url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.47B
1.9B
| node_id
stringlengths 18
19
| number
int64 5.31k
6.25k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
bool 2
classes | pull_request
dict | body
stringlengths 3
19.9k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6247 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6247/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6247/comments | https://api.github.com/repos/huggingface/datasets/issues/6247/events | https://github.com/huggingface/datasets/pull/6247 | 1,901,390,945 | PR_kwDODunzps5amAQ1 | 6,247 | Update create_dataset.mdx | {
"login": "EswarDivi",
"id": 76403422,
"node_id": "MDQ6VXNlcjc2NDAzNDIy",
"avatar_url": "https://avatars.githubusercontent.com/u/76403422?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/EswarDivi",
"html_url": "https://github.com/EswarDivi",
"followers_url": "https://api.github.com/users/EswarDivi/followers",
"following_url": "https://api.github.com/users/EswarDivi/following{/other_user}",
"gists_url": "https://api.github.com/users/EswarDivi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/EswarDivi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/EswarDivi/subscriptions",
"organizations_url": "https://api.github.com/users/EswarDivi/orgs",
"repos_url": "https://api.github.com/users/EswarDivi/repos",
"events_url": "https://api.github.com/users/EswarDivi/events{/privacy}",
"received_events_url": "https://api.github.com/users/EswarDivi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008892 / 0.011353 (-0.002461) | 0.005140 / 0.011008 (-0.005868) | 0.110951 / 0.038508 (0.072442) | 0.086159 / 0.023109 (0.063050) | 0.391117 / 0.275898 (0.115218) | 0.440884 / 0.323480 (0.117404) | 0.006562 / 0.007986 (-0.001423) | 0.003711 / 0.004328 (-0.000618) | 0.081848 / 0.004250 (0.077598) | 0.063187 / 0.037052 (0.026135) | 0.369771 / 0.258489 (0.111282) | 0.447685 / 0.293841 (0.153844) | 0.046623 / 0.128546 (-0.081923) | 0.014024 / 0.075646 (-0.061622) | 0.418556 / 0.419271 (-0.000715) | 0.064660 / 0.043533 (0.021127) | 0.379416 / 0.255139 (0.124277) | 0.415800 / 0.283200 (0.132600) | 0.036899 / 0.141683 (-0.104784) | 1.710280 / 1.452155 (0.258125) | 1.932326 / 1.492716 (0.439610) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.311351 / 0.018006 (0.293345) | 0.621121 / 0.000490 (0.620631) | 0.013677 / 0.000200 (0.013477) | 0.000543 / 0.000054 (0.000488) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031310 / 0.037411 (-0.006102) | 0.099546 / 0.014526 (0.085020) | 0.122100 / 0.176557 (-0.054457) | 0.186477 / 0.737135 (-0.550659) | 0.116634 / 0.296338 (-0.179704) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.574639 / 0.215209 (0.359430) | 5.976678 / 2.077655 (3.899023) | 2.535482 / 1.504120 (1.031362) | 2.248873 / 1.541195 (0.707678) | 2.361696 / 1.468490 (0.893205) | 0.866700 / 4.584777 (-3.718077) | 5.298018 / 3.745712 (1.552306) | 4.753240 / 5.269862 (-0.516622) | 3.124698 / 4.565676 (-1.440979) | 0.101852 / 0.424275 (-0.322423) | 0.009117 / 0.007607 (0.001510) | 0.723730 / 0.226044 (0.497685) | 7.172649 / 2.268929 (4.903720) | 3.400410 / 55.444624 (-52.044214) | 2.626619 / 6.876477 (-4.249857) | 2.948692 / 2.142072 (0.806620) | 0.991589 / 4.805227 (-3.813638) | 0.208902 / 6.500664 (-6.291762) | 0.076172 / 0.075469 (0.000703) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.621880 / 1.841788 (-0.219907) | 22.735673 / 8.074308 (14.661365) | 20.376990 / 10.191392 (10.185598) | 0.232219 / 0.680424 (-0.448204) | 0.028616 / 0.534201 (-0.505585) | 0.455725 / 0.579283 (-0.123558) | 0.562796 / 0.434364 (0.128432) | 0.545344 / 0.540337 (0.005007) | 0.759440 / 1.386936 (-0.627496) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009845 / 0.011353 (-0.001508) | 0.005289 / 0.011008 (-0.005719) | 0.083117 / 0.038508 (0.044609) | 0.098467 / 0.023109 (0.075357) | 0.532345 / 0.275898 (0.256447) | 0.571000 / 0.323480 (0.247520) | 0.007223 / 0.007986 (-0.000763) | 0.004442 / 0.004328 (0.000114) | 0.081710 / 0.004250 (0.077459) | 0.071132 / 0.037052 (0.034080) | 0.540093 / 0.258489 (0.281604) | 0.582244 / 0.293841 (0.288403) | 0.048509 / 0.128546 (-0.080038) | 0.013897 / 0.075646 (-0.061749) | 0.092579 / 0.419271 (-0.326692) | 0.073409 / 0.043533 (0.029876) | 0.537369 / 0.255139 (0.282230) | 0.551403 / 0.283200 (0.268203) | 0.038847 / 0.141683 (-0.102835) | 1.940848 / 1.452155 (0.488693) | 2.045597 / 1.492716 (0.552881) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.303883 / 0.018006 (0.285877) | 0.600237 / 0.000490 (0.599748) | 0.006030 / 0.000200 (0.005830) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036633 / 0.037411 (-0.000778) | 0.105853 / 0.014526 (0.091327) | 0.126289 / 0.176557 (-0.050267) | 0.190022 / 0.737135 (-0.547113) | 0.123251 / 0.296338 (-0.173087) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.711893 / 0.215209 (0.496684) | 6.979781 / 2.077655 (4.902126) | 3.491514 / 1.504120 (1.987394) | 3.268077 / 1.541195 (1.726882) | 3.241777 / 1.468490 (1.773287) | 0.875913 / 4.584777 (-3.708864) | 5.458421 / 3.745712 (1.712709) | 4.818355 / 5.269862 (-0.451507) | 3.256046 / 4.565676 (-1.309631) | 0.095000 / 0.424275 (-0.329275) | 0.009072 / 0.007607 (0.001465) | 0.818468 / 0.226044 (0.592424) | 8.027702 / 2.268929 (5.758773) | 4.363234 / 55.444624 (-51.081390) | 3.695269 / 6.876477 (-3.181207) | 3.902601 / 2.142072 (1.760528) | 1.039007 / 4.805227 (-3.766220) | 0.212050 / 6.500664 (-6.288614) | 0.081438 / 0.075469 (0.005969) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.746945 / 1.841788 (-0.094842) | 25.274283 / 8.074308 (17.199975) | 23.514717 / 10.191392 (13.323325) | 0.232580 / 0.680424 (-0.447843) | 0.032083 / 0.534201 (-0.502118) | 0.482873 / 0.579283 (-0.096410) | 0.585730 / 0.434364 (0.151366) | 0.602066 / 0.540337 (0.061729) | 0.796391 / 1.386936 (-0.590546) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0d7cb68fe37dbfd81e5f82e19d8f9847c337788d \"CML watermark\")\n"
] | 2023-09-18T17:06:29 | 2023-09-19T18:51:49 | 2023-09-19T18:40:10 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6247",
"html_url": "https://github.com/huggingface/datasets/pull/6247",
"diff_url": "https://github.com/huggingface/datasets/pull/6247.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6247.patch",
"merged_at": "2023-09-19T18:40:10"
} | modified , as AudioFolder and ImageFolder not in Dataset Library.
``` from datasets import AudioFolder ``` and ```from datasets import ImageFolder``` to ```from datasets import load_dataset```
```
cannot import name 'AudioFolder' from 'datasets' (/home/eswardivi/miniconda3/envs/Hugformers/lib/python3.10/site-packages/datasets/__init__.py)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6247/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6247/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6246 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6246/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6246/comments | https://api.github.com/repos/huggingface/datasets/issues/6246/events | https://github.com/huggingface/datasets/issues/6246 | 1,899,848,414 | I_kwDODunzps5xPWLe | 6,246 | Add new column to dataset | {
"login": "andysingal",
"id": 20493493,
"node_id": "MDQ6VXNlcjIwNDkzNDkz",
"avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/andysingal",
"html_url": "https://github.com/andysingal",
"followers_url": "https://api.github.com/users/andysingal/followers",
"following_url": "https://api.github.com/users/andysingal/following{/other_user}",
"gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/andysingal/subscriptions",
"organizations_url": "https://api.github.com/users/andysingal/orgs",
"repos_url": "https://api.github.com/users/andysingal/repos",
"events_url": "https://api.github.com/users/andysingal/events{/privacy}",
"received_events_url": "https://api.github.com/users/andysingal/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I think it's an issue with the code.\r\n\r\nSpecifically:\r\n```python\r\ndataset = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n```\r\n\r\nNow `dataset` is the train set with a new column. \r\nTo fix this, you can do:\r\n\r\n```python\r\ndataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n```",
"> I think it's an issue with the code.\r\n> \r\n> Specifically:\r\n> \r\n> ```python\r\n> dataset = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n> ```\r\n> \r\n> Now `dataset` is the train set with a new column. To fix this, you can do:\r\n> \r\n> ```python\r\n> dataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n> ```\r\n\r\nThanks for your response, but i can not access mask images, please let me know why the problem still persists. Here is the notebook for reference: https://colab.research.google.com/drive/10lZ_zLtU4itYVmIVTvIEVbjfOtCZaAZy?usp=sharing ",
"I think there is a slight misunderstanding.\r\n```python\r\nnew_column = [\"mask\"] * len(dataset[\"train\"])\r\ndataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n```\r\n\r\nadds a column with the string `mask` to your dataset.\r\nIf you're trying to load the images `\"mask_{idx}.png\"` in your dataset, you could try:\r\n\r\n```\r\nfrom datasets import Image\r\n\r\ndataset['train'] = dataset['train'].map(lambda u, idx: {'mask': f\"/workspace/data/mask_{idx}.png\", with_indices=True).cast_column(\"mask\", Image())\r\n```\r\n\r\nWhat this does is that it adds a column to your dataset name `mask` with the path to the mask, then it cast the column as an `Image` feature.\r\n\r\nThis [link](https://huggingface.co/docs/datasets/v2.5.1/en/image_load) explains how to load images.\r\n\r\nHope this helps!",
"> I think there is a slight misunderstanding.\r\n> \r\n> ```python\r\n> new_column = [\"mask\"] * len(dataset[\"train\"])\r\n> dataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n> ```\r\n> \r\n> adds a column with the string `mask` to your dataset. If you're trying to load the images `\"mask_{idx}.png\"` in your dataset, you could try:\r\n> \r\n> ```\r\n> from datasets import Image\r\n> \r\n> dataset['train'] = dataset['train'].map(lambda u, idx: {'mask': f\"/workspace/data/mask_{idx}.png\", with_indices=True).cast_column(\"mask\", Image())\r\n> ```\r\n> \r\n> What this does is that it adds a column to your dataset name `mask` with the path to the mask, then it cast the column as an `Image` feature.\r\n> \r\n> This [link](https://huggingface.co/docs/datasets/v2.5.1/en/image_load) explains how to load images.\r\n> \r\n> Hope this helps!\r\n\r\nThank you very much, this is really helpful...\r\ni made some changes for it to work:\r\n```\r\ndataset['train'] = dataset['train'].map(lambda u, idx: {'mask': f\"/content/data/mask_{idx}.png\"}, with_indices=True).cast_column(\"mask\", Image())\r\n```\r\nThanks Again @Dref360 "
] | 2023-09-17T16:59:48 | 2023-09-18T16:20:09 | 2023-09-18T16:20:09 | NONE | null | null | null | ### Describe the bug
```
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
[<ipython-input-9-bd197b36b6a0>](https://localhost:8080/#) in <cell line: 1>()
----> 1 dataset['train']['/workspace/data']
3 frames
[/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in _check_valid_column_key(key, columns)
518 def _check_valid_column_key(key: str, columns: List[str]) -> None:
519 if key not in columns:
--> 520 raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}")
521
522
KeyError: "Column train not in the dataset. Current columns in the dataset: ['image', '/workspace/data']"
```
### Steps to reproduce the bug
please find the notebook for reference: https://colab.research.google.com/drive/10lZ_zLtU4itYVmIVTvIEVbjfOtCZaAZy?usp=sharing
### Expected behavior
add column to the dataset
### Environment info
colab pro | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6246/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6246/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6244 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6244/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6244/comments | https://api.github.com/repos/huggingface/datasets/issues/6244/events | https://github.com/huggingface/datasets/pull/6244 | 1,898,861,422 | PR_kwDODunzps5adtD3 | 6,244 | Add support for `fsspec>=2023.9.0` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6244). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006410 / 0.011353 (-0.004943) | 0.003995 / 0.011008 (-0.007013) | 0.083585 / 0.038508 (0.045076) | 0.074285 / 0.023109 (0.051176) | 0.307163 / 0.275898 (0.031265) | 0.344691 / 0.323480 (0.021212) | 0.004277 / 0.007986 (-0.003708) | 0.004192 / 0.004328 (-0.000136) | 0.065156 / 0.004250 (0.060905) | 0.056774 / 0.037052 (0.019721) | 0.315483 / 0.258489 (0.056994) | 0.361911 / 0.293841 (0.068070) | 0.030454 / 0.128546 (-0.098092) | 0.008600 / 0.075646 (-0.067047) | 0.286692 / 0.419271 (-0.132579) | 0.052354 / 0.043533 (0.008821) | 0.308997 / 0.255139 (0.053858) | 0.337847 / 0.283200 (0.054647) | 0.022459 / 0.141683 (-0.119224) | 1.482758 / 1.452155 (0.030604) | 1.572853 / 1.492716 (0.080137) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288603 / 0.018006 (0.270597) | 0.632903 / 0.000490 (0.632413) | 0.013702 / 0.000200 (0.013502) | 0.000284 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028448 / 0.037411 (-0.008964) | 0.082441 / 0.014526 (0.067916) | 0.099048 / 0.176557 (-0.077508) | 0.154370 / 0.737135 (-0.582765) | 0.146143 / 0.296338 (-0.150195) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399250 / 0.215209 (0.184040) | 3.986683 / 2.077655 (1.909028) | 1.962606 / 1.504120 (0.458486) | 1.782653 / 1.541195 (0.241459) | 1.830251 / 1.468490 (0.361761) | 0.492498 / 4.584777 (-4.092278) | 3.549581 / 3.745712 (-0.196131) | 3.200056 / 5.269862 (-2.069806) | 2.028109 / 4.565676 (-2.537568) | 0.058222 / 0.424275 (-0.366053) | 0.007629 / 0.007607 (0.000022) | 0.482083 / 0.226044 (0.256039) | 4.824728 / 2.268929 (2.555800) | 2.448772 / 55.444624 (-52.995852) | 2.079629 / 6.876477 (-4.796848) | 2.267739 / 2.142072 (0.125667) | 0.586712 / 4.805227 (-4.218515) | 0.134073 / 6.500664 (-6.366591) | 0.060565 / 0.075469 (-0.014904) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263244 / 1.841788 (-0.578544) | 18.964498 / 8.074308 (10.890190) | 14.125062 / 10.191392 (3.933670) | 0.167635 / 0.680424 (-0.512789) | 0.018469 / 0.534201 (-0.515732) | 0.390395 / 0.579283 (-0.188888) | 0.406055 / 0.434364 (-0.028309) | 0.460717 / 0.540337 (-0.079620) | 0.642746 / 1.386936 (-0.744190) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006637 / 0.011353 (-0.004716) | 0.003972 / 0.011008 (-0.007036) | 0.064569 / 0.038508 (0.026061) | 0.075450 / 0.023109 (0.052341) | 0.405250 / 0.275898 (0.129352) | 0.433530 / 0.323480 (0.110050) | 0.005625 / 0.007986 (-0.002361) | 0.004118 / 0.004328 (-0.000211) | 0.065092 / 0.004250 (0.060842) | 0.057979 / 0.037052 (0.020927) | 0.413732 / 0.258489 (0.155243) | 0.451983 / 0.293841 (0.158142) | 0.032170 / 0.128546 (-0.096377) | 0.008690 / 0.075646 (-0.066957) | 0.071792 / 0.419271 (-0.347479) | 0.048560 / 0.043533 (0.005027) | 0.410312 / 0.255139 (0.155173) | 0.427294 / 0.283200 (0.144095) | 0.023006 / 0.141683 (-0.118677) | 1.496319 / 1.452155 (0.044164) | 1.566744 / 1.492716 (0.074027) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266812 / 0.018006 (0.248805) | 0.540277 / 0.000490 (0.539788) | 0.008998 / 0.000200 (0.008799) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032496 / 0.037411 (-0.004915) | 0.091387 / 0.014526 (0.076861) | 0.107516 / 0.176557 (-0.069041) | 0.160019 / 0.737135 (-0.577116) | 0.107686 / 0.296338 (-0.188652) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433321 / 0.215209 (0.218111) | 4.330221 / 2.077655 (2.252566) | 2.367215 / 1.504120 (0.863095) | 2.192464 / 1.541195 (0.651269) | 2.200204 / 1.468490 (0.731714) | 0.488057 / 4.584777 (-4.096720) | 3.625429 / 3.745712 (-0.120283) | 3.282859 / 5.269862 (-1.987003) | 2.038716 / 4.565676 (-2.526960) | 0.057968 / 0.424275 (-0.366307) | 0.007753 / 0.007607 (0.000146) | 0.509133 / 0.226044 (0.283089) | 5.086445 / 2.268929 (2.817516) | 2.846017 / 55.444624 (-52.598607) | 2.469546 / 6.876477 (-4.406931) | 2.673218 / 2.142072 (0.531145) | 0.591228 / 4.805227 (-4.213999) | 0.131920 / 6.500664 (-6.368744) | 0.059967 / 0.075469 (-0.015502) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.375634 / 1.841788 (-0.466153) | 19.506752 / 8.074308 (11.432444) | 14.677876 / 10.191392 (4.486484) | 0.165071 / 0.680424 (-0.515353) | 0.020614 / 0.534201 (-0.513587) | 0.395967 / 0.579283 (-0.183316) | 0.424358 / 0.434364 (-0.010006) | 0.469954 / 0.540337 (-0.070384) | 0.643169 / 1.386936 (-0.743767) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#887a854f03c4ac6d2e99b9ef4d89e6fe8c46d6f1 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006072 / 0.011353 (-0.005281) | 0.003691 / 0.011008 (-0.007318) | 0.081683 / 0.038508 (0.043175) | 0.059114 / 0.023109 (0.036005) | 0.317053 / 0.275898 (0.041155) | 0.357672 / 0.323480 (0.034192) | 0.003577 / 0.007986 (-0.004408) | 0.003890 / 0.004328 (-0.000438) | 0.063667 / 0.004250 (0.059417) | 0.048233 / 0.037052 (0.011181) | 0.322854 / 0.258489 (0.064365) | 0.368014 / 0.293841 (0.074173) | 0.027750 / 0.128546 (-0.100796) | 0.008137 / 0.075646 (-0.067509) | 0.263906 / 0.419271 (-0.155366) | 0.045402 / 0.043533 (0.001870) | 0.315414 / 0.255139 (0.060275) | 0.340906 / 0.283200 (0.057707) | 0.023475 / 0.141683 (-0.118208) | 1.443922 / 1.452155 (-0.008233) | 1.550332 / 1.492716 (0.057616) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211914 / 0.018006 (0.193908) | 0.423577 / 0.000490 (0.423088) | 0.003436 / 0.000200 (0.003236) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024675 / 0.037411 (-0.012737) | 0.072550 / 0.014526 (0.058024) | 0.084533 / 0.176557 (-0.092024) | 0.146106 / 0.737135 (-0.591029) | 0.085523 / 0.296338 (-0.210816) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403498 / 0.215209 (0.188289) | 4.019000 / 2.077655 (1.941345) | 1.984821 / 1.504120 (0.480701) | 1.805071 / 1.541195 (0.263876) | 1.860906 / 1.468490 (0.392416) | 0.499570 / 4.584777 (-4.085207) | 3.088424 / 3.745712 (-0.657288) | 2.833693 / 5.269862 (-2.436169) | 1.869731 / 4.565676 (-2.695945) | 0.057606 / 0.424275 (-0.366669) | 0.006960 / 0.007607 (-0.000647) | 0.476085 / 0.226044 (0.250040) | 4.774063 / 2.268929 (2.505134) | 2.458079 / 55.444624 (-52.986545) | 2.106075 / 6.876477 (-4.770402) | 2.248373 / 2.142072 (0.106301) | 0.589767 / 4.805227 (-4.215460) | 0.124382 / 6.500664 (-6.376282) | 0.060705 / 0.075469 (-0.014764) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.287031 / 1.841788 (-0.554756) | 17.662455 / 8.074308 (9.588147) | 14.288812 / 10.191392 (4.097420) | 0.156168 / 0.680424 (-0.524256) | 0.016795 / 0.534201 (-0.517406) | 0.333726 / 0.579283 (-0.245557) | 0.362327 / 0.434364 (-0.072037) | 0.387773 / 0.540337 (-0.152564) | 0.547232 / 1.386936 (-0.839704) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006494 / 0.011353 (-0.004859) | 0.003762 / 0.011008 (-0.007247) | 0.062373 / 0.038508 (0.023864) | 0.066357 / 0.023109 (0.043247) | 0.448687 / 0.275898 (0.172789) | 0.482445 / 0.323480 (0.158965) | 0.004990 / 0.007986 (-0.002996) | 0.002945 / 0.004328 (-0.001384) | 0.062444 / 0.004250 (0.058194) | 0.051381 / 0.037052 (0.014329) | 0.449310 / 0.258489 (0.190821) | 0.483188 / 0.293841 (0.189347) | 0.029078 / 0.128546 (-0.099468) | 0.008146 / 0.075646 (-0.067501) | 0.067369 / 0.419271 (-0.351903) | 0.041732 / 0.043533 (-0.001801) | 0.451675 / 0.255139 (0.196536) | 0.470445 / 0.283200 (0.187246) | 0.021053 / 0.141683 (-0.120630) | 1.483627 / 1.452155 (0.031472) | 1.541594 / 1.492716 (0.048878) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210247 / 0.018006 (0.192240) | 0.424663 / 0.000490 (0.424173) | 0.005394 / 0.000200 (0.005194) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026894 / 0.037411 (-0.010517) | 0.081324 / 0.014526 (0.066798) | 0.091362 / 0.176557 (-0.085195) | 0.145602 / 0.737135 (-0.591533) | 0.091896 / 0.296338 (-0.204443) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.469662 / 0.215209 (0.254453) | 4.689495 / 2.077655 (2.611840) | 2.596462 / 1.504120 (1.092342) | 2.422584 / 1.541195 (0.881389) | 2.476710 / 1.468490 (1.008220) | 0.507049 / 4.584777 (-4.077728) | 3.185519 / 3.745712 (-0.560193) | 2.879842 / 5.269862 (-2.390019) | 1.882643 / 4.565676 (-2.683034) | 0.058046 / 0.424275 (-0.366229) | 0.006797 / 0.007607 (-0.000811) | 0.545245 / 0.226044 (0.319201) | 5.449248 / 2.268929 (3.180319) | 3.057341 / 55.444624 (-52.387283) | 2.728385 / 6.876477 (-4.148092) | 2.898945 / 2.142072 (0.756873) | 0.600035 / 4.805227 (-4.205192) | 0.126337 / 6.500664 (-6.374327) | 0.061333 / 0.075469 (-0.014136) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.332966 / 1.841788 (-0.508821) | 17.960805 / 8.074308 (9.886497) | 14.978838 / 10.191392 (4.787446) | 0.148852 / 0.680424 (-0.531572) | 0.018307 / 0.534201 (-0.515894) | 0.335234 / 0.579283 (-0.244050) | 0.389659 / 0.434364 (-0.044704) | 0.393259 / 0.540337 (-0.147078) | 0.549237 / 1.386936 (-0.837699) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#278a5673172c30b915a9ebf64cc7aff9667b58fd \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008808 / 0.011353 (-0.002545) | 0.005001 / 0.011008 (-0.006008) | 0.110022 / 0.038508 (0.071514) | 0.078015 / 0.023109 (0.054906) | 0.384724 / 0.275898 (0.108826) | 0.441354 / 0.323480 (0.117874) | 0.005116 / 0.007986 (-0.002870) | 0.004308 / 0.004328 (-0.000020) | 0.081679 / 0.004250 (0.077429) | 0.061386 / 0.037052 (0.024333) | 0.398149 / 0.258489 (0.139660) | 0.464859 / 0.293841 (0.171018) | 0.047443 / 0.128546 (-0.081104) | 0.014693 / 0.075646 (-0.060954) | 0.365438 / 0.419271 (-0.053833) | 0.081689 / 0.043533 (0.038156) | 0.400458 / 0.255139 (0.145319) | 0.449958 / 0.283200 (0.166758) | 0.038266 / 0.141683 (-0.103417) | 1.795043 / 1.452155 (0.342888) | 1.908819 / 1.492716 (0.416102) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.297911 / 0.018006 (0.279905) | 0.601640 / 0.000490 (0.601150) | 0.015406 / 0.000200 (0.015206) | 0.000163 / 0.000054 (0.000108) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034520 / 0.037411 (-0.002891) | 0.092657 / 0.014526 (0.078131) | 0.113992 / 0.176557 (-0.062564) | 0.189075 / 0.737135 (-0.548061) | 0.106602 / 0.296338 (-0.189736) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.585838 / 0.215209 (0.370629) | 5.719281 / 2.077655 (3.641627) | 2.525914 / 1.504120 (1.021794) | 2.231908 / 1.541195 (0.690713) | 2.215272 / 1.468490 (0.746782) | 0.814425 / 4.584777 (-3.770352) | 5.243406 / 3.745712 (1.497694) | 4.476642 / 5.269862 (-0.793220) | 2.929438 / 4.565676 (-1.636239) | 0.092070 / 0.424275 (-0.332205) | 0.009358 / 0.007607 (0.001751) | 0.713975 / 0.226044 (0.487931) | 6.948846 / 2.268929 (4.679918) | 3.361125 / 55.444624 (-52.083500) | 2.575224 / 6.876477 (-4.301253) | 2.783082 / 2.142072 (0.641009) | 1.016205 / 4.805227 (-3.789022) | 0.202578 / 6.500664 (-6.298086) | 0.076696 / 0.075469 (0.001227) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.650889 / 1.841788 (-0.190898) | 23.358273 / 8.074308 (15.283965) | 19.882450 / 10.191392 (9.691058) | 0.228971 / 0.680424 (-0.451453) | 0.027736 / 0.534201 (-0.506465) | 0.472405 / 0.579283 (-0.106878) | 0.581799 / 0.434364 (0.147435) | 0.533000 / 0.540337 (-0.007338) | 0.815588 / 1.386936 (-0.571348) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009151 / 0.011353 (-0.002202) | 0.005074 / 0.011008 (-0.005934) | 0.078709 / 0.038508 (0.040201) | 0.077696 / 0.023109 (0.054586) | 0.522356 / 0.275898 (0.246458) | 0.562345 / 0.323480 (0.238865) | 0.006411 / 0.007986 (-0.001575) | 0.004379 / 0.004328 (0.000051) | 0.082402 / 0.004250 (0.078151) | 0.064223 / 0.037052 (0.027170) | 0.518184 / 0.258489 (0.259695) | 0.566221 / 0.293841 (0.272380) | 0.046796 / 0.128546 (-0.081750) | 0.013987 / 0.075646 (-0.061659) | 0.094925 / 0.419271 (-0.324346) | 0.058810 / 0.043533 (0.015277) | 0.520252 / 0.255139 (0.265113) | 0.566403 / 0.283200 (0.283203) | 0.034720 / 0.141683 (-0.106963) | 1.796809 / 1.452155 (0.344654) | 1.913787 / 1.492716 (0.421070) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317449 / 0.018006 (0.299443) | 0.620154 / 0.000490 (0.619664) | 0.007066 / 0.000200 (0.006866) | 0.000126 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035252 / 0.037411 (-0.002160) | 0.111648 / 0.014526 (0.097122) | 0.120692 / 0.176557 (-0.055864) | 0.193202 / 0.737135 (-0.543933) | 0.127905 / 0.296338 (-0.168434) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.661012 / 0.215209 (0.445803) | 6.626680 / 2.077655 (4.549026) | 3.243065 / 1.504120 (1.738945) | 2.904053 / 1.541195 (1.362858) | 2.880516 / 1.468490 (1.412026) | 0.875650 / 4.584777 (-3.709127) | 5.381993 / 3.745712 (1.636281) | 4.743997 / 5.269862 (-0.525864) | 3.020736 / 4.565676 (-1.544940) | 0.106573 / 0.424275 (-0.317702) | 0.011151 / 0.007607 (0.003544) | 0.821990 / 0.226044 (0.595946) | 8.225383 / 2.268929 (5.956454) | 3.963232 / 55.444624 (-51.481392) | 3.288916 / 6.876477 (-3.587561) | 3.579435 / 2.142072 (1.437363) | 1.043379 / 4.805227 (-3.761848) | 0.207508 / 6.500664 (-6.293156) | 0.085109 / 0.075469 (0.009640) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.723798 / 1.841788 (-0.117990) | 24.709848 / 8.074308 (16.635540) | 22.484674 / 10.191392 (12.293282) | 0.260357 / 0.680424 (-0.420067) | 0.033539 / 0.534201 (-0.500662) | 0.487814 / 0.579283 (-0.091469) | 0.610171 / 0.434364 (0.175807) | 0.585012 / 0.540337 (0.044674) | 0.803764 / 1.386936 (-0.583172) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f611e5815ce1bdcb4fa8556f55d85a6739cba0ea \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006661 / 0.011353 (-0.004692) | 0.004022 / 0.011008 (-0.006987) | 0.084269 / 0.038508 (0.045760) | 0.070707 / 0.023109 (0.047598) | 0.315035 / 0.275898 (0.039137) | 0.339830 / 0.323480 (0.016350) | 0.003994 / 0.007986 (-0.003991) | 0.004129 / 0.004328 (-0.000199) | 0.065383 / 0.004250 (0.061133) | 0.055493 / 0.037052 (0.018441) | 0.320521 / 0.258489 (0.062032) | 0.354301 / 0.293841 (0.060460) | 0.031177 / 0.128546 (-0.097370) | 0.008724 / 0.075646 (-0.066922) | 0.288298 / 0.419271 (-0.130974) | 0.052418 / 0.043533 (0.008885) | 0.319122 / 0.255139 (0.063983) | 0.335859 / 0.283200 (0.052659) | 0.026260 / 0.141683 (-0.115423) | 1.450039 / 1.452155 (-0.002115) | 1.545172 / 1.492716 (0.052455) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234232 / 0.018006 (0.216226) | 0.454983 / 0.000490 (0.454493) | 0.007590 / 0.000200 (0.007390) | 0.000550 / 0.000054 (0.000495) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028714 / 0.037411 (-0.008698) | 0.083686 / 0.014526 (0.069160) | 0.162986 / 0.176557 (-0.013570) | 0.167574 / 0.737135 (-0.569561) | 0.273158 / 0.296338 (-0.023180) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388275 / 0.215209 (0.173066) | 3.862034 / 2.077655 (1.784379) | 1.843561 / 1.504120 (0.339441) | 1.675224 / 1.541195 (0.134029) | 1.730394 / 1.468490 (0.261904) | 0.495259 / 4.584777 (-4.089518) | 3.627155 / 3.745712 (-0.118557) | 3.290590 / 5.269862 (-1.979272) | 2.032432 / 4.565676 (-2.533245) | 0.058212 / 0.424275 (-0.366063) | 0.007815 / 0.007607 (0.000208) | 0.460625 / 0.226044 (0.234580) | 4.616845 / 2.268929 (2.347916) | 2.339280 / 55.444624 (-53.105344) | 1.957216 / 6.876477 (-4.919261) | 2.129511 / 2.142072 (-0.012562) | 0.591782 / 4.805227 (-4.213446) | 0.136391 / 6.500664 (-6.364273) | 0.059627 / 0.075469 (-0.015842) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278998 / 1.841788 (-0.562789) | 18.485496 / 8.074308 (10.411188) | 14.161273 / 10.191392 (3.969881) | 0.164346 / 0.680424 (-0.516078) | 0.018144 / 0.534201 (-0.516057) | 0.391601 / 0.579283 (-0.187682) | 0.424391 / 0.434364 (-0.009973) | 0.458209 / 0.540337 (-0.082129) | 0.645124 / 1.386936 (-0.741812) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006799 / 0.011353 (-0.004554) | 0.004023 / 0.011008 (-0.006985) | 0.065206 / 0.038508 (0.026698) | 0.074386 / 0.023109 (0.051277) | 0.437399 / 0.275898 (0.161501) | 0.467382 / 0.323480 (0.143903) | 0.005467 / 0.007986 (-0.002519) | 0.003324 / 0.004328 (-0.001005) | 0.064289 / 0.004250 (0.060039) | 0.057257 / 0.037052 (0.020205) | 0.440035 / 0.258489 (0.181546) | 0.477138 / 0.293841 (0.183298) | 0.032171 / 0.128546 (-0.096375) | 0.008400 / 0.075646 (-0.067247) | 0.070877 / 0.419271 (-0.348395) | 0.048180 / 0.043533 (0.004648) | 0.441274 / 0.255139 (0.186135) | 0.461386 / 0.283200 (0.178187) | 0.022576 / 0.141683 (-0.119106) | 1.520914 / 1.452155 (0.068759) | 1.575593 / 1.492716 (0.082877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221551 / 0.018006 (0.203545) | 0.447213 / 0.000490 (0.446723) | 0.004435 / 0.000200 (0.004235) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032123 / 0.037411 (-0.005288) | 0.091809 / 0.014526 (0.077283) | 0.103938 / 0.176557 (-0.072618) | 0.156878 / 0.737135 (-0.580258) | 0.105071 / 0.296338 (-0.191268) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430389 / 0.215209 (0.215180) | 4.293496 / 2.077655 (2.215841) | 2.292801 / 1.504120 (0.788681) | 2.135320 / 1.541195 (0.594126) | 2.195720 / 1.468490 (0.727229) | 0.493277 / 4.584777 (-4.091500) | 3.685617 / 3.745712 (-0.060096) | 3.278897 / 5.269862 (-1.990965) | 2.036939 / 4.565676 (-2.528737) | 0.058766 / 0.424275 (-0.365509) | 0.007783 / 0.007607 (0.000176) | 0.511165 / 0.226044 (0.285120) | 5.126757 / 2.268929 (2.857829) | 2.756690 / 55.444624 (-52.687935) | 2.421745 / 6.876477 (-4.454732) | 2.597249 / 2.142072 (0.455177) | 0.647206 / 4.805227 (-4.158021) | 0.143392 / 6.500664 (-6.357273) | 0.060110 / 0.075469 (-0.015359) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340289 / 1.841788 (-0.501499) | 19.057620 / 8.074308 (10.983312) | 14.832892 / 10.191392 (4.641500) | 0.167730 / 0.680424 (-0.512694) | 0.020178 / 0.534201 (-0.514023) | 0.394060 / 0.579283 (-0.185223) | 0.433976 / 0.434364 (-0.000388) | 0.474417 / 0.540337 (-0.065921) | 0.640653 / 1.386936 (-0.746283) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d0519c6a1988a3344ecae37f7348c208bcbc99d6 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007661 / 0.011353 (-0.003692) | 0.004541 / 0.011008 (-0.006467) | 0.100547 / 0.038508 (0.062039) | 0.084257 / 0.023109 (0.061148) | 0.377627 / 0.275898 (0.101729) | 0.433764 / 0.323480 (0.110284) | 0.005995 / 0.007986 (-0.001990) | 0.003810 / 0.004328 (-0.000518) | 0.076409 / 0.004250 (0.072158) | 0.063411 / 0.037052 (0.026359) | 0.382504 / 0.258489 (0.124015) | 0.449721 / 0.293841 (0.155880) | 0.036499 / 0.128546 (-0.092047) | 0.009942 / 0.075646 (-0.065705) | 0.343839 / 0.419271 (-0.075433) | 0.062147 / 0.043533 (0.018614) | 0.383244 / 0.255139 (0.128105) | 0.415606 / 0.283200 (0.132406) | 0.027475 / 0.141683 (-0.114207) | 1.740413 / 1.452155 (0.288258) | 1.862210 / 1.492716 (0.369493) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260064 / 0.018006 (0.242058) | 0.499001 / 0.000490 (0.498511) | 0.015811 / 0.000200 (0.015611) | 0.000119 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033599 / 0.037411 (-0.003812) | 0.099354 / 0.014526 (0.084828) | 0.114693 / 0.176557 (-0.061864) | 0.180231 / 0.737135 (-0.556904) | 0.114715 / 0.296338 (-0.181623) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459884 / 0.215209 (0.244675) | 4.580806 / 2.077655 (2.503151) | 2.270770 / 1.504120 (0.766650) | 2.077127 / 1.541195 (0.535932) | 2.167175 / 1.468490 (0.698685) | 0.570593 / 4.584777 (-4.014184) | 4.120926 / 3.745712 (0.375214) | 3.817595 / 5.269862 (-1.452267) | 2.404782 / 4.565676 (-2.160894) | 0.067972 / 0.424275 (-0.356304) | 0.009378 / 0.007607 (0.001771) | 0.549642 / 0.226044 (0.323597) | 5.490369 / 2.268929 (3.221440) | 2.905264 / 55.444624 (-52.539361) | 2.452935 / 6.876477 (-4.423542) | 2.700760 / 2.142072 (0.558688) | 0.700407 / 4.805227 (-4.104820) | 0.159349 / 6.500664 (-6.341315) | 0.074605 / 0.075469 (-0.000864) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.517803 / 1.841788 (-0.323985) | 22.343700 / 8.074308 (14.269392) | 16.411639 / 10.191392 (6.220247) | 0.169816 / 0.680424 (-0.510608) | 0.021532 / 0.534201 (-0.512668) | 0.470161 / 0.579283 (-0.109122) | 0.473412 / 0.434364 (0.039048) | 0.539690 / 0.540337 (-0.000647) | 0.774011 / 1.386936 (-0.612925) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007629 / 0.011353 (-0.003724) | 0.004651 / 0.011008 (-0.006357) | 0.075162 / 0.038508 (0.036654) | 0.085365 / 0.023109 (0.062256) | 0.493272 / 0.275898 (0.217374) | 0.535776 / 0.323480 (0.212296) | 0.006323 / 0.007986 (-0.001663) | 0.003785 / 0.004328 (-0.000544) | 0.076161 / 0.004250 (0.071911) | 0.065982 / 0.037052 (0.028929) | 0.513355 / 0.258489 (0.254866) | 0.549219 / 0.293841 (0.255378) | 0.038052 / 0.128546 (-0.090494) | 0.010055 / 0.075646 (-0.065592) | 0.083744 / 0.419271 (-0.335527) | 0.056708 / 0.043533 (0.013175) | 0.496273 / 0.255139 (0.241135) | 0.523709 / 0.283200 (0.240509) | 0.026502 / 0.141683 (-0.115181) | 1.793032 / 1.452155 (0.340877) | 1.870534 / 1.492716 (0.377817) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252288 / 0.018006 (0.234281) | 0.490380 / 0.000490 (0.489890) | 0.005884 / 0.000200 (0.005684) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038238 / 0.037411 (0.000827) | 0.110010 / 0.014526 (0.095485) | 0.125497 / 0.176557 (-0.051059) | 0.188154 / 0.737135 (-0.548981) | 0.126112 / 0.296338 (-0.170227) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.515837 / 0.215209 (0.300628) | 5.135153 / 2.077655 (3.057498) | 2.761740 / 1.504120 (1.257620) | 2.552718 / 1.541195 (1.011523) | 2.636425 / 1.468490 (1.167935) | 0.588442 / 4.584777 (-3.996335) | 4.220833 / 3.745712 (0.475120) | 3.874637 / 5.269862 (-1.395225) | 2.424668 / 4.565676 (-2.141009) | 0.069979 / 0.424275 (-0.354296) | 0.009349 / 0.007607 (0.001742) | 0.608936 / 0.226044 (0.382891) | 6.081209 / 2.268929 (3.812280) | 3.348067 / 55.444624 (-52.096557) | 2.919130 / 6.876477 (-3.957347) | 3.159093 / 2.142072 (1.017020) | 0.704059 / 4.805227 (-4.101169) | 0.158417 / 6.500664 (-6.342247) | 0.071321 / 0.075469 (-0.004148) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.595287 / 1.841788 (-0.246501) | 23.096619 / 8.074308 (15.022311) | 17.258041 / 10.191392 (7.066649) | 0.186197 / 0.680424 (-0.494227) | 0.023633 / 0.534201 (-0.510567) | 0.472181 / 0.579283 (-0.107102) | 0.493817 / 0.434364 (0.059453) | 0.567657 / 0.540337 (0.027320) | 0.793789 / 1.386936 (-0.593147) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e0bd8444689c5d82344a62ddf79e5dc103fc67b8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007084 / 0.011353 (-0.004268) | 0.004093 / 0.011008 (-0.006915) | 0.086395 / 0.038508 (0.047887) | 0.087734 / 0.023109 (0.064625) | 0.356936 / 0.275898 (0.081038) | 0.386413 / 0.323480 (0.062933) | 0.005531 / 0.007986 (-0.002454) | 0.003462 / 0.004328 (-0.000866) | 0.065503 / 0.004250 (0.061252) | 0.058973 / 0.037052 (0.021920) | 0.354151 / 0.258489 (0.095662) | 0.398812 / 0.293841 (0.104971) | 0.031508 / 0.128546 (-0.097038) | 0.008537 / 0.075646 (-0.067109) | 0.290942 / 0.419271 (-0.128329) | 0.053537 / 0.043533 (0.010004) | 0.352067 / 0.255139 (0.096928) | 0.375142 / 0.283200 (0.091943) | 0.025658 / 0.141683 (-0.116025) | 1.468496 / 1.452155 (0.016341) | 1.556926 / 1.492716 (0.064210) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238858 / 0.018006 (0.220852) | 0.460018 / 0.000490 (0.459528) | 0.009613 / 0.000200 (0.009414) | 0.000326 / 0.000054 (0.000272) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030333 / 0.037411 (-0.007078) | 0.088431 / 0.014526 (0.073905) | 0.098130 / 0.176557 (-0.078427) | 0.155160 / 0.737135 (-0.581975) | 0.099963 / 0.296338 (-0.196375) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.385769 / 0.215209 (0.170560) | 3.836723 / 2.077655 (1.759069) | 1.861065 / 1.504120 (0.356945) | 1.685159 / 1.541195 (0.143965) | 1.780679 / 1.468490 (0.312189) | 0.491865 / 4.584777 (-4.092912) | 3.581139 / 3.745712 (-0.164573) | 3.366278 / 5.269862 (-1.903584) | 2.093094 / 4.565676 (-2.472583) | 0.058063 / 0.424275 (-0.366212) | 0.007903 / 0.007607 (0.000296) | 0.464866 / 0.226044 (0.238821) | 4.647754 / 2.268929 (2.378825) | 2.316466 / 55.444624 (-53.128158) | 1.984079 / 6.876477 (-4.892398) | 2.235020 / 2.142072 (0.092948) | 0.592591 / 4.805227 (-4.212636) | 0.135586 / 6.500664 (-6.365078) | 0.061434 / 0.075469 (-0.014035) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.282940 / 1.841788 (-0.558848) | 19.635975 / 8.074308 (11.561667) | 14.426135 / 10.191392 (4.234743) | 0.166732 / 0.680424 (-0.513692) | 0.018438 / 0.534201 (-0.515763) | 0.393173 / 0.579283 (-0.186110) | 0.417291 / 0.434364 (-0.017073) | 0.459188 / 0.540337 (-0.081149) | 0.632568 / 1.386936 (-0.754368) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007166 / 0.011353 (-0.004187) | 0.004254 / 0.011008 (-0.006754) | 0.064667 / 0.038508 (0.026159) | 0.085142 / 0.023109 (0.062033) | 0.410081 / 0.275898 (0.134183) | 0.445803 / 0.323480 (0.122323) | 0.005600 / 0.007986 (-0.002385) | 0.003520 / 0.004328 (-0.000809) | 0.064148 / 0.004250 (0.059897) | 0.059869 / 0.037052 (0.022817) | 0.407439 / 0.258489 (0.148950) | 0.451169 / 0.293841 (0.157329) | 0.032619 / 0.128546 (-0.095927) | 0.008706 / 0.075646 (-0.066940) | 0.071230 / 0.419271 (-0.348041) | 0.048499 / 0.043533 (0.004966) | 0.416401 / 0.255139 (0.161262) | 0.430737 / 0.283200 (0.147537) | 0.022511 / 0.141683 (-0.119172) | 1.517296 / 1.452155 (0.065141) | 1.581704 / 1.492716 (0.088988) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220738 / 0.018006 (0.202732) | 0.454026 / 0.000490 (0.453536) | 0.004695 / 0.000200 (0.004495) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033202 / 0.037411 (-0.004209) | 0.097506 / 0.014526 (0.082980) | 0.106661 / 0.176557 (-0.069896) | 0.160554 / 0.737135 (-0.576581) | 0.109203 / 0.296338 (-0.187135) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432013 / 0.215209 (0.216804) | 4.310399 / 2.077655 (2.232744) | 2.296529 / 1.504120 (0.792409) | 2.139929 / 1.541195 (0.598734) | 2.227432 / 1.468490 (0.758942) | 0.493697 / 4.584777 (-4.091080) | 3.639877 / 3.745712 (-0.105835) | 3.323165 / 5.269862 (-1.946697) | 2.084527 / 4.565676 (-2.481150) | 0.058812 / 0.424275 (-0.365463) | 0.007813 / 0.007607 (0.000206) | 0.512366 / 0.226044 (0.286321) | 5.119660 / 2.268929 (2.850732) | 2.783819 / 55.444624 (-52.660806) | 2.490669 / 6.876477 (-4.385808) | 2.696653 / 2.142072 (0.554581) | 0.627161 / 4.805227 (-4.178066) | 0.137032 / 6.500664 (-6.363632) | 0.064040 / 0.075469 (-0.011429) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369578 / 1.841788 (-0.472210) | 20.421182 / 8.074308 (12.346873) | 15.719347 / 10.191392 (5.527955) | 0.166150 / 0.680424 (-0.514274) | 0.020262 / 0.534201 (-0.513939) | 0.395645 / 0.579283 (-0.183638) | 0.430363 / 0.434364 (-0.004001) | 0.477843 / 0.540337 (-0.062494) | 0.638501 / 1.386936 (-0.748435) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c89e60cc50563dfc41ea039c6d3a1f6e43033e8e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006141 / 0.011353 (-0.005211) | 0.003683 / 0.011008 (-0.007325) | 0.081127 / 0.038508 (0.042618) | 0.064285 / 0.023109 (0.041176) | 0.323038 / 0.275898 (0.047140) | 0.347280 / 0.323480 (0.023800) | 0.003518 / 0.007986 (-0.004467) | 0.002958 / 0.004328 (-0.001370) | 0.063093 / 0.004250 (0.058843) | 0.050682 / 0.037052 (0.013629) | 0.321222 / 0.258489 (0.062733) | 0.359266 / 0.293841 (0.065425) | 0.027515 / 0.128546 (-0.101032) | 0.007964 / 0.075646 (-0.067682) | 0.261305 / 0.419271 (-0.157966) | 0.044897 / 0.043533 (0.001365) | 0.320684 / 0.255139 (0.065545) | 0.335722 / 0.283200 (0.052522) | 0.023378 / 0.141683 (-0.118305) | 1.418211 / 1.452155 (-0.033943) | 1.523728 / 1.492716 (0.031011) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222316 / 0.018006 (0.204310) | 0.426943 / 0.000490 (0.426454) | 0.008785 / 0.000200 (0.008585) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024716 / 0.037411 (-0.012695) | 0.075341 / 0.014526 (0.060816) | 0.089532 / 0.176557 (-0.087024) | 0.147638 / 0.737135 (-0.589498) | 0.085697 / 0.296338 (-0.210641) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396395 / 0.215209 (0.181186) | 3.947280 / 2.077655 (1.869625) | 1.894762 / 1.504120 (0.390642) | 1.712094 / 1.541195 (0.170899) | 1.779049 / 1.468490 (0.310559) | 0.509206 / 4.584777 (-4.075571) | 3.073951 / 3.745712 (-0.671761) | 2.886826 / 5.269862 (-2.383035) | 1.894444 / 4.565676 (-2.671232) | 0.059519 / 0.424275 (-0.364756) | 0.006951 / 0.007607 (-0.000656) | 0.468213 / 0.226044 (0.242169) | 4.667134 / 2.268929 (2.398206) | 2.342516 / 55.444624 (-53.102108) | 1.992047 / 6.876477 (-4.884430) | 2.142059 / 2.142072 (-0.000014) | 0.600507 / 4.805227 (-4.204720) | 0.128982 / 6.500664 (-6.371682) | 0.062100 / 0.075469 (-0.013369) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234500 / 1.841788 (-0.607288) | 17.951646 / 8.074308 (9.877338) | 13.862763 / 10.191392 (3.671371) | 0.143133 / 0.680424 (-0.537291) | 0.016643 / 0.534201 (-0.517558) | 0.333174 / 0.579283 (-0.246109) | 0.366956 / 0.434364 (-0.067408) | 0.384569 / 0.540337 (-0.155769) | 0.546830 / 1.386936 (-0.840106) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006146 / 0.011353 (-0.005207) | 0.003725 / 0.011008 (-0.007283) | 0.062099 / 0.038508 (0.023591) | 0.064117 / 0.023109 (0.041008) | 0.456100 / 0.275898 (0.180202) | 0.490794 / 0.323480 (0.167314) | 0.005652 / 0.007986 (-0.002334) | 0.002897 / 0.004328 (-0.001432) | 0.061909 / 0.004250 (0.057659) | 0.050634 / 0.037052 (0.013582) | 0.454422 / 0.258489 (0.195933) | 0.493208 / 0.293841 (0.199367) | 0.028822 / 0.128546 (-0.099724) | 0.008115 / 0.075646 (-0.067531) | 0.067214 / 0.419271 (-0.352058) | 0.041529 / 0.043533 (-0.002004) | 0.458016 / 0.255139 (0.202877) | 0.476059 / 0.283200 (0.192859) | 0.019926 / 0.141683 (-0.121757) | 1.465345 / 1.452155 (0.013190) | 1.533518 / 1.492716 (0.040802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218830 / 0.018006 (0.200823) | 0.418869 / 0.000490 (0.418380) | 0.005154 / 0.000200 (0.004954) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027648 / 0.037411 (-0.009763) | 0.083842 / 0.014526 (0.069316) | 0.092300 / 0.176557 (-0.084257) | 0.146098 / 0.737135 (-0.591037) | 0.093441 / 0.296338 (-0.202898) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.464426 / 0.215209 (0.249217) | 4.632705 / 2.077655 (2.555051) | 2.642091 / 1.504120 (1.137971) | 2.461768 / 1.541195 (0.920573) | 2.535554 / 1.468490 (1.067064) | 0.507506 / 4.584777 (-4.077271) | 3.095485 / 3.745712 (-0.650227) | 2.884261 / 5.269862 (-2.385601) | 1.908943 / 4.565676 (-2.656734) | 0.058622 / 0.424275 (-0.365653) | 0.006892 / 0.007607 (-0.000715) | 0.536045 / 0.226044 (0.310001) | 5.377448 / 2.268929 (3.108519) | 3.076023 / 55.444624 (-52.368602) | 2.745586 / 6.876477 (-4.130890) | 2.939582 / 2.142072 (0.797510) | 0.595639 / 4.805227 (-4.209589) | 0.125086 / 6.500664 (-6.375578) | 0.061075 / 0.075469 (-0.014394) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.342820 / 1.841788 (-0.498968) | 18.326240 / 8.074308 (10.251932) | 15.007094 / 10.191392 (4.815702) | 0.133037 / 0.680424 (-0.547387) | 0.018702 / 0.534201 (-0.515499) | 0.330245 / 0.579283 (-0.249038) | 0.381494 / 0.434364 (-0.052870) | 0.393705 / 0.540337 (-0.146633) | 0.533676 / 1.386936 (-0.853260) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#45291275d84448c235829fb62aa951070aa4061d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007644 / 0.011353 (-0.003709) | 0.004759 / 0.011008 (-0.006249) | 0.100569 / 0.038508 (0.062061) | 0.089645 / 0.023109 (0.066536) | 0.376679 / 0.275898 (0.100781) | 0.413214 / 0.323480 (0.089735) | 0.006087 / 0.007986 (-0.001899) | 0.003832 / 0.004328 (-0.000496) | 0.075892 / 0.004250 (0.071641) | 0.064635 / 0.037052 (0.027582) | 0.376874 / 0.258489 (0.118385) | 0.436756 / 0.293841 (0.142915) | 0.036372 / 0.128546 (-0.092174) | 0.010047 / 0.075646 (-0.065599) | 0.345073 / 0.419271 (-0.074198) | 0.062092 / 0.043533 (0.018559) | 0.380503 / 0.255139 (0.125364) | 0.414800 / 0.283200 (0.131600) | 0.028274 / 0.141683 (-0.113409) | 1.732463 / 1.452155 (0.280308) | 1.859049 / 1.492716 (0.366333) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267129 / 0.018006 (0.249123) | 0.509109 / 0.000490 (0.508619) | 0.012329 / 0.000200 (0.012130) | 0.000432 / 0.000054 (0.000377) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033773 / 0.037411 (-0.003638) | 0.102800 / 0.014526 (0.088274) | 0.114256 / 0.176557 (-0.062300) | 0.182048 / 0.737135 (-0.555087) | 0.118225 / 0.296338 (-0.178113) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457553 / 0.215209 (0.242344) | 4.588212 / 2.077655 (2.510557) | 2.184138 / 1.504120 (0.680018) | 2.003570 / 1.541195 (0.462375) | 2.093217 / 1.468490 (0.624727) | 0.585679 / 4.584777 (-3.999098) | 4.175319 / 3.745712 (0.429607) | 3.914168 / 5.269862 (-1.355693) | 2.452992 / 4.565676 (-2.112684) | 0.068363 / 0.424275 (-0.355912) | 0.009314 / 0.007607 (0.001707) | 0.543640 / 0.226044 (0.317595) | 5.440853 / 2.268929 (3.171925) | 2.782415 / 55.444624 (-52.662210) | 2.332359 / 6.876477 (-4.544118) | 2.628520 / 2.142072 (0.486448) | 0.696838 / 4.805227 (-4.108389) | 0.160653 / 6.500664 (-6.340012) | 0.075599 / 0.075469 (0.000130) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.545305 / 1.841788 (-0.296483) | 23.073174 / 8.074308 (14.998866) | 16.974977 / 10.191392 (6.783585) | 0.183719 / 0.680424 (-0.496705) | 0.021633 / 0.534201 (-0.512568) | 0.471202 / 0.579283 (-0.108081) | 0.479385 / 0.434364 (0.045021) | 0.550872 / 0.540337 (0.010535) | 0.766825 / 1.386936 (-0.620111) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007918 / 0.011353 (-0.003435) | 0.004793 / 0.011008 (-0.006215) | 0.077273 / 0.038508 (0.038765) | 0.092079 / 0.023109 (0.068969) | 0.483269 / 0.275898 (0.207371) | 0.524919 / 0.323480 (0.201439) | 0.006273 / 0.007986 (-0.001713) | 0.004018 / 0.004328 (-0.000310) | 0.077188 / 0.004250 (0.072937) | 0.067891 / 0.037052 (0.030839) | 0.478531 / 0.258489 (0.220042) | 0.526956 / 0.293841 (0.233115) | 0.038309 / 0.128546 (-0.090237) | 0.010133 / 0.075646 (-0.065513) | 0.083892 / 0.419271 (-0.335379) | 0.057369 / 0.043533 (0.013836) | 0.509427 / 0.255139 (0.254288) | 0.506574 / 0.283200 (0.223374) | 0.027987 / 0.141683 (-0.113696) | 1.897469 / 1.452155 (0.445314) | 1.893102 / 1.492716 (0.400385) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243003 / 0.018006 (0.224997) | 0.500267 / 0.000490 (0.499777) | 0.007442 / 0.000200 (0.007242) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039266 / 0.037411 (0.001855) | 0.114438 / 0.014526 (0.099912) | 0.124528 / 0.176557 (-0.052029) | 0.189399 / 0.737135 (-0.547736) | 0.126703 / 0.296338 (-0.169635) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.518139 / 0.215209 (0.302930) | 5.162058 / 2.077655 (3.084403) | 2.835111 / 1.504120 (1.330991) | 2.640919 / 1.541195 (1.099724) | 2.736800 / 1.468490 (1.268310) | 0.582813 / 4.584777 (-4.001964) | 4.246269 / 3.745712 (0.500557) | 3.891161 / 5.269862 (-1.378701) | 2.445392 / 4.565676 (-2.120285) | 0.068943 / 0.424275 (-0.355332) | 0.009248 / 0.007607 (0.001641) | 0.604859 / 0.226044 (0.378815) | 6.030660 / 2.268929 (3.761731) | 3.409778 / 55.444624 (-52.034846) | 2.990488 / 6.876477 (-3.885988) | 3.281317 / 2.142072 (1.139245) | 0.697705 / 4.805227 (-4.107523) | 0.159502 / 6.500664 (-6.341162) | 0.072471 / 0.075469 (-0.002999) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625428 / 1.841788 (-0.216360) | 23.602509 / 8.074308 (15.528201) | 18.091474 / 10.191392 (7.900082) | 0.172816 / 0.680424 (-0.507608) | 0.023708 / 0.534201 (-0.510493) | 0.473768 / 0.579283 (-0.105515) | 0.493713 / 0.434364 (0.059349) | 0.566326 / 0.540337 (0.025989) | 0.788670 / 1.386936 (-0.598266) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ee2359c17ccb35b57e195f2bfe8478f49630039 \"CML watermark\")\n"
] | 2023-09-15T17:58:25 | 2023-09-19T16:43:30 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6244",
"html_url": "https://github.com/huggingface/datasets/pull/6244",
"diff_url": "https://github.com/huggingface/datasets/pull/6244.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6244.patch",
"merged_at": null
} | Fix #6214 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6244/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6244/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6243 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6243/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6243/comments | https://api.github.com/repos/huggingface/datasets/issues/6243/events | https://github.com/huggingface/datasets/pull/6243 | 1,898,532,784 | PR_kwDODunzps5aclIy | 6,243 | Fix cast from fixed size list to variable size list | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006784 / 0.011353 (-0.004569) | 0.004051 / 0.011008 (-0.006957) | 0.083790 / 0.038508 (0.045282) | 0.081219 / 0.023109 (0.058110) | 0.313195 / 0.275898 (0.037297) | 0.336954 / 0.323480 (0.013475) | 0.004324 / 0.007986 (-0.003662) | 0.004516 / 0.004328 (0.000188) | 0.065051 / 0.004250 (0.060801) | 0.057647 / 0.037052 (0.020595) | 0.316675 / 0.258489 (0.058186) | 0.357936 / 0.293841 (0.064095) | 0.030980 / 0.128546 (-0.097566) | 0.008844 / 0.075646 (-0.066802) | 0.287027 / 0.419271 (-0.132245) | 0.052130 / 0.043533 (0.008597) | 0.308125 / 0.255139 (0.052986) | 0.337345 / 0.283200 (0.054145) | 0.025781 / 0.141683 (-0.115902) | 1.466161 / 1.452155 (0.014006) | 1.565824 / 1.492716 (0.073108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299112 / 0.018006 (0.281106) | 0.640520 / 0.000490 (0.640030) | 0.008846 / 0.000200 (0.008647) | 0.000273 / 0.000054 (0.000219) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029853 / 0.037411 (-0.007559) | 0.081697 / 0.014526 (0.067172) | 0.099110 / 0.176557 (-0.077447) | 0.155864 / 0.737135 (-0.581271) | 0.098749 / 0.296338 (-0.197590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.385722 / 0.215209 (0.170512) | 3.851490 / 2.077655 (1.773835) | 1.851995 / 1.504120 (0.347875) | 1.660398 / 1.541195 (0.119204) | 1.769370 / 1.468490 (0.300879) | 0.481523 / 4.584777 (-4.103254) | 3.550449 / 3.745712 (-0.195263) | 3.424782 / 5.269862 (-1.845079) | 2.106470 / 4.565676 (-2.459206) | 0.056500 / 0.424275 (-0.367775) | 0.007891 / 0.007607 (0.000284) | 0.465564 / 0.226044 (0.239520) | 4.662892 / 2.268929 (2.393964) | 2.305424 / 55.444624 (-53.139201) | 1.980524 / 6.876477 (-4.895953) | 2.218423 / 2.142072 (0.076350) | 0.584662 / 4.805227 (-4.220565) | 0.132325 / 6.500664 (-6.368340) | 0.060773 / 0.075469 (-0.014696) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254261 / 1.841788 (-0.587527) | 19.479805 / 8.074308 (11.405497) | 14.222687 / 10.191392 (4.031295) | 0.149829 / 0.680424 (-0.530595) | 0.018630 / 0.534201 (-0.515571) | 0.395284 / 0.579283 (-0.183999) | 0.413385 / 0.434364 (-0.020978) | 0.462931 / 0.540337 (-0.077406) | 0.645359 / 1.386936 (-0.741577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006991 / 0.011353 (-0.004362) | 0.004306 / 0.011008 (-0.006702) | 0.065213 / 0.038508 (0.026705) | 0.082442 / 0.023109 (0.059332) | 0.411294 / 0.275898 (0.135396) | 0.452176 / 0.323480 (0.128696) | 0.005802 / 0.007986 (-0.002183) | 0.003556 / 0.004328 (-0.000772) | 0.066163 / 0.004250 (0.061913) | 0.060680 / 0.037052 (0.023628) | 0.416975 / 0.258489 (0.158486) | 0.456353 / 0.293841 (0.162512) | 0.033584 / 0.128546 (-0.094963) | 0.008687 / 0.075646 (-0.066959) | 0.071300 / 0.419271 (-0.347972) | 0.049382 / 0.043533 (0.005849) | 0.409329 / 0.255139 (0.154190) | 0.434829 / 0.283200 (0.151629) | 0.022966 / 0.141683 (-0.118716) | 1.493847 / 1.452155 (0.041692) | 1.582372 / 1.492716 (0.089656) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280578 / 0.018006 (0.262572) | 0.538122 / 0.000490 (0.537632) | 0.004515 / 0.000200 (0.004315) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033383 / 0.037411 (-0.004028) | 0.093426 / 0.014526 (0.078901) | 0.109314 / 0.176557 (-0.067242) | 0.162349 / 0.737135 (-0.574786) | 0.109849 / 0.296338 (-0.186490) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431073 / 0.215209 (0.215864) | 4.311942 / 2.077655 (2.234287) | 2.291170 / 1.504120 (0.787051) | 2.132266 / 1.541195 (0.591072) | 2.236526 / 1.468490 (0.768036) | 0.492001 / 4.584777 (-4.092776) | 3.523013 / 3.745712 (-0.222699) | 3.413481 / 5.269862 (-1.856381) | 2.112979 / 4.565676 (-2.452698) | 0.058654 / 0.424275 (-0.365621) | 0.007729 / 0.007607 (0.000121) | 0.512027 / 0.226044 (0.285982) | 5.125264 / 2.268929 (2.856336) | 2.836281 / 55.444624 (-52.608344) | 2.447253 / 6.876477 (-4.429224) | 2.711908 / 2.142072 (0.569835) | 0.592598 / 4.805227 (-4.212629) | 0.134837 / 6.500664 (-6.365827) | 0.059813 / 0.075469 (-0.015656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.373464 / 1.841788 (-0.468323) | 20.548983 / 8.074308 (12.474675) | 14.799833 / 10.191392 (4.608441) | 0.168601 / 0.680424 (-0.511823) | 0.020358 / 0.534201 (-0.513843) | 0.398790 / 0.579283 (-0.180494) | 0.416921 / 0.434364 (-0.017443) | 0.480542 / 0.540337 (-0.059795) | 0.645062 / 1.386936 (-0.741874) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#afd6fc193a91cb0461c8bf3b64db6943c23de846 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008616 / 0.011353 (-0.002737) | 0.004957 / 0.011008 (-0.006051) | 0.102629 / 0.038508 (0.064121) | 0.080492 / 0.023109 (0.057383) | 0.461817 / 0.275898 (0.185919) | 0.487964 / 0.323480 (0.164484) | 0.006336 / 0.007986 (-0.001649) | 0.004607 / 0.004328 (0.000278) | 0.074311 / 0.004250 (0.070061) | 0.060368 / 0.037052 (0.023315) | 0.458076 / 0.258489 (0.199587) | 0.493028 / 0.293841 (0.199187) | 0.044153 / 0.128546 (-0.084394) | 0.014066 / 0.075646 (-0.061581) | 0.369848 / 0.419271 (-0.049424) | 0.061690 / 0.043533 (0.018157) | 0.439728 / 0.255139 (0.184590) | 0.484706 / 0.283200 (0.201506) | 0.034657 / 0.141683 (-0.107026) | 1.710591 / 1.452155 (0.258437) | 1.900225 / 1.492716 (0.407509) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308837 / 0.018006 (0.290831) | 0.579561 / 0.000490 (0.579072) | 0.010163 / 0.000200 (0.009963) | 0.000613 / 0.000054 (0.000558) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028108 / 0.037411 (-0.009303) | 0.085072 / 0.014526 (0.070546) | 0.103375 / 0.176557 (-0.073182) | 0.173765 / 0.737135 (-0.563371) | 0.102460 / 0.296338 (-0.193879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602642 / 0.215209 (0.387433) | 5.582537 / 2.077655 (3.504882) | 2.405553 / 1.504120 (0.901434) | 2.057298 / 1.541195 (0.516103) | 2.223787 / 1.468490 (0.755297) | 0.846138 / 4.584777 (-3.738638) | 5.290306 / 3.745712 (1.544594) | 4.836066 / 5.269862 (-0.433795) | 2.951901 / 4.565676 (-1.613775) | 0.099432 / 0.424275 (-0.324843) | 0.009198 / 0.007607 (0.001591) | 0.731370 / 0.226044 (0.505325) | 6.663026 / 2.268929 (4.394098) | 3.200932 / 55.444624 (-52.243692) | 2.486654 / 6.876477 (-4.389823) | 2.833195 / 2.142072 (0.691123) | 0.989481 / 4.805227 (-3.815746) | 0.205176 / 6.500664 (-6.295488) | 0.073760 / 0.075469 (-0.001709) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.745494 / 1.841788 (-0.096294) | 24.649294 / 8.074308 (16.574986) | 22.312182 / 10.191392 (12.120790) | 0.245207 / 0.680424 (-0.435217) | 0.031971 / 0.534201 (-0.502230) | 0.495179 / 0.579283 (-0.084104) | 0.603233 / 0.434364 (0.168869) | 0.560906 / 0.540337 (0.020569) | 0.788292 / 1.386936 (-0.598644) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008922 / 0.011353 (-0.002431) | 0.005203 / 0.011008 (-0.005805) | 0.074414 / 0.038508 (0.035906) | 0.077552 / 0.023109 (0.054443) | 0.547217 / 0.275898 (0.271319) | 0.625298 / 0.323480 (0.301818) | 0.006135 / 0.007986 (-0.001851) | 0.004163 / 0.004328 (-0.000165) | 0.078014 / 0.004250 (0.073764) | 0.064484 / 0.037052 (0.027431) | 0.562356 / 0.258489 (0.303867) | 0.643613 / 0.293841 (0.349772) | 0.050155 / 0.128546 (-0.078391) | 0.013665 / 0.075646 (-0.061981) | 0.090224 / 0.419271 (-0.329048) | 0.063852 / 0.043533 (0.020319) | 0.560914 / 0.255139 (0.305775) | 0.591531 / 0.283200 (0.308331) | 0.036491 / 0.141683 (-0.105192) | 1.670898 / 1.452155 (0.218743) | 1.783924 / 1.492716 (0.291208) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.312764 / 0.018006 (0.294758) | 0.611116 / 0.000490 (0.610626) | 0.006367 / 0.000200 (0.006167) | 0.000130 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033967 / 0.037411 (-0.003445) | 0.101550 / 0.014526 (0.087025) | 0.116953 / 0.176557 (-0.059604) | 0.180061 / 0.737135 (-0.557075) | 0.115220 / 0.296338 (-0.181118) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.642110 / 0.215209 (0.426901) | 6.361381 / 2.077655 (4.283727) | 2.948175 / 1.504120 (1.444055) | 2.633935 / 1.541195 (1.092740) | 2.822150 / 1.468490 (1.353660) | 0.931412 / 4.584777 (-3.653365) | 5.428540 / 3.745712 (1.682828) | 4.672920 / 5.269862 (-0.596941) | 3.102046 / 4.565676 (-1.463630) | 0.100825 / 0.424275 (-0.323450) | 0.009464 / 0.007607 (0.001857) | 0.774102 / 0.226044 (0.548058) | 7.715003 / 2.268929 (5.446074) | 3.987807 / 55.444624 (-51.456817) | 3.089129 / 6.876477 (-3.787347) | 3.333247 / 2.142072 (1.191174) | 1.012427 / 4.805227 (-3.792800) | 0.200662 / 6.500664 (-6.300002) | 0.072422 / 0.075469 (-0.003047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.680364 / 1.841788 (-0.161424) | 24.484576 / 8.074308 (16.410268) | 21.920990 / 10.191392 (11.729598) | 0.218604 / 0.680424 (-0.461820) | 0.035818 / 0.534201 (-0.498383) | 0.470648 / 0.579283 (-0.108635) | 0.585108 / 0.434364 (0.150744) | 0.539152 / 0.540337 (-0.001185) | 0.763999 / 1.386936 (-0.622937) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cfed1d09ed6c680085624d96eb99bfb2b0b27599 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006304 / 0.011353 (-0.005049) | 0.003884 / 0.011008 (-0.007125) | 0.084847 / 0.038508 (0.046339) | 0.069372 / 0.023109 (0.046263) | 0.318876 / 0.275898 (0.042978) | 0.344733 / 0.323480 (0.021253) | 0.005139 / 0.007986 (-0.002847) | 0.003203 / 0.004328 (-0.001125) | 0.065758 / 0.004250 (0.061507) | 0.054189 / 0.037052 (0.017137) | 0.317475 / 0.258489 (0.058986) | 0.359310 / 0.293841 (0.065469) | 0.030639 / 0.128546 (-0.097908) | 0.008657 / 0.075646 (-0.066989) | 0.289127 / 0.419271 (-0.130144) | 0.052344 / 0.043533 (0.008811) | 0.316122 / 0.255139 (0.060983) | 0.338339 / 0.283200 (0.055140) | 0.022677 / 0.141683 (-0.119006) | 1.551629 / 1.452155 (0.099474) | 1.617917 / 1.492716 (0.125201) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231067 / 0.018006 (0.213061) | 0.450559 / 0.000490 (0.450070) | 0.008484 / 0.000200 (0.008284) | 0.000234 / 0.000054 (0.000179) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027054 / 0.037411 (-0.010357) | 0.081560 / 0.014526 (0.067034) | 0.094162 / 0.176557 (-0.082395) | 0.148583 / 0.737135 (-0.588552) | 0.093596 / 0.296338 (-0.202742) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388616 / 0.215209 (0.173407) | 3.874905 / 2.077655 (1.797251) | 1.915845 / 1.504120 (0.411725) | 1.746410 / 1.541195 (0.205215) | 1.828789 / 1.468490 (0.360299) | 0.483270 / 4.584777 (-4.101506) | 3.489157 / 3.745712 (-0.256555) | 3.190086 / 5.269862 (-2.079776) | 1.978023 / 4.565676 (-2.587653) | 0.056290 / 0.424275 (-0.367985) | 0.007585 / 0.007607 (-0.000022) | 0.467051 / 0.226044 (0.241007) | 4.665971 / 2.268929 (2.397043) | 2.418550 / 55.444624 (-53.026075) | 2.048338 / 6.876477 (-4.828139) | 2.225275 / 2.142072 (0.083203) | 0.576601 / 4.805227 (-4.228626) | 0.131960 / 6.500664 (-6.368704) | 0.060177 / 0.075469 (-0.015292) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249797 / 1.841788 (-0.591991) | 18.552939 / 8.074308 (10.478631) | 14.016616 / 10.191392 (3.825224) | 0.162869 / 0.680424 (-0.517555) | 0.018105 / 0.534201 (-0.516096) | 0.394838 / 0.579283 (-0.184445) | 0.403378 / 0.434364 (-0.030986) | 0.460931 / 0.540337 (-0.079407) | 0.637365 / 1.386936 (-0.749571) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006497 / 0.011353 (-0.004856) | 0.003928 / 0.011008 (-0.007080) | 0.063958 / 0.038508 (0.025450) | 0.069609 / 0.023109 (0.046500) | 0.401599 / 0.275898 (0.125701) | 0.428128 / 0.323480 (0.104648) | 0.005296 / 0.007986 (-0.002689) | 0.003332 / 0.004328 (-0.000996) | 0.063903 / 0.004250 (0.059652) | 0.056303 / 0.037052 (0.019250) | 0.400704 / 0.258489 (0.142214) | 0.435982 / 0.293841 (0.142141) | 0.032434 / 0.128546 (-0.096112) | 0.008570 / 0.075646 (-0.067077) | 0.070788 / 0.419271 (-0.348483) | 0.048252 / 0.043533 (0.004719) | 0.403269 / 0.255139 (0.148130) | 0.419796 / 0.283200 (0.136596) | 0.022598 / 0.141683 (-0.119085) | 1.481627 / 1.452155 (0.029472) | 1.578388 / 1.492716 (0.085672) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224552 / 0.018006 (0.206546) | 0.444059 / 0.000490 (0.443570) | 0.003757 / 0.000200 (0.003557) | 0.000225 / 0.000054 (0.000171) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032173 / 0.037411 (-0.005239) | 0.092562 / 0.014526 (0.078036) | 0.104972 / 0.176557 (-0.071584) | 0.156467 / 0.737135 (-0.580669) | 0.104274 / 0.296338 (-0.192065) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441693 / 0.215209 (0.226484) | 4.400217 / 2.077655 (2.322562) | 2.393862 / 1.504120 (0.889742) | 2.281178 / 1.541195 (0.739983) | 2.339895 / 1.468490 (0.871405) | 0.488734 / 4.584777 (-4.096043) | 3.523352 / 3.745712 (-0.222360) | 3.216761 / 5.269862 (-2.053101) | 2.007553 / 4.565676 (-2.558123) | 0.058050 / 0.424275 (-0.366225) | 0.007566 / 0.007607 (-0.000041) | 0.515439 / 0.226044 (0.289394) | 5.155086 / 2.268929 (2.886157) | 2.864958 / 55.444624 (-52.579666) | 2.592460 / 6.876477 (-4.284016) | 2.800449 / 2.142072 (0.658376) | 0.588441 / 4.805227 (-4.216786) | 0.131589 / 6.500664 (-6.369075) | 0.059075 / 0.075469 (-0.016394) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353889 / 1.841788 (-0.487898) | 18.938285 / 8.074308 (10.863977) | 14.937141 / 10.191392 (4.745749) | 0.168811 / 0.680424 (-0.511613) | 0.020118 / 0.534201 (-0.514083) | 0.394791 / 0.579283 (-0.184492) | 0.414434 / 0.434364 (-0.019930) | 0.466821 / 0.540337 (-0.073517) | 0.629894 / 1.386936 (-0.757042) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#23921b08390db7dbb3186a8de40dc49a4066da76 \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005959 / 0.011353 (-0.005394) | 0.004164 / 0.011008 (-0.006844) | 0.082336 / 0.038508 (0.043828) | 0.070344 / 0.023109 (0.047234) | 0.348032 / 0.275898 (0.072134) | 0.366328 / 0.323480 (0.042848) | 0.003882 / 0.007986 (-0.004104) | 0.003619 / 0.004328 (-0.000709) | 0.063343 / 0.004250 (0.059093) | 0.056617 / 0.037052 (0.019564) | 0.351625 / 0.258489 (0.093136) | 0.395839 / 0.293841 (0.101998) | 0.030842 / 0.128546 (-0.097704) | 0.008363 / 0.075646 (-0.067284) | 0.300535 / 0.419271 (-0.118737) | 0.053303 / 0.043533 (0.009770) | 0.354782 / 0.255139 (0.099643) | 0.364918 / 0.283200 (0.081719) | 0.025365 / 0.141683 (-0.116318) | 1.555009 / 1.452155 (0.102854) | 1.597443 / 1.492716 (0.104727) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239808 / 0.018006 (0.221801) | 0.488164 / 0.000490 (0.487675) | 0.013183 / 0.000200 (0.012983) | 0.000483 / 0.000054 (0.000429) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027938 / 0.037411 (-0.009473) | 0.078521 / 0.014526 (0.063995) | 0.095498 / 0.176557 (-0.081059) | 0.150884 / 0.737135 (-0.586251) | 0.097577 / 0.296338 (-0.198762) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384546 / 0.215209 (0.169337) | 4.037707 / 2.077655 (1.960053) | 1.940321 / 1.504120 (0.436201) | 1.716741 / 1.541195 (0.175546) | 1.837200 / 1.468490 (0.368710) | 0.502112 / 4.584777 (-4.082665) | 3.770452 / 3.745712 (0.024740) | 3.325691 / 5.269862 (-1.944171) | 2.015622 / 4.565676 (-2.550055) | 0.056246 / 0.424275 (-0.368029) | 0.007320 / 0.007607 (-0.000287) | 0.445553 / 0.226044 (0.219509) | 4.567233 / 2.268929 (2.298304) | 2.319531 / 55.444624 (-53.125093) | 1.968664 / 6.876477 (-4.907813) | 2.122349 / 2.142072 (-0.019724) | 0.573688 / 4.805227 (-4.231540) | 0.131410 / 6.500664 (-6.369254) | 0.062767 / 0.075469 (-0.012702) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255244 / 1.841788 (-0.586543) | 19.042480 / 8.074308 (10.968172) | 13.935342 / 10.191392 (3.743950) | 0.161259 / 0.680424 (-0.519165) | 0.020582 / 0.534201 (-0.513619) | 0.391365 / 0.579283 (-0.187918) | 0.417462 / 0.434364 (-0.016902) | 0.473121 / 0.540337 (-0.067216) | 0.674768 / 1.386936 (-0.712168) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006299 / 0.011353 (-0.005054) | 0.003969 / 0.011008 (-0.007040) | 0.063558 / 0.038508 (0.025050) | 0.073847 / 0.023109 (0.050738) | 0.407064 / 0.275898 (0.131166) | 0.440695 / 0.323480 (0.117215) | 0.005783 / 0.007986 (-0.002203) | 0.003517 / 0.004328 (-0.000812) | 0.065721 / 0.004250 (0.061470) | 0.056390 / 0.037052 (0.019338) | 0.419019 / 0.258489 (0.160530) | 0.450721 / 0.293841 (0.156880) | 0.034094 / 0.128546 (-0.094452) | 0.008594 / 0.075646 (-0.067052) | 0.069254 / 0.419271 (-0.350017) | 0.049218 / 0.043533 (0.005685) | 0.413312 / 0.255139 (0.158173) | 0.439454 / 0.283200 (0.156255) | 0.021481 / 0.141683 (-0.120202) | 1.517536 / 1.452155 (0.065382) | 1.530532 / 1.492716 (0.037815) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235392 / 0.018006 (0.217386) | 0.477371 / 0.000490 (0.476881) | 0.007070 / 0.000200 (0.006870) | 0.000132 / 0.000054 (0.000077) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031909 / 0.037411 (-0.005502) | 0.092459 / 0.014526 (0.077933) | 0.105795 / 0.176557 (-0.070761) | 0.157745 / 0.737135 (-0.579390) | 0.104187 / 0.296338 (-0.192152) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424385 / 0.215209 (0.209176) | 4.445371 / 2.077655 (2.367716) | 2.423639 / 1.504120 (0.919519) | 2.188167 / 1.541195 (0.646972) | 2.171023 / 1.468490 (0.702532) | 0.483566 / 4.584777 (-4.101211) | 3.825702 / 3.745712 (0.079990) | 3.276350 / 5.269862 (-1.993512) | 2.063075 / 4.565676 (-2.502602) | 0.061628 / 0.424275 (-0.362647) | 0.008176 / 0.007607 (0.000569) | 0.506697 / 0.226044 (0.280653) | 5.067924 / 2.268929 (2.798995) | 2.785567 / 55.444624 (-52.659057) | 2.457340 / 6.876477 (-4.419137) | 2.599646 / 2.142072 (0.457574) | 0.581550 / 4.805227 (-4.223677) | 0.131712 / 6.500664 (-6.368952) | 0.058776 / 0.075469 (-0.016693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356639 / 1.841788 (-0.485148) | 20.103463 / 8.074308 (12.029155) | 14.481010 / 10.191392 (4.289618) | 0.162870 / 0.680424 (-0.517554) | 0.023197 / 0.534201 (-0.511004) | 0.413042 / 0.579283 (-0.166241) | 0.427494 / 0.434364 (-0.006870) | 0.508457 / 0.540337 (-0.031880) | 0.662412 / 1.386936 (-0.724524) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#05fe5c06d42f84408b933c2809acb9b7449cbbb3 \"CML watermark\")\n"
] | 2023-09-15T14:23:33 | 2023-09-19T18:02:21 | 2023-09-19T17:53:17 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6243",
"html_url": "https://github.com/huggingface/datasets/pull/6243",
"diff_url": "https://github.com/huggingface/datasets/pull/6243.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6243.patch",
"merged_at": "2023-09-19T17:53:17"
} | Fix #6242 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6243/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6243/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6242 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6242/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6242/comments | https://api.github.com/repos/huggingface/datasets/issues/6242/events | https://github.com/huggingface/datasets/issues/6242 | 1,896,899,123 | I_kwDODunzps5xEGIz | 6,242 | Data alteration when loading dataset with unspecified inner sequence length | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"While this issue may seem specific, it led to a silent problem in my workflow that took days to diagnose. If this feature is not intended to be supported, an error should be raised when encountering this configuration to prevent such issues.",
"Thanks for reporting! This is a MRE:\r\n\r\n```python\r\nimport pyarrow as pa\r\nfrom datasets.table import cast_array_to_feature\r\nfrom datasets import Sequence, Value\r\ndata = [\r\n [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]],\r\n [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]],\r\n]\r\narr = pa.array(data, pa.list_(pa.list_(pa.float32(), 3)))\r\ncast_array_to_feature(arr, Sequence(Sequence(Value(\"float32\"))))\r\n```\r\n\r\nI've opened a PR with a fix."
] | 2023-09-14T16:12:45 | 2023-09-19T17:53:18 | 2023-09-19T17:53:18 | CONTRIBUTOR | null | null | null | ### Describe the bug
When a dataset saved with a specified inner sequence length is loaded without specifying that length, the original data is altered and becomes inconsistent.
### Steps to reproduce the bug
```python
from datasets import Dataset, Features, Value, Sequence, load_dataset
# Repository ID
repo_id = "my_repo_id"
# Define features with a specific length of 3 for each inner sequence
specified_features = Features({"key": Sequence(Sequence(Value("float32"), length=3))})
# Create a dataset with the specified features
data = [
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]],
]
dataset = Dataset.from_dict({"key": data}, features=specified_features)
# Push the dataset to the hub
dataset.push_to_hub(repo_id)
# Define features without specifying the length
unspecified_features = Features({"key": Sequence(Sequence(Value("float32")))})
# Load the dataset from the hub with this new feature definition
dataset = load_dataset(f"qgallouedec/{repo_id}", split="train", features=unspecified_features)
# The obtained data is altered
print(dataset.to_dict()) # {'key': [[[1.0], [2.0]], [[3.0], [4.0]]]}
```
### Expected behavior
```python
print(dataset.to_dict()) # {'key': [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]]}
```
### Environment info
- `datasets` version: 2.14.4
- Platform: Linux-6.2.0-32-generic-x86_64-with-glibc2.35
- Python version: 3.9.12
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6242/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6242/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6241 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6241/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6241/comments | https://api.github.com/repos/huggingface/datasets/issues/6241/events | https://github.com/huggingface/datasets/pull/6241 | 1,896,429,694 | PR_kwDODunzps5aVfl- | 6,241 | Remove unused global variables in `audio.py` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006753 / 0.011353 (-0.004600) | 0.004027 / 0.011008 (-0.006982) | 0.084200 / 0.038508 (0.045692) | 0.072233 / 0.023109 (0.049124) | 0.361535 / 0.275898 (0.085637) | 0.386196 / 0.323480 (0.062716) | 0.004047 / 0.007986 (-0.003939) | 0.003416 / 0.004328 (-0.000912) | 0.064724 / 0.004250 (0.060474) | 0.055740 / 0.037052 (0.018688) | 0.360422 / 0.258489 (0.101933) | 0.399230 / 0.293841 (0.105389) | 0.031537 / 0.128546 (-0.097009) | 0.008630 / 0.075646 (-0.067016) | 0.289652 / 0.419271 (-0.129620) | 0.052881 / 0.043533 (0.009348) | 0.359538 / 0.255139 (0.104399) | 0.379410 / 0.283200 (0.096211) | 0.024539 / 0.141683 (-0.117144) | 1.470891 / 1.452155 (0.018736) | 1.578879 / 1.492716 (0.086163) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239200 / 0.018006 (0.221194) | 0.462100 / 0.000490 (0.461610) | 0.009055 / 0.000200 (0.008856) | 0.000406 / 0.000054 (0.000352) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028736 / 0.037411 (-0.008675) | 0.088051 / 0.014526 (0.073525) | 0.098101 / 0.176557 (-0.078456) | 0.152399 / 0.737135 (-0.584737) | 0.098776 / 0.296338 (-0.197563) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401761 / 0.215209 (0.186552) | 4.014143 / 2.077655 (1.936488) | 2.033255 / 1.504120 (0.529135) | 1.855347 / 1.541195 (0.314152) | 1.996144 / 1.468490 (0.527654) | 0.488545 / 4.584777 (-4.096232) | 3.712030 / 3.745712 (-0.033682) | 3.439725 / 5.269862 (-1.830137) | 2.119289 / 4.565676 (-2.446388) | 0.057523 / 0.424275 (-0.366752) | 0.007780 / 0.007607 (0.000173) | 0.479522 / 0.226044 (0.253477) | 4.798218 / 2.268929 (2.529290) | 2.543816 / 55.444624 (-52.900809) | 2.180392 / 6.876477 (-4.696085) | 2.427195 / 2.142072 (0.285122) | 0.602071 / 4.805227 (-4.203156) | 0.133450 / 6.500664 (-6.367214) | 0.061975 / 0.075469 (-0.013494) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250040 / 1.841788 (-0.591748) | 19.532327 / 8.074308 (11.458019) | 14.200298 / 10.191392 (4.008906) | 0.165165 / 0.680424 (-0.515259) | 0.018326 / 0.534201 (-0.515875) | 0.389788 / 0.579283 (-0.189495) | 0.419301 / 0.434364 (-0.015063) | 0.452645 / 0.540337 (-0.087693) | 0.643409 / 1.386936 (-0.743527) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007040 / 0.011353 (-0.004313) | 0.004157 / 0.011008 (-0.006851) | 0.065439 / 0.038508 (0.026931) | 0.083210 / 0.023109 (0.060101) | 0.406707 / 0.275898 (0.130809) | 0.442759 / 0.323480 (0.119279) | 0.006321 / 0.007986 (-0.001665) | 0.003684 / 0.004328 (-0.000645) | 0.064517 / 0.004250 (0.060266) | 0.060676 / 0.037052 (0.023624) | 0.413395 / 0.258489 (0.154906) | 0.446776 / 0.293841 (0.152935) | 0.032542 / 0.128546 (-0.096004) | 0.008614 / 0.075646 (-0.067033) | 0.071760 / 0.419271 (-0.347511) | 0.049646 / 0.043533 (0.006113) | 0.402409 / 0.255139 (0.147270) | 0.422775 / 0.283200 (0.139575) | 0.024846 / 0.141683 (-0.116836) | 1.522915 / 1.452155 (0.070761) | 1.566518 / 1.492716 (0.073802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234478 / 0.018006 (0.216472) | 0.461318 / 0.000490 (0.460828) | 0.006304 / 0.000200 (0.006105) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036904 / 0.037411 (-0.000508) | 0.102144 / 0.014526 (0.087619) | 0.108985 / 0.176557 (-0.067572) | 0.162609 / 0.737135 (-0.574526) | 0.110295 / 0.296338 (-0.186044) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438735 / 0.215209 (0.223526) | 4.377602 / 2.077655 (2.299948) | 2.375305 / 1.504120 (0.871185) | 2.215877 / 1.541195 (0.674682) | 2.317468 / 1.468490 (0.848978) | 0.495137 / 4.584777 (-4.089640) | 3.726323 / 3.745712 (-0.019389) | 3.493785 / 5.269862 (-1.776077) | 2.177891 / 4.565676 (-2.387785) | 0.058975 / 0.424275 (-0.365300) | 0.007897 / 0.007607 (0.000290) | 0.514063 / 0.226044 (0.288019) | 5.132714 / 2.268929 (2.863786) | 2.914125 / 55.444624 (-52.530499) | 2.532912 / 6.876477 (-4.343564) | 2.776438 / 2.142072 (0.634365) | 0.624831 / 4.805227 (-4.180396) | 0.135023 / 6.500664 (-6.365641) | 0.062040 / 0.075469 (-0.013429) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.359970 / 1.841788 (-0.481818) | 20.816464 / 8.074308 (12.742156) | 16.103544 / 10.191392 (5.912152) | 0.149120 / 0.680424 (-0.531304) | 0.020279 / 0.534201 (-0.513922) | 0.408727 / 0.579283 (-0.170556) | 0.436191 / 0.434364 (0.001827) | 0.485056 / 0.540337 (-0.055281) | 0.737727 / 1.386936 (-0.649209) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d15280f435b7e27c9350a0cc37a07dbc5e2ea9ca \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008102 / 0.011353 (-0.003251) | 0.004886 / 0.011008 (-0.006123) | 0.090482 / 0.038508 (0.051974) | 0.071594 / 0.023109 (0.048485) | 0.428678 / 0.275898 (0.152780) | 0.442179 / 0.323480 (0.118699) | 0.004329 / 0.007986 (-0.003657) | 0.003756 / 0.004328 (-0.000573) | 0.087125 / 0.004250 (0.082874) | 0.055159 / 0.037052 (0.018107) | 0.437646 / 0.258489 (0.179157) | 0.446665 / 0.293841 (0.152824) | 0.046402 / 0.128546 (-0.082145) | 0.014248 / 0.075646 (-0.061398) | 0.331401 / 0.419271 (-0.087871) | 0.062010 / 0.043533 (0.018478) | 0.434774 / 0.255139 (0.179635) | 0.441063 / 0.283200 (0.157863) | 0.037424 / 0.141683 (-0.104258) | 1.720276 / 1.452155 (0.268121) | 1.731491 / 1.492716 (0.238775) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.302935 / 0.018006 (0.284929) | 0.590556 / 0.000490 (0.590067) | 0.014473 / 0.000200 (0.014274) | 0.000712 / 0.000054 (0.000658) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031289 / 0.037411 (-0.006122) | 0.091175 / 0.014526 (0.076649) | 0.112895 / 0.176557 (-0.063661) | 0.199558 / 0.737135 (-0.537577) | 0.113397 / 0.296338 (-0.182942) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.571586 / 0.215209 (0.356377) | 5.706894 / 2.077655 (3.629240) | 2.512701 / 1.504120 (1.008581) | 2.151705 / 1.541195 (0.610510) | 2.252738 / 1.468490 (0.784248) | 0.857524 / 4.584777 (-3.727253) | 5.189027 / 3.745712 (1.443315) | 4.464979 / 5.269862 (-0.804882) | 2.787486 / 4.565676 (-1.778190) | 0.090161 / 0.424275 (-0.334115) | 0.008649 / 0.007607 (0.001042) | 0.703367 / 0.226044 (0.477322) | 7.128971 / 2.268929 (4.860043) | 3.437475 / 55.444624 (-52.007149) | 2.562291 / 6.876477 (-4.314186) | 2.753419 / 2.142072 (0.611346) | 0.981964 / 4.805227 (-3.823263) | 0.194533 / 6.500664 (-6.306131) | 0.069659 / 0.075469 (-0.005810) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.510356 / 1.841788 (-0.331431) | 22.414117 / 8.074308 (14.339809) | 20.325418 / 10.191392 (10.134025) | 0.226823 / 0.680424 (-0.453601) | 0.029123 / 0.534201 (-0.505078) | 0.454656 / 0.579283 (-0.124627) | 0.559588 / 0.434364 (0.125224) | 0.547386 / 0.540337 (0.007048) | 0.770169 / 1.386936 (-0.616767) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010167 / 0.011353 (-0.001186) | 0.005164 / 0.011008 (-0.005844) | 0.094897 / 0.038508 (0.056388) | 0.078027 / 0.023109 (0.054918) | 0.474442 / 0.275898 (0.198544) | 0.503362 / 0.323480 (0.179882) | 0.006988 / 0.007986 (-0.000998) | 0.005369 / 0.004328 (0.001041) | 0.079547 / 0.004250 (0.075297) | 0.059382 / 0.037052 (0.022329) | 0.468759 / 0.258489 (0.210270) | 0.566780 / 0.293841 (0.272939) | 0.050791 / 0.128546 (-0.077755) | 0.013191 / 0.075646 (-0.062455) | 0.086086 / 0.419271 (-0.333186) | 0.060399 / 0.043533 (0.016866) | 0.492985 / 0.255139 (0.237846) | 0.509139 / 0.283200 (0.225940) | 0.034537 / 0.141683 (-0.107146) | 1.699166 / 1.452155 (0.247011) | 1.789781 / 1.492716 (0.297065) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278776 / 0.018006 (0.260769) | 0.615877 / 0.000490 (0.615387) | 0.009062 / 0.000200 (0.008862) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032931 / 0.037411 (-0.004481) | 0.094796 / 0.014526 (0.080270) | 0.126697 / 0.176557 (-0.049859) | 0.168172 / 0.737135 (-0.568963) | 0.113906 / 0.296338 (-0.182433) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602378 / 0.215209 (0.387169) | 5.987708 / 2.077655 (3.910054) | 2.800339 / 1.504120 (1.296219) | 2.474127 / 1.541195 (0.932932) | 2.502387 / 1.468490 (1.033897) | 0.808147 / 4.584777 (-3.776630) | 5.212691 / 3.745712 (1.466979) | 4.479452 / 5.269862 (-0.790409) | 2.831960 / 4.565676 (-1.733717) | 0.086777 / 0.424275 (-0.337498) | 0.009492 / 0.007607 (0.001885) | 0.716848 / 0.226044 (0.490803) | 7.099904 / 2.268929 (4.830975) | 3.794708 / 55.444624 (-51.649916) | 2.859826 / 6.876477 (-4.016650) | 3.109673 / 2.142072 (0.967600) | 0.936776 / 4.805227 (-3.868451) | 0.195152 / 6.500664 (-6.305512) | 0.074184 / 0.075469 (-0.001285) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.585419 / 1.841788 (-0.256369) | 22.420377 / 8.074308 (14.346068) | 20.761533 / 10.191392 (10.570141) | 0.228480 / 0.680424 (-0.451943) | 0.030944 / 0.534201 (-0.503257) | 0.444717 / 0.579283 (-0.134566) | 0.579632 / 0.434364 (0.145268) | 0.521669 / 0.540337 (-0.018669) | 0.748274 / 1.386936 (-0.638662) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#94e07965a400e6901f12e6f0f25c7090656c828c \"CML watermark\")\n"
] | 2023-09-14T12:06:32 | 2023-09-15T15:57:10 | 2023-09-15T15:46:07 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6241",
"html_url": "https://github.com/huggingface/datasets/pull/6241",
"diff_url": "https://github.com/huggingface/datasets/pull/6241.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6241.patch",
"merged_at": "2023-09-15T15:46:07"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6241/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6241/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6240 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6240/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6240/comments | https://api.github.com/repos/huggingface/datasets/issues/6240/events | https://github.com/huggingface/datasets/issues/6240 | 1,895,723,888 | I_kwDODunzps5w_nNw | 6,240 | Dataloader stuck on multiple GPUs | {
"login": "kuri54",
"id": 40049003,
"node_id": "MDQ6VXNlcjQwMDQ5MDAz",
"avatar_url": "https://avatars.githubusercontent.com/u/40049003?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kuri54",
"html_url": "https://github.com/kuri54",
"followers_url": "https://api.github.com/users/kuri54/followers",
"following_url": "https://api.github.com/users/kuri54/following{/other_user}",
"gists_url": "https://api.github.com/users/kuri54/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kuri54/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kuri54/subscriptions",
"organizations_url": "https://api.github.com/users/kuri54/orgs",
"repos_url": "https://api.github.com/users/kuri54/repos",
"events_url": "https://api.github.com/users/kuri54/events{/privacy}",
"received_events_url": "https://api.github.com/users/kuri54/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"What type of dataset are you using in this script? `torch.utils.data.Dataset` or `datasets.Dataset`? Please share the `datasets` package version if it's the latter. Otherwise, it's better to move this issue to the `accelerate` repo.",
"Very sorry, I thought I had a repo in `accelerate!`\r\nI will close this issue and repo the issue in the appropriate place."
] | 2023-09-14T05:30:30 | 2023-09-14T23:54:42 | 2023-09-14T23:54:42 | NONE | null | null | null | ### Describe the bug
I am trying to get CLIP to fine-tuning with my code.
When I tried to run it on multiple GPUs using accelerate, I encountered the following phenomenon.
- Validation dataloader stuck in 2nd epoch only on multi-GPU
Specifically, when the "for inputs in valid_loader:" process is finished, it does not proceed to the next step. train_loader process is completed. Also, both train and valid are working correctly in the first epoch.
The accelerate command at that time is as follows.
`accelerate launch --multi_gpu --num_processes=2 {script_name.py} {--arg1} {--arg2} ...`
- This will not happen when single GPU is used.
`CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...`
- Setting num_workers=0 in dataloader did not change the result.
### Steps to reproduce the bug
1. The codes for fine-tuning the regular CLIP were updated for accelerate.
2. Run the code with the accelerate command as `accelerate launch --multi_gpu --num_processes=2 {script_name.py} {--arg1} {--arg2} ...` and the above problem will occur.
3. CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...` , it works fine.
### Expected behavior
It Should end normally as if it was run on a single GPU.
### Environment info
Since `datasets-cli env` did not work, the environment is described below.
- OS: Ubuntu 22.04 with Docker
- Docker: 24.0.5, build ced0996
- Python: 3.10.12
- torch==2.0.1
- accelerate==0.21.0
- transformers==4.33.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6240/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6240/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6239 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6239/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6239/comments | https://api.github.com/repos/huggingface/datasets/issues/6239/events | https://github.com/huggingface/datasets/issues/6239 | 1,895,349,382 | I_kwDODunzps5w-LyG | 6,239 | Load local audio data doesn't work | {
"login": "abodacs",
"id": 554032,
"node_id": "MDQ6VXNlcjU1NDAzMg==",
"avatar_url": "https://avatars.githubusercontent.com/u/554032?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/abodacs",
"html_url": "https://github.com/abodacs",
"followers_url": "https://api.github.com/users/abodacs/followers",
"following_url": "https://api.github.com/users/abodacs/following{/other_user}",
"gists_url": "https://api.github.com/users/abodacs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/abodacs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/abodacs/subscriptions",
"organizations_url": "https://api.github.com/users/abodacs/orgs",
"repos_url": "https://api.github.com/users/abodacs/repos",
"events_url": "https://api.github.com/users/abodacs/events{/privacy}",
"received_events_url": "https://api.github.com/users/abodacs/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I think this is the same issue as https://github.com/huggingface/datasets/issues/4776. Maybe installing `ffmpeg` can fix it:\r\n```python\r\nadd-apt-repository -y ppa:savoury1/ffmpeg4\r\napt-get -qq install -y ffmpeg\r\n```\r\n\r\nHowever, the best solution is to use a newer version of `datasets`. In the recent releases, we've replaced `torchaudio` with `soundfile`, which is easier to install and faster.",
"@mariosasko \r\nThanks for your help"
] | 2023-09-13T22:30:01 | 2023-09-15T14:32:10 | 2023-09-15T14:32:10 | NONE | null | null | null | ### Describe the bug
I get a RuntimeError from the following code:
```python
audio_dataset = Dataset.from_dict({"audio": ["/kaggle/input/bengaliai-speech/train_mp3s/000005f3362c.mp3"]}).cast_column("audio", Audio())
audio_dataset[0]
```
### Traceback
<details>
```python
RuntimeError Traceback (most recent call last)
Cell In[33], line 1
----> 1 train_dataset[0]
File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1764, in Dataset.__getitem__(self, key)
1762 def __getitem__(self, key): # noqa: F811
1763 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)."""
-> 1764 return self._getitem(
1765 key,
1766 )
File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1749, in Dataset._getitem(self, key, decoded, **kwargs)
1747 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs)
1748 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)
-> 1749 formatted_output = format_table(
1750 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns
1751 )
1752 return formatted_output
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:532, in format_table(table, key, formatter, format_columns, output_all_columns)
530 python_formatter = PythonFormatter(features=None)
531 if format_columns is None:
--> 532 return formatter(pa_table, query_type=query_type)
533 elif query_type == "column":
534 if key in format_columns:
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:281, in Formatter.__call__(self, pa_table, query_type)
279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
280 if query_type == "row":
--> 281 return self.format_row(pa_table)
282 elif query_type == "column":
283 return self.format_column(pa_table)
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:312, in PythonFormatter.format_row(self, pa_table)
310 row = self.python_arrow_extractor().extract_row(pa_table)
311 if self.decoded:
--> 312 row = self.python_features_decoder.decode_row(row)
313 return row
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:221, in PythonFeaturesDecoder.decode_row(self, row)
220 def decode_row(self, row: dict) -> dict:
--> 221 return self.features.decode_example(row) if self.features else row
File /opt/conda/lib/python3.10/site-packages/datasets/features/features.py:1386, in Features.decode_example(self, example)
1376 def decode_example(self, example: dict):
1377 """Decode example with custom feature decoding.
1378
1379 Args:
(...)
1383 :obj:`dict[str, Any]`
1384 """
-> 1386 return {
1387 column_name: decode_nested_example(feature, value)
1388 if self._column_requires_decoding[column_name]
1389 else value
1390 for column_name, (feature, value) in zip_dict(
1391 {key: value for key, value in self.items() if key in example}, example
1392 )
1393 }
File /opt/conda/lib/python3.10/site-packages/datasets/features/features.py:1387, in <dictcomp>(.0)
1376 def decode_example(self, example: dict):
1377 """Decode example with custom feature decoding.
1378
1379 Args:
(...)
1383 :obj:`dict[str, Any]`
1384 """
1386 return {
-> 1387 column_name: decode_nested_example(feature, value)
1388 if self._column_requires_decoding[column_name]
1389 else value
1390 for column_name, (feature, value) in zip_dict(
1391 {key: value for key, value in self.items() if key in example}, example
1392 )
1393 }
File /opt/conda/lib/python3.10/site-packages/datasets/features/features.py:1087, in decode_nested_example(schema, obj)
1085 # Object with special decoding:
1086 elif isinstance(schema, (Audio, Image)):
-> 1087 return schema.decode_example(obj) if obj is not None else None
1088 return obj
File /opt/conda/lib/python3.10/site-packages/datasets/features/audio.py:103, in Audio.decode_example(self, value)
101 raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.")
102 elif path is not None and path.endswith("mp3"):
--> 103 array, sampling_rate = self._decode_mp3(file if file else path)
104 elif path is not None and path.endswith("opus"):
105 if file:
File /opt/conda/lib/python3.10/site-packages/datasets/features/audio.py:241, in Audio._decode_mp3(self, path_or_file)
238 except RuntimeError as err:
239 raise ImportError("To support decoding 'mp3' audio files, please install 'sox'.") from err
--> 241 array, sampling_rate = torchaudio.load(path_or_file, format="mp3")
242 if self.sampling_rate and self.sampling_rate != sampling_rate:
243 if not hasattr(self, "_resampler") or self._resampler.orig_freq != sampling_rate:
File /opt/conda/lib/python3.10/site-packages/torchaudio/backend/sox_io_backend.py:256, in load(filepath, frame_offset, num_frames, normalize, channels_first, format)
254 if ret is not None:
255 return ret
--> 256 return _fallback_load(filepath, frame_offset, num_frames, normalize, channels_first, format)
File /opt/conda/lib/python3.10/site-packages/torchaudio/backend/sox_io_backend.py:30, in _fail_load(filepath, frame_offset, num_frames, normalize, channels_first, format)
22 def _fail_load(
23 filepath: str,
24 frame_offset: int = 0,
(...)
28 format: Optional[str] = None,
29 ) -> Tuple[torch.Tensor, int]:
---> 30 raise RuntimeError("Failed to load audio from {}".format(filepath))
RuntimeError: Failed to load audio from /kaggle/input/bengaliai-speech/train_mp3s/000005f3362c.mp3
```
</details>
### Steps to reproduce the bug
1. - Create a custom dataset using Local files of type mp3.
3. - Try to read the first audio item.
### Expected behavior
Expected output
```python
audio_dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': 'path/to/audio_1',
'sampling_rate': 16000}
```
### Environment info
N/A | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6239/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6239/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6238 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6238/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6238/comments | https://api.github.com/repos/huggingface/datasets/issues/6238/events | https://github.com/huggingface/datasets/issues/6238 | 1,895,207,828 | I_kwDODunzps5w9pOU | 6,238 | `dataset.filter` ALWAYS removes the first item from the dataset when using batched=True | {
"login": "Taytay",
"id": 1330693,
"node_id": "MDQ6VXNlcjEzMzA2OTM=",
"avatar_url": "https://avatars.githubusercontent.com/u/1330693?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Taytay",
"html_url": "https://github.com/Taytay",
"followers_url": "https://api.github.com/users/Taytay/followers",
"following_url": "https://api.github.com/users/Taytay/following{/other_user}",
"gists_url": "https://api.github.com/users/Taytay/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Taytay/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Taytay/subscriptions",
"organizations_url": "https://api.github.com/users/Taytay/orgs",
"repos_url": "https://api.github.com/users/Taytay/repos",
"events_url": "https://api.github.com/users/Taytay/events{/privacy}",
"received_events_url": "https://api.github.com/users/Taytay/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"`filter` treats the function's output as a (selection) mask - `True` keeps the sample, and `False` drops it. In your case, `bool(0)` evaluates to `False`, so dropping the first sample is the correct behavior.",
"Oh gosh! 🤦 I totally misunderstood the API! My apologies!"
] | 2023-09-13T20:20:37 | 2023-09-17T07:05:07 | 2023-09-17T07:05:07 | NONE | null | null | null | ### Describe the bug
If you call batched=True when calling `filter`, the first item is _always_ filtered out, regardless of the filter condition.
### Steps to reproduce the bug
Here's a minimal example:
```python
def filter_batch_always_true(batch, indices):
print("First index being passed into this filter function: ", indices[0])
return indices # Keep all indices
data = {"value": list(range(10))}
dataset = Dataset.from_dict(data)
filtered_dataset = dataset.filter(filter_batch_always_true, with_indices=True, batched=True)
print("Length of original dataset: ", len(dataset))
print("Length of filtered_dataset: ", len(filtered_dataset))
print("Is equal to original? ", len(filtered_dataset) == len(dataset))
print("First item of filtered dataset: ", filtered_dataset[0])
print("Last item of filtered dataset: ", filtered_dataset[-1])
```
prints:
```
First index being passed into this filter function: 0
Length of original dataset: 10
Length of filtered_dataset: 9
Is equal to original? False
First item of filtered dataset: {'value': 1}
Last item of filtered dataset: {'value': 9}
```
### Expected behavior
Filter should respect the filter condition.
### Environment info
- `datasets` version: 2.14.4
- Platform: macOS-13.5-arm64-arm-64bit
- Python version: 3.9.18
- Huggingface_hub version: 0.17.1
- PyArrow version: 10.0.1
- Pandas version: 2.0.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6238/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6238/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6237 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6237/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6237/comments | https://api.github.com/repos/huggingface/datasets/issues/6237/events | https://github.com/huggingface/datasets/issues/6237 | 1,893,822,321 | I_kwDODunzps5w4W9x | 6,237 | Tokenization with multiple workers is too slow | {
"login": "macabdul9",
"id": 25720695,
"node_id": "MDQ6VXNlcjI1NzIwNjk1",
"avatar_url": "https://avatars.githubusercontent.com/u/25720695?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/macabdul9",
"html_url": "https://github.com/macabdul9",
"followers_url": "https://api.github.com/users/macabdul9/followers",
"following_url": "https://api.github.com/users/macabdul9/following{/other_user}",
"gists_url": "https://api.github.com/users/macabdul9/gists{/gist_id}",
"starred_url": "https://api.github.com/users/macabdul9/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/macabdul9/subscriptions",
"organizations_url": "https://api.github.com/users/macabdul9/orgs",
"repos_url": "https://api.github.com/users/macabdul9/repos",
"events_url": "https://api.github.com/users/macabdul9/events{/privacy}",
"received_events_url": "https://api.github.com/users/macabdul9/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"[This](https://huggingface.co/docs/datasets/nlp_process#map) is the most performant way to tokenize a dataset (`batched=True, num_proc=None, return_tensors=\"np\"`) \r\n\r\nIf`tokenizer.is_fast` returns `True`, `num_proc` must be `None/1` to benefit from the fast tokenizers' parallelism (the fast tokenizers are implemented in Rust, and Rust multi-threading doesn't work well with Python multi-processing)"
] | 2023-09-13T06:18:34 | 2023-09-19T21:54:58 | 2023-09-19T21:54:58 | NONE | null | null | null | I am trying to tokenize a few million documents with multiple workers but the tokenization process is taking forever.
Code snippet:
```
raw_datasets.map(
encode_function,
batched=False,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
remove_columns=[name for name in raw_datasets["train"].column_names if name not in ["input_ids", "labels", "attention_mask"]],
desc="Tokenizing data",
)
```
Details:
```
transformers==4.28.0.dev0
datasets==4.28.0.dev0
preprocessing_num_workers==48
```
tokenizer == decapoda-research/llama-7b-hf
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6237/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6237/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6236 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6236/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6236/comments | https://api.github.com/repos/huggingface/datasets/issues/6236/events | https://github.com/huggingface/datasets/issues/6236 | 1,893,648,480 | I_kwDODunzps5w3shg | 6,236 | Support buffer shuffle for to_tf_dataset | {
"login": "EthanRock",
"id": 7635551,
"node_id": "MDQ6VXNlcjc2MzU1NTE=",
"avatar_url": "https://avatars.githubusercontent.com/u/7635551?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/EthanRock",
"html_url": "https://github.com/EthanRock",
"followers_url": "https://api.github.com/users/EthanRock/followers",
"following_url": "https://api.github.com/users/EthanRock/following{/other_user}",
"gists_url": "https://api.github.com/users/EthanRock/gists{/gist_id}",
"starred_url": "https://api.github.com/users/EthanRock/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/EthanRock/subscriptions",
"organizations_url": "https://api.github.com/users/EthanRock/orgs",
"repos_url": "https://api.github.com/users/EthanRock/repos",
"events_url": "https://api.github.com/users/EthanRock/events{/privacy}",
"received_events_url": "https://api.github.com/users/EthanRock/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"cc @Rocketknight1 ",
"Hey! You can implement this yourself, just:\r\n\r\n1) Create the dataset with `to_tf_dataset()` with `shuffle=False`\r\n2) Add an `unbatch()` at the end (or use batch_size=1)\r\n3) Add a `shuffle()` to the resulting dataset with your desired buffer size\r\n4) Add a `batch()` at the end again to re-batch your dataset.\r\n\r\nNote that the way we construct datasets in `to_tf_dataset()`, we don't actually shuffle the entire dataset in-memory, using `tf.data.Dataset.shuffle()`! Instead, we shuffle an index array and then load from the dataset with that. This means that shuffling with `tf.data.Dataset.shuffle()` will probably be slower and use more memory than our approach - I don't think adding the option for smaller shuffle buffers will actually save you memory on this!",
"Thanks for your reply! @Rocketknight1 \r\n\"We don't actually shuffle the entire dataset in-memory, using tf.data.Dataset.shuffle()! Instead, we shuffle an index array and then load from the dataset with that.\"\r\nIn such case, there will be random access to dataset data during shuffling. When the dataset is large, the performance can be X10 times slow. I have tried many ways with to_tf_dataset() trying to achieve comparable performance with tf.data.Dataset().shuffle(buffer_size).batch(). But the performance with to_tf_dataset() is still slow. \r\n"
] | 2023-09-13T03:19:44 | 2023-09-18T01:11:21 | null | NONE | null | null | null | ### Feature request
I'm using to_tf_dataset to convert a large dataset to tf.data.Dataset and use Keras fit to train model.
Currently, to_tf_dataset only supports full size shuffle, which can be very slow on large dataset.
tf.data.Dataset support buffer shuffle by default.
shuffle(
buffer_size, seed=None, reshuffle_each_iteration=None, name=None
)
### Motivation
I'm very frustrated to find the loading with shuffling large dataset is very slow. It seems impossible to shuffle before training Keras with big dataset.
### Your contribution
NA | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6236/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6236/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6235 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6235/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6235/comments | https://api.github.com/repos/huggingface/datasets/issues/6235/events | https://github.com/huggingface/datasets/issues/6235 | 1,893,337,083 | I_kwDODunzps5w2gf7 | 6,235 | Support multiprocessing for download/extract nestedly | {
"login": "hgt312",
"id": 22725729,
"node_id": "MDQ6VXNlcjIyNzI1NzI5",
"avatar_url": "https://avatars.githubusercontent.com/u/22725729?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/hgt312",
"html_url": "https://github.com/hgt312",
"followers_url": "https://api.github.com/users/hgt312/followers",
"following_url": "https://api.github.com/users/hgt312/following{/other_user}",
"gists_url": "https://api.github.com/users/hgt312/gists{/gist_id}",
"starred_url": "https://api.github.com/users/hgt312/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hgt312/subscriptions",
"organizations_url": "https://api.github.com/users/hgt312/orgs",
"repos_url": "https://api.github.com/users/hgt312/repos",
"events_url": "https://api.github.com/users/hgt312/events{/privacy}",
"received_events_url": "https://api.github.com/users/hgt312/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-09-12T21:51:08 | 2023-09-12T21:51:08 | null | NONE | null | null | null | ### Feature request
Current multiprocessing for download/extract is not done nestedly. For example, when processing SlimPajama, there is only 3 processes (for train/test/val), while there are many files inside these 3 folders
```
Downloading data files #0: 0%| | 0/1 [00:00<?, ?obj/s]
Downloading data files #1: 0%| | 0/1 [00:00<?, ?obj/s]
Downloading data files #2: 0%| | 0/1 [00:00<?, ?obj/s]
Extracting data files #0: 0%| | 0/1 [00:00<?, ?obj/s]
Extracting data files #1: 0%| | 0/1 [00:00<?, ?obj/s][A
Extracting data files #2: 0%| | 0/1 [00:00<?, ?obj/s][A[A
```
### Motivation
speedup dataset loading
### Your contribution
I can help test the feature | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6235/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6235/timeline | null | null | false |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 30