|
import datasets |
|
from enum import Enum |
|
from dataclasses import dataclass |
|
from typing import List |
|
import pandas as pd |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@dataset{gyodi_kristof_2021_4446043, |
|
author = {Gyódi, Kristóf and |
|
Nawaro, Łukasz}, |
|
title = {{Determinants of Airbnb prices in European cities: |
|
A spatial econometrics approach (Supplementary |
|
Material)}}, |
|
month = jan, |
|
year = 2021, |
|
note = {{This research was supported by National Science |
|
Centre, Poland: Project number 2017/27/N/HS4/00951}}, |
|
publisher = {Zenodo}, |
|
doi = {10.5281/zenodo.4446043}, |
|
url = {https://doi.org/10.5281/zenodo.4446043} |
|
}""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains accommodation offers from the AirBnb platform from 10 European cities. |
|
It has been copied from https://zenodo.org/record/4446043#.ZEV8d-zMI-R to make it available as a Huggingface Dataset. |
|
It was originally published as supplementary material for the article: Determinants of Airbnb prices in European cities: A spatial econometrics approach |
|
(DOI: https://doi.org/10.1016/j.tourman.2021.104319)""" |
|
|
|
_CITIES = [ |
|
"Amsterdam", |
|
"Athens", |
|
"Barcelona", |
|
"Berlin", |
|
"Budapest", |
|
"Lisbon", |
|
"London", |
|
"Paris", |
|
"Rome", |
|
"Vienna" |
|
] |
|
|
|
_BASE_URL = "https://zenodo.org/record/4446043/files/" |
|
_URL_TEMPLATE = _BASE_URL + "{city}_{day_type}.csv" |
|
|
|
class DayType(str, Enum): |
|
WEEKDAYS = "weekdays" |
|
WEEKENDS = "weekends" |
|
|
|
|
|
@dataclass |
|
class AirbnbFile: |
|
"""A file from the Airbnb dataset.""" |
|
|
|
city: str |
|
day_type: DayType |
|
@property |
|
def url(self) -> str: |
|
return _URL_TEMPLATE.format(city=self.city.lower(), day_type=self.day_type.value) |
|
|
|
|
|
|
|
class AirbnbConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Airbnb.""" |
|
|
|
def __init__(self, files: List[AirbnbFile], **kwargs): |
|
"""BuilderConfig for Airbnb. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AirbnbConfig, self).__init__(**kwargs) |
|
self.files = files |
|
|
|
_WEEKDAY_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKDAYS) for city in _CITIES] |
|
_WEEKEND_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKENDS) for city in _CITIES] |
|
|
|
class Airbnb(datasets.GeneratorBasedBuilder): |
|
"""""" |
|
|
|
BUILDER_CONFIGS = [ |
|
AirbnbConfig( |
|
name=DayType.WEEKDAYS.value, |
|
files=_WEEKDAY_FILES, |
|
), |
|
AirbnbConfig( |
|
name=DayType.WEEKENDS.value, |
|
files=_WEEKEND_FILES, |
|
), |
|
AirbnbConfig( |
|
name="all", |
|
files=_WEEKDAY_FILES + _WEEKEND_FILES, |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"_id": datasets.Value("string"), |
|
"city": datasets.Value("string"), |
|
"realSum": datasets.Value(dtype="float64"), |
|
"room_type": datasets.Value(dtype="string"), |
|
"room_shared": datasets.Value(dtype="bool"), |
|
"room_private": datasets.Value(dtype="bool"), |
|
"person_capacity": datasets.Value(dtype="float64"), |
|
"host_is_superhost": datasets.Value(dtype="bool"), |
|
"multi": datasets.Value(dtype="int64"), |
|
"biz": datasets.Value(dtype="int64"), |
|
"cleanliness_rating": datasets.Value(dtype="float64"), |
|
"guest_satisfaction_overall": datasets.Value(dtype="float64"), |
|
"bedrooms": datasets.Value(dtype="int64"), |
|
"dist": datasets.Value(dtype="float64"), |
|
"metro_dist": datasets.Value(dtype="float64"), |
|
"attr_index": datasets.Value(dtype="float64"), |
|
"attr_index_norm": datasets.Value(dtype="float64"), |
|
"rest_index": datasets.Value(dtype="float64"), |
|
"rest_index_norm": datasets.Value(dtype="float64"), |
|
"lng": datasets.Value(dtype="float64"), |
|
"lat": datasets.Value(dtype="float64") |
|
}) |
|
if self.config.name == "all": |
|
features["day_type"] = datasets.Value(dtype="string") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage="https://zenodo.org/record/4446043#.ZEV8d-zMI-R", |
|
citation=_CITATION, |
|
version=datasets.Version("2.0.0"), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
config_files: List[AirbnbFile] = self.config.files |
|
urls = [file.url for file in config_files] |
|
downloaded_files = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"paths": downloaded_files}) |
|
] |
|
|
|
def _generate_examples(self, paths: List[str]): |
|
_id = 0 |
|
config_files: List[AirbnbFile] = self.config.files |
|
include_day_type = self.config.name == "all" |
|
for file, path in zip(config_files, paths): |
|
logger.info("generating examples from = %s", path) |
|
df = pd.read_csv(path, index_col=0, header=0) |
|
for row in df.itertuples(): |
|
city = file.city |
|
data = { |
|
"_id": _id, |
|
"city": city, |
|
"realSum": row.realSum, |
|
"room_type": row.room_type, |
|
"room_shared": row.room_shared, |
|
"room_private": row.room_private, |
|
"person_capacity": row.person_capacity, |
|
"host_is_superhost": row.host_is_superhost, |
|
"multi": row.multi, |
|
"biz": row.biz, |
|
"cleanliness_rating": row.cleanliness_rating, |
|
"guest_satisfaction_overall": row.guest_satisfaction_overall, |
|
"bedrooms": row.bedrooms, |
|
"dist": row.dist, |
|
"metro_dist": row.metro_dist, |
|
"attr_index": row.attr_index, |
|
"attr_index_norm": row.attr_index_norm, |
|
"rest_index": row.rest_index, |
|
"rest_index_norm": row.rest_index_norm, |
|
"lng": row.lng, |
|
"lat": row.lat |
|
} |
|
if include_day_type: |
|
data["day_type"] = file.day_type.value |
|
yield _id, data |
|
_id += 1 |
|
|