ag2435 commited on
Commit
832824d
·
1 Parent(s): 8347a86

replaced readme with dataset script

Browse files
Files changed (2) hide show
  1. README.md +0 -297
  2. phantom-wiki-v0.5.py +180 -0
README.md DELETED
@@ -1,297 +0,0 @@
1
- ---
2
- license: bsd-3-clause
3
- dataset_name: phantom-wiki-v0.5
4
- configs:
5
- - config_name: text-corpus
6
- data_files:
7
- - split: depth_20_size_25_seed_1
8
- path: depth_20_size_25_seed_1/articles.json
9
- - split: depth_20_size_50_seed_1
10
- path: depth_20_size_50_seed_1/articles.json
11
- - split: depth_20_size_100_seed_1
12
- path: depth_20_size_100_seed_1/articles.json
13
- - split: depth_20_size_200_seed_1
14
- path: depth_20_size_200_seed_1/articles.json
15
- - split: depth_20_size_300_seed_1
16
- path: depth_20_size_300_seed_1/articles.json
17
- - split: depth_20_size_400_seed_1
18
- path: depth_20_size_400_seed_1/articles.json
19
- - split: depth_20_size_500_seed_1
20
- path: depth_20_size_500_seed_1/articles.json
21
- - split: depth_20_size_1000_seed_1
22
- path: depth_20_size_1000_seed_1/articles.json
23
- - split: depth_20_size_2500_seed_1
24
- path: depth_20_size_2500_seed_1/articles.json
25
- - split: depth_20_size_5000_seed_1
26
- path: depth_20_size_5000_seed_1/articles.json
27
- # - split: depth_20_size_7500_seed_1
28
- # path: depth_20_size_7500_seed_1/articles.json
29
- - split: depth_20_size_10000_seed_1
30
- path: depth_20_size_10000_seed_1/articles.json
31
- - split: depth_20_size_25_seed_2
32
- path: depth_20_size_25_seed_2/articles.json
33
- - split: depth_20_size_50_seed_2
34
- path: depth_20_size_50_seed_2/articles.json
35
- - split: depth_20_size_100_seed_2
36
- path: depth_20_size_100_seed_2/articles.json
37
- - split: depth_20_size_200_seed_2
38
- path: depth_20_size_200_seed_2/articles.json
39
- - split: depth_20_size_300_seed_2
40
- path: depth_20_size_300_seed_2/articles.json
41
- - split: depth_20_size_400_seed_2
42
- path: depth_20_size_400_seed_2/articles.json
43
- - split: depth_20_size_500_seed_2
44
- path: depth_20_size_500_seed_2/articles.json
45
- - split: depth_20_size_1000_seed_2
46
- path: depth_20_size_1000_seed_2/articles.json
47
- - split: depth_20_size_2500_seed_2
48
- path: depth_20_size_2500_seed_2/articles.json
49
- - split: depth_20_size_5000_seed_2
50
- path: depth_20_size_5000_seed_2/articles.json
51
- - split: depth_20_size_7500_seed_2
52
- path: depth_20_size_7500_seed_2/articles.json
53
- - split: depth_20_size_10000_seed_2
54
- path: depth_20_size_10000_seed_2/articles.json
55
- - split: depth_20_size_25_seed_3
56
- path: depth_20_size_25_seed_3/articles.json
57
- - split: depth_20_size_50_seed_3
58
- path: depth_20_size_50_seed_3/articles.json
59
- - split: depth_20_size_100_seed_3
60
- path: depth_20_size_100_seed_3/articles.json
61
- - split: depth_20_size_200_seed_3
62
- path: depth_20_size_200_seed_3/articles.json
63
- - split: depth_20_size_300_seed_3
64
- path: depth_20_size_300_seed_3/articles.json
65
- - split: depth_20_size_400_seed_3
66
- path: depth_20_size_400_seed_3/articles.json
67
- - split: depth_20_size_500_seed_3
68
- path: depth_20_size_500_seed_3/articles.json
69
- - split: depth_20_size_1000_seed_3
70
- path: depth_20_size_1000_seed_3/articles.json
71
- - split: depth_20_size_2500_seed_3
72
- path: depth_20_size_2500_seed_3/articles.json
73
- - split: depth_20_size_5000_seed_3
74
- path: depth_20_size_5000_seed_3/articles.json
75
- - split: depth_20_size_7500_seed_3
76
- path: depth_20_size_7500_seed_3/articles.json
77
- - split: depth_20_size_10000_seed_3
78
- path: depth_20_size_10000_seed_3/articles.json
79
-
80
- - config_name: question-answer
81
- data_files:
82
- - split: depth_20_size_25_seed_1
83
- path: depth_20_size_25_seed_1/questions.json
84
- - split: depth_20_size_50_seed_1
85
- path: depth_20_size_50_seed_1/questions.json
86
- - split: depth_20_size_100_seed_1
87
- path: depth_20_size_100_seed_1/questions.json
88
- - split: depth_20_size_200_seed_1
89
- path: depth_20_size_200_seed_1/questions.json
90
- - split: depth_20_size_300_seed_1
91
- path: depth_20_size_300_seed_1/questions.json
92
- - split: depth_20_size_400_seed_1
93
- path: depth_20_size_400_seed_1/questions.json
94
- - split: depth_20_size_500_seed_1
95
- path: depth_20_size_500_seed_1/questions.json
96
- - split: depth_20_size_1000_seed_1
97
- path: depth_20_size_1000_seed_1/questions.json
98
- - split: depth_20_size_2500_seed_1
99
- path: depth_20_size_2500_seed_1/questions.json
100
- - split: depth_20_size_5000_seed_1
101
- path: depth_20_size_5000_seed_1/questions.json
102
- # - split: depth_20_size_7500_seed_1
103
- # path: depth_20_size_7500_seed_1/questions.json
104
- - split: depth_20_size_10000_seed_1
105
- path: depth_20_size_10000_seed_1/questions.json
106
- - split: depth_20_size_25_seed_2
107
- path: depth_20_size_25_seed_2/questions.json
108
- - split: depth_20_size_50_seed_2
109
- path: depth_20_size_50_seed_2/questions.json
110
- - split: depth_20_size_100_seed_2
111
- path: depth_20_size_100_seed_2/questions.json
112
- - split: depth_20_size_200_seed_2
113
- path: depth_20_size_200_seed_2/questions.json
114
- - split: depth_20_size_300_seed_2
115
- path: depth_20_size_300_seed_2/questions.json
116
- - split: depth_20_size_400_seed_2
117
- path: depth_20_size_400_seed_2/questions.json
118
- - split: depth_20_size_500_seed_2
119
- path: depth_20_size_500_seed_2/questions.json
120
- - split: depth_20_size_1000_seed_2
121
- path: depth_20_size_1000_seed_2/questions.json
122
- - split: depth_20_size_2500_seed_2
123
- path: depth_20_size_2500_seed_2/questions.json
124
- - split: depth_20_size_5000_seed_2
125
- path: depth_20_size_5000_seed_2/questions.json
126
- - split: depth_20_size_7500_seed_2
127
- path: depth_20_size_7500_seed_2/questions.json
128
- - split: depth_20_size_10000_seed_2
129
- path: depth_20_size_10000_seed_2/questions.json
130
- - split: depth_20_size_25_seed_3
131
- path: depth_20_size_25_seed_3/questions.json
132
- - split: depth_20_size_50_seed_3
133
- path: depth_20_size_50_seed_3/questions.json
134
- - split: depth_20_size_100_seed_3
135
- path: depth_20_size_100_seed_3/questions.json
136
- - split: depth_20_size_200_seed_3
137
- path: depth_20_size_200_seed_3/questions.json
138
- - split: depth_20_size_300_seed_3
139
- path: depth_20_size_300_seed_3/questions.json
140
- - split: depth_20_size_400_seed_3
141
- path: depth_20_size_400_seed_3/questions.json
142
- - split: depth_20_size_500_seed_3
143
- path: depth_20_size_500_seed_3/questions.json
144
- - split: depth_20_size_1000_seed_3
145
- path: depth_20_size_1000_seed_3/questions.json
146
- - split: depth_20_size_2500_seed_3
147
- path: depth_20_size_2500_seed_3/questions.json
148
- - split: depth_20_size_5000_seed_3
149
- path: depth_20_size_5000_seed_3/questions.json
150
- - split: depth_20_size_7500_seed_3
151
- path: depth_20_size_7500_seed_3/questions.json
152
- - split: depth_20_size_10000_seed_3
153
- path: depth_20_size_10000_seed_3/questions.json
154
-
155
- ---
156
-
157
- TODO: add 7500 seed 1
158
-
159
- # Dataset Card for Dataset Name
160
-
161
- <!-- Provide a quick summary of the dataset. -->
162
-
163
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
164
-
165
- ## Dataset Details
166
-
167
- Format based on this dataset: https://huggingface.co/rag-datasets
168
-
169
- ### Dataset Description
170
-
171
- <!-- Provide a longer summary of what this dataset is. -->
172
-
173
-
174
-
175
- - **Curated by:** [More Information Needed]
176
- - **Funded by [optional]:** [More Information Needed]
177
- - **Shared by [optional]:** [More Information Needed]
178
- - **Language(s) (NLP):** [More Information Needed]
179
- - **License:** [More Information Needed]
180
-
181
- ### Dataset Sources [optional]
182
-
183
- <!-- Provide the basic links for the dataset. -->
184
-
185
- - **Repository:** [More Information Needed]
186
- - **Paper [optional]:** [More Information Needed]
187
- - **Demo [optional]:** [More Information Needed]
188
-
189
- ## Uses
190
-
191
- <!-- Address questions around how the dataset is intended to be used. -->
192
-
193
- ### Direct Use
194
-
195
- <!-- This section describes suitable use cases for the dataset. -->
196
-
197
- [More Information Needed]
198
-
199
- ### Out-of-Scope Use
200
-
201
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
202
-
203
- [More Information Needed]
204
-
205
- ## Dataset Structure
206
-
207
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
208
-
209
- [More Information Needed]
210
-
211
- ## Dataset Creation
212
-
213
- ### Curation Rationale
214
-
215
- <!-- Motivation for the creation of this dataset. -->
216
-
217
- [More Information Needed]
218
-
219
- ### Source Data
220
-
221
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
222
-
223
- #### Data Collection and Processing
224
-
225
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
226
-
227
- [More Information Needed]
228
-
229
- #### Who are the source data producers?
230
-
231
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
232
-
233
- [More Information Needed]
234
-
235
- ### Annotations [optional]
236
-
237
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
238
-
239
- #### Annotation process
240
-
241
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
242
-
243
- [More Information Needed]
244
-
245
- #### Who are the annotators?
246
-
247
- <!-- This section describes the people or systems who created the annotations. -->
248
-
249
- [More Information Needed]
250
-
251
- #### Personal and Sensitive Information
252
-
253
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
254
-
255
- [More Information Needed]
256
-
257
- ## Bias, Risks, and Limitations
258
-
259
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
260
-
261
- [More Information Needed]
262
-
263
- ### Recommendations
264
-
265
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
266
-
267
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
268
-
269
- ## Citation [optional]
270
-
271
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
272
-
273
- **BibTeX:**
274
-
275
- [More Information Needed]
276
-
277
- **APA:**
278
-
279
- [More Information Needed]
280
-
281
- ## Glossary [optional]
282
-
283
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
284
-
285
- [More Information Needed]
286
-
287
- ## More Information [optional]
288
-
289
- [More Information Needed]
290
-
291
- ## Dataset Card Authors [optional]
292
-
293
- [More Information Needed]
294
-
295
- ## Dataset Card Contact
296
-
297
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
phantom-wiki-v0.5.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Dataset script for PhantomWiki v0.5.
2
+
3
+ Template: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
4
+ """
5
+
6
+
7
+ import csv
8
+ import json
9
+ import os
10
+
11
+ import datasets
12
+
13
+
14
+ # TODO: Add BibTeX citation
15
+ # Find for instance the citation on arxiv or on the dataset repo/website
16
+ _CITATION = """\
17
+ @InProceedings{huggingface:dataset,
18
+ title = {A great new dataset},
19
+ author={huggingface, Inc.
20
+ },
21
+ year={2020}
22
+ }
23
+ """
24
+
25
+ # TODO: Add description of the dataset here
26
+ # You can copy an official description
27
+ _DESCRIPTION = """\
28
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
29
+ """
30
+
31
+ # TODO: Add a link to an official homepage for the dataset here
32
+ _HOMEPAGE = "https://github.com/albertgong1/phantom-wiki"
33
+
34
+ # TODO: Add the licence for the dataset here if you can find it
35
+ _LICENSE = ""
36
+
37
+ # TODO: Add link to the official dataset URLs here
38
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
39
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
40
+ _URLS = {}
41
+ # Construct splits
42
+ SIZES = [
43
+ 25,
44
+ 100,
45
+ 200,
46
+ 300,
47
+ 400,
48
+ 500,
49
+ 1000,
50
+ 2500,
51
+ 5000,
52
+ 10000,
53
+ ]
54
+ SPLITS = []
55
+ for depth in [20]:
56
+ for size in SIZES:
57
+ for seed in [1, 2, 3]:
58
+ SPLITS.append(f"depth_{depth}_size_{size}_seed_{seed}")
59
+ for filename, config in [("articles.json", "corpus"), ("questions.json", "question-answer"), ("facts.pl", "database")]:
60
+ _URLS[config] = {}
61
+ for split in SPLITS:
62
+ _URLS[config][split] = f"https://huggingface.co/datasets/ag2435/phantom-wiki/resolve/main/{split}/{filename}"
63
+
64
+ class PhantomWiki(datasets.GeneratorBasedBuilder):
65
+ """PhantomWiki v0.5"""
66
+
67
+ VERSION = datasets.Version("0.5.0")
68
+
69
+ # This is an example of a dataset with multiple configurations.
70
+ # If you don't want/need to define several sub-sets in your dataset,
71
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
72
+
73
+ # If you need to make complex sub-parts in the datasets with configurable options
74
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
75
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
76
+
77
+ # You will be able to load one or the other configurations in the following list with
78
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
79
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
80
+ BUILDER_CONFIGS = [
81
+ datasets.BuilderConfig(name="text-corpus", version=VERSION, description="This config contains the documents in the text corpus"),
82
+ datasets.BuilderConfig(name="question-answer", version=VERSION, description="This config containst the question-answer pairs"),
83
+ datasets.BuilderConfig(name="database", version=VERSION, description="This config contains the complete Prolog database"),
84
+ ]
85
+
86
+ # DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
87
+
88
+ def _info(self):
89
+ """This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
90
+ """
91
+ if self.config.name == "corpus": # This is the name of the configuration selected in BUILDER_CONFIGS above
92
+ features = datasets.Features(
93
+ {
94
+ "title": datasets.Value("string"),
95
+ "article": datasets.Value("string"),
96
+ # "facts": datasets.Value("string"), # TODO
97
+ }
98
+ )
99
+ elif self.config.name == "question-answer":
100
+ # NOTE: to see available data types: https://huggingface.co/docs/datasets/v2.5.2/en/package_reference/main_classes#datasets.Features
101
+ features = datasets.Features(
102
+ {
103
+ "id": datasets.Value("string"),
104
+ "question": datasets.Value("string"),
105
+ "intermediate_answers": datasets.Value("string"),
106
+ "answer": datasets.Sequence(datasets.Value("string")),
107
+ "prolog": datasets.Features(
108
+ {
109
+ "query": datasets.Value("string"),
110
+ "answer": datasets.Value("string"),
111
+ }
112
+ ),
113
+ "template": datasets.Sequence(datasets.Value("string")),
114
+ "type": datasets.Value("int64"), # this references the template type
115
+ "difficulty": datasets.Value("int64"),
116
+ }
117
+ )
118
+ elif self.config.name == "database":
119
+ features = datasets.Features(
120
+ {
121
+ "content": datasets.Value("string"),
122
+ }
123
+ )
124
+ else:
125
+ raise ValueError(f"Unknown configuration name {self.config.name}")
126
+ return datasets.DatasetInfo(
127
+ # This is the description that will appear on the datasets page.
128
+ description=_DESCRIPTION,
129
+ # This defines the different columns of the dataset and their types
130
+ features=features, # Here we define them above because they are different between the two configurations
131
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
132
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
133
+ # supervised_keys=("sentence", "label"),
134
+ # Homepage of the dataset for documentation
135
+ homepage=_HOMEPAGE,
136
+ # License for the dataset if available
137
+ license=_LICENSE,
138
+ # Citation for the dataset
139
+ citation=_CITATION,
140
+ )
141
+
142
+ def _split_generators(self, dl_manager):
143
+ """This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
144
+
145
+ NOTE: If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
146
+ """
147
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
148
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
149
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
150
+ urls = _URLS[self.config.name]
151
+ data_dir = dl_manager.download_and_extract(urls)
152
+ splits = []
153
+ for name, filepath in data_dir.items():
154
+ splits.append(datasets.SplitGenerator(
155
+ name=name,
156
+ # These kwargs will be passed to _generate_examples
157
+ gen_kwargs={
158
+ "filepath": filepath,
159
+ "split": name,
160
+ },
161
+ ))
162
+ return splits
163
+
164
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
165
+ def _generate_examples(self, filepath, split):
166
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
167
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
168
+ with open(filepath, encoding="utf-8") as f:
169
+ for key, data in enumerate(json.load(f)):
170
+ if self.config.name == "corpus":
171
+ yield key, data
172
+ elif self.config.name == "question-answer":
173
+ yield key, data
174
+ elif self.config.name == "database":
175
+ # NOTE: Our schema expects a dictionary with a single key "content"
176
+ yield key, {
177
+ "content": data,
178
+ }
179
+ else:
180
+ raise ValueError(f"Unknown configuration name {self.config.name}")