|
--- |
|
license: cc-by-nc-nd-4.0 |
|
--- |
|
|
|
The **Git-10M** dataset is a global-scale remote sensing image-text pair dataset, consisting of over **10 million** image-text pairs with geographical locations and resolution information. |
|
|
|
## CC-BY-NC-ND-4.0 License: This dataset is not allowed to be modified or distributed without authorization! |
|
|
|
<h1> |
|
<a href="https://chen-yang-liu.github.io/Text2Earth/">Project Page: https://chen-yang-liu.github.io/Text2Earth/ </a> |
|
</h1> |
|
|
|
<div align="center"> |
|
<img src="https://github.com/Chen-Yang-Liu/Text2Earth/raw/main/images/dataset.png" width="1000"/> |
|
</div> |
|
|
|
## Load Dataset |
|
```python |
|
from modelscope.msdatasets import MsDataset |
|
ds = MsDataset.load('lcybuaa/Git-10M') |
|
``` |
|
|
|
|
|
## View samples from the dataset |
|
```python |
|
from datasets import load_dataset |
|
save_path = 'xxxxx' |
|
ds = load_dataset.load('lcybuaa/Git-10M', cache_dir=save_path) |
|
train_dataset = ds["train"] |
|
|
|
for i, example in enumerate(train_dataset): |
|
image = example["image"] |
|
# Text Description |
|
text = example["text"].split('_GOOGLE_LEVEL_)[-1] |
|
# Image Resolution |
|
Level = int(example["text"].split('_GOOGLE_LEVEL_)[0]) |
|
if Level != 0: |
|
Resolution = 2**(17-Level) |
|
else: |
|
print('This image comes from a public dataset. There is no available resolution metadata.') |
|
# save image |
|
image.save(f"image_{i}.png") # |
|
print('text:', text) |
|
|
|
``` |
|
|
|
## Git-RSCLIP: Remote Sensing Vision-Language Contrastive Pre-training Foundation Model |
|
Git-RSCLIP is pre-trained using the contrastive learning framework on the Git-10M dataset. |
|
Git-RSCLIP is here:[[Huggingface](https://huggingface.co/lcybuaa/Git-RSCLIP) | [Modelscope](https://modelscope.cn/models/lcybuaa1111/Git-RSCLIP)] |
|
|
|
Compare the Top1-Acc of Zero-shot classification on multiple image classification datasets: |
|
|
|
| Method | OPTIMAL31 | RSC11 | RSICB128 | WHURS19 | RS2800/RSSCN7 | CLRS | Average score | |
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |
|
| CLIP | 0.6 | 0.45 | 0.25 | 0.77 | 0.52 | 0.56 | 0.52 | |
|
| RemoteCLIP | 0.82 | 0.67 | 0.34 | 0.93 | 0.52 | 0.66 | 0.65 | |
|
| GeoRSCLIP | 0.83 | 0.67 | 0.35 | 0.89 | 0.63 | 0.69 | 0.68 | |
|
| SkyCLIP50 | 0.77 | 0.60 | 0.38 | 0.78 | 0.55 | 0.61 | 0.62 | |
|
| (Git-RSCLIP) Ours | **0.95** | **0.67** | **0.52** | **0.94** | **0.64** | **0.65** | **0.73** | |
|
|
|
|
|
|
|
# BibTeX entry and citation info |
|
|
|
```bibtex |
|
@misc{liu2025text2earthunlockingtextdrivenremote, |
|
title={Text2Earth: Unlocking Text-driven Remote Sensing Image Generation with a Global-Scale Dataset and a Foundation Model}, |
|
author={Chenyang Liu and Keyan Chen and Rui Zhao and Zhengxia Zou and Zhenwei Shi}, |
|
year={2025}, |
|
eprint={2501.00895}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2501.00895}, |
|
} |
|
``` |
|
|