Datasets:
The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for "emotions"
Dataset Summary
Emotions is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper. Note that the paper does contain a larger data set with eight emotions being considered.
Dataset Structure
Data Instances
An example bit of data looks like this:
{
"text": "im feeling quite sad and sorry for myself but ill snap out of it soon",
"label": 0
}
Data Fields
The data fields are:
text
: astring
feature.label
: a classification label, with possible values includingsadness
(0),joy
(1),love
(2),anger
(3),fear
(4),surprise
(5).
Data Splits
The dataset has two configurations.
- split: with a total of 20,000 examples split into train, validation and test.
- unsplit: with a total of 416,809 examples in a single train split.
name | train | validation | test |
---|---|---|---|
split | 16000 | 2000 | 2000 |
unsplit | 416809 | n/a | n/a |
Additional Information
Licensing Information
The dataset should be used for educational and research purposes only. It is licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
Citation Information
If you use this dataset, please cite:
@inproceedings{saravia-etal-2018-carer,
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
author = "Saravia, Elvis and
Liu, Hsien-Chi Toby and
Huang, Yen-Hao and
Wu, Junlin and
Chen, Yi-Shin",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D18-1404",
doi = "10.18653/v1/D18-1404",
pages = "3687--3697",
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
}
- Downloads last month
- 86