metadata
task_categories:
- image-classification
AutoTrain Dataset for project: fine-tune
Dataset Description
This dataset has been automatically processed by AutoTrain for project fine-tune.
Languages
The BCP-47 code for the dataset's language is unk.
Dataset Structure
Data Instances
A sample from this dataset looks as follows:
[
{
"image": "<382x256 RGB PIL image>",
"target": 17
},
{
"image": "<341x256 RGB PIL image>",
"target": 7
}
]
Dataset Fields
The dataset has the following fields (also called "features"):
{
"image": "Image(decode=True, id=None)",
"target": "ClassLabel(names=['apple', 'banana', 'cake', 'candy', 'carrot', 'cookie', 'doughnut', 'grape', 'hot dog', 'ice cream', 'juice', 'muffin', 'orange', 'pineapple', 'popcorn', 'pretzel', 'salad', 'strawberry', 'waffle', 'watermelon'], id=None)"
}
Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
Split name | Num samples |
---|---|
train | 5394 |
valid | 1351 |