File size: 7,958 Bytes
832824d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7d987
832824d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999c568
832824d
 
fb453ea
832824d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999c568
832824d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9a953
 
 
832824d
ab9a953
 
 
 
c869a6c
ab9a953
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""Dataset script for PhantomWiki v0.5.

Template: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
"""


import csv
import json
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/albertgong1/phantom-wiki"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {}
# Construct splits
SIZES = [
    25,
    50,
    100,
    200,
    300,
    400,
    500,
    1000,
    2500,
    5000,
    10000,
]
SPLITS = []
for depth in [20]:
    for size in SIZES:
        for seed in [1, 2, 3]:
            SPLITS.append(f"depth_{depth}_size_{size}_seed_{seed}")
for filename, config in [("articles.json", "text-corpus"), ("questions.json", "question-answer"), ("facts.pl", "database")]:
    _URLS[config] = {}
    for split in SPLITS:
        _URLS[config][split] = f"https://huggingface.co/datasets/mlcore/phantom-wiki-v050/resolve/main/{split}/{filename}"

class PhantomWiki(datasets.GeneratorBasedBuilder):
    """PhantomWiki v0.5"""

    VERSION = datasets.Version("0.5.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="text-corpus", version=VERSION, description="This config contains the documents in the text corpus"),
        datasets.BuilderConfig(name="question-answer", version=VERSION, description="This config containst the question-answer pairs"),
        datasets.BuilderConfig(name="database", version=VERSION, description="This config contains the complete Prolog database"),
    ]

    # DEFAULT_CONFIG_NAME = "first_domain"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        """This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        """
        if self.config.name == "text-corpus":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "title": datasets.Value("string"),
                    "article": datasets.Value("string"),
                    # "facts": datasets.Value("string"), # TODO
                }
            )
        elif self.config.name == "question-answer":
            # NOTE: to see available data types: https://huggingface.co/docs/datasets/v2.5.2/en/package_reference/main_classes#datasets.Features
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "intermediate_answers": datasets.Value("string"),
                    "answer": datasets.Sequence(datasets.Value("string")),
                    "prolog": datasets.Features(
                        {
                            "query": datasets.Value("string"),
                            "answer": datasets.Value("string"),
                        }
                    ),
                    "template": datasets.Sequence(datasets.Value("string")),
                    "type": datasets.Value("int64"),  # this references the template type
                    "difficulty": datasets.Value("int64"),
                }
            )
        elif self.config.name == "database":
            features = datasets.Features(
                {
                    "content": datasets.Value("string"),
                }
            )
        else:
            raise ValueError(f"Unknown configuration name {self.config.name}")
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        
        NOTE: If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
        """
        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        splits = []
        for name, filepath in data_dir.items():
            splits.append(datasets.SplitGenerator(
                name=name,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepath,
                    "split": name,
                },
            ))
        return splits

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        if self.config.name in ["text-corpus", "question-answer"]:
            with open(filepath, encoding="utf-8") as f:
                for key, data in enumerate(json.load(f)):
                    yield key, data
        elif self.config.name == "database":
            with open(filepath, encoding="utf-8") as f:
                data = f.read()
                # NOTE: Our schema expects a dictionary with a single key "content"
                key = 0
                yield key, {
                    "content": data,
                }
        else:
            raise ValueError(f"Unknown configuration name {self.config.name}")