docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Mark additional columns as being part of the superkey.
Supplements the Keys already extracted from the FSM template.
Useful when adding new columns to existing tables.
Note: This will impact attempts to further 'extend' the table as the
superkey must be common between tables for successful extension.
Args:
key_list: list of header entries to be included in the superkey.
Raises:
KeyError: If any entry in list is not a valid header entry. | def AddKeys(self, key_list):
for keyname in key_list:
if keyname not in self.header:
raise KeyError("'%s'" % keyname)
self._keys = self._keys.union(set(key_list)) | 86,093 |
Support for [] notation.
Args:
column: Tuple of column names, or a (str) column name, or positional
column number, 0-indexed.
Returns:
A list or string with column value(s).
Raises:
IndexError: The given column(s) were not found. | def __getitem__(self, column):
if isinstance(column, (list, tuple)):
ret = []
for col in column:
ret.append(self[col])
return ret
try:
return self._values[self._index[column]]
except (KeyError, TypeError, ValueError):
pass
# Perhaps we have a range like '1', ':-1' or '1:'.
try:
return self._values[column]
except (IndexError, TypeError):
pass
raise IndexError('No such column "%s" in row.' % column) | 86,250 |
Get an item from the Row by column name.
Args:
column: Tuple of column names, or a (str) column name, or positional
column number, 0-indexed.
default_value: The value to use if the key is not found.
Returns:
A list or string with column value(s) or default_value if not found. | def get(self, column, default_value=None):
if isinstance(column, (list, tuple)):
ret = []
for col in column:
ret.append(self.get(col, default_value))
return ret
# Perhaps we have a range like '1', ':-1' or '1:'.
try:
return self._values[column]
except (IndexError, TypeError):
pass
try:
return self[column]
except IndexError:
return default_value | 86,252 |
Fetches the column number (0 indexed).
Args:
column: A string, column to fetch the index of.
Returns:
An int, the row index number.
Raises:
ValueError: The specified column was not found. | def index(self, column): # pylint: disable=C6409
for i, key in enumerate(self._keys):
if key == column:
return i
raise ValueError('Column "%s" not found.' % column) | 86,253 |
Inserts new values at a specified offset.
Args:
key: string for header value.
value: string for a data value.
row_index: Offset into row for data.
Raises:
IndexError: If the offset is out of bands. | def Insert(self, key, value, row_index):
if row_index < 0:
row_index += len(self)
if not 0 <= row_index < len(self):
raise IndexError('Index "%s" is out of bounds.' % row_index)
new_row = Row()
for idx in self.header:
if self.index(idx) == row_index:
new_row[key] = value
new_row[idx] = self[idx]
self._keys = new_row.header
self._values = new_row.values
del new_row
self._BuildIndex() | 86,255 |
Applies the function to every row in the table.
Args:
function: A function applied to each row.
Returns:
A new TextTable()
Raises:
TableError: When transform is not invalid row entry. The transform
must be compatible with Append(). | def Map(self, function):
new_table = self.__class__()
# pylint: disable=protected-access
new_table._table = [self.header]
for row in self:
filtered_row = function(row)
if filtered_row:
new_table.Append(filtered_row)
return new_table | 86,259 |
Sorts rows in the texttable.
Args:
cmp: func, non default sort algorithm to use.
key: func, applied to each element before sorting.
reverse: bool, reverse order of sort. | def sort(self, cmp=None, key=None, reverse=False):
def _DefaultKey(value):
result = []
for key in self.header:
# Try sorting as numerical value if possible.
try:
result.append(float(value[key]))
except ValueError:
result.append(value[key])
return result
key = key or _DefaultKey
# Exclude header by copying table.
new_table = self._table[1:]
if cmp is not None:
key = cmp_to_key(cmp)
new_table.sort(key=key, reverse=reverse)
# Regenerate the table with original header
self._table = [self.header]
self._table.extend(new_table)
# Re-write the 'row' attribute of each row
for index, row in enumerate(self._table):
row.row = index | 86,260 |
Extends all rows in the texttable.
The rows are extended with the new columns from the table.
Args:
table: A texttable, the table to extend this table by.
keys: A set, the set of columns to use as the key. If None, the
row index is used.
Raises:
IndexError: If key is not a valid column name. | def extend(self, table, keys=None):
if keys:
for k in keys:
if k not in self._Header():
raise IndexError("Unknown key: '%s'", k)
extend_with = []
for column in table.header:
if column not in self.header:
extend_with.append(column)
if not extend_with:
return
for column in extend_with:
self.AddColumn(column)
if not keys:
for row1, row2 in zip(self, table):
for column in extend_with:
row1[column] = row2[column]
return
for row1 in self:
for row2 in table:
for k in keys:
if row1[k] != row2[k]:
break
else:
for column in extend_with:
row1[column] = row2[column]
break | 86,261 |
Removes a row from the table.
Args:
row: int, the row number to delete. Must be >= 1, as the header
cannot be removed.
Raises:
TableError: Attempt to remove nonexistent or header row. | def Remove(self, row):
if row == 0 or row > self.size:
raise TableError("Attempt to remove header row")
new_table = []
# pylint: disable=E1103
for t_row in self._table:
if t_row.row != row:
new_table.append(t_row)
if t_row.row > row:
t_row.row -= 1
self._table = new_table | 86,262 |
Sets the current row to new list.
Args:
new_values: List|dict of new values to insert into row.
row: int, Row to insert values into.
Raises:
TableError: If number of new values is not equal to row size. | def _SetRow(self, new_values, row=0):
if not row:
row = self._row_index
if row > self.size:
raise TableError("Entry %s beyond table size %s." % (row, self.size))
self._table[row].values = new_values | 86,264 |
Sets header of table to the given tuple.
Args:
new_values: Tuple of new header values. | def _SetHeader(self, new_values):
row = self.row_class()
row.row = 0
for v in new_values:
row[v] = v
self._table[0] = row | 86,265 |
Finds the largest indivisible word of a string.
...and thus the smallest possible column width that can contain that
word unsplit over rows.
Args:
text: A string of text potentially consisting of words.
Returns:
Integer size of the largest single word in the text. | def _SmallestColSize(self, text):
if not text:
return 0
stripped = terminal.StripAnsiText(text)
return max(len(word) for word in stripped.split()) | 86,266 |
Retrieves the first non header row with the column of the given value.
Args:
column: str, the name of the column to check.
value: str, The value of the column to check.
Returns:
A Row() of the first row found, None otherwise.
Raises:
IndexError: The specified column does not exist. | def RowWith(self, column, value):
for row in self._table[1:]:
if row[column] == value:
return row
return None | 86,267 |
Appends a new column to the table.
Args:
column: A string, name of the column to add.
default: Default value for entries. Defaults to ''.
col_index: Integer index for where to insert new column.
Raises:
TableError: Column name already exists. | def AddColumn(self, column, default="", col_index=-1):
if column in self.table:
raise TableError("Column %r already in table." % column)
if col_index == -1:
self._table[0][column] = column
for i in range(1, len(self._table)):
self._table[i][column] = default
else:
self._table[0].Insert(column, column, col_index)
for i in range(1, len(self._table)):
self._table[i].Insert(column, default, col_index) | 86,268 |
Adds a new row (list) to the table.
Args:
new_values: Tuple, dict, or Row() of new values to append as a row.
Raises:
TableError: Supplied tuple not equal to table width. | def Append(self, new_values):
newrow = self.NewRow()
newrow.values = new_values
self._table.append(newrow) | 86,269 |
Fetches a new, empty row, with headers populated.
Args:
value: Initial value to set each row entry to.
Returns:
A Row() object. | def NewRow(self, value=""):
newrow = self.row_class()
newrow.row = self.size + 1
newrow.table = self
headers = self._Header()
for header in headers:
newrow[header] = value
return newrow | 86,270 |
Parses buffer into tabular format.
Strips off comments (preceded by '#').
Optionally parses and indexes by first line (header).
Args:
buf: String file buffer containing CSV data.
header: Is the first line of buffer a header.
separator: String that CSV is separated by.
Returns:
int, the size of the table created.
Raises:
TableError: A parsing error occurred. | def CsvToTable(self, buf, header=True, separator=","):
self.Reset()
header_row = self.row_class()
if header:
line = buf.readline()
header_str = ""
while not header_str:
# Remove comments.
header_str = line.split("#")[0].strip()
if not header_str:
line = buf.readline()
header_list = header_str.split(separator)
header_length = len(header_list)
for entry in header_list:
entry = entry.strip()
if entry in header_row:
raise TableError("Duplicate header entry %r." % entry)
header_row[entry] = entry
header_row.row = 0
self._table[0] = header_row
# xreadlines would be better but not supported by StringIO for testing.
for line in buf:
# Support commented lines, provide '#' is first character of line.
if line.startswith("#"):
continue
lst = line.split(separator)
lst = [l.strip() for l in lst]
if header and len(lst) != header_length:
# Silently drop illegal line entries
continue
if not header:
header_row = self.row_class()
header_length = len(lst)
header_row.values = dict(
zip(range(header_length), range(header_length))
)
self._table[0] = header_row
header = True
continue
new_row = self.NewRow()
new_row.values = lst
header_row.row = self.size + 1
self._table.append(new_row)
return self.size | 86,271 |
Returns windows interfaces through GetAdaptersAddresses.
params:
- extended: include anycast and multicast IPv6 (default False) | def get_windows_if_list(extended=False):
# Should work on Windows XP+
def _get_mac(x):
size = x["physical_address_length"]
if size != 6:
return ""
data = bytearray(x["physical_address"])
return str2mac(bytes(data)[:size])
def _get_ips(x):
unicast = x['first_unicast_address']
anycast = x['first_anycast_address']
multicast = x['first_multicast_address']
def _resolve_ips(y):
if not isinstance(y, list):
return []
ips = []
for ip in y:
addr = ip['address']['address'].contents
if addr.si_family == socket.AF_INET6:
ip_key = "Ipv6"
si_key = "sin6_addr"
else:
ip_key = "Ipv4"
si_key = "sin_addr"
data = getattr(addr, ip_key)
data = getattr(data, si_key)
data = bytes(bytearray(data.byte))
# Build IP
if data:
ips.append(inet_ntop(addr.si_family, data))
return ips
ips = []
ips.extend(_resolve_ips(unicast))
if extended:
ips.extend(_resolve_ips(anycast))
ips.extend(_resolve_ips(multicast))
return ips
if six.PY2:
_str_decode = lambda x: x.encode('utf8', errors='ignore')
else:
_str_decode = plain_str
return [
{
"name": _str_decode(x["friendly_name"]),
"win_index": x["interface_index"],
"description": _str_decode(x["description"]),
"guid": _str_decode(x["adapter_name"]),
"mac": _get_mac(x),
"ipv4_metric": 0 if WINDOWS_XP else x["ipv4_metric"],
"ipv6_metric": 0 if WINDOWS_XP else x["ipv6_metric"],
"ips": _get_ips(x)
} for x in GetAdaptersAddresses()
] | 86,465 |
This function extracts the source/destination address of a 6LoWPAN
from its upper Dot15d4Data (802.15.4 data) layer.
params:
- source: if True, the address is the source one. Otherwise, it is the
destination.
returns: the packed & processed address | def _extract_dot15d4address(pkt, source=True):
underlayer = pkt.underlayer
while underlayer is not None and not isinstance(underlayer, Dot15d4Data): # noqa: E501
underlayer = underlayer.underlayer
if type(underlayer) == Dot15d4Data:
addr = underlayer.src_addr if source else underlayer.dest_addr
if underlayer.underlayer.fcf_destaddrmode == 3:
tmp_ip = LINK_LOCAL_PREFIX[0:8] + struct.pack(">Q", addr) # noqa: E501
# Turn off the bit 7.
tmp_ip = tmp_ip[0:8] + struct.pack("B", (orb(tmp_ip[8]) ^ 0x2)) + tmp_ip[9:16] # noqa: E501
elif underlayer.underlayer.fcf_destaddrmode == 2:
tmp_ip = LINK_LOCAL_PREFIX[0:8] + \
b"\x00\x00\x00\xff\xfe\x00" + \
struct.pack(">Q", addr)[6:]
return tmp_ip
else:
# Most of the times, it's necessary the IEEE 802.15.4 data to extract this address # noqa: E501
raise Exception('Unimplemented: IP Header is contained into IEEE 802.15.4 frame, in this case it\'s not available.') | 87,344 |
List available layers, or infos on a given layer class or name.
params:
- obj: Packet / packet name to use
- case_sensitive: if obj is a string, is it case sensitive?
- verbose | def ls(obj=None, case_sensitive=False, verbose=False):
is_string = isinstance(obj, six.string_types)
if obj is None or is_string:
tip = False
if obj is None:
tip = True
all_layers = sorted(conf.layers, key=lambda x: x.__name__)
else:
pattern = re.compile(obj, 0 if case_sensitive else re.I)
# We first order by accuracy, then length
if case_sensitive:
sorter = lambda x: (x.__name__.index(obj), len(x.__name__))
else:
obj = obj.lower()
sorter = lambda x: (x.__name__.lower().index(obj),
len(x.__name__))
all_layers = sorted((layer for layer in conf.layers
if (isinstance(layer.__name__, str) and
pattern.search(layer.__name__)) or
(isinstance(layer.name, str) and
pattern.search(layer.name))),
key=sorter)
for layer in all_layers:
print("%-10s : %s" % (layer.__name__, layer._name))
if tip and conf.interactive:
print("\nTIP: You may use explore() to navigate through all "
"layers using a clear GUI")
else:
is_pkt = isinstance(obj, Packet)
if issubtype(obj, Packet) or is_pkt:
for f in obj.fields_desc:
cur_fld = f
attrs = []
long_attrs = []
while isinstance(cur_fld, (Emph, ConditionalField)):
if isinstance(cur_fld, ConditionalField):
attrs.append(cur_fld.__class__.__name__[:4])
cur_fld = cur_fld.fld
if verbose and isinstance(cur_fld, EnumField) \
and hasattr(cur_fld, "i2s"):
if len(cur_fld.i2s) < 50:
long_attrs.extend(
"%s: %d" % (strval, numval)
for numval, strval in
sorted(six.iteritems(cur_fld.i2s))
)
elif isinstance(cur_fld, MultiEnumField):
fld_depend = cur_fld.depends_on(obj.__class__
if is_pkt else obj)
attrs.append("Depends on %s" % fld_depend.name)
if verbose:
cur_i2s = cur_fld.i2s_multi.get(
cur_fld.depends_on(obj if is_pkt else obj()), {}
)
if len(cur_i2s) < 50:
long_attrs.extend(
"%s: %d" % (strval, numval)
for numval, strval in
sorted(six.iteritems(cur_i2s))
)
elif verbose and isinstance(cur_fld, FlagsField):
names = cur_fld.names
long_attrs.append(", ".join(names))
class_name = "%s (%s)" % (
cur_fld.__class__.__name__,
", ".join(attrs)) if attrs else cur_fld.__class__.__name__
if isinstance(cur_fld, BitField):
class_name += " (%d bit%s)" % (cur_fld.size,
"s" if cur_fld.size > 1
else "")
print("%-10s : %-35s =" % (f.name, class_name), end=' ')
if is_pkt:
print("%-15r" % (getattr(obj, f.name),), end=' ')
print("(%r)" % (f.default,))
for attr in long_attrs:
print("%-15s%s" % ("", attr))
if is_pkt and not isinstance(obj.payload, NoPayload):
print("--")
ls(obj.payload)
else:
print("Not a packet class or name. Type 'ls()' to list packet classes.") | 87,400 |
Find all MACs registered to a OUI
params:
- name: the OUI name
- case_sensitive: default to False
returns: a dict of mac:tuples (Name, Extended Name) | def reverse_lookup(self, name, case_sensitive=False):
if case_sensitive:
filtr = lambda x, l: any(x == z for z in l)
else:
name = name.lower()
filtr = lambda x, l: any(x == z.lower() for z in l)
return {k: v for k, v in six.iteritems(self.__dict__)
if filtr(name, v)} | 87,573 |
Process all NetflowV9/10 Packets to match IDs of the DataFlowsets
with the Headers
params:
- plist: the list of mixed NetflowV9/10 packets.
- verb: verbose print (0/1) | def netflowv9_defragment(plist, verb=1):
if not isinstance(plist, (PacketList, list)):
plist = [plist]
# We need the whole packet to be dissected to access field def in
# NetflowFlowsetV9 or NetflowOptionsFlowsetV9/10
definitions = {}
definitions_opts = {}
ignored = set()
# Iterate through initial list
for pkt in plist:
_netflowv9_defragment_packet(pkt,
definitions,
definitions_opts,
ignored)
if conf.verb >= 1 and ignored:
warning("Ignored templateIDs (missing): %s" % list(ignored))
return plist | 87,645 |
Return the interface mode.
params:
- iface: the iwconfig interface | def get_iface_mode(iface):
p = subprocess.Popen(["iwconfig", iface], stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
output, err = p.communicate()
match = re.search(br"mode:([a-zA-Z]*)", output.lower())
if match:
return plain_str(match.group(1))
return "unknown" | 87,914 |
Sets the monitor mode (or remove it) from an interface.
params:
- iface: the iwconfig interface
- monitor: True if the interface should be set in monitor mode,
False if it should be in managed mode | def set_iface_monitor(iface, monitor):
mode = get_iface_mode(iface)
if mode == "unknown":
warning("Could not parse iwconfig !")
current_monitor = mode == "monitor"
if monitor == current_monitor:
# Already correct
return True
s_mode = "monitor" if monitor else "managed"
def _check_call(commands):
p = subprocess.Popen(commands,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)
stdout, stderr = p.communicate()
if p.returncode != 0:
warning("%s failed !" % " ".join(commands))
return False
return True
try:
assert _check_call(["ifconfig", iface, "down"])
assert _check_call(["iwconfig", iface, "mode", s_mode])
assert _check_call(["ifconfig", iface, "up"])
return True
except AssertionError:
return False | 87,915 |
Checks that module has a higher version that minver.
params:
- module: a module to test
- minver: a tuple of versions | def _version_checker(module, minver):
# We could use LooseVersion, but distutils imports imp which is deprecated
version_regexp = r'[a-z]?((?:\d|\.)+\d+)(?:\.dev[0-9]+)?'
version_tags = re.match(version_regexp, module.__version__)
if not version_tags:
return False
version_tags = version_tags.group(1).split(".")
version_tags = tuple(int(x) for x in version_tags)
return version_tags >= minver | 88,087 |
Show the list of all existing contribs.
Params:
- name: filter to search the contribs
- ret: whether the function should return a dict instead of printing it | def list_contrib(name=None, ret=False, _debug=False):
# _debug: checks that all contrib modules have correctly defined:
# # scapy.contrib.description = [...]
# # scapy.contrib.status = [...]
# # scapy.contrib.name = [...] (optional)
# or set the flag:
# # scapy.contrib.description = skip
# to skip the file
if name is None:
name = "*.py"
elif "*" not in name and "?" not in name and not name.endswith(".py"):
name += ".py"
results = []
dir_path = os.path.join(os.path.dirname(__file__), "contrib")
if sys.version_info >= (3, 5):
name = os.path.join(dir_path, "**", name)
iterator = glob.iglob(name, recursive=True)
else:
name = os.path.join(dir_path, name)
iterator = glob.iglob(name)
for f in iterator:
mod = f.replace(os.path.sep, ".").partition("contrib.")[2]
if mod.startswith("__"):
continue
if mod.endswith(".py"):
mod = mod[:-3]
desc = {"description": None, "status": None, "name": mod}
for l in io.open(f, errors="replace"):
if l[0] != "#":
continue
p = l.find("scapy.contrib.")
if p >= 0:
p += 14
q = l.find("=", p)
key = l[p:q].strip()
value = l[q + 1:].strip()
desc[key] = value
if desc["status"] == "skip":
break
if desc["description"] and desc["status"]:
results.append(desc)
break
if _debug:
if desc["status"] == "skip":
pass
elif not desc["description"] or not desc["status"]:
raise Scapy_Exception("Module %s is missing its "
"contrib infos !" % mod)
results.sort(key=lambda x: x["name"])
if ret:
return results
else:
for desc in results:
print("%(name)-20s: %(description)-40s status=%(status)s" % desc) | 88,228 |
Save current Scapy session to the file specified in the fname arg.
params:
- fname: file to save the scapy session in
- session: scapy session to use. If None, the console one will be used
- pickleProto: pickle proto version (default: -1 = latest) | def save_session(fname=None, session=None, pickleProto=-1):
from scapy import utils
if fname is None:
fname = conf.session
if not fname:
conf.session = fname = utils.get_temp_file(keep=True)
log_interactive.info("Use [%s] as session file" % fname)
if session is None:
try:
session = get_ipython().user_ns
except Exception:
session = six.moves.builtins.__dict__["scapy_session"]
to_be_saved = session.copy()
if "__builtins__" in to_be_saved:
del(to_be_saved["__builtins__"])
for k in list(to_be_saved):
i = to_be_saved[k]
if hasattr(i, "__module__") and (k[0] == "_" or i.__module__.startswith("IPython")): # noqa: E501
del(to_be_saved[k])
if isinstance(i, ConfClass):
del(to_be_saved[k])
elif isinstance(i, (type, type, types.ModuleType)):
if k[0] != "_":
log_interactive.error("[%s] (%s) can't be saved.", k, type(to_be_saved[k])) # noqa: E501
del(to_be_saved[k])
try:
os.rename(fname, fname + ".bak")
except OSError:
pass
f = gzip.open(fname, "wb")
six.moves.cPickle.dump(to_be_saved, f, pickleProto)
f.close()
del f | 88,229 |
Load current Scapy session from the file specified in the fname arg.
This will erase any existing session.
params:
- fname: file to load the scapy session from | def load_session(fname=None):
if fname is None:
fname = conf.session
try:
s = six.moves.cPickle.load(gzip.open(fname, "rb"))
except IOError:
try:
s = six.moves.cPickle.load(open(fname, "rb"))
except IOError:
# Raise "No such file exception"
raise
scapy_session = six.moves.builtins.__dict__["scapy_session"]
scapy_session.clear()
scapy_session.update(s)
update_ipython_session(scapy_session)
log_loading.info("Loaded session [%s]" % fname) | 88,230 |
Update current Scapy session from the file specified in the fname arg.
params:
- fname: file to load the scapy session from | def update_session(fname=None):
if fname is None:
fname = conf.session
try:
s = six.moves.cPickle.load(gzip.open(fname, "rb"))
except IOError:
s = six.moves.cPickle.load(open(fname, "rb"))
scapy_session = six.moves.builtins.__dict__["scapy_session"]
scapy_session.update(s)
update_ipython_session(scapy_session) | 88,231 |
Create an interactive session and execute the
commands passed as "cmds" and return all output
params:
- cmds: a list of commands to run
returns: (output, returned)
The output contains both sys.stdout and sys.stderr logs | def autorun_get_interactive_session(cmds, **kargs):
sstdout, sstderr = sys.stdout, sys.stderr
sw = StringWriter()
try:
try:
sys.stdout = sys.stderr = sw
res = autorun_commands(cmds, **kargs)
except StopAutorun as e:
e.code_run = sw.s
raise
finally:
sys.stdout, sys.stderr = sstdout, sstderr
return sw.s, res | 88,237 |
This function is called during sendrecv() routine to select
the available sockets.
params:
- sockets: an array of sockets that need to be selected
returns:
- an array of sockets that were selected
- the function to be called next to get the packets (i.g. recv) | def select(sockets, remain=conf.recv_poll_rate):
try:
inp, _, _ = select(sockets, [], [], remain)
except (IOError, select_error) as exc:
# select.error has no .errno attribute
if exc.args[0] != errno.EINTR:
raise
return inp, None | 88,431 |
Returns the IPv4 routes to a host.
parameters:
- dst: the IPv4 of the destination host
returns: (iface, output_ip, gateway_ip)
- iface: the interface used to connect to the host
- output_ip: the outgoing IP that will be used
- gateway_ip: the gateway IP that will be used | def route(self, dst=None, verbose=conf.verb):
dst = dst or "0.0.0.0" # Enable route(None) to return default route
if isinstance(dst, bytes):
try:
dst = plain_str(dst)
except UnicodeDecodeError:
raise TypeError("Unknown IP address input (bytes)")
if dst in self.cache:
return self.cache[dst]
# Transform "192.168.*.1-5" to one IP of the set
_dst = dst.split("/")[0].replace("*", "0")
while True:
idx = _dst.find("-")
if idx < 0:
break
m = (_dst[idx:] + ".").find(".")
_dst = _dst[:idx] + _dst[idx + m:]
atol_dst = atol(_dst)
paths = []
for d, m, gw, i, a, me in self.routes:
if not a: # some interfaces may not currently be connected
continue
aa = atol(a)
if aa == atol_dst:
paths.append(
(0xffffffff, 1, (scapy.consts.LOOPBACK_INTERFACE, a, "0.0.0.0")) # noqa: E501
)
if (atol_dst & m) == (d & m):
paths.append((m, me, (i, a, gw)))
if not paths:
if verbose:
warning("No route found (no default route?)")
return scapy.consts.LOOPBACK_INTERFACE, "0.0.0.0", "0.0.0.0"
# Choose the more specific route
# Sort by greatest netmask and use metrics as a tie-breaker
paths.sort(key=lambda x: (-x[0], x[1]))
# Return interface
ret = paths[0][2]
self.cache[dst] = ret
return ret | 88,563 |
Initialize an ``TensorFlowPredictor``.
Args:
endpoint_name (str): The name of the endpoint to perform inference on.
sagemaker_session (sagemaker.session.Session): Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain. | def __init__(self, endpoint_name, sagemaker_session=None):
super(TensorFlowPredictor, self).__init__(endpoint_name, sagemaker_session, tf_json_serializer,
tf_json_deserializer) | 100,222 |
Stream the output of a process to stdout
This function takes an existing process that will be polled for output. Only stdout
will be polled and sent to sys.stdout.
Args:
process(subprocess.Popen): a process that has been started with
stdout=PIPE and stderr=STDOUT
Returns (int): process exit code | def _stream_output(process):
exit_code = None
while exit_code is None:
stdout = process.stdout.readline().decode("utf-8")
sys.stdout.write(stdout)
exit_code = process.poll()
if exit_code != 0:
raise RuntimeError("Process exited with code: %s" % exit_code)
return exit_code | 100,236 |
Run a training job locally using docker-compose.
Args:
input_data_config (dict): The Input Data Configuration, this contains data such as the
channels to be used for training.
hyperparameters (dict): The HyperParameters for the training job.
job_name (str): Name of the local training job being run.
Returns (str): Location of the trained model. | def train(self, input_data_config, output_data_config, hyperparameters, job_name):
self.container_root = self._create_tmp_folder()
os.mkdir(os.path.join(self.container_root, 'output'))
# create output/data folder since sagemaker-containers 2.0 expects it
os.mkdir(os.path.join(self.container_root, 'output', 'data'))
# A shared directory for all the containers. It is only mounted if the training script is
# Local.
shared_dir = os.path.join(self.container_root, 'shared')
os.mkdir(shared_dir)
data_dir = self._create_tmp_folder()
volumes = self._prepare_training_volumes(data_dir, input_data_config, output_data_config,
hyperparameters)
# If local, source directory needs to be updated to mounted /opt/ml/code path
hyperparameters = self._update_local_src_path(hyperparameters, key=sagemaker.estimator.DIR_PARAM_NAME)
# Create the configuration files for each container that we will create
# Each container will map the additional local volumes (if any).
for host in self.hosts:
_create_config_file_directories(self.container_root, host)
self.write_config_files(host, hyperparameters, input_data_config)
shutil.copytree(data_dir, os.path.join(self.container_root, host, 'input', 'data'))
training_env_vars = {
REGION_ENV_NAME: self.sagemaker_session.boto_region_name,
TRAINING_JOB_NAME_ENV_NAME: job_name,
}
compose_data = self._generate_compose_file('train', additional_volumes=volumes,
additional_env_vars=training_env_vars)
compose_command = self._compose()
if _ecr_login_if_needed(self.sagemaker_session.boto_session, self.image):
_pull_image(self.image)
process = subprocess.Popen(compose_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
try:
_stream_output(process)
except RuntimeError as e:
# _stream_output() doesn't have the command line. We will handle the exception
# which contains the exit code and append the command line to it.
msg = "Failed to run: %s, %s" % (compose_command, str(e))
raise RuntimeError(msg)
finally:
artifacts = self.retrieve_artifacts(compose_data, output_data_config, job_name)
# free up the training data directory as it may contain
# lots of data downloaded from S3. This doesn't delete any local
# data that was just mounted to the container.
dirs_to_delete = [data_dir, shared_dir]
self._cleanup(dirs_to_delete)
# Print our Job Complete line to have a similar experience to training on SageMaker where you
# see this line at the end.
print('===== Job Complete =====')
return artifacts | 100,246 |
Host a local endpoint using docker-compose.
Args:
primary_container (dict): dictionary containing the container runtime settings
for serving. Expected keys:
- 'ModelDataUrl' pointing to a file or s3:// location.
- 'Environment' a dictionary of environment variables to be passed to the hosting container. | def serve(self, model_dir, environment):
logger.info("serving")
self.container_root = self._create_tmp_folder()
logger.info('creating hosting dir in {}'.format(self.container_root))
volumes = self._prepare_serving_volumes(model_dir)
# If the user script was passed as a file:// mount it to the container.
if sagemaker.estimator.DIR_PARAM_NAME.upper() in environment:
script_dir = environment[sagemaker.estimator.DIR_PARAM_NAME.upper()]
parsed_uri = urlparse(script_dir)
if parsed_uri.scheme == 'file':
volumes.append(_Volume(parsed_uri.path, '/opt/ml/code'))
# Update path to mount location
environment = environment.copy()
environment[sagemaker.estimator.DIR_PARAM_NAME.upper()] = '/opt/ml/code'
if _ecr_login_if_needed(self.sagemaker_session.boto_session, self.image):
_pull_image(self.image)
self._generate_compose_file('serve',
additional_env_vars=environment,
additional_volumes=volumes)
compose_command = self._compose()
self.container = _HostingContainer(compose_command)
self.container.start() | 100,247 |
Get the model artifacts from all the container nodes.
Used after training completes to gather the data from all the individual containers. As the
official SageMaker Training Service, it will override duplicate files if multiple containers have
the same file names.
Args:
compose_data(dict): Docker-Compose configuration in dictionary format.
Returns: Local path to the collected model artifacts. | def retrieve_artifacts(self, compose_data, output_data_config, job_name):
# We need a directory to store the artfiacts from all the nodes
# and another one to contained the compressed final artifacts
artifacts = os.path.join(self.container_root, 'artifacts')
compressed_artifacts = os.path.join(self.container_root, 'compressed_artifacts')
os.mkdir(artifacts)
model_artifacts = os.path.join(artifacts, 'model')
output_artifacts = os.path.join(artifacts, 'output')
artifact_dirs = [model_artifacts, output_artifacts, compressed_artifacts]
for d in artifact_dirs:
os.mkdir(d)
# Gather the artifacts from all nodes into artifacts/model and artifacts/output
for host in self.hosts:
volumes = compose_data['services'][str(host)]['volumes']
for volume in volumes:
host_dir, container_dir = volume.split(':')
if container_dir == '/opt/ml/model':
sagemaker.local.utils.recursive_copy(host_dir, model_artifacts)
elif container_dir == '/opt/ml/output':
sagemaker.local.utils.recursive_copy(host_dir, output_artifacts)
# Tar Artifacts -> model.tar.gz and output.tar.gz
model_files = [os.path.join(model_artifacts, name) for name in os.listdir(model_artifacts)]
output_files = [os.path.join(output_artifacts, name) for name in os.listdir(output_artifacts)]
sagemaker.utils.create_tar_file(model_files, os.path.join(compressed_artifacts, 'model.tar.gz'))
sagemaker.utils.create_tar_file(output_files, os.path.join(compressed_artifacts, 'output.tar.gz'))
if output_data_config['S3OutputPath'] == '':
output_data = 'file://%s' % compressed_artifacts
else:
# Now we just need to move the compressed artifacts to wherever they are required
output_data = sagemaker.local.utils.move_to_destination(
compressed_artifacts,
output_data_config['S3OutputPath'],
job_name,
self.sagemaker_session)
_delete_tree(model_artifacts)
_delete_tree(output_artifacts)
return os.path.join(output_data, 'model.tar.gz') | 100,249 |
Write the config files for the training containers.
This method writes the hyperparameters, resources and input data configuration files.
Args:
host (str): Host to write the configuration for
hyperparameters (dict): Hyperparameters for training.
input_data_config (dict): Training input channels to be used for training.
Returns: None | def write_config_files(self, host, hyperparameters, input_data_config):
config_path = os.path.join(self.container_root, host, 'input', 'config')
resource_config = {
'current_host': host,
'hosts': self.hosts
}
json_input_data_config = {}
for c in input_data_config:
channel_name = c['ChannelName']
json_input_data_config[channel_name] = {
'TrainingInputMode': 'File'
}
if 'ContentType' in c:
json_input_data_config[channel_name]['ContentType'] = c['ContentType']
_write_json_file(os.path.join(config_path, 'hyperparameters.json'), hyperparameters)
_write_json_file(os.path.join(config_path, 'resourceconfig.json'), resource_config)
_write_json_file(os.path.join(config_path, 'inputdataconfig.json'), json_input_data_config) | 100,250 |
Create a Volume instance
the container path can be provided as a container_dir or as a channel name but not both.
Args:
host_dir (str): path to the volume data in the host
container_dir (str): path inside the container that host_dir will be mapped to
channel (str): channel name that the host_dir represents. It will be mapped as
/opt/ml/input/data/<channel> in the container. | def __init__(self, host_dir, container_dir=None, channel=None):
if not container_dir and not channel:
raise ValueError('Either container_dir or channel must be declared.')
if container_dir and channel:
raise ValueError('container_dir and channel cannot be declared together.')
self.container_dir = container_dir if container_dir else os.path.join('/opt/ml/input/data', channel)
self.host_dir = host_dir
if platform.system() == 'Darwin' and host_dir.startswith('/var'):
self.host_dir = os.path.join('/private', host_dir)
self.map = '{}:{}'.format(self.host_dir, self.container_dir) | 100,262 |
Initialize an ``PyTorchPredictor``.
Args:
endpoint_name (str): The name of the endpoint to perform inference on.
sagemaker_session (sagemaker.session.Session): Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain. | def __init__(self, endpoint_name, sagemaker_session=None):
super(PyTorchPredictor, self).__init__(endpoint_name, sagemaker_session, npy_serializer, numpy_deserializer) | 100,265 |
Set hyperparameters needed for training.
Args:
* records (:class:`~RecordSet`): The records to train this ``Estimator`` on.
* mini_batch_size (int or None): The size of each mini-batch to use when training. If ``None``, a
default value will be used.
* job_name (str): Name of the training job to be created. If not specified, one is generated,
using the base name given to the constructor if applicable. | def _prepare_for_training(self, records, mini_batch_size=None, job_name=None):
num_records = None
if isinstance(records, list):
for record in records:
if record.channel == 'train':
num_records = record.num_records
break
if num_records is None:
raise ValueError('Must provide train channel.')
else:
num_records = records.num_records
# mini_batch_size is a required parameter
default_mini_batch_size = min(self.DEFAULT_MINI_BATCH_SIZE,
max(1, int(num_records / self.train_instance_count)))
use_mini_batch_size = mini_batch_size or default_mini_batch_size
super(PCA, self)._prepare_for_training(records=records, mini_batch_size=use_mini_batch_size, job_name=job_name) | 100,268 |
Validate that the source directory exists and it contains the user script
Args:
script (str): Script filename.
directory (str): Directory containing the source file.
Raises:
ValueError: If ``directory`` does not exist, is not a directory, or does not contain ``script``. | def validate_source_dir(script, directory):
if directory:
if not os.path.isfile(os.path.join(directory, script)):
raise ValueError('No file named "{}" was found in directory "{}".'.format(script, directory))
return True | 100,272 |
Extract the framework version from the image tag.
Args:
image_tag (str): Image tag, which should take the form '<framework_version>-<device>-<py_version>'
Returns:
str: The framework version. | def framework_version_from_tag(image_tag):
tag_pattern = re.compile('^(.*)-(cpu|gpu)-(py2|py3)$')
tag_match = tag_pattern.match(image_tag)
return None if tag_match is None else tag_match.group(1) | 100,276 |
Returns an (s3 bucket, key name/prefix) tuple from a url with an s3 scheme
Args:
url (str):
Returns:
tuple: A tuple containing:
str: S3 bucket name
str: S3 key | def parse_s3_url(url):
parsed_url = urlparse(url)
if parsed_url.scheme != "s3":
raise ValueError("Expecting 's3' scheme, got: {} in {}".format(parsed_url.scheme, url))
return parsed_url.netloc, parsed_url.path.lstrip('/') | 100,277 |
Describe a local training job.
Args:
TrainingJobName (str): Training job name to describe.
Returns: (dict) DescribeTrainingJob Response. | def describe_training_job(self, TrainingJobName):
if TrainingJobName not in LocalSagemakerClient._training_jobs:
error_response = {'Error': {'Code': 'ValidationException', 'Message': 'Could not find local training job'}}
raise ClientError(error_response, 'describe_training_job')
else:
return LocalSagemakerClient._training_jobs[TrainingJobName].describe() | 100,281 |
Create a Local Model Object
Args:
ModelName (str): the Model Name
PrimaryContainer (dict): a SageMaker primary container definition | def create_model(self, ModelName, PrimaryContainer, *args, **kwargs): # pylint: disable=unused-argument
LocalSagemakerClient._models[ModelName] = _LocalModel(ModelName, PrimaryContainer) | 100,284 |
Initializes a LocalSageMakerRuntimeClient
Args:
config (dict): Optional configuration for this client. In particular only
the local port is read. | def __init__(self, config=None):
self.http = urllib3.PoolManager()
self.serving_port = 8080
self.config = config
self.serving_port = get_config_value('local.serving_port', config) or 8080 | 100,291 |
Initialize an ``SKLearnPredictor``.
Args:
endpoint_name (str): The name of the endpoint to perform inference on.
sagemaker_session (sagemaker.session.Session): Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain. | def __init__(self, endpoint_name, sagemaker_session=None):
super(SKLearnPredictor, self).__init__(endpoint_name, sagemaker_session, npy_serializer, numpy_deserializer) | 100,296 |
Initialize an AmazonAlgorithmEstimatorBase.
Args:
data_location (str or None): The s3 prefix to upload RecordSet objects to, expressed as an
S3 url. For example "s3://example-bucket/some-key-prefix/". Objects will be
saved in a unique sub-directory of the specified location. If None, a default
data location will be used. | def __init__(self, role, train_instance_count, train_instance_type, data_location=None, **kwargs):
super(AmazonAlgorithmEstimatorBase, self).__init__(role, train_instance_count, train_instance_type,
**kwargs)
data_location = data_location or "s3://{}/sagemaker-record-sets/".format(
self.sagemaker_session.default_bucket())
self.data_location = data_location | 100,303 |
Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
model_channel_name (str): Name of the channel where pre-trained model data will be downloaded.
Returns:
dictionary: The transformed init_params | def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = super(AmazonAlgorithmEstimatorBase, cls)._prepare_init_params_from_job_description(
job_details, model_channel_name)
# The hyperparam names may not be the same as the class attribute that holds them,
# for instance: local_lloyd_init_method is called local_init_method. We need to map these
# and pass the correct name to the constructor.
for attribute, value in cls.__dict__.items():
if isinstance(value, hp):
if value.name in init_params['hyperparameters']:
init_params[attribute] = init_params['hyperparameters'][value.name]
del init_params['hyperparameters']
del init_params['image']
return init_params | 100,306 |
Set hyperparameters needed for training.
Args:
* records (:class:`~RecordSet`): The records to train this ``Estimator`` on.
* mini_batch_size (int or None): The size of each mini-batch to use when training. If ``None``, a
default value will be used.
* job_name (str): Name of the training job to be created. If not specified, one is generated,
using the base name given to the constructor if applicable. | def _prepare_for_training(self, records, mini_batch_size=None, job_name=None):
super(AmazonAlgorithmEstimatorBase, self)._prepare_for_training(job_name=job_name)
feature_dim = None
if isinstance(records, list):
for record in records:
if record.channel == 'train':
feature_dim = record.feature_dim
break
if feature_dim is None:
raise ValueError('Must provide train channel.')
else:
feature_dim = records.feature_dim
self.feature_dim = feature_dim
self.mini_batch_size = mini_batch_size | 100,307 |
Return an Instance of :class:`sagemaker.local.data.DataSource` that can handle
the provided data_source URI.
data_source can be either file:// or s3://
Args:
data_source (str): a valid URI that points to a data source.
sagemaker_session (:class:`sagemaker.session.Session`): a SageMaker Session to interact with
S3 if required.
Returns
:class:`sagemaker.local.data.DataSource`: an Instance of a Data Source | def get_data_source_instance(data_source, sagemaker_session):
parsed_uri = urlparse(data_source)
if parsed_uri.scheme == 'file':
return LocalFileDataSource(parsed_uri.netloc + parsed_uri.path)
elif parsed_uri.scheme == 's3':
return S3DataSource(parsed_uri.netloc, parsed_uri.path, sagemaker_session) | 100,311 |
Return an Instance of :class:`sagemaker.local.data.Splitter` according to
the specified `split_type`.
Args:
split_type (str): either 'Line' or 'RecordIO'. Can be left as None to signal no data split
will happen.
Returns
:class:`sagemaker.local.data.Splitter`: an Instance of a Splitter | def get_splitter_instance(split_type):
if split_type is None:
return NoneSplitter()
elif split_type == 'Line':
return LineSplitter()
elif split_type == 'RecordIO':
return RecordIOSplitter()
else:
raise ValueError('Invalid Split Type: %s' % split_type) | 100,312 |
Return an Instance of :class:`sagemaker.local.data.BatchStrategy` according to `strategy`
Args:
strategy (str): Either 'SingleRecord' or 'MultiRecord'
splitter (:class:`sagemaker.local.data.Splitter): splitter to get the data from.
Returns
:class:`sagemaker.local.data.BatchStrategy`: an Instance of a BatchStrategy | def get_batch_strategy_instance(strategy, splitter):
if strategy == 'SingleRecord':
return SingleRecordStrategy(splitter)
elif strategy == 'MultiRecord':
return MultiRecordStrategy(splitter)
else:
raise ValueError('Invalid Batch Strategy: %s - Valid Strategies: "SingleRecord", "MultiRecord"') | 100,313 |
Create an S3DataSource instance
Args:
bucket (str): S3 bucket name
prefix (str): S3 prefix path to the data
sagemaker_session (:class:`sagemaker.session.Session`): a sagemaker_session with the desired settings
to talk to S3 | def __init__(self, bucket, prefix, sagemaker_session):
# Create a temporary dir to store the S3 contents
root_dir = sagemaker.utils.get_config_value('local.container_root', sagemaker_session.config)
if root_dir:
root_dir = os.path.abspath(root_dir)
working_dir = tempfile.mkdtemp(dir=root_dir)
# Docker cannot mount Mac OS /var folder properly see
# https://forums.docker.com/t/var-folders-isnt-mounted-properly/9600
# Only apply this workaround if the user didn't provide an alternate storage root dir.
if root_dir is None and platform.system() == 'Darwin':
working_dir = '/private{}'.format(working_dir)
sagemaker.utils.download_folder(bucket, prefix, working_dir, sagemaker_session)
self.files = LocalFileDataSource(working_dir) | 100,318 |
Split a file into records using a specific strategy
This RecordIOSplitter splits the data into individual RecordIO records.
Args:
file (str): path to the file to split
Returns: generator for the individual records that were split from the file | def split(self, file):
with open(file, 'rb') as f:
for record in sagemaker.amazon.common.read_recordio(f):
yield record | 100,319 |
Group together as many records as possible to fit in the specified size
Args:
file (str): file path to read the records from.
size (int): maximum size in MB that each group of records will be fitted to.
passing 0 means unlimited size.
Returns:
generator of records | def pad(self, file, size=6):
buffer = ''
for element in self.splitter.split(file):
if _payload_size_within_limit(buffer + element, size):
buffer += element
else:
tmp = buffer
buffer = element
yield tmp
if _validate_payload_size(buffer, size):
yield buffer | 100,320 |
Group together as many records as possible to fit in the specified size
This SingleRecordStrategy will not group any record and will return them one by one as
long as they are within the maximum size.
Args:
file (str): file path to read the records from.
size (int): maximum size in MB that each group of records will be fitted to.
passing 0 means unlimited size.
Returns:
generator of records | def pad(self, file, size=6):
for element in self.splitter.split(file):
if _validate_payload_size(element, size):
yield element | 100,321 |
Initialize an ``MXNetPredictor``.
Args:
endpoint_name (str): The name of the endpoint to perform inference on.
sagemaker_session (sagemaker.session.Session): Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain. | def __init__(self, endpoint_name, sagemaker_session=None):
super(MXNetPredictor, self).__init__(endpoint_name, sagemaker_session, json_serializer, json_deserializer) | 100,322 |
Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
model_channel_name (str): Name of the channel where pre-trained model data will be downloaded.
Returns:
dictionary: The transformed init_params | def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = super(Chainer, cls)._prepare_init_params_from_job_description(job_details, model_channel_name)
for argument in [Chainer._use_mpi, Chainer._num_processes, Chainer._process_slots_per_host,
Chainer._additional_mpi_options]:
value = init_params['hyperparameters'].pop(argument, None)
if value:
init_params[argument[len('sagemaker_'):]] = value
image_name = init_params.pop('image')
framework, py_version, tag, _ = framework_name_from_image(image_name)
if not framework:
# If we were unable to parse the framework name from the image it is not one of our
# officially supported images, in this case just add the image to the init params.
init_params['image_name'] = image_name
return init_params
init_params['py_version'] = py_version
init_params['framework_version'] = framework_version_from_tag(tag)
training_job_name = init_params['base_job_name']
if framework != cls.__framework_name__:
raise ValueError("Training job: {} didn't use image for requested framework".format(training_job_name))
return init_params | 100,328 |
Create a SageMaker Model Entity
Args:
*args: Arguments coming from the caller. This class
does not require any so they are ignored. | def _create_sagemaker_model(self, *args): # pylint: disable=unused-argument
if self.algorithm_arn:
# When ModelPackage is created using an algorithm_arn we need to first
# create a ModelPackage. If we had already created one then its fine to re-use it.
if self._created_model_package_name is None:
model_package_name = self._create_sagemaker_model_package()
self.sagemaker_session.wait_for_model_package(model_package_name)
self._created_model_package_name = model_package_name
model_package_name = self._created_model_package_name
else:
# When a ModelPackageArn is provided we just create the Model
model_package_name = self.model_package_arn
container_def = {
'ModelPackageName': model_package_name,
}
if self.env != {}:
container_def['Environment'] = self.env
model_package_short_name = model_package_name.split('/')[-1]
enable_network_isolation = self.enable_network_isolation()
self.name = self.name or utils.name_from_base(model_package_short_name)
self.sagemaker_session.create_model(self.name, self.role, container_def,
vpc_config=self.vpc_config,
enable_network_isolation=enable_network_isolation) | 100,356 |
Delete the Amazon SageMaker endpoint backing this predictor. Also delete the endpoint configuration attached
to it if delete_endpoint_config is True.
Args:
delete_endpoint_config (bool, optional): Flag to indicate whether to delete endpoint configuration together
with endpoint. Defaults to True. If True, both endpoint and endpoint configuration will be deleted. If
False, only endpoint will be deleted. | def delete_endpoint(self, delete_endpoint_config=True):
if delete_endpoint_config:
self._delete_endpoint_config()
self.sagemaker_session.delete_endpoint(self.endpoint) | 100,372 |
Take data of various data formats and serialize them into CSV.
Args:
data (object): Data to be serialized.
Returns:
object: Sequence of bytes to be used for the request body. | def __call__(self, data):
# For inputs which represent multiple "rows", the result should be newline-separated CSV rows
if _is_mutable_sequence_like(data) and len(data) > 0 and _is_sequence_like(data[0]):
return '\n'.join([_CsvSerializer._serialize_row(row) for row in data])
return _CsvSerializer._serialize_row(data) | 100,376 |
Take data of various formats and serialize them into the expected request body.
This uses information about supported input formats for the deployed model.
Args:
data (object): Data to be serialized.
Returns:
object: Serialized data used for the request. | def __call__(self, data):
if isinstance(data, dict):
# convert each value in dict from a numpy array to a list if necessary, so they can be json serialized
return json.dumps({k: _ndarray_to_list(v) for k, v in six.iteritems(data)})
# files and buffers
if hasattr(data, 'read'):
return _json_serialize_from_buffer(data)
return json.dumps(_ndarray_to_list(data)) | 100,381 |
Decode a JSON object into the corresponding Python object.
Args:
stream (stream): The response stream to be deserialized.
content_type (str): The content type of the response.
Returns:
object: Body of the response deserialized into a JSON object. | def __call__(self, stream, content_type):
try:
return json.load(codecs.getreader('utf-8')(stream))
finally:
stream.close() | 100,382 |
Decode from serialized data into a Numpy array.
Args:
stream (stream): The response stream to be deserialized.
content_type (str): The content type of the response. Can accept CSV, JSON, or NPY data.
Returns:
object: Body of the response deserialized into a Numpy array. | def __call__(self, stream, content_type=CONTENT_TYPE_NPY):
try:
if content_type == CONTENT_TYPE_CSV:
return np.genfromtxt(codecs.getreader('utf-8')(stream), delimiter=',', dtype=self.dtype)
elif content_type == CONTENT_TYPE_JSON:
return np.array(json.load(codecs.getreader('utf-8')(stream)), dtype=self.dtype)
elif content_type == CONTENT_TYPE_NPY:
return np.load(BytesIO(stream.read()))
finally:
stream.close() | 100,384 |
Serialize data into the request body in NPY format.
Args:
data (object): Data to be serialized. Can be a numpy array, list, file, or buffer.
Returns:
object: NPY serialized data used for the request. | def __call__(self, data, dtype=None):
if isinstance(data, np.ndarray):
if not data.size > 0:
raise ValueError("empty array can't be serialized")
return _npy_serialize(data)
if isinstance(data, list):
if not len(data) > 0:
raise ValueError("empty array can't be serialized")
return _npy_serialize(np.array(data, dtype))
# files and buffers. Assumed to hold npy-formatted data.
if hasattr(data, 'read'):
return data.read()
return _npy_serialize(np.array(data)) | 100,385 |
A pandas dataframe with lots of interesting results about this object.
Created by calling SageMaker List and Describe APIs and converting them into
a convenient tabular summary.
Args:
force_refresh (bool): Set to True to fetch the latest data from SageMaker API. | def dataframe(self, force_refresh=False):
if force_refresh:
self.clear_cache()
if self._dataframe is None:
self._dataframe = self._fetch_dataframe()
return self._dataframe | 100,387 |
Initialize a ``HyperparameterTuningJobAnalytics`` instance.
Args:
hyperparameter_tuning_job_name (str): name of the HyperparameterTuningJob to analyze.
sagemaker_session (sagemaker.session.Session): Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, one is created
using the default AWS configuration chain. | def __init__(self, hyperparameter_tuning_job_name, sagemaker_session=None):
sagemaker_session = sagemaker_session or Session()
self._sage_client = sagemaker_session.sagemaker_client
self._tuning_job_name = hyperparameter_tuning_job_name
self.clear_cache() | 100,388 |
Call ``DescribeHyperParameterTuningJob`` for the hyperparameter tuning job.
Args:
force_refresh (bool): Set to True to fetch the latest data from SageMaker API.
Returns:
dict: The Amazon SageMaker response for ``DescribeHyperParameterTuningJob``. | def description(self, force_refresh=False):
if force_refresh:
self.clear_cache()
if not self._tuning_job_describe_result:
self._tuning_job_describe_result = self._sage_client.describe_hyper_parameter_tuning_job(
HyperParameterTuningJobName=self.name
)
return self._tuning_job_describe_result | 100,392 |
A (paginated) list of everything from ``ListTrainingJobsForTuningJob``.
Args:
force_refresh (bool): Set to True to fetch the latest data from SageMaker API.
Returns:
dict: The Amazon SageMaker response for ``ListTrainingJobsForTuningJob``. | def training_job_summaries(self, force_refresh=False):
if force_refresh:
self.clear_cache()
if self._training_job_summaries is not None:
return self._training_job_summaries
output = []
next_args = {}
for count in range(100):
logging.debug("Calling list_training_jobs_for_hyper_parameter_tuning_job %d" % count)
raw_result = self._sage_client.list_training_jobs_for_hyper_parameter_tuning_job(
HyperParameterTuningJobName=self.name, MaxResults=100, **next_args
)
new_output = raw_result['TrainingJobSummaries']
output.extend(new_output)
logging.debug("Got %d more TrainingJobs. Total so far: %d" % (len(new_output), len(output)))
if ('NextToken' in raw_result) and (len(new_output) > 0):
next_args['NextToken'] = raw_result['NextToken']
else:
break
self._training_job_summaries = output
return output | 100,393 |
Append a timestamp to the provided string.
This function assures that the total length of the resulting string is not
longer than the specified max length, trimming the input parameter if necessary.
Args:
base (str): String used as prefix to generate the unique name.
max_length (int): Maximum length for the resulting string.
short (bool): Whether or not to use a truncated timestamp.
Returns:
str: Input parameter with appended timestamp. | def name_from_base(base, max_length=63, short=False):
timestamp = sagemaker_short_timestamp() if short else sagemaker_timestamp()
trimmed_base = base[:max_length - len(timestamp) - 1]
return '{}-{}'.format(trimmed_base, timestamp) | 100,401 |
Extract the base name of the image to use as the 'algorithm name' for the job.
Args:
image (str): Image name.
Returns:
str: Algorithm name, as extracted from the image name. | def base_name_from_image(image):
m = re.match("^(.+/)?([^:/]+)(:[^:]+)?$", image)
algo_name = m.group(2) if m else image
return algo_name | 100,403 |
Convert the input to a string, unless it is a unicode string in Python 2.
Unicode strings are supported as native strings in Python 3, but ``str()`` cannot be
invoked on unicode strings in Python 2, so we need to check for that case when
converting user-specified values to strings.
Args:
value: The value to convert to a string.
Returns:
str or unicode: The string representation of the value or the unicode string itself. | def to_str(value):
if sys.version_info.major < 3 and isinstance(value, six.string_types):
return value
return str(value) | 100,407 |
Returns a string contains last modified time and the secondary training job status message.
Args:
job_description: Returned response from DescribeTrainingJob call
prev_description: Previous job description from DescribeTrainingJob call
Returns:
str: Job status string to be printed. | def secondary_training_status_message(job_description, prev_description):
if job_description is None or job_description.get('SecondaryStatusTransitions') is None\
or len(job_description.get('SecondaryStatusTransitions')) == 0:
return ''
prev_description_secondary_transitions = prev_description.get('SecondaryStatusTransitions')\
if prev_description is not None else None
prev_transitions_num = len(prev_description['SecondaryStatusTransitions'])\
if prev_description_secondary_transitions is not None else 0
current_transitions = job_description['SecondaryStatusTransitions']
if len(current_transitions) == prev_transitions_num:
# Secondary status is not changed but the message changed.
transitions_to_print = current_transitions[-1:]
else:
# Secondary status is changed we need to print all the entries.
transitions_to_print = current_transitions[prev_transitions_num - len(current_transitions):]
status_strs = []
for transition in transitions_to_print:
message = transition['StatusMessage']
time_str = datetime.utcfromtimestamp(
time.mktime(job_description['LastModifiedTime'].timetuple())).strftime('%Y-%m-%d %H:%M:%S')
status_strs.append('{} {} - {}'.format(time_str, transition['Status'], message))
return '\n'.join(status_strs) | 100,409 |
Download a folder from S3 to a local path
Args:
bucket_name (str): S3 bucket name
prefix (str): S3 prefix within the bucket that will be downloaded. Can be a single file.
target (str): destination path where the downloaded items will be placed
sagemaker_session (:class:`sagemaker.session.Session`): a sagemaker session to interact with S3. | def download_folder(bucket_name, prefix, target, sagemaker_session):
boto_session = sagemaker_session.boto_session
s3 = boto_session.resource('s3')
bucket = s3.Bucket(bucket_name)
prefix = prefix.lstrip('/')
# there is a chance that the prefix points to a file and not a 'directory' if that is the case
# we should just download it.
objects = list(bucket.objects.filter(Prefix=prefix))
if len(objects) > 0 and objects[0].key == prefix and prefix[-1] != '/':
s3.Object(bucket_name, prefix).download_file(os.path.join(target, os.path.basename(prefix)))
return
# the prefix points to an s3 'directory' download the whole thing
for obj_sum in bucket.objects.filter(Prefix=prefix):
# if obj_sum is a folder object skip it.
if obj_sum.key != '' and obj_sum.key[-1] == '/':
continue
obj = s3.Object(obj_sum.bucket_name, obj_sum.key)
s3_relative_path = obj_sum.key[len(prefix):].lstrip('/')
file_path = os.path.join(target, s3_relative_path)
try:
os.makedirs(os.path.dirname(file_path))
except OSError as exc:
# EEXIST means the folder already exists, this is safe to skip
# anything else will be raised.
if exc.errno != errno.EEXIST:
raise
obj.download_file(file_path) | 100,410 |
Create a tar file containing all the source_files
Args:
source_files (List[str]): List of file paths that will be contained in the tar file
Returns:
(str): path to created tar file | def create_tar_file(source_files, target=None):
if target:
filename = target
else:
_, filename = tempfile.mkstemp()
with tarfile.open(filename, mode='w:gz') as t:
for sf in source_files:
# Add all files from the directory into the root of the directory structure of the tar
t.add(sf, arcname=os.path.basename(sf))
return filename | 100,411 |
Download a Single File from S3 into a local path
Args:
bucket_name (str): S3 bucket name
path (str): file path within the bucket
target (str): destination directory for the downloaded file.
sagemaker_session (:class:`sagemaker.session.Session`): a sagemaker session to interact with S3. | def download_file(bucket_name, path, target, sagemaker_session):
path = path.lstrip('/')
boto_session = sagemaker_session.boto_session
s3 = boto_session.resource('s3')
bucket = s3.Bucket(bucket_name)
bucket.download_file(path, target) | 100,412 |
Initialize ``Tensorboard`` instance.
Args:
estimator (sagemaker.estimator.Framework): A SageMaker ``Estimator``.
logdir (str): Directory for logs (default: None). If not specified, a temporary directory is made. | def __init__(self, estimator, logdir=None):
threading.Thread.__init__(self)
self.event = threading.Event()
self.estimator = estimator
self.logdir = logdir or tempfile.mkdtemp() | 100,413 |
Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
Returns:
dictionary: The transformed init_params | def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = super(TensorFlow, cls)._prepare_init_params_from_job_description(job_details,
model_channel_name)
# Move some of the tensorflow specific init params from hyperparameters into the main init params.
for argument in ('checkpoint_path', 'training_steps', 'evaluation_steps', 'model_dir'):
value = init_params['hyperparameters'].pop(argument, None)
if value is not None:
init_params[argument] = value
image_name = init_params.pop('image')
framework, py_version, tag, script_mode = fw.framework_name_from_image(image_name)
if not framework:
# If we were unable to parse the framework name from the image it is not one of our
# officially supported images, in this case just add the image to the init params.
init_params['image_name'] = image_name
return init_params
if script_mode:
init_params['script_mode'] = True
init_params['py_version'] = py_version
# We switched image tagging scheme from regular image version (e.g. '1.0') to more expressive
# containing framework version, device type and python version (e.g. '1.5-gpu-py2').
# For backward compatibility map deprecated image tag '1.0' to a '1.4' framework version
# otherwise extract framework version from the tag itself.
init_params['framework_version'] = '1.4' if tag == '1.0' else fw.framework_version_from_tag(
tag)
training_job_name = init_params['base_job_name']
if framework != cls.__framework_name__:
raise ValueError("Training job: {} didn't use image for requested framework".format(
training_job_name))
return init_params | 100,422 |
Initialize an ``ChainerPredictor``.
Args:
endpoint_name (str): The name of the endpoint to perform inference on.
sagemaker_session (sagemaker.session.Session): Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain. | def __init__(self, endpoint_name, sagemaker_session=None):
super(ChainerPredictor, self).__init__(endpoint_name, sagemaker_session, npy_serializer, numpy_deserializer) | 100,432 |
Initializes the ``WarmStartConfig`` with the provided ``WarmStartTypes`` and parents.
Args:
warm_start_type (sagemaker.tuner.WarmStartTypes): This should be one of the supported warm start types
in WarmStartType
parents (set{str}): Set of parent tuning jobs which will be used to warm start the new tuning job. | def __init__(self, warm_start_type, parents):
if warm_start_type not in WarmStartTypes:
raise ValueError(
"Invalid type: {}, valid warm start types are: [{}]".format(warm_start_type,
[t for t in WarmStartTypes]))
if not parents:
raise ValueError("Invalid parents: {}, parents should not be None/empty".format(parents))
self.type = warm_start_type
self.parents = set(parents) | 100,443 |
Delete an Amazon SageMaker endpoint.
If an endpoint name is not specified, this defaults to looking for an endpoint that
shares a name with the best training job for deletion.
Args:
endpoint_name (str): Name of the endpoint to delete | def delete_endpoint(self, endpoint_name=None):
endpoint_name = endpoint_name or self.best_training_job()
self.sagemaker_session.delete_endpoint(endpoint_name) | 100,452 |
Create a new Amazon SageMaker hyperparameter tuning job from the HyperparameterTuner.
Args:
tuner (sagemaker.tuner.HyperparameterTuner): HyperparameterTuner object created by the user.
inputs (str): Parameters used when called :meth:`~sagemaker.estimator.EstimatorBase.fit`.
Returns:
sagemaker.tuner._TuningJob: Constructed object that captures all information about the started job. | def start_new(cls, tuner, inputs):
config = _Job._load_config(inputs, tuner.estimator)
warm_start_config_req = None
if tuner.warm_start_config:
warm_start_config_req = tuner.warm_start_config.to_input_req()
tuner_args = config.copy()
tuner_args['job_name'] = tuner._current_job_name
tuner_args['strategy'] = tuner.strategy
tuner_args['objective_type'] = tuner.objective_type
tuner_args['objective_metric_name'] = tuner.objective_metric_name
tuner_args['max_jobs'] = tuner.max_jobs
tuner_args['max_parallel_jobs'] = tuner.max_parallel_jobs
tuner_args['parameter_ranges'] = tuner.hyperparameter_ranges()
tuner_args['static_hyperparameters'] = tuner.static_hyperparameters
tuner_args['input_mode'] = tuner.estimator.input_mode
tuner_args['metric_definitions'] = tuner.metric_definitions
tuner_args['tags'] = tuner.tags
tuner_args['warm_start_config'] = warm_start_config_req
tuner_args['early_stopping_type'] = tuner.early_stopping_type
if isinstance(tuner.estimator, sagemaker.algorithm.AlgorithmEstimator):
tuner_args['algorithm_arn'] = tuner.estimator.algorithm_arn
else:
tuner_args['image'] = tuner.estimator.train_image()
tuner_args['enable_network_isolation'] = tuner.estimator.enable_network_isolation()
tuner_args['encrypt_inter_container_traffic'] = \
tuner.estimator.encrypt_inter_container_traffic
tuner.estimator.sagemaker_session.tune(**tuner_args)
return cls(tuner.sagemaker_session, tuner._current_job_name) | 100,463 |
Initialize the class.
Args:
force (bool): If True, render colorizes output no matter where the output is (default: False). | def __init__(self, force=False):
self.colorize = force or sys.stdout.isatty() or os.environ.get('JPY_PARENT_PID', None) | 100,470 |
Print the output, colorized or not, depending on the environment.
Args:
index (int): The instance number.
s (str): The string to print. | def __call__(self, index, s):
if self.colorize:
self._color_wrap(index, s)
else:
print(s) | 100,471 |
Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
model_channel_name (str): Name of the channel where pre-trained model data will be
downloaded.
Returns:
dictionary: The transformed init_params | def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = super(RLEstimator, cls)\
._prepare_init_params_from_job_description(job_details, model_channel_name)
image_name = init_params.pop('image')
framework, _, tag, _ = fw_utils.framework_name_from_image(image_name)
if not framework:
# If we were unable to parse the framework name from the image it is not one of our
# officially supported images, in this case just add the image to the init params.
init_params['image_name'] = image_name
return init_params
toolkit, toolkit_version = cls._toolkit_and_version_from_tag(tag)
if not cls._is_combination_supported(toolkit, toolkit_version, framework):
training_job_name = init_params['base_job_name']
raise ValueError(
"Training job: {} didn't use image for requested framework".format(
training_job_name)
)
init_params['toolkit'] = RLToolkit(toolkit)
init_params['toolkit_version'] = toolkit_version
init_params['framework'] = RLFramework(framework)
return init_params | 100,476 |
Provides default metric definitions based on provided toolkit.
Args:
toolkit(sagemaker.rl.RLToolkit): RL Toolkit to be used for training.
Returns:
list: metric definitions | def default_metric_definitions(cls, toolkit):
if toolkit is RLToolkit.COACH:
return [
{'Name': 'reward-training',
'Regex': '^Training>.*Total reward=(.*?),'},
{'Name': 'reward-testing',
'Regex': '^Testing>.*Total reward=(.*?),'}
]
elif toolkit is RLToolkit.RAY:
float_regex = "[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?" # noqa: W605, E501 pylint: disable=anomalous-backslash-in-string
return [
{'Name': 'episode_reward_mean',
'Regex': 'episode_reward_mean: (%s)' % float_regex},
{'Name': 'episode_reward_max',
'Regex': 'episode_reward_max: (%s)' % float_regex}
] | 100,484 |
Prepare S3 operations (specify where to upload `source_dir`) and environment variables
related to framework.
Args:
estimator (sagemaker.estimator.Estimator): The framework estimator to get information from and update.
s3_operations (dict): The dict to specify s3 operations (upload `source_dir`). | def prepare_framework(estimator, s3_operations):
if estimator.code_location is not None:
bucket, key = fw_utils.parse_s3_url(estimator.code_location)
key = os.path.join(key, estimator._current_job_name, 'source', 'sourcedir.tar.gz')
else:
bucket = estimator.sagemaker_session._default_bucket
key = os.path.join(estimator._current_job_name, 'source', 'sourcedir.tar.gz')
script = os.path.basename(estimator.entry_point)
if estimator.source_dir and estimator.source_dir.lower().startswith('s3://'):
code_dir = estimator.source_dir
estimator.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
else:
code_dir = 's3://{}/{}'.format(bucket, key)
estimator.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
s3_operations['S3Upload'] = [{
'Path': estimator.source_dir or script,
'Bucket': bucket,
'Key': key,
'Tar': True
}]
estimator._hyperparameters[sagemaker.model.DIR_PARAM_NAME] = code_dir
estimator._hyperparameters[sagemaker.model.SCRIPT_PARAM_NAME] = script
estimator._hyperparameters[sagemaker.model.CLOUDWATCH_METRICS_PARAM_NAME] = \
estimator.enable_cloudwatch_metrics
estimator._hyperparameters[sagemaker.model.CONTAINER_LOG_LEVEL_PARAM_NAME] = estimator.container_log_level
estimator._hyperparameters[sagemaker.model.JOB_NAME_PARAM_NAME] = estimator._current_job_name
estimator._hyperparameters[sagemaker.model.SAGEMAKER_REGION_PARAM_NAME] = \
estimator.sagemaker_session.boto_region_name | 100,485 |
Updated the S3 URI of the framework source directory in given estimator.
Args:
estimator (sagemaker.estimator.Framework): The Framework estimator to update.
job_name (str): The new job name included in the submit S3 URI
Returns:
str: The updated S3 URI of framework source directory | def update_submit_s3_uri(estimator, job_name):
if estimator.uploaded_code is None:
return
pattern = r'(?<=/)[^/]+?(?=/source/sourcedir.tar.gz)'
# update the S3 URI with the latest training job.
# s3://path/old_job/source/sourcedir.tar.gz will become s3://path/new_job/source/sourcedir.tar.gz
submit_uri = estimator.uploaded_code.s3_prefix
submit_uri = re.sub(pattern, job_name, submit_uri)
script_name = estimator.uploaded_code.script_name
estimator.uploaded_code = fw_utils.UploadedCode(submit_uri, script_name) | 100,490 |
Prepare the framework model container information. Specify related S3 operations for Airflow to perform.
(Upload `source_dir`)
Args:
model (sagemaker.model.FrameworkModel): The framework model
instance_type (str): The EC2 instance type to deploy this Model to. For example, 'ml.p2.xlarge'.
s3_operations (dict): The dict to specify S3 operations (upload `source_dir`).
Returns:
dict: The container information of this framework model. | def prepare_framework_container_def(model, instance_type, s3_operations):
deploy_image = model.image
if not deploy_image:
region_name = model.sagemaker_session.boto_session.region_name
deploy_image = fw_utils.create_image_uri(
region_name, model.__framework_name__, instance_type, model.framework_version, model.py_version)
base_name = utils.base_name_from_image(deploy_image)
model.name = model.name or utils.name_from_base(base_name)
bucket = model.bucket or model.sagemaker_session._default_bucket
script = os.path.basename(model.entry_point)
key = '{}/source/sourcedir.tar.gz'.format(model.name)
if model.source_dir and model.source_dir.lower().startswith('s3://'):
code_dir = model.source_dir
model.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
else:
code_dir = 's3://{}/{}'.format(bucket, key)
model.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
s3_operations['S3Upload'] = [{
'Path': model.source_dir or script,
'Bucket': bucket,
'Key': key,
'Tar': True
}]
deploy_env = dict(model.env)
deploy_env.update(model._framework_env_vars())
try:
if model.model_server_workers:
deploy_env[sagemaker.model.MODEL_SERVER_WORKERS_PARAM_NAME.upper()] = str(model.model_server_workers)
except AttributeError:
# This applies to a FrameworkModel which is not SageMaker Deep Learning Framework Model
pass
return sagemaker.container_def(deploy_image, model.model_data, deploy_env) | 100,492 |
Set any values in the estimator that need to be set before training.
Args:
* job_name (str): Name of the training job to be created. If not specified, one is generated,
using the base name given to the constructor if applicable. | def _prepare_for_training(self, job_name=None):
if job_name is not None:
self._current_job_name = job_name
else:
# honor supplied base_job_name or generate it
if self.base_job_name:
base_name = self.base_job_name
elif isinstance(self, sagemaker.algorithm.AlgorithmEstimator):
base_name = self.algorithm_arn.split('/')[-1] # pylint: disable=no-member
else:
base_name = base_name_from_image(self.train_image())
self._current_job_name = name_from_base(base_name)
# if output_path was specified we use it otherwise initialize here.
# For Local Mode with local_code=True we don't need an explicit output_path
if self.output_path is None:
local_code = get_config_value('local.local_code', self.sagemaker_session.config)
if self.sagemaker_session.local_mode and local_code:
self.output_path = ''
else:
self.output_path = 's3://{}/'.format(self.sagemaker_session.default_bucket()) | 100,522 |
Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
model_channel_name (str): Name of the channel where pre-trained model data will be downloaded.
Returns:
dictionary: The transformed init_params | def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = dict()
init_params['role'] = job_details['RoleArn']
init_params['train_instance_count'] = job_details['ResourceConfig']['InstanceCount']
init_params['train_instance_type'] = job_details['ResourceConfig']['InstanceType']
init_params['train_volume_size'] = job_details['ResourceConfig']['VolumeSizeInGB']
init_params['train_max_run'] = job_details['StoppingCondition']['MaxRuntimeInSeconds']
init_params['input_mode'] = job_details['AlgorithmSpecification']['TrainingInputMode']
init_params['base_job_name'] = job_details['TrainingJobName']
init_params['output_path'] = job_details['OutputDataConfig']['S3OutputPath']
init_params['output_kms_key'] = job_details['OutputDataConfig']['KmsKeyId']
has_hps = 'HyperParameters' in job_details
init_params['hyperparameters'] = job_details['HyperParameters'] if has_hps else {}
if 'TrainingImage' in job_details['AlgorithmSpecification']:
init_params['image'] = job_details['AlgorithmSpecification']['TrainingImage']
elif 'AlgorithmName' in job_details['AlgorithmSpecification']:
init_params['algorithm_arn'] = job_details['AlgorithmSpecification']['AlgorithmName']
else:
raise RuntimeError('Invalid AlgorithmSpecification. Either TrainingImage or '
'AlgorithmName is expected. None was found.')
if 'MetricDefinitons' in job_details['AlgorithmSpecification']:
init_params['metric_definitions'] = job_details['AlgorithmSpecification']['MetricsDefinition']
if 'EnableInterContainerTrafficEncryption' in job_details:
init_params['encrypt_inter_container_traffic'] = \
job_details['EnableInterContainerTrafficEncryption']
subnets, security_group_ids = vpc_utils.from_dict(job_details.get(vpc_utils.VPC_CONFIG_KEY))
if subnets:
init_params['subnets'] = subnets
if security_group_ids:
init_params['security_group_ids'] = security_group_ids
if 'InputDataConfig' in job_details and model_channel_name:
for channel in job_details['InputDataConfig']:
if channel['ChannelName'] == model_channel_name:
init_params['model_channel_name'] = model_channel_name
init_params['model_uri'] = channel['DataSource']['S3DataSource']['S3Uri']
break
return init_params | 100,529 |
Create a new Amazon SageMaker training job from the estimator.
Args:
estimator (sagemaker.estimator.EstimatorBase): Estimator object created by the user.
inputs (str): Parameters used when called :meth:`~sagemaker.estimator.EstimatorBase.fit`.
Returns:
sagemaker.estimator._TrainingJob: Constructed object that captures all information about the started
training job. | def start_new(cls, estimator, inputs):
local_mode = estimator.sagemaker_session.local_mode
model_uri = estimator.model_uri
# Allow file:// input only in local mode
if cls._is_local_channel(inputs) or cls._is_local_channel(model_uri):
if not local_mode:
raise ValueError('File URIs are supported in local mode only. Please use a S3 URI instead.')
config = _Job._load_config(inputs, estimator)
if estimator.hyperparameters() is not None:
hyperparameters = {str(k): str(v) for (k, v) in estimator.hyperparameters().items()}
train_args = config.copy()
train_args['input_mode'] = estimator.input_mode
train_args['job_name'] = estimator._current_job_name
train_args['hyperparameters'] = hyperparameters
train_args['tags'] = estimator.tags
train_args['metric_definitions'] = estimator.metric_definitions
if estimator.enable_network_isolation():
train_args['enable_network_isolation'] = True
if estimator.encrypt_inter_container_traffic:
train_args['encrypt_inter_container_traffic'] = True
if isinstance(estimator, sagemaker.algorithm.AlgorithmEstimator):
train_args['algorithm_arn'] = estimator.algorithm_arn
else:
train_args['image'] = estimator.train_image()
estimator.sagemaker_session.train(**train_args)
return cls(estimator.sagemaker_session, estimator._current_job_name) | 100,534 |
Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
model_channel_name (str): Name of the channel where pre-trained model data will be downloaded
Returns:
dictionary: The transformed init_params | def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = super(Estimator, cls)._prepare_init_params_from_job_description(job_details, model_channel_name)
init_params['image_name'] = init_params.pop('image')
return init_params | 100,539 |
Set hyperparameters needed for training. This method will also validate ``source_dir``.
Args:
* job_name (str): Name of the training job to be created. If not specified, one is generated,
using the base name given to the constructor if applicable. | def _prepare_for_training(self, job_name=None):
super(Framework, self)._prepare_for_training(job_name=job_name)
# validate source dir will raise a ValueError if there is something wrong with the
# source directory. We are intentionally not handling it because this is a critical error.
if self.source_dir and not self.source_dir.lower().startswith('s3://'):
validate_source_dir(self.entry_point, self.source_dir)
# if we are in local mode with local_code=True. We want the container to just
# mount the source dir instead of uploading to S3.
local_code = get_config_value('local.local_code', self.sagemaker_session.config)
if self.sagemaker_session.local_mode and local_code:
# if there is no source dir, use the directory containing the entry point.
if self.source_dir is None:
self.source_dir = os.path.dirname(self.entry_point)
self.entry_point = os.path.basename(self.entry_point)
code_dir = 'file://' + self.source_dir
script = self.entry_point
else:
self.uploaded_code = self._stage_user_code_in_s3()
code_dir = self.uploaded_code.s3_prefix
script = self.uploaded_code.script_name
# Modify hyperparameters in-place to point to the right code directory and script URIs
self._hyperparameters[DIR_PARAM_NAME] = code_dir
self._hyperparameters[SCRIPT_PARAM_NAME] = script
self._hyperparameters[CLOUDWATCH_METRICS_PARAM_NAME] = self.enable_cloudwatch_metrics
self._hyperparameters[CONTAINER_LOG_LEVEL_PARAM_NAME] = self.container_log_level
self._hyperparameters[JOB_NAME_PARAM_NAME] = self._current_job_name
self._hyperparameters[SAGEMAKER_REGION_PARAM_NAME] = self.sagemaker_session.boto_region_name | 100,541 |
Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
model_channel_name (str): Name of the channel where pre-trained model data will be downloaded
Returns:
dictionary: The transformed init_params | def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = super(Framework, cls)._prepare_init_params_from_job_description(job_details, model_channel_name)
init_params['entry_point'] = json.loads(init_params['hyperparameters'].get(SCRIPT_PARAM_NAME))
init_params['source_dir'] = json.loads(init_params['hyperparameters'].get(DIR_PARAM_NAME))
init_params['enable_cloudwatch_metrics'] = json.loads(
init_params['hyperparameters'].get(CLOUDWATCH_METRICS_PARAM_NAME))
init_params['container_log_level'] = json.loads(
init_params['hyperparameters'].get(CONTAINER_LOG_LEVEL_PARAM_NAME))
hyperparameters = {}
for k, v in init_params['hyperparameters'].items():
# Tuning jobs add this special hyperparameter which is not JSON serialized
if k == '_tuning_objective_metric':
if v.startswith('"') and v.endswith('"'):
v = v.strip('"')
hyperparameters[k] = v
else:
hyperparameters[k] = json.loads(v)
init_params['hyperparameters'] = hyperparameters
return init_params | 100,544 |
Constructor.
Args:
channel: A grpc.Channel. | def __init__(self, channel):
self.GetModelStatus = channel.unary_unary(
'/tensorflow.serving.ModelService/GetModelStatus',
request_serializer=tensorflow__serving_dot_apis_dot_get__model__status__pb2.GetModelStatusRequest.SerializeToString,
response_deserializer=tensorflow__serving_dot_apis_dot_get__model__status__pb2.GetModelStatusResponse.FromString,
) | 100,558 |
Start the Local Transform Job
Args:
input_data (dict): Describes the dataset to be transformed and the location where it is stored.
output_data (dict): Identifies the location where to save the results from the transform job
transform_resources (dict): compute instances for the transform job. Currently only supports local or
local_gpu
**kwargs: additional arguments coming from the boto request object | def start(self, input_data, output_data, transform_resources, **kwargs):
self.transform_resources = transform_resources
self.input_data = input_data
self.output_data = output_data
image = self.primary_container['Image']
instance_type = transform_resources['InstanceType']
instance_count = 1
environment = self._get_container_environment(**kwargs)
# Start the container, pass the environment and wait for it to start up
self.container = _SageMakerContainer(instance_type, instance_count, image, self.local_session)
self.container.serve(self.primary_container['ModelDataUrl'], environment)
serving_port = get_config_value('local.serving_port', self.local_session.config) or 8080
_wait_for_serving_container(serving_port)
# Get capabilities from Container if needed
endpoint_url = 'http://localhost:%s/execution-parameters' % serving_port
response, code = _perform_request(endpoint_url)
if code == 200:
execution_parameters = json.loads(response.read())
# MaxConcurrentTransforms is ignored because we currently only support 1
for setting in ('BatchStrategy', 'MaxPayloadInMB'):
if setting not in kwargs and setting in execution_parameters:
kwargs[setting] = execution_parameters[setting]
# Apply Defaults if none was provided
kwargs.update(self._get_required_defaults(**kwargs))
self.start_time = datetime.datetime.now()
self.batch_strategy = kwargs['BatchStrategy']
if 'Environment' in kwargs:
self.environment = kwargs['Environment']
# run the batch inference requests
self._perform_batch_inference(input_data, output_data, **kwargs)
self.end_time = datetime.datetime.now()
self.state = self._COMPLETED | 100,565 |
Get all the Environment variables that will be passed to the container
Certain input fields such as BatchStrategy have different values for the API vs the Environment
variables, such as SingleRecord vs SINGLE_RECORD. This method also handles this conversion.
Args:
**kwargs: existing transform arguments
Returns:
dict: All the environment variables that should be set in the container | def _get_container_environment(self, **kwargs):
environment = {}
environment.update(self.primary_container['Environment'])
environment['SAGEMAKER_BATCH'] = 'True'
if 'MaxPayloadInMB' in kwargs:
environment['SAGEMAKER_MAX_PAYLOAD_IN_MB'] = str(kwargs['MaxPayloadInMB'])
if 'BatchStrategy' in kwargs:
if kwargs['BatchStrategy'] == 'SingleRecord':
strategy_env_value = 'SINGLE_RECORD'
elif kwargs['BatchStrategy'] == 'MultiRecord':
strategy_env_value = 'MULTI_RECORD'
else:
raise ValueError('Invalid BatchStrategy, must be \'SingleRecord\' or \'MultiRecord\'')
environment['SAGEMAKER_BATCH_STRATEGY'] = strategy_env_value
# we only do 1 max concurrent transform in Local Mode
if 'MaxConcurrentTransforms' in kwargs and int(kwargs['MaxConcurrentTransforms']) > 1:
logger.warning('Local Mode only supports 1 ConcurrentTransform. Setting MaxConcurrentTransforms to 1')
environment['SAGEMAKER_MAX_CONCURRENT_TRANSFORMS'] = '1'
# if there were environment variables passed to the Transformer we will pass them to the
# container as well.
if 'Environment' in kwargs:
environment.update(kwargs['Environment'])
return environment | 100,567 |