lkstore / gs_kubric /standalone_movi_dataset.py
lkeab's picture
update
8eeedfe
import os
from pathlib import Path
import colorsys
import numpy as np
import torch
import torchvision
from einops import rearrange
from torch.utils.data import Dataset
from PIL import Image as PIL_Image
from PIL import ImageDraw
from torchvision import transforms
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import matplotlib
import itertools
torchvision.disable_beta_transforms_warning()
import torchvision.transforms.v2 as transforms
from torchvision.tv_tensors import (BoundingBoxes, BoundingBoxFormat, Image,
Mask)
from flow_viz import flow_to_image
categories = ["Action Figures", "Bag", "Board Games", "Bottles and Cans and Cups", "Camera", "Car Seat", "Consumer Goods", "Hat", "Headphones", "Keyboard", "Legos", "Media Cases", "Mouse", "None", "Shoe", "Stuffed Toys", "Toys"]
def save_tensor_dict(tensor_dict: dict, path: Path):
output_dict = {}
for k, v in tensor_dict.items():
output_dict[k] = v
np.savez_compressed(path, **output_dict)
def get_n_distinct_colors(n):
def HSVToRGB(h, s, v):
(r, g, b) = colorsys.hsv_to_rgb(h, s, v)
return (int(255 * r), int(255 * g), int(255 * b))
huePartition = 1.0 / (n + 1)
return (HSVToRGB(huePartition * value, 1.0, 1.0) for value in range(0, n))
def get_layered_image_from_binary_mask(masks, flip=False):
if torch.is_tensor(masks):
masks = masks.float().cpu().detach().numpy()
if flip:
masks = np.flipud(masks)
masks = masks.astype(np.bool_)
colors = np.asarray(list(get_n_distinct_colors(masks.shape[2])))
img = np.zeros((*masks.shape[:2], 3))
for i in range(masks.shape[2]):
img[masks[..., i]] = colors[i]
return Image.fromarray(img.astype(np.uint8))
def get_max_neighboring_depth(depth, coords):
S, H, W, _ = depth.shape
num_pts = coords.shape[1]
f_idx = np.tile(np.arange(S)[:, np.newaxis], (1, num_pts))
x = coords[:, :, 0]
y = coords[:, :, 1]
x0 = x.astype(int)
x1 = x0 + 1
y0 = y.astype(int)
y1 = y0 + 1
x0 = np.clip(x0, 0, W-1)
x1 = np.clip(x1, 0, W-1)
y0 = np.clip(y0, 0, H-1)
y1 = np.clip(y1, 0, H-1)
sampled_depth = np.max(np.concatenate([depth[f_idx, y0, x0], depth[f_idx, y0, x1], depth[f_idx, y1, x0], depth[f_idx, y1, x1]], axis=-1), axis=-1)
return sampled_depth
class StandaloneMoviDataset(Dataset):
def __init__(self, root: Path, dataset: str, split='train', num_frames = 24, augment=False, num_dataset_frames=24, resolution=(512, 512), normalize_img: bool = True, **kwargs):
super(StandaloneMoviDataset, self).__init__()
self.root = Path(root) # Path to the dataset containing folders of "movi_a", "movi_e", etc.
self.dataset = dataset # str of dataset name (e.g. "movi_a")
self.split = split # str of split name (e.g. "train", "validation")
self.resolution = tuple(resolution)
self.root_dir = self.root / self.dataset / split
self.files = os.listdir(self.root_dir)
self.files.sort()
print(self.files)
self.num_dataset_frames = num_dataset_frames
self.num_frames = num_frames
self.augment = augment
self.normalize_img = normalize_img
if self.augment:
self.transform = transforms.Compose([transforms.RandomResizedCrop(self.resolution, scale=(0.5, 1.0), antialias=True)])
else:
self.transform = transforms.Compose([transforms.Resize(self.resolution, antialias=True)])
def __getitem__(self, index):
video_idx = index
camera_idx = 0
clip_len = 10
start = 6
stride = 1
path = self.files[video_idx]
data = np.load(self.root_dir / path / "data.npz")
rgb = data["rgb"][camera_idx][start::stride][:clip_len]
instance = data["segment"][camera_idx][start::stride][:clip_len]
depth = data["depth"][camera_idx][start::stride][:clip_len]
f_flow = data["forward_flow"][camera_idx][start::stride][:clip_len]
object_coordinates = data["object_coordinates"][camera_idx][start::stride][:clip_len]
quaternions = data["quaternions"][camera_idx][start::stride][:clip_len] # (23, 4)
positions = data["positions"][camera_idx][start::stride][:clip_len] # (23, 3)
valid = data["valid"][camera_idx, :].squeeze(0) # (23, )
categories = data["categories"][camera_idx, :].squeeze(0) # (23, )
bboxes_3d = data['bboxes_3d'][camera_idx][valid][:, start::stride][:, :clip_len]
intrinsics = data['intrinsics'][camera_idx][start::stride][:clip_len]
matrix_world = data['matrix_world'][camera_idx][start::stride][:clip_len]
cam_pos = data['cam_positions'][camera_idx][start::stride][:clip_len]
rgb = rearrange(rgb, '... h w c -> ... c h w')
instance = Mask(instance.squeeze(-1))
rgb, instance = self.transform(Image(rgb), instance)
rgb = rearrange(rgb, '... c h w -> ... h w c')
rgb = rgb.numpy()
instance = torch.nn.functional.one_hot(instance.long(), num_classes=21).numpy()
mask_valid = instance.sum((1,2)) > 0
num_objects = (mask_valid.sum(0) > 0).sum()
ret = {
"vid_name": path,
"image": rgb,
"depth": depth,
"flow": f_flow,
'segmentation': instance,
'object_coordinates': object_coordinates,
"mask_valid": mask_valid,
"num_objs": num_objects,
'categories': categories,
'valid': valid,
'bboxes_3d': bboxes_3d,
'intrinsics': intrinsics,
'matrix_world': matrix_world,
'cam_positions': cam_pos,
}
return ret
def __len__(self):
return len(self.files)
def project_point(cam_matrix_world, cam_intrinsics, point3d, image_size):
"""Compute the image space coordinates [0, 1] for a set of points.
Args:
cam: The camera parameters, as returned by kubric. 'matrix_world' and
'intrinsics' have a leading axis num_frames.
point3d: Points in 3D world coordinates. it has shape [num_frames,
num_points, 3].
num_frames: The number of frames in the video.
Returns:
Image coordinates in 2D. The last coordinate is an indicator of whether
the point is behind the camera.
"""
homo_transform = np.linalg.inv(cam_matrix_world)
homo_intrinsics = np.zeros((cam_intrinsics.shape[0], 3, 1), dtype=np.float32)
homo_intrinsics = np.concatenate([cam_intrinsics, homo_intrinsics], axis=2)
point4d = np.concatenate([point3d, np.ones_like(point3d[:, :, 0:1])], axis=2)
projected = point4d @ np.transpose(homo_transform, (0, 2, 1))
projected = projected @ np.transpose(homo_intrinsics, (0, 2, 1))
image_coords = projected / projected[:, :, 2:3]
# image_coords = np.concatenate(
# [image_coords[:, :, :2],
# np.sign(projected[:, :, 2:])], axis=2)
image_coords = image_coords[:, :, 0:2] * np.array(image_size[::-1])[np.newaxis, np.newaxis, :]
return image_coords
def get_trajs(data):
shp = data['image'].shape
num_frames = shp[0]
vid_pix_pts = []
vid_3d_pts = []
vid_rgb_pts = []
vid_2d_pts = []
occ_pts = []
# x inward, y left, z up (kubrics)
# x right, y up, z out (gaussian)
frame_idx = 0
bboxes_3d = data['bboxes_3d']
obj_coords = data['object_coordinates'][frame_idx]
grid_x, grid_y = np.meshgrid(np.arange(0, shp[2]), np.arange(0, shp[1]), indexing='ij')
pix_coords = np.stack([grid_x, grid_y], axis=-1)
for obj_idx in range(bboxes_3d.shape[0]):
obj_mask = (data['segmentation'][frame_idx][:, :, obj_idx+1])
bbox_3d = bboxes_3d[obj_idx]
coord_box = list(itertools.product([-.5, .5], [-.5, .5], [-.5, .5]))
coord_box = np.array([np.array(x) for x in coord_box])
coord_box = np.concatenate([coord_box, np.ones_like(coord_box[:, 0:1])], axis=1)
coord_box = np.tile(coord_box[np.newaxis, ...], [num_frames, 1, 1])
bbox_homo = np.concatenate([bbox_3d, np.ones_like(bbox_3d[:, :, 0:1])], axis=2)
local_to_world = np.stack([np.linalg.lstsq(coord_box.astype(np.float32)[i], bbox_homo[i], rcond=None)[0] for i in range(num_frames)])
obj_3d_coords = obj_coords[obj_mask.astype(bool)]
obj_3d_coords = obj_3d_coords / np.iinfo(np.uint16).max - .5
obj_homo_coords = np.concatenate([obj_3d_coords, np.ones_like(obj_3d_coords[:, 0:1])], axis=1).astype(np.float32)
obj_3d_world_coords = np.stack([obj_homo_coords @ local_to_world[i] for i in range(num_frames)])
obj_3d_world_coords = obj_3d_world_coords[:, :, 0:3] / obj_3d_world_coords[:, :, 3:]
proj_depth = np.sqrt(
np.sum(
np.square(obj_3d_world_coords - data['cam_positions'][:, np.newaxis, :]),
axis=2,
),)
pt_rgb = np.tile(data['image'][0][obj_mask.astype(bool)], [num_frames, 1, 1])
pix_pts = pix_coords[obj_mask.astype(bool)]
obj_2d_pix_coords = project_point(data['matrix_world'], data['intrinsics'], obj_3d_world_coords, (shp[1], shp[2]))
pix_depth = get_max_neighboring_depth(data['depth'], obj_2d_pix_coords)
occluded = pix_depth < 0.99 * proj_depth
vid_3d_pts.append(obj_3d_world_coords)
vid_rgb_pts.append(pt_rgb)
vid_2d_pts.append(obj_2d_pix_coords)
occ_pts.append(occluded)
vid_pix_pts.append(pix_pts)
vid_3d_pts = np.concatenate(vid_3d_pts, axis=1)
vid_rgb_pts = np.concatenate(vid_rgb_pts, axis=1)
vid_2d_pts = np.concatenate(vid_2d_pts, axis=1)
occ_pts = np.concatenate(occ_pts, axis=1)
vid_pix_pts = np.concatenate(vid_pix_pts, axis=0)
return vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, vid_pix_pts
def vis_data(images, vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, shp, vis_out_path, v_idx=0):
num_frames = shp[0]
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
ax.set_xlim(-7, 7)
ax.set_ylim(-7, 7)
ax.set_zlim(-1, 3)
def update(t):
ax.cla()
ax.scatter(vid_3d_pts[t][:, 0], vid_3d_pts[t][:, 1], vid_3d_pts[t][:, 2], c = vid_rgb_pts[t]/255.0, s = 0.25)
ax.set_xlim(-7, 7)
ax.set_ylim(-7, 7)
ax.set_zlim(-1, 3)
ani = FuncAnimation(fig = fig, func = update, frames = num_frames, interval = 1000)
writervideo = matplotlib.animation.PillowWriter(fps=5)
ani.save(os.path.join(vis_out_path, f'orig_{v_idx:03d}.gif'), writer=writervideo)
num_pts = vid_2d_pts.shape[1]
vis_pt_count = 75
rand_pt_idxes = np.random.randint(0, num_pts, vis_pt_count)
rand_colors = np.random.randint(0, 256, (vis_pt_count, 3))
trajs = []
for t in range(num_frames):
traj_vis = PIL_Image.new('RGBA', (shp[1], shp[2]))
draw = ImageDraw.Draw(traj_vis)
t_idx = t
prev_t_idx = t-1 if t > 0 else 0
for pt, prev_pt, occ, color in zip(vid_2d_pts[t_idx][rand_pt_idxes], vid_2d_pts[prev_t_idx][rand_pt_idxes], occ_pts[t_idx][rand_pt_idxes], rand_colors):
if occ:
segments = 5
delta_x = (pt[0] - prev_pt[0]) / (2*segments-1)
delta_y = (pt[1] - prev_pt[1]) / (2*segments-1)
for i in range(segments):
draw.line((prev_pt[0]+delta_x*2*i, prev_pt[1]+delta_y*2*i, prev_pt[0]+delta_x*(2*i+1), prev_pt[1]+delta_y*(2*i+1)), tuple(color), width=3)
else:
draw.line((pt[0], pt[1], prev_pt[0], prev_pt[1]), tuple(color), width=3)
if len(trajs) > 0:
traj_vis.paste(trajs[-1], mask=trajs[-1])
trajs.append(traj_vis)
traj_image_list = []
for t in range(num_frames):
traj_out = PIL_Image.fromarray(np.uint8(images[t])).convert("RGBA")
traj_out.paste(trajs[t], mask=trajs[t])
traj_image_list.append(traj_out)
traj_image_list[0].save(os.path.join(vis_out_path, f"2d_{v_idx:03d}.gif"), save_all=True, append_images=[traj_image_list[i] for i in range(1, num_frames)], duration=200, loop=0)
PIL_Image.fromarray(images[0]).save(os.path.join(vis_out_path, f"kubric_{v_idx:03d}.gif"), save_all=True, append_images=[PIL_Image.fromarray(images[i]) for i in range(1, num_frames)], duration=200, loop=0)
plt.close('all')
if __name__ == "__main__":
ROOT_PATH = '/projects/katefgroup/datasets/gs_kubric'
dataset = StandaloneMoviDataset(root='/projects/katefgroup/datasets/gs_kubric', dataset='for_splatting2', split='subset_50', augment=False, num_frames=24)
OUT_PATH = os.path.join('/projects/katefgroup/datasets/gs_kubric', 'InpaintingFormat_Set50')
VIS_OUT_PATH = os.path.join('/projects/katefgroup/datasets/gs_kubric', 'vis')
os.makedirs(VIS_OUT_PATH, exist_ok=True)
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Hybrid")
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
midas.to(device)
midas.eval()
midas_transform = midas_transforms.dpt_transform
for i in range(len(dataset)):
entry = dataset[i]
num_frames = entry['image'].shape[0]
vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, vid_pix_pts = get_trajs(entry)
trajs_dict = {
'3d_traj': vid_3d_pts,
'3d_rgb': vid_rgb_pts,
'2d_traj': vid_2d_pts,
'occluded': occ_pts,
'pix_pts': vid_pix_pts,
}
save_tensor_dict(trajs_dict, os.path.join(dataset.root_dir, dataset.files[i], 'traj_data.npz'))
vis_data(entry['image'], vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, entry['image'].shape, VIS_OUT_PATH, i)
os.makedirs(os.path.join(OUT_PATH, "JPEGImages", entry['vid_name']), exist_ok=True)
os.makedirs(os.path.join(OUT_PATH, "DepthImages", entry['vid_name']), exist_ok=True)
os.makedirs(os.path.join(OUT_PATH, "OpticalFlow", entry['vid_name']), exist_ok=True)
os.makedirs(os.path.join(OUT_PATH, "OpticalFlowVis", entry['vid_name']), exist_ok=True)
vid_occluder_masks = []
for t, frame in enumerate(entry['image']):
frame = entry['image'][t]
img_save_path = os.path.join(OUT_PATH, "JPEGImages", entry['vid_name'], f'{t:05d}.png')
PIL_Image.fromarray(frame).save(img_save_path)
depth = entry['depth'][t]
depth_save_path = os.path.join(OUT_PATH, "DepthImages", entry['vid_name'], f'{t:05d}.npy')
np.save(depth_save_path, depth)
flow = entry['flow'][t]
flow_save_path = os.path.join(OUT_PATH, "OpticalFlow", entry['vid_name'], f'{t:05d}.npy')
np.save(flow_save_path, flow)
flow_vis = flow_to_image(flow)
flow_vis_save_path = os.path.join(OUT_PATH, "OpticalFlowVis", entry['vid_name'], f'{t:05d}.png')
PIL_Image.fromarray(flow_vis).save(flow_vis_save_path)
with torch.no_grad():
RESOLUTION = frame.shape[1]
prediction = midas(midas_transform(np.array(frame).astype(np.uint8))[0].to(device).unsqueeze(0))
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=(RESOLUTION, RESOLUTION),
mode="bicubic",
align_corners=False,
).squeeze()
prediction = prediction.reshape(RESOLUTION, RESOLUTION).cpu().numpy()
binary_masks = entry['segmentation'][t].transpose(2, 0, 1)[:entry['num_objs']]
inst_depth = np.sum(prediction[np.newaxis] * binary_masks, (-2, -1)) / (np.sum(binary_masks, (-2, -1)) + 1e-6)
occluder_masks = np.zeros_like(binary_masks)
for i in range(entry['num_objs']):
if i == 0:
occluder_masks[i] = np.sum(binary_masks[1:], axis=0)
else:
for j in range(entry['num_objs']):
if j == 0 or j == i or inst_depth[i] > inst_depth[j]:
continue
else:
if binary_masks[i].sum() == 0 or binary_masks[j].sum() == 0:
continue
rows = np.any(binary_masks[i], axis=1)
cols = np.any(binary_masks[i], axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
bbox_i = np.clip(np.array([rmin-10, rmax+10, cmin-10, cmax+10]), 0, RESOLUTION)
rows = np.any(binary_masks[j], axis=1)
cols = np.any(binary_masks[j], axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
bbox_j = np.clip(np.array([rmin-10, rmax+10, cmin-10, cmax+10]), 0, RESOLUTION)
x_left = max(bbox_i[0], bbox_j[0])
y_top = max(bbox_i[2], bbox_j[2])
x_right = min(bbox_i[1], bbox_j[1])
y_bottom = min(bbox_i[3], bbox_j[3])
if x_right < x_left or y_bottom < y_top:
continue
else:
occluder_masks[i] += binary_masks[j]
occluder_masks = np.clip(occluder_masks, 0, 1)
vid_occluder_masks.append(occluder_masks)
for j in range(entry['num_objs']):
os.makedirs(os.path.join(OUT_PATH, "Annotations", entry['vid_name'], f'{j:03d}'), exist_ok=True)
os.makedirs(os.path.join(OUT_PATH, "OccluderAnnotations", entry['vid_name'], f'{j:03d}'), exist_ok=True)
os.makedirs(os.path.join(OUT_PATH, "ClassLabels", entry['vid_name'], f'{j:03d}'), exist_ok=True)
for t, frame in enumerate(entry['segmentation'][:, :, :, j]):
frame = entry['segmentation'][t, :, :, j]
mask_save_path = os.path.join(OUT_PATH, "Annotations", entry['vid_name'], f'{j:03d}', f'{t:05d}.png')
mask = np.repeat(frame[:, :, np.newaxis], 3, axis=2)*255
PIL_Image.fromarray(mask.astype(np.uint8)).save(mask_save_path)
occ_mask_save_path = os.path.join(OUT_PATH, "OccluderAnnotations", entry['vid_name'], f'{j:03d}', f'{t:05d}.png')
mask = vid_occluder_masks[t][j]
PIL_Image.fromarray(mask.astype(np.uint8)*255).save(occ_mask_save_path)
if j == 0:
with open(os.path.join(os.path.join(OUT_PATH, 'ClassLabels', entry['vid_name'], f'{j:03d}', 'class_label.txt')), 'w') as class_file:
class_file.write("background")
else:
with open(os.path.join(os.path.join(OUT_PATH, 'ClassLabels', entry['vid_name'], f'{j:03d}', 'class_label.txt')), 'w') as class_file:
if categories[entry['categories'][j]] != 'None':
class_file.write(categories[entry['categories'][j]])
else:
class_file.write("object")
print("Done")
from ipdb import set_trace; set_trace()