Dataset Viewer
Auto-converted to Parquet
date
stringlengths
12
12
text
stringlengths
98
60.4k
topic
stringlengths
15
36k
url
stringlengths
37
226
root_topic
stringclasses
63 values
heading
stringlengths
1
148
related_topics
stringlengths
7
36.6k
author
stringclasses
1 value
vector
stringlengths
44.7k
45.8k
16 Dec, 2024
AI ML DS - How To Get Started? 16 Dec, 2024 Artificial Intelligence (AI), Machine Learning (ML), and Data Science (DS) are three interrelated fields in computer science and statistics. AI focuses on creating intelligent systems, ML enables computers to learn from data and make predictions, and DS leverages data to extract insights and drive decision-making. These three fields often overlap and complement each other in solving real-world problems and advancing technology.Data ScienceData Science combines statistical and computational tools to process and analyze large amounts of data. DS practitioners use their insights from data to inform decisions, predict trends, and improve the effectiveness of processes.Prerequisites for Data ScienceMaths for Data Science Statistics for Data Science Linear Algebra for Data ScienceCalculus for Data Science Important LibrariesPandas Tutorial NumPy Tutorial Data Analysis Data Cleaning Handling Missing Data Outlier Detection Exploratory Data Analysis (EDA)Statistical Analysis Time Series Analysis Data Visualization Data Visualization using Matplotlib Data Visualization using Seaborn Data Visualization using Plotly Data Visualization using BokehPower BI Tutorial Tableau TutorialMachine Learning Machine Learning is a subset of AI focused on building systems that learn from data, identify patterns, and make decisions with minimal human intervention. ML algorithms improve their performance as the amount of data they're exposed to increases.Supervised Machine Learning In supervised machine learning, the model is trained on the label data to predict outcomes for new or unseen data. Linear Regression Logistic Regression Support Vector Machine (SVM)Decision Trees Random Forest Naive Bayes K-Nearest Neighbour (KNN) XGBoost Semi-Supervised Learning uses a small amount of labeled data and a large amount of unlabeled data to improve learning accuracy.Unsupervised Machine Learning In unsupervised machine learning, the model learns patters and structures from unlabeled data without defined output labels. K-Means Clustering Hierarchical Clustering DBSCANPrincipal Component Analysis (PCA) Independent Component Analysis (ICA)Gaussian Mixture Models (GMM)t-SNE (t-Distributed Stochastic Neighbor Embedding)Reinforcement Learning In reinforcement learning, agent learns to make decisions by interacting with an environment and receiving rewards or penalties based on its actions. Q Learning SARSA (State-Action-Reward-State-Action)REINFORCE AlgorithmActor-Critic MethodProximal Policy Optimization (PPO)To learn more about machine learning, you can follow this tutorial: Machine Learning Tutorial Deep Learning Deep learning is a specialized area within ML. Deep learning uses neural networks with many layers (deep neural networks) to automatically learn features and representations from large datasets. Perceptron Multi-Layer Perceptron Artificial Neural Network Convolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory Networks (LSTMs)Generative Adversarial Networks (GANs)To learn more about deep learning, you can follow this tutorial: Deep Learning Tutorial Artificial Intelligence (AI) Artificial Intelligence refers to the capability of a machine to imitate intelligent human behavior. It encompasses a broad range of technologies that enable machines to perceive, comprehend, act, and learn. Search Algorithms Optimization AlgorithmsAdversarial Search AlgorithmsConstraint Satisfaction ProblemsKnowledge Representation Reasoning Planning Uncertain Knowledge Robotics To learn more, you can follow these tutorials: Artificial Intelligence Tutorial Computer Vision Tutorial Natural Language Processing Tutorial Generative AI Tutorial
Data Science & ML/AI ML DS - How To Get Started?
https://www.geeksforgeeks.org/ai-ml-ds/?ref=outindfooter
Data Science & ML
AI ML DS - How To Get Started?
Data Science & ML, AI ML DS - How To Get Started?
GeeksforGeeks
[0.0216117352, -0.00712580839, -0.0099926712, 0.0149821155, 0.0442985445, -0.0183589496, 0.0137623204, 0.000607743917, 0.0213498585, 0.0115639325, 0.0256777201, -0.0496187806, 0.0396398939, -0.0259395968, -0.0346780159, 0.0085936971, 0.0150923794, 0.00681569101, 0.0074566, -0.0549390167, 0.00183141546, -0.00158246013, -0.0470000133, 0.0170357823, -0.0102752224, 0.0175871011, 0.00985484105, 0.00270318985, -0.0485161431, 0.0109574813, 0.0253193621, -0.0167739056, 0.0432786047, -0.0520721562, -0.00819399, -0.0031063424, -0.00742214266, 0.00280656223, -0.0128664253, 0.0308463424, 0.0298539661, 0.00686393166, 0.00774604315, -0.0128250765, -0.0181108546, -0.00866950396, -0.0433888696, -0.0169668663, -0.00452771364, -0.0141137866, -0.0222181883, -0.0355876945, 0.0399155542, 0.0210604165, -0.0013929439, -0.0058336528, 0.0425067581, -0.0301020611, 0.0054994151, -0.00177972927, 0.021763349, -0.00820777379, -0.0131903263, -0.00562346214, 0.0116466312, -0.0386750847, -0.00184002984, 0.00838006102, -0.000690872606, -0.0158780105, -0.0100478036, 0.0192272775, 0.015864227, 0.0110126128, 0.00309945107, -0.0068053538, 0.00666752364, 0.0528440028, -0.0111917919, 0.0107162781, 0.00192445063, -0.00984795, 0.0234862231, 0.0127768368, 0.0521824174, 0.0441331491, -0.0163052827, -0.0673161447, 0.0146513237, -0.0305431169, -0.0313976631, 0.0159607083, 0.0319489837, 0.00502045592, -0.0280759614, -0.0128595345, 0.0259120297, -0.00955161545, -0.0161674526, 0.00860058889, 0.0200956073, 0.0042692828, 0.0604797825, -0.00871774461, -0.00877287611, -0.0422862284, -0.00893827248, 0.020288568, -0.0219976604, 0.0310117379, -0.00071843859, -0.0031149569, -0.0151750771, 0.0221630558, -0.0462557301, 0.0135486843, -0.0193237588, -0.0765231848, 0.0309014749, -0.034567751, -0.00922771543, 0.0298539661, -0.000371925504, 0.0207020584, -0.0504457615, 0.057116732, -0.00872463547, -0.00755308103, 0.0297161378, 0.0172700919, 0.0179592427, 0.0347607136, -0.023954846, 0.0472205393, 0.0032803528, -0.0012301323, 0.0182762519, 0.0330791883, 0.0105991233, -0.00679846248, -0.0392264053, -0.038592387, -0.0316733234, -0.0132799158, 0.000332945463, 0.0217082165, -0.0107231699, 0.0684739202, -0.0315906256, 0.0204539653, -0.0524029471, 0.00957229, 0.0261187758, 0.0119085079, 0.00756686414, 0.0147202387, 0.0062264679, -0.0125976577, 0.00210879813, -0.0115983905, 0.0380410664, -0.036690332, 0.0138794761, 0.0275246408, 0.0190343168, -0.00925528072, 0.00355256698, -0.00828358, -0.0664340332, 0.0418176055, -0.0322522074, -0.0172700919, 0.00385234714, 0.0391988382, 0.00898651313, -0.0231967811, 0.0100891525, 0.0124736102, -0.0242580716, 0.0154231712, -0.0505560264, -0.0325003, 0.0526510403, 0.024961004, 0.0107093873, -0.0135624669, 0.0500598364, 0.00719472347, 0.003111511, -0.0199026447, -0.00716026593, -0.0388404801, 0.0362217091, 0.0194753725, -0.0126114404, -0.0239961948, -0.022300886, 0.0167463385, -0.00681569101, 0.0185656939, -0.0139346076, -0.0652211308, -0.00701899035, 0.0711202547, 0.0430856422, -0.0147340214, -0.0248783063, -0.0289718546, 0.00766334496, -0.0241064578, -0.0234448742, 0.0273041129, -0.00487573445, -0.0361941457, 0.0363871083, -0.00344919437, -0.00131627603, 0.00977903511, -0.00488262577, -0.0224387161, -0.0230038185, 0.00191411341, 0.0242029391, -0.0251953155, -0.0257328507, -0.0452082232, -0.0120118801, -0.0176697988, -0.028916724, -0.0243407693, 0.0316181891, 0.0387302153, 0.0082973633, -0.0125769833, 0.00472412165, -0.00650901953, 0.0388956107, 0.00114140427, -0.0689149722, 0.0171184801, -0.00022612726, -0.0243269857, -0.00244475878, -0.0400533825, -0.00212258124, 0.0135142263, 0.0369384252, 0.0242305044, 0.0187173076, 0.0504733287, 0.020826105, 0.000590515207, -0.00160485751, -0.00658827135, -0.0396123268, -0.00431752298, 0.0243132021, 0.0112882731, -0.0302950237, -0.0274281595, 0.00210707542, 0.0123702381, 0.0242718533, 0.0182900336, -0.00225524255, -0.00811818428, 0.0477167293, 0.00419003051, 0.0240375437, -0.0188689195, 0.00727053, -0.0123771299, 0.0036524937, 0.00144635304, 6.70844238e-05, -0.0445742048, 0.00835938659, 0.00808372628, 0.0436645262, 0.0299090985, 0.0127079217, -0.0366076343, 0.0576129183, 0.0156023502, 0.000512985862, -0.00825601351, -0.0102958968, -0.0125976577, -0.0678123385, -0.0154507374, 0.00824223086, -0.0198612958, -0.00346642314, 0.0145824086, 0.0241891555, 0.0117775695, -0.0158090945, -0.00552698085, 0.0133832879, -0.00559245, -0.00155144837, -0.0249058716, 0.0106680384, 0.0148994178, -0.00829047151, 0.0190205332, 0.0398604199, 0.0326381326, -0.0121290358, 0.00299780141, -0.00722228922, 0.0249472205, -0.0297161378, -0.0119153988, -0.00371796289, 0.0535055846, 0.0494809523, 0.00662617479, -0.0244923811, -0.0335202441, 0.0153404735, -0.0024981678, -0.0702932775, 0.0362768434, 0.0314803608, 0.0111435512, -0.0101718502, 0.00749794906, -0.00984795, -0.0348985419, -0.0281173103, -0.0376551412, -0.044601772, 0.011150443, 0.0278003011, -0.0359460525, 0.00940689445, 0.0375448763, -0.00790454727, -0.0177249312, -0.000468191109, -0.0320592448, -0.0495085195, -0.0353395976, -0.00539604248, -0.0103717037, -0.00255329977, 0.0229073372, 0.00849721674, -0.0063022743, 0.00131369173, -0.0132454578, 0.0133557217, -0.0235827044, -0.00389025034, -0.0110539617, -0.00928284694, -0.0304052867, -0.00673643872, 0.0328586586, 0.0232105628, -0.0191583633, -0.011942965, -0.0162639339, -0.00695352117, -0.00798724592, 0.00256191427, 0.00136710086, 0.00603695167, 0.0174492709, 0.00928284694, 0.0154783037, 0.0145548424, -0.00286514, -0.0391437039, -0.0315906256, 0.00685014855, -0.0341266952, -0.0186621752, 0.00636085216, 0.00825601351, 0.0170633476, 0.00865572, 0.0501976684, -0.0112262489, -0.00645733299, 0.0114192115, -0.0121014696, -0.0134315286, 0.0463108644, -0.0191032309, -0.00966187939, 0.018345166, -0.0422310978, 0.0364146717, -0.00847654231, 0.0076978025, 0.000814488856, 0.016401764, -0.0112193581, -0.0124184787, 0.0365800671, 0.00512727397, -0.0134728774, -0.0317284539, -0.0103854863, -0.0278554335, -0.0256225877, -0.000611189695, 0.0378756709, -0.016939301, -0.0219838768, -0.0211431142, 0.0160985384, -0.00594736217, 0.00422793347, 0.00679157069, 0.0348985419, -0.0312047, -0.00775982626, -0.00129646296, 0.0214325562, 0.0321695097, -0.00531679, -0.00476202462, 0.0327483974, -0.0257742014, 0.00205711205, 0.00353533821, -0.0381513312, -0.0194064565, 0.0148442853, 0.0206193607, 0.011832701, -0.0151199456, -0.0173252244, 0.0204539653, 0.0234448742, -0.0128181856, -0.0166222919, -0.00525132101, 0.00895894691, -0.00971012, -0.000727914448, -0.0547460541, -0.0175319687, -0.0211982466, -0.00175302464, -0.0371038206, -0.0267665759, -0.0530369654, 0.00798724592, -0.0524856448, 0.00740146823, 0.018703524, -0.0335753746, 0.0115225837, 0.00931730494, 0.0476340316, -0.0117844604, 0.0243132021, 0.0315630585, 0.0312874, 1.57212289e-05, 0.0271525, 0.0138794761, -0.0450152606, -0.0320592448, -0.0121152522, 0.0258293319, -0.00113365136, -0.0339337327, 0.0541396029, 0.0520721562, 0.0074566, 0.0140862204, 0.0239686277, -0.00986173283, -0.0435266979, -0.0318387188, 0.0434991308, 0.0309290402, 0.0291096848, -0.00324072666, -0.00685359444, 0.0191859286, 0.0392539687, 0.0145272771, 0.00285824854, -0.00982727576, -0.0251539666, 0.0191859286, -0.00953783281, -0.0285032336, -0.0150510306, -0.0232932623, -0.0278967824, -0.00387991313, 0.00998577941, 0.0374346152, -0.0375173129, 0.0160158407, -0.0478821248, 0.0225076303, -0.0311220028, 0.0202196538, -0.00373174576, -0.00707067642, 0.0305706821, 0.0318938494, -0.00371796289, 0.00954472367, -0.00598871149, 0.0426445864, -0.0102752224, 0.0487091057, 0.00560967904, 0.0292475149, -0.0232932623, -0.0121910591, 0.011653522, 0.0108196512, 0.0154507374, 0.00257052854, -0.0214876886, -0.0111090941, 0.0164431129, -0.00232932623, 0.00185208989, -0.00798724592, -0.0245750807, 0.0148856342, 0.00135073345, -0.00215531583, -0.00135331787, -0.0128664253, 0.0158780105, 0.0305982493, 0.0180832893, 0.00343368854, -0.0545255281, 0.0260498598, -0.0055752215, -0.00329758157, 0.0138450181, -0.0254434086, 0.0136658391, -0.0128802089, 0.00603350624, 0.00456561707, 0.0207296237, 0.00244648149, 0.0200129095, -0.00750484085, -0.00716026593, -0.00562690757, 0.0115294755, -0.0126114404, -0.0187448729, -0.022838423, -0.0043450892, -0.00484127691, -0.0013360891, 0.0276349057, -0.00854545645, -0.0189516172, -0.00245509599, 0.0321970768, -0.0110126128, 0.00831803773, -0.0182624683, -0.00669164397, -0.010502642, -0.0229762532, 0.0141551355, 0.0347331464, 0.011329622, -0.0409079306, 0.0178903267, -0.0165947266, 0.0399155542, -0.00412111543, 0.0387302153, 0.00171253714, 0.036331974, -0.0203712657, 0.00922771543, 0.00356979575, 0.00060257531, -0.00118619902, 0.00253434828, 0.0191170145, -0.0181797706, -0.00775982626, -0.0197648145, 0.0457319766, 0.0168290362, -0.0105233165, 0.0111090941, -0.0211431142, 0.0318662859, 0.00039906078, 0.0331067555, 0.0427548513, -0.00757375592, -0.00266011804, -0.0143343145, 0.021763349, 0.0174492709, 0.0029168264, -0.0085936971, 0.00107593508, 0.0310944375, -0.0133143729, 0.013596925, -0.00653313939, 0.0104544014, 0.0418176055, -0.0483783111, 0.00373174576, -0.0216944348, 0.0113778627, 0.00272903289, -0.00177628349, -0.00165395939, 0.0487918034, 0.0312322658, -0.0170909129, 0.0116328476, -0.00764267053, 0.000672782422, -0.0141068958, -0.0147064552, -0.0151750771, 0.033988867, -0.0196683332, -0.0173114408, 0.0198612958, -0.00940000266, -0.0368557274, -0.0188000053, 0.0057406174, 0.0127561614, 0.116328478, -0.000594822399, 0.0474686362, -0.0164706782, -0.00267906953, 0.0323073417, 0.00953783281, 0.000854114944, -0.018055724, 0.0125080682, 0.0294404775, 0.000250247511, -0.0270560198, 0.0046035205, -0.0163328499, 0.0256777201, 0.028668629, -0.00260154018, -0.00798035413, 0.0211568978, 0.0187310893, 0.0190205332, -0.00540982559, 0.0441882834, -0.00573717151, 0.0077942838, 0.0171322618, 0.0153542561, -0.0355876945, -0.0135486843, 0.014637541, -0.00711202528, -0.0315906256, 0.016939301, 0.0156161329, 0.0120670125, -0.0286961962, -0.0497290455, -0.0193926748, -0.0073807938, 0.0182486847, -0.0340715647, 0.00744281709, -0.00860058889, 0.00456217118, -0.00178834354, -0.0122393, -0.0114467777, -0.00398673117, 0.036828164, 0.0135555752, 0.0106956037, 0.00172287435, -0.0162915, -0.0130869541, 0.00350260362, -0.0210879818, 0.00141792558, -0.026614964, -0.0351190716, -0.00708445953, -0.00744970888, 0.0475237668, 0.00927595515, 0.0122737568, -0.0272076316, 0.00740146823, 0.0187310893, -0.00720850658, -0.0052547669, 0.00855924, 0.0291648172, 0.0357530899, -0.00489296298, -0.0284756683, 0.00203816034, -0.00676400494, 0.0189516172, 0.0223835837, 0.00747727463, -0.0219976604, -0.0293026473, 0.00136365509, 0.000697764102, 0.00250333641, -0.0344299227, -0.0101098269, 0.0173114408, -0.00519963494, 0.0210879818, 0.00662272889, 0.00944135152, -0.0353671648, 0.00886246562, 0.0108334338, -0.0140586551, 0.0133488309, 0.0073049874, -0.0270146709, 0.00487918034, -0.0109230233, 0.00913123414, 0.00218805042, -8.27518088e-05, 0.00401774282, 0.0023000373, 0.0297437031, 0.0073807938, -0.0287513267, 0.0489572, -0.0294680428, -0.00437265495, -0.00267562387, 0.0114950174, 0.00604384346, 0.00128784857, 0.014926983, 0.00970322825, 0.0602041222, -0.0115914987, 0.0205228794, 0.0366352, -0.0202196538, -0.0152715584, 0.0119636394, 0.00780117512, -0.000890726049, 0.0318938494, -0.00247921632, 0.0518240593, 0.0116466312, -0.034347225, -0.0189516172, 0.00413489854, -0.0489020646, -0.0188413542, 0.00210707542, -0.0173114408, 0.0180143751, -0.0179592427, 0.0110470708, -0.0257190689, -0.00997888856, 0.0239686277, -0.00661928346, 0.0149545493, 0.018345166, -0.00221561641, 0.00647800742, -0.0323900394, 0.0121772764, 0.00630916608, -0.00410733232, -0.00960674789, -0.031259831, -0.00166343525, -0.0170219988, 0.033382412, -0.0108954571, 0.00980660133, -0.00830425415, -0.0135349007, -0.0539466403, 0.00322349789, -0.0311220028, 0.025898248, 0.00310289674, 0.0175181869, 0.0211293306, -0.0243407693, 0.0195856355, 0.0274970755, -0.0141068958, -0.00907610171, 0.0411284566, -0.0383167267, -0.00415212708, -0.00518585183, -0.0175871011, -0.0215290375, 0.005089371, -0.0263393037, 0.026435785, 0.0252780132, 0.0101580676, 0.0355876945, -0.00615755282, 0.0263530854, 0.0181797706, -0.0259809457, 0.0131627601, -0.0136796227, 0.0315079279, -0.0195580702, -0.00635051494, 0.0187448729, 0.0041934764, -0.00259981747, 0.0126390066, 0.00749105774, -0.00889692362, 0.00438299216, 0.0174354892, 0.000590945885, -0.000431149296, 0.0329964906, 0.0468346179, 0.0211982466, -0.000706809224, -0.0118809417, 0.0143894469, -0.0195167214, 0.0365525037, 0.0457871109, 0.0230038185, 0.00140844984, -0.00905542728, 0.0290545542, 0.0223284513, -0.00400051428, -0.00424860837, -0.00303742755, -0.0265873969, -0.00551319774, -0.00156609283, -0.00248610764, -0.0278416499, -0.00787009, -0.00114915718, -0.00560623314, 0.0549665838, -0.00913123414, 0.0162639339, -0.00904164463, 0.000149674714, -0.0302950237, -0.00599560281, 0.0336029418, 9.08277798e-05, 0.00349915773, 0.00248955353, 0.000652538671, 0.013093845, -0.0250023529, -0.0247680414, 0.00317698042, 0.00651935674, -0.0203299168, 0.0263255201, 0.0159744918, -0.0264495667, 0.024712909, 0.0457871109, -0.00887624919, 0.00909677707, -0.0121910591, -0.00751173217, -0.00923460629, -0.0036145905, -0.0199164283, -0.00897962134, 0.0258155502, -0.0130180391, 0.018345166, -0.00450014789, -0.001083688, 0.00870396104, -0.00976525154, 0.0235275719, -0.00986173283, 0.00285480288, 0.0387026481, -0.0110470708, -0.0272903293, -0.0171046965, 0.0293853451, 0.0109092407, 0.0345953181, 0.00658138, 0.0175044034, 0.018165987, -0.0222457536, 0.013307482, -0.0597079322, -0.0128112938, -0.00124477677, -0.0121979509, -0.0314803608, 0.0393918, 0.0183727331, -0.00551664364, 0.0188275706, -0.0143480981, -0.0148856342, 0.0564275831, -0.0416246429, 0.0151061621, 0.00982727576, 0.00668130675, -0.00455183396, 0.0205780119, -0.0383718573, 0.0151888607, -0.0115708243, 0.0172011778, 0.00900029577, 0.0101029351, -0.00161433325, 0.0305155516, 0.0134177459, -0.0131420856, -0.00272558723, -0.0462281667, -0.0279105641, -0.0222733207, 0.00198992, -0.00947580859, -0.00833182, 0.00720161479, 0.0108885663, 0.00855924, 0.0119360732, -0.00481371116, 0.0143756634, -0.0086281551, -0.0235275719, -0.0161812361, 0.0231554322, 0.00337855658, -0.0027100814, -0.0307085123, -0.00610931264, 0.0104612932, -0.0256915018, 5.56165396e-05, -0.0209225863, -0.0336029418, -0.0141275702, 0.0069741956, 0.0251539666, -0.0233759601, 0.0121497102, -0.0421208329, 0.0373519175, -0.000548735494, -0.0230589509, 0.0125287427, 0.00720850658, 0.0187448729, -0.0101373931, -0.0286134966, -0.0377102755, -0.00578541216, -0.00685014855, 0.0146788899, 0.000199207352, 0.0156437, -0.00101477304, -0.0172838755, -0.00145927456, 0.0274695083, 0.0267527923, 0.0460903347, 0.0257052854, -0.0196132027, -0.013596925, 0.0117500033, -0.00960674789, -0.0129766893, -0.0460903347, -0.0109988302, -0.00674333, 0.0151337283, -0.000415643444, -0.0152853411, 0.00119912054, -0.0142102679, 0.00301158428, -0.00974457711, -0.0104819676, 0.00740146823, 0.0121910591, 0.0131972181, 0.019999126, 0.0150372479, -0.0128939915, -0.0329689234, -0.00151699083, -0.0011078082, 0.0194202401, 0.000819657464, 0.0115294755, 0.000182732358, -0.0042692828, -0.0837454796, 0.0167739056, 0.0151061621, -0.00144118443, -0.00360425329, 0.0253744945, 0.0198750794, 0.00412456132, -0.0274832919, 0.0160847548, -0.00110350107, -0.00703966478, 0.00167291099, 0.0176422335, 0.00353533821, 0.016760122, -0.0174354892, -0.0202196538, 0.0229211207, 0.00605418067, 0.0047379043, 0.0235000066, 0.0264633503, -0.00325623248, -0.0117568951, 0.0162639339, 0.00998577941, 0.00535813905, 0.0352569, 0.00294094649, -0.00519618904, -0.0222733207, -0.0119085079, -0.0168014709, -0.0069741956, -0.00982038397, -0.00215187017, 0.0169944335, -0.00822844822, -0.00682602823, 0.0125011764, 0.0019657996, -0.00204332895, 0.013886367, -0.0123633463, 0.0271938499, 0.028558366, -0.0145548424, -0.0252366643, -0.000831286889, -0.00633673184, 0.000256492931, -0.00953783281, -0.000319162471, 0.00691217184, 0.00141361845, 0.0210190676, -0.0243683346, 0.00210362952, 0.0230451673, 0.0585501641, -0.00226902543, -0.0171598289, -0.0222733207, -0.00494809495, 0.0196821168, -0.0068777143, 0.029026987, 0.00283585116, -0.00990997348, 0.0202472191, 0.0153818224, -0.00597837428, 0.00140844984, -0.0258844644, 0.0175044034, -0.0139897401, 0.00123616238, 0.00310117379, -0.00650557363, -0.0233070441, 0.00571994297, -0.0107231699, -0.00620923936, 0.0107231699, 0.00401085149, -0.0131489774, 0.00875220168, -0.0225627627, -0.0184416473, 0.0170909129, 0.0163604151, 0.0183313824, -0.00557866739, 0.0249885693, 0.0394469313, -0.0198337305, -0.00594047084, -0.0247680414, 0.00441055838, -0.0209363699, -0.00882111676, -0.0112882731, 0.0399982519, -0.0245612971, 0.000110048597, -0.0206744932, -0.00940000266, -0.00211913558, -0.000478097645, -0.00817331579, -0.00711891707, 0.00740146823, -0.0217495654, 0.0206744932, 0.01993021, -0.000297195831, 0.00399362296, 0.0108816745, 0.00240513263, -0.0139139332, 0.00430718577, 0.0284205358, -0.0444088094, -0.00692595495, 0.014279183, -0.0245612971, -0.0215014722, -0.00470000133, 0.00297195837, -0.0244923811, 0.0262290388, -0.00571994297, 0.00556488428, -0.0207709726, 0.0043450892, 0.00321660633, 0.0112607069, 0.029026987, -0.0372140855, 0.0151750771, 0.0188137889, 0.00177972927, -0.00680879969, -0.00749105774, -0.00844897609, 0.00261704624, -0.00470344722, -0.0246991273, -0.0234448742, -0.0168152545, 0.0105715571, -0.0123771299, 0.0115983905, -0.00469655544, -0.014065546, 0.0369659923, 0.018414082, 0.00734633626, 0.0124115869, 0.0163466316, 0.00957229, -0.0110195046, -0.00428306544, 0.023775667, -0.00822844822, 0.0171322618, -0.00622302201, -0.0184002984, -0.00429684855, 0.0301571935, -0.000672782422, 0.0205504447, -0.00127578841, 0.0313976631, 0.00157298427, 0.0369108617, 0.0059852656, 0.00735322759, 0.00164362218, -0.0186759587, 0.0208674539, 0.0271111503, -0.025071267, -0.00341645977, 0.00117586181, 0.0308739077, 0.00146444316, 0.00197785976, -0.0204815306, 0.0143205319, 0.0175319687, 0.00723607233, 0.0188275706, -0.0154093886, -0.0129284495, -0.024244288, 0.0364146717, 0.012804402, 0.0347882807, -0.0188413542, 0.00425549969, 0.0417073444, -0.0139483912, 0.0139621738, 0.00594047084, 0.00564413657, 0.0183727331, -0.0404668748, -0.0258017667, -0.0308739077, -0.00940000266, 0.0161812361, 0.019751031, 0.00930352136, -0.0153129073, -0.00843519252, 0.0408527963, 0.0193375424, 0.010323463, 0.0416797772, 0.0111642256, 0.0340991281, -0.00122237939, -0.026008511, 0.00828358, -0.00900718756, 0.00529267, 0.00331653305, -0.0115156919, -0.0231692139, 0.0178903267, 0.0160847548, 0.00158676726, 0.0218598302, 0.0081112925, 0.0291096848, -0.00418313919, 0.0259671621, 0.00805616099, -0.0135004437, -0.0100615863, 0.0037283, -0.00234655477, 0.0185656939, -0.00421415083, -0.00287203165, -0.00542016281, -0.0123978043, 0.0295507405, 0.00184692128, -0.00716715725, -0.0107989768, -0.0228246395, 0.0194202401, 0.0304879844, -0.0179316755, -0.000515139429, -0.00420036772, -0.00018154789, -0.0191721451, -0.0159882735, 0.0179041103, -0.0101373931, 0.0116121732, -0.0227832906, 0.00238618092, -0.0107989768, 0.00818709936, -0.00728431297, -0.00171684427, -0.0211568978, 0.00138605246, 0.00315458304, -0.0184967797, -0.0150372479, 0.000779169961, -0.0127906194, 0.0222733207, 0.0171736125, 0.00139811251, -0.00171512144, 0.00498944428, 0.0151750771, 0.0126390066, -0.0189102683, 0.013886367, -0.0211844631, 0.000380539888, 0.0220252257, -0.0267527923, 0.0393918, 0.00658482593, 0.00636774348, 0.00611275807, -0.0172976591, -0.0130042555, -0.0206193607, -0.0191032309, 0.00313046272, 0.0331067555, 0.0367454663, -0.0232105628, 0.00324934116, 0.00740146823, -3.47266869e-05, 0.0153680397, -0.0314527936, -0.0128457509, 0.0130593879, -0.0110401791, -0.0260498598, -0.0053305733, -0.0296610054, -0.00408665789, -0.000730068, 0.0234862231, 0.00843519252, -0.00936554465, -0.0135693587, 0.0180832893, 0.028020829, 0.0162639339, -0.0120394463, 0.0289994217, -0.00865572, -0.0159882735, -0.00313218567, 0.0216944348, -0.00214670156, -0.0194064565, 0.00484127691, -0.00330102723, -0.004513931, -0.0154231712, -0.00922082365, 0.00344230304, 0.000230219084, -0.0187310893, -0.00101046578, 0.00839384366, 0.038234029, 0.031149568, -0.0285032336, -0.00588878477, -0.0196959, -0.0229211207, -0.0216806512, 0.0163741987, -0.0350915045, 0.00741525134, 0.00923460629, 0.00734633626, -0.0055752215, -0.0232519116, 0.0381788947, 0.00312701706, 0.00323555805, -0.021942528, -0.00157815288, 0.00102855603, 0.0170357823, 0.00492742052, -0.0248645227, 0.00562001625, -0.0324176028, -0.00426583691, -0.00230348296, 0.00714648282, 0.0205780119, 0.00917947479, -0.0111642256, 0.0031149569, -0.0153542561, -0.00369384256, 0.000405090832, -0.00700865313, 0.0169530846, 0.00780806644, -0.006653741, -0.0336305089, 0.0166636407, -0.000463453209, -0.00504457625, 0.00481371116, -0.00196752255, -0.0237618834, 0.00201576296, -0.00788387284, 0.0184692126, -0.00997199677, -0.0145961912, -0.00519274315, 0.0164982453, 0.0223560184, 0.00683291955, 0.0130731706, -0.00413489854, 0.00554765528, -0.00404186314, -0.0147340214, -0.00433819788, -0.016401764, 0.010144284, 0.0148305027, -0.00694318349, -0.0129284495, 0.0255398899, -0.0169944335, 0.0197096821, -0.026614964, 0.0123357801, -0.0114605604, -0.0094137853, -0.0114605604, 0.0431683399, 0.00188137882, 0.0250161365, -0.0152439922, 0.0192410611, -0.0215841699, 0.00659516314, 0.00652969396, -0.0259947293, 0.00433130609, -0.00873152725, -0.00482404837, -0.018165987, 0.00343368854, 0.0313149653, -0.00973079447, -0.00845586695, 0.0294404775, 0.0464762598, -0.00611275807, -0.00217599026, 0.00410733232, 0.0169944335, 0.00737390248, -0.00742903445, -0.00391437067, 0.00802859478, -0.0151061621, 0.0136175994, -0.0212258119, -0.0119705312, -0.0209777188, 0.00585088134, -0.0102683315, 0.0191307962, 0.0269457549, -0.0239272788, 0.0145272771, 0.0255950224, -0.00521686347, -0.00616789, -0.0268630572, 0.00994443055, -0.00208984665, -0.00793211348, 0.00702932756, -0.0051651774, -0.00891759805, 0.0063022743, 0.00189343898, -0.00395571953, 0.00505146757, -0.0342369601, 0.00106042915, 0.00502390182, -0.00161777902, -0.00677089626, -0.0209777188, -0.00216393, -0.00552698085, 0.000690011191, 0.00804926921, 0.0211844631, -0.00348020624, 0.000304302695, -0.0114123197, 0.0209363699, 0.0234035254, 0.016939301, -0.0142102679, 0.000477666908, 0.0286410637, -0.00322866649, -0.00317698042, -0.00572683429, 0.000213098028, 0.0102614397, -0.012590766, 0.0143343145, -0.0201645214, -0.0017271816, -0.00733944494, -0.00236722943, -0.0180143751, -0.00268768403, -0.00522720069, -0.00373519165, -0.0146926725, 0.00982727576, 0.00172373583, 0.00950337481, 0.012735487, -0.0135417925, -0.0067123184, -0.000770555576, 0.00848343316, 0.00672265561, 0.00483783102, 0.00205538911, -0.0240237601, 0.00539604248, 0.0131903263, -0.00177456054, 0.0228108559, -0.00638152659, -0.0305155516, -0.00495843263, -5.77701321e-05, 0.0156712644, 0.0044381246, -0.017049564, 0.0136658391, 0.0177249312, -0.00782874133, 0.00738768512, 0.0105233165, -0.0145272771, -0.0109988302, -0.00676400494, 0.00757375592, -0.021722, -0.0164568964, 0.0187586565, 0.0349812396, -0.0176008847, 0.00276004476, 0.0327208303, -0.0159055758, 0.0142929656, 0.0231140833, 0.0613067597, -0.0118189184, 0.0104130525, 0.00662617479, 0.0272903293, 0.00455183396, -0.0105371, -0.0250023529, -0.00197958271, -0.0184002984, 0.00256019132, -0.00382478116, 0.00249989075, -0.00831803773, -0.0129973646, 0.00180384947, 0.00337166502, 0.00550630642, 0.0149407666, 0.00315630576, 0.00943446, 0.00169530837, -0.000938966521, -0.00259292591, 0.00601627724, 0.0210879818, 0.00645733299, -0.0195167214, 0.00774604315, 0.0389231779, -0.0318662859, 0.00568893133, 0.00711202528, 2.84274265e-05, 0.00160399603, 0.0154645201, -0.0094137853, -0.0127906194, 0.00783563219, 0.0166360755, -0.0174630545, 0.00625747954, 0.0191997122, -0.0116810882, -0.00488951756, -0.000871774449, -0.00153077382, -0.00178489788, -0.0177800637, 0.00298229558, 0.00295645231, -0.0115777161, 0.00789076462, 0.00283929706, 8.44208407e-05, -0.0131765427, 0.0331894532, -0.0167876873, -0.00398328574, -0.0106542548, 0.0109505896, 0.00976525154, 0.00943446, 0.0142102679, -0.00618167315, -0.00538225938, -0.0172838755, 0.00132316747, -0.0012490839, 0.00447602756, -0.00308739091, -0.0197785981, 0.0186621752, -0.0131214112, 0.0202472191, 0.0183865149, -0.00117327739, -0.0211706795, -0.00732566183, 0.00795968, -0.0115501499, 0.00555110117, 0.000318085687, -0.00671576429, -3.05541e-05, -0.0171322618, 0.00250850501, 0.00661583757, 0.0357530899, 0.00548907788, 0.00771158561, -0.0190067496, 0.0196269844, -0.0106197977, 0.00230692886, 0.00156092423, -0.0153818224, -0.00644010445, -0.00683981134, 0.0206055772, -0.00541327149, 0.0148305027, 0.013596925, 0.00327690714, 0.00401774282, 0.00332342461, 0.0359736159, 0.00980660133, 0.0140793296, -0.0215014722, -0.000920014922, -0.0200266913, 0.0279243477, 0.00939311087, 0.00657448871, -0.0114950174, -0.00940000266, -0.0126941381, -0.022659244, 0.00824223086, -0.0274005942, -0.0207296237, -0.00106387492, -0.00897962134, -0.0182211194, -0.00905542728, -0.0309566073, 0.000732221582, -0.0194891542, -0.0132868076, -0.00304087321, -0.00519963494, -0.00755308103, -0.00456906296, -0.00606451789, -0.00832492858, 0.012769945, -0.00547529478, 0.0189240519, 0.0110195046, 0.00044923948, 0.00171426, -0.00437610084, -0.015753964, 0.000779169961, 0.0207020584, 0.0052375379, 0.0103510292, 0.011867159, 0.010323463, 0.00511004543, -0.014100004, -0.0309014749, -0.0111022023, 0.00107162783, -0.00835938659, -0.0254985411, 0.00759443035, -0.0116810882, 0.0039315992, 0.00749105774, -0.00466554379, 0.0133350473, 0.011867159, 0.015574784, 0.0219287444, 0.0150923794, 0.0301571935, 0.0165671594, 0.00753929839, -0.0312874, 0.00797346234, -0.0198337305, -0.0063953097, -0.0237481, -0.00089847896, 0.00147391902, -0.0132041089, 0.00550286053, 0.0118395928, 0.00302881305, -0.00487228855, 0.00567170233, -0.0142378341, 0.020109389, -0.00857302267, -0.0145548424, -0.0220114421, 0.0176697988, -0.00962053053, 0.00784941576, 0.0190067496, -0.00926906429, -0.0265736151, 0.0260222945, -0.0291372519, -0.0123702381, 0.00413489854, 0.0012490839, 0.00475857919, -0.00477236183, -0.00076366408, -0.00666752364, -0.00187965599, 0.00809751, -0.0144721447, -0.0107645188, -0.0130180391, 0.00447258167, 0.0257879831, -0.0470551439, -0.00953783281, 0.0139070423, 0.00645044167, 0.00221217074, 0.0116810882, -0.0122944312, 0.00864193775, 0.0183589496, 0.00226557977, 0.00751173217, -0.00445190724, 0.0256225877, -0.0116466312, 0.00118447607, -0.0129560148, 0.00569926854, 0.00699831545, 1.10035144e-05, 0.00602661446, -0.0186070427, 0.00690183463, 0.00474479608, 0.0204539653, -0.00164103787, 0.0222595371, 0.00549596921, -0.0107300617, -0.0167049896, -0.0252090972, 0.000549596909, -0.0280346125, -0.0417624749, 0.0267803594, 0.00658482593, -0.014747805, 0.0112262489, 0.00635740627, -0.0216393024, -1.21678e-05, 0.0091174515, 0.00915190857, -0.000401214376, 0.017049564, 0.0111022023, 0.00424516248, 0.0163052827, 0.0133763961, -0.0159469247, -0.0113571882, 0.00856613088, 0.00830425415, 0.0112744896, 0.000684411847, 0.0031063424, 0.00481371116, -0.0225214139, -0.0076978025, -0.000115217226, 0.00666063232, 0.00445190724, -0.00771158561, -0.00767023675, 0.00572683429, -0.00244303583, -0.0109023489, 0.00840073545, 0.0103854863, 0.0036145905, 0.0087797679, 0.000285135699, 0.00648145331, -0.0262014735, -0.0162777174, 0.0234448742, 0.00476547051, 0.00184692128, -0.00019640768, -0.033024054, 0.0102269826, 0.019999126, 0.000677089614, 0.0131834345, -0.00983416662, 0.00198992, 0.0120739033, -0.0216806512, -0.011942965, 0.0180832893, 0.000429641805, -0.00839384366, -0.00708445953, 0.0195305031, 0.0133695053, 0.0152991246, -0.00861437153, 0.0320592448, -0.00377998641, -0.00417280151, 0.0132247834, -0.0104475105, -0.0129835811, 0.00575440051, 0.00399362296, 0.0018055723, -0.00444846181, -0.0225076303, 0.0109988302, -0.012446044, 0.0134384204, -0.0211568978, 0.00565791922, -0.00633673184, -0.00653658528, -0.00356979575, 0.00795968, -0.00224145944, -0.0289718546, -0.00997199677, -0.012804402, -0.00199336559, -0.0211982466, -0.00350604928, 0.00747727463, -0.0171184801, 0.0128319683, -0.0150648132, 0.0132316751, 0.00411077822, -0.0166360755, -0.0119291823, 0.0292199496, 0.00850410759, 0.00301675312, -0.0098410584, -0.00674333, -0.00906231906, -0.00517551461, -0.019999126, -0.00116724742, -0.00712580839, -0.00196752255, -0.00750484085, -0.0162363686, -0.0103165722, -0.0294129103, 0.020109389, 0.0129422322, -0.000126738945, -0.00966187939, 0.00322349789, 0.0147202387, -0.000279751723, -0.0138656925, -0.0192134958, -0.0119291823, 0.0144032296, -0.0126734637, -0.00676400494, 0.0113020558, 0.0211568978, -0.0151750771, -0.0125838742, 0.00784252398, -0.0148856342, -0.022769507, -0.0131007368, 0.000653830823, 0.00882111676, -0.0062436969, -0.0125563079, 0.0031959319, -0.00885557383, -0.00647456199, 0.0210604165, -0.00495154085, -0.0364422388, 0.0123426719, -0.00380755239, -0.016043406, -0.004100441, -0.000245509611, -0.0131765427, -0.00810440071, -0.00249989075, 0.0166222919, 0.0149958981, -0.0112469243, -0.0141551355, 0.00873152725, -0.0142378341, 0.0123909125, 0.0268079247, 0.00833871216, -0.00346125453, -0.00471723, 0.0307085123, -0.00848343316, -0.0176560171, 0.0240237601, 0.0101167187, 0.0128595345, -0.00657104282, -0.0193513241, 0.0100546945, -0.00330619584, 0.00543739134, 0.0313149653, 0.0169806499, -0.0237618834, -0.00409010379, -0.00207606354, 0.00786319841, 0.0268354919, 0.00974457711, 0.0145410597, 0.00452771364, 0.0057406174, 0.0153680397, -0.0219976604, 0.00210879813, 0.0237894487, -0.00864883, 0.0187862217, -0.0164293293, 0.0109850466, 0.0211982466, 0.000180148054, -0.0116810882, 0.0284205358, -0.0196959, -0.000701209879, 0.0107576279, 0.0271387175, 0.010681821, 0.0190894473, 0.00453805085, 0.0195856355, -0.00530300708, -0.00841451809, -0.00504113035, 0.00679157069, 0.00176163903, 0.0204126146, -0.00288581452, -0.00614721561, 0.00207261788, 0.0117017627, 0.0218460467, 0.00458973739, -0.00858680625, 0.00244475878, 0.00213808706, -0.00569582265, 0.0216668677, -0.00922082365, -0.032803528, -0.00186070427, -0.00665718643, -0.00375242042, -0.00893827248, 0.0208123215, 0.00951715838, 0.00620234758, -0.0145410597, -0.0115914987, -0.00726363854, 0.00851099938, 0.00217599026, 0.0187173076, 0.0100271292, -0.0169944335, -0.00260154018, 0.000317008875, 0.00478959084, -0.00754618971, 0.0198750794, -0.00962742232, -0.0268079247, 0.0111297686, 0.00349398912, 0.00650901953, -0.0124598276, -0.00313218567, -0.0205642283, 0.0169944335, -0.00738768512, 0.011508801, 0.0062436969, -0.00271697296, 0.0109230233, -0.00289959763, 0.00362492772, -0.0142653994, 0.00293922378, -0.00343885715, 0.000306456292, -0.0254847575, 0.0190343168, -0.00915190857, 0.00686048577, 0.0161950197, -0.00144032296, 0.0133901797, -0.00179523509, 0.0106542548, 0.0174217056, 0.0111573348, -0.00093121361, 0.0157401804, 0.000925183529, -0.0191721451, 0.00507558789, 0.00256363698, -0.0016970312, 0.0147615876, 0.0107645188, 0.0134590948, 0.00323211239, -0.00898651313, -0.0148442853, -0.0184002984, 0.00944824331, 0.00251711952, 0.00026295369, -0.0150510306, -0.000391738547, 0.010861, -0.000309471303, -0.0102131991, -0.024712909, 0.0102131991, 0.0148305027, 0.0104475105, -0.0172425266, -0.000767540536, -0.0131214112, -0.000401214376, -0.0128112938, -0.00227764, 0.00353878387, 0.0228935555, 0.0112331407, 0.015216426, 0.00496187806, -0.000776585599, -0.00102683308, 0.00990308169, -0.0174217056, -0.0239410624, 0.0207709726, 0.0129973646, -0.00147908763, 0.015574784, 0.0210879818, 0.00103200169, 0.0165947266, -0.0221354906, 0.0202334374, 0.0139001505, -0.00239996403, 0.000494895678, 0.00671921, 0.0109368069, -0.00485161413, 0.00110866968, -0.0237618834, -0.016939301, 0.00526510412, 0.0113020558, -0.0119567486, -0.0179592427, -0.0293577798, -0.00121634931, 0.0011896448, 0.0168979522, 0.0131145194, -0.00804237742, 0.0298815332, -0.0209088027, 7.38144e-05, -0.00310978829, 0.00154024968, 0.0145686259, -0.00435542641, 0.000517723733, 0.000131369176, 0.0151337283, 0.00191239058, 0.00167635677, -0.00173579587, 0.00957229, -0.00864193775, 0.0231829975, 0.000214820902, 0.0224662814, 0.0139690656, 0.00329930452, 0.00494120363, -0.00143946148, 0.0192824099, -0.00749794906, -0.00350432657, 0.0179041103, 0.00980660133, -0.00493775774, -0.0295507405, 0.0218322631, 0.00966187939, -0.00908299349, 0.0065607056, 0.00619890215, -0.0176835824, 0.00860058889, 0.015395605, 0.00554421, -0.0230865162, 0.0236378368, 0.0109643722, -0.0171598289, 0.00386957591, 0.0146651063, 0.00630916608, -0.00491019199, 0.00890381448, -0.0018899932, -0.00683636544, 0.0224938486, 0.0162088014, 0.00123874668, 0.0210190676, 0.00378687796, -0.0196269844, -0.0101029351, 0.0250299182, 0.010861, 0.000645647175, -0.00300986157, 0.00500667281, -0.00982727576, -0.0140724378, -0.0108678918, -0.0250437018, -0.00399362296, 0.0154920863, 0.0131558683, -0.0125011764, 0.0358357877, 0.00744970888, 0.0103303548, -0.00913812593, -0.00599215692, 0.00154024968, 0.0326105654, -0.00658482593, -0.00881422497, -0.00555454707, -0.013955282, -0.0175733194, -0.0150648132, 0.00122065644, 0.000961363898, -0.0141275702, 0.0180281568, -0.0106335804, -0.0116397394, 0.0172287431, 0.0138312355, -0.00186415, -0.00328207575, 0.00793211348, -0.00666752364, 0.0112262489, -0.0127906194, -2.09571517e-05, -0.00232932623, 0.0217495654, 0.0151888607, 0.0201231726, -0.000470344705, -0.00391437067, -0.0147202387, -0.00120170484, -0.0161950197, -0.0165258106, -0.0106404722, 0.00777360937, -0.00682258233, 0.0348434113, 0.00901407842, -0.0146651063, -0.0123978043, -0.00505491346, 0.000279967091, -0.00342335133, 0.00544772856, -0.000192746564, -0.0110126128, 0.0122324079, 0.0199026447, -0.00549252331, -0.0172149613, 0.00738768512, 0.00258086575, 0.00191239058, -0.00870396104, -0.0230727326, 0.0198612958, 0.00818020757, 0.00547184888, 0.00161174894, 0.00330102723, 0.00613343297, -0.016760122, -0.0254847575, -0.00599215692, -0.0156712644, -0.00112848275, 0.0199439935, 0.0135349007, -0.00798724592, -0.0115570417, -0.00197785976, 0.0194340236, 0.00119395193, 0.0185656939, -0.0131627601, 0.000516431581, -0.00799413677, 0.00358702452, -0.00808372628, -0.0103303548, 0.0037662033, 0.0125632, 0.0194202401, 0.0174630545, -0.0115225837, 0.0024602646, -0.0320592448, 0.00165740517, 0.00255674566, 0.00167894107, 0.0158504434, -0.0223973673, -0.0113916453, -0.0180695057, 0.011150443, -0.0197234657, 0.0108747827, 0.0143894469, 0.00325278682, -0.0150372479, 0.00358357863, 0.0156161329, -0.00249299919, 0.00488951756, -0.0113709709, -0.00589223, -0.0190067496, -0.0116948709, -0.00775293447, 0.0184002984, 0.00394538231, 0.010861, 0.0161261037, 0.00211224402, -0.00636429805, 0.0110884197, 0.00633328594, -0.00273247878, 0.0040074056, 0.0062436969, -0.00245165033, 0.00892448891, -0.0218184814, -0.0130456043, -0.00720850658, 0.0139001505, 0.0234862231, 0.0256225877, 0.013273024, 0.00791833084, 0.0106611466, -0.00837316923, 2.2639646e-05, 0.0228246395, 0.0208536722, 0.000845931296, -0.0151199456, -0.0241615903, 0.00999956299, -0.00645044167, -0.0025446855, 0.00744970888, -0.00379032362, 0.0245061647, 0.0039178161, -0.0114467777, 0.000116832416, 0.0188551378, -0.0114881266, 0.0196407679, 0.00254985411, -0.0246164296, 0.0165671594, -0.0146237575, 0.0105302082, 0.00552698085, 0.0049239751, -0.00537536805, -0.00461041182, 0.000678381766, 0.0175457522, 0.00319076329, -0.0129560148, -0.00288409158, -0.00324934116, 0.0114674522, -0.00811818428, -0.025071267, 0.00305982493, 0.0102958968, 0.0139828483, 0.0172149613, 0.000306887, 0.00938621908, -0.0129835811, 0.00436231773, -0.00479992805, -0.00288064592, -0.0152715584, 0.0173390079, -0.0100064548, 0.0101718502, -0.0163466316, 0.003111511, 0.00104147755, 0.0161950197, -0.0180695057, -0.0113502964, -0.00116466312, 0.00824912265, 0.0117293289, -0.00101477304, -0.0142102679, 0.00315113715, -0.0102958968, -0.00976525154, 0.000218589688, -0.0173941404, 0.00311323395, 0.015685048, 0.00366627658, 0.0232794788, 0.0141689191, -0.0137829948, -0.0161950197, 0.000744712423, 0.00573372608, 0.0112744896, -0.0229900349, -0.0173803568, 0.000412843772, 0.00316319731, -0.00173493451, 0.015216426, 0.0130111473, 0.00144118443, 0.0214049909, 0.0121910591, -0.0215014722, 0.00778739201, 0.0130180391, 0.00793900527, -0.0011026396, 0.0147064552, -0.0144170132, -0.0227557253, -0.0116121732, -0.0102131991, 0.0076978025, 0.000759356888, -0.00652624806, 0.00459662871, 0.00308911363, 0.00252573378, 0.00103717041, 0.010681821, -0.0239686277, -0.00325278682, 0.0274281595, 0.00371451722, 0.00375242042, 0.00166601955, -0.00995821413, -0.00152991246, -0.0435266979, 0.0160296224, -0.00952404924, 0.0130593879, -0.00322177517, 0.000974285475, -0.00435542641, -0.00404186314, 0.00890381448, 0.00979281776, 0.0193651076, 0.00316147436, -0.00573717151, -0.00128871, -6.47154666e-05, -0.0038971419, -0.00203126878, 0.00939311087, -0.00101132726, 0.00238273526, 0.018234903, -0.0116259558, -0.0102063073, 0.00162294763, -0.000725760823, -0.000563810638, 0.0157126151, 0.0126390066, 0.0103854863, -0.00558555871, 0.00256536, -0.0321695097, -0.0231416486, -0.0113502964, 0.009172583, 0.00570271397, -0.000331868679, -0.0197923798, -0.0131765427, 0.0135142263, 0.000460007461, -0.0134384204, -0.0040074056, -0.0138656925, -0.0060576261, 0.00732566183, 0.00784252398, 0.00629882887, -0.00925528072, 0.00150665361, -0.0255674552, 0.00220527919, -0.00938621908, 0.00839384366, -0.00237756665, -0.0133488309, 0.017807629, -0.0125356335, -0.0015368039, 0.00253434828, -0.00635051494, -0.00790454727, -0.0308739077, -0.0272903293, -0.000394968956, 0.00158935157, -0.0036145905, 0.00819399, -0.0188689195, 0.0106542548, -0.0301571935, -0.00103889324, 0.0012516682, 0.0275108572, -0.0186346099, -0.000794245105, 0.001227548, -0.00298574124, 0.0138312355, 0.0283929687, 0.00948959216, -0.0100409118, 0.0259671621, -0.00860058889, -0.00139897398, 0.00302192173, 0.00830425415, -0.00385579281, 0.00484127691, -0.0036903969, 0.0231003, -0.016512027, -0.000423611724, 0.0286410637, 0.00386268436, 0.00626781676, 0.00714648282, -0.00819399, 0.0238032322, -0.00548563199, -0.0029926328, 0.00246198755, -0.000582331559, 0.00914501678, 0.00966187939, -0.00390747888, 0.0109850466, -0.0202747863, 0.00357324141, 0.0133970715, 0.00641253823, -0.00743592577, 0.00723607233, -0.011584607, 0.0270146709, 0.0195718519, 0.0147891538, -0.00846965052, -0.00314424583, -0.0179730263, -0.0125149591, -0.0187448729, 0.00870396104, 0.00165395939, 0.0126458975, 0.0103717037, -0.00599215692, 0.00189860759, -0.0200818237, -0.0116121732, -0.0228935555, 0.0101649584, 0.0183176, 0.00805616099, 0.00882111676, -0.0198061634, -0.0193513241, -0.0166498572, -0.00817331579, 0.007608213, 0.00433130609, 0.0148580689, 0.00389025034, 0.0115225837, -0.0167739056, -0.0192272775, 0.00679157069, -0.00510315364, -0.00122496369, 0.00447947346, -0.000926044944, -0.00083257904, 0.0147753702, 0.0158780105, 0.007608213, -0.00374897453, -0.0165533777, -0.00618856493, 0.00405564625, -0.0029168264, -0.000823103241, -0.00555454707, -0.0155058689, -0.030322589, -0.0138381273, 0.00937932823, -0.00841451809, -0.000384631712, -0.00562690757, -0.0068053538, 0.0142378341, 0.00403497182, 0.0212395955, 0.0070465561, 0.0212395955, 0.00187965599, -0.0135693587, -0.0256501529, 0.00169013976, 0.00625403412, 0.00452771364, 0.00132747472, -0.0125563079, 0.00731877051, -0.00798035413, -0.0266287457, -0.000607313239, 0.00638152659, 0.00195890805, 0.00858680625, -0.000528491684, -0.00210707542, -0.00640564691, 0.00184519845, 0.00591290463, -0.00353189255, -0.0110332873, 0.0142929656, 0.0121290358, 0.00783563219, 0.000792952953, -0.00896583777, -0.0152853411, -0.00903475285, 0.00307188509, 0.012480502, -0.0232932623, 0.0158366617, -0.0018899932, -0.0175044034, -0.00758064725, 0.00391092477, 0.014065546, -0.0124046952, -0.00797346234, 0.00500667281, -0.0235827044, -0.00269112969, -0.000661153055, 0.00991686527, 0.00875220168, -0.0115777161, 0.00869707, -0.0267527923, 0.0226730257, -0.0110539617, 0.00522375526, 0.0212258119, 0.0252090972, -0.0129008833, -0.00791143905, -0.00105526054, 0.00831803773, -0.0329137929, -0.0017814521, 0.0129697984, 0.00696385838, 0.022300886, -0.0125838742, 0.0177938472, 0.0250574853, 0.00759443035, -0.0182211194, -0.0148856342, 0.00186759583, 0.0163879804, 0.0263117366, 0.00383856404, -0.00167980255, 0.023017602, 0.00855234824, -0.00427962, 0.0179178938, -0.0201920867, 0.0153266899, 0.0169668663, -0.00472756708, -0.0086281551, 0.0116948709, 0.0433888696, -0.0136934053, -0.0227281582, 0.000623249798, -0.0290821195, -0.000363526487, -0.0125149591, -0.00946202595, -0.0208536722, -0.00146702747, -0.00620579347, 0.00752551528, -0.0254158434, 0.00329758157, -0.00228453148, 0.00107679644, -0.0289718546, -0.0115363663, -0.00111211545, 0.00933108758, -0.00157901435, -0.0185519103, -0.0195442867, 0.00309772813, 0.0159193594, 0.00919325743, -0.0114467777, -0.00666407822, 0.0147064552, -0.00428651134, -0.00246198755, -0.00793900527, -0.00630916608, -0.00526510412, 0.0117086545, -0.0241615903, -0.0241753738, -0.00460696593, 0.0166085083, 0.00977214333, -0.0203023516, -0.0115914987, -0.0366076343, -0.0121152522, 0.0035163865, 0.00566825643, -0.00632639462, -0.0153129073, -0.0284205358, -0.0187173076, -0.0279105641, -0.0193513241, 0.0101167187, -0.00440711249, 0.0109161315, 0.0122393, -0.0131972181, 0.00345091731, -0.013886367, 0.00328552141, 7.13377667e-05, 0.0165395942, -0.00782874133, 0.0045104851, 0.00247921632, 0.0260636434, -0.0140586551, 0.0102476571, 0.00917947479, -0.00345436321, 0.00104320038, -0.00764956232, 0.00261015468, -0.00729809562, 0.00255157682, -0.0110539617, -0.00179868087, -0.00154800259, -0.0139897401, -0.00715337414, 0.002536071, 0.0116466312, -0.00584743544, 0.0104406187, 0.00189343898, 0.0177249312, -0.0115777161, -0.00386613, -0.0118809417, 0.0242167227, 0.00315975165, -0.0224249326, -0.017697366, 0.00725674676, 0.0123357801, -0.0122599741, 0.00987551548, 0.00139897398, -0.00519618904, 0.0103027886, -0.0026291064, 9.86884e-05, -0.0321419425, -0.0265322644, -0.013776103, -0.00867639575, 0.0221906211, 0.0260912087, 0.0108196512, -0.011329622, 0.000526338117, -0.0242305044, -0.00377998641, -0.00705000199, 0.0559313931, 0.00890381448, -0.00344230304, -0.0255950224, 0.00879355054, -0.0191307962, -0.0228797719, 0.0402463451, 0.00818020757, 0.0278967824, 0.00108454947, 0.00168410968, -0.0191307962, 0.015685048, 0.00139380537, -0.0433613025, 0.00869017839, -0.0136658391, -0.0164293293, 0.00541327149, 0.0119705312, -0.0112607069, 0.00559934182, 0.00153508107, -0.00980660133, -0.00550630642, 0.0128112938, 0.00960674789, -0.0126045486, 5.02594739e-05, -0.0185519103, -0.00350088067, -0.0226041116, 0.0139690656, -0.0255123228, 0.00642287545, 0.00921393186, 0.00618511904, 0.0216806512, -0.00548907788, 0.0026583951, 0.0052375379, 0.00734633626, 0.0147753702, 0.0107851932, 0.00837316923, 0.011942965, -0.0335202441, 0.0161398873, -0.0143480981, -0.00455183396, -0.00727742119, -0.00392126199, -0.00164706784, -0.0085936971, 0.0073049874, 0.0181522034, -0.0172425266, -0.0192961935, 0.00538225938, 0.00966187939, 0.000594822399, -0.00724296365, 0.0144307958, -0.00189860759, -0.00764956232, 0.0184967797, -0.00436920952, -0.0223835837, 0.00780806644, 0.0244648159, -0.00826290529, 0.000103587823, -0.0133557217, 0.00326140109, 0.0143205319, 0.0100684781, 0.0270146709, -0.00754618971, -0.00415557297, 0.000545289717, 0.00126200542, -0.0243269857, -0.0200680401, 0.00491708331, 0.00268940697, -0.0142929656, -0.0163741987, 0.00302709034, 0.0169668663, -0.0140035227, 0.00906921085, 0.00046173032, 0.00542016281, -0.00576473773, 0.0233346112, 0.00117241603, -0.00038807746, 0.0178627614, -0.00317181181, 0.0103372466, 0.0235275719, -0.0171736125, 0.00984795, -0.0032803528, 0.0188551378, -0.0197096821, -0.00271180435, 0.00286341715, 0.0204953142, -0.0027100814, -0.00889692362, 0.000637463527, 0.0134315286, -0.0120532289, 0.00648145331, 0.0022914228, 0.0160296224, 0.0233483929, 0.00993754, -0.0149958981, 0.0150372479, 0.000724899408, -0.000938105106, 0.0132592414, -0.00233621756, -0.00418313919, -0.00733255316, 0.00715337414, 0.00736701069, 0.00463797757, -0.00964120496, -0.00396261085, -0.014279183, 0.00550975231, 0.0301296264, 0.00182969263, -0.0103648119, 0.006636512, 0.00986862462, 9.545801e-05, 0.00321660633, 0.00900029577, 0.0125218509, 0.0207296237, 0.00388335879, 0.00156953849, -0.0156574827, 0.0076219961, 0.0126045486, 0.0232794788, 0.0179730263, -0.0114605604, -0.00867639575, 0.011763786, 0.00195029378, -0.00420381362, -0.00818709936, -0.018414082, -0.0140241971, -0.00370417978, 0.0130869541, 0.0355325602, -0.0157126151, 0.00432441477, -0.00498599838, 0.00589912198, 0.00600938592, 0.00933797937, 0.0188689195, 0.00722918101, 0.0202472191, 0.0275108572, 0.0040280805, 0.0133143729, 0.0235551391, 0.00123788521, -0.00731877051, 0.00988240726, 0.00537881395, -0.0161950197, 0.0107300617, -0.0111366604, 0.0425343215, -0.00552698085, -0.0106542548, 0.00431752298, -0.0210328512, 0.00988240726, 0.0246577784, -0.0232243463, 0.0311220028, -0.00328552141, 0.00190549903, 0.0065641515, 0.00915190857, 0.0207709726, -0.00800792, -0.0158090945, -0.00907610171, -0.0129697984, -0.0143756634, -0.00256880559, -0.000983761274, 0.00059008447, -0.00559934182, -0.00759443035, -0.00767712807, -0.000963948201, 0.00796657149, 5.49973811e-05]
16 Apr, 2024
AI ML DS - Projects 16 Apr, 2024 Welcome to the "Projects Series: Artificial Intelligence, Machine Learning, and Data Science"! This series is designed to dive deep into the transformative world of AI, machine learning, and data science through practical, hands-on projects. Whether you're a budding enthusiast eager to explore the fundamentals or a seasoned professional looking to expand your skill set, this series offers a comprehensive exploration of the latest technologies and methodologies. Each segment—Artificial Intelligence, Machine Learning, and Data Science—focuses on specific tools, applications, and real-world scenarios to equip you with the knowledge and skills necessary to lead and innovate in this dynamic field. Join us as we unravel the complexities of these technologies and harness their power to solve some of the most challenging problems facing industries today. In this article, we are going to discuss the series of Projects which is used in Artificial Intelligence, Machine Learning, and Data Science domains. Here we will start with Data analysis, Data Visualization, Machine Learning, NLP, Deep Learning, Computer Vision, AI and Generative AI Projects. Table of Content Data Analysis ProjectsData Visualization ProjectsMachine Learning Projects NLP Projects - Deep Learning Projects - Computer Vision Projects AI ProjectsData Analysis ProjectsThis article offers a comprehensive guide on various data analyst projects. The article aims to provide valuable insights and ideas for individuals interested in pursuing projects related to data analysis. These projects are designed to enhance data analytics skills, offering practical experience in handling real-world data and deriving meaningful insights. The article begins by emphasizing the importance of hands-on experience in data analysis and the value it brings to aspiring data analysts. It then proceeds to showcase a diverse range of project ideas, catering to different domains and levels of expertise. Each project idea is accompanied by a brief description, highlighting the skills that can be acquired or enhanced through its completion. The project ideas cover various aspects of data analysis, including data visualization, predictive modeling, machine learning, and industry-specific applications. For instance, one project idea focuses on creating interactive dashboards to visualize and explore data trends, while another involves building a recommendation system using collaborative filtering techniques. The article also emphasizes the importance of working with real-world datasets, providing links to data sources and suggesting tools and technologies commonly used in data analysis, such as Excel, SQL, and programming languages like Python or R. Additionally, it encourages readers to explore data storytelling, where data-driven narratives are crafted to convey insights effectively to stakeholders. By undertaking these projects, individuals can strengthen their data manipulation, critical thinking, and problem-solving skills. They gain exposure to various data analysis techniques, learn to communicate insights effectively, and develop a portfolio that showcases their analytical capabilities. These projects serve as a stepping stone for aspiring data analysts, enabling them to apply their knowledge in practical scenarios and build a solid foundation for their career. Data Visualization ProjectsThis article will explain you the idea of Data Visualization Projects, here you will get an idea of Projects. The article begins by emphasizing the importance of data visualization and its role in extracting insights from data. It highlights how effective visualization techniques can simplify complex data, reveal patterns and trends, and facilitate better decision-making. By undertaking these projects, individuals can gain practical experience in translating data into visually appealing and informative representations. Machine Learning Projects The article begins by emphasizing the importance of hands-on experience in machine learning and the advantages it brings. It then proceeds to showcase a diverse array of project ideas, each designed to help readers apply their machine learning knowledge in a practical manner. The projects are categorized based on difficulty levels, ensuring that beginners, intermediate learners, and advanced practitioners can find suitable challenges. The project ideas cover various domains and techniques in machine learning. For instance, one project idea focuses on building a spam filter using natural language processing techniques, while another involves creating a recommendation system for personalized movie suggestions. The article also includes projects related to image classification, sentiment analysis, time series prediction, and game-playing agents. NLP ProjectsThe article begins by emphasizing the significance of NLP and its wide range of applications. It highlights the impact of NLP in various domains, including information retrieval, sentiment analysis, machine translation, and language-driven virtual assistants. By undertaking these projects, individuals can gain practical experience in applying NLP techniques and contributing to the advancement of human-computer interaction. The project ideas presented in the article cater to different levels of expertise, ensuring that beginners, intermediate learners, and advanced practitioners can find suitable challenges. The projects cover various aspects of NLP, such as text classification, named entity recognition, sentiment analysis, machine translation, question answering, and language generation. Deep Learning ProjectsThis article that offers a comprehensive list of deep learning projects. The article aims to provide valuable insights and ideas for individuals interested in pursuing projects related to deep learning, a powerful branch of machine learning. These projects cover a range of topics and applications, allowing readers to enhance their skills and gain practical experience in this exciting field. The project ideas presented in the article cater to different levels of expertise, ensuring that beginners, intermediate learners, and advanced practitioners can find suitable challenges. The projects cover a diverse range of domains, including computer vision, natural language processing, healthcare, finance, and autonomous systems. Each project idea is accompanied by a concise description, providing a clear understanding of the task and the skills that can be acquired or improved upon. The article emphasizes the practical nature of these projects, encouraging readers to work with popular deep learning frameworks such as TensorFlow, PyTorch, and Keras. It provides links to relevant tutorials, datasets, and resources that can aid in the development process. Computer Vision Projects This article that offers a comprehensive list of computer vision projects. The article aims to provide valuable insights and ideas for individuals interested in pursuing projects related to computer vision, a fascinating field that focuses on understanding and interpreting visual information. These projects cover a range of topics, allowing individuals to enhance their skills in image and video processing, object detection, recognition, and analysis. The project ideas presented in the article cater to different levels of expertise, ensuring that beginners, intermediate learners, and advanced practitioners can find suitable challenges. The projects cover various aspects of computer vision, including image classification, object detection, image segmentation, facial recognition, and video analysis. AI ProjectsIn this Project Article, you will learn the ideas of some AI Details Project Ideas, The article begins by emphasizing the significance of AI and its growing impact on various industries. It highlights the potential of AI to revolutionize fields such as healthcare, finance, transportation, and robotics. By undertaking these projects, individuals can gain hands-on experience in applying AI techniques, solving real-world problems, and contributing to the advancement of intelligent systems. Each project idea is accompanied by a concise description, providing a clear understanding of the task and the skills that can be acquired or improved upon. The article emphasizes the practical nature of these projects, encouraging readers to work with popular AI frameworks, libraries, and tools. It provides links to relevant tutorials, datasets, and resources that can aid in the development process.
Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects
https://www.geeksforgeeks.org/ai-ml-ds-projects/?ref=lbp
Data Science & ML
AI ML DS - Projects
Data Science & ML, AI ML DS - Projects, AI ML DS - How To Get Started?
GeeksforGeeks
[-0.0295599792, 0.00724923285, -0.0242954865, -0.00294544082, 0.0394696109, -0.00705568539, 0.0126474481, 0.0033906, 0.0171729401, 0.0233664587, 0.0342614241, -0.0552630834, 0.0670589209, -0.0194392055, -0.0347681642, -0.030911291, -0.00757298479, -0.0181019679, 0.021916613, -0.0445088819, -0.00915655494, -0.000995889772, -0.0471270531, 0.00843867, 0.00490906788, 0.0187072437, -0.00560935773, 0.00283459085, -0.0311928149, 0.0327130444, 0.0190732237, -0.0257875621, 0.0238591265, -0.0599645264, -0.0288561694, -0.00895245094, 0.00116040511, 0.0233101547, -0.00597885763, 0.0192280617, 0.030854987, -0.00667562848, 0.0148925986, 0.00685158093, -0.0208468232, 0.0137805808, -0.0350215361, -0.00673545245, -0.0182849579, -0.00987444073, -0.00245629344, -0.026449142, 0.0411306, 0.0157793984, -0.0230286308, -0.0112961344, -0.0143436277, -0.0239717346, 0.0161172263, 0.00905802194, 0.00428619701, -6.29579154e-05, -0.0316151, -0.0101137357, 0.00876946, -0.0254778862, 0.00155629765, -0.000506742508, 0.00665803347, 0.00935362186, -0.00755890878, 0.0166943502, -0.00283635035, 0.0138016948, 0.0120069822, 0.00156421552, -0.0145266177, 0.0370485075, -0.0151318936, 0.0108105065, 0.00287857885, 0.0291939974, 0.000615832862, -0.00767151825, 0.0401734188, 0.0278145317, 0.00145952392, -0.0559950434, 0.00685158093, -0.035697192, -0.0327411965, 0.0306016151, 0.0100363167, 0.0210298132, 0.00938881189, -0.00719996635, 0.013140114, 0.0156949405, -0.0375552475, 0.00995186, 0.0114157824, 0.00379001163, 0.0526167601, -0.00357534969, 0.00710847089, -0.040004503, -0.0252385922, 0.00063122873, 6.25180328e-05, -0.0040011541, 0.00104427664, -0.0150755895, -0.0211424232, 0.0111483345, -0.0363446958, 0.000951901719, -0.00772078475, -0.0627234578, 0.0280397516, -0.0223388989, 0.0298415031, 0.034993384, 0.0135342469, 0.0286591034, -0.0590636507, 0.0540243797, -0.0169477202, -0.00182990346, 0.0297851972, 0.0422285423, -0.001116417, 0.0461698696, -0.00165483099, 0.0448185578, 0.0186509397, -0.00144720729, 0.0070662424, 0.0123870382, -0.00716829486, -0.0154556455, -0.0304045491, -0.0429605022, -0.0185101777, -0.0198896434, 0.0136398189, 0.0153148845, 0.0062639, 0.0650882572, -0.0108597735, 0.0139143039, -0.0381746, 0.0105078686, 0.0169758741, 0.0336702242, 0.0292784553, 0.00422637304, 0.0361757837, 0.00152814528, -0.00234544347, -0.00720348535, 0.0402297229, -0.0171870161, 0.00405394, 0.039976351, 0.013034543, -0.0129148951, 0.0247740764, 0.002229315, -0.0691422, 0.0466203094, -0.0153008075, -0.0500267446, -0.0044234395, 0.021761775, -0.0121618202, -0.0155119505, 0.0118310293, -0.0102333827, -0.0411024466, -0.00388854486, -0.0375834, 0.0133864479, 0.0283916555, 0.0259564761, 0.0251963623, 0.00335716899, 0.052053716, 0.00383575913, 0.0242391825, -0.0246755444, -0.0157793984, -0.0461135656, 0.0418625586, 0.00685861893, 0.0224937368, -0.0515469722, -0.0275048558, 0.0142591707, -0.0133231049, 0.0127670951, -0.0232960787, -0.0430449583, 0.012950086, 0.0626671538, 0.0327411965, 0.00606683362, -0.0249148384, -0.0405112468, 0.000241494461, -0.0360068679, -0.047718253, 0.0203119274, -0.0361194797, -0.0476337932, 0.0115706204, 0.0139002278, 0.00162755838, 0.00403282559, -0.00200409628, -0.0233101547, -0.0106767826, 0.00914247893, 0.027716, -0.030742377, -0.0447059497, -0.0321781486, -0.00273253839, 0.0210579652, -0.00780524174, -0.00247740769, 0.017679682, 0.0113172494, 0.00245277444, -0.0334168524, 0.0128937811, 0.0244925544, -0.0102896877, 0.030657921, -0.0410742946, -0.00862869807, 0.0326285847, -0.0185946338, -0.0191717576, -0.0449874736, 0.030517159, 0.0118802963, 0.0154837985, 0.0464513935, 0.0322344527, 0.0458883494, -0.01308381, -0.00749556581, 0.00969848782, 0.00907209795, -0.0565299392, 0.0185946338, 0.0244644, 0.00503575336, -0.00122286822, -0.0220292229, 0.00389206386, -0.0174122341, 0.00227154349, 0.0246333163, -0.0260831621, 0.0212550331, 0.0505897924, -0.00196010806, 0.01765153, -0.0285324175, 0.00741814682, -0.021747699, 0.00290321209, 0.00514132483, -0.0134709049, -0.0169336442, 0.0306016151, 0.0220432989, 0.0730835274, 0.0231130887, 0.013111962, -0.0459728055, 0.0472396612, 0.0359224118, -0.0324878246, -0.0239998866, -0.0152445035, -0.0403141789, -0.0747726709, 0.00900875498, -0.00719644735, -0.0110427635, 0.00168034399, 0.0154556455, 0.0281805135, -0.0184257198, -0.0108245825, -0.0239295065, -0.00491962489, 0.0301793311, -0.0197488815, -0.0436924621, 0.00462402543, 0.0245629344, -0.0171729401, 0.0207060613, 0.0142943608, 0.013013429, -0.017848596, -0.0291376933, 0.0160749983, 0.0189887676, -0.0429042, -0.00156509527, -0.0137524279, 0.057430815, 0.0549534075, 0.00733369, -0.00855831802, -0.0445370339, 0.0180034339, -0.0127178291, -0.0693111122, 0.0622167177, -0.00517299632, 0.00772782275, -0.00455364445, 0.0271388758, 0.0114861634, -0.0529545918, -0.00562695321, -0.0537991598, -0.013034543, -0.000116458395, 0.0594014823, -0.0178063679, -0.00754483277, 0.034965232, -0.00886799395, -0.0213254131, -0.0234790687, -0.0117113823, -0.0434109382, -0.0316995569, 0.00259705517, -0.0467047654, -0.0241124965, 0.0246192385, 0.00169881899, 0.017707834, 0.00126245746, -0.0237324405, -0.0188198537, -0.0201007854, -0.0264913719, -0.0165958162, 0.0157512464, -0.0084668221, -0.00446918746, 0.0276596937, 0.039244391, -0.0351341479, -0.026561752, 0.00388150662, -0.0230708588, -0.01330199, 0.0112609444, -0.0037407449, -0.00531727728, 0.00649615703, 0.01801751, 0.0160890743, -0.00170585711, -0.0235494487, -0.0359224118, -0.00141641567, 0.00589088164, -0.00360174268, -0.039216239, 0.0167084262, 0.013858, 0.0231553167, 0.00783339422, 0.0530108958, -0.047718253, 0.0369922034, 0.017637454, -0.0235776026, 0.00101612427, 0.0398918949, -0.00708383787, 0.0155260265, -0.00512724882, -0.0296444353, -0.00591199566, 0.000725803, 0.0209594332, 0.00371259265, 0.00921286, -0.0280679036, -0.017440388, 0.0234227646, -0.00468033, 0.0290250834, -0.0455786735, 0.01308381, -0.0341769643, -0.00959291682, 0.0153852655, 0.0153571125, 0.00624278607, -0.0202415474, -0.0298696551, 0.00951549783, -0.000144720732, 0.0147659127, 0.0105078686, 0.0168914162, -0.0101207737, 0.00876946, 0.00718237087, 0.0366543718, 0.0286168754, 0.0163846742, -0.0324878246, 0.00443399698, -0.00796711817, -0.00538765779, -0.00714718038, -0.0446214899, -0.0368514396, 0.0179893579, 0.0404549427, -0.0259564761, -0.0185946338, -0.0280538276, 0.0271107238, 0.0361476317, -0.0116902674, -0.0339517482, 0.00103899802, -0.00278180512, 0.0119999433, -0.00401171157, -0.0662706569, -0.0110357255, -0.0239858106, -0.00664043799, -0.0314180329, -0.0451000817, -0.0516032763, 0.00421933504, -0.0887362435, 0.00291025033, 0.0289969314, -0.0163705982, 0.00169793924, 0.00747445179, 0.0291095413, 0.00596830063, 0.000645304914, 0.0404830948, -0.00300350506, -0.00813603215, 0.0166943502, -0.00249500293, -0.0562765673, -0.0334731564, -0.00531375827, 0.0241969544, -0.0212972611, -0.013062695, 0.0266884379, 0.0154274935, 0.0192984436, -0.00601404812, 0.0183271859, 0.00309148105, -0.0295318253, -0.0170181021, 0.0472678132, 0.0201430134, 0.000343326828, -0.0307986829, -0.00623574806, 0.0181441959, 0.0163846742, 0.0119577153, 0.0052011488, 0.0139354188, 0.00243341969, 0.0293910652, -0.0292503033, -0.0232256968, -0.00567973871, -0.0293629114, -0.0137242759, 0.0260831621, 0.021888461, 0.0252948962, -0.00403282559, -0.00498648686, -0.0383998193, 0.0382590592, 0.00184573908, 0.00367388315, 0.00297007407, -0.0222403649, 0.0215224791, 0.0225359648, -0.0279412176, 0.0234790687, -0.0249007624, 0.00689380942, -0.00557768624, 0.0211987272, 0.000546771626, 0.0346274041, -0.000492226449, -0.00317065953, 0.00184573908, 0.00906506, 0.0357816517, -0.00735480431, -0.013147152, 0.000162645869, -0.00744629931, -0.0109864585, -0.00473311543, -0.0333042443, -0.0214661751, 0.0234931447, -0.00779116573, -0.0140691418, -0.00838236511, -0.00597533863, 0.0402297229, 0.00424748752, 0.00677064294, -0.0116691533, -0.0207482893, 0.0342614241, -0.00895948894, -1.79388826e-05, -0.013006391, -0.00741814682, 0.017679682, -0.0238591265, -0.00704512838, -0.00235951971, 0.00955068879, 0.0272514857, 0.0159764644, 0.00661932398, 0.00407505408, 0.00758706126, -0.0196785, -0.0184538718, -0.0138791138, -0.034599252, -0.0203400813, -0.0267869718, 0.0073899948, 0.0291376933, 0.0142943608, -0.022155907, -0.013013429, 0.0423974544, -0.00258649816, -0.000225878699, -0.00371963065, -0.0149629796, -0.00942400284, -0.0101559637, 0.0012413431, 0.0148785226, 0.0143436277, -0.0273218658, 0.0099377837, 0.0107260495, 0.0169477202, -0.00517651532, -0.0052504153, 0.017313702, 0.0271670278, -0.00654190499, 0.0151600465, 0.0107471636, -0.00974071678, 0.00406449707, 0.00231553172, 0.0257875621, 0.000477270485, -0.0124503812, -0.0333887, 0.0172573961, 0.0144280847, -0.00560583873, 0.0351341479, -0.0360631756, 0.0128234, 0.00378649239, 0.0270825718, 0.02616762, -0.0188057777, 0.0184257198, 0.00263752439, 0.0177359879, 0.0267447419, -0.00284866709, -0.0139917228, -0.0462824814, 0.00895245094, -0.0129008191, 0.0269277338, 0.0110568395, 0.00469440594, 0.017482616, -0.0501675047, -0.0150052086, -0.0258157142, 0.00442695851, 0.00418062555, -0.0263083801, 0.00741814682, 0.057036683, 0.013372371, 0.0037407449, 0.00973367877, -0.0170462541, -0.00809380412, -0.00549322926, -0.0170181021, -0.0126896761, 0.0194532815, -0.0100363167, -0.0081712231, -0.00271670287, -0.0004423, -0.0159201603, -0.00855127908, 0.00817826111, -0.026238, 0.142338336, 0.00366684492, 0.0364010036, -0.0119295632, -0.00734776631, 0.00729849935, -0.00073064171, 0.0256327242, -0.0268432759, 0.0184961017, 0.0229723267, -0.0139776468, -0.0252667442, 0.00232256972, -0.00633076206, 0.00305101206, 0.017848596, 0.0273922477, 0.000973015965, 0.0151318936, -0.0240984205, 0.0258157142, -0.00648208102, 0.0207060613, 0.00699586142, 0.0169758741, 0.0100574307, 0.0232960787, -0.0397792868, -0.00427563954, 0.0343740322, -0.0106978966, -0.0258016381, 0.00298590981, 0.0180315878, 0.0232679266, -0.0286591034, -0.0355282798, -0.0313617289, 0.0105782496, 0.0210157372, -0.043129418, 0.0110498015, -0.00534191029, 0.00398004, -0.0012158301, -0.0153852655, -0.0236057546, 0.00691140443, 0.00658061448, -0.000872723176, 0.0184820239, 0.0138016948, -0.0256327242, -0.00360174268, -0.0065031955, 0.00129148958, -0.00949438382, -0.0278708376, -0.04388953, -0.00531727728, -0.0190450717, 0.030545311, 0.0028627431, 0.0109301535, -0.0358379558, 0.0250978302, 0.0304327011, 0.00731961383, -0.0284620374, 0.00925508887, 0.00348033546, 0.0338391364, -0.00850201305, -0.0163002163, -0.00350145, 0.00689732842, 0.0302074831, 0.0296162833, -0.00394133059, -0.0450437777, -0.0489288, -0.00388502586, -0.00510613434, -0.0108597735, -0.0218603071, -0.0136398189, 0.0155541794, -0.0142732468, -0.00334837148, 0.00466977293, 0.0048351679, -0.0323470607, 0.0239576586, 0.00496537238, -0.0249148384, 0.0198614895, 0.00382520189, -0.0347118601, -0.0182286538, -0.0113313254, 0.00171817373, -0.0101630017, -0.00938177388, -0.006552462, -0.00750964228, -0.00301934057, 0.0279412176, 0.0203260034, 0.0770811662, -0.0364010036, -0.00997297373, -0.00232608872, 0.00356127368, -0.0107823545, 0.00677768094, -0.0039518876, 0.0103530306, 0.0376960114, 0.00127213483, 0.0290250834, 0.0350778401, -0.00714366138, -0.017327778, 0.00831902213, 0.00272550038, -0.00134515495, 0.0320092328, -0.00482461089, 0.0556009114, 0.00895948894, -0.0277863797, -0.0215224791, 0.0162579883, -0.0464513935, -0.0213957932, -0.00695715193, -0.0119014103, 0.0290250834, -0.0117676863, 0.0127037531, -0.0253934301, 0.00630612858, 0.0254778862, -0.0256608762, 0.0155119505, 0.0312491208, 0.00125717884, -0.0181723479, -0.0221981369, -0.013147152, 0.0114157824, -0.0164550543, -0.00828383211, -0.0137313139, 0.00078474707, -0.0194532815, 0.0378649235, -0.0236479826, 0.0150333606, -0.00283459085, -0.00771374675, -0.0374989435, -0.0237465166, -0.0118310293, 0.0152867315, 0.00879761297, 0.026618056, 0.00843867, -0.0150474366, 0.0110849924, 0.0161876082, -0.0148785226, 0.00228561973, 0.0144843897, -0.0335013084, 0.00840348, -0.0110146115, -0.0300667211, 0.0025988149, -0.0110638775, -0.0295318253, 0.00898060296, 0.0105149066, 0.00297007407, 0.0427071303, 0.0082627181, 0.0157090165, -0.0068551, -0.0332760885, -0.0117465723, -0.00890318397, 0.0103882207, 0.021874385, 0.00760113727, -0.000914951728, -0.00695715193, 0.0170181021, 0.00624278607, -0.00585569115, 0.0108668115, -0.000347285764, 0.00289441459, -0.000223789277, 0.0044234395, 0.017637454, 0.0213254131, 0.00541581027, -0.00998705, -0.0127530191, 0.0344303362, -0.00995889772, 0.026364686, 0.0335576124, 0.0193969756, 0.0154556455, -0.000545452, 0.0290250834, 0.0245066304, 0.00121055148, 0.00328854751, 0.0134146, -0.00895245094, -0.0203823093, -0.0202133954, -0.00851608906, -0.0391036272, 0.00318473577, 0.0245629344, 0.0208327472, 0.0450437777, -0.013858, 0.00100028852, 0.0103741447, 0.000548091251, -0.0194673575, -0.0136609329, 0.0175670739, -0.0122322, -0.00429323502, 0.00408913055, -0.00497593, -0.00729146134, -0.017299626, -0.0323752165, 0.0148785226, -0.0199037194, 0.000689732842, -0.00421933504, -0.0200304054, -0.0331353284, 0.030742377, 0.0361476317, 0.0083753271, 0.0212691091, -0.00798119418, 0.0234368406, 0.00902987, -0.0106838206, -0.0291095413, -0.00145864417, 0.0280538276, -0.0119717913, 0.0128234, -0.00818529911, -0.0061829621, 0.00468384894, -0.0258720201, 0.00738295633, 0.004370654, -0.00515892031, 0.0300104171, -0.0128374761, -0.00884687901, -0.0231412407, 0.0293066073, -0.0316714048, 0.0254919622, 0.00764336577, -0.00112697424, 0.0198192615, -0.0253230482, 0.0197488815, -0.0514062122, -0.0211142711, -0.0116550773, -0.00522578182, -0.00423341105, 0.013344219, 0.0102615356, 0.00824160315, 0.0329101086, 0.00921989791, -0.0334731564, 0.0448185578, -0.0420314744, 0.0119717913, 0.00446918746, 0.0363165438, -0.0115283914, 0.0119999433, -0.0473522693, -0.0153852655, 0.0298978072, 0.00721404236, 0.0209172033, -0.0136961238, 0.00148503704, 0.0133160669, 0.0177500639, -0.012950086, -0.0104515636, -0.0279412176, -0.0383153632, -0.0286591034, -0.00208679377, 0.00617240509, -0.0152022745, 0.00908617396, -0.0108597735, 0.0110427635, 0.0197348054, -0.00172169285, -0.0147236846, 0.00667914748, -0.0157371704, -0.0230286308, -0.00450437749, -0.0115776584, 0.00426508253, 0.00845978409, 0.00362109742, -0.0153289605, -0.0184961017, -0.026378762, -0.021888461, -0.0146955326, -0.00668970449, -0.00186685345, 0.0115002394, -0.0328819565, -0.00300878356, -0.0475493371, 0.00523985829, -0.0214943271, -0.0313617289, 0.0147096086, 0.0118591823, 0.0154556455, 0.00824160315, 0.0048809154, -0.0168069601, -0.000436581526, 0.0160468463, 0.00388150662, -0.00712958537, 0.017693758, -0.01746854, -0.0440865979, 0.00964218378, 0.0225078128, 0.0128304381, 0.0454942137, 0.0299822632, -0.0013187622, -0.00243517919, 0.0110498015, -0.0082697561, -0.0153711885, -0.0416373424, 0.00717885187, 0.0244503245, 0.0328819565, -0.0111342585, -0.00458179647, -0.00531727728, -0.026392838, -0.000968617154, -0.0150474366, -0.00510613434, -0.00378297339, 0.0180597398, 0.00572900521, 0.0104586016, 0.0187917, 0.00428619701, -0.026266152, 0.0142310187, 0.0137665039, 0.0201007854, -0.00376889738, 0.00786858518, -0.0057184482, 0.00105219451, -0.0875538439, -0.00869204104, 0.00370203541, 0.0178063679, -0.0100715067, 0.0147096086, 0.0238732025, -0.0102756117, -0.013365333, 0.0232960787, 0.0110709155, -0.0138720758, 0.00769967074, 0.00300526456, 0.013119, 0.00917063188, -0.000350584858, -0.0236761346, 0.00140409893, -0.00356655219, 0.0316995569, 0.00933250785, 0.0331071764, -0.000872723176, -0.0164832063, 0.0194110535, 0.000269206939, -0.017482616, 0.0157230925, 0.022113679, -0.00971256476, -0.0079037752, -0.000810260128, -0.044311814, -0.00455012545, -0.00125629909, -0.00315130479, 0.0158497784, -0.0110990684, 0.00336420699, 0.00403986359, -0.0180456638, -0.00368092116, 0.00157301314, 0.00386039237, 0.0255341902, 0.026195772, -0.0106838206, -0.0121125532, -0.00683046645, -0.0152022745, 0.00182638434, -0.000229397745, -0.00670026196, 0.0181582719, 0.0023964697, 0.0091002509, -0.0151741225, -0.00267975288, 0.00744629931, 0.0482812971, -0.00559528172, -0.0267306659, -0.0208609, -0.00388150662, 0.00179207372, 0.00173752848, 0.0187353957, 0.00673545245, -0.0123588862, 0.0324033685, 0.00496889185, 0.0104445256, -0.00512373, -0.0294473693, 0.0128093241, -0.00914247893, 0.0026463219, 0.0133231049, 0.00606683362, -0.0171588641, 0.0138439229, -0.0073899948, -0.00154574052, 0.000405130064, 0.00249324343, -0.0114791254, 0.00468384894, -0.0281382836, -0.0216350891, 0.0158497784, 0.0225641169, 0.0211565, 0.00421933504, 0.022113679, 0.0475211851, -0.00855831802, 0.0145969987, -0.0224937368, 0.00481053442, -0.0141465608, 0.0158779304, 0.0122955432, 0.0257594101, -0.0116339633, -0.0093113929, -0.0254638102, -0.0142802848, 0.000254031067, 0.00390614, -0.0212972611, -0.0209312793, -0.00487035839, -0.0118169533, 0.00646096654, 0.0328538045, 0.0160890743, 0.00603516214, 0.0154134175, 0.0103882207, -0.0121195912, 0.00819233712, 0.0129219331, -0.0290250834, 0.00376537815, 0.0136538949, -0.0232538506, 0.000222469636, -0.0336139202, 0.00320409052, -0.0191717576, 0.00761521375, -0.00716125686, 0.00876946, -0.00287154084, 0.00968441181, 0.00208327477, 0.0101278117, 0.0341769643, -0.0275048558, -0.00914247893, 0.0333323963, -0.0166802742, 0.0154415695, -0.0143788178, 0.00174720585, -0.00903690793, -0.00434250152, -0.0225218888, -0.0317277089, 0.00456068246, 0.0182286538, -0.017609302, 0.000726242899, -0.00111729687, -0.0119154863, 0.00266743614, 0.0189887676, 0.0205653, 0.0104022976, 0.0271107238, 0.0101066977, -0.00292256684, -0.0169758741, 0.0150192846, -0.0115917344, 0.00117360149, 0.0150192846, -0.0215506312, -0.00043988062, 0.0259846281, -0.00711199, 0.00757298479, -0.00167770474, 0.0297288932, 0.00280291936, 0.0240561925, 0.00269734813, -0.017299626, 0.013069733, -0.0170040261, 0.0173840821, 0.017482616, -0.0122110862, -0.00673545245, 0.0126404101, 0.0295036733, 0.00575715769, 0.0141254468, -0.00191787956, -0.00301230256, -0.000873602927, 0.00793896522, 0.0226204209, -0.0240280405, -0.0183553398, -0.0334450044, 0.0161453784, 0.022085527, 0.0160186924, -0.0105500976, -0.0151741225, 0.0146392277, -0.017313702, 0.0232960787, -0.00133723707, -0.0228315648, 0.013217533, -0.0238450486, -0.0300667211, -0.0192280617, -0.0113383634, 0.00282227411, 0.00482461089, 0.000124156315, -0.0201007854, 0.00154662027, 0.0211987272, 0.017510768, 0.00407153508, 0.0294755213, 0.0136820469, 0.0270121899, 0.00226450549, -0.0181723479, 0.0119577153, -0.000390394067, 0.0190732237, 0.0157793984, -0.00448326347, -0.00760113727, 0.0126896761, 0.00616536709, 0.00609498611, 0.0333605483, -0.00319881202, 0.0223529749, 0.0100503927, 0.0168914162, 0.0122744292, -0.0152022745, 0.00354543794, 0.00404690206, 0.00020278497, 0.0140832188, -0.00895245094, -0.0247177724, 0.00105835276, -0.00889614597, 0.0237183645, -0.00929027889, 0.0134075619, 0.00662636198, -0.0249429923, 0.00921286, 0.0438050739, -0.0249007624, 0.00278356462, 0.00620759558, 0.0148503706, -0.0204808414, -0.0250978302, -0.00652782852, -0.00250907918, 0.000149559419, -0.0351059921, 0.00189676532, -0.0167788062, 0.00589440065, -0.0123518482, -0.00632372405, -0.00288561685, 0.00503575336, -0.017482616, 0.0213254131, -0.00454660645, 0.0143365897, -0.00342051173, 0.0107049355, 0.0186227858, -0.0108316205, -0.00640818104, -0.0028117171, -0.00532431528, 0.00420525903, -0.0136257429, 0.0053489483, -0.0164550543, -0.00912840292, 0.0327693485, -0.0358942598, 0.048084233, 0.0196503475, -0.00943104085, 0.022296669, -0.00430027302, 0.0118732583, -0.0243940204, -0.0359224118, -0.0026516004, 0.0445651859, 0.0214239471, -0.0272233319, 0.00774189923, -0.0140550658, -5.89989904e-05, 0.022085527, -0.0181301199, -0.0175529961, -0.00270262663, -0.0179752819, -0.0314743407, 0.0127107911, -0.0161735304, 0.0186087098, 0.00108298613, 0.0154837985, -0.00906506, -0.0234931447, -0.00953661185, 0.0093113929, 0.026589904, 0.0091002509, -0.00310379779, 0.0212691091, -0.0111483345, -0.0268714279, -0.0113031724, 0.00293136458, -5.57823623e-05, -0.0184820239, 0.00763632776, -0.0293066073, -0.0177641399, -0.00326039526, -0.00921286, 0.0268855039, -0.00857239403, -0.00140145968, -0.00180527009, -0.0110990684, 0.0295318253, 0.0037372259, -0.0154556455, -9.23749321e-05, 0.00049134664, -0.0187635478, -0.01728555, 0.0135624, -0.0304045491, 0.0028662621, 0.00864277501, -0.00564454822, 0.00759409927, -0.00779820373, 0.0311083589, -0.00759409927, -0.00399059709, -0.0286168754, 0.00539117726, -0.0126756, 0.0141676757, -0.0105852876, -0.00973367877, 0.0026480814, -0.0201430134, -0.00437769201, -0.0135201709, 0.0137313139, 0.0256045721, 0.00771374675, -0.01746854, 0.0167506542, -0.000419866061, -0.00409968756, 0.00338180223, -0.00657005701, 0.0139494948, 0.00449382048, 0.0145406947, -0.0398637429, 0.0182568058, 0.0320655406, -0.0186087098, -0.0193829, -0.0115706204, -0.0238872785, -0.0142521327, 0.0010706695, 0.00587328617, 0.00120703247, -0.0253230482, -0.0324315205, 0.013231609, 0.00776301324, 0.0175952259, 0.0180878919, -0.00623926707, 0.0021395795, -0.00588736217, -0.0244925544, 0.00509909634, -0.0158357024, 0.000160666401, 0.00758706126, -0.0179471299, 0.00173576898, 0.0193265956, -0.017524844, 0.0060914671, -0.00337124523, 0.00877649803, 0.0073899948, -0.0067073, 0.0106275165, 0.0341488123, 0.0100785447, 0.0327693485, -0.0147940656, 0.0192139857, -0.004367135, 0.0156527124, 0.0147518367, -0.0273218658, 0.0130767711, -0.0119717913, -0.0193125196, -0.0136187049, 0.0232679266, 0.0152445035, -0.0432701781, -0.00951549783, 0.0146533037, 0.0303763971, -0.00927620288, 0.0166098922, 0.0129852761, 0.0299259592, -0.00584513368, -0.0261394661, -0.013090848, -0.00547211524, -0.0187072437, 0.01783452, -0.0128726671, 0.00933954585, -0.0190873, 0.0147236846, -0.021775851, -0.00163723575, 0.0129008191, -0.0133864479, 0.0302074831, 0.0161453784, 0.00776301324, 0.00108826463, -0.026561752, -0.00134955382, 0.00605275761, -0.0048316489, 0.00536654377, -0.0117958393, -0.0256468, -0.00902987, -0.000180571, 0.0187776238, 0.0155119505, -0.021916613, -0.0062639, 0.00072976196, -0.00697826641, -0.00791785121, -0.0194532815, -0.00584865268, 0.00322168577, 0.00981813576, 0.00690084742, 0.0154134175, 0.00654190499, -0.0103319166, -0.013280876, -0.00242638169, 0.0179189779, 0.0160609223, 0.00558472471, 0.00200057705, 0.0363728516, 0.0061161, -0.0102474596, -0.0207482893, 0.0140480278, 0.0309394449, -0.00462050596, 0.00459939195, -0.0195095856, 0.0135272089, 0.00758002326, 0.00491610589, -0.0107893925, -0.0115635823, 0.000328810769, 0.0102685736, -0.000387094944, -0.0111272205, -0.00361757842, 0.00170761661, 0.00887503196, -0.00255130767, -0.00303341681, 0.00680231396, 0.0155682554, 0.00515892031, 0.00869204104, -0.00986740272, 0.00183870108, -0.000494865701, 0.0040011541, 0.012964162, -0.00640818104, -0.0134849809, -0.0255201142, -0.0164550543, 0.00642929552, -0.00831902213, 0.00876946, -0.00465217745, 0.0155541794, 0.0104022976, -0.000648384041, 0.00291904784, 0.000431522902, -0.0155260265, -0.00402930658, -0.000516859756, -0.00223459373, -0.0362320878, 0.00708383787, 0.0287998654, 0.0178767499, -0.0206356812, -0.00817826111, 0.0348244682, -0.00872019399, 0.0128445141, 0.030657921, 0.0568677671, -0.00381464488, 0.00585217215, 0.0237465166, 0.0236198306, 0.0279130656, -0.0135764759, -0.0144421607, -0.00537358178, -0.00934658386, -0.00386743061, -0.0010064469, 0.00397300208, 0.00887503196, 0.000590759679, 0.00377593539, 0.000945743348, -0.0011771206, 0.030657921, -0.000172433211, 0.00925508887, -0.00392725412, 0.000444719335, 0.0210298132, -0.00642577652, 0.012928972, -0.0282508936, -0.0166521221, 0.00280819787, 0.0114580104, -0.0240843445, 0.0204104614, 0.0250837523, 0.00850201305, 0.0111976014, 0.0258297902, 0.000309016148, -0.00316538103, -0.0066052475, 0.0203682333, -0.0193547476, 0.0108738495, 0.0103811827, -0.0137594659, 0.00304397405, 0.00349441171, -0.00690436643, 0.0028557051, -0.0184961017, 0.00263400516, 0.000424924685, -0.0164972842, 0.0095718028, 0.0252667442, 0.0166239683, -0.0235494487, 0.0129008191, -0.0166802742, -0.0124574192, -0.013231609, 0.00297711208, 0.0110498015, 0.00182814396, 0.013252724, -0.00305277156, 0.0148362936, -0.00760817528, 0.00166450837, -0.0103882207, 0.0035296022, 0.00840348, -0.00362109742, 0.0177641399, -0.0136679709, 0.0278849136, 0.0155119505, -0.00332901673, -0.00726330886, 0.00217125076, 0.0213113371, -0.00900875498, 1.63580607e-05, 0.00937473588, -0.00464162044, 0.00281875511, -0.0160609223, 0.0123096192, 0.0107190115, 0.0117958393, 0.00817826111, 0.0166521221, -0.00833309907, 0.0157512464, 0.0218462311, 0.00193195569, -0.00274133612, -0.0147518367, 0.0092058219, -0.00174544635, 0.0153852655, 0.0139917228, 0.0144421607, 0.0170462541, -0.0105008306, 0.017707834, -0.00582050066, 0.0375270955, 0.00672489498, 0.000834893435, -0.0157653224, -0.00234192447, -0.0251259822, 0.0180738159, -0.00141553592, -0.0161172263, -0.0126826381, -0.00825568, -0.0066334, -0.00325159775, 0.00761521375, -0.0110638775, -0.00878353696, -0.00604571961, -0.0192984436, -0.0223529749, -0.0028152361, -0.0394696109, -0.000447578554, -0.01753892, -0.00229969597, -0.00509909634, -0.0095718028, -0.00870611705, -0.00471200142, -0.0104163736, -0.00662284298, -0.00344514521, -0.00193195569, -0.00541229127, -0.00489147287, -0.00620407658, -0.000180680974, -0.00803749915, -0.0168351121, 0.0293629114, 0.00242814119, 0.0162016843, -0.00936769787, 0.0147236846, -0.00392021611, 0.0145406947, -0.0342614241, -0.0156104835, -0.00371259265, 0.0103248786, -0.00597533863, -0.0218603071, -0.00268151239, -0.0127248671, -0.00758002326, -0.00213078177, -0.0180878919, 0.00217476976, -0.00405745907, 0.00376185915, 0.0197207294, 0.00546155777, 0.0204104614, -0.0099377837, 0.00509205833, -0.0466203094, 0.0145125417, -0.00387798762, 0.00857239403, -0.0103741447, 0.012957124, -0.00106803013, -0.013442752, -0.00316714053, -0.00590495765, 0.017299626, 0.0137242759, 0.00349617121, -0.017440388, 0.00772078475, -0.00710143289, -0.0236902107, -0.0179330539, 0.00952957384, -0.0074322233, -0.0115776584, 0.0128726671, -0.00686917594, -0.039188087, 0.012865629, -0.0102052307, -0.0112468684, 0.0116480393, 0.00150879053, 0.0161031503, -0.0104797166, -0.00245981244, -0.00186333433, -0.000432402652, -0.00167858449, 0.00159060839, -0.0053489483, -0.00748149, 0.0181160439, 0.0070697614, -0.0364291556, -0.0121407053, 0.00128885021, -0.00449030148, 0.00692196144, -0.00100556714, 0.00695363292, 0.0153289605, 0.000231157275, 0.0126544861, 0.00964218378, -0.0203682333, 0.0239435825, -0.000129764783, -0.00199002, -0.00918470789, 0.00190732244, 0.0192421377, -0.000154618043, -0.0102896877, -0.0144703137, 0.0105923256, 0.0114932014, 0.00998001173, -0.000188928738, -0.00299294782, 0.0190309957, -0.0153008075, 0.00990963075, -0.017482616, -0.0173700061, -0.00273077888, -0.0328256525, 0.0154978745, 0.000167264618, -0.000163415651, 0.0048316489, 0.00303165731, -0.0154697224, -1.28802549e-05, -0.00582753867, 0.0138720758, 0.00183518196, 0.0234931447, 0.0070697614, 0.000752635766, 0.00512724882, 0.000523457944, 0.0117747243, -0.0181019679, 0.00266039814, -0.0012158301, 0.00770670874, 0.000946623099, 0.0209312793, 0.00447270647, -0.0273218658, 0.00384631637, -0.00780524174, 0.0112679824, -0.000178261631, 0.000492226449, 0.0037407449, 0.0061829621, -0.00888910796, 0.000819937501, 0.00531727728, -0.00316362153, 0.00900171697, 0.0104656396, -0.0118239913, 0.0156245604, -0.00652430952, -0.0136116659, 0.00893133599, -0.0014049788, -0.0230286308, 0.000949262409, -0.0129923141, -0.000802342256, 0.0103389546, 0.0166380443, 0.0188761577, 0.00225922698, 0.0139213419, 0.0159342363, -0.0190309957, -0.0154134175, 0.00254778867, -0.00397300208, -0.0103389546, -0.00120175385, 0.0111624114, 0.00925508887, 0.000171223539, -0.00924101193, 0.0216350891, 0.00149647391, -0.0078967372, 0.0126474481, -0.0121758962, -0.0127037531, 0.00102756114, 0.0256890282, 0.0150896655, 0.000641785853, -0.0201430134, 0.00521522481, -0.0334731564, 0.00160028576, -0.0143436277, -0.00141817518, 0.00496537238, -0.00200761529, -0.0115354294, -0.0169054922, 0.0139706088, -0.0275048558, -0.0135483239, -0.0191436056, 0.00199002, -0.000640466227, 0.00544044375, 0.000371259259, 0.00191260094, 0.0228034128, -0.0297288932, 0.000550290686, -0.00446918746, -0.0109371925, -0.00900875498, 0.017116636, -0.000581082306, -0.00430027302, -0.0193406716, 0.013309028, -0.000775069697, -0.00710495189, -0.0113735534, -0.00795304216, 0.00516243931, 0.00494073937, -0.00278004562, -0.0138791138, 0.0182568058, -0.0128234, 0.00774893723, 0.00900875498, -0.00496185338, -0.00828383211, 0.00115424674, 0.00103987777, -0.00716829486, -0.0106134396, -0.0153430365, -0.000924629101, 0.0146251516, -0.0225500409, -0.0111483345, -0.00146216317, 0.0119506773, -0.00522930082, -0.0277582277, -0.00853720307, -0.0101418877, -0.00245981244, -0.013259762, 0.0170181021, -0.0144843897, -0.00861462206, -0.00323224301, 0.0119577153, -0.0199459475, -0.00755187077, 0.00978998374, -0.0119084483, -0.0234931447, 0.00462402543, -0.000280643842, -0.00300526456, -0.0169195682, 0.00465217745, -0.0161594544, -0.00462754443, -0.00310907629, 0.0163283683, 0.00940992683, -0.00527504878, 0.00304749305, -0.00127741334, -0.0190732237, 0.0167506542, 0.013379409, 0.00310555729, -0.0107049355, -0.0123940771, 0.0234086886, -0.00365980691, -0.00570437219, 0.013203457, 0.0204949193, 0.0256890282, -0.00693955692, -0.0448748618, -0.00199881755, 0.00313195, -0.00621463358, 0.0247881543, 0.0166943502, -0.00954365, -0.0126896761, -0.00234544347, 0.0191295296, 0.00741814682, 0.0225218888, 0.0321499966, 0.0129712, -0.00102756114, -0.00675304746, -0.013252724, 0.00313370954, 0.00599645264, -0.013252724, 0.00180702959, -0.00891726, 0.013379409, 0.00640818104, -0.00601052912, -0.00337300473, 0.0153571125, -0.0141113708, -0.00960699283, -0.00129588833, 0.00970552675, -0.000879761239, 0.00440232549, 0.00667562848, 0.0194814336, 0.00183870108, -0.00888910796, 0.00438121101, -0.0030721263, 0.00849497505, 0.0270262659, -0.00821345113, 0.0212831851, -0.0113454014, 0.0202415474, 0.0180738159, -0.0118310293, -0.0144703137, 0.00109354325, 0.00963514578, -0.0140902568, 0.0124363052, 0.0292784553, -0.0218180791, 0.00872723199, -0.0165535882, -0.0159623884, -0.0028627431, 0.0193829, 0.0191436056, 0.004370654, 0.0100081638, -0.0156386364, -0.0180456638, 0.0168491881, 0.017313702, 0.00677064294, -0.0150896655, -0.00770670874, 0.00309851929, -0.0169758741, 0.0165535882, -0.0148081416, -0.0056234342, 0.00042536456, -0.0332760885, -0.00548971025, -0.000776829198, -0.00758706126, -0.00472255843, -0.0040046731, -0.0208890513, -0.000549410935, -0.00419118255, -0.0279130656, -0.0052574533, -0.00551082473, -0.00231377222, 0.00510613434, -0.00159676676, -0.0135764759, -0.00988851674, -0.00321288826, 0.0034820952, -0.0192843676, 0.0351341479, -0.00311083579, -0.000205314282, 0.00730553735, 0.00499352487, 0.0170462541, 0.00634835754, 0.00753779477, -0.0134709049, 0.0103671066, 0.00402226858, 0.0154697224, 0.00640466204, -0.0200585574, 0.0201148614, 0.00915655494, -0.0239154305, 0.0185664818, 0.0254356582, -0.0122533152, 0.00047771036, 0.000314954523, 0.0128374761, -0.0136609329, 0.0202978514, 0.00602812413, -0.00661228551, -0.00560935773, -0.00990259275, 0.00382168288, 0.00171817373, -0.0287857894, -0.0048422059, 0.0104445256, -0.00385335437, 0.0194673575, -0.0116973054, -0.00100732665, 0.00114456937, -0.00964218378, -0.00464513944, -0.0142802848, 0.00344338571, 0.0180315878, 0.00159852626, 0.0114087444, 0.00616184808, -0.0250274483, 0.000193437503, 0.0048386869, -0.0200022515, -0.0143577037, 5.92189317e-05, 0.0126967151, -0.00102844089, 0.0188198537, 0.0214521, 0.0114228204, 0.017482616, -0.0141817518, 0.0117536103, 0.0258016381, 0.00968441181, 0.0194110535, -0.00507446285, 0.0145688467, 0.00410320656, 0.0031689, -0.000429763371, -0.00774189923, 0.0172151681, 0.021902537, -0.013287914, -0.0185524058, -0.0243517924, -0.00925508887, 0.017271474, 0.0251963623, -0.00406449707, -0.00154662027, 0.0316995569, -0.0125770671, 0.0125629911, -0.00170145824, 0.00725627085, 0.0183694158, -7.56044828e-05, 0.00278708362, -0.00635539554, 0.021564709, 0.00326567376, -0.00626741908, -0.0122744292, 0.0110216495, 0.00279236236, 0.0208327472, -0.00473663444, 0.0249007624, 0.0147236846, -0.00744629931, -0.004465668, 0.00695363292, 0.0188902337, -0.0160327703, 0.0115706204, 0.00294544082, 5.48751086e-05, -0.00817826111, -0.0074322233, 0.00950142182, 0.00083181425, -0.00267447415, -0.00307916454, 0.0185101777, -0.00322344527, 0.00470144441, -0.00154222152, 0.0108668115, -0.0251822863, 0.0133934859, 0.0106204776, -0.02616762, 0.0203823093, 0.0149207516, 0.0061407336, -0.0150615126, -0.0164972842, -0.0168210361, 0.00787562318, 0.00581346266, -0.000213562045, 0.00179559272, 0.0325441286, -0.00605979562, -0.0209594332, -0.0116410013, 0.0221981369, 0.000815098814, 0.00544748176, -0.0194955096, 0.0280538276, 0.00895948894, 0.00213254127, -0.00903690793, -0.0074885278, 0.0113383634, 0.00594366714, 0.000368619978, -0.0189746916, 0.0201993193, 0.0121407053, 0.00342930946, 0.00656301901, -0.01746854, 0.00462402543, 0.013203457, -0.00493370136, -0.00984628778, 0.0103741447, 0.00128973008, -0.0154415695, -0.0239998866, 0.008832803, -0.00612313859, -0.0199881755, 0.0225078128, -0.0145406947, -0.0183694158, 0.00747445179, 0.00865685102, -0.00847386, 0.00902987, 0.00481405389, 0.00238415296, 0.0114228204, 0.00760817528, -1.6385553e-05, 0.0138791138, 0.0172433201, 0.00361757842, 0.0321781486, -0.00249500293, -0.000841931556, -0.00976183079, 0.00917063188, -0.0254075062, -0.00432490651, -0.0139917228, 0.01344979, 0.00333605474, 0.0107119735, 0.00139618118, -0.0226204209, -0.0112187155, -0.00747445179, 0.00915655494, 0.00154486077, -0.00755187077, -0.0108949635, -0.0129782381, 0.00460643, 0.0204386134, -0.00235600071, -0.0127811721, -0.000173422944, 0.00843867, -0.0103671066, -0.00384279713, -0.00629557157, 0.00570789119, 0.00473311543, -0.00343458797, 0.00139266206, -0.00164867262, 0.00762225175, -0.00714718038, -0.0306016151, -0.000892517797, -0.026618056, -0.00799527, 0.0240843445, 0.0126404101, 0.00161524164, -0.0148081416, 0.00576067669, 0.0171025582, 0.0111694494, 0.00939585, -0.0280819796, -0.00687973294, 0.00333781424, -0.0202978514, -0.0101066977, -0.017454464, -0.003320219, -0.00918470789, 0.013858, 0.00472255843, -0.00781228, 0.0117184203, -0.0339235961, -0.00676360447, 0.00137418706, 0.000215541513, 0.0162016843, -0.00845978409, -0.0205089953, -0.0211565, 0.00986036472, -0.00834717508, 0.00941696484, 0.00862869807, 0.00302813831, -0.0210861173, -0.0118310293, 0.0154415695, 0.0165958162, 0.00988147873, -0.01801751, -0.00770670874, -0.00120967173, 0.00331142149, -0.00167682499, -0.00122198835, 0.00997297373, -0.00589088164, -0.0069712284, -0.00518003432, -0.0130767711, 0.00881872699, -0.00975479279, -0.0187072437, 0.00851608906, -0.00587680517, -0.0093113929, 0.00432842551, -0.0218321551, 0.00526801031, -0.00704864739, 0.0136046279, -0.000377637538, 0.0218180791, 0.00326215476, -0.00221347925, 0.00736888032, 0.00158005126, -0.0105641736, 0.0125981811, 0.0138861518, 0.00753779477, -0.0152585795, -0.0100011257, 0.00354015944, 0.00110498013, -0.00990963075, 0.00076671195, 0.0222544409, 0.0167365782, -0.00970552675, -0.0140902568, -0.00751668029, 0.0168351121, -0.017665606, 0.0300385691, -0.006552462, -0.013210495, 0.0274344757, -0.00323576201, 0.00365276868, -0.00903690793, 0.00577475317, 0.00584161468, -0.0208468232, -0.00426860154, 0.00888207, 0.00685861893, -0.0108949635, 0.00373018789, -0.00398707809, 0.00827679411, -3.44206601e-05, -0.0114509724, -0.00406449707, 0.017623378, 0.0196221955, 0.017454464, -0.00230497448, 0.00595422415, 0.000556888874, 0.00535598677, -0.0125207622, -0.0158357024, -0.0101911547, -0.0122322, -0.00408913055, 0.0155964075, -0.00460291095, -0.00495481538, -0.00505686784, 0.0157512464, -0.0273500178, -0.0213676412, 0.00510261534, 0.00603164313, 0.0167365782, 0.0192843676, -0.0152445035, 0.00144632754, 0.00414895406, -0.0162861403, 0.00363869267, -0.0248585343, 0.013027505, 0.00569381472, -0.0122322, 0.0251259822, 0.0389628671, -0.0151600465, -0.00314602628, 0.00269734813, 0.00249500293, -0.00749556581, 0.0014524858, -0.00528208679, 0.0123870382, 0.00768559426, 0.00506038684, -0.00292960508, 0.01344979, -0.00832606107, -0.000555129373, 0.0151600465, -0.0273500178, 0.00633076206, 0.0111624114, 0.00856535602, -0.00760817528, -0.00853016507, -0.00762928976, -0.0152585795, -0.00903690793, -0.0159764644, -0.00908617396, 0.00457827747, -0.0118662203, 0.00424748752, 0.00765744224, 0.0134146, -0.0047788634, -0.00170409761, 0.00106451113, 0.00368795916, 0.0203963853, 0.0153571125, -0.0172433201, -0.00854424108, -0.0283212755, -0.0196785, -0.0456912816, 0.0127530191, -0.00762928976, 0.0122603532, -0.0190873, 0.0110849924, 0.00181758683, 0.00666507147, 0.00577475317, 0.0164550543, 0.0143013988, 0.00367036392, -0.0156104835, -0.00987444073, 0.00268679089, -0.00688325195, 0.0238591265, -0.00165307138, 0.00378649239, -0.00932547, -0.00459235394, -0.0257312581, -0.00812899414, -0.00671785697, 0.0175952259, 0.00338356174, 0.00834717508, 0.00123694434, -0.0105993636, -0.0107612396, 0.00477182493, -0.0065595, 0.00164867262, -0.0100222407, 0.00734776631, 0.00340643572, -0.0149911316, -0.0286591034, 0.000557768624, 0.0241688024, 0.00158269051, -0.0124644572, -0.00363165443, -0.0116832294, -0.0153008075, 0.0104374876, 0.00215365551, 0.00367740216, -0.0139846848, 0.0210016612, -0.0163987502, -0.00485980138, -0.00711550936, 0.0030615693, 0.00361054018, 0.00649967603, 0.013224571, -0.0312491208, 0.00833309907, -0.0052539343, -0.000713926274, -0.00207095803, -0.0342051163, -0.01293601, -0.00495481538, 0.000658061414, -0.00978294574, 0.0177219119, -0.00902987, 0.017299626, -0.0196221955, -0.000365540793, -0.000692812, 0.00118239911, 0.0105149066, 0.000721844146, -0.00946623087, -0.00588736217, 0.0240702685, 0.00946623087, 0.00303341681, -0.00134691445, 0.0136116659, 0.00295599783, -0.00996593572, -0.0123518482, -0.00116480386, 0.00466273492, -0.00440584449, -0.00159236789, 0.00527504878, -0.0151459696, 4.17336742e-05, 0.0161453784, -0.0195940435, 0.0128726671, 0.00484924391, -0.00522226281, 0.0249852203, -0.0193688236, 0.022001069, 0.00325159775, -0.0240421165, -0.0067073, 0.0198474135, -0.00856535602, 0.00799527, -0.0216773171, 0.0114650484, 0.0245347824, 0.00494425837, -0.0123940771, 0.000452197302, 0.00201817229, 0.0112468684, 0.0231271647, 0.00968441181, -0.00246685068, -0.0320092328, -0.0154134175, -0.00333077624, -0.0117958393, 0.00256362441, -0.00632372405, 0.0124503812, 0.000607475173, 0.0116410013, 0.00881872699, -0.0153852655, -0.0141465608, -0.00988851674, 0.0157934744, 0.0021870865, -0.0118521443, -0.0155541794, -0.0192421377, -0.0216773171, -0.00103108026, 9.55640644e-05, 0.00421581604, 0.0281382836, 0.0203682333, 0.0100081638, 0.00184222008, -0.0277300756, -0.0111553725, 0.0163002163, 0.0126474481, 0.00384279713, 0.00558120571, 0.0061864811, 1.66192403e-05, -0.00723515684, 0.0263083801, -0.00230673398, 0.0111272205, -0.00576067669, -0.00828383211, 0.00742518529, 0.00914247893, -0.00853016507, -0.00474015391, -0.0304045491, -0.0303482451, -0.013168267, 0.00575715769, -0.0110357255, -0.0114509724, -0.00492666289, 0.0149066746, 0.031052053, 0.00514836283, 0.0183131099, 0.00841051806, 0.0300385691, -0.003283269, 0.00238063396, -0.0379493833, -0.00366684492, 0.0070768, 0.0070662424, 0.00287681934, -0.00680935243, -0.00226802449, -0.00477534439, -0.0402015708, -0.00411376357, -0.00734072784, -0.0142802848, 0.0062639, 0.00747445179, 0.0056234342, -0.0184116438, 0.00872019399, 0.0103741447, -0.000538413879, -0.00871315598, 0.00407857308, 0.0128022861, 0.0107401256, 0.00341875223, 0.000637826917, -0.0159905404, -0.00137066806, -2.98294053e-05, 0.000766272075, -0.0141747138, 0.0168210361, -0.0057149292, -0.0231834687, 0.00274837413, -0.00428267801, -0.00190732244, -0.00248972443, -0.0129923141, 0.00211846502, -0.0311928149, -0.00887503196, -0.00667914748, 0.0158920083, 0.00212198426, -0.0125278, 0.0117043443, -0.00146128342, 0.0261535421, -0.00627093809, 0.0080023082, 0.0350778401, 0.0107612396, -0.000314734585, 0.00710143289, -0.00570085319, 0.02476, -0.0237183645, 0.0116339633, 0.00901579391, -0.00600349111, 0.0144843897, 0.0139213419, 0.0155541794, 0.0119154863, 0.0116128484, -0.0118028773, -0.0186087098, -0.0120069822, -0.00610906212, 0.0245066304, 0.00469792495, -0.00150527153, -0.0139283808, 0.0183975678, -0.0060844291, 0.026266152, -0.0107401256, 0.0144069707, 0.0104022976, -0.0162016843, -0.0281382836, 0.00312315254, 0.0272233319, 0.00364924967, -0.00205864129, 0.00249852194, -0.00668618549, -0.00403282559, 0.00993074477, -0.00122286822, -0.022099603, 0.00769967074, -0.00217476976, 0.017482616, -0.0351623, 0.0102122687, -0.0150755895, 0.00949438382, -0.0168914162, -0.0093113929, -0.0034891332, -0.00240174821, -0.00135659182, -0.0174122341, -0.00407153508, -0.00043262259, 0.00749556581, 0.0105289826, -0.0155260265, -0.00492314389, 0.000750436389, 0.00171289523, -0.00722108036, -0.00407153508, -0.00527152931, 0.00369147817, 0.00364924967, -0.0079037752, -0.013119, -0.0037442639, 0.00151846791, -0.00174544635, -0.0172151681, 7.96733802e-05, -0.0140409898, -0.0105149066, -0.0060844291, 0.00651727151, 0.00726330886, -0.0134638669, -0.0121829342, -0.0145406947, -0.0222544409, -0.021789927, 0.00547915325, -0.000549410935, 0.00763632776, -0.0104234116, -0.00357007119, 0.00601052912, -0.0177641399, 0.0103882207, -0.00390262087, -0.013111962, -0.0111764874, -0.00859350804, -0.00495129637, 0.0263224579, -0.0251541343, 0.0192139857, 0.0120914392, 0.0117747243, -0.00608091, 0.000718325085, 0.00490203, -0.00479293941, -0.00705568539, -0.0112820584, 0.00227154349, 0.0162157603, -0.000722723897, -0.00768559426, 0.00475071091, 0.0122322, -0.00331845949, 0.00145160605, 0.00879761297, 0.035359364, -0.0213113371, -0.0133934859, -0.00586624816, 0.017482616, 0.00450085849, -0.0211987272, 0.00127389433, 0.021761775, 0.0181160439, -0.00466273492, 0.00635187654, -0.00012327655, 0.00177271897, 0.00300702406, -0.0212550331, 0.00746741379, -0.0311083589, -0.0103319166, -0.0310802069, -0.00623574806, 0.0149911316, 0.026069086, -0.00234720297, -0.00803046115, -0.0187353957, 0.000482549047, -0.012865629, 0.0141254468, 0.0672841445, -0.00971960276, 0.00673897145, -0.0192702916, 0.00710495189, -0.0244080964, -0.0149911316, 0.0409616828, 0.00594366714, 0.0206779093, 0.00138914306, -0.000779028574, -0.00475071091, 0.00455012545, -0.0121195912, -0.0430731103, 0.00285218609, -0.00423341105, -0.000722284, -0.00844570808, 0.0122322, -0.0153148845, -0.00438473, -0.0052504153, -0.0167928822, -0.00574308168, 0.0205371473, 0.00295775733, -0.017454464, -0.00574660068, -0.00955772679, 0.0108527346, -0.0220432989, 0.00736888032, -0.0135272089, 0.0222544409, 0.0134920189, -0.00876242202, 0.0167647302, -0.00509909634, -0.00338356174, 0.0171729401, 0.0192139857, 0.013189381, 0.0108034685, 0.00722811837, 0.0114228204, -0.0138861518, 0.006552462, -0.00654190499, -0.00786858518, 0.00558824372, 0.00120791222, -0.00401171157, 0.000906154106, 0.00188796769, 0.00208679377, -0.0100292787, 0.00512373, -0.0013038062, 0.0160749983, -0.0202978514, -0.0052539343, 0.00744629931, 0.000974775467, -0.0100926217, 0.0117043443, -0.00422637304, -0.0207482893, -0.00985332578, 0.0101559637, -0.0115635823, 0.0026445624, -0.00760817528, 0.00806565117, 0.00825568, 0.00128533121, 0.030686073, 0.00637650955, -0.00138738356, -0.00175072497, 0.0129008191, -0.0269277338, -0.0445088819, 0.013027505, -0.0196644235, -0.0115706204, -0.00561639573, 0.00295423833, 0.0304327011, -0.0129148951, 0.00689380942, -0.0135131329, 0.0165113602, -0.0120632863, 0.0269136559, 0.00757298479, -0.000299338775, 0.0192843676, 0.00317769777, 0.0164269023, 0.0208609, -0.0161313023, 0.0151741225, -0.0215506312, 0.0122673912, 0.00948030781, 0.00269734813, 0.00887503196, -0.00174368685, 0.00490203, -0.00312139303, 0.00181054871, 0.00831198413, -0.00546155777, 0.00898764096, 0.00798823219, 0.0311083589, 0.0189183857, 0.0083753271, -0.0304327011, 0.013027505, -0.0189887676, 0.00298415031, 0.00758002326, 0.00978998374, 0.00917063188, 0.000896916608, 0.0124714961, 0.0212831851, 0.00694307592, -0.00255658617, -0.0150755895, 0.00996593572, 0.00546507677, 0.017609302, -0.00457123946, -0.00784043223, 0.0143154757, -0.000921110041, 0.00868500303, 0.0165817402, 0.021578785, 0.0209594332, 0.00596478162, 0.00594366714, 0.00709791388, -0.0153289605, 0.0103741447, 0.026012782, 0.00448326347, -0.0012193491, -0.00974775478, -0.0122885052, 0.00759409927, -0.00938177388, 0.00516595831, -0.00207447703, -0.0201007854, -0.00799527, 0.00502167735, 0.0182568058, 0.0238028206, 0.00600349111, 0.0129923141, 0.00379001163, 0.00610554311, -0.000900875544, 0.00267271465, 0.00782635622, 0.0125418762, 0.00980406, 0.0259142481, 0.0032815095, 0.00637650955, 0.000245893287, 0.0028662621, -0.00836125109, 0.00729849935, -0.000554249622, -0.0242251065, 0.0109160775, 0.00120351347, 0.0449311659, -0.01293601, -0.0170321781, 0.00256010517, -0.0164972842, 0.00449733948, 0.017862672, -0.0166661981, 0.0475211851, -0.0114861634, -0.00729849935, 0.00386039237, 0.000295379839, 0.0202837754, -0.0114791254, -0.0282649696, -0.00325335725, 0.00401171157, 0.00628853356, -0.0101981927, -0.00428267801, 0.0143717797, -0.0149348276, 0.00194779143, -0.0104515636, 0.0014067383, 0.0149911316, -0.0157793984]
21 Mar, 2025
30+ Best Artificial Intelligence Project Ideas with Source Code [2025 Updated] 21 Mar, 2025 Artificial intelligence (AI) is the branch of computer science that aims to create intelligent agents, which are systems that can reason, learn and act autonomously. This involves developing algorithms and techniques that enable machines to perform tasks that typically require human intelligence such as understanding and responding to natural language, recognizing objects in images, making autonomous decisions and solving complex problems. This article gives you an insight into Thirty Best Artificial Intelligence Projects that will help you learn how things work. While working on these ideas, you can find it easy to implement them in different fields of work. Best Artificial Intelligence Project Ideas [2025] Here are the list of top 30+ projects that you need to build in 2025: 1. Chatbots As a beginner, you can start by creating chatbots. You’re recommended to start by creating a simple version. Several chatbots are available on almost every company website. You can check them out and identify the basic structure and can build your very own chatbots with a similar kind of structure. Create Your Own Rule-Based Chatbot Using NLP Once you have completed try creating one. Also try working on different niche chatbots. Artificial Intelligence gives you the freedom to open up your wings and helps you put your ideas into action. 2. Fake News Detection System In the era of social media and digital communication the spread of fake news has become a significant concern. Using artificial intelligence you can create a Fake News Detection System that identifies and flags unreliable or fabricated news articles. This project involves working with Natural Language Processing (NLP) techniques to preprocess textual data, extract meaningful features and classify news as real or fake. By training machine learning models like Logistic Regression, Random Forest or advanced models like LSTM and BERT. You can achieve high accuracy in detecting fake news. Fake News Detection Model using TensorFlow in Python This project not only strengthens your NLP skills but also makes a real-world impact by combating misinformation. It’s a project that appeals to industries focused on media, cybersecurity and public safety offering immense career potential. 3. Stock Market Predictor If you are good at numbers then this one is pretty much for you. Have you come across a stock market predictor before? If not do check them out. They are known for their accuracy based on mathematical assumptions and present circumstances. You can even get to know whether your predictor works or not within no time by keeping stock prediction cycles small. There is a massive value and demand for such systems. This project will help you to make a career in finance if mathematics is your cup of tea. Stock Market Prediction using Machine Learning in Python 4. Sentiment Predictor Consumer behavior is something that every online business is targeting. To know how a consumer reacts to a post will better the chances of them buying a product. Artificial Intelligence can be used to identify the sentiments of consumers. You can come up with a sentiment predictor that can help analyze in what state of mind the consumer is. This project will help you create an impression among Tier-I companies. Almost every online business has started implementing this. Now is the time to showcase your skill by implementing this project and grabbing hold of the opportunity. Sentiment Analysis with an Recurrent Neural Networks (RNN) 5. Flower Classification Using AI A great project for novices who want to explore computer vision and artificial intelligence is flower classification. You can develop a system that uses AI to categorize flowers according to their distinct characteristics like size, color and shape. Working with image datasets, preparing the data and applying methods like convolutional neural networks (CNNs) are all part of this research in order to get reliable findings. It is an excellent place to start for people who want to work on more complex image recognition systems including retinal scanning or facial recognition. Flower Recognition using CNN 6. Human Activity Recognition System You would have already come across stuff like smart-watches, bands, etc. Did you know that they use artificial intelligence to attain accuracy in determining your heartbeat and the number of calories you have lost based on the walking you have done? An activity recognition system would be a good project. Analyze how the product works and build your very own smart activity recognition system with a similar kind of structure. You’ll get to learn what algorithms are used in such applications and let us tell you that you’ll enjoy the process. Initially, start with a simple algorithm; once done, do go for a complex one. There is considerable scope for such devices, so do give it a try. Human Activity Recognition with OpenCV 7. Wine Quality Analyzer Using a particular set of data you can determine the quality of the wine. You might be aware of the fact that the older the wine, the better it becomes. Several considerations are to be taken into account before validating the quality of the wine. The pH content, percentage of alcohol and amount of acidity are some of the few criteria to be taken into consideration. Using artificial intelligence you can test these factors and conclude which one is the best wine. The same thing is implemented for testing the fertility of the soil by architectures using AI. You can initially start with wine to get an unobstructed exposure to how the algorithm works. You’ll find that there are more than 4000 odd sets of data that you have to consider. This project will surely hone your AI skills. Wine Quality Prediciton using Machine Learning 8. Object Detector Have you heard of the term deep neural network? Neural networks are used by top-notch companies to carry out a different set of operations like face recognition, translation, etc. The object detector is somewhat similar to the flower classification system yet a little complex. It helps you detect a particular object with the help of artificial intelligence. If you are looking to make more of an impact with your project then this smart object detection is the one for you. Object detection is the same method that artificially intelligent robots implement. Virtual Reality and 3D augmentation also work on the same principle. Make the best use of this opportunity to learn and to upgrade such a skill. Detect an object with OpenCV-Python 9. Recommender Engine Have you wonder while watching a video or a show on YouTube or Netflix how similar videos pop up based on your preferences? How about creating an engine that can do the same task? Based on the behavioral and implicit activity, algorithm can decide on your preferences and show similar content. Instead of binge-watching you could build your very own recommender engine. To start with you can use your browsing history. Both behavioral data and implicit data is required. It definitely will turn heads around. When it comes to job opportunities recommender engine developers are in demand. With several training institutes going digital everyone is looking for an AI developer to come up with a recommendation system on their websites. Recommendation System in Python 10. Sales Predictor Supermarkets are a place where there is a surplus amount of products. How they manage to keep track of the sales of every product is beyond our imagination. That is where a sales predictor comes in handy. It helps you monitor stocks that come in daily and products that are sold out. Sales Predictor will turn out to be one of the project. You have to come up with an algorithm on how many products are being sold daily and predict the sales of that product on a weekly or monthly basis. The sales predictor is definitely a project that would create a better first impression. If you find it simple try a sophisticated algorithm and check whether it works. You’ll get to learn what algorithms are used in such applications and let me tell you’ll enjoy the process. Almost every online grocery store has started implementing this. Do give it a try. Sales Forecast Prediction – Python 11. Image Caption Generator The Image Caption Generator is an interesting AI project where you can generate captions for images using deep learning. The model learns to describe images by analyzing their content and associating words with various visual elements. You can create an image caption generator using Convolutional Neural Networks (CNNs) combined with Recurrent Neural Networks (RNNs) or LSTMs. This project will help improve your skills in computer vision and NLP. Image Caption Generator using Deep Learning 12. Predicting Fuel Efficiency Predicting the fuel efficiency of vehicles is an essential application of AI in the automotive industry. By using machine learning algorithms you can predict the fuel efficiency of vehicles based on various factors such as engine type, weight, fuel type and other vehicle specifications. The project involves data preprocessing, feature selection and training a model to predict fuel efficiency accurately. It provides real-world value in the context of improving vehicle design and environmental sustainability. Predict Fuel Efficiency Using Tensorflow in Python 13. Detecting Spam Emails Spam email detection is a critical problem in email systems. By applying NLP techniques you can build a model that detects spam emails by analyzing the content, sender and other metadata of the email. Machine learning models such as Naive Bayes, Support Vector Machines (SVM) or advanced neural networks like LSTM can be trained to classify emails as spam or legitimate. This project will allow you to improve your understanding of text classification, NLP and machine learning algorithms. Detecting Spam Emails Using Tensorflow in Python 14. Language Translation Language translation is a powerful application of AI that enables real-time translation between different languages. You can build a machine translation model using transformer-based architectures which relies on attention mechanisms to translate text. This project involves training on large parallel datasets containing pairs of translated sentences and can be extended to different languages. Working on this project will enhance your understanding of sequence-to-sequence models, attention mechanisms and transformer networks. Machine Translation with Transformer in Python 15. Text Summarization Text summarization helps condense lengthy documents into concise summaries while retaining essential information. There are two types of summarization methods: extractive and abstractive. In the extractive method you select key sentences directly from the text while in the abstractive method the model generates a summary using new phrases. Using NLP techniques and deep learning models like BERT or GPT you can build an effective text summarizer. This project is useful in applications where large volumes of text need to be condensed such as news articles or research papers. Text Summarization in NLP 16. Hate Speech Detection Hate speech detection aims to automatically identify offensive and harmful content online. This is particularly important in social media and online platforms to prevent cyberbullying and promote healthy online discussions. By training a model on datasets containing labeled examples of hate speech and non-hate speech you can build an AI system that classifies text as harmful or safe. Techniques such as deep learning and NLP are ideal for this task. The project will enhance your skills in text classification and sentiment analysis. Hate Speech Detection using Deep Learning 17. Text Autocorrector Text autocorrection is a common feature in word processors and mobile keyboards. In this project you can build an AI-powered autocorrect system that suggests spelling corrections for words typed by users. You can implement this using NLP techniques like spell checking algorithms, n-grams and deep learning-based approaches such as sequence-to-sequence models. With this project you will learn how to handle text input, perform error correction and improve user experience through NLP applications. Autocorrector Feature Using NLP In Python 18. Recognize Car License Plate from a video License plate recognition is a real-world application of computer vision. In this project you can build a system that detects and reads car license plates in real-time from video streams. Using object detection techniques like YOLO (You Only Look Once) or Faster R-CNN combined with Optical Character Recognition (OCR) you can identify license plates. This project is widely applicable in surveillance, toll collection systems and law enforcement allowing you to apply your skills in both computer vision and real-time processing. Detect and Recognize Car License Plate from a video in real time 19. Age Detection Age detection through facial features is a popular application in security and personalized services. By analyzing facial images you can predict a person’s age group like child, adult and senior or we can give a range of their age. This AI project can be built using CNNs that extract facial features and map them to corresponding age labels. You can use OpenCV to process and analyze the images and deep learning to train the model. The project helps you gain expertise in facial recognition and age estimation. Age Detection using Deep Learning in OpenCV 20. Text Generation Text generation is an exciting field in AI where a model generates new text based on given input. You can create a text generator using Gated Recurrent Unit (GRU) networks which are a type of RNN. These networks can generate coherent sentences by learning from large text dataset. The project will involve training a language model, fine-tuning it on specific data and using it to generate text based on user input. Text generation has numerous applications including chatbots, creative writing and content creation. Text Generation using Gated Recurrent Unit Networks 21. Lung Cancer Detection Lung cancer detection through medical imaging is an essential application of AI that can aid in early diagnosis. By using Convolutional Neural Networks (CNNs) you can build a system that analyzes X-ray or CT scan images to detect signs of lung cancer. The project requires working with medical image datasets, preprocessing images and training the model to identify cancerous lesions or abnormalities in the lungs. This project will sharpen your skills in image processing, medical AI applications and CNNs. Lung Cancer Detection using Convolutional Neural Network (CNN) 22. Recipe Recommendation System A recipe recommendation system suggests recipes based on available ingredients or dietary preferences. You can build this AI system by analyzing data on various recipes and matching them to user preferences like dietary restrictions, taste and preparation time. Collaborative filtering and content-based recommendation methods can be used in this project. By working on this you’ll gain experience in recommender systems and data analysis. Recipe Recommendation System Using Python 23. Personalized Voice Assistant A personalized voice assistant is an AI-powered system that responds to voice commands, performs tasks and provides information. You can build your voice assistant using Python and libraries like SpeechRecognition, pyttsx3 for text-to-speech and NLP models for command processing. The system can perform tasks such as setting reminders, sending messages or playing music based on user commands. This project provides hands-on experience with speech recognition, NLP and virtual assistant design. Voice Assistant using python 24. Inventory Demand Forecasting Demand forecasting is crucial for businesses to manage their inventory efficiently and avoid stockouts or overstocking. In this project you can build a machine learning model using historical sales data to predict future demand for products. By analyzing patterns in past sales, seasonal trends and other factors like promotions or economic conditions the model will help businesses optimize stock levels and make data-driven decisions. This project will improve your skills in data analysis, forecasting and machine learning making it a valuable tool for inventory management and business operations. Inventory Demand Forecasting using Machine Learning – Python 25. Speech Recognition Speech recognition is a transformative technology that converts human speech into text enabling the development of voice-based applications like virtual assistants and transcription services. In this project you can build a speech recognition model for real-time voice-to-text conversion. The project involves several steps starting with collecting audio data, followed by preprocessing the speech signals such as noise reduction and feature extraction. Once the data is ready, you can apply machine learning algorithms to recognize speech patterns and transcribe them into text. Speech Recognition in Python using Google Speech API This project will provide you with valuable experience in speech processing, deep learning and NLP and can be applied in areas such as voice assistants, transcription services and accessibility tools. 26. Credit Card Fraud Detection Credit card fraud detection is a critical challenge in the financial services industry helping to protect users and organizations from financial losses. In this project you can build an AI model that identifies fraudulent transactions by analyzing historical transaction data such as transaction amounts, location, time and user behavior. By using machine learning models like decision trees, logistic regression or neural networks the system can detect patterns of unusual or suspicious activity that may indicate fraud. Credit Card Fraud Detection This project will enhance your skills in classification models, anomaly detection and feature engineering providing a valuable foundation for working with financial data and building predictive systems for real-world applications. 27. IPL Score Prediction In this project you can build a model to predict the scores of cricket matches specifically the Indian Premier League (IPL). The model will use historical match data, player performance, weather conditions and other relevant factors to predict the final score of a match. By applying deep learning techniques or time series analysis you can train the model to understand patterns in past games and predict future outcomes. This project allows you to dive deep into sports analytics that enhance your data analysis skills and gain practical experience in predictive modeling IPL Score Prediction using Deep Learning 28. Loan Eligibility Prediction Predicting loan eligibility is a crucial application of machine learning in the finance industry helping lenders make informed decisions and streamline the loan approval process. By developing a machine learning model you can predict whether an individual is eligible for a loan based on various financial factors, such as income, credit score, existing debts, loan amount and employment history. You will train a machine learning model such as logistic regression, decision trees or random forests to classify individuals as either eligible or ineligible for a loan. Loan Eligibility Prediction using Machine Learning Models in Python This project not only helps you understand the mechanics of machine learning algorithms but also teaches you the importance of handling financial data and making predictions in real-world applications. 29. Reviews Analysis Reviews analysis is a powerful tool for businesses to gain insights from customer feedback and improve their products or services. By building an AI system you can automatically analyze large volumes of reviews and classify them into sentiment categories such as positive, negative or neutral. Using Natural Language Processing (NLP) and sentiment analysis techniques you can process and understand customer opinions at scale. Machine learning algorithms like Naive Bayes, SVM or LSTM are used to categorize the sentiment. Beyond sentiment classification you can extract key insights such as recurring customer complaints or features that are highly appreciated which can guide business decisions. Flipkart Reviews Sentiment Analysis using Python 30. Sign Language Recognition System Sign language recognition system helps bridge communication gaps for the hearing impaired by converting sign language gestures into text or speech. In this project you can use deep learning models along with pose estimation techniques to recognize hand gestures. The system involves training a model on labeled datasets of various sign language gestures and learning to identify the gestures accurately. You can implement a real-time recognition system that processes video feeds, detects gestures and outputs the corresponding text or speech. Sign Language Recognition System using TensorFlow in Python This project will give you valuable experience in computer vision, deep learning and real-time systems while also contributing to an impactful and inclusive application. 31. Text Detection and Extraction Text detection and extraction from images or documents is a powerful application that can be achieved using Optical Character Recognition (OCR). In this project you will use OpenCV to preprocess images such as removing noise or adjusting contrast and then apply Tesseract OCR to detect and extract text from scanned documents or images. The system will automatically recognize characters and output the extracted text for further processing such as data analysis or storage. Text Detection and Extraction using OpenCV and OCR This project will enhance your skills in image processing, OCR technology and text recognition while providing a practical tool for automating text extraction from various image formats. It’s a useful project for applications in document management, digitization and text analysis. 32. Next Sentence Prediction Next sentence prediction predicts the next sentence based on the context of a given preceding sentence. This task involves determining whether a particular sentence logically follows the one before it which requires the model to understand context, coherence and relationships between sentences. By using transformer-based models like BERT you can train the system to make these predictions effectively. Working on it will help you enhance your skills in using state-of-the-art NLP models and exploring how they can be applied to real-world tasks such as document classification, text summarization and conversational AI. Next Sentence Prediction using BERT Working on AI projects not only enhances your technical skills but also provides you with the opportunity to apply machine learning and deep learning techniques to real-world problems. Whether it’s building a chatbot, detecting fraudulent transactions or creating a speech recognition system these projects equip you with valuable experience in data analysis, model training and problem-solving. As you explore various domains like NLP, computer vision and predictive modeling you’ll be better prepared to tackle complex challenges and make meaningful contributions to the ever-evolving field of artificial intelligence. Keep experimenting with new ideas, stay curious and let these projects be the stepping stones to your success in the AI industry. FAQs – Best Artificial Intelligence Project Ideas What are some popular AI project ideas for beginners? Beginners can start with projects like chatbots, recommendation systems, sentiment analysis, and image recognition to build foundational AI skills. Which tools are commonly used in AI projects? Popular tools include Python, TensorFlow, Keras, PyTorch, OpenCV, and Scikit-Learn, depending on the project type (e.g., NLP, computer vision, machine learning). What skills are needed for AI projects? Core skills include programming (Python), understanding of machine learning algorithms, data analysis, and familiarity with AI libraries. How can I make my AI project impactful? Focus on solving real-world problems and choose projects with practical applications, like predictive analytics, fraud detection, or automation. Can AI projects be deployed in real environments? Yes, AI projects can be deployed using cloud services like AWS, Azure, or Google Cloud for scalability and real-world usage.
Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligence Project Ideas with Source Code [2025 Updated]
https://www.geeksforgeeks.org/10-best-artificial-intelligence-project-ideas-to-kick-start-your-career/
Data Science & ML
30+ Best Artificial Intelligence Project Ideas with Source Code [2025 Updated]
Data Science & ML, AI ML DS - Projects, 30+ Best Artificial Intelligence Project Ideas with Source Code [2025 Updated], AI ML DS - How To Get Started?
GeeksforGeeks
[-0.027088685, -0.0110250954, -0.0211968962, 0.0133818109, 0.0290119834, 0.0173232146, 0.0099754082, 0.00881736726, 0.0226732306, 0.0174044799, 0.00679248804, -0.0414186, 0.0358112417, -0.00394817581, -0.0239463989, 0.00567507977, 0.0194767658, -0.0129551636, 0.00350459875, -0.0554776303, -0.0112418048, -0.0238786768, -0.065825507, -0.00660625333, 0.0118580721, 0.0197205637, 0.00328958221, 0.00591549184, -0.0547191463, 0.0331836417, 0.0382492244, -0.0286598299, 0.0268584322, -0.0327773094, -0.0256258976, -0.0211968962, 0.0016693403, -0.0116413627, 0.0129619362, 0.0361363068, 0.049978625, -0.0157385264, 0.0125014288, -0.00312366406, -0.0313687, 0.00996186398, -0.035269469, -0.0204519574, -0.00306779356, -0.0324522443, -0.0130296582, -0.0291474257, 0.0575363673, 0.0175263789, -0.00673492439, -0.00157876243, -0.00400912529, -0.0608953647, 0.0295808446, 0.0119393384, 0.0174992904, 0.0146278907, -0.0382763147, -0.0194767658, 0.0188130923, -0.00707014697, -0.00170066161, 0.0176889114, -0.0126978215, 0.00699565327, -0.00393463159, 0.0187047385, -0.0080521116, -0.0310707223, 0.00109285919, -0.00508590089, -0.0255175419, 0.0388993546, -0.0140048508, 0.0133411782, 0.0287410952, 0.00723267905, 0.0159416925, -0.00112502696, 0.0276169144, 0.0422583483, 0.0141267497, -0.0572654828, 0.0187318269, 0.00091508968, -0.0246777926, 0.0222669, 0.00598321343, 0.0051671667, -0.0125488341, 0.00446624728, 0.00602723239, 0.00738166692, -0.0119393384, 0.00676878542, 0.0336170606, -7.53933136e-06, 0.0429355688, -0.0253008325, -0.00423599314, -0.0352152921, -0.0217522141, 0.0126233278, 0.0293912236, -0.00734780589, -0.0220366456, -0.0130296582, -0.0254498199, -0.0108151576, -0.030366417, -0.0140590277, -0.00688052597, -0.0359466858, 0.0231066495, 0.00558026927, 0.0417165756, 0.0345651619, 0.0198289175, 0.0361633971, -0.0583490282, 0.0476219095, 0.00406330265, -0.0022822218, 0.0438836701, 0.0355674438, 0.0172554925, 0.0345651619, 0.00815369468, 0.0280909669, 0.00739521114, 4.83046279e-05, 0.0151425758, 0.0357028879, -0.0126978215, -0.0255446304, -0.0172284041, -0.0332649052, -0.0302038845, -0.00180309068, 0.00624732813, 0.000769911218, -0.00314228749, 0.0619247369, -0.00700919749, 0.0141944718, -0.0584032051, 0.00569201028, 0.0116684511, 0.0329940207, 0.0302851517, -0.0211833529, 0.0224700645, 0.0138016855, -0.0210479088, 0.00929819141, 0.0246236157, -0.0216438603, 0.00908825453, 0.0194632206, 0.0197476521, 0.0061491318, 0.0239057653, 0.0115465522, -0.0907470956, 0.0589449815, -0.0117090847, -0.00283923279, 0.00738166692, 0.0135782035, -0.0185828377, -0.00755774323, 0.017282581, -0.0385201126, -0.0174044799, 0.00518071139, -0.0337525, 0.02482678, 0.0133750383, 0.00456782943, 0.0125488341, 0.017160682, 0.0545837022, -0.0101582576, 0.0214948729, -0.00526874932, -0.00424276525, -0.0475948192, 0.0426375903, 0.0182848629, 0.0344297215, -0.0583490282, -0.0478386208, 0.0350527577, -0.0100363577, -0.00811306108, -0.0174857471, -0.0576989, -0.0117361732, 0.0481095053, 0.0372198559, -0.00424615154, -0.00265977043, -0.0286327414, 0.0104020555, -0.0163209327, -0.0439649373, 0.025964506, -0.0198424626, -0.027535649, 0.0029001825, 0.0207905658, 0.00169134978, 0.00303901196, -0.0391973294, -0.0116075017, -0.0346735194, 0.0375449173, 0.0321542695, -0.0310978107, -0.0532834455, -0.0387368202, -0.00187758449, 0.00694824802, -0.0157249812, -0.00520102773, 0.0401996113, -0.00120544655, 0.000724622339, -0.00506897038, 0.0352423787, 0.0286869183, -0.0049978625, 0.00356216216, -0.0672882944, 0.0357299782, 0.0155759947, -0.00644710707, -0.0130702909, -0.0422854386, 0.026777165, -0.00261913729, 0.0255446304, 0.0287681837, 0.0311249, 0.0588908046, -0.013706875, -0.020682212, 0.00762546528, 0.015399918, -0.0332919955, 0.0103546502, 0.0320188254, 0.0158197917, 0.0177972671, -0.013673014, 0.0100973081, -0.0105239544, -0.010185346, 0.0431522764, -0.0237161443, 0.0105374986, 0.0516310334, -0.0157114379, 0.0268448871, -0.0421770848, 0.045644436, -0.0185692944, 0.00473713409, 0.0010733892, -0.0345651619, -0.0123253521, 0.0118242111, 0.00509605883, 0.0527416728, 0.00608479604, -0.00409716368, -0.0397661924, 0.0735728741, 0.0430981, -0.0115126912, -0.0313957855, -0.000999741838, -0.0374365635, -0.0691303238, 0.00655884808, -0.0112282606, 0.000345380744, -0.00905439351, 0.00349444058, 0.0259103272, 0.000360618142, -0.0125962393, -0.00956230611, 0.00268008676, 0.0337795913, -0.0108016133, -0.0477302633, 0.0038906124, 0.00509605883, -0.0482720397, 0.00840426516, 0.0177566335, 0.0121425036, -0.00387368212, -0.01546764, 0.0152644748, 0.00975192711, -0.0279013459, 0.00243628863, 0.0107406639, 0.0735186934, 0.0306914803, 0.00809951685, -0.00178446714, -0.0284702089, 0.0156301726, -0.00550238928, -0.0480282381, 0.0618163794, -0.00960971136, -0.00477438094, 0.00864806306, 0.0190975238, 0.0189349912, -0.0447776, 0.00610849867, -0.0338879451, -0.0215084162, 0.0100769913, 0.0637667701, -0.0263302028, -0.00365697267, 0.0284431204, 0.00929819141, 0.00311689195, -0.0283618532, -0.025774885, -0.0332378186, -0.0335087031, 0.0136594698, -0.0508454628, -0.0241224747, 0.0402808748, 0.00804534, 0.0121966805, 0.00139845337, -0.0332378186, -0.0129957972, -0.0163751114, -0.0283889435, -0.00763223739, 0.00330481958, 0.0177024566, -0.0310707223, 0.0327773094, 0.02803679, -0.03356288, -0.0276440047, -0.00291203381, -0.023323359, -0.0225919634, 0.00211799657, -0.0122711742, 0.0292557813, 0.000253533159, 0.0146278907, 0.0212917067, 0.000730548, -0.0101650292, -0.0521457195, -0.00935236923, 0.00403960049, -0.0140590277, -0.0379512496, 0.0076186927, 0.027088685, 0.0159281474, 0.00709723588, 0.0720559061, -0.0029340433, 0.0280909669, 0.0237703212, -0.0376803614, 0.00211630366, 0.0164563768, 0.00145517034, 0.00503849564, -0.0142486487, -0.0256936178, -0.0187453702, -0.00906116515, 0.0226596855, -0.0187182818, 0.0158197917, -0.0345380753, -0.0203300584, 0.014898777, 0.0131244687, 0.0176211894, -0.0269803312, 0.0142351044, -0.00837040413, 0.00263945386, 0.00837717578, 0.00338439271, -0.0108490186, 0.00109793828, -0.0347276963, -0.00325572141, -0.000546006311, 0.0432606302, 0.00792344101, -0.00620669499, 0.00835686, -0.00487934938, -0.00319985091, 0.039793279, 0.0355403572, 0.0033285222, -0.0235536117, -0.00618976448, -0.00191991066, 0.00573602924, 0.00261405809, -0.0496535599, -0.0324251577, -0.0089189494, 0.0382763147, -0.00684327912, -0.025652986, -0.00150088244, 0.0241495632, 0.0335087031, -0.0187589154, -0.0373011194, -0.0274950154, -0.0050723562, 0.020749934, -0.000277870655, -0.0516039468, -0.0190839786, -0.0243798178, -0.000753404049, -0.00352830137, -0.0373823866, -0.0390077084, 0.0106255366, -0.0700513422, -0.00513330614, 0.0236755107, -0.0270751417, 0.0224294327, -0.00990091451, 0.034321364, -0.0274950154, -0.0240818411, 0.0448317751, 0.0195986647, 0.00873610098, 0.022754496, -0.0139506729, -0.0424208827, -0.0568862408, -0.00109878485, 0.0364342816, -0.026966786, 0.00766609795, 0.0546378791, 0.0318292044, 0.0268990658, -0.0137813687, 0.017729545, 0.0164157432, -0.0250705779, -0.0155489054, 0.0261405818, 0.0247996915, 0.0120341489, -0.0463487431, 0.0216438603, 0.0361633971, 0.00361295347, 0.00757806, 0.018230686, -0.017919166, -0.011255349, 0.0277388152, -0.00325741456, -0.00862097461, -0.00851262, -0.0279826131, -0.0217793025, -0.00469650095, 0.0033386806, 0.0376803614, 0.00428001257, -0.000342629559, -0.046782162, 0.0294995792, 0.00455089938, 0.00960971136, -0.00507912878, -0.0227138624, 0.0184473954, 0.017919166, -0.0153051075, 0.0032489493, -0.0084855305, 0.019801829, 0.00375178293, 0.00698210858, 0.00151273375, 0.0219147466, -0.0237974096, 0.00294928066, 0.00242782338, 0.0110115511, 0.0388993546, 0.0112282606, -0.00786926318, -0.0020621263, -0.000403790735, -0.0246642493, -0.00247014943, -0.0334545262, -0.0290390719, -0.00248708, -0.0482720397, -0.0119393384, 0.0154405506, -0.00804534, 0.0431793667, 0.0186505597, 0.0127994036, -0.0100228135, -0.0428272113, 0.031504143, -0.0121695921, 0.00935914088, -0.0162667558, -0.0109506017, 0.00312366406, -0.0297704656, -0.00231777574, 0.0121831363, 0.0143434592, 0.011255349, 0.0164428316, 0.0156708043, -0.00660625333, 0.00193514803, 0.0037720995, -0.0111334501, -0.0146956118, -0.0237296894, -0.0160771348, -0.0154270064, -0.00348428218, 0.0297162887, 0.0180546083, -0.0378158055, 0.00979256, 0.0327502228, -0.0193684101, 0.0112892101, -0.0120883258, -0.00160839071, 0.00778799737, -0.010029586, 0.0301497076, 0.0302309729, 0.0230389275, -0.0399016328, 0.0082011, 0.0118242111, 0.0274137501, 0.00664011389, -0.0109844618, 0.00595273869, 0.0376261845, 0.00779476948, 0.00540419295, -0.00864129048, 0.00104291446, 0.00536017353, 0.0227274075, 0.0306373034, 0.00499109039, -0.0177024566, -0.00588840293, 0.0076186927, 0.0286327414, 0.0127113657, 0.0119596552, -0.0267365333, 0.00282399543, -0.0113027543, 0.0176076461, 0.0141944718, -0.0280638784, -0.00454412727, -0.00713109644, 0.0175128356, 0.0130364299, -0.00761192059, 0.00381273264, -0.041310247, 0.0294995792, 0.00282230251, 0.00995509233, -0.00623716973, -0.0094471788, -0.00229576603, -0.0420958176, 0.00849230308, -0.0133953551, -0.00769318687, 0.00909502618, -0.0125623783, 0.010374967, 0.0351611152, -0.00068779866, 0.000178404385, 0.0170523282, -0.00444931677, 0.0119799711, 0.00105984486, -0.00799116213, -0.0113840206, -0.00776768057, -0.0108490186, 0.0133547224, 0.0238245, 0.00331328483, -0.0223481655, 0.0120680099, 0.0100702187, -0.00732748955, 0.140644461, 0.00259882072, 0.049220141, -0.0130499741, -0.0122440858, 0.0216844939, 0.00704983063, 0.0154811842, -0.00875641778, 0.0218063928, 0.0314770527, -0.0312603451, -0.0265062787, 0.00994154811, 0.00663334178, -0.00344703533, 0.0256394409, 0.0233504474, 0.0104359165, 0.0163751114, -0.0143570034, 0.0423125289, -0.0117429458, 0.0109031964, 0.0231201928, 0.0271022301, 0.017716, 0.0154405506, -0.0558026917, -0.0214000624, 0.0293641351, -0.00427662628, -0.0221585445, -0.00484548882, 0.00661641173, 0.0226461422, -0.026966786, -0.0310436338, -0.0129077584, 0.0167272631, 0.0215355046, -0.0101108523, 0.0033776206, -0.0185557492, 0.0297704656, -0.00293065724, -0.0204519574, -0.0267094448, 0.00285108411, 0.0202623364, 0.00308133801, 0.00547868665, 0.012860354, -0.0267229881, -0.0397391021, -0.00378225767, -0.0288765393, -0.0110725006, -0.0322355367, -0.027847169, -0.000830860808, -0.0128671257, -0.00809274521, -0.00982642081, 0.0084855305, -0.0247319695, 0.0262624808, 0.0342671871, 0.0130567467, -0.0201268941, 0.0154811842, 0.0207363889, 0.0542857274, 0.00757806, -0.00615928974, 0.00653514545, 0.0133344056, 0.0291203372, 0.0327773094, -0.00372808031, -0.0333190821, -0.0312874317, 0.00924401358, -0.0161177684, -0.0113975648, -0.0211291742, -0.0198966395, 0.0321813598, -0.0212104414, 0.0046490957, -0.000516378088, -0.00605093502, -0.0214677844, 0.00321847457, 0.0209124647, -0.0158739705, 0.0240276642, 0.018298408, -0.0353778228, -0.00762546528, -0.0118987048, 0.0155082727, -0.0102259787, -0.0391160622, 0.0120409206, 0.00189620804, -0.0198153742, 0.0189620797, 0.00202487921, 0.0703764, -0.0210479088, -0.00790989585, -0.012603011, -0.00711078, 0.00727331219, -0.00629134709, -0.00295266672, 0.0170252398, 0.03356288, -0.00748324953, 0.0317479409, 0.0229712054, -0.026966786, -0.0328044, 0.00810628943, -0.00314567355, -0.023323359, 0.0290932488, -0.00204688893, 0.0724893212, 0.0011385713, -0.0237161443, -0.0262083039, 0.0156437159, -0.0335899703, -0.0261676703, -0.0182171408, 0.000356597156, 0.0303393286, -0.0247455146, 0.0268177986, -0.0243120957, 0.00103021658, -0.0104291439, -0.0250028577, -0.00758483214, 0.0328856632, 0.0145195359, -0.000387706823, -0.0266688112, 0.00752388267, 0.00118174392, 0.0028104512, -0.0113637038, -0.0220772792, 0.0163751114, -0.0149529548, 0.0258967839, -0.0191246122, 0.0219147466, -0.00646742387, -0.0111469943, -0.0289848931, -0.0118106669, -0.0134563046, 0.022375254, 0.0102327513, 0.0362446606, -0.0176889114, -0.031314522, 0.0162532106, 0.00886477251, -0.0309081897, -0.0139235845, 0.00528229354, -0.0148446, -0.0192194227, -0.0128535815, -0.0189349912, -0.00104460749, -0.0154134622, -0.0087496452, 0.0192465112, -0.00642340444, -0.000937099219, 0.0391973294, -0.0051671667, 0.00489628, -0.00298822066, -0.02351298, 0.00837040413, -0.0202623364, 0.0294454023, 0.00395833421, -0.00372469425, 0.0148852328, 0.00839072, 0.00825527683, -0.00915597565, -0.00224666786, 0.00105222617, 3.80141028e-05, 0.00417843, -0.00850584731, 0.00723267905, 0.00461862097, 0.0231472813, -0.00028125674, -0.013517254, -0.0230931044, 0.022564875, -0.0212104414, 0.0293641351, 0.0275898259, 0.0194361322, 0.0137745971, 0.0103275618, 0.00232793391, -0.00376871345, 0.0108354744, -0.002287301, 0.00187081238, -0.0208176542, -0.0197070185, 0.00279182778, -0.0127181383, -0.0138490908, 0.00149580336, 0.015020676, -0.00101413263, 0.0406330302, -0.0140319392, 0.00881736726, 0.00179123937, 0.0191246122, -0.0219147466, -0.00692793122, 0.00799116213, 0.0219689235, 0.0182713177, 0.0122169973, -0.00446624728, -0.00313890143, -0.0263166577, 0.00155252032, 0.00194699934, -0.031504143, -0.0107000312, -0.00710400799, -0.00154405506, -0.0229034834, 0.0303935055, 0.0104833217, 0.0213458836, 0.016971061, -0.0112011712, 0.00548207294, 0.0229712054, 0.00271733385, -0.0425834134, -0.00883091148, 0.0137678245, 0.00930496398, -0.0147904223, -0.0214406941, 0.00708369119, -0.0117700342, -0.0226461422, -0.00755097112, -0.0159281474, -0.00809951685, 0.0312332548, -0.0176753681, -0.0100499028, -0.0104291439, 0.0341859199, -0.0339963, 0.0354049131, 0.0113298427, 0.00955553353, 0.0144653581, -0.0160365012, 0.0182442293, -0.035079848, 0.00164225162, -0.0338066816, -0.00317784143, 0.0138355466, 0.0218470246, 0.000524843286, -0.0030237746, 0.00873610098, -0.000592988275, -0.0316666737, 0.0263708364, -0.0379783362, 0.00611527078, -0.00102852355, 0.020370692, -0.0205738563, 0.00775413634, -0.0346464291, -0.0314770527, 0.0292557813, 0.00188943581, 0.0248538684, -0.0101650292, -0.00572248502, 0.0124878846, 0.0299059097, -0.0164834652, -0.0202758815, -0.0283076763, -0.0200998057, -0.0201404374, 0.000434688758, 0.00357570662, -0.0140725719, 0.0030288538, -0.008858, 0.00299668591, 0.0112824375, 0.0133818109, -0.00471343147, -0.0227951296, -0.0180275198, -0.00385336555, -0.0114652859, 0.00141876994, 0.0190975238, -0.00887831673, 0.0193277765, -0.0308540128, -0.0179056209, -0.0449401289, -0.00704983063, -0.00281553017, -0.0115736406, -0.010374967, 0.00999572501, -0.019422587, 0.00512992, -0.0500598922, 0.00988737, -0.00725976797, -0.04640292, 0.0216574036, -0.00415811315, 0.014709156, -0.00211630366, 0.0151425758, -0.00678910175, -0.0120206047, 0.0120273763, 0.00929819141, -0.00184033765, 0.018298408, -0.00651144283, -0.0174857471, -0.00260728598, 0.0290119834, 0.0218605697, 0.0642543659, 0.00751711, -0.0163073894, -0.010998006, 0.0190704353, -0.00377548556, -0.0219824687, -0.0374365635, -0.00459153205, 0.0146685233, 0.0231201928, -0.00566492137, -0.0116752237, 0.00321847457, -0.0473510213, 0.0111740828, -0.0120476931, 0.00668074703, 0.00928464718, 0.0213052519, -0.00307287276, 0.000805465155, 0.0300955307, -0.00960293878, -0.0240141191, -0.00274611544, 0.0242579188, 0.0147227012, -0.0193548668, 0.0427730344, -0.00226359838, -0.00456782943, -0.0980068669, 0.00328619615, -0.00313382223, 0.01577916, -0.0174857471, 0.010496866, 0.00439852523, -0.0100837629, -0.0267094448, 0.00700242538, 0.0138423182, 0.000552355254, 0.0036874474, 0.0124269342, 0.0124946563, -0.00345380744, -0.00271394779, -0.00644372124, -0.00705660274, 0.00450010784, 0.0257207081, 0.0207363889, 0.0118309837, -0.00526536349, -0.0234046243, 0.0175941, 0.00320154405, -0.00740198325, 0.0267094448, 0.00896635465, -0.0179733429, -0.0105374986, 0.0174992904, -0.0240953863, 0.00269024516, 0.00489289407, -0.00566153554, -0.000283161411, 0.00244475389, -0.0193006881, -0.00415472733, -0.0137204193, -0.0192600563, 0.0148175107, 0.00140099297, 0.0418520197, 0.0306914803, -0.013862635, -0.0160229579, -0.0217928477, 0.00239565573, 0.00436127838, 0.00531276828, 0.00104968657, 0.0201404374, -0.00377548556, 0.00673492439, -0.0125556057, -0.00849907473, 0.00167187979, 0.0442358255, -0.00981964823, -0.00753742689, -0.0347547829, 0.00422922103, 0.00667058909, 0.00451365206, 0.017350303, 0.00391431525, -0.040362142, 0.0275221039, 0.0180004314, 0.0052619772, 0.00829591, -0.011255349, 0.0135443425, 0.00644372124, 0.00508928671, 0.000876149687, -0.0163886547, -0.00688729854, -0.00348089612, 0.00545498403, -0.00243628863, 0.00382627686, 0.000130999193, -0.000532038743, 0.0168762505, -0.0157249812, -0.0180816986, 0.00364342821, 0.0235807, 0.0116278185, 0.010374967, 0.0152915632, 0.0333461724, -0.00557011086, -0.0102666123, -0.0070159696, 0.0054312814, -0.00423260732, -0.00351475691, -0.0116210459, 0.0354049131, -0.0258019734, -0.00813337788, -0.00900021568, -0.018420307, 0.00233301311, 0.00632859441, -0.0182035975, -0.0243933611, -0.0113501595, -0.00531954085, 0.0147904223, 0.0196392965, 0.00993477553, 0.00356216216, 0.0251112115, -0.00287986593, -0.00738166692, -0.00979256, 0.0124269342, -0.0221991781, 0.00254464336, 0.00788958, -0.0147362454, -0.0140454834, -0.0371115, -0.0116142742, 0.00837717578, 0.00275627384, -0.0124675678, 0.00721236272, 0.00452719675, 0.0122440858, 0.0112079438, 0.0175941, 0.0438024066, -0.034321364, -0.0047439062, 0.0341046564, 0.00139845337, 0.0149123212, 0.00228052866, 0.00689407066, -0.0134495329, -0.00477776676, -0.0107745249, -0.0382492244, -0.00681280438, -0.00770673109, -0.00975192711, -0.00124354, 0.00489628, 0.00329974061, -0.00902730413, 0.00946749561, 0.00335053192, 0.004429, 0.0159281474, 0.0131583288, -0.00170574069, -0.0231472813, 0.00952167343, -0.0189756248, 0.0158875138, 0.0162125789, -0.0270209648, -0.00200286973, 0.0218199361, -0.0128332647, 0.00307795196, -0.00982642081, 0.0204113256, 0.00988737, 0.0345922522, 0.0139913065, 0.001206293, 0.0237432327, -0.0121357311, 0.0156708043, 0.0186370164, -0.0121357311, 0.00544821192, 0.0206144899, 0.00966388825, -0.00316599, 0.0119935153, 0.00580375083, -0.0109031964, 0.00395494793, 0.00622701179, 0.0171335936, -0.0148581443, -0.0242714621, -0.0340233892, 0.0175534692, 0.0177566335, 0.02030297, -0.0244610831, -0.0143570034, 0.00732748955, -0.0112011712, 0.0254362766, -0.00494029885, -0.027278306, 0.0135917477, -0.0244339947, -0.0264927354, -0.0157520715, -0.0156166274, 0.00408023316, 0.000362099556, 0.00414795522, 0.0016862707, -0.0140725719, 0.00401251158, 0.0271293186, 0.0107271196, 0.0295266677, 0.0185015723, 0.0160635915, 0.00426646788, -0.0307185706, 0.00281553017, 0.0154270064, 0.0360821299, 0.013327633, -0.00234994339, 0.00185218884, 0.0104765492, -0.0119528826, -0.0056209024, 0.0145737128, -0.0223481655, 0.0257884283, 0.0111469943, 0.0151290307, 0.00619992288, -0.00555656664, -0.00544821192, -0.0128535815, 0.00633536652, 0.0189214479, -0.0147227012, -0.0362988375, 0.0166730862, -0.00604077708, 0.0207905658, -0.0105849039, 0.00171251281, -0.00234486442, -0.0313687, 0.00530599616, 0.0239057653, -0.0196663868, -0.0212917067, 0.0103275618, 0.0166595411, -0.0193684101, -0.0130499741, -0.00188943581, 0.0122305416, -0.00362649793, -0.0183796734, 0.000900698826, -0.0120680099, 0.0208041109, -0.00979256, 0.00320493, -0.0100228135, 0.000395113864, -0.00383643503, 0.0135511151, -0.0161990337, -0.0104426881, -0.025774885, 0.00939300191, 0.0168085303, 0.00301361619, -0.0113298427, -0.00368406135, -0.0055159335, 0.0101582576, -0.00992123131, 0.0190704353, -0.00363327, -0.0188401807, 0.0126165552, -0.0412018895, 0.0390077084, 0.0165511873, 0.00866160728, 0.0259238724, -0.00766609795, 0.0259780493, -0.00921015348, -0.0241495632, 0.00361633953, 0.0103004724, 0.0302309729, -0.01999145, 0.00626087235, -0.00444254465, 0.000211312916, 0.0231472813, -0.00979933236, -0.0160365012, 0.00375178293, -0.0351882, -0.0243391842, 0.0074223, -0.0217793025, 0.0230389275, 0.00216709496, 0.00948104, 0.0146143464, -0.0102327513, -0.0128874425, 0.0131041519, 0.0129348477, 0.00662318384, -0.000642509782, -0.00880382303, -0.0046592541, -0.0247726031, -0.0165240988, 0.0309894569, 0.000932866591, -0.00671799388, 0.00329296826, -0.0321813598, 0.00352491532, -0.000261575129, 0.00194699934, 0.0313957855, -0.00654530386, -0.029797554, -0.00892572198, -0.0110860448, 0.0378699824, 0.0121899089, -0.0176889114, 0.00654868968, 0.0120544648, -0.022253355, -0.0273189396, 0.00383982132, -0.0185422059, -0.00588840293, 0.00778799737, -0.0121763647, 0.00433419, -0.00139252772, 0.0200320836, -0.00248877308, 0.010117624, -0.0221314561, -0.0150613096, 0.0104630049, 0.024704881, 0.0106797144, -0.00991445873, -0.000962494873, -0.0110047786, 0.000734780624, -0.00853970833, 0.0119731994, 0.0133411782, 0.00169304281, -0.0388993546, -0.000668328663, -0.00404298631, 0.00373823871, 0.00845167, -0.00291372673, 0.0226596855, 0.01175649, 0.0246913377, -0.0218334813, 0.0145872571, 0.022442976, -0.00127486128, -0.00336238323, -0.00804534, -0.0184609387, -0.000149199404, 0.00664011389, -0.00790989585, -0.0048082415, -0.031883385, -0.0214136057, -0.00264284, 0.0309623685, -0.00202487921, -0.00123507471, -0.0158197917, 0.00151358033, -0.00148649164, -0.0089799, 0.00187081238, -0.00836363155, 0.00593242235, 0.01709296, -0.0122373141, -0.00108947314, 0.010496866, -0.0039414037, 0.0145195359, -0.00614574552, 0.022754496, -0.00662656967, -0.0158062484, 0.0169304293, 0.0408497378, -0.00670106383, 0.0291745141, -0.0322355367, 0.00972483866, -0.0264385566, 0.0175128356, 0.0106526259, -0.0110521838, -0.000910857052, -0.0081266053, -0.0294724908, -0.0259509608, 0.0446150638, 0.0115736406, -0.0263572913, 0.00436466467, 0.0381679572, 0.0226596855, -0.0102056628, 0.00151611993, 0.00221280707, 0.0303935055, 0.00341656059, -0.0427730344, -0.0050825146, -0.0101921177, -0.0217386708, 0.00851262, -0.0232827254, 0.0185151175, -0.00920338091, 0.00306271459, -0.000498601119, -0.00262083043, 0.00736135058, -0.00830945466, 0.0395223908, 0.0119799711, -0.00780154159, 0.00987382606, -0.0164563768, 0.00657577859, 0.0135917477, 0.00594596658, -0.000198403461, 0.00691438699, -0.00801147893, 0.00528906612, -0.0257071629, 0.024894502, -0.00336915534, -0.0239193104, -0.00209768, 0.00983319338, 0.0099754082, -0.0078624906, -0.0238922201, -0.0142351044, 0.0181223303, -0.00683312118, -0.00990768708, -0.0364613719, 0.0126097836, -0.00321000931, -0.00761192059, -0.00564799085, 0.0205061343, 0.00977224298, -0.00791666843, -5.3568936e-05, 0.0378699824, 0.00348428218, -0.0021027592, -0.00213323394, 0.0113840206, 0.0159416925, -0.00543466769, -0.000347708672, -0.0262489375, 0.014018395, 0.0119731994, 0.0149800433, -0.00676539913, -0.0142892813, 0.00849907473, 0.00770673109, -0.0177024566, -0.00624055602, -0.00243967469, 0.00483533042, 0.0135307983, -0.00133581087, 0.000135655064, -0.00196054368, 0.013138013, 0.00712432433, 0.00483194413, -0.00830945466, -0.010219207, -0.00778122479, 0.00146956125, 0.0223210771, 0.00219418365, -0.0051028314, -0.0258967839, -0.0139777623, -0.000560397166, -0.000210572209, 0.0149394106, -0.00376532739, 0.00825527683, 0.00863451883, -0.00198086025, 0.00781508628, 0.00612204289, -0.0145872571, -0.000496484805, -0.0043951394, 0.00918983668, -0.0227409527, -0.00166256807, 0.0197747406, 0.020682212, 0.000455005269, -0.00461523468, 0.0256258976, -0.015589539, 0.00840426516, 0.0286869183, 0.0293641351, -0.000910857052, 0.0047439062, 0.0184880272, 0.0153863737, 0.0254904535, -0.0208312, -0.0219689235, -0.00871578511, -0.0176076461, -0.00409039157, -0.0100024976, -0.00104884, -0.0106932586, -0.0115939574, 0.0107000312, -0.00485903304, 0.0124269342, 0.0345651619, 0.00199101842, 0.00896635465, -0.0136120645, 0.00176922977, 0.0127655435, -0.00416488526, 0.0125285173, -0.0300413519, -0.011533008, -0.00749002164, 0.0221450012, -0.00448317733, 0.000808851211, 0.0128332647, 0.0144653581, 0.0116684511, 0.0202352479, -0.000348555186, -0.00684327912, -0.00958939455, 0.014018395, -0.0150342202, 0.00819432735, 0.0109167406, -0.012291491, 0.00727331219, 0.00277997646, -0.00493691303, -0.00133665733, -0.0136797866, 0.00707014697, 0.00121052563, -0.00392108737, 0.0154270064, 0.0113501595, 0.01160073, -0.00922369771, 0.0198830962, -0.0191787891, -0.00935914088, -0.0182577744, -0.00120036735, 0.00706337485, 0.00113941787, 0.0144518139, 0.0115533248, -0.0022314305, -0.00523150247, -0.00917629246, 0.0111131333, 0.00477776676, 0.00656900648, -0.0190433469, 0.0123253521, -0.0149258655, 0.00755774323, 0.000674254319, -0.00933882408, -0.00230931048, -0.00762546528, 0.00990091451, -0.0142757371, 0.00488950778, -0.000164860045, -0.00245829835, -0.0103681944, -0.0280638784, 0.0223481655, 0.00719204592, 0.00412425259, -0.00198255316, 0.0151561201, -0.000318503677, 0.0151561201, 0.00326587958, -0.00459153205, 0.00173367595, -0.0172690377, -0.00232285471, 0.00414118264, 0.0187318269, 0.0200591721, 0.000947257504, 0.0162396673, -0.00673153857, 0.00648096809, 0.000413737347, 0.0317479409, -0.0130973794, 0.00439852523, -0.0137678245, 0.00976547133, -0.0126978215, 0.00726654, 0.00971806608, -0.0115939574, -0.0121289594, -0.00600352976, 6.33303862e-05, -0.00386691, 0.0177701786, -0.0155353611, 0.00178108108, -0.00830268208, -0.0158197917, -0.00583761185, -0.00914920401, -0.0198966395, -0.00638954388, -0.0231608264, -0.0106526259, -0.0110047786, -0.00996186398, 0.0038906124, -0.0160094127, -0.010219207, -0.00589178922, 0.00517055299, -0.00670783594, -0.0102056628, 0.00188097067, -0.0175941, -0.00204688893, -0.0113162985, -0.0186234713, 0.00627103075, 0.00974515453, 0.0032489493, 0.00382289081, 0.0111266775, -0.00170320109, 0.00738166692, -0.0217386708, -0.0253414661, -0.0101311682, 0.0167678967, 0.0191652458, -0.0301497076, -0.0129145309, -0.00952167343, 0.00711078, 0.00900698826, -0.0109235123, -0.0103614228, -0.0103275618, 0.00344534218, 0.0243662726, 0.0114178807, 0.0132260509, -0.0161448568, 0.0149664991, -0.039603658, 0.0191517, -0.00893249456, 0.000550662167, -0.00851939153, 0.00728685642, -0.00770673109, -0.0113162985, 0.00425292365, 0.00216032262, 0.00141623034, 0.00689407066, 0.00716495747, -0.0179462545, 0.00509605883, -0.0172013156, -0.020113349, -0.0110454112, 0.00471343147, -0.0157249812, -0.00143062125, 0.00784894638, -0.00512992, -0.0318292044, 0.0171742272, -0.0212781634, -0.00915597565, 0.00267331465, 0.00386691, 0.0260728598, -0.0283889435, 0.00124607957, 9.05777924e-05, 0.00638954388, -0.0188401807, 0.0122644026, 0.00561751612, 0.00714464067, 0.006318436, 0.015657261, -0.0404163189, -0.00556672504, 0.00734780589, 0.00323201879, 0.00582745345, -0.00131380127, 0.000810544298, -0.000645049324, 0.00532969879, 0.00112502696, 0.0248538684, -0.0253279209, 0.0182171408, 0.013673014, 0.0104494607, -0.0128197204, 0.0011631205, 0.00262760255, 0.00299668591, -0.0122440858, 0.0103207892, -0.00169727544, 0.0127181383, 0.0235265233, 0.00112248748, -0.000734780624, 0.0133208614, -0.00410732208, 0.0041107079, -0.0249622241, -0.0205332246, 0.0144247254, -0.0383304916, 0.0244610831, 0.0060543213, -0.00223312364, -0.00858711358, -0.000978578813, -0.009616483, -1.4946394e-05, 0.0062134671, 0.00568523817, 0.00618299237, 0.0146685233, 0.00450688, 0.0042258352, 6.04733759e-05, 0.00275966, -7.06845385e-05, -0.00849907473, 0.00342163956, 0.0191787891, 0.000306017493, -0.00613558711, 0.0218199361, -0.0141132055, -0.0344839, 0.010029586, 0.00133073167, 0.0183254965, 0.00110809656, -0.0016642611, 0.0060441629, 0.0150477653, 0.00302038854, -0.0089799, -3.01573255e-05, -0.00986028183, 0.0204790458, 0.0145330802, -0.018041065, -0.00239904178, -0.00601368817, -0.0042156768, 0.00968420506, 0.00900698826, -0.0203842353, 0.0018267933, -0.00954876188, 0.0123524405, 0.0232827254, 0.0086548347, 0.00462539308, -0.00902730413, 0.00921692513, 0.00975869875, -0.00747647742, -0.0175941, 0.00550577557, 0.00107762183, -0.0210479088, 0.0016642611, 0.00778122479, 0.00657577859, 0.00154659466, -0.00914243143, 0.0157656148, 0.0126165552, 0.0129619362, 0.0179868881, -0.0171335936, -0.00293742935, 0.0186370164, 0.0239193104, 0.0164834652, 0.00115296221, -0.0146008013, 0.00981964823, -0.0300684404, 0.0109099681, -0.0292828698, 0.00780831371, 0.0106797144, -0.0133750383, -0.0196799301, -0.00661302544, 0.00815369468, -0.0190975238, 0.00694824802, -0.0384117551, 0.000557434338, -0.00682973489, 0.00774736423, 0.000670868263, 0.0224023424, 0.0246642493, -0.0275221039, 0.0013375039, -0.0089799, -0.000922708365, -0.0105442712, 0.0105578154, 0.00285785645, -2.65067029e-05, 0.00490643829, 0.022253355, 0.00150511507, 0.00476760883, -0.00734103378, 0.00195207843, 0.0158197917, -0.00358925085, -0.000222423507, -0.00835008733, 0.0275491942, -0.0069211591, 0.00953521766, 0.0124201626, -0.000449926127, -0.0119935153, 0.00232454785, 0.0098805977, -0.00809951685, -0.0104156, -0.0204248689, 0.0115126912, 0.020370692, -0.0414186, -0.00473713409, -0.00834331568, -7.5816577e-05, -0.0200862605, -0.0264656469, 0.000379453239, -0.0234858915, -0.00443238625, -0.0148039665, 0.00935236923, 0.00366374478, -0.00792344101, -0.011533008, -0.00967743341, -0.0102124345, -0.014018395, 0.0314228758, -0.00823496, 0.00743584428, 0.00837040413, 0.00146363559, 0.0030288538, -0.0123998458, -0.00184203067, -0.0122779468, -0.00659948122, -0.00950135663, 0.00516039459, 0.00332175, 0.0138423182, -6.35420147e-05, 0.00371792214, -0.0102666123, 0.0157114379, 0.0109709175, -0.00308133801, -0.0142486487, -0.00804534, 0.0156030832, 0.00321170222, -0.00581729505, 0.0047235894, 0.031883385, 0.0121357311, -0.000731817796, -0.0446421541, -0.00277489726, 0.00564121874, -0.0070159696, 0.0106458534, 0.0121357311, -0.0151154865, -0.0112485765, 0.00136459258, 0.015278019, 0.0168085303, 0.0247996915, 0.0275085606, 0.0081469221, 0.00893249456, 0.00157114374, -0.0209801868, -0.0130499741, -0.00969774928, -0.0037213082, 0.00163293979, -0.00338439271, -0.00162786071, 0.0107271196, -0.0143163707, -0.00158299506, 0.0206686668, -0.0134969382, 0.00983319338, -0.00733426167, 0.0206009448, 0.00862097461, 0.00493691303, -0.000438074843, 0.0113027543, 0.00130448956, 0.00132988521, -0.00143062125, 0.0149123212, 0.0083162263, 0.0214813277, -0.000455428526, 0.00824850518, -0.00748324953, 0.01241339, 0.0257071629, -0.00432403153, -0.00877673458, -0.00406668894, 0.00955553353, -0.0156437159, 0.0136662424, 0.022063734, -0.019734107, -0.0057800482, -0.000287605653, 0.00592565024, -0.0131989624, 0.0246913377, 0.018041065, -0.0078828074, 0.000598067418, -0.00723945117, -0.01191225, 0.00647419598, 0.00503849564, 0.0137813687, -0.020181071, 0.00983319338, -0.0027986, -0.0100837629, 0.00451026624, -0.0123727573, 0.00292219198, -0.00162362808, -0.0273595732, -0.0281451438, -0.019734107, 0.00408361945, 0.000667058863, 0.0116684511, -0.0175128356, 0.00583761185, -0.00538387615, -0.0270209648, -0.00140691863, -0.0145601686, -0.00268008676, 0.0025801973, 0.00552270561, -0.0176211894, -0.0121899089, 0.00773382, -0.0061389734, -0.0109438291, 0.0287681837, -0.0250705779, 0.00801825058, 0.00555318082, -0.000401674421, 0.0208447445, 0.000348978472, 0.00653853174, -0.00412425259, 0.00826204941, 0.00131888036, -0.00379918818, -0.00325233536, -0.0191110671, 0.0222262666, 0.0147904223, -0.0033674622, 0.010686487, 0.017350303, 0.00144162599, 0.0041107079, 0.00521118613, 0.00277997646, 0.0184338503, 0.00369421951, 0.0148446, -0.00869546831, -0.00607463764, 0.00308303116, 0.0064132465, 0.00419536, -0.00858711358, -0.0322084464, 0.00956230611, 0.00106153789, 0.0145737128, -0.0126300994, -0.00681280438, -0.0139913065, -0.00644710707, -0.00411748, -0.0121899089, 0.0206415784, 0.0145059917, 0.0120070595, 0.0223210771, 0.0117768059, -0.0227138624, 0.00699565327, 0.00281722331, -0.0199101847, -0.0252195671, 0.00762546528, 0.00594596658, 0.0128468089, 0.0201268941, 0.0237838663, 0.00696179224, 0.0224023424, -4.96802277e-05, 0.0133344056, 0.0231066495, 0.0120341489, -0.00102852355, 0.00537710404, 0.0166053642, 0.00233301311, -0.000916782708, -0.00239565573, -0.0129145309, 0.012670733, 0.0143434592, -0.0131921899, 0.00757128792, -0.0276981816, -4.9256967e-05, 0.0219824687, 0.00892572198, -0.0022771426, -0.00685005123, 0.0204113256, -0.0128468089, 0.00190298015, 0.00153051072, 0.0130093414, 0.01678144, -0.0154270064, -0.00524504669, -0.00524166087, 0.0326960422, 0.00504865404, -0.0141809266, -0.00400912529, 0.000337550417, -0.00843135361, 0.0222262666, -0.0136256088, 0.0178108104, -0.00551254768, -0.01546764, -0.00987382606, -0.0136797866, 0.0214677844, -0.011153766, 0.01225763, 0.0203300584, -0.0207634773, -0.0164022, -0.0223888, 0.0246913377, -0.00769995898, 0.00581729505, -0.00193853409, 0.0108083859, -0.0198966395, 0.0211698078, 0.00566492137, 0.00241597206, -0.0150613096, 0.0185286608, 0.01210187, -0.0303935055, 0.010876107, 0.0194361322, -0.00280706515, -0.00536356, -0.00288663805, -0.0158062484, 0.00750356587, 0.0125285173, 0.00292388513, 0.00332682929, 0.035269469, -0.00268008676, -0.0220908225, -0.0139100403, 0.030366417, 0.0250570346, -0.000351518, -0.0143705476, 0.0249622241, 0.00095064356, -0.0192871448, 0.00552270561, -0.00630150549, 0.0060441629, 0.0146008013, -0.000809274497, -0.0185692944, 0.0177701786, -0.00222804444, 0.0122102248, 0.0120273763, -0.020370692, 0.00967066083, 0.0139100403, -0.00339455088, -0.00966388825, 0.011722629, 0.00326080061, -0.0215625931, -0.0170794167, 0.0113704763, -0.00423937943, -0.0119393384, 0.0297704656, -0.00342163956, -0.00503510935, -0.000180097428, 0.00740198325, -0.0164157432, 0.00967066083, 0.0081469221, 0.00780831371, 0.0162261222, 0.0194903091, -1.49067137e-05, 0.0175128356, 0.00460846256, 0.00757128792, 0.027657548, 0.00192498975, -0.0015093477, -0.00209937315, 0.00295774592, -0.0205467679, -0.00117835787, -0.00927110296, 0.00110894302, 0.0102327513, 0.0165918209, 0.0164292883, -0.00327942404, -0.00853970833, 0.00173367595, 0.0166324526, 0.00496400148, 0.00727331219, -0.00212815497, -0.00257342518, 0.00642679073, 0.0117903501, 0.00838394836, -0.0141809266, -0.00692793122, -0.0230795611, -0.00919660926, 0.00847875886, -0.00882414, -0.00299668591, -0.00339963, 0.0176076461, -0.000357866928, -0.00621008128, 0.017282581, -0.0172419492, -0.0126639605, 0.00624732813, -0.0211833529, -0.00857356936, 0.0356757976, -0.00345550058, 0.00423599314, -0.00323032588, -0.00711755222, 0.0206009448, 0.0172284041, 0.0118377553, -0.0147227012, -0.00894603878, -0.00175568543, -0.000539234141, -0.00622701179, -0.00711755222, -0.0168220736, 0.00204519578, 0.0203436036, -0.0142757371, -0.00778799737, -0.00489966618, -0.0303935055, 0.00375178293, 0.0112756658, -0.00710400799, 0.00072589214, -0.0107542081, -0.0222669, -0.0266688112, 0.0151832085, -0.0188401807, 0.00935914088, 0.0135443425, -0.00319985091, -0.0221314561, -0.00238041836, 0.0043104873, 0.0122102248, 0.012291491, -0.0247184262, -0.00107762183, -0.0193819553, -0.00255818781, 0.00813337788, -0.00490643829, 0.011031867, -0.0200591721, -0.0112756658, -0.00397526473, 0.00420213258, 0.0114788311, -0.00369083346, -0.00876996201, -0.00570216822, -0.0105510429, -0.0125217447, 0.00444254465, -0.0319917388, 0.00407007523, -0.0129348477, 0.0180275198, 0.0106661702, 0.0231608264, 0.0168356188, 0.0145737128, 0.00506558409, 0.0183932185, -0.0112756658, 0.0166189093, 0.0195038542, 0.00264453306, -0.0128874425, -0.000981964869, 0.00834331568, 0.00995509233, -0.00101159315, 0.00742907217, 0.0121425036, 0.0189079028, -0.0191652458, -0.00370437768, -0.00386013766, 0.00965711661, -0.0123118078, 0.0346193388, 0.00169050333, -0.0067416965, 0.0233098138, -0.0044696331, 0.0109912343, -0.00901376, 0.00906793773, 0.00240242784, -0.0180139765, 0.00187758449, 0.00369083346, 0.00634552445, -0.0222804435, 0.00486580515, 0.0127045941, 0.00991445873, 0.0135646593, -0.0246642493, -0.00320493, 0.0159010589, 0.0112824375, 0.022063734, -0.0157385264, 0.00347412401, -0.00286801462, 0.00540757878, -0.00229745917, -0.0200456269, -0.00376532739, -0.000468972867, -0.00102429092, 0.0228763949, -0.0100973081, -0.0108287018, -0.000838056207, 0.0045644436, -0.0311519895, -0.017539924, -0.00148310559, 0.00566492137, -0.000822818838, 0.0132666836, -0.00625748653, -0.0039414037, -0.00396849262, -0.0111063616, 0.0193954986, -0.01210187, -0.000985350925, 0.00795052946, -0.0044594747, 0.0188537259, 0.023011839, -0.00575973187, 0.00303393276, 0.00174891332, 0.00644372124, -0.0115397805, 0.00249215914, -0.0166866314, -0.00407346105, 0.0246777926, 0.00278674858, -0.000239353933, 0.0271293186, -0.0135037098, 0.00213154103, 0.0164157432, -0.0164699201, 0.004903052, 0.00632859441, 0.0132802278, 0.0115126912, -0.00272749201, -0.0116887679, -0.0187047385, 0.0056005856, -0.00728685642, -0.00625071442, 0.0149258655, -0.0156978928, 0.00533308508, 0.00697533647, 0.00387706817, -0.0132125067, -0.00199779053, 0.0133614941, -0.00207228446, 0.0244610831, 0.00676878542, -0.00874287356, -0.0111334501, -0.0300955307, -0.00888508931, -0.051116351, -4.0130406e-05, -0.00519086933, 0.0122644026, -0.0070904633, 0.00906116515, -0.00993477553, 0.015657261, 0.00828236528, 0.00722590694, 0.00577327609, 0.00317953457, -0.0170116946, 0.00105984486, 0.00227206363, -0.0183525849, 0.0166053642, 0.00313720852, -0.00522811618, 0.0013857556, 0.0242985506, -0.00634552445, -0.00187250541, -0.00925078616, 0.0150748538, 0.00100397447, -0.00168796373, -0.0027257991, -0.00655546179, -0.0126910489, -0.00337084825, -0.013794913, 0.00221111393, -0.00694147591, 0.0158875138, -0.00444593048, -0.0247184262, -0.0338879451, 0.00239565573, -0.00196900894, -0.00384997949, 0.00126639602, -0.00898667146, -0.00931173563, -0.00624055602, 0.00480146939, 0.019923728, 0.00522811618, 0.00912211463, -0.000811390812, -0.0275762826, 0.00116142735, -0.0237567779, 0.0089799, -0.003159218, 0.00547530083, 0.0107338922, -0.0183661282, 0.0219824687, -0.00131380127, -0.00104884, -0.00876996201, -0.020560313, -0.0181900524, 0.00261067203, -0.0123388963, 0.00156860426, 0.0216844939, 0.00935236923, 0.0173096694, -0.00514346408, 0.000357655314, 0.00914243143, -0.000433419, -0.00746970531, -0.0178378988, -0.00667397492, -0.0035926369, 0.012948392, 0.0108354744, 0.00418858789, -0.0162261222, 0.0128535815, 0.00275119464, -0.00280198595, -0.0225513317, -0.00342163956, 7.00496457e-05, 0.00362649793, -0.00386352371, 0.0116278185, -0.0236213338, 0.00687375385, 0.0275627375, -0.0204384141, 0.00213492708, -0.00551932, -0.00179801148, 0.0343755409, -0.0133208614, 0.00416827155, 0.00440529734, -0.0154811842, -0.00478792517, 0.0127316825, -0.00792344101, -0.00554979453, -0.0219553802, -0.00166256807, 0.0280638784, 0.00615590392, -0.0113027543, -0.000401462778, -0.00253448519, 0.00529245194, 0.0198830962, -0.0047235894, 0.00747647742, -0.00864806306, -0.0117158564, -0.0241495632, -0.0288765393, -0.000381569524, -0.0151154865, 0.0122711742, 0.00250739651, -0.00789635163, 0.0127655435, -0.00500124879, -0.0235536117, -0.0299329981, 0.0079776179, 0.00704305852, -0.0143840918, -0.0280097015, -0.0179327093, -0.0202352479, -0.00984673761, -0.0146685233, -0.00246845651, 0.0109573733, 0.00503172353, 0.00139676034, 0.0162125789, -0.006836507, -0.00663334178, -0.0037720995, 0.0131041519, -0.00417165784, 0.00536356, -0.00459153205, 0.0141132055, -0.00102344446, 0.0260322262, -0.0100973081, 0.00989414286, -0.00945395138, 0.00541773718, -0.0032032372, 0.00953521766, -0.0113569312, -0.0185151175, -0.0307185706, -0.0133479498, -0.0071852738, -0.000952336588, -0.000846521405, -0.0194632206, -0.0142757371, 0.000474898523, 0.0264521018, 0.00738166692, 0.00726654, 0.0166595411, 0.0131244687, 0.0108016133, -0.00574280135, -0.0347547829, 0.000714040827, 0.0168491621, -0.00077752996, 0.00364681426, -0.00729362853, -0.0013129547, 0.00101582566, -0.0254498199, -0.000841442321, 0.00601368817, -0.0121628195, -0.00262760255, 0.00862774625, 0.0123185795, -0.0146278907, -0.000755943649, 0.0144653581, 0.00339963, -0.00627780287, 0.00528906612, 0.0174044799, 0.00506897038, -0.00233809231, 0.000936252705, -0.0240547527, 0.00491998252, 0.000386225409, -0.00689745648, -0.0123998458, 0.0156166274, 0.00142046297, -0.0122982636, 0.00345550058, -0.00474052, -0.0129213035, -0.0127655435, -0.0183796734, -0.00668074703, -0.0182713177, 0.00171928504, -0.00393463159, -0.0015770694, 0.0108490186, -0.0201268941, 0.0221179128, -0.0024108931, 0.0234858915, -0.000704305829, 0.017539924, 0.0266417228, 0.0204655025, -0.00271733385, 0.000309403578, 0.000768641476, 0.0136797866, -0.010029586, 0.0215896834, 0.00852616411, -0.00740875537, 0.0255988073, -0.00161939545, 0.0262083039, 0.0108219301, -0.00149411033, -0.0129890246, -0.0108557912, -0.0177972671, 0.0105239544, 0.021874113, 0.0076186927, -0.00426985417, -0.008858, 0.00992800295, -0.010307245, 0.0082214158, -0.0116819954, 0.0187453702, 0.00826204941, -0.0211968962, -0.0222669, 0.0019283758, 0.0278742574, -0.00175737846, 0.00247353571, -0.0128468089, -0.00913565885, -0.0117429458, 0.00170320109, 0.00451703835, -0.0260322262, 0.0113366153, -0.00672815228, 0.0147633338, -0.0181765091, 0.00751033798, -0.01546764, 0.0151832085, -0.0187589154, -0.00362649793, -0.00430710102, 0.0116887679, 0.000854986662, -0.0122237699, -0.00656562, 0.00161516294, -0.000115867624, 0.00226867734, -0.0206551235, 0.00136543903, 0.00837040413, 0.012291491, -0.00730717322, 0.00151019427, 0.00405991683, 0.00280367909, -0.00250570336, -0.020939555, -0.0245558936, 0.00520102773, 0.00113433867, 0.00328958221, -0.00123676786, -0.00394817581, -0.022375254, -0.00881059468, 0.000412044319, -0.00227883575, -0.00104291446, -0.00704983063, -0.0120883258, -0.017282581, -0.0277388152, -0.0203977805, 0.0083162263, 0.0118106669, -0.00826204941, -0.0087496452, 0.0103343334, 0.0119393384, -0.0101447124, 0.00769318687, -0.018420307, -0.0082214158, -0.0203165151, -0.00864806306, -0.00906116515, 0.0243662726, -0.0100769913, 0.0196663868, 0.00987382606, 0.0158604253, -0.00369083346, 0.00314905983, 0.000122639787, -0.00178954634, -0.00847875886, -0.00175229937, 0.0019453062, -0.00426985417, 0.000215757143, -0.0116278185, 0.000833400351, 0.00918983668, 0.0120680099, 0.0015821486, 0.00149580336, 0.0389535315, -0.0219282918, -0.0070159696, -0.00486241933, 0.0218199361, 0.00870901253, -0.0281451438, 0.0033725414, 0.0236213338, 0.012792632, -0.00232285471, 0.00195715763, -0.00426646788, 0.00149326376, 0.00986705348, -0.0180816986, -0.00125454471, -0.0306914803, -0.00649112649, -0.019734107, -0.01175649, 0.0174586587, 0.0161042232, 0.00939977355, -0.0116345901, -0.0160635915, 0.00292049884, -0.01999145, -9.81435805e-05, 0.0863045529, 0.0115397805, 0.00881059468, -0.0178649891, 0.00266654254, -0.00520441355, -0.00898667146, 0.0310707223, -0.00546514243, 0.0164563768, 0.00956907868, -0.00171081978, -0.00119952089, 0.0246642493, -0.0122847194, -0.0276981816, -0.00165156333, -0.0108016133, 0.00345550058, -0.0108219301, 0.015210297, -0.0119461101, 0.00243798178, -0.000277659041, -0.0204113256, -0.00279352069, 0.0044797915, 0.0104020555, -0.0190027133, 0.00799116213, -0.0156843495, 0.0111131333, -0.00830268208, 0.0150613096, -0.00476760883, 0.0140048508, 0.0258696955, 0.00407007523, 0.029987175, -0.0109235123, 0.0105104102, 0.0104359165, 0.0207228456, 0.0129077584, 0.000277024141, 0.0175534692, 0.00703628594, -0.00433419, 0.018298408, -0.00678571593, -0.0121899089, 0.0137001025, 0.00790989585, -0.0164834652, 0.00900698826, 0.00195715763, 0.0297704656, -0.0101718018, 0.0129213035, -0.00355539, 0.00868192408, -0.017539924, -0.0143434592, 0.0190568902, -0.0121492753, -0.00323371193, 0.00950135663, -0.0162125789, -0.0139100403, 0.000186446341, 0.0108354744, -0.0108490186, 0.00696856435, 0.00713786855, 0.00509605883, 0.017539924, 0.00800470635, 0.0219689235, 0.00995509233, -0.0264385566, -0.000312578049, 0.0107542081, -0.0282535, -0.0422583483, 0.0121966805, -0.00795052946, -0.0217115823, -0.00122745603, -0.00751033798, 0.0370302349, -0.00498431828, 0.0150748538, -0.00159992545, 0.0179462545, 0.000232158505, 0.00859388523, -0.000708538457, 0.0098805977, 0.0119461101, 0.00575634558, 0.0218605697, 0.0167272631, -0.0236484222, 0.0108287018, 0.000303689565, 0.0034521143, -0.00348089612, 0.00468972884, 0.00531954085, 0.00930496398, 0.00774736423, -0.00722590694, 0.00137813692, 0.0114585143, 0.00102005829, 0.00440529734, 0.0206957553, 0.0279826131, 0.0258290619, 0.000791920815, -0.0165240988, 0.0171471387, -0.0127519993, -0.00576311769, -0.00846521463, 0.00945395138, 0.0130025689, 0.0106593976, 0.0244069062, 0.010876107, 0.0101785734, -0.00489289407, -0.00351814297, -0.00994832, 0.00157029729, 0.0245694388, -0.0107000312, -0.00774059212, 0.0171471387, 0.00933205243, 0.0142351044, 0.0153863737, 0.0114178807, 0.00704305852, 0.00140183954, -0.00169219635, 0.00441545574, -0.00641663233, 0.00478792517, 0.017350303, 0.0114652859, -0.001383216, -0.014709156, -0.0116616795, 0.00916274823, -0.00636922708, 0.00854648, -0.0144111812, -0.0206686668, -0.0185963828, -0.019232966, 0.0187724587, 0.0371115, 0.0043748226, 0.00383304898, 0.00482178619, 0.00799793471, -0.00206720526, 0.00725976797, 0.0114246532, 0.028226411, 0.00156775769, 0.019232966, 0.00802502315, 0.00775413634, 0.00363327, 0.00723945117, 0.00118089735, -0.00503172353, -0.004903052, -0.00660963915, 0.0173909366, 0.00482178619, 0.0259780493, -0.0140996613, -0.022442976, -0.00130195, -0.0192736, 0.0190433469, 0.0182848629, -0.0147633338, 0.0130161131, -0.0169168841, -0.00654191757, -0.00137983, 0.00856002513, -0.00302546751, 0.00490982411, -0.0066672028, -0.00196731579, -0.00839072, 0.00496061565, -0.0188943576, -0.0153186517, 0.00308472407, -0.00666381652, -0.0035926369, -0.0171877705, 0.000257977401, -0.00989414286, -0.00355877611]
27 Sep, 2024
"Does Artificial Intelligence Require Coding?\n27 Sep, 2024\nAs artificial intelligence (AI) continu(...TRUNCATED)
"Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligen(...TRUNCATED)
https://www.geeksforgeeks.org/does-artificial-intelligence-require-coding/?ref=ml_lbp
Data Science & ML
Does Artificial Intelligence Require Coding?
"AI ML DS - Projects, Data Science & ML, AI ML DS - How To Get Started?, 30+ Best Artificial Intelli(...TRUNCATED)
GeeksforGeeks
"[-0.0142713934, -0.0131636346, -0.00917857792, 0.0116386665, 0.0113437437, -0.000349996204, 0.02992(...TRUNCATED)
17 May, 2020
"Artificial Intelligence – Boon or Bane\n17 May, 2020\nArtificial Intelligence is a branch of comp(...TRUNCATED)
"Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligen(...TRUNCATED)
https://www.geeksforgeeks.org/artificial-intelligence-boon-or-bane/?ref=ml_lbp
Data Science & ML
Artificial Intelligence – Boon or Bane
"Artificial Intelligence – Boon or Bane, AI ML DS - Projects, Data Science & ML, AI ML DS - How To(...TRUNCATED)
GeeksforGeeks
"[-0.0252266917, -0.0178738572, -0.00776865939, -0.0161973592, 0.0128047578, -0.00359391258, 0.00292(...TRUNCATED)
05 Apr, 2024
"Artificial Intelligence Examples\n05 Apr, 2024\nArtificial intelligence (AI) has emerged as a trans(...TRUNCATED)
"Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligen(...TRUNCATED)
https://www.geeksforgeeks.org/artificial-intelligence-examples/?ref=ml_lbp
Data Science & ML
Artificial Intelligence Examples
"Artificial Intelligence – Boon or Bane, AI ML DS - Projects, Data Science & ML, Artificial Intell(...TRUNCATED)
GeeksforGeeks
"[-0.0251428504, 0.0192642696, -0.0143124918, -0.0100028561, 0.0253546908, 0.0160469376, 0.031749632(...TRUNCATED)
05 Jun, 2023
"Agents in Artificial Intelligence\n05 Jun, 2023\nIn artificial intelligence, an agent is a computer(...TRUNCATED)
"Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligen(...TRUNCATED)
https://www.geeksforgeeks.org/agents-artificial-intelligence/?ref=ml_lbp
Data Science & ML
Agents in Artificial Intelligence
"Artificial Intelligence – Boon or Bane, AI ML DS - Projects, Data Science & ML, Artificial Intell(...TRUNCATED)
GeeksforGeeks
"[-0.019728167, -0.0236827191, -0.0219284445, -0.0255261958, 0.0377020575, 0.0271764044, -0.00241398(...TRUNCATED)
27 Feb, 2025
"Transformers in Machine Learning\n27 Feb, 2025\nTransformer is a neural network architecture used f(...TRUNCATED)
"Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligen(...TRUNCATED)
https://www.geeksforgeeks.org/getting-started-with-transformers/?ref=lbp
Data Science & ML
Transformers in Machine Learning
"Artificial Intelligence – Boon or Bane, AI ML DS - Projects, Data Science & ML, Artificial Intell(...TRUNCATED)
GeeksforGeeks
"[-0.0189541597, 0.0258311164, -0.012842658, -0.00492382888, 0.0178241991, 0.0106920898, 0.019124260(...TRUNCATED)
28 Dec, 2024
"Difference Between Encoder and Decoder\n28 Dec, 2024\nCombinational Logic is the concept in which t(...TRUNCATED)
"Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligen(...TRUNCATED)
https://www.geeksforgeeks.org/difference-between-encoder-and-decoder/
Data Science & ML
Difference Between Encoder and Decoder
"Artificial Intelligence – Boon or Bane, AI ML DS - Projects, Data Science & ML, Artificial Intell(...TRUNCATED)
GeeksforGeeks
"[-0.0155134527, 0.032507088, -0.0169794019, -0.00815523695, -0.0152003365, 0.0376307964, -0.0023092(...TRUNCATED)
04 Jan, 2023
"Python OpenCV – Pose Estimation\n04 Jan, 2023\nWhat is Pose Estimation?\nPose estimation is a com(...TRUNCATED)
"Data Science & ML/AI ML DS - How To Get Started?/AI ML DS - Projects/30+ Best Artificial Intelligen(...TRUNCATED)
https://www.geeksforgeeks.org/python-opencv-pose-estimation/?ref=lbp
Data Science & ML
Python OpenCV – Pose Estimation
"Artificial Intelligence – Boon or Bane, AI ML DS - Projects, Data Science & ML, Artificial Intell(...TRUNCATED)
GeeksforGeeks
"[0.0126151461, 0.0368359201, -0.00907797273, 0.0191577598, 0.0235349145, -0.0174469706, 0.019034460(...TRUNCATED)
End of preview. Expand in Data Studio

Dataset Summary

The geeksforgeeks dataset is a curated collection of 9,438 educational articles scraped from GeeksforGeeks, a widely-used platform for learning programming, computer science, and data science topics. Each entry includes metadata such as publication date, title, full text, topic, URL, and precomputed vector embeddings (OpenAI's text-embedding-3-large).


Dataset Structure

Each entry includes the following fields:

Field Name Type Description
date string Date the article was published (format: DD MMM, YYYY).
text string Full article content.
topic string Specific topic/category of the article.
url string Original URL of the article.
root_topic string Higher-level umbrella topic (e.g., "Data Science & ML").
heading string Title of the article.
related_topics list[string] Additional relevant tags/topics.
author string Article author (It's just Geeks for Geeks).
vector list[float] Vector embedding (OpenAI's text-embedding-3-large)

Dataset Stats

  • 9,438 unique articles
  • 9,399 distinct vector embeddings (some rows may be missing embeddings)
  • 63 root topic categories

This dataset is useful for: - Text embedding search - Educational content recommendation - Topic modeling - Sentence similarity training - LLM evaluation datasets - Knowledge graph construction

Data Collection

Articles were collected using a hybrid scraping approach via Selenium and BeautifulSoup, capturing dynamic and static content across GeeksforGeeks’. Only publicly accessible, educational content was included.


Intended Uses

This dataset is released without a specific target application. Researchers and developers may find it valuable for:

  • Educational NLP tasks
  • Search engine benchmarking
  • Semantic similarity experiments
  • Dataset distillation
  • LLM performance evaluation

License

No explicit license has been assigned to this dataset. Users are encouraged to use it for educational and research purposes only and respect the rights of the original content owners (GeeksforGeeks.org).


Downloads last month
71