Time [s]
float32
80
80.4
id
int32
5
379
Type
stringclasses
6 values
x_img [px]
int32
55
3.78k
y_img [px]
int32
4
2.03k
Angle_img [rad]
float32
0
6.28
Frame
stringclasses
2 values
Image
imagewidth (px)
80
80
Mask
imagewidth (px)
80
80
80
5
Taxi
1,964
578
4.78
00001
80
21
Car
1,599
1,016
5.59
00001
80
22
Car
3,400
1,453
6.16
00001
80
25
Car
3,127
1,499
0.75
00001
80
26
Medium Vehicle
1,474
1,173
4.52
00001
80
31
Motorcycle
1,079
508
3.12
00001
80
32
Motorcycle
3,247
782
5.01
00001
80
33
Medium Vehicle
2,462
203
1.85
00001
80
34
Car
1,654
1,021
3.05
00001
80
40
Car
522
497
2.42
00001
80
65
Taxi
1,496
17
4.68
00001
80
67
Car
1,983
1,196
3.58
00001
80
87
Car
2,456
825
2.08
00001
80
94
Car
1,495
270
4.75
00001
80
95
Car
1,493
225
4.73
00001
80
103
Car
3,775
510
3.01
00001
80
104
Car
2,461
771
2.31
00001
80
105
Motorcycle
464
1,446
0.04
00001
80
106
Car
2,299
513
3.05
00001
80
108
Car
2,674
1,506
1.02
00001
80
115
Bus
2,940
1,661
4.06
00001
80
116
Motorcycle
1,449
1,250
1.64
00001
80
122
Heavy Vehicle
2,937
509
3.11
00001
80
127
Car
1,984
948
3.57
00001
80
132
Medium Vehicle
3,009
511
3.14
00001
80
139
Car
1,143
545
3.34
00001
80
148
Taxi
1,497
956
4.71
00001
80
151
Car
1,502
759
4.72
00001
80
160
Car
3,507
1,362
0.01
00001
80
171
Taxi
2,169
1,418
0.01
00001
80
176
Taxi
1,496
615
4.73
00001
80
187
Car
1,499
655
4.69
00001
80
190
Car
2,836
1,343
4.51
00001
80
192
Car
1,493
807
4.67
00001
80
194
Car
2,419
1,773
1.58
00001
80
196
Car
2,644
1,397
6.26
00001
80
199
Motorcycle
1,484
446
4.7
00001
80
203
Car
2,609
1,422
0.05
00001
80
206
Bus
1,397
1,421
0
00001
80
212
Motorcycle
1,593
1,375
6.24
00001
80
213
Car
1,519
1,372
0.01
00001
80
218
Car
2,595
1,377
6.18
00001
80
227
Motorcycle
2,734
1,370
6.11
00001
80
230
Taxi
3,474
1,434
0.04
00001
80
231
Taxi
2,697
1,406
0.03
00001
80
232
Taxi
2,320
1,373
6.28
00001
80
233
Taxi
1,928
1,417
6.28
00001
80
234
Taxi
1,499
328
4.68
00001
80
235
Taxi
1,500
413
4.74
00001
80
240
Motorcycle
1,986
356
6.16
00001
80
241
Medium Vehicle
1,302
531
3.09
00001
80
242
Motorcycle
1,506
199
4.72
00001
80
243
Motorcycle
773
516
3.15
00001
80
244
Car
1,341
1,369
0.02
00001
80
253
Motorcycle
2,440
1,803
0.62
00001
80
256
Medium Vehicle
3,014
510
3.1
00001
80
257
Motorcycle
2,515
548
2.97
00001
80
262
Motorcycle
1,702
1,394
0
00001
80
263
Motorcycle
2,183
1,401
0.07
00001
80
264
Motorcycle
1,763
1,384
6.27
00001
80
265
Car
1,838
1,396
0.01
00001
80
271
Car
306
522
3.11
00001
80
276
Motorcycle
2,756
1,394
0.06
00001
80
280
Car
3,485
1,406
0.04
00001
80
283
Car
2,745
1,419
6.25
00001
80
284
Car
2,257
1,388
0.13
00001
80
285
Car
2,311
1,396
6.26
00001
80
286
Car
1,796
1,371
0.02
00001
80
287
Motorcycle
1,697
1,426
0.03
00001
80
288
Car
1,570
1,393
6.28
00001
80
289
Car
1,118
1,399
0.01
00001
80
290
Car
3,083
1,500
3.82
00001
80
293
Car
2,860
1,416
4.33
00001
80
294
Car
2,877
1,483
4.47
00001
80
295
Car
1,495
1,463
4.69
00001
80
296
Motorcycle
2,758
1,367
6.21
00001
80
297
Car
3,605
1,528
6.24
00001
80
303
Medium Vehicle
1,500
476
4.68
00001
80
304
Taxi
1,500
172
4.73
00001
80
305
Taxi
1,556
529
3.13
00001
80
310
Taxi
1,253
1,372
6.28
00001
80
314
Car
2,404
1,930
1.63
00001
80
315
Motorcycle
1,960
527
3.17
00001
80
316
Car
1,366
534
3.06
00001
80
317
Motorcycle
2,634
1,438
6.24
00001
80
318
Car
1,431
1,394
6.26
00001
80
321
Medium Vehicle
2,429
601
1.86
00001
80
323
Car
2,421
1,632
1.56
00001
80
324
Car
2,264
534
3.13
00001
80
325
Car
2,525
1,416
0.22
00001
80
326
Car
1,114
1,295
1.58
00001
80
327
Motorcycle
2,424
1,222
1.58
00001
80
329
Motorcycle
1,479
1,383
0.02
00001
80
330
Motorcycle
1,570
1,418
6.28
00001
80
331
Car
2,410
1,272
1.57
00001
80
332
Motorcycle
1,415
1,380
0
00001
80
333
Motorcycle
3,411
519
3.06
00001
80
334
Car
1,146
1,373
6.27
00001
80
335
Car
1,058
1,394
6.27
00001
80
337
Motorcycle
2,416
1,232
1.52
00001

ORD for the Sciences Hackathon - Vehicles Detection

launch - renku Open In Colab GitHub DOI Dataset on HF

This project is an example of a hackathon project. The quality of the data produced has not been evaluated. Its goal is to provide an example on how a dataset can be update to Hugginface.

This is an example of a hackathon project presented to ORD for the sciences hackathon using the openly available pNeuma vision dataset.

Description

The goal of this project is to create a training dataset derived from the publicly available pNeuma Vision dataset, which contains drone footage and coordinates of vehicles. By leveraging machine learning techniques, specifically the "Segment Anything" model by Meta, we will accurately segment and mask the pixels corresponding to each vehicle within the footage. The resulting dataset, stored in the efficient Parquet format, will be shared on Hugging Face as a new, open-access resource for the research community. Additionally, we will document our methodology in a detailed Jupyter notebook, which will be hosted in a public GitHub repository. Our work will be registered as a derived contribution in the pNeuma RDI Hub prototype, ensuring proper attribution and fostering further research and development.

alt text

Datasets created:

Downloads last month
29