat files\" begin\n # matfile = \"test/sample_files/test_fileio_mat.mat\";\n matfile = \"sample_files/test_fileio_mat.mat\";\n @test typeof(kahuna_read(matfile, \"mat0d\")) == Float64\n @test typeof(kahuna_read(matfile, \"mat1d\")) == Array{Float64,2} && size(kahuna_read(matfile, \"mat1d\")) == (1,10)\n @test typeof(kahuna_read(matfile, \"mat2d\")) == Array{Float64,2} && size(kahuna_read(matfile, \"mat2d\")) == (10,10)\n @test typeof(kahuna_read(matfile, \"mat3d\")) == Array{Float64,3} && size(kahuna_read(matfile, \"mat3d\")) == (10,10,10)\n @test typeof(kahuna_read(matfile, \"mat4d\")) == Array{Float64,4} && size(kahuna_read(matfile, \"mat4d\")) == (10,10,10,10)\n\n @test kahuna_read(matfile; mode=\"list\") == Set([\"mat0d\", \"mat1d\", \"mat2d\", \"mat4d\", \"mat3d\"])\n\n @test kahuna_read(matfile) == Dict(map(x -> x => kahuna_read(matfile, x), collect(kahuna_read(matfile; mode=\"list\"))))\n end\n\n @testset \".mib files\" begin\n\n mibfile512_12bit = \"sample_files/test_512_12bit_single.mib\";\n\n # mibfiles = [mibfile256_1bit, mibfile256_6bit, mibfile256_12bit,\n # mibfile256_1bit_raw, mibfile256_6bit_raw, mibfile256_12bit_raw,\n # mibfile512_1bit, mibfile512_6bit, mibfile512_12bit,\n # mibfile512_1bit_raw, mibfile512_6bit_raw, mibfile512_12bit_raw];\n mibfiles = [mibfile512_12bit]\n\n for mibfile in mibfiles\n mib_images, mib_headers = kahuna_read(mibfile)\n @test typeof(mib_images) == Array{Array{UInt16,2},1}\n @test typeof(mib_headers) == Array{MIBHeader,1}\n # @test typeof(kahuna_read(mibfile, [1, 10])) == Array{Float64,2} && size(kahuna_read(mibfile, [1, 10])) == (1,10)\n # @test typeof(kahuna_read(mibfile, [1, 10])) == Array{Float64,2} && size(kahuna_read(mibfile, [1, 10])) == (10,10)\n # @test typeof(kahuna_read(mibfile, [1, 10])) == Array{Float64,2} && size(kahuna_read(mibfile, [1, 10])) == (10,10)\n end\n\n end\n\n @testset \".toml files\" begin\n @test 2 + 2 == 4\n end\n\n @testset \".jld files\" begin\n @test 2 + 2 == 4\n end\n\n\nend", "@testset \"kahuna_write\" begin\n\n @testset \".hdf5/.h5 files\" begin\n @test 2 + 2 == 4\n end\n\n @testset \".toml files\" begin\n @test 2 + 2 == 4\n end\n\n @testset \".jld files\" begin\n @test 2 + 2 == 4\n end\n\nend" ]
f7262dc1d65caed99f539aa39adc09adecee3524
1,713
jl
Julia
test/simple_runner_tests.jl
grahamstark/ScottishTaxBenefitModel.jl
42ca32a100c862c58bbcd98f6264f08d78453b5c
[ "MIT" ]
null
null
null
test/simple_runner_tests.jl
grahamstark/ScottishTaxBenefitModel.jl
42ca32a100c862c58bbcd98f6264f08d78453b5c
[ "MIT" ]
null
null
null
test/simple_runner_tests.jl
grahamstark/ScottishTaxBenefitModel.jl
42ca32a100c862c58bbcd98f6264f08d78453b5c
[ "MIT" ]
null
null
null
using Test using CSV using DataFrames using StatsBase using BenchmarkTools using ScottishTaxBenefitModel using ScottishTaxBenefitModel.GeneralTaxComponents using ScottishTaxBenefitModel.STBParameters using ScottishTaxBenefitModel.Runner: do_one_run! using ScottishTaxBenefitModel.RunSettings: Settings, MT_Routing using .Utils using .ExampleHelpers settings = Settings() BenchmarkTools.DEFAULT_PARAMETERS.seconds = 120 BenchmarkTools.DEFAULT_PARAMETERS.samples = 2 function basic_run( ; print_test :: Bool, mtrouting :: MT_Routing ) settings.means_tested_routing = mtrouting settings.run_name="run-$(mtrouting)-$(date_string())" sys = [get_system(scotland=false), get_system( scotland=true )] results = do_one_run!( settings, sys ) end @testset "basic run timing" begin for mt in instances( MT_Routing ) println( "starting run using $mt routing") @time basic_run( print_test=true, mtrouting = mt ) end # @benchmark frames = # print(t) end #= if print_test summary_output = summarise_results!( results=results, base_results=base_results ) print( " deciles = $( summary_output.deciles)\n\n" ) print( " poverty_line = $(summary_output.poverty_line)\n\n" ) print( " inequality = $(summary_output.inequality)\n\n" ) print( " poverty = $(summary_output.poverty)\n\n" ) print( " gainlose_by_sex = $(summary_output.gainlose_by_sex)\n\n" ) print( " gainlose_by_thing = $(summary_output.gainlose_by_thing)\n\n" ) print( " metr_histogram= $(summary_output.metr_histogram)\n\n") println( "SUMMARY OUTPUT") println( summary_output ) println( "as JSON") println( JSON.json( summary_output )) end =#
32.320755
85
0.725044
[ "@testset \"basic run timing\" begin\n for mt in instances( MT_Routing )\n println( \"starting run using $mt routing\")\n @time basic_run( print_test=true, mtrouting = mt )\n end\n # @benchmark frames = \n # print(t)\nend" ]
f727f80483dbefe80bf5db5ac82e2786aea040ee
1,036
jl
Julia
test/runtests.jl
mauro3/course-101-0250-00-L6Testing.jl
c7d47e770d5eabbf7f28784f9a9bd279a3042af8
[ "MIT" ]
1
2022-03-01T09:48:55.000Z
2022-03-01T09:48:55.000Z
test/runtests.jl
mauro3/course-101-0250-00-L6Testing.jl
c7d47e770d5eabbf7f28784f9a9bd279a3042af8
[ "MIT" ]
null
null
null
test/runtests.jl
mauro3/course-101-0250-00-L6Testing.jl
c7d47e770d5eabbf7f28784f9a9bd279a3042af8
[ "MIT" ]
1
2021-11-02T10:16:55.000Z
2021-11-02T10:16:55.000Z
using Test, ReferenceTests, BSON include("../scripts/car_travels.jl") ## Unit tests @testset "update_position" begin @test update_position(0.0, 10, 1, 1, 200)[1] β‰ˆ 10.0 @test update_position(0.0, 10, 1, 1, 200)[2] == 1 @test update_position(0.0, 10, -1, 1, 200)[1] β‰ˆ -10.0 @test update_position(0.0, 10, -1, 1, 200)[2] == 1 @test update_position(0.0, 10, -1, 1, 200)[1] β‰ˆ -10.0 @test update_position(0.0, 10, -1, 1, 200)[2] == 1 end ## Reference Tests with ReferenceTests.jl # We put both arrays X and T into a BSON.jl and then compare them "Compare all dict entries" comp(d1, d2) = keys(d1) == keys(d2) && all([ v1β‰ˆv2 for (v1,v2) in zip(values(d1), values(d2))]) # run the model T, X = car_travel_1D() # Test just at some random indices. As for larger models, # storing the full output array would create really large files! inds = [18, 27, 45, 68, 71, 71, 102, 110, 123, 144] d = Dict(:X=> X[inds], :T=>T[inds]) @testset "Ref-tests" begin @test_reference "reftest-files/X.bson" d by=comp end
28.777778
65
0.642857
[ "@testset \"update_position\" begin\n @test update_position(0.0, 10, 1, 1, 200)[1] β‰ˆ 10.0\n @test update_position(0.0, 10, 1, 1, 200)[2] == 1\n\n @test update_position(0.0, 10, -1, 1, 200)[1] β‰ˆ -10.0\n @test update_position(0.0, 10, -1, 1, 200)[2] == 1\n\n @test update_position(0.0, 10, -1, 1, 200)[1] β‰ˆ -10.0\n @test update_position(0.0, 10, -1, 1, 200)[2] == 1\nend", "@testset \"Ref-tests\" begin\n @test_reference \"reftest-files/X.bson\" d by=comp\nend" ]
f72e3f7fe6055a37c495d6361bfec1323eaa14a6
89
jl
Julia
test/runtests.jl
Shoram444/MPThemes.jl
86a6699f70a3b7f77d6ae6a248b285cb46f26852
[ "MIT" ]
null
null
null
test/runtests.jl
Shoram444/MPThemes.jl
86a6699f70a3b7f77d6ae6a248b285cb46f26852
[ "MIT" ]
null
null
null
test/runtests.jl
Shoram444/MPThemes.jl
86a6699f70a3b7f77d6ae6a248b285cb46f26852
[ "MIT" ]
null
null
null
using MPThemes using Test @testset "MPThemes.jl" begin # Write your tests here. end
12.714286
28
0.730337
[ "@testset \"MPThemes.jl\" begin\n # Write your tests here.\nend" ]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
79