airbnb / airbnb.py
wscode's picture
add description and version
5c9a6f2
raw
history blame
6.64 kB
import datasets
from enum import Enum
from dataclasses import dataclass
from typing import List
import pandas as pd
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@dataset{gyodi_kristof_2021_4446043,
author = {Gyódi, Kristóf and
Nawaro, Łukasz},
title = {{Determinants of Airbnb prices in European cities:
A spatial econometrics approach (Supplementary
Material)}},
month = jan,
year = 2021,
note = {{This research was supported by National Science
Centre, Poland: Project number 2017/27/N/HS4/00951}},
publisher = {Zenodo},
doi = {10.5281/zenodo.4446043},
url = {https://doi.org/10.5281/zenodo.4446043}
}"""
_DESCRIPTION = """\
This dataset contains accommodation offers from the AirBnb platform from 10 European cities.
It has been copied from https://zenodo.org/record/4446043#.ZEV8d-zMI-R to make it available as a Huggingface Dataset.
It was originally published as supplementary material for the article: Determinants of Airbnb prices in European cities: A spatial econometrics approach
(DOI: https://doi.org/10.1016/j.tourman.2021.104319)"""
_CITIES = [
"Amsterdam",
"Athens",
"Barcelona",
"Berlin",
"Budapest",
"Lisbon",
"London",
"Paris",
"Rome",
"Vienna"
]
_BASE_URL = "https://zenodo.org/record/4446043/files/"
_URL_TEMPLATE = _BASE_URL + "{city}_{day_type}.csv"
class DayType(str, Enum):
WEEKDAYS = "weekdays"
WEEKENDS = "weekends"
@dataclass
class AirbnbFile:
"""A file from the Airbnb dataset."""
city: str
day_type: DayType
@property
def url(self) -> str:
return _URL_TEMPLATE.format(city=self.city.lower(), day_type=self.day_type.value)
class AirbnbConfig(datasets.BuilderConfig):
"""BuilderConfig for Airbnb."""
def __init__(self, files: List[AirbnbFile], **kwargs):
"""BuilderConfig for Airbnb.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(AirbnbConfig, self).__init__(**kwargs)
self.files = files
_WEEKDAY_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKDAYS) for city in _CITIES]
_WEEKEND_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKENDS) for city in _CITIES]
class Airbnb(datasets.GeneratorBasedBuilder):
""""""
BUILDER_CONFIGS = [
AirbnbConfig(
name=DayType.WEEKDAYS.value,
files=_WEEKDAY_FILES,
),
AirbnbConfig(
name=DayType.WEEKENDS.value,
files=_WEEKEND_FILES,
),
AirbnbConfig(
name="all",
files=_WEEKDAY_FILES + _WEEKEND_FILES,
),
]
def _info(self):
features = datasets.Features(
{
"_id": datasets.Value("string"),
"city": datasets.Value("string"),
"realSum": datasets.Value(dtype="float64"),
"room_type": datasets.Value(dtype="string"),
"room_shared": datasets.Value(dtype="bool"),
"room_private": datasets.Value(dtype="bool"),
"person_capacity": datasets.Value(dtype="float64"),
"host_is_superhost": datasets.Value(dtype="bool"),
"multi": datasets.Value(dtype="int64"),
"biz": datasets.Value(dtype="int64"),
"cleanliness_rating": datasets.Value(dtype="float64"),
"guest_satisfaction_overall": datasets.Value(dtype="float64"),
"bedrooms": datasets.Value(dtype="int64"),
"dist": datasets.Value(dtype="float64"),
"metro_dist": datasets.Value(dtype="float64"),
"attr_index": datasets.Value(dtype="float64"),
"attr_index_norm": datasets.Value(dtype="float64"),
"rest_index": datasets.Value(dtype="float64"),
"rest_index_norm": datasets.Value(dtype="float64"),
"lng": datasets.Value(dtype="float64"),
"lat": datasets.Value(dtype="float64")
})
if self.config.name == "all":
features["day_type"] = datasets.Value(dtype="string")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage="https://zenodo.org/record/4446043#.ZEV8d-zMI-R",
citation=_CITATION,
version=datasets.Version("2.0.0"),
)
def _split_generators(self, dl_manager):
config_files: List[AirbnbFile] = self.config.files
urls = [file.url for file in config_files]
downloaded_files = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"paths": downloaded_files})
]
def _generate_examples(self, paths: List[str]):
_id = 0
config_files: List[AirbnbFile] = self.config.files
include_day_type = self.config.name == "all"
for file, path in zip(config_files, paths):
logger.info("generating examples from = %s", path)
df = pd.read_csv(path, index_col=0, header=0)
for row in df.itertuples():
city = file.city
data = {
"_id": _id,
"city": city,
"realSum": row.realSum,
"room_type": row.room_type,
"room_shared": row.room_shared,
"room_private": row.room_private,
"person_capacity": row.person_capacity,
"host_is_superhost": row.host_is_superhost,
"multi": row.multi,
"biz": row.biz,
"cleanliness_rating": row.cleanliness_rating,
"guest_satisfaction_overall": row.guest_satisfaction_overall,
"bedrooms": row.bedrooms,
"dist": row.dist,
"metro_dist": row.metro_dist,
"attr_index": row.attr_index,
"attr_index_norm": row.attr_index_norm,
"rest_index": row.rest_index,
"rest_index_norm": row.rest_index_norm,
"lng": row.lng,
"lat": row.lat
}
if include_day_type:
data["day_type"] = file.day_type.value
yield _id, data
_id += 1