File size: 19,957 Bytes
8eeedfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
from pathlib import Path

import colorsys
import numpy as np
import torch
import torchvision
from einops import rearrange
from torch.utils.data import Dataset
from PIL import Image as PIL_Image
from PIL import ImageDraw
from torchvision import transforms
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import matplotlib
import itertools

torchvision.disable_beta_transforms_warning()
import torchvision.transforms.v2 as transforms
from torchvision.tv_tensors import (BoundingBoxes, BoundingBoxFormat, Image,
                                    Mask)
from flow_viz import flow_to_image

categories = ["Action Figures", "Bag", "Board Games", "Bottles and Cans and Cups", "Camera", "Car Seat", "Consumer Goods", "Hat", "Headphones", "Keyboard", "Legos", "Media Cases", "Mouse", "None", "Shoe", "Stuffed Toys", "Toys"]

def save_tensor_dict(tensor_dict: dict, path: Path):
    output_dict = {}
    for k, v in tensor_dict.items():
        output_dict[k] = v
    np.savez_compressed(path, **output_dict)

def get_n_distinct_colors(n):
    def HSVToRGB(h, s, v):
        (r, g, b) = colorsys.hsv_to_rgb(h, s, v)
        return (int(255 * r), int(255 * g), int(255 * b))

    huePartition = 1.0 / (n + 1)
    return (HSVToRGB(huePartition * value, 1.0, 1.0) for value in range(0, n))

def get_layered_image_from_binary_mask(masks, flip=False):
    if torch.is_tensor(masks):
        masks = masks.float().cpu().detach().numpy()
    if flip:
        masks = np.flipud(masks)

    masks = masks.astype(np.bool_)

    colors = np.asarray(list(get_n_distinct_colors(masks.shape[2])))
    img = np.zeros((*masks.shape[:2], 3))
    for i in range(masks.shape[2]):
        img[masks[..., i]] = colors[i]

    return Image.fromarray(img.astype(np.uint8))

def get_max_neighboring_depth(depth, coords):

    S, H, W, _ = depth.shape
    num_pts = coords.shape[1]
    f_idx = np.tile(np.arange(S)[:, np.newaxis], (1, num_pts))
    x = coords[:, :, 0]
    y = coords[:, :, 1]

    x0 = x.astype(int)
    x1 = x0 + 1
    y0 = y.astype(int)
    y1 = y0 + 1

    x0 = np.clip(x0, 0, W-1)
    x1 = np.clip(x1, 0, W-1)
    y0 = np.clip(y0, 0, H-1)
    y1 = np.clip(y1, 0, H-1)

    sampled_depth = np.max(np.concatenate([depth[f_idx, y0, x0], depth[f_idx, y0, x1], depth[f_idx, y1, x0], depth[f_idx, y1, x1]], axis=-1), axis=-1)

    return sampled_depth
    
class StandaloneMoviDataset(Dataset):
    def __init__(self, root: Path, dataset: str, split='train', num_frames = 24, augment=False, num_dataset_frames=24, resolution=(512, 512), normalize_img: bool = True, **kwargs):
        super(StandaloneMoviDataset, self).__init__()
        self.root = Path(root) # Path to the dataset containing folders of "movi_a", "movi_e", etc.
        self.dataset = dataset # str of dataset name (e.g. "movi_a")
        self.split = split # str of split name (e.g. "train", "validation")
        self.resolution = tuple(resolution)
        self.root_dir = self.root / self.dataset / split
        self.files = os.listdir(self.root_dir)
        self.files.sort()
        print(self.files)
        self.num_dataset_frames = num_dataset_frames
        self.num_frames = num_frames
        self.augment = augment
        self.normalize_img = normalize_img

        if self.augment:
            self.transform = transforms.Compose([transforms.RandomResizedCrop(self.resolution, scale=(0.5, 1.0), antialias=True)])
        else:
            self.transform = transforms.Compose([transforms.Resize(self.resolution, antialias=True)])


    def __getitem__(self, index):
        video_idx = index
        camera_idx = 0

        clip_len = 10
        start = 6
        stride = 1

        path = self.files[video_idx]

        data = np.load(self.root_dir / path / "data.npz")
        rgb = data["rgb"][camera_idx][start::stride][:clip_len]
        instance = data["segment"][camera_idx][start::stride][:clip_len]
        depth = data["depth"][camera_idx][start::stride][:clip_len]
        f_flow = data["forward_flow"][camera_idx][start::stride][:clip_len]
        object_coordinates = data["object_coordinates"][camera_idx][start::stride][:clip_len]

        quaternions = data["quaternions"][camera_idx][start::stride][:clip_len] # (23, 4)
        positions = data["positions"][camera_idx][start::stride][:clip_len] # (23, 3)
        valid = data["valid"][camera_idx, :].squeeze(0) # (23, )
        categories = data["categories"][camera_idx, :].squeeze(0) # (23, )
        bboxes_3d = data['bboxes_3d'][camera_idx][valid][:, start::stride][:, :clip_len]
        intrinsics = data['intrinsics'][camera_idx][start::stride][:clip_len]
        matrix_world = data['matrix_world'][camera_idx][start::stride][:clip_len]
        cam_pos = data['cam_positions'][camera_idx][start::stride][:clip_len]

        rgb = rearrange(rgb, '... h w c -> ... c h w')
        instance = Mask(instance.squeeze(-1))
        rgb, instance = self.transform(Image(rgb), instance)
        rgb = rearrange(rgb, '... c h w -> ... h w c')
        rgb = rgb.numpy()

        instance = torch.nn.functional.one_hot(instance.long(), num_classes=21).numpy()

        mask_valid = instance.sum((1,2)) > 0
        num_objects = (mask_valid.sum(0) > 0).sum()

        ret = {
            "vid_name": path,
            "image": rgb,
            "depth": depth,
            "flow": f_flow,
            'segmentation': instance,
            'object_coordinates': object_coordinates,
            "mask_valid": mask_valid,
            "num_objs": num_objects,
            'categories': categories,
            'valid': valid,
            'bboxes_3d': bboxes_3d,
            'intrinsics': intrinsics,
            'matrix_world': matrix_world,
            'cam_positions': cam_pos,
        }

        return ret
            
    
    def __len__(self):
        return len(self.files)
    
def project_point(cam_matrix_world, cam_intrinsics, point3d, image_size):
    """Compute the image space coordinates [0, 1] for a set of points.



    Args:

        cam: The camera parameters, as returned by kubric.  'matrix_world' and

            'intrinsics' have a leading axis num_frames.

        point3d: Points in 3D world coordinates.  it has shape [num_frames,

            num_points, 3].

        num_frames: The number of frames in the video.



    Returns:

        Image coordinates in 2D.  The last coordinate is an indicator of whether

            the point is behind the camera.

    """

    homo_transform = np.linalg.inv(cam_matrix_world)
    homo_intrinsics = np.zeros((cam_intrinsics.shape[0], 3, 1), dtype=np.float32)
    homo_intrinsics = np.concatenate([cam_intrinsics, homo_intrinsics], axis=2)

    point4d = np.concatenate([point3d, np.ones_like(point3d[:, :, 0:1])], axis=2)
    projected = point4d @ np.transpose(homo_transform, (0, 2, 1))
    projected = projected @ np.transpose(homo_intrinsics, (0, 2, 1))
    image_coords = projected / projected[:, :, 2:3]
    # image_coords = np.concatenate(
    #         [image_coords[:, :, :2],
    #          np.sign(projected[:, :, 2:])], axis=2)
    image_coords = image_coords[:, :, 0:2] * np.array(image_size[::-1])[np.newaxis, np.newaxis, :]

    return image_coords

def get_trajs(data):

    shp = data['image'].shape
    num_frames = shp[0]

    vid_pix_pts = []
    vid_3d_pts = []
    vid_rgb_pts = []
    vid_2d_pts = []
    occ_pts = []

    # x inward, y left, z up (kubrics)
    # x right, y up, z out (gaussian)
    frame_idx = 0
    bboxes_3d = data['bboxes_3d']
    obj_coords = data['object_coordinates'][frame_idx]
    grid_x, grid_y = np.meshgrid(np.arange(0, shp[2]), np.arange(0, shp[1]), indexing='ij')
    pix_coords = np.stack([grid_x, grid_y], axis=-1)
    for obj_idx in range(bboxes_3d.shape[0]):

        obj_mask = (data['segmentation'][frame_idx][:, :, obj_idx+1])
        bbox_3d = bboxes_3d[obj_idx]
        coord_box = list(itertools.product([-.5, .5], [-.5, .5], [-.5, .5]))
        coord_box = np.array([np.array(x) for x in coord_box])
        coord_box = np.concatenate([coord_box, np.ones_like(coord_box[:, 0:1])], axis=1)
        coord_box = np.tile(coord_box[np.newaxis, ...], [num_frames, 1, 1])
        bbox_homo = np.concatenate([bbox_3d, np.ones_like(bbox_3d[:, :, 0:1])], axis=2)
        local_to_world = np.stack([np.linalg.lstsq(coord_box.astype(np.float32)[i], bbox_homo[i], rcond=None)[0] for i in range(num_frames)])

        obj_3d_coords = obj_coords[obj_mask.astype(bool)]
        obj_3d_coords = obj_3d_coords / np.iinfo(np.uint16).max - .5
        obj_homo_coords = np.concatenate([obj_3d_coords, np.ones_like(obj_3d_coords[:, 0:1])], axis=1).astype(np.float32)
        obj_3d_world_coords = np.stack([obj_homo_coords @ local_to_world[i] for i in range(num_frames)])
        obj_3d_world_coords = obj_3d_world_coords[:, :, 0:3] / obj_3d_world_coords[:, :, 3:]
        
        proj_depth = np.sqrt(
            np.sum(
                np.square(obj_3d_world_coords - data['cam_positions'][:, np.newaxis, :]),
                axis=2,
            ),)

        pt_rgb = np.tile(data['image'][0][obj_mask.astype(bool)], [num_frames, 1, 1])
        pix_pts = pix_coords[obj_mask.astype(bool)]
        obj_2d_pix_coords = project_point(data['matrix_world'], data['intrinsics'], obj_3d_world_coords, (shp[1], shp[2]))

        pix_depth = get_max_neighboring_depth(data['depth'], obj_2d_pix_coords)
        occluded = pix_depth < 0.99 * proj_depth

        vid_3d_pts.append(obj_3d_world_coords)
        vid_rgb_pts.append(pt_rgb)
        vid_2d_pts.append(obj_2d_pix_coords)
        occ_pts.append(occluded)
        vid_pix_pts.append(pix_pts)

    vid_3d_pts = np.concatenate(vid_3d_pts, axis=1)
    vid_rgb_pts = np.concatenate(vid_rgb_pts, axis=1)
    vid_2d_pts = np.concatenate(vid_2d_pts, axis=1)
    occ_pts = np.concatenate(occ_pts, axis=1)
    vid_pix_pts = np.concatenate(vid_pix_pts, axis=0)

    return vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, vid_pix_pts

def vis_data(images, vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, shp, vis_out_path, v_idx=0):

    num_frames = shp[0]

    fig = plt.figure()
    ax = fig.add_subplot(111, projection = '3d')
    ax.set_xlim(-7, 7)
    ax.set_ylim(-7, 7)
    ax.set_zlim(-1, 3)

    def update(t):
        ax.cla()
        ax.scatter(vid_3d_pts[t][:, 0], vid_3d_pts[t][:, 1], vid_3d_pts[t][:, 2], c = vid_rgb_pts[t]/255.0, s = 0.25)
        ax.set_xlim(-7, 7)
        ax.set_ylim(-7, 7)
        ax.set_zlim(-1, 3)

    ani = FuncAnimation(fig = fig, func = update, frames = num_frames, interval = 1000)
    writervideo = matplotlib.animation.PillowWriter(fps=5)
    ani.save(os.path.join(vis_out_path, f'orig_{v_idx:03d}.gif'), writer=writervideo) 

    num_pts = vid_2d_pts.shape[1]
    vis_pt_count = 75
    rand_pt_idxes = np.random.randint(0, num_pts, vis_pt_count)
    rand_colors = np.random.randint(0, 256, (vis_pt_count, 3))
    trajs = []
    for t in range(num_frames):
        traj_vis = PIL_Image.new('RGBA', (shp[1], shp[2]))
        draw = ImageDraw.Draw(traj_vis)
        t_idx = t
        prev_t_idx = t-1 if t > 0 else 0
        for pt, prev_pt, occ, color in zip(vid_2d_pts[t_idx][rand_pt_idxes], vid_2d_pts[prev_t_idx][rand_pt_idxes], occ_pts[t_idx][rand_pt_idxes], rand_colors):
            if occ:
                segments = 5
                delta_x = (pt[0] - prev_pt[0]) / (2*segments-1)
                delta_y = (pt[1] - prev_pt[1]) / (2*segments-1)
                for i in range(segments):
                    draw.line((prev_pt[0]+delta_x*2*i, prev_pt[1]+delta_y*2*i, prev_pt[0]+delta_x*(2*i+1), prev_pt[1]+delta_y*(2*i+1)), tuple(color), width=3)
            else:
                draw.line((pt[0], pt[1], prev_pt[0], prev_pt[1]), tuple(color), width=3)
        if len(trajs) > 0:
            traj_vis.paste(trajs[-1], mask=trajs[-1])
        trajs.append(traj_vis)

    traj_image_list = []
    for t in range(num_frames):
        traj_out = PIL_Image.fromarray(np.uint8(images[t])).convert("RGBA")
        traj_out.paste(trajs[t], mask=trajs[t])
        traj_image_list.append(traj_out)
    traj_image_list[0].save(os.path.join(vis_out_path, f"2d_{v_idx:03d}.gif"), save_all=True, append_images=[traj_image_list[i] for i in range(1, num_frames)], duration=200, loop=0)

    PIL_Image.fromarray(images[0]).save(os.path.join(vis_out_path, f"kubric_{v_idx:03d}.gif"), save_all=True, append_images=[PIL_Image.fromarray(images[i]) for i in range(1, num_frames)], duration=200, loop=0)
    plt.close('all')

if __name__ == "__main__":

    ROOT_PATH = '/projects/katefgroup/datasets/gs_kubric'
    dataset = StandaloneMoviDataset(root='/projects/katefgroup/datasets/gs_kubric', dataset='for_splatting2', split='subset_50', augment=False, num_frames=24)
    OUT_PATH = os.path.join('/projects/katefgroup/datasets/gs_kubric', 'InpaintingFormat_Set50')
    VIS_OUT_PATH = os.path.join('/projects/katefgroup/datasets/gs_kubric', 'vis')
    os.makedirs(VIS_OUT_PATH, exist_ok=True)

    midas = torch.hub.load("intel-isl/MiDaS", "DPT_Hybrid")
    midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    midas.to(device)
    midas.eval()
    midas_transform = midas_transforms.dpt_transform

    for i in range(len(dataset)):
        entry = dataset[i]
        num_frames = entry['image'].shape[0]

        vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, vid_pix_pts = get_trajs(entry)
        trajs_dict = {
            '3d_traj': vid_3d_pts,
            '3d_rgb': vid_rgb_pts,
            '2d_traj': vid_2d_pts,
            'occluded': occ_pts,
            'pix_pts': vid_pix_pts,
        }
        save_tensor_dict(trajs_dict, os.path.join(dataset.root_dir, dataset.files[i], 'traj_data.npz'))

        vis_data(entry['image'], vid_3d_pts, vid_rgb_pts, vid_2d_pts, occ_pts, entry['image'].shape, VIS_OUT_PATH, i)

        os.makedirs(os.path.join(OUT_PATH, "JPEGImages", entry['vid_name']), exist_ok=True)
        os.makedirs(os.path.join(OUT_PATH, "DepthImages", entry['vid_name']), exist_ok=True)
        os.makedirs(os.path.join(OUT_PATH, "OpticalFlow", entry['vid_name']), exist_ok=True)
        os.makedirs(os.path.join(OUT_PATH, "OpticalFlowVis", entry['vid_name']), exist_ok=True)
        
        vid_occluder_masks = []
        for t, frame in enumerate(entry['image']):
            frame = entry['image'][t]
            img_save_path = os.path.join(OUT_PATH, "JPEGImages", entry['vid_name'], f'{t:05d}.png')
            PIL_Image.fromarray(frame).save(img_save_path)

            depth = entry['depth'][t]
            depth_save_path = os.path.join(OUT_PATH, "DepthImages", entry['vid_name'], f'{t:05d}.npy')
            np.save(depth_save_path, depth)

            flow = entry['flow'][t]
            flow_save_path = os.path.join(OUT_PATH, "OpticalFlow", entry['vid_name'], f'{t:05d}.npy')
            np.save(flow_save_path, flow)

            flow_vis = flow_to_image(flow)
            flow_vis_save_path = os.path.join(OUT_PATH, "OpticalFlowVis", entry['vid_name'], f'{t:05d}.png')
            PIL_Image.fromarray(flow_vis).save(flow_vis_save_path)

            with torch.no_grad():
                RESOLUTION = frame.shape[1]
                prediction = midas(midas_transform(np.array(frame).astype(np.uint8))[0].to(device).unsqueeze(0))
                prediction = torch.nn.functional.interpolate(
                    prediction.unsqueeze(1),
                    size=(RESOLUTION, RESOLUTION),
                    mode="bicubic",
                    align_corners=False,
                ).squeeze()
                prediction = prediction.reshape(RESOLUTION, RESOLUTION).cpu().numpy()
            
            binary_masks = entry['segmentation'][t].transpose(2, 0, 1)[:entry['num_objs']]
            inst_depth = np.sum(prediction[np.newaxis] * binary_masks, (-2, -1)) / (np.sum(binary_masks, (-2, -1)) + 1e-6)
            
            occluder_masks = np.zeros_like(binary_masks)
            for i in range(entry['num_objs']):
                if i == 0:
                    occluder_masks[i] = np.sum(binary_masks[1:], axis=0)
                else:
                    for j in range(entry['num_objs']):
                        if j == 0 or j == i or inst_depth[i] > inst_depth[j]:
                            continue
                        else:
                            if binary_masks[i].sum() == 0 or binary_masks[j].sum() == 0:
                                continue
                            rows = np.any(binary_masks[i], axis=1)
                            cols = np.any(binary_masks[i], axis=0)
                            rmin, rmax = np.where(rows)[0][[0, -1]]
                            cmin, cmax = np.where(cols)[0][[0, -1]]
                            bbox_i = np.clip(np.array([rmin-10, rmax+10, cmin-10, cmax+10]), 0, RESOLUTION)

                            rows = np.any(binary_masks[j], axis=1)
                            cols = np.any(binary_masks[j], axis=0)
                            rmin, rmax = np.where(rows)[0][[0, -1]]
                            cmin, cmax = np.where(cols)[0][[0, -1]]
                            bbox_j = np.clip(np.array([rmin-10, rmax+10, cmin-10, cmax+10]), 0, RESOLUTION)

                            x_left = max(bbox_i[0], bbox_j[0])
                            y_top = max(bbox_i[2], bbox_j[2])
                            x_right = min(bbox_i[1], bbox_j[1])
                            y_bottom = min(bbox_i[3], bbox_j[3])

                            if x_right < x_left or y_bottom < y_top:
                                continue
                            else:
                                occluder_masks[i] += binary_masks[j]

            occluder_masks = np.clip(occluder_masks, 0, 1)
            vid_occluder_masks.append(occluder_masks)

        for j in range(entry['num_objs']):
            os.makedirs(os.path.join(OUT_PATH, "Annotations", entry['vid_name'], f'{j:03d}'), exist_ok=True)
            os.makedirs(os.path.join(OUT_PATH, "OccluderAnnotations", entry['vid_name'], f'{j:03d}'), exist_ok=True)
            os.makedirs(os.path.join(OUT_PATH, "ClassLabels", entry['vid_name'], f'{j:03d}'), exist_ok=True)

            for t, frame in enumerate(entry['segmentation'][:, :, :, j]):
                frame = entry['segmentation'][t, :, :, j]
                mask_save_path = os.path.join(OUT_PATH, "Annotations", entry['vid_name'], f'{j:03d}', f'{t:05d}.png')
                mask = np.repeat(frame[:, :, np.newaxis], 3, axis=2)*255
                PIL_Image.fromarray(mask.astype(np.uint8)).save(mask_save_path)

                occ_mask_save_path = os.path.join(OUT_PATH, "OccluderAnnotations", entry['vid_name'], f'{j:03d}', f'{t:05d}.png')
                mask = vid_occluder_masks[t][j]
                PIL_Image.fromarray(mask.astype(np.uint8)*255).save(occ_mask_save_path)

            if j == 0:
                with open(os.path.join(os.path.join(OUT_PATH, 'ClassLabels', entry['vid_name'], f'{j:03d}', 'class_label.txt')), 'w') as class_file:
                    class_file.write("background")
            else:
                with open(os.path.join(os.path.join(OUT_PATH, 'ClassLabels', entry['vid_name'], f'{j:03d}', 'class_label.txt')), 'w') as class_file:
                    if categories[entry['categories'][j]] != 'None':
                        class_file.write(categories[entry['categories'][j]])
                    else:
                        class_file.write("object")
        
    print("Done")
    from ipdb import set_trace; set_trace()