File size: 6,639 Bytes
69dd106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c9a6f2
 
 
 
 
69dd106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c9a6f2
 
69dd106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import datasets
from enum import Enum
from dataclasses import dataclass
from typing import List
import pandas as pd

logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@dataset{gyodi_kristof_2021_4446043,
  author       = {Gyódi, Kristóf and
                  Nawaro, Łukasz},
  title        = {{Determinants of Airbnb prices in European cities: 
                   A spatial econometrics approach (Supplementary
                   Material)}},
  month        = jan,
  year         = 2021,
  note         = {{This research was supported by National Science 
                   Centre, Poland: Project number 2017/27/N/HS4/00951}},
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.4446043},
  url          = {https://doi.org/10.5281/zenodo.4446043}
}"""

_DESCRIPTION = """\
This dataset contains accommodation offers from the AirBnb platform from 10 European cities.
It has been copied from https://zenodo.org/record/4446043#.ZEV8d-zMI-R to make it available as a Huggingface Dataset.
It was originally published as supplementary material for the article: Determinants of Airbnb prices in European cities: A spatial econometrics approach
(DOI: https://doi.org/10.1016/j.tourman.2021.104319)"""

_CITIES = [
    "Amsterdam",
    "Athens",
    "Barcelona",
    "Berlin",
    "Budapest",
    "Lisbon",
    "London",
    "Paris",
    "Rome",
    "Vienna"
]

_BASE_URL = "https://zenodo.org/record/4446043/files/"
_URL_TEMPLATE = _BASE_URL + "{city}_{day_type}.csv"

class DayType(str, Enum):
    WEEKDAYS = "weekdays"
    WEEKENDS = "weekends"


@dataclass
class AirbnbFile:
    """A file from the Airbnb dataset."""

    city: str
    day_type: DayType
    @property
    def url(self) -> str:
        return _URL_TEMPLATE.format(city=self.city.lower(), day_type=self.day_type.value)



class AirbnbConfig(datasets.BuilderConfig):
    """BuilderConfig for Airbnb."""

    def __init__(self, files: List[AirbnbFile], **kwargs):
        """BuilderConfig for Airbnb.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(AirbnbConfig, self).__init__(**kwargs)
        self.files = files

_WEEKDAY_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKDAYS) for city in _CITIES]
_WEEKEND_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKENDS) for city in _CITIES]

class Airbnb(datasets.GeneratorBasedBuilder):
    """"""

    BUILDER_CONFIGS = [
        AirbnbConfig(
            name=DayType.WEEKDAYS.value,
            files=_WEEKDAY_FILES,
        ),
        AirbnbConfig(
            name=DayType.WEEKENDS.value,
            files=_WEEKEND_FILES,
        ),
        AirbnbConfig(
            name="all",
            files=_WEEKDAY_FILES + _WEEKEND_FILES,
        ),
    ]

    def _info(self):
        features = datasets.Features(
                {
                    "_id": datasets.Value("string"),
                    "city": datasets.Value("string"),
                    "realSum": datasets.Value(dtype="float64"),
                    "room_type": datasets.Value(dtype="string"),
                    "room_shared": datasets.Value(dtype="bool"),
                    "room_private": datasets.Value(dtype="bool"),
                    "person_capacity": datasets.Value(dtype="float64"),
                    "host_is_superhost": datasets.Value(dtype="bool"),
                    "multi": datasets.Value(dtype="int64"),
                    "biz": datasets.Value(dtype="int64"),
                    "cleanliness_rating": datasets.Value(dtype="float64"),
                    "guest_satisfaction_overall": datasets.Value(dtype="float64"),
                    "bedrooms": datasets.Value(dtype="int64"),
                    "dist": datasets.Value(dtype="float64"),
                    "metro_dist": datasets.Value(dtype="float64"),
                    "attr_index": datasets.Value(dtype="float64"),
                    "attr_index_norm": datasets.Value(dtype="float64"),
                    "rest_index": datasets.Value(dtype="float64"),
                    "rest_index_norm": datasets.Value(dtype="float64"),
                    "lng": datasets.Value(dtype="float64"),
                    "lat": datasets.Value(dtype="float64")
                })
        if self.config.name == "all":
            features["day_type"] = datasets.Value(dtype="string")
        
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage="https://zenodo.org/record/4446043#.ZEV8d-zMI-R",
            citation=_CITATION,
            version=datasets.Version("2.0.0"),
        )

    def _split_generators(self, dl_manager):
        config_files: List[AirbnbFile] = self.config.files
        urls = [file.url for file in config_files]
        downloaded_files = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"paths": downloaded_files})
        ]

    def _generate_examples(self, paths: List[str]):
        _id = 0
        config_files: List[AirbnbFile] = self.config.files
        include_day_type = self.config.name == "all"
        for file, path in zip(config_files, paths):
            logger.info("generating examples from = %s", path)
            df = pd.read_csv(path, index_col=0, header=0)
            for row in df.itertuples():
                city = file.city
                data = {
                    "_id": _id,
                    "city": city,
                    "realSum": row.realSum,
                    "room_type": row.room_type,
                    "room_shared": row.room_shared,
                    "room_private": row.room_private,
                    "person_capacity": row.person_capacity,
                    "host_is_superhost": row.host_is_superhost,
                    "multi": row.multi,
                    "biz": row.biz,
                    "cleanliness_rating": row.cleanliness_rating,
                    "guest_satisfaction_overall": row.guest_satisfaction_overall,
                    "bedrooms": row.bedrooms,
                    "dist": row.dist,
                    "metro_dist": row.metro_dist,
                    "attr_index": row.attr_index,
                    "attr_index_norm": row.attr_index_norm,
                    "rest_index": row.rest_index,
                    "rest_index_norm": row.rest_index_norm,
                    "lng": row.lng,
                    "lat": row.lat
                }
                if include_day_type:
                    data["day_type"] = file.day_type.value
                yield _id, data
                _id += 1