jackkuo commited on
Commit
edfa98e
·
verified ·
1 Parent(s): 24e6199

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E4T4oBgHgl3EQf4A3h/content/tmp_files/2301.05311v1.pdf.txt +895 -0
  2. -9E4T4oBgHgl3EQf4A3h/content/tmp_files/load_file.txt +0 -0
  3. .gitattributes +59 -0
  4. 09E5T4oBgHgl3EQfOw41/vector_store/index.pkl +3 -0
  5. 09FRT4oBgHgl3EQflTce/content/2301.13598v1.pdf +3 -0
  6. 09FRT4oBgHgl3EQflTce/vector_store/index.faiss +3 -0
  7. 09FRT4oBgHgl3EQflTce/vector_store/index.pkl +3 -0
  8. 19AzT4oBgHgl3EQfuP0B/content/tmp_files/2301.01686v1.pdf.txt +0 -0
  9. 19AzT4oBgHgl3EQfuP0B/content/tmp_files/load_file.txt +0 -0
  10. 1dFIT4oBgHgl3EQf3yva/content/tmp_files/2301.11383v1.pdf.txt +2536 -0
  11. 1dFIT4oBgHgl3EQf3yva/content/tmp_files/load_file.txt +0 -0
  12. 29E1T4oBgHgl3EQfSAP8/content/2301.03062v1.pdf +3 -0
  13. 29E1T4oBgHgl3EQfSAP8/vector_store/index.faiss +3 -0
  14. 2NA0T4oBgHgl3EQfM_8t/content/tmp_files/2301.02139v1.pdf.txt +0 -0
  15. 2NA0T4oBgHgl3EQfM_8t/content/tmp_files/load_file.txt +0 -0
  16. 2dE3T4oBgHgl3EQfnwqt/content/tmp_files/2301.04628v1.pdf.txt +1388 -0
  17. 2dE3T4oBgHgl3EQfnwqt/content/tmp_files/load_file.txt +0 -0
  18. 2tE1T4oBgHgl3EQf5gWl/content/tmp_files/2301.03513v1.pdf.txt +0 -0
  19. 2tFRT4oBgHgl3EQfnjcF/content/2301.13605v1.pdf +3 -0
  20. 2tFRT4oBgHgl3EQfnjcF/vector_store/index.pkl +3 -0
  21. 3tE4T4oBgHgl3EQfbQwY/content/tmp_files/2301.05070v1.pdf.txt +905 -0
  22. 3tE4T4oBgHgl3EQfbQwY/content/tmp_files/load_file.txt +439 -0
  23. 49AzT4oBgHgl3EQffvx7/vector_store/index.faiss +3 -0
  24. 49E2T4oBgHgl3EQfOgYr/content/2301.03748v1.pdf +3 -0
  25. 49E2T4oBgHgl3EQfOgYr/vector_store/index.pkl +3 -0
  26. 5dE2T4oBgHgl3EQf6wiO/content/2301.04203v1.pdf +3 -0
  27. 5dE2T4oBgHgl3EQf6wiO/vector_store/index.pkl +3 -0
  28. 5tFKT4oBgHgl3EQfSy3E/content/2301.11777v1.pdf +3 -0
  29. 5tFKT4oBgHgl3EQfSy3E/vector_store/index.faiss +3 -0
  30. 5tFKT4oBgHgl3EQfSy3E/vector_store/index.pkl +3 -0
  31. 69AyT4oBgHgl3EQf2vl7/content/tmp_files/2301.00756v1.pdf.txt +1789 -0
  32. 69AyT4oBgHgl3EQf2vl7/content/tmp_files/load_file.txt +0 -0
  33. 7NAzT4oBgHgl3EQfEvqd/content/tmp_files/2301.00999v1.pdf.txt +2141 -0
  34. 7NAzT4oBgHgl3EQfEvqd/content/tmp_files/load_file.txt +0 -0
  35. 7dE2T4oBgHgl3EQflAdd/content/tmp_files/2301.03984v1.pdf.txt +1764 -0
  36. 7dE2T4oBgHgl3EQflAdd/content/tmp_files/load_file.txt +0 -0
  37. 9tE1T4oBgHgl3EQfCQLF/content/2301.02863v1.pdf +3 -0
  38. 9tE1T4oBgHgl3EQfCQLF/vector_store/index.faiss +3 -0
  39. 9tE1T4oBgHgl3EQfCQLF/vector_store/index.pkl +3 -0
  40. 9tE4T4oBgHgl3EQfdwyk/content/2301.05094v1.pdf +3 -0
  41. 9tE4T4oBgHgl3EQfdwyk/vector_store/index.faiss +3 -0
  42. 9tE4T4oBgHgl3EQfdwyk/vector_store/index.pkl +3 -0
  43. BNE3T4oBgHgl3EQfswvl/vector_store/index.faiss +3 -0
  44. BdAyT4oBgHgl3EQf4Ppc/content/tmp_files/2301.00782v1.pdf.txt +1256 -0
  45. BdAyT4oBgHgl3EQf4Ppc/content/tmp_files/load_file.txt +427 -0
  46. BtFIT4oBgHgl3EQf_yzx/content/tmp_files/2301.11417v1.pdf.txt +1007 -0
  47. BtFIT4oBgHgl3EQf_yzx/content/tmp_files/load_file.txt +0 -0
  48. CNE0T4oBgHgl3EQfQACa/content/tmp_files/2301.02187v1.pdf.txt +501 -0
  49. CNE0T4oBgHgl3EQfQACa/content/tmp_files/load_file.txt +294 -0
  50. D9E1T4oBgHgl3EQf-QZ6/vector_store/index.pkl +3 -0
-9E4T4oBgHgl3EQf4A3h/content/tmp_files/2301.05311v1.pdf.txt ADDED
@@ -0,0 +1,895 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Framework for Active Haptic Guidance Using Robotic Haptic Proxies
2
+ Niall L. Williams1, Jiasheng Li1, and Ming C. Lin1
3
+ https://gamma.umd.edu/active haptic guidance/
4
+ Abstract— Haptic feedback is an important component of
5
+ creating an immersive virtual experience. Traditionally, haptic
6
+ forces are rendered in response to the user’s interactions
7
+ with the virtual environment. In this work, we explore the
8
+ idea of rendering haptic forces in a proactive manner, with
9
+ the explicit intention to influence the user’s behavior through
10
+ compelling haptic forces. To this end, we present a framework
11
+ for active haptic guidance in mixed reality, using one or more
12
+ robotic haptic proxies to influence user behavior and deliver
13
+ a safer and more immersive virtual experience. We provide
14
+ details on common challenges that need to be overcome when
15
+ implementing active haptic guidance, and discuss example
16
+ applications that show how active haptic guidance can be used
17
+ to influence the user’s behavior. Finally, we apply active haptic
18
+ guidance to a virtual reality navigation problem, and conduct a
19
+ user study that demonstrates how active haptic guidance creates
20
+ a safer and more immersive experience for users.
21
+ I. INTRODUCTION
22
+ In mixed reality (MR), the user is at least partially im-
23
+ mersed in a 3D, computer-generated environment. Included
24
+ within the mixed reality spectrum are augmented reality
25
+ and virtual reality (VR). A major factor that makes MR a
26
+ unique medium is that it is interactive—the user is able to
27
+ interact with the virtual environment (VE) through position-
28
+ tracking sensors that update the VE according to the user’s
29
+ movements in the physical environment (PE). For example,
30
+ when the user moves their head in the real world, the position
31
+ of the camera in the virtual world moves as well. Interactions
32
+ like these help to make users feel like they are really in the
33
+ VE that they see through the head-mounted display (HMD).
34
+ One key component to increasing the user’s sense of presence
35
+ in a VE is to improve the perceptual stimuli matching [8],
36
+ wherein the user is provided with perceptual information that
37
+ matches their actions (e.g. the viewing perspective updates
38
+ as the user moves their head). In this work, we focus on
39
+ the sense of touch provided by mechanical haptic feedback
40
+ and how we can use robots to provide more realistic haptic
41
+ sensations to improve the sense of immersion and safety in
42
+ mixed reality.
43
+ Robotic technology has in fact been used to provide haptic
44
+ feedback in MR to improve the sense of virtual touch and
45
+ virtual manipulation [10]. For example, MR can enhance
46
+ robotics via telepresence, wherein humans can remotely
47
+ operate robot to high precision using immersive controls
48
+ afforded by VR.
49
+ *This work is partially supported by National Science Foundation and
50
+ Lin’s professorship.
51
+ 1Authors are with the Department of Computer Science, University of
52
+ Maryland, College Park. {niallw, jsli, lin}@umd.edu
53
+ Fig. 1.
54
+ An image of a user in the physical environment (left) and virtual
55
+ environment (right) in our implementation of active haptic guidance. The
56
+ user is tethered to a robot in the physical environment and to a virtual dog
57
+ companion in the virtual environment. The robot provides haptic feedback to
58
+ the user according to the virtual companion’s movements, which improves
59
+ the user’s sense of presence in the virtual world and encourages the user to
60
+ avoid the boundaries of the virtual reality system’s tracked space.
61
+ In this paper, we introduce the possibility of using robots
62
+ to enhance the virtual experience through haptic feedback.
63
+ Specifically, we use robots to guide the user as they navigate
64
+ through a VE, and reconfigure and virtually expand the
65
+ PE to align with the VE; we achieve this through manual
66
+ haptic feedback that directs the user’s locomotion behavior
67
+ in the VE, thereby making the virtual experience more
68
+ immersive and safer. To this end, we introduce the concept
69
+ of active haptic guidance, which describes the problem of
70
+ reconfiguring one or multiple robots in the PE in real time
71
+ such that they provide haptic feedback to guide the user
72
+ and influence their actions and motion in the VE, with the
73
+ ultimate goal of improving the user’s safety or level of
74
+ immersion in MR. One major challenge with robots for active
75
+ haptic feedback in MR is that the physical robots and their
76
+ virtual counterparts must be co-located relative to the user,
77
+ in order to provide the correct haptic feedback that aligns
78
+ with the virtual counterpart. This problem can be exacerbated
79
+ when the environments/interactions are dynamic (i.e. the
80
+ physical and virtual haptic proxy must move synchronously)
81
+ or when there is a decoupling between the user’s physical and
82
+ virtual locations (as is common with some VR interaction
83
+ techniques like redirected walking [24]).
84
+ Main contributions: We introduce the concept of ac-
85
+ tive haptic guidance for improved virtual locomotion, and
86
+ conduct a user study to show an example of how active
87
+ haptic guidance can be used to improve a user’s safety and
88
+ arXiv:2301.05311v1 [cs.RO] 12 Jan 2023
89
+
90
+ feelings of immersion in a virtual experience. Our framework
91
+ is general, so it can be applied to use cases other than
92
+ locomotion, and we provide examples of other possible use-
93
+ cases for active haptic guidance. Our main contributions
94
+ include:
95
+ • A formal description of the active haptic guidance
96
+ problem and details on common challenges that are
97
+ faced when implementing active haptic guidance. Ac-
98
+ tive haptic guidance involves using robots to provide
99
+ realistic haptic feedback to users in mixed reality, with
100
+ the goal of influencing users’ behaviors to improve
101
+ their safety and/or sense of presence in the virtual
102
+ environment.
103
+ • An prototype realization and user study showing the
104
+ benefits of active haptic guidance. In our study, par-
105
+ ticipants completed a virtual navigation task using real
106
+ walking, either with or without active haptic guidance.
107
+ Our results show that active haptic guidance can signif-
108
+ icantly improve the virtual experience by reducing the
109
+ number of “breaks in presence” and keeping them a safe
110
+ distance away from physical objects for longer.
111
+ II. BACKGROUND AND RELATED WORK
112
+ Haptic feedback can be utilized in any mixed reality
113
+ setting, but in this work we mainly discuss applications of
114
+ haptics to virtual reality (VR) settings, since our implementa-
115
+ tion was done in VR. In VR, the user wears a head-mounted
116
+ display (HMD) through which they view a 3D, computer-
117
+ generated virtual environment (VE) [15]. The user’s position
118
+ in the physical environment (PE) is tracked, so that whenever
119
+ the user updates their position in the PE, the position
120
+ of the virtual camera updates accordingly to provide an
121
+ accurate viewing perspective of the VE. VR is an interactive
122
+ experience, meaning that the user does not passively observe
123
+ the virtual content, but instead the environment changes in
124
+ response to the user’s actions and movements. When the
125
+ virtual experience feels sufficiently real, the user experiences
126
+ a sense of presence, which describes the subjective feeling of
127
+ really being in the environment [31]. Factors that contribute
128
+ to a user’s feelings of presence and immersion in a VE
129
+ include the HMD refresh rate [3], the environment realism
130
+ and visual quality [34], and perceptual stimuli matching
131
+ [8], [33] (the process of providing users with perceptual
132
+ information that matches their actions in the VE). In this
133
+ paper, we focus on providing haptic stimuli for perceptual
134
+ stimulus matching to improve the user’s experience in VR.
135
+ Haptic feedback can be provided in a passive or an active
136
+ manner. With passive haptics, objects are placed in the PE
137
+ such that they align with the locations of objects in the VE,
138
+ resulting in haptic feedback when the user tries to touch
139
+ objects in the VE [11]. Conversely, active haptics involves
140
+ a haptic proxy that dynamically alters its configuration in
141
+ real time to provide the appropriate haptic force feedback,
142
+ depending on the user’s interactions with the VE. It is
143
+ common to use robotic systems to render haptic forces. For
144
+ example, Zhang et al. [36] used a robotic arm to provide
145
+ haptic feedback during object assembly by aligning the arm’s
146
+ end effector with the handheld proxy. Siu et al. [28] used
147
+ an array of actuated pins to match the contours of virtual
148
+ objects. Similarly, Zhao et al. [37] used robotic assembly
149
+ to construct tangible representations of virtual objects, made
150
+ from magnetically attached blocks. To recreate the feelings of
151
+ grasping virtual objects, Kovacs et al. [18] used a wrist-worn
152
+ device to provide on-demand haptic feedback when users
153
+ grip virtual objects, while Sinclair et al. [27] used a force-
154
+ resisting, handheld controller to render haptic forces for rigid
155
+ and compliant objects. Suzuki et al. [32] used mobile robots
156
+ to rearrange physical furniture to align with virtual furniture
157
+ as the user moved through a virtual world. Robotic systems
158
+ have also been used to aid in navigation through VEs, via
159
+ handheld canes that use vibrations to provide information
160
+ about the VE [38], [19], [29], mechanical staircases [13] to
161
+ simulate uneven virtual terrain, or mobile tiles that simulate
162
+ infinite walking in any direction [12].
163
+ The majority of prior work on active haptics for mixed
164
+ reality requires the user to initiate interactions with the VE
165
+ before the haptic forces are rendered. That is, the haptic
166
+ forces are triggered by the user’s interactions with the VE,
167
+ so it is the user’s actions that dictate when haptic forces
168
+ are rendered. In this work, we make the distinction of using
169
+ active haptics specifically to direct the user and influence
170
+ their behavior in the VE (in addition to providing a more
171
+ immersive experience, as all haptics aims to do). We define
172
+ this use of haptics as active haptic guidance, since it is the
173
+ haptic forces that direct the user’s behaviors, rather than
174
+ the other way around. We note that there already exists
175
+ research on “haptic guidance,” which Feygin et al. use to
176
+ refer to haptic feedback that is used to help people learn
177
+ motor skills [7]. The distinction between our work on active
178
+ haptic guidance and Feygin et al.’s work is that we use haptic
179
+ feedback to discreetly influence the user’s behavior in an
180
+ effort to enhance their feelings of presence and level of safety
181
+ in a mixed reality experience, while Feygin et al. use haptics
182
+ to teach people motor skills.
183
+ III. PROBLEM DESCRIPTION
184
+ Here we describe the active haptic guidance problem, as
185
+ well as constraints that need to be satisfied to effectively
186
+ utilize haptics to guide users in MR.
187
+ A. Definitions
188
+ In virtual reality, the user is located in a physical envi-
189
+ ronment (PE) and a virtual environment (VE) at the same
190
+ time. Each environment consists of objects (either physical
191
+ objects or virutal objects represented by textured meshes)
192
+ and agents (the users and robots). Note that it is common
193
+ to refer to virtual humans and animals as agents, but in this
194
+ work we will consider all components of the VE as generic
195
+ objects for simplicity, and we use “agents” to refer only to
196
+ humans and robots in the PE.
197
+ Let O = {o1, o2, ..., oi} be a set of polygonal objects,
198
+ where each object o is a mesh with vertices in R3. Let
199
+ U = {u1, u2, ..., uj} be the set of users in an environment.
200
+ Here, u represents the user’s state in an environment, and
201
+
202
+ usually describes their position and orientation in said envi-
203
+ ronment. For example, we can define u = {p, θ}, where
204
+ p ∈ R2 represents their position in the 2D plane and
205
+ θ ∈ [0, 2π) represents their orientation in the environment.
206
+ Let R
207
+ =
208
+ {r1, r2, ..., rk} be the set of robots in an
209
+ environment, and let A = {U ∪ R} be set of all agents.
210
+ Each of these sets O, U, R, and A may be empty.
211
+ We define an environment E as a set of obstacles and
212
+ agents; that is, E = {O, A}. To differentiate between the
213
+ PE and VE, we denote the PE as EP = {OP , AP } and the
214
+ VE as EV = {OV , AV }. For each user in virtual reality,
215
+ they will have a representation in both the PE and VE, so
216
+ |UP | = |UV | = n, where n is the number of users in virtual
217
+ reality. Since we only consider agents to be users and robots
218
+ in this work, |AV | = n (i.e., the only agents in the VE are
219
+ the users). In the VE, there are some objects that the user
220
+ is likely to interact with, which will improve their sense of
221
+ presence in the environment. We define this set of “objects
222
+ of interest” O ⊂ OV as the set of virtual objects for which
223
+ we render haptic forces when the user interacts with them.
224
+ With these definitions of the PE and VE, we can now de-
225
+ scribe the two main conditions that need to be met to provide
226
+ active haptic guidance to users in MR. First, the robots in the
227
+ physical environment need to provide the appropriate haptic
228
+ feedback to influence the user’s configuration. Second, we
229
+ need to ensure that the robots that provide haptic feedback
230
+ are co-located (relative to the user) with the virtual objects
231
+ of interest with which the haptic forces are associated.
232
+ B. Influential Haptics Constraint
233
+ The first condition that needs to be met in order to
234
+ implement active haptic guidance is that the rendered haptic
235
+ forces should influence the user’s behavior such that they
236
+ update their physical and virtual configurations. We dub
237
+ this constraint the influential haptics (IH) constraint. For
238
+ simplicity, we formalize this constraint using one user, one
239
+ robot, and one virtual object of interest, but this constraint
240
+ applies to any group of agents and virtual objects for which
241
+ we render haptic forces.
242
+ Given the user’s physical and virtual configurations uP
243
+ and uV , a virtual object of interest o, and a robot r that
244
+ provides haptic feedback for o, we wish to render a haptic
245
+ force F that compels the user to update uP and uV to
246
+ some goal configurations u∗
247
+ P and u∗
248
+ V . Thus, fulfilling the
249
+ IH constraint requires completing the following steps:
250
+ 1) Compute the goal configurations u∗
251
+ P and u∗
252
+ V .
253
+ 2) Detect or initiate an interaction I between o and uV .
254
+ 3) Update the configuration of r to render a haptic force
255
+ F(I, uV , uP , u∗
256
+ P , u∗
257
+ V , r) that minimizes an objective
258
+ function f(uV , uP , u∗
259
+ P , u∗
260
+ V ).
261
+ In practice, computing F(I, uV , uP , u∗
262
+ P , u∗
263
+ V , r) depends
264
+ heavily on the mechanics of the haptic proxy r and the ob-
265
+ jective function f(uV , uP , u∗
266
+ P , u∗
267
+ V ). The objective function is
268
+ usually a distance function that measures the error between
269
+ uP and uV , and it depends on the user’s configuration
270
+ space. By rendering F, the user hopefully updates their
271
+ configuration such that they move closer to u∗
272
+ P and u∗
273
+ V .
274
+ Computing u∗
275
+ P and u∗
276
+ V is a matter of determining how we
277
+ want the user to behave. In mixed reality (MR), two main
278
+ reasons to influence the user’s behavior are to ensure their
279
+ safety and to deliver a more immersive experience. In MR
280
+ systems, the user tries to navigate through the PE and the VE
281
+ at the same time, but the PE is partially or fully occluded.
282
+ Thus, in order to prevent the user from bumping into physical
283
+ objects that they cannot see, locomotion interfaces for MR
284
+ usually display a notification that prompts them to reposition
285
+ themself to a safer position away from nearby objects. By
286
+ using haptics to warn users (either overtly or subtly), we can
287
+ decrease the likelihood that the user collides with unseen
288
+ physical obstacles or exits the designated tracking area.
289
+ In addition to ensuring user safety, influencing the user’s
290
+ behavior can be useful for improving the user’s sense of
291
+ presence in the VE. In MR, providing perceptual stimuli
292
+ that align with the content rendered on the visual display
293
+ enhances the user’s feeling that they are really in the VE that
294
+ they are seeing. To this end, haptic feedback can significantly
295
+ improve the user’s sense of presence in the VE [11]. In the
296
+ case of active haptic guidance, the haptic feedback can be
297
+ used as an additional narrative element that encourages users
298
+ to explore a particular area or interact with particular objects
299
+ in the VE (e.g. pairing visual distractors [21] with haptic
300
+ feedback to direct the user’s attention).
301
+ C. Relative Co-location Constraint
302
+ The second main constraint that should be met when
303
+ using active haptic guidance is that the physical robots
304
+ that render the haptic forces and their associated virtual
305
+ objects should be co-located relative to the user. That is,
306
+ the position of the robot and the virtual object should be the
307
+ same relative to the user’s configuration in the PE and VE.
308
+ This is done to ensure that the user perceives a congruent VE
309
+ that is augmented by haptic forces, rather than perceiving a
310
+ VE along with misaligned haptic forces, which may break
311
+ their sense of presence in the virtual experience. We call this
312
+ the relative co-location (RC) constraint.
313
+ Given the user’s physical and virtual configurations uP
314
+ and uV , a virtual object of interest o, and a robot r that
315
+ provides haptic feedback for o, we wish to update r such
316
+ that we minimize the error in the relative positions between
317
+ uV and o and uP and r. Fulfilling the RC constraint requires
318
+ completing the following steps:
319
+ 1) Compute the configurations of o and r relative to uV
320
+ and uP , respectively. Usually, these are just positions
321
+ po and pr of o and r relative to the user in the
322
+ respective environment.
323
+ 2) Compute a goal configuration r∗ for the haptic proxy
324
+ that minimizes an objective function f(po, pr).
325
+ 3) Update the configuration of r to move it towards r∗.
326
+ In practice, updating the robot’s configuration in step #3 is
327
+ a motion planning problem where we aim to find a path
328
+ through the configuration space that brings r close to r∗,
329
+ and it depends on the mechanics of the haptic proxy.
330
+ Since MR is an interactive technology, the relative posi-
331
+ tions po and pr are constantly changing as the user explores
332
+
333
+ and interacts with the VE. Thus, evaluating and fulfilling the
334
+ RC constraint must be done constantly to ensure that any per-
335
+ ceptual stimuli mismatch is minimized. Failure to adequately
336
+ meet this constraint can degrade the user experience, since
337
+ it increases the likelihood that the user notices a discrepancy
338
+ between visual stimuli and the haptic stimuli [14], [20].
339
+ Furthermore, knowing how much error between their relative
340
+ positions the user will tolerate is a subjective measure [2],
341
+ [17], so it is usually not the case that the robot must reach
342
+ r∗ exactly. Note that this relative co-location constraint is
343
+ not unique to the active haptic guidance problem (unlike
344
+ subsection III-B); other work on active haptics for virtual
345
+ reality also has to deal with the problem of ensuring the
346
+ co-location of robotic agents and their virtual counterparts.
347
+ IV. PROTOTYPE REALIZATION EXAMPLES
348
+ In this section, we provide details on our prototype im-
349
+ plementation of an application of active haptic guidance. In
350
+ particular, we implement an active haptic-driven locomotion
351
+ application to provide a safer and more immersive virtual
352
+ navigation experience for users. We discuss other potential
353
+ use-cases for active haptic guidance in the supplementary
354
+ materials posted on our project page.
355
+ A. Natural Walking in Virtual Reality
356
+ In VR, it is common for the PE to be much smaller than
357
+ the VE. To enable users to explore large VEs, many different
358
+ locomotion interfaces such as teleportation, joystick naviga-
359
+ tion, and walking-in-place have been developed [6]. Ideally,
360
+ users explore the VE using natural, everyday walking since
361
+ it improves their sense of presence [33] and performance
362
+ in tasks [9], [22], [26]. One technique that enables natural
363
+ walking in VR is redirected walking (RDW) [24].
364
+ RDW works by slowly rotating the VE around the user’s
365
+ virtual camera while they walk, which causes them to
366
+ unconsciously adjust their physical trajectory to counteract
367
+ the VE rotations and remain on their intended path in the
368
+ VE. It works because the human perceptual system tends to
369
+ believe the user’s visual stimuli over other stimuli (proprio-
370
+ ceptive, vestibular, etc.) when they conflict, as is the case in
371
+ RDW [23]. Using RDW, we can steer the user along paths in
372
+ the PE that direct them away from objects and edges of the
373
+ tracked space, resulting in a safer and more immersive virtual
374
+ experience. To help mask the VE rotations, researchers make
375
+ use of distractors which grab the user’s attention to decrease
376
+ the likelihood that they attend to the rotations of the VE [4],
377
+ [21], [35]. In our prototype implementation, we use a virtual
378
+ dog as a distractor in conjunction with a RDW algorithm
379
+ known as steer-to-center, which rotates the VE such that the
380
+ user is steered towards the center of the PE at all times [23].
381
+ B. Virtual Experience and Equipment
382
+ For our implementation, a user u1 completed a navi-
383
+ gation task in a virtual city and had a virtual dog as a
384
+ companion (only a single user participated at a time, so
385
+ |UP |
386
+ =
387
+ |UV |
388
+ =
389
+ 1). Additionally, u1 held a position-
390
+ tracked leash that was tethered to a differential wheeled robot
391
+ r1. The PE was an empty rectangular room with four walls
392
+ (represented by the boundaries of the VR tracking space).
393
+ Thus, EP
394
+ =
395
+ {OP , AP }, where AP
396
+ =
397
+ {u1, r1}. The
398
+ virtual dog served as a distractor and was the only object
399
+ of interest in EV (|O| = 1), meaning that the robot only
400
+ rendered haptic forces associated with the virtual dog.
401
+ Our application was implemented using one HTC VIVE
402
+ Cosmos VR HMD with two VIVE trackers, and one robot
403
+ car (ELEGOO UNO Robot Car kit). We attached one VIVE
404
+ tracker to the robot to track its location and orientation data,
405
+ and the other was attached to the leash handle to calculate
406
+ the distance between u1 and r1. The robot was equipped
407
+ with an HC-06 Bluetooth LE adapter, which connected to
408
+ the PC to transmit robot movement commands. The Unreal
409
+ 4.22 game engine was used to render the VE.
410
+ C. Virtual Companion and Robot Behavior
411
+ Here we describe the behavior of the virtual dog com-
412
+ panion and how the robot matches the virtual companion’s
413
+ movements and provides haptic feedback.
414
+ 1) Virtual Dog Companion Behavior: The virtual dog has
415
+ two main behavior states: following and distracting. When
416
+ the user walks around and is not at risk of leaving the
417
+ tracking space, the dog is in follow mode. In this mode,
418
+ the dog walks slightly ahead of the user as they walk, and
419
+ remains in one spot when the user stands still.
420
+ When the user reaches a boundary of the tracked space, the
421
+ VR system initiates what is called a reset, wherein the user
422
+ reorients themself such that they face towards the inside of
423
+ the tracking space in the PE. To ensure that their orientation
424
+ in the VE is not altered, the VR system applies redirection
425
+ that effectively cancels out their physical rotation in the
426
+ virtual space. When a reset is initiated, the virtual dog enters
427
+ distract mode. In distract mode, we compute a goal position
428
+ in the VE for the dog to move towards. The idea behind
429
+ distract mode is that the user is likely to pay attention to the
430
+ virtual dog as it runs to a goal position, which allows the
431
+ system to apply stronger redirection (away from the obstacles
432
+ in the PE) without interfering with the user’s experience [21].
433
+ During a reset, the goal position is selected by first
434
+ computing the vector from the user towards the center of the
435
+ physical space. The goal position is then determined to be
436
+ either the endpoint of this vector in the VE, or a virtual object
437
+ near the vector’s endpoint that was labeled as a potential
438
+ goal position during development. Potential goal positions
439
+ are virtual objects that a dog would be likely to interact with,
440
+ such as a fire hydrant or a lamp post. If the vector intersects
441
+ with a virtual object (e.g. a virtual building) and there are no
442
+ potential goal objects nearby, the goal position is simply the
443
+ point furthest along the vector that does not intersect with
444
+ any objects. See Figure 2 for a visualization of this process.
445
+ 2) Robot Haptic Proxy Behavior: The physical robot’s
446
+ main purpose is to provide haptic feedback to make the user’s
447
+ virtual experience feel more immersive and to encourage the
448
+ user to walk away from nearby objects or tracking space
449
+ boundaries in the PE. In both follow and distract mode, the
450
+ physical robot needs to update its position such that it is
451
+
452
+ Fig. 2.
453
+ Our method of automatically choosing a suitable virtual goal position for the virtual companion. When the user gets close to a boundary of
454
+ the physical space, they need to be reoriented away from the boundary before they continue walking. In order to pick a goal destination for the virtual
455
+ companion and robotic haptic proxy, we cast a ray from the physical user to the center of the tracked space and then superimpose this vector onto the
456
+ user’s virtual position. If the endpoint of this vector is near a pre-defined potential goal position, that is chosen as the current goal position. Otherwise, we
457
+ choose the furthest point along the vector that does not intersect with any objects in the virtual environment.
458
+ aligned with the position of the virtual dog, relative to the
459
+ user in either environment. Checking if a position update is
460
+ necessary is easily achieved by computing the vector from
461
+ the virtual user to the virtual dog and comparing it to the
462
+ vector from the user’s HMD and the robot.
463
+ To compute the trajectory that the robot will follow, we
464
+ compute a circular arc path based on the robot’s position,
465
+ forward direction, and destination position (determined by
466
+ the relative position of the virtual dog and user). The ideal
467
+ path for a differential drive robot is a circular arc since it only
468
+ requires one set of wheel velocities [5]. The wheel velocities
469
+ are computed with the ratio
470
+ 2rd
471
+ 2r−d, where r is the arc radius
472
+ and d is the distance between the robot wheels. Note that we
473
+ do not use typical PID-based drift correction due to possible
474
+ unexpected complications that may arise from the tethering
475
+ to the user [1], [25], [30].
476
+ D. Maintaining Active Haptic Guidance Constraints
477
+ This section describes how our active haptic-drive loco-
478
+ motion application satisfies the IH and RC constraints.
479
+ 1) Directing Users With Haptic Feedback:
480
+ Since the
481
+ virtual object of interest is a dog, the user is attached to the
482
+ robot by an elastic tether that resembles a leash. When the
483
+ robot moves away from the user in the PE, it simulates the
484
+ sensation of a dog tugging on its leash, thereby improving the
485
+ realism of the virtual experience. Additionally, this tugging
486
+ encourages the user to follow the robot rather than “fight” it,
487
+ allowing us to further influence the user’s movement patterns
488
+ in the PE and VE. By triggering the robot to move away from
489
+ the user and towards the center of the PE when they get too
490
+ close to the tracking space boundaries, the tugging force on
491
+ the leash encourages the user to turn and walk towards the
492
+ robot and away from the tracked space boundaries.
493
+ 2) Maintaining Co-location: Normally, maintaining rela-
494
+ tive co-location between a haptic proxy and a virtual object
495
+ is a matter of updating the position of the haptic proxy
496
+ whenever the virtual object’s position changes. We also do
497
+ this in our implementation by updating the position of the
498
+ robot to match the movements of the virtual dog. However,
499
+ our implementation requires additional work to maintain co-
500
+ location due to a new problem which we refer to as the haptic
501
+ proxy distortion (HPD) problem.
502
+ Virtual environment
503
+ before rotation.
504
+ Virtual environment after
505
+ rotation.
506
+ Physical environment
507
+ and superimposed
508
+ virtual relative positions.
509
+ Fig. 3. A visualization of the haptic proxy distortion problem. Left: Initially,
510
+ the virtual user and virtual companion have a particular relative position.
511
+ Middle: After rotating the virtual environment around the virtual user, the
512
+ relative position of the companion changes since the companion is rotated
513
+ along with the rest of the environment. Right: In the physical space, the
514
+ haptic proxy has not been updated, so its position coincides with the virtual
515
+ companion’s relative position before rotation (opaque robot and vector). The
516
+ new relative position of the virtual companion, which the haptic proxy needs
517
+ to match, is shown as the translucent robot and dashed-line vector.
518
+ In our implementation, we make use of a locomotion
519
+ interface called redirected walking (RDW) that enables nat-
520
+ ural walking in VR. RDW works by rotating the entire VE
521
+ around the virtual camera that represents the user’s viewpoint
522
+ in the VE. Consequently, the virtual dog companion may
523
+ change its position relative to the virtual user without the dog
524
+ actually moving to a new destination in the VE (see Figure 3).
525
+ Thus, as we apply redirection, the relative position of the
526
+ virtual dog changes constantly, while the relative position
527
+ of the physical robot does not. To resolve this discrepancy
528
+ in relative position, we check the relative positions of the
529
+ virtual dog and physical robot on each frame, and update
530
+ the robot’s destination in the PE to minimize the difference
531
+ in relative position. The user will perceive this as the haptic
532
+ proxy “sliding” across the floor around them, which might
533
+ result in unsmooth motion that may detract from the user
534
+ experience. In practice, this did not seem to be a major
535
+ problem for users, but we acknowledge that there may be
536
+ better solutions to the HPD problem, and leave that for future
537
+ work. This HPD problem adds onto the errors in relative co-
538
+ location between the haptic proxy and the virtual companion,
539
+ which makes it harder to satisfy the RC constraint. Note
540
+ that the HPD problem is not specific to our implementation;
541
+ this problem is present in any application that uses haptic
542
+ proxies and creates a mismatch between the user’s positions
543
+ in the physical and virtual environments, as is common for
544
+
545
+ Physical Environment
546
+ Virtual Environment
547
+ Virtual Environment
548
+ Virtual Environment
549
+ Virtual Environment
550
+ UTU
551
+ User reached the tracked space boundary, so a
552
+ Superimpose the physical user-to-center
553
+ If there is a potential pre-defined goal
554
+ If there is no pre-defined goal position near
555
+ If the superimposed user-to-center vector
556
+ reorientation is required. Compute the vector
557
+ vector onto the virtual user to determine the
558
+ position near the endpoint of the user-to-
559
+ the endpoint of the user-to-center vector,
560
+ intersects with a virtual object, use the
561
+ from the user to the center of the physical
562
+ goal position of the virtual companion.
563
+ center vector (e.g., a fire hydrant), set that as
564
+ use the vector endpoint as the goal position.
565
+ furthest non-intersecting point along the
566
+ " vector).
567
+ the goal position.
568
+ vector as the goal position.locomotion interfaces for mixed reality.
569
+ V. EXPERIMENTS & RESULTS
570
+ A. Experiment Design and Procedure
571
+ To evaluate the effectiveness of our implementation of
572
+ active haptic-driven locomotion prototype, we conducted a
573
+ user study where participants completed a navigation task.
574
+ The study design was approved by our university’s Insti-
575
+ tutional Review Board. The goal of our user study was to
576
+ evaluate how effective the haptic guidance was at improving
577
+ users’ sense of presence in the VE and keeping users away
578
+ from the boundaries of the VR system’s tracked space. We
579
+ used a between participants design, where one group of
580
+ participants completed a navigation task with active haptic
581
+ guidance enabled, and the other group completed the same
582
+ task without any haptic guidance. The navigation task had
583
+ a time limit of 5 minutes and 30 seconds, after which the
584
+ experiment ended regardless of if the participant reached the
585
+ goal destination. Participants were unaware of this time limit
586
+ so that they did not rush to complete the task. We recruited 20
587
+ participants (13 male, 5 female, 2 participants did not report)
588
+ through online advertising and oral recruitment. Participants’
589
+ ages ranged from 18 to 28 (µ = 24.59, σ = 2.37). All
590
+ participants were able to walk without any assistance.
591
+ The study consisted of three sections, and lasted about 15
592
+ minutes for each participant. First, we debriefed participants
593
+ on the experiment procedures and had them complete a pre-
594
+ study Simulator Sickness Questionnaire (SSQ) [16]. Next,
595
+ the user put on the HMD and completed the task in the
596
+ VE. The VE was a city environment with several streets and
597
+ blocks, and was populated with common objects such as bus
598
+ stops, stores, park squares, and virtual humans that roamed
599
+ around the environment (see Figure 1 and the supplementary
600
+ video). To mask any potentially distracting noises from the
601
+ robot as it moves, participants wore headphones and back-
602
+ ground music was played for the duration of the experiment
603
+ task. Participants started the task at one intersection in the
604
+ city, and their task was to reach a green question mark in
605
+ the environment that indicated their destination, which was
606
+ one block away from the their starting position. During the
607
+ experiment, we recorded how many times users reached the
608
+ bounds of the PE and the time taken to complete the task.
609
+ Once participants finished the task, they completed another
610
+ SSQ survey and a questionnaire with questions on a 7-point
611
+ Likert scale that measured their sense of presence in the VE
612
+ (7 = high presence, 1 = low presence). Finally, the experiment
613
+ was ended with open-ended questions where participants
614
+ could provide additional comments.
615
+ B. Results
616
+ The metrics we used to measure the effectiveness of our
617
+ active haptic-driven locomotion interface were the number of
618
+ breaks in presence (BiPs), the completion rate and time taken
619
+ to complete the task, and participants’ subjective feelings of
620
+ presence in the VE. A BiP is incurred when the user reaches
621
+ the boundaries of the tracking space and they are forced to
622
+ reorient away from the boundary before continuing to walk.
623
+ BiPs
624
+ Time (s)
625
+ Presence
626
+ Completed
627
+ Haptics
628
+ µ
629
+ σ
630
+ µ
631
+ σ
632
+ µ
633
+ σ
634
+ Total #
635
+ With
636
+ 0.90
637
+ 0.74
638
+ 195.20
639
+ 22.25
640
+ 4.63
641
+ 1.77
642
+ 10
643
+ Without
644
+ 18.90
645
+ 5.17
646
+ 309.40
647
+ 65.14
648
+ 3.57
649
+ 1.64
650
+ 1
651
+ TABLE I
652
+ Performance results from our user study. THE “WITH HAPTICS”
653
+ GROUP OF PARTICIPANTS INCURRED SIGNIFICANTLY fewer BREAKS IN
654
+ PRESENCE (“BIPS” COLUMN), COMPLETED THE EXPERIMENT MUCH
655
+ more quickly (“TIME” COLUMN) AND WITH MUCH higher SUCCESS
656
+ RATES (“COMPLETED” COLUMN), AND REPORTED A higher SENSE OF
657
+ PRESENCE IN THE VIRTUAL EXPERIENCE (“PRESENCE” COLUMN).
658
+ THESE RESULTS SHOW THAT HAPTIC GUIDANCE CAN BE EFFECTIVE FOR
659
+ IMPROVING USERS’ VIRTUAL EXPERIENCE.
660
+ Based on the results in Table I, the presence of our active
661
+ haptic guidance companion resulted in significantly fewer
662
+ BiPs, notably lower completion times and higher completion
663
+ rates, and slightly higher (and above-average) presence lev-
664
+ els. Meanwhile, participants who completed the navigation
665
+ task without any haptic guidance incurred a large number of
666
+ BiPs, did not finish the task in time, and reported below-
667
+ average levels of presence. These results support the notion
668
+ that active haptic guidance can be used to help keep users
669
+ safe and feel more immersed in mixed reality experiences.
670
+ VI. CONCLUSIONS & FUTURE WORK
671
+ In this work, we presented the active haptic guidance
672
+ problem for mixed reality (MR), which describes the use
673
+ of one or more robots to provide haptic feedback to users
674
+ in order to create a richer virtual experience for the user,
675
+ while also influencing the user’s behavior to improve their
676
+ safety and immersion in the virtual world. As a prototype
677
+ realization, we implemented active haptic guidance in a VR
678
+ locomotion application that enables the user to explore a
679
+ large VE while located in a much smaller PE. By combining
680
+ active haptic guidance and redirected walking, we increased
681
+ the effective area of the PE while also decreasing the
682
+ likelihood that the user exits the VR system’s tracked area.
683
+ The concept of active haptic guidance is general and can be
684
+ applied MR applications other than locomotion; we discuss
685
+ other potential use cases for active haptic guidance in the
686
+ supplementary materials on our project page.
687
+ Limitations and Future Work: One limitation of our
688
+ work is the haptic proxy distortion problem, in which the
689
+ haptic proxy and the associated virtual object can become
690
+ desynchronized due to mismatches between the user’s phys-
691
+ ical and virtual configurations. Solving this problem requires
692
+ continuously updating the position of the haptic proxy, and
693
+ our proposed solution in this work is likely not the most
694
+ optimized solution. Additionally, our system uses only a
695
+ rough estimation of drift to readjust the haptic proxy position,
696
+ instead of a more accurate method like PID-based drift
697
+ correction. Future work in this area should investigate the
698
+ use of more realistic companions and behavior models, and
699
+ should explore how active haptic guidance can be applied
700
+ to other types of VR experiences with different applications,
701
+ such as social mixed reality settings with other users.
702
+
703
+ REFERENCES
704
+ [1] K.-E. ˚Aarz´en, “A simple event-based pid controller,” IFAC Proceedings
705
+ Volumes, vol. 32, no. 2, pp. 8687–8692, 1999.
706
+ [2] M. Azmandian, M. Hancock, H. Benko, E. Ofek, and A. D. Wilson,
707
+ “Haptic retargeting: Dynamic repurposing of passive haptics for en-
708
+ hanced virtual reality experiences,” in Proceedings of the 2016 chi
709
+ conference on human factors in computing systems, 2016, pp. 1968–
710
+ 1979.
711
+ [3] W. Barfield and C. Hendrix, “The effect of update rate on the sense of
712
+ presence within virtual environments,” Virtual Reality, vol. 1, no. 1,
713
+ pp. 3–15, 1995.
714
+ [4] H. Chen and H. Fuchs, “Supporting free walking in a large virtual
715
+ environment: imperceptible redirected walking with an immersive
716
+ distractor,” in Proceedings of the Computer Graphics International
717
+ Conference, 2017, pp. 1–6.
718
+ [5] H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. T. Mason, “Min-
719
+ imum wheel-rotation paths for differential-drive mobile robots,” The
720
+ International Journal of Robotics Research, vol. 28, no. 1, pp. 66–80,
721
+ 2009.
722
+ [6] M. Di Luca, H. Seifi, S. Egan, and M. Gonzalez-Franco, “Locomotion
723
+ vault: the extra mile in analyzing vr locomotion techniques,” in
724
+ Proceedings of the 2021 CHI Conference on Human Factors in
725
+ Computing Systems, 2021, pp. 1–10.
726
+ [7] D. Feygin, M. Keehner, and R. Tendick, “Haptic guidance: Experi-
727
+ mental evaluation of a haptic training method for a perceptual motor
728
+ skill,” in Proceedings 10th Symposium on Haptic Interfaces for Virtual
729
+ Environment and Teleoperator Systems. HAPTICS 2002. IEEE, 2002,
730
+ pp. 40–47.
731
+ [8] C. Hendrix and W. Barfield, “Presence within virtual environments as
732
+ a function of visual display parameters,” Presence: Teleoperators &
733
+ Virtual Environments, vol. 5, no. 3, pp. 274–289, 1996.
734
+ [9] E. Hodgson, E. Bachmann, and D. Waller, “Redirected walking
735
+ to explore virtual environments: Assessing the potential for spatial
736
+ interference,” ACM Transactions on Applied Perception (TAP), vol. 8,
737
+ no. 4, pp. 1–22, 2008.
738
+ [10] W. Hoenig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian,
739
+ “Mixed reality for robotics,” in 2015 IEEE/RSJ International Confer-
740
+ ence on Intelligent Robots and Systems (IROS).
741
+ IEEE, 2015, pp.
742
+ 5382–5387.
743
+ [11] B. E. Insko, Passive haptics significantly enhances virtual environ-
744
+ ments.
745
+ The University of North Carolina at Chapel Hill, 2001.
746
+ [12] H. Iwata, H. Yano, H. Fukushima, and H. Noma, “Circulafloor: A
747
+ locomotion interface using circulation of movable tiles,” in IEEE
748
+ Virtual Reality 2005.
749
+ IEEE Computer Society, 2005, pp. 223–230.
750
+ [13] H. Iwata, H. Yano, and F. Nakaizumi, “Gait master: A versatile
751
+ locomotion interface for uneven virtual terrain,” in Proceedings IEEE
752
+ Virtual Reality 2001.
753
+ IEEE, 2001, pp. 131–137.
754
+ [14] G. Jansson and M. ¨Ostr¨om, “The effects of co-location of visual and
755
+ haptic space on judgments of form,” in EuroHaptics.
756
+ Citeseer, 2004,
757
+ pp. 516–519.
758
+ [15] J. Jerald, The VR book: Human-centered design for virtual reality.
759
+ Morgan & Claypool, 2015.
760
+ [16] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, “Sim-
761
+ ulator sickness questionnaire: An enhanced method for quantifying
762
+ simulator sickness,” The international journal of aviation psychology,
763
+ vol. 3, no. 3, pp. 203–220, 1993.
764
+ [17] L. Kohli, “Redirected touching,” Ph.D. dissertation, The University of
765
+ North Carolina at Chapel Hill, 2013.
766
+ [18] R. Kovacs, E. Ofek, M. Gonzalez Franco, A. F. Siu, S. Marwecki,
767
+ C. Holz, and M. Sinclair, “Haptic pivot: On-demand handhelds in vr,”
768
+ in Proceedings of the 33rd Annual ACM Symposium on User Interface
769
+ Software and Technology, 2020, pp. 1046–1059.
770
+ [19] A. Kunz, K. Miesenberger, L. Zeng, and G. Weber, “Virtual navigation
771
+ environment for blind and low vision people,” in International Con-
772
+ ference on Computers Helping People with Special Needs.
773
+ Springer,
774
+ 2018, pp. 114–122.
775
+ [20] R. Ocampo and M. Tavakoli, “Visual-haptic colocation in robotic
776
+ rehabilitation exercises using a 2d augmented-reality display,” in 2019
777
+ International Symposium on Medical Robotics (ISMR).
778
+ IEEE, 2019,
779
+ pp. 1–7.
780
+ [21] T. C. Peck, H. Fuchs, and M. C. Whitton, “Evaluation of reorientation
781
+ techniques and distractors for walking in large virtual environments,”
782
+ IEEE transactions on visualization and computer graphics, vol. 15,
783
+ no. 3, pp. 383–394, 2009.
784
+ [22] ——, “An evaluation of navigational ability comparing redirected free
785
+ exploration with distractors to walking-in-place and joystick locomotio
786
+ interfaces,” in 2011 IEEE Virtual Reality Conference.
787
+ IEEE, 2011,
788
+ pp. 55–62.
789
+ [23] S. Razzaque, Redirected walking.
790
+ The University of North Carolina
791
+ at Chapel Hill, 2005.
792
+ [24] S. Razzaque, Z. Kohn, and M. C. Whitton, “Redirected walking,” in
793
+ Proceedings of EUROGRAPHICS, vol. 9.
794
+ Citeseer, 2001, pp. 105–
795
+ 106.
796
+ [25] D. E. Rivera, M. Morari, and S. Skogestad, “Internal model control:
797
+ Pid controller design,” Industrial & engineering chemistry process
798
+ design and development, vol. 25, no. 1, pp. 252–265, 1986.
799
+ [26] R. A. Ruddle and S. Lessels, “The benefits of using a walking interface
800
+ to navigate virtual environments,” ACM Transactions on Computer-
801
+ Human Interaction (TOCHI), vol. 16, no. 1, pp. 1–18, 2009.
802
+ [27] M. Sinclair, E. Ofek, M. Gonzalez-Franco, and C. Holz, “Capstan-
803
+ crunch: A haptic vr controller with user-supplied force feedback,” in
804
+ Proceedings of the 32nd annual ACM symposium on user interface
805
+ software and technology, 2019, pp. 815–829.
806
+ [28] A. F. Siu, E. J. Gonzalez, S. Yuan, J. B. Ginsberg, and S. Follmer,
807
+ “Shapeshift: 2d spatial manipulation and self-actuation of tabletop
808
+ shape displays for tangible and haptic interaction,” in Proceedings of
809
+ the 2018 CHI Conference on Human Factors in Computing Systems,
810
+ 2018, pp. 1–13.
811
+ [29] A. F. Siu, M. Sinclair, R. Kovacs, E. Ofek, C. Holz, and E. Cutrell,
812
+ “Virtual reality without vision: A haptic and auditory white cane to
813
+ navigate complex virtual worlds,” in Proceedings of the 2020 CHI
814
+ conference on human factors in computing systems, 2020, pp. 1–13.
815
+ [30] S. Skogestad, “Simple analytic rules for model reduction and pid
816
+ controller tuning,” Journal of process control, vol. 13, no. 4, pp. 291–
817
+ 309, 2003.
818
+ [31] M. Slater and S. Wilbur, “A framework for immersive virtual envi-
819
+ ronments (five): Speculations on the role of presence in virtual en-
820
+ vironments,” Presence: Teleoperators & Virtual Environments, vol. 6,
821
+ no. 6, pp. 603–616, 1997.
822
+ [32] R. Suzuki, H. Hedayati, C. Zheng, J. L. Bohn, D. Szafir, E. Y.-L. Do,
823
+ M. D. Gross, and D. Leithinger, “Roomshift: Room-scale dynamic
824
+ haptics for vr with furniture-moving swarm robots,” in Proceedings
825
+ of the 2020 CHI conference on human factors in computing systems,
826
+ 2020, pp. 1–11.
827
+ [33] M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater,
828
+ and F. P. Brooks Jr, “Walking > walking-in-place > flying, in virtual
829
+ environments,” in Proceedings of the 26th annual conference on
830
+ Computer graphics and interactive techniques.
831
+ ACM Press/Addison-
832
+ Wesley Publishing Co., 1999, pp. 359–364.
833
+ [34] R. B. Welch, T. T. Blackmon, A. Liu, B. A. Mellers, and L. W.
834
+ Stark, “The effects of pictorial realism, delay of visual feedback, and
835
+ observer interactivity on the subjective sense of presence,” Presence:
836
+ Teleoperators & Virtual Environments, vol. 5, no. 3, pp. 263–273,
837
+ 1996.
838
+ [35] N. L. Williams and T. C. Peck, “Estimation of Rotation Gain Thresh-
839
+ olds Considering FOV, Gender, and Distractors,” IEEE Transactions
840
+ on Visualization and Computer Graphics, vol. 25, no. 11, pp. 3158–
841
+ 3168, 2019.
842
+ [36] L. Zhang, Y. Liu, H. Bai, Q. Zou, Z. Chang, W. He, S. Wang, and
843
+ M. Billinghurst, “Robot-enabled tangible virtual assembly with coor-
844
+ dinated midair object placement,” Robotics and Computer-Integrated
845
+ Manufacturing, vol. 79, p. 102434, 2023.
846
+ [37] Y. Zhao, L. H. Kim, Y. Wang, M. Le Goc, and S. Follmer, “Robotic
847
+ assembly of haptic proxy objects for tangible interaction and virtual
848
+ reality,” in Proceedings of the 2017 ACM International Conference on
849
+ Interactive Surfaces and Spaces, 2017, pp. 82–91.
850
+ [38] Y. Zhao, C. L. Bennett, H. Benko, E. Cutrell, C. Holz, M. R.
851
+ Morris, and M. Sinclair, “Enabling people with visual impairments
852
+ to navigate virtual reality with a haptic and auditory cane simulation,”
853
+ in Proceedings of the 2018 CHI conference on human factors in
854
+ computing systems, 2018, pp. 1–14.
855
+
856
+ APPENDIX
857
+ Additional Applications of Active Haptic Guidance: Here
858
+ we discuss other potential applications of active haptic guid-
859
+ ance for immersive applications:
860
+ • Wood Carving Application: In wood carving, the grain
861
+ of the wood will impact the direction in which the artist
862
+ carves the wood. That is, sometimes the artist will carve
863
+ “with the grain” and sometimes will carve “against the
864
+ grain.” Using active haptics, one could accurately render
865
+ the different resistance forces that arise from carving
866
+ with or against the grain of a virtual wooden block,
867
+ which will in turn influence the way in which the user
868
+ carves their virtual wooden sculpture. In addition to
869
+ providing a more realistic experience, this could be
870
+ used to guide the user to create a more appealing final
871
+ sculpture (e.g. by altering the direction of the grain to
872
+ subtly change their hand movements, which will change
873
+ the shape of the final carved surface).
874
+ • Immersive Cooperative Application: A major appeals
875
+ of mixed reality experiences is the ability to connect
876
+ with other users in shared virtual experiences. Important
877
+ to these shared experiences is the ability to touch the
878
+ other person, which can provide a greater sense of
879
+ companionship and connection between users. Haptic
880
+ forces can be used to encourage users to interact with
881
+ or follow other users who are also present in their virtual
882
+ experience, which may improve the users’ sense of
883
+ presence in the experience due to the enhanced realism.
884
+ • Virtual Cooking Training Application: Given a seated
885
+ VR experience where the user is practicing their cook-
886
+ ing skills in a virtual environment, a mobile, tabletop
887
+ robot can provide haptic feedback that represents feed-
888
+ back provided by cooking utensils. For example, when
889
+ spreading brownie batter in a baking pan, the user will
890
+ feel haptic forces when the virtual spreading utensil gets
891
+ too close to the edges of the virtual baking pan. These
892
+ forces could be rendered using a mobile robot with a
893
+ flat surface that serves as a wall that the user’s physical
894
+ hand will bump into.
895
+
-9E4T4oBgHgl3EQf4A3h/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -4793,3 +4793,62 @@ ctE1T4oBgHgl3EQfxgX2/content/2301.03424v1.pdf filter=lfs diff=lfs merge=lfs -tex
4793
  q9E2T4oBgHgl3EQfKwbV/content/2301.03707v1.pdf filter=lfs diff=lfs merge=lfs -text
4794
  k9E0T4oBgHgl3EQf7wIz/content/2301.02779v1.pdf filter=lfs diff=lfs merge=lfs -text
4795
  wNFST4oBgHgl3EQfQzi0/content/2301.13760v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4793
  q9E2T4oBgHgl3EQfKwbV/content/2301.03707v1.pdf filter=lfs diff=lfs merge=lfs -text
4794
  k9E0T4oBgHgl3EQf7wIz/content/2301.02779v1.pdf filter=lfs diff=lfs merge=lfs -text
4795
  wNFST4oBgHgl3EQfQzi0/content/2301.13760v1.pdf filter=lfs diff=lfs merge=lfs -text
4796
+ zNAyT4oBgHgl3EQfbPdo/content/2301.00258v1.pdf filter=lfs diff=lfs merge=lfs -text
4797
+ X9AzT4oBgHgl3EQfmf32/content/2301.01566v1.pdf filter=lfs diff=lfs merge=lfs -text
4798
+ wNFST4oBgHgl3EQfQzi0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4799
+ 49AzT4oBgHgl3EQffvx7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4800
+ BNE3T4oBgHgl3EQfswvl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4801
+ K9AyT4oBgHgl3EQf6foW/content/2301.00821v1.pdf filter=lfs diff=lfs merge=lfs -text
4802
+ ntE2T4oBgHgl3EQfewes/content/2301.03920v1.pdf filter=lfs diff=lfs merge=lfs -text
4803
+ 29E1T4oBgHgl3EQfSAP8/content/2301.03062v1.pdf filter=lfs diff=lfs merge=lfs -text
4804
+ a9E5T4oBgHgl3EQfew9G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4805
+ 9tE1T4oBgHgl3EQfCQLF/content/2301.02863v1.pdf filter=lfs diff=lfs merge=lfs -text
4806
+ ctE1T4oBgHgl3EQfxgX2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4807
+ btFPT4oBgHgl3EQfxDUf/content/2301.13165v1.pdf filter=lfs diff=lfs merge=lfs -text
4808
+ mNE0T4oBgHgl3EQf8ALY/content/2301.02784v1.pdf filter=lfs diff=lfs merge=lfs -text
4809
+ kNE3T4oBgHgl3EQf5gsm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4810
+ G9E2T4oBgHgl3EQf-wmW/content/2301.04242v1.pdf filter=lfs diff=lfs merge=lfs -text
4811
+ K9AzT4oBgHgl3EQfVvwt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4812
+ DtFJT4oBgHgl3EQfBiw4/content/2301.11425v1.pdf filter=lfs diff=lfs merge=lfs -text
4813
+ _NE3T4oBgHgl3EQfTAkN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4814
+ n9AyT4oBgHgl3EQfy_mq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4815
+ adE4T4oBgHgl3EQfOwzB/content/2301.04968v1.pdf filter=lfs diff=lfs merge=lfs -text
4816
+ 9tE4T4oBgHgl3EQfdwyk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4817
+ X9AzT4oBgHgl3EQfmf32/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4818
+ _NE3T4oBgHgl3EQfTAkN/content/2301.04437v1.pdf filter=lfs diff=lfs merge=lfs -text
4819
+ OtE4T4oBgHgl3EQf9w7z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4820
+ zNAyT4oBgHgl3EQfbPdo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4821
+ DtFJT4oBgHgl3EQfBiw4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4822
+ LNE1T4oBgHgl3EQfYwTJ/content/2301.03143v1.pdf filter=lfs diff=lfs merge=lfs -text
4823
+ fdAzT4oBgHgl3EQfof0X/content/2301.01596v1.pdf filter=lfs diff=lfs merge=lfs -text
4824
+ 09FRT4oBgHgl3EQflTce/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4825
+ YdFQT4oBgHgl3EQfeDYW/content/2301.13333v1.pdf filter=lfs diff=lfs merge=lfs -text
4826
+ e9AzT4oBgHgl3EQfafwj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4827
+ LNE1T4oBgHgl3EQfYwTJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4828
+ H9FIT4oBgHgl3EQfYCsV/content/2301.11246v1.pdf filter=lfs diff=lfs merge=lfs -text
4829
+ G9E0T4oBgHgl3EQfRQDg/content/2301.02206v1.pdf filter=lfs diff=lfs merge=lfs -text
4830
+ jNFKT4oBgHgl3EQfwS40/content/2301.11898v1.pdf filter=lfs diff=lfs merge=lfs -text
4831
+ 09FRT4oBgHgl3EQflTce/content/2301.13598v1.pdf filter=lfs diff=lfs merge=lfs -text
4832
+ LNAzT4oBgHgl3EQfkP3w/content/2301.01530v1.pdf filter=lfs diff=lfs merge=lfs -text
4833
+ 5tFKT4oBgHgl3EQfSy3E/content/2301.11777v1.pdf filter=lfs diff=lfs merge=lfs -text
4834
+ tdAzT4oBgHgl3EQfc_wl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4835
+ stAzT4oBgHgl3EQfcvyC/content/2301.01408v1.pdf filter=lfs diff=lfs merge=lfs -text
4836
+ 2tFRT4oBgHgl3EQfnjcF/content/2301.13605v1.pdf filter=lfs diff=lfs merge=lfs -text
4837
+ y9E2T4oBgHgl3EQfhgf_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4838
+ 29E1T4oBgHgl3EQfSAP8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4839
+ idAzT4oBgHgl3EQf4v6P/content/2301.01849v1.pdf filter=lfs diff=lfs merge=lfs -text
4840
+ 49E2T4oBgHgl3EQfOgYr/content/2301.03748v1.pdf filter=lfs diff=lfs merge=lfs -text
4841
+ 5tFKT4oBgHgl3EQfSy3E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4842
+ O9E4T4oBgHgl3EQfkA3U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4843
+ 9tE4T4oBgHgl3EQfdwyk/content/2301.05094v1.pdf filter=lfs diff=lfs merge=lfs -text
4844
+ G9E0T4oBgHgl3EQfRQDg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4845
+ q9E2T4oBgHgl3EQfKwbV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4846
+ H9FLT4oBgHgl3EQfIi9F/content/2301.12000v1.pdf filter=lfs diff=lfs merge=lfs -text
4847
+ H9FIT4oBgHgl3EQfYCsV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4848
+ O9E4T4oBgHgl3EQfkA3U/content/2301.05148v1.pdf filter=lfs diff=lfs merge=lfs -text
4849
+ K9AyT4oBgHgl3EQf6foW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4850
+ ntE2T4oBgHgl3EQfewes/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4851
+ r9E1T4oBgHgl3EQf3AWg/content/2301.03485v1.pdf filter=lfs diff=lfs merge=lfs -text
4852
+ 5dE2T4oBgHgl3EQf6wiO/content/2301.04203v1.pdf filter=lfs diff=lfs merge=lfs -text
4853
+ 9tE1T4oBgHgl3EQfCQLF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4854
+ H9FLT4oBgHgl3EQfIi9F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09E5T4oBgHgl3EQfOw41/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7061b562fdb9b584797639cadeaf1ee14d588f4cefa752fa534dcab84bb84bd8
3
+ size 112899
09FRT4oBgHgl3EQflTce/content/2301.13598v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e2fcbba459e886c663fae346b276735457021bc64327d0e64d224ebbe8eee17
3
+ size 722207
09FRT4oBgHgl3EQflTce/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cf76bc73c6606690a351958f6600dbfaf524bbadd7bccf692fa4670d0ffcebb
3
+ size 1703981
09FRT4oBgHgl3EQflTce/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01ce41c80cce9991905843f4874760d86371bebd905fd7be2a0abcb91805f8e2
3
+ size 69396
19AzT4oBgHgl3EQfuP0B/content/tmp_files/2301.01686v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
19AzT4oBgHgl3EQfuP0B/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dFIT4oBgHgl3EQf3yva/content/tmp_files/2301.11383v1.pdf.txt ADDED
@@ -0,0 +1,2536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11383v1 [math.RT] 26 Jan 2023
2
+ TENSOR PRODUCTS AND INTERTWINING OPERATORS
3
+ BETWEEN TWO UNISERIAL REPRESENTATIONS OF
4
+ THE GALILEAN LIE ALGEBRA sl(2) ⋉ hn
5
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
6
+ Abstract. Let sl(2) ⋉ hn, n ≥ 1, be the Galilean Lie algebra over a
7
+ field of characteristic zero, where hn is the Heisenberg Lie algebra of
8
+ dimension 2n+ 1, and sl(2) acts on hn so that hn ≃ V (2n− 1)⊕ V (0) as
9
+ sl(2)-modules (here V (k) denotes the irreducible sl(2)-module of highest
10
+ weight k). The isomorphism classes of uniserial
11
+
12
+ sl(2)⋉hn
13
+
14
+ -modules are
15
+ known.
16
+ In this paper we study the tensor product of two uniserial represen-
17
+ tations of sl(2) ⋉ hn. Among other things, we obtain the sl(2)-module
18
+ structure of the socle of V ⊗W and we describe the space of intertwining
19
+ operators Homsl(2)⋉hn(V, W ), where V and W are uniserial representa-
20
+ tions of sl(2) ⋉ hn. This article extends a previous work in which we
21
+ obtained analogous results for the Lie algebra sl(2) ⋉ am where am is
22
+ the abelian Lie algebra and sl(2) acts so that am ≃ V (m − 1) as sl(2)-
23
+ modules.
24
+ 1. Introduction
25
+ This article is part of a project whose general goal is to understand to
26
+ what extent there is a class of finite-dimensional representations of (non-
27
+ semisimple) Lie algebras that is small enough, so that it members can be
28
+ described in a reasonably efficient way in terms of uniserial representations,
29
+ and large enough to include many representations that appear in problems
30
+ of interest. This naturally leads to consider the tensor products of unise-
31
+ rial representations. A typical example of a representation we would like
32
+ to describe thoroughly is a cohomology space associated to an algebra (as-
33
+ sociative algebra or non-semisimple Lie algebra), viewed as a module over
34
+ its whole Lie algebra of derivations (which is, in general, non-semisimple).
35
+ Understanding this action becomes specially important if the cohomology
36
+ space has a Gerstenhaber or a Poisson structure.
37
+ Why uniserial representations as building blocks?
38
+ We recall that, for
39
+ associative algebras, the class of uniserial modules is very relevant, a foun-
40
+ dational result here is due to T. Nakayama [24] (see also [1] or[2]) and it
41
+ states that every finitely generated module over a serial ring is a direct sum
42
+ of uniserial modules. For more information in the associative case we refer
43
+ the reader mainly to [1, 2, 27], and also [3, 21, 25]. In Lie algebra case, even
44
+ 2010 Mathematics Subject Classification. 17B10, 18M20, 22E27.
45
+ Key words and phrases. non-semisimple Lie algebras, uniserial representations, socle,
46
+ tensor product, intertwining operators.
47
+ This research was partially supported by an NSERC grant, CONICET PIP 112-2013-
48
+ 01-00511, PIP 112-2012-01-00501, MinCyT C´ordoba, FONCYT Pict2013 1391, SeCyT-
49
+ UNC 33620180100983CB.
50
+ 1
51
+
52
+ 2
53
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
54
+ though very little is known about uniserial representations, in the articles
55
+ [8, 9, 10, 11, 5, 4, 6, 15] we and other authors have classified all finite dimen-
56
+ sional uniserial representations for some different families of Lie algebras g.
57
+ These classifications show that the class of uniserial representations of g is
58
+ rather small and treatable in the universe of all the indecomposable modules.
59
+ Also, in [20], it is shown how the infinite dimensional uniserial representa-
60
+ tions of certain special linear groups obtained in [28] appear naturally in
61
+ cohomology spaces.
62
+ We point out that many other authors work on the idea of describing
63
+ or classifying a special class of indecomposable representations of (non-
64
+ semisimple) Lie algebras whose members might be used as building blocks
65
+ for describing more general representations. For instance, A. Piard [26] ana-
66
+ lyzed thoroughly the indecomposable modules U, of the complex Lie algebra
67
+ sl(2)⋉C2, such that U/rad(U) is irreducible. More recently, various families
68
+ of indecomposable modules over various types of non-semisimple Lie alge-
69
+ bras have been constructed and/or classified, see for instance [12, 13, 14, 16,
70
+ 19, 17, 18, 22].
71
+ This article and [7] are motivated by the challenge of describing, in a
72
+ standard way, the tensor product of two uniserial g-modules in terms of
73
+ uniserial g-modules. In contrast to the Nakayama case, these tensor products
74
+ are not at all a direct sum of uniserials, there are many cases where the tensor
75
+ product of two uniserial g-modules is an indecomposable g-module but not
76
+ uniserial.
77
+ 1.1. Main results. In this paper, all Lie algebras and representations con-
78
+ sidered are assumed to be finite dimensional over a field F of characteristic
79
+ zero.
80
+ For n ≥ 0, we denote by an the abelian Lie algebra of dimension
81
+ n, by hn the Heisenberg Lie algebra of dimension 2n + 1, and by V (n)
82
+ the irreducible sl(2)-module with highest weight n (dim V (n) = n + 1).
83
+ In addition, for n ≥ 1, sl(2) ⋉ an denotes the Lie algebra obtained by
84
+ letting sl(2) act so that an ≃ V (n − 1), and sl(2) ⋉ hn denotes the Lie
85
+ algebra where hn ≃ V (2n − 1) ⊕ V (0) as sl(2)-modules. We notice that
86
+ sl(2) ⋉ a2n−1 is isomorphic to the quotient sl(2) ⋉ hn mod its 1-dimensional
87
+ center z
88
+
89
+ sl(2) ⋉ hn
90
+
91
+ ≃ V (0).
92
+ In this work we study the structure of the tensor product of two uniserial
93
+ representations of sl(2)⋉hn. The classification of all the isomorphism classes
94
+ of uniserial
95
+
96
+ sl(2) ⋉ hn
97
+
98
+ -modules was obtained in [4]. This classification is
99
+ reviewed with details in §3 and a rough description of it is the following:
100
+ • Non-faithful
101
+
102
+ sl(2) ⋉ hn
103
+
104
+ -modules. Since z
105
+
106
+ sl(2) ⋉ hn
107
+
108
+ acts trivially on
109
+ them, they are in correspondence with the uniserial
110
+
111
+ sl(2)⋉a2n−1
112
+
113
+ -modules
114
+ In turn, these where classified in [8]:
115
+ – A general family E(a, b), where a, b are non-negative integers with cer-
116
+ tain restrictions (depending on n). The composition length of E(a, b)
117
+ is 2.
118
+ – A general family Z(a, ℓ) and its duals. Here a and ℓ are a non-negative
119
+ integers. The composition length of Z(a, ℓ) is ℓ + 1.
120
+ – Some exceptional modules with composition lengths 3 and 4.
121
+ The modules Z(a, ℓ) and their duals are referred to as modules of type Z.
122
+
123
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
124
+ 3
125
+ • Faithful
126
+
127
+ sl(2) ⋉ hn
128
+
129
+ -modules. All of them have composition length 3.
130
+ – For n = 1: Two families denoted by FU +
131
+ a and FU −
132
+ a , with a an integer
133
+ that satisfies a ≥ 0 and a ≥ 1, respectively.
134
+ – For n = 2: Only four equivalence classes, they are denoted by FU(0,3,0),
135
+ FU(1,4,1), FU(1,2,1) and FU(4,3,4).
136
+ – For any n ≥ 3: Only three equivalence classes, they are denoted by
137
+ FU(0,m,0), FU(1,m+1,1) and FU(1,m−1,1), here m = 2n − 1.
138
+ All faithful uniserial modules (except FU(4,3,4), n = 2) are, in some sense,
139
+ of a similar type and are referred to as standard faithful modules. The
140
+
141
+ sl(2) ⋉ h2
142
+
143
+ -module FU(4,3,4) is quite exceptional.
144
+ The modules E(a, b) constitute the building blocks of all the other unise-
145
+ rial modules: all uniserials can be obtained by combining the modules E(a, b)
146
+ in a subtle way governed by the zeros of the 6j-symbols (see [5, 8]). As a
147
+ consequence, the
148
+
149
+ sl(2) ⋉ hn
150
+
151
+ -module structure of the tensor product of two
152
+ uniserial representations of sl(2) ⋉ hn depends strongly on the
153
+
154
+ sl(2) ⋉ hn
155
+
156
+ -
157
+ module structure of E(a, b) ⊗ E(c, d) which is already quite involved.
158
+ In [7] we stated a conjecture that provides the description of the socle of
159
+ E(a, b)⊗E(c, d) for any a, b, c, d (see Conjecture 4.2 below) and we proved the
160
+ part of it that was necessary to obtain the socle of V ⊗W and the intertwining
161
+ operators Homsl(2)⋉hn(V, W) where V and W are uniserial representations
162
+ of sl(2) ⋉ hn of type Z (in fact, we dealt in [7] with uniserial representations
163
+ of sl(2) ⋉ am, instead of sl(2) ⋉ hn, recall that, for modules of type Z, the
164
+ action of z
165
+
166
+ sl(2) ⋉ hn
167
+
168
+ is trivial). In particular we proved that the socle
169
+ of V ⊗ W is multiplicity free as sl(2)-modules. As an application of these
170
+ results, we proved in [7] that if V and W are
171
+
172
+ sl(2) ⋉ hn
173
+
174
+ -modules of type
175
+ Z, then V and W are determined from V ⊗ W. Moreover, we provided a
176
+ procedure to identify the corresponding parameters a and ℓ of V and W
177
+ from V ⊗ W. This is a rare property, even if the factors are irreducible, it
178
+ is not frequent that the factors V and W are determined from V ⊗ W (see
179
+ [23] and references within).
180
+ In this paper we extend the results of [7] obtaining the socle of V ⊗ W
181
+ and the intertwining operators Homsl(2)⋉hn(V, W) when both V and W are
182
+ standard faithful uniserial
183
+
184
+ sl(2) ⋉ hn
185
+
186
+ -modules, or when one of them is
187
+ standard faithful and the other one is uniserial of type Z. In contrast to the
188
+ non-faithful case, in the standard faithful case it may happen that the socle
189
+ of V ⊗W is not multiplicity free as sl(2)-modules (this occurs when V = W).
190
+ As a consequence, if V and W are isomorphic standard faithful uniserials,
191
+ then the space of intertwining operators Homsl(2)⋉hn(V, W) is 2-dimensional.
192
+ The main step toward these results requires to make a considerable advance
193
+ in the proof of Conjecture 4.2. See the comments after it to know what is
194
+ still open about this conjecture.
195
+ The paper is organized as follows.
196
+ In §2 we review some basic facts
197
+ about uniserial representations of Lie algebras and recall all the necessary
198
+ definitions and formulas involving the Clebsch-Gordan coefficients. In §3 we
199
+ review the classification of all uniserial representations of the Lie algebras
200
+ sl(2)⋉an (obtained in [8]) and sl(2)⋉hn (obtained in [4]). The main section
201
+
202
+ 4
203
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
204
+ of the paper is §4, and we obtain in it the sl(2)-module structure of the
205
+ socle of the tensor product of two (non-exceptional) uniserial
206
+
207
+ sl(2) ⋉ hn
208
+
209
+ -
210
+ modules V and W: Theorem 4.1 recalls the case when V and W are of
211
+ type Z (obtained in [7]), Conjecture 4.2 deals with all the possible cases of
212
+ composition length 2, Theorem 4.3 confirms part of Conjecture 4.2 needed to
213
+ prove Theorems 4.6 and 4.7, Theorem 4.6 gives the socle when V is of type
214
+ Z and W is standard faithful, and Theorem 4.7 describes the socle when
215
+ both V and W are standard faithful. Finally, in §5 we obtain the space of
216
+ intertwining operators from the results in §4. Our proof of Theorem 4.3 is
217
+ technical and long, it requires to consider some linear systems with entries
218
+ given by the Clebsch-Gordan coefficients, and thus we decided to devote §6
219
+ to it.
220
+ 2. Preliminaries
221
+ 2.1. The Clebsch-Gordan coefficients. Recall that F is a field of char-
222
+ acteristic zero and that all Lie algebras and representations are assumed to
223
+ be finite dimensional over F. Let
224
+ (2.1)
225
+ e =
226
+
227
+ 0
228
+ 1
229
+ 0
230
+ 0
231
+
232
+ ,
233
+ h =
234
+
235
+ 1
236
+ 0
237
+ 0
238
+ −1
239
+
240
+ ,
241
+ f =
242
+
243
+ 0
244
+ 0
245
+ 1
246
+ 0
247
+
248
+ be the standard basis of sl(2). Let V (a) be the irreducible sl(2)-module with
249
+ highest weight a ≥ 0. We fix a basis {va
250
+ 0, . . . , va
251
+ a} of V (a) relative to which
252
+ the basis {e, h, f} acts as follows:
253
+ e va
254
+ k =
255
+
256
+ a
257
+ 2
258
+ �a
259
+ 2 + 1
260
+
261
+
262
+ �a
263
+ 2 − k + 1
264
+ � �a
265
+ 2 − k
266
+
267
+ va
268
+ k−1,
269
+ h va
270
+ k =(a − 2k)va
271
+ k,
272
+ f va
273
+ k =
274
+
275
+ a
276
+ 2
277
+ �a
278
+ 2 + 1
279
+
280
+
281
+ �a
282
+ 2 − k − 1
283
+ � �a
284
+ 2 − k
285
+
286
+ va
287
+ k+1,
288
+ where 0 ≤ k ≤ a and va
289
+ −1 = va
290
+ a+1 = 0. The basis {va
291
+ 0, . . . , va
292
+ a} has been chosen
293
+ in a convenient way to introduce below the Clebsch-Gordan coefficients.
294
+ Note that if we denote by (x)a the matrix of x ∈ sl(2) relative to the basis
295
+ {va
296
+ 0, . . . , va
297
+ a}, then {(e)1, (h)1, (f)1} are as in (2.1), and
298
+ (e)2 =
299
+
300
+
301
+ 0
302
+
303
+ 2
304
+ 0
305
+ 0
306
+ 0
307
+
308
+ 2
309
+ 0
310
+ 0
311
+ 0
312
+
313
+  ,
314
+ (h)2 =
315
+
316
+
317
+ 2
318
+ 0
319
+ 0
320
+ 0
321
+ 0
322
+ 0
323
+ 0
324
+ 0
325
+ −2
326
+
327
+  ,
328
+ (f)2 =
329
+
330
+
331
+ 0
332
+ 0
333
+ 0
334
+
335
+ 2
336
+ 0
337
+ 0
338
+ 0
339
+
340
+ 2
341
+ 0
342
+
343
+  .
344
+ This means that we may assume that {v2
345
+ 0, v2
346
+ 1, v2
347
+ 2} = {−e,
348
+
349
+ 2
350
+ 2 h, f}.
351
+ We know that V (a) ≃ V (a)∗ as sl(2)-modules. More precisely, if {(va
352
+ 0)∗, . . . , (va
353
+ a)∗}
354
+ is the dual basis of {va
355
+ 0, . . . , va
356
+ a} then the map
357
+ V (a) → V (a)∗
358
+ va
359
+ k �→ (−1)a−k(va
360
+ a−k)∗
361
+ (2.2)
362
+ gives an explicit sl(2)-isomorphism.
363
+ It is well known that the decomposition of the tensor product of two
364
+ irreducible sl(2)-modules V (a) and V (b) is
365
+ (2.3)
366
+ V (a) ⊗ V (b) ≃ V (a + b) ⊕ V (a + b − 2) ⊕ · · · ⊕ V (|a − b|).
367
+
368
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
369
+ 5
370
+ This is the well known Clebsch-Gordan formula.
371
+ The Clebsch-Gordan coefficients
372
+ CG(j1, m1; j2, m2 | j3, m3)
373
+ are defined below and they provide an explicit sl(2)-embedding V (c) →
374
+ V (a) ⊗ V (b) which is the following
375
+ V (c) → V (a) ⊗ V (b)
376
+ vc
377
+ k �→ va,b,c
378
+ k
379
+ where, by definition,
380
+ (2.4)
381
+ va,b,c
382
+ k
383
+ =
384
+
385
+ i,j
386
+ CG(a
387
+ 2, a
388
+ 2 − i; b
389
+ 2, b
390
+ 2 − j | c
391
+ 2, c
392
+ 2 − k) va
393
+ i ⊗ vb
394
+ j,
395
+ where the sum runs over all i, j such that a
396
+ 2 − i + b
397
+ 2 − j = c
398
+ 2 − k (in fact, we
399
+ could let i, j run freely since the Clebsch-Gordan coefficient involved is zero
400
+ if a
401
+ 2 − i + b
402
+ 2 − j ̸= c
403
+ 2 − k). Since
404
+ (2.5)
405
+ Hom(V (b), V (a)) ≃ V (b)∗ ⊗ V (a) ≃ V (a) ⊗ V (b)
406
+ it follows from (2.2) and (2.4) that the map V (c) → Hom(V (b), V (a)) given
407
+ by
408
+ vc
409
+ k �→
410
+
411
+ i,j
412
+ CG(a
413
+ 2, a
414
+ 2 − i; b
415
+ 2, b
416
+ 2 − j | c
417
+ 2, c
418
+ 2 − k) va
419
+ i ⊗ vb
420
+ j,
421
+ �→
422
+
423
+ i,j
424
+ (−1)b−jCG(a
425
+ 2, a
426
+ 2 − i; b
427
+ 2, b
428
+ 2 − j | c
429
+ 2, c
430
+ 2 − k) va
431
+ i ⊗ (vb
432
+ b−j)∗,
433
+ �→
434
+
435
+ i,j
436
+ (−1)jCG(a
437
+ 2, a
438
+ 2 − i; b
439
+ 2, − b
440
+ 2 + j | c
441
+ 2, c
442
+ 2 − k) (vb
443
+ j)∗ ⊗ va
444
+ i
445
+ (2.6)
446
+ is an sl(2)-module homomorphism.
447
+ We now recall briefly the basic definitions and facts about the Clebsch-
448
+ Gordan coefficients. We will mainly follow [29].
449
+ Given three non-negative integers or half-integers j1, j2, j3, we say that
450
+ they satisfy the triangle condition if j1 + j2 + j3 is an integer and they can
451
+ be the side lengths of a (possibly degenerate) triangle (that is |j1 − j2| ≤
452
+ j3 ≤ j1 + j2). We now define (see [29, §8.2, eq.(1)])
453
+ ∆(j1, j2, j3) =
454
+
455
+ (j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!
456
+ (j1 + j2 + j3 + 1)!
457
+ if j1, j2, j3 satisfies the triangle condition; otherwise, we set ∆(j1, j2, j3) = 0.
458
+ If in addition m1, m2 and m3 are three integers or half-integers then the
459
+ corresponding Clebsch-Gordan coefficient
460
+ CG(j1, m1; j2, m2|j3, m3)
461
+
462
+ 6
463
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
464
+ is zero unless m1 + m2 = m3 and |mi| ≤ ji for i = 1, 2, 3. In this case, the
465
+ following formula is valid for m3 ≥ 0 and j1 ≥ j2 (see [29, §8.2, eq.(3)])
466
+ CG(j1, m1; j2, m2 | j3, m3) = ∆(j1, j2, j3)
467
+
468
+ (2j3 + 1)
469
+ ×
470
+
471
+ (j1 + m1)!(j1 − m1)!(j2 + m2)!(j2 − m2)!(j3 + m3)!(j3 − m3)!
472
+ ×
473
+
474
+ r
475
+ (−1)r
476
+ r!(j1+j2−j3−r)!(j1−m1−r)!(j2+m2−r)!(j3−j2+m1+r)!(j3−j1−m2+r)!,
477
+ where the sum runs through all integers r for which the argument of every
478
+ factorial is non-negative. If either m3 < 0 or j1 < j2 we have
479
+ CG(j1, m1; j2, m2 | j3, m3) = (−1)j1+j2−j3 CG(j1, −m1; j2, −m2 | j3, −m3)
480
+ = (−1)j1+j2−j3 CG(j2, m2; j1, m1 | j3, m3).
481
+ (2.7)
482
+ In addition, it also holds
483
+ (2.8)
484
+ CG(j1, m1; j2, m2 | j3, m3) = (−1)j1−m1
485
+
486
+ 2j3 + 1
487
+ 2j2 + 1 CG(j1, m1; j3, −m3 | j2, −m2).
488
+ In the following sections, we will need the following particular values of
489
+ the Clebsch-Gordan coefficients. Here, a, b are integers and i = 0, . . . , a,
490
+ j = 0, . . . , b.
491
+ (2.9) CG(a
492
+ 2, a
493
+ 2 −i; b
494
+ 2, b
495
+ 2 −j | a+b
496
+ 2 , a+b
497
+ 2 −i−j) =
498
+
499
+ a!b!(a + b − i − j)!(i + j)!
500
+ i!j!(a + b)!(a − i)!(b − j)! ,
501
+ (2.10)
502
+ CG(a
503
+ 2, a
504
+ 2 − i; b
505
+ 2, j − b
506
+ 2 | a−b
507
+ 2 , a−b
508
+ 2
509
+ − i + j)
510
+ = (−1)j
511
+
512
+ (a − i)! i! b! (a − b + 1)!
513
+ (a + 1)! j! (b − j)! (a − b − i + j)! (i − j)!,
514
+ (2.11)
515
+ CG(a
516
+ 2, i − a
517
+ 2; b
518
+ 2, b
519
+ 2 − j | b−a
520
+ 2 , b−a
521
+ 2
522
+ + i − j)
523
+ = (−1)aCG( b
524
+ 2, b
525
+ 2 − j; a
526
+ 2, i − a
527
+ 2 | b−a
528
+ 2 , b−a
529
+ 2
530
+ + i − j)
531
+ = (−1)j
532
+
533
+ (b − j)! j! a! (b − a + 1)!
534
+ (b + 1)! i! (a − i)! (b − a − j + i)! (j − i)!,
535
+ (2.12)
536
+ CG(a
537
+ 2, a
538
+ 2 − i; b
539
+ 2, b
540
+ 2 − j | a+b
541
+ 2
542
+ − i − j, a+b
543
+ 2
544
+ − i − j)
545
+ = (−1)i
546
+
547
+ (a + b − 2i − 2j + 1)! (i + j)! (a − i)! (b − j)!
548
+ (a + b − i − j + 1)! (a − i − j)! (b − i − j)! i! j!.
549
+ 2.2. Uniserial representations. Given a Lie algebra g, a g-module V is
550
+ uniserial if it admits a unique composition series.
551
+ In other words, V is
552
+ uniserial if the socle series
553
+ 0 = soc0(V ) ⊂ soc1(V ) ⊂ · · · ⊂ socn(V ) = V
554
+
555
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
556
+ 7
557
+ is a composition series of V , that is, the socle factors soci(V )/soci−1(V ) are
558
+ irreducible for all 1 ≤ i ≤ n. Recall that soc1(V ) = soc(V ) is the sum of all
559
+ irreducible g-submodules of V and soci(V )/soci−1(V ) = soc(V/soci−1(V )).
560
+ Note that for uniserial modules, the composition length of V coincides with
561
+ its socle length.
562
+ If the Levi decomposition of g is g = s⋉r, (with r the solvable radical and
563
+ s semisimple) we may choose irreducible s-submodules Vi ⊂ V , 1 ≤ i ≤ n,
564
+ such that
565
+ (2.13)
566
+ V = V1 ⊕ · · · ⊕ Vn
567
+ with Vi ≃ soci(V )/soci−1(V ) as s-modules and
568
+ rVi ⊂ V1 ⊕ · · · ⊕ Vi.
569
+ In fact, if [s, r] = r, then rVi ⊂ V1 ⊕ · · · ⊕ Vi−1, see Lemma 2.2 below.
570
+ Definition 2.1. We say that (2.13) is the socle decomposition of V . We
571
+ point out that, in the socle decomposition of a g-module, the order of the
572
+ summands is relevant.
573
+ The proof of the following lemma can be found in [7, Lemmas 2.1 and
574
+ 2.2].
575
+ Lemma 2.2. Assume that r = [s, r] and let V be a g-module. Then
576
+ (1) soc(V ) = V r.
577
+ (2) If V = V1⊕· · ·⊕Vn is a vector space decomposition such that soc(V ) = V1
578
+ and rVk ⊂ Vk−1 for all k = 2, . . . , n, then sock(V ) = V1 ⊕ · · · ⊕ Vk for
579
+ all k = 1, . . . , n.
580
+ 3. Uniserial representations of sl(2) ⋉ hn
581
+ 3.1. The Lie algebra sl(2) ⋉ hn. Let us fix n ≥ 1. We recall that the
582
+ Heisenberg Lie algebra hn is the (2n + 1)-dimensional vector space with
583
+ basis
584
+ {x1, . . . , xn, x′
585
+ 1, . . . , x′
586
+ n, z}
587
+ with non-zero brackets [xi, x′
588
+ i] = z for all i = 1, . . . , n. It is clear that the
589
+ center of hn is generated by z. We know that sl(2) acts by derivations on
590
+ hn in such a way that
591
+ hn ≃ V (m) ⊕ V (0),
592
+ m = 2n − 1,
593
+ as sl(2)-modules, where V (0) corresponds to the center of hn and we may
594
+ assume that V (m) corresponds to the subspace generated by {xi, x′
595
+ i : i =
596
+ 1, . . . , n}.
597
+ Notation 3.1. From now on, m will always be 2n−1 and thus am = hn/Fz
598
+ as Lie algebras. In addition, we will denote by hn(m) the subspace of hn
599
+ isomorphic to V (m) as sl(2)-modules.
600
+ Hence, as sl(2)-modules, we have
601
+ am ≃ hn(m) ≃ V (m).
602
+ We may assume that z corresponds to the basis element v0
603
+ 0 of V (0). Sim-
604
+ ilarly, let us denote by {e0, . . . , em} the basis of hn(m) corresponding to
605
+ the basis {vm
606
+ 0 , . . . , vm
607
+ m} of V (m). We may assume that z and {e0, . . . , em}
608
+ have been chosen such that the bracket in hn is given by the projection
609
+ V (m) ⊗ V (m) → V (0) (dual to the embedding (2.4)), that is
610
+
611
+ 8
612
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
613
+ [ei, em−i] = CG(m
614
+ 2 , m
615
+ 2 − i; m
616
+ 2 , − m
617
+ 2 + i | 0, 0) z
618
+ = (−1)i �
619
+ 1
620
+ m+1 z.
621
+ (3.1)
622
+ It is clear that Fz is also the center of sl(2) ⋉ hn and
623
+
624
+ sl(2) ⋉ hn
625
+
626
+ /Fz ≃ sl(2) ⋉ am
627
+ as Lie algebras.
628
+ In [4], it is obtained the classification, up to isomorphism, of all uniserial
629
+ representations of the Lie algebra sl(2) ⋉ hn. It is straightforward to see
630
+ that a uniserial representation of sl(2) ⋉ hn is faithful if and only if z acts
631
+ non-trivially. Therefore, the classification is given in two stages: the non-
632
+ faithful and the faithful ones. The non-faithful ones are the same as those
633
+ of the Lie algebra sl(2) ⋉ am ≃ sl(2) ⋉ V (m) which were classified earlier in
634
+ [8, Theorem 10.1].
635
+ We now recall this classification.
636
+ 3.2. The non-faithful
637
+
638
+ sl(2) ⋉ hn
639
+
640
+ -modules E(a, b). If a and b are non-
641
+ negative integers such that m
642
+ 2 , a
643
+ 2, b
644
+ 2 satisfy the triangle condition, it follows
645
+ from (2.3) and (2.5) that, up to scalar, there is a unique sl(2)-module ho-
646
+ momorphism
647
+ r = V (m) → Hom(V (b), V (a)).
648
+ This produces an action of r on V (a)⊕V (b) such that r maps V (a) to 0 and
649
+ V (b) to V (a) as follows
650
+ (3.2)
651
+ es vb
652
+ j =
653
+ a
654
+
655
+ i=0
656
+ (−1)j CG(a
657
+ 2, a
658
+ 2 − i; b
659
+ 2, − b
660
+ 2 + j | m
661
+ 2 , m
662
+ 2 − s) va
663
+ i ,
664
+ s = 0, . . . , m.
665
+ Note that this is, except for a sign, the same as (2.6). Note also that the
666
+ above sum has, in fact, at most one summand, that is
667
+ (3.3)
668
+ es vb
669
+ j =
670
+
671
+
672
+
673
+ 0,
674
+ if i ̸= j + s + a−b−m
675
+ 2
676
+ ;
677
+ (−1)jCG(a
678
+ 2, a
679
+ 2 − i; b
680
+ 2, − b
681
+ 2 + j | m
682
+ 2 , m
683
+ 2 − s) va
684
+ i ,
685
+ if i = j + s + a−b−m
686
+ 2
687
+ .
688
+ This action, combined with the action of sl(2) defines a uniserial
689
+
690
+ sl(2) ⋉
691
+ am
692
+
693
+ -module structure with composition length 2 on
694
+ E(a, b) = V (a) ⊕ V (b).
695
+ It is straightforward to see that E(a, b)∗ ≃ E(b, a). The action given in
696
+ (3.2) is the main building block for all other uniserial
697
+
698
+ sl(2) ⋉ am
699
+
700
+ -modules
701
+ as follows.
702
+ 3.3. Non-faithful
703
+
704
+ sl(2) ⋉ hn
705
+
706
+ -modules of type Z. The above construc-
707
+ tion can be extended to arbitrary composition length
708
+ V (a0) ⊕ V (a1) ⊕ · · · ⊕ V (aℓ)
709
+ only when the sequence {ai} is monotonic (increasing or decreasing) and
710
+ |ai − ai−1| = m, for all i = 1, . . . , ℓ. More precisely, for the “increasing case”
711
+
712
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
713
+ 9
714
+ let α and ℓ be non-negative integers and let Z(α, ℓ) be the
715
+
716
+ sl(2) ⋉ am
717
+
718
+ -
719
+ module defined by
720
+ (3.4)
721
+ Z(α, ℓ) = V (α) ⊕ V (α + m) ⊕ · · · ⊕ V (α + ℓm)
722
+ as sl(2)-module with action of r sending
723
+ 0 ←− V (α) ←− V (α + 2m) ←− · · · ←− V (α + ℓm)
724
+ as indicated in (3.2) (with a = α + (i − 1)m, b = α + im, for i = 1, . . . , ℓ).
725
+ We point out that the above sequence serves as an indication of the action
726
+ of r, there is no chain complex involved.
727
+ We notice that Z(α, 0) = V (α) (r acts trivially) and Z(α, 1) = E(α, α +
728
+ m).
729
+ The “decreasing case” corresponds to the dual modules Z(α, ℓ)∗. The
730
+ modules Z(α, ℓ) and Z(α, ℓ)∗ are called of type Z and they are the unique
731
+ isomorphism classes of uniserial
732
+
733
+ sl(2) ⋉ am
734
+
735
+ -modules of composition length
736
+ ℓ + 1 for ℓ ≥ 4.
737
+ 3.4. Non-faithful
738
+
739
+ sl(2) ⋉ hn
740
+
741
+ -modules of exceptional type (compo-
742
+ sition lengths 2, 3 and 4). The modules E(a, b) with |a − b| ̸= m are not
743
+ of type Z and we consider them of exceptional type (of composition lengths
744
+ 2). For composition lengths 3 and 4 there are very few possible ways to
745
+ “combine” the modules E(a, b) so that we do not fall in type Z.
746
+ For composition length equal to 3, given 0 ≤ c < 2m and c ≡ 2m mod 4,
747
+ let
748
+ E3(c) = V (0) ⊕ V (m) ⊕ V (c)
749
+ as sl(2)-modules with action of r sending
750
+ 0
751
+ V (0)
752
+ V (m)
753
+ V (c)
754
+ with the maps V (c) → V (m) and V (m) → V (0) given by (3.2).
755
+ For composition length equal to 4, if m ≡ 0 mod 4, there is a family of
756
+
757
+ sl(2)⋉am
758
+
759
+ -modules, parameterized by a non-zero scalar t ∈ F, with a fixed
760
+ socle decomposition. This is defined by
761
+ E4(t) = V (0) ⊕ V (m) ⊕ V (m) ⊕ V (0)
762
+ as sl(2)-modules with action of r, sending each irreducible component as
763
+ shown by the arrows
764
+ 0
765
+ V (0)
766
+ V (m)
767
+ V (m)
768
+ V (0)
769
+ where the horizontal arrows are given by (3.2) and the bent arrow is t times
770
+ (3.2).
771
+ 3.5. Classification of all non-faithful
772
+
773
+ sl(2)⋉hn
774
+
775
+ -modules. As we said
776
+ at the beginning of the section, a uniserial representation of sl(2) ⋉ hn is
777
+ faithful if and only if z acts non-trivially. Thus, the non-faithful uniserial
778
+
779
+ sl(2) ⋉ hn
780
+
781
+ -modules are in correspondence, via the projection sl(2) ⋉ hn →
782
+ sl(2) ⋉ am, with the uniserial representations of sl(2) ⋉ am.
783
+ These were
784
+ classified in [8, Theorem 10.1], we summarize that result in the following
785
+ theorem.
786
+
787
+ 10
788
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
789
+ Theorem 3.2. The following list describes all the isomorphism classes of
790
+ non-faithful uniserial representations of sl(2) ⋉ hn.
791
+ Length 1.
792
+ Z(a, 0) = V (a), a ≥ 0 (here r acts trivially).
793
+ Length 2.
794
+ E(a, b), with a + b ≡ m mod 2 and 0 ≤ |a − b| ≤ m ≤ a + b.
795
+ Length 3.
796
+ Z(a, 2), Z(a, 2)∗, a ≥ 0; and
797
+ E3(c) with c ≡ 2m mod 4 and 0 ≤ c < 2m.
798
+ Length 4.
799
+ Z(a, 3), Z(a, 3)∗, a ≥ 0; and
800
+ E4(t), with t ∈ F (this exists only if m ≡ 0 mod 4).
801
+ Length ℓ ≥ 5.
802
+ Z(a, ℓ − 1), Z(a, ℓ − 1)∗, a ≥ 0.
803
+ 3.6. Faithful
804
+
805
+ sl(2) ⋉ hn
806
+
807
+ -modules. The faithful uniserial
808
+
809
+ sl(2) ⋉ hn
810
+
811
+ -
812
+ modules were classified, up to isomorphism, in [4, Theorems 3.5 and 5.2].
813
+ It turns out that there are no faithful uniserial
814
+
815
+ sl(2) ⋉ hn
816
+
817
+ -modules of
818
+ composition length different from 3. Moreover, if
819
+ V = V (a0) ⊕ V (a1) ⊕ V (a2)
820
+ is socle decomposition (see Definition 2.1) of a faithful uniserial
821
+
822
+ sl(2)⋉hn
823
+
824
+ -
825
+ module, then a0 = a2 and an explicit representative of each class can be
826
+ obtained by conveniently combining the modules E(a, b) for some specific
827
+ values of a and b as we explain below.
828
+ Let us start with the sl(2)-module V = V (a0) ⊕ V (a1) ⊕ V (a2) with
829
+ a2 = a0 such that m
830
+ 2 , a0
831
+ 2 , a1
832
+ 2 satisfy the triangle condition. We now indicate
833
+ how to obtain an action of hn = hn(m) ⊕ Fz on V so that V becomes a
834
+ faithful uniserial
835
+
836
+ sl(2) ⋉ hn
837
+
838
+ -module. Although we know that a2 = a0 we
839
+ keep the notation a2 because we need to indicate that V (a0) is the socle of
840
+ V and V (a2) corresponds to the third socle factor of V .
841
+ First, let hn(m) act on V as follows
842
+ 0 ←− V (a0) ←− V (a1) ←− V (a2)
843
+ where the actions V (a1) → V (a0) and V (a2) → V (a1) are given by (3.2)
844
+ (with a = a0, b = a1 and a = a1, b = a2 respectively). This action of hn(m)
845
+ on V can be extended to hn only in the following cases. In all of them,
846
+ a0 = a2 and z acts as an sl(2)-isomorphism V (a2) → V (a0).
847
+ (i) For n = 1 (that is m = 1), (a0, a1, a2) must be
848
+ (a0, a0 + 1, a0),
849
+ a0 ≥ 0;
850
+ (a0, a0 − 1, a0),
851
+ a0 ≥ 1.
852
+ Let us call, respectively, FU +
853
+ a0 and FU −
854
+ a0 the first and second
855
+
856
+ sl(2)⋉
857
+ hn
858
+
859
+ -modules above.
860
+ (ii) For n = 2 (that is m = 3), (a0, a1, a2) must be
861
+ (0, 3, 0), (1, 4, 1), (1, 2, 1), (4, 3, 4).
862
+ We call these modules FU(0,3,0), FU(1,4,1), FU(1,2,1) and FU(4,3,4)
863
+ respectively.
864
+
865
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
866
+ 11
867
+ (iii) If n ≥ 3 (that is m ≥ 5), (a0, a1, a2) must be
868
+ (0, m, 0), (1, m + 1, 1), (1, m − 1, 1).
869
+ We call these modules FU(0,m,0), FU(1,m+1,1) and FU(1,m−1,1) re-
870
+ spectively.
871
+ In these modules, the action of the center Fz is given by
872
+ z va2
873
+ j
874
+ =
875
+
876
+
877
+
878
+
879
+
880
+
881
+
882
+
883
+
884
+
885
+
886
+
887
+
888
+
889
+
890
+
891
+
892
+
893
+
894
+
895
+
896
+
897
+
898
+
899
+
900
+
901
+
902
+
903
+
904
+
905
+
906
+ −2√m + 1
907
+ a + 1
908
+ va0
909
+ j ,
910
+ if V =
911
+
912
+
913
+
914
+
915
+
916
+ FU +
917
+ a and m = 1,
918
+ FU(0,3,0), FU(1,4,1) and m = 3,
919
+ FU(0,m,0), FU(1,m+1,1) and m ≥ 5.
920
+ 2√m + 1
921
+ a + 1
922
+ va0
923
+ j ,
924
+ if V =
925
+
926
+
927
+
928
+
929
+
930
+ FU −
931
+ a and m = 1,
932
+ FU(1,2,1) and m = 3,
933
+ FU(1,m−1,1) and m ≥ 5.
934
+ −4
935
+ 5va0
936
+ j ,
937
+ if V = FU(4,3,4) and m = 3.
938
+ (3.5)
939
+ The next theorem summarizes this information and was proved in [4].
940
+ Theorem 3.3. The following list describes all the isomorphism classes of
941
+ faithful uniserial representations of sl(2) ⋉ hn.
942
+ (i) For n = 1: FU +
943
+ a , a ≥ 0, and FU −
944
+ a , a ≥ 1.
945
+ (ii) For n = 2: FU(0,3,0), FU(1,4,1), FU(1,2,1) and FU(4,3,4).
946
+ (iii) For n ≥ 3: FU(0,m,0), FU(1,m+1,1) and FU(1,m−1,1) (m = 2n − 1).
947
+ Each of these modules is isomorphic to its own dual.
948
+ We close this section pointing out that all the faithful uniserial
949
+
950
+ sl(2)⋉hn
951
+
952
+ -
953
+ modules, except FU(4,3,4), belong, in some sense, to the same kind of modules
954
+ (we will say something more about this after Conjecture 4.2). Therefore, we
955
+ introduce the following definition.
956
+ Definition 3.4. All faithful uniserial
957
+
958
+ sl(2) ⋉ hn
959
+
960
+ -modules that are not
961
+ isomorphic to FU(4,3,4) will be referred to as standard faithful uniserials.
962
+ 4. The tensor product of two uniserial
963
+
964
+ sl(2) ⋉ hn
965
+
966
+ -modules
967
+ In [7, Theorem 3.5] we obtained the sl(2)-module structure of the socle
968
+ of the tensor product of two uniserial
969
+
970
+ sl(2) ⋉ a(m)
971
+
972
+ -modules of type Z.
973
+ Therefore (see §3), we already know the sl(2)-module structure of the socle
974
+ of the tensor product V1 ⊗ V2 of two uniserial
975
+
976
+ sl(2) ⋉ hn
977
+
978
+ -modules in the
979
+ cases where V1 and V2 are non-faithful of type Z. We summarize this in
980
+ Theorem 4.1 below.
981
+ In this section we obtain the sl(2)-module structure of the socle of the
982
+ tensor product V1 ⊗ V2 when both V1 and V2 are standard faithful uniserial
983
+ modules, or when one of them is standard faithful and the other one is
984
+ uniserial of type Z. From this, we derive a complete description of the space
985
+ of intertwining operators Homsl(2)⋉hn(V1, V2) in all these cases.
986
+
987
+ 12
988
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
989
+ 4.1. The non-faithful case and the crucial conjecture. Let us recall
990
+ some of the results obtained in [7], mainly Conjecture 3.4 and Theorem 3.5
991
+ that describes the sl(2)-module structure of the socle of the tensor product
992
+ of two uniserial
993
+
994
+ sl(2) ⋉ a
995
+
996
+ -modules of type Z.
997
+ If U is a
998
+
999
+ sl(2)⋉hn
1000
+
1001
+ -module, since hn = [sl(2), hn], it follows from Lemma
1002
+ 2.2 that
1003
+ (4.1)
1004
+ soc(U) = U hn.
1005
+ Therefore, if V = V (a0) ⊕ . . . ⊕ V (aℓ) and W = V (b0) ⊕ . . . ⊕ V (bℓ′) are the
1006
+ socle decomposition of two
1007
+
1008
+ sl(2) ⋉ hn
1009
+
1010
+ -modules, then
1011
+ soc(V ⊗ W) =
1012
+ ℓ+ℓ′
1013
+
1014
+ t=0
1015
+
1016
+ soc(V ⊗ W) ∩
1017
+
1018
+ i+j=t
1019
+ V (ai) ⊗ V (bj)
1020
+
1021
+
1022
+ =
1023
+ ℓ+ℓ′
1024
+
1025
+ t=0
1026
+
1027
+  �
1028
+ i+j=t
1029
+ V (ai) ⊗ V (bj)
1030
+
1031
+
1032
+ hn
1033
+ .
1034
+ (4.2)
1035
+ For t = 0, . . . , ℓ + ℓ′, we define
1036
+ St = St(V, W) =
1037
+
1038
+ �
1039
+ i+j
1040
+ V (ai) ⊗ V (bj)
1041
+
1042
+
1043
+ hn
1044
+ .
1045
+ Hence, as sl(2)-modules,
1046
+ soc(V ⊗ W) =
1047
+ ℓ+ℓ′
1048
+
1049
+ t=0
1050
+ St
1051
+ and
1052
+ S0 = soc(V ) ⊗ soc(W) = V (a0) ⊗ V (b0).
1053
+ The following theorem is the same as [7, Theorem 3.5] but stated in terms
1054
+ of non-faithful uniserial
1055
+
1056
+ sl(2) ⋉ hn
1057
+
1058
+ -modules.
1059
+ Theorem 4.1. Let V1 = V (a0) ⊕ . . . ⊕ V (aℓ) and V2 = V (b0) ⊕ . . . ⊕ V (bℓ′)
1060
+ be socle decomposition of two non-faithful uniserial
1061
+
1062
+ sl(2) ⋉ hn
1063
+
1064
+ -modules of
1065
+ type Z. Then, St = 0 for all t > min{ℓ, ℓ′},
1066
+ S0 ≃
1067
+ min{a0,b0}
1068
+
1069
+ k=0
1070
+ V (a0 + b0 − 2k),
1071
+ and, for t = 1, . . . , min{ℓ, ℓ′}, we have
1072
+ (i) If V1 = Z(a0, ℓ) and V2 = Z(b0, ℓ′), then
1073
+ St ≃ V (a0 + b0 + tm).
1074
+ (ii) If V1 = Z(a0, ℓ) and V2 = Z(bℓ′, ℓ′)∗, then
1075
+ St ≃
1076
+
1077
+ 0,
1078
+ if tm > b0 − a0;
1079
+ V (b0 − a0 − tm),
1080
+ if tm ≤ b0 − a0.
1081
+ (iii) If V1 = Z(aℓ, ℓ)∗ and V2 = Z(bℓ′, ℓ′)∗, then St = 0.
1082
+
1083
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
1084
+ 13
1085
+ One of the main steps towards proving the above theorem was to prove
1086
+ certain instances of the following conjecture (see [7, Conjecture 3.4]).
1087
+ Conjecture 4.2. Let V1 = E(a, b) and V2 = E(c, d) (two uniserial sl(2) ⋉
1088
+ a(m)-modules of length 2) and assume that a < c, or a = c and b ≤ d. Then
1089
+ S2 = 0 in all cases and S1 = 0 except in the following cases.
1090
+ • Case 1: [a, b] = [0, m]. Here S1 ≃ V (d).
1091
+ • Cases 2: Here a > 0.
1092
+ – Case 2.1: a+b = c+d = m with d−a = b−c ≥ 0. Here S1 ≃ V (d−a).
1093
+ – Case 2.2: b − a = d − c = m. Here S1 ≃ V (d + a).
1094
+ – Case 2.3: b−a = c−d = m with d−a = c−b ≥ 0. Here S1 ≃ V (d−a).
1095
+ • Case 3: [c, d] = [b, a]. Here S1 ≃ V (0).
1096
+ In order to prove Theorem 4.1, we proved in [7, Theorem 3.3] the cases
1097
+ 2.2 and 2.3 (and certain converse statement). Now, in this paper, we need
1098
+ to prove part of case 1 and case 2.1 of the conjecture (together with certain
1099
+ converse statement) in order to prove Theorems 4.6 and 4.7. This is estab-
1100
+ lished in Theorem 4.3 below. We point out that this theorem leaves out
1101
+ the uniserial
1102
+
1103
+ sl(2) ⋉ a(3)
1104
+
1105
+ -modules E(3, 4) and E(4, 3), and a consequence
1106
+ of this is that Theorems 4.6 and 4.7 are restricted to the standard faith-
1107
+ ful modules, leaving the exceptional faithful uniserial
1108
+
1109
+ sl(2) ⋉ h2
1110
+
1111
+ -module
1112
+ FU(4,3,4) out of our results.
1113
+ Theorem 4.3. Let V1 = E(a, b) with a + b = m and a, b ̸= 0. Let V2 =
1114
+ V (c)⊕V (d) be the socle decomposition of a uniserial
1115
+
1116
+ sl(2)⋉V (m)
1117
+
1118
+ -module.
1119
+ Then
1120
+ (i) If V2 ≃ E(c, d) with c + d = m and 0 < a ≤ c < m, then, as sl(2)-
1121
+ modules,
1122
+ S1(V1, V2) ≃
1123
+
1124
+ V (d − a),
1125
+ if d − a = b − c ≥ 0
1126
+ 0,
1127
+ otherwise.
1128
+ (ii) If V2 ≃ Z(c, 1) ≃ E(c, c + m), then, as sl(2)-modules,
1129
+ S1(V1, V2) ≃
1130
+
1131
+ V (b),
1132
+ if c = 0
1133
+ 0,
1134
+ if c ̸= 0 .
1135
+ (iii) If V2 ≃ Z(d, 1)∗ ≃ E(d + m, d), then S1(V1, V2) = 0.
1136
+ The proof of this result is very technical and it will be given in §6.
1137
+ 4.2. The faithful case. We will now focus on the tensor product of two
1138
+ uniserial
1139
+
1140
+ sl(2)⋉hn
1141
+
1142
+ -modules where one of the factors is a standard faithful
1143
+ uniserial.
1144
+ Let V = V (a0) ⊕ V (a1) ⊕ V (a2) be the socle decomposition of a faithful
1145
+ uniserial
1146
+
1147
+ sl(2)⋉hn
1148
+
1149
+ -module and set W = V (b0)⊕. . .⊕V (bℓ), with ℓ ≥ 1, be
1150
+ the socle decomposition of a (not necessarily faithful) uniserial
1151
+
1152
+ sl(2) ⋉ hn
1153
+
1154
+ -
1155
+ module. By Theorems 3.2 and 3.3 we have that
1156
+ hn(m) · V (ai) ⊂ V (ai−1) and hn(m) · V (bj) ⊂ V (bj−1) ⊕ V (bj−2)
1157
+ z · V (ai) ⊂ V (ai−2) and z · V (bj) ⊂ V (bj−2)
1158
+
1159
+ 14
1160
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
1161
+ for all i = 0, 1, 2 and 0 ≤ j ≤ ℓ (for convenience we assume V (ai) = V (bj) =
1162
+ 0 if i, j < 0).
1163
+ Given v ∈ V (ai) ⊗ V (bj), let
1164
+ (4.3)
1165
+ esv = (esv)1 + (esv)2 + (esv)3 and zv = (zv)1 + (zv)2
1166
+ where
1167
+ (esv)1 ∈ V (ai−1) ⊗ V (bj),
1168
+ (zv)1 ∈ V (ai−2) ⊗ V (bj),
1169
+ (esv)2 ∈ V (ai) ⊗ V (bj−1),
1170
+ (zv)2 ∈ V (ai) ⊗ V (bj−2),
1171
+ (esv)3 ∈ V (ai) ⊗ V (bj−2).
1172
+ Note that (esv)3 = 0 if W is not isomorphic to E4 and that (zv)2 = 0 if W
1173
+ is not a faithful uniserial module.
1174
+ Lemma 4.4. Let V1 = V (a0)⊕V (a1)⊕V (a2) and V2 = V (b0)⊕. . . ⊕V (bℓ),
1175
+ with ℓ ≥ 1, be the socle decomposition of two uniserial
1176
+
1177
+ sl(2) ⋉ hn
1178
+
1179
+ -modules,
1180
+ where V1 is faithful (not necessarily standard). If v0 ∈ V (ai0) ⊗ V (bj0) is a
1181
+ highest weight vector then:
1182
+ (i) (esv0)1 = 0 for all s = 0, . . . , m if and only if i0 = 0.
1183
+ (ii) (esv0)2 = 0 for all s = 0, . . . , m if and only if j0 = 0.
1184
+ (iii) (zv0)1 = 0 if and only if i0 ̸= 2.
1185
+ (iv) If V2 is faithful, then (zv0)2 = 0 if and only if j0 ̸= 2.
1186
+ Proof. Since the action of hn(m) on any uniserial
1187
+
1188
+ sl(2) ⋉ hn
1189
+
1190
+ is the same
1191
+ as the action of am in the corresponding
1192
+
1193
+ sl(2) ⋉ am
1194
+
1195
+ -module, cases (i) and
1196
+ (ii) are immediate consequences of [7, Lemma 3.1].
1197
+ By symmetry, it sufficient to prove (iii) to obtain (iv), so let us prove (iii).
1198
+ If c is the weight of v0, we can assume that v0 = v
1199
+ ai0,bj0,c
1200
+ 0
1201
+ . It follows from
1202
+ (2.4) and (4.3) that
1203
+ (zv0)1 = (zv
1204
+ ai0,bj0,c
1205
+ 0
1206
+ )1
1207
+ =
1208
+
1209
+ i+j= ai0+bj0−c
1210
+ 2
1211
+ CG(ai0
1212
+ 2 , ai0
1213
+ 2 − i; bj0
1214
+ 2 , bj0
1215
+ 2 − j | c
1216
+ 2, c
1217
+ 2) zv
1218
+ ai0
1219
+ i
1220
+ ⊗ v
1221
+ bj0
1222
+ j
1223
+ .
1224
+ (4.4)
1225
+ From the definition of the modules FU ±
1226
+ a
1227
+ for n = 1; FU(0,3,0),FU(1,4,1),
1228
+ FU(1,2,1) and FU(4,3,4) for n = 2; and the modules FU(0,m,0), FU(1,m+1,1)
1229
+ and FU1,m−1,1 for n ≥ 3 (here m = 2n − 1), we know that zv
1230
+ ai0
1231
+ i
1232
+ = 0 if
1233
+ i0 ̸= 2. Therefore, if i0 ̸= 2 then
1234
+ (zv0)1 = 0.
1235
+ On the other hand, if i0 = 2, we know from (3.5) that zva2
1236
+ i
1237
+ = λva0
1238
+ i , where λ
1239
+ is a non-zero scalar independent of i, 0 ≤ i ≤ a2. Thus, the equation (4.4)
1240
+ becomes
1241
+ (zv0)1 = λ
1242
+
1243
+ i+j= a2+bj0−c
1244
+ 2
1245
+ CG(a2
1246
+ 2 , a2
1247
+ 2 − i;
1248
+ bj0
1249
+ 2 ,
1250
+ bj0
1251
+ 2 − j | c
1252
+ 2, c
1253
+ 2) va0
1254
+ i
1255
+ ⊗ v
1256
+ bj0
1257
+ j
1258
+ .
1259
+
1260
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
1261
+ 15
1262
+ In this sum, the term corresponding to i = 0, has a non-zero Clebsch-Gordan
1263
+ coefficient, indeed
1264
+ CG(a2
1265
+ 2 , a2
1266
+ 2 ; bj0
1267
+ 2 , c−a2
1268
+ 2
1269
+ | c
1270
+ 2, c
1271
+ 2) =
1272
+
1273
+ (c+1)! a2!
1274
+ �a2+bj0+c
1275
+ 2
1276
+ +1
1277
+
1278
+ !
1279
+ � a2+c−bj0
1280
+ 2
1281
+
1282
+ !
1283
+ ̸= 0.
1284
+ Since all terms are linearly independent, we obtain (zv0)1 ̸= 0.
1285
+
1286
+ Proposition 4.5. Let V1 = V (a0) ⊕ V (a1) ⊕ V (a2) and V2 = V (b0) ⊕ . . . ⊕
1287
+ V (bℓ), with ℓ ≥ 1, be the socle decomposition of two uniserial
1288
+
1289
+ sl(2) ⋉ hn
1290
+
1291
+ -
1292
+ modules, where V1 is standard faithful. Then, S0 = V (a0) ⊗ V (b0) and
1293
+ (i) St = 0 for all t > min{2, ℓ}. If St ̸= 0, t = 1, 2, then it is irreducible
1294
+ as sl(2)-module and if v is a non-zero highest weight vector in St of
1295
+ weight µ, then v = �t
1296
+ i=0 vi with vi a non-zero highest weight vector
1297
+ in V (ai) ⊗ V (bt−i), of weight µ, for all i = 0, . . . , t.
1298
+ (ii) S2 = 0 if V2 is non-faithful.
1299
+ (iii) S1(V1, V2) ≃ S1
1300
+
1301
+ E(a0, a1), E(b0, b1)
1302
+
1303
+ .
1304
+ (iv) If V2 is also standard faithful, then S2 ̸= 0 if and only if V1 ≃ V2
1305
+ (that is ai = bi, i = 0, 1, 2) and in this case S2 ≃ V (0).
1306
+ Proof. The proof of this proposition is very similar to that of Proposition
1307
+ 3.2 in [7]. We fix t > 0 and we assume that there is a non-zero highest
1308
+ weight vector u of weight µ,
1309
+ u =
1310
+
1311
+ i+j=t
1312
+ ui,j ∈
1313
+ � �
1314
+ i+j=t
1315
+ V (ai) ⊗ V (bj)
1316
+ �hn ̸= 0,
1317
+ ui,j ∈ V (ai) ⊗ V (bj).
1318
+ Since V (ai) ⊗ V (bj) is an sl(2)-submodule, it follows that ui,j is either zero
1319
+ or a highest weight vector of weight µ. Let
1320
+
1321
+ t = {(i, j) : 0 ≤ i ≤ 2, 0 ≤ j ≤ ℓ, i + j = t and ui,j ̸= 0}.
1322
+ Since u ̸= 0, it follows that Iµ
1323
+ t ̸= ∅ and
1324
+ u =
1325
+
1326
+ (i,j)∈Iµ
1327
+ t
1328
+ qi,j vai,bj,µ
1329
+ 0
1330
+ for certain non-zero scalars 0 ̸= qi,j ∈ F. Now, it follows from items (i) and
1331
+ (ii) in Lemma 4.4 (see the details in [7][Proposition 3.2]) that
1332
+ (4.5)
1333
+
1334
+ t = {(0, t), (1, t − 1), . . . , (t, 0)}.
1335
+ Now, again, items (i) and (ii) in Lemma 4.4 imply that such a non-zero u
1336
+ cannot exist if t > min{2, ℓ} and thus St = 0. This proves (i). Furthermore,
1337
+ (ii) follows similarly by applying item (iii) in Lemma 4.4.
1338
+ (iii) is clear from the definition of S1.
1339
+ Let us prove (iv). Assume that V2 = V (b0) ⊕ V (b1) ⊕ V (b2) is standard
1340
+ faithful, and suppose that
1341
+ (4.6)
1342
+ u = q0,2 va0,b2,µ
1343
+ 0
1344
+ + q1,1 va1,b1,µ
1345
+ 0
1346
+ + q2,0 va2,b0,µ
1347
+ 0
1348
+ ̸= 0
1349
+ is a highest weight vector of weight µ in S2. We already know that q0,2, q1,1, q2,0 ̸=
1350
+ 0 and, moreover, we must have
1351
+ q0,2 va0,b2,µ
1352
+ 0
1353
+ + q1,1 va1,b1,µ
1354
+ 0
1355
+ ∈ S1
1356
+
1357
+ E(a0, a1), E(b1, b2)) ̸= 0
1358
+
1359
+ 16
1360
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
1361
+ and
1362
+ q1,1 va1,b1,µ
1363
+ 0
1364
+ + q2,0 va2,b0,µ
1365
+ 0
1366
+ ∈ S1
1367
+
1368
+ E(a1, a2), E(b0, b1)) ̸= 0.
1369
+ Theorems 4.1 and 4.3 imply that it is impossible to have
1370
+ S1
1371
+
1372
+ E(a0, a1), E(b1, b2)
1373
+
1374
+ ̸= 0
1375
+ and
1376
+ S1
1377
+
1378
+ E(a1, a2), E(b0, b1)
1379
+
1380
+ ̸= 0
1381
+ unless (a0, a1, a2) = (b0, b1, b2).
1382
+ This follows by considering all the cases
1383
+ with (a0, a1, a2) and (b0, b1, b2) running over (see §3.6)
1384
+ (i) if n = 1 (that is m = 1)
1385
+ (k0, k0 + 1, k0),
1386
+ k0 ≥ 0;
1387
+ (k0, k0 − 1, k0),
1388
+ k0 ≥ 1;
1389
+ (ii) if n ≥ 2 (that is m ≥ 3),
1390
+ (0, m, 0), (1, m + 1, 1), (1, m − 1, 1);
1391
+ (it saves time noticing that E(a0, a1)∗ ≃ E(a1, a2) and E(b0, b1)∗ ≃ E(b1, b2)).
1392
+ Finally, let (a0, a1, a2) = (b0, b1, b2). We know, from Theorems 4.1 and
1393
+ 4.3, that
1394
+ S1
1395
+
1396
+ E(a0, a1), E(b1, b2)
1397
+
1398
+ ≃ S1
1399
+
1400
+ E(a1, a2), E(b0, b1)
1401
+
1402
+ ≃ V (0).
1403
+ This implies that there is, up to a scalar, a unique element u as in (4.6)
1404
+ such that hn(m)u = 0. This implies that zu = 0 and hence u ∈ S2. This
1405
+ completes the proof.
1406
+
1407
+ We are now in a position to prove the main theorems of the paper.
1408
+ Theorem 4.6. Let V1 = V (a0)⊕V (a1)⊕V (a2) and V2 = V (b0)⊕. . .⊕V (bℓ)
1409
+ be the socle decomposition of two uniserial
1410
+
1411
+ sl(2) ⋉ hn
1412
+
1413
+ -modules, where V1
1414
+ is standard faithful and V2 is of type Z. Then
1415
+ soc(V1 ⊗ V2) = S0 ⊕ S1
1416
+ where, as sl(2)-modules,
1417
+ S0 = soc(V1) ⊗ soc(V2) ≃
1418
+ min{a0,b0}
1419
+
1420
+ k=0
1421
+ V (a0 + b0 − 2k)
1422
+ and the following tables describe S1 as sl(2)-modules (recall that m = 2n−1):
1423
+ Case n = 1 (m = 1).
1424
+ V1\V2
1425
+ Z(b0, ℓ)
1426
+ Z(bℓ, ℓ)∗
1427
+ FU +
1428
+ a0
1429
+ V (a0 + b0 + m).
1430
+ V (b1 − a0),
1431
+ if b1 ≥ a0, ℓ ≥ 1;
1432
+ 0,
1433
+ otherwise.
1434
+ FU −
1435
+ a0
1436
+ a0 ≥ 1
1437
+ V (a0 − b1),
1438
+ if a0 ≥ b1, ℓ ≥ 1;
1439
+ 0,
1440
+ otherwise.
1441
+ 0.
1442
+ Case n > 1 (m ≥ 3).
1443
+
1444
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
1445
+ 17
1446
+ V1\V2
1447
+ Z(b0, ℓ)
1448
+ Z(bℓ, ℓ)∗
1449
+ FU(a0,a0+m,a0)
1450
+ a0 = 0, 1
1451
+ V (a0 + b0 + m).
1452
+ V (b1 − a0),
1453
+ if a0 ≤ b1;
1454
+ 0,
1455
+ if a0 > b1.
1456
+ FU(1,m−1,1)
1457
+ V (m − 1),
1458
+ if b0 = 0;
1459
+ 0,
1460
+ otherwise.
1461
+ 0.
1462
+ Proof. We know from Proposition 4.5 that
1463
+ soc(V1 ⊗ V2) ≃ soc(V1) ⊗ soc(V2) ⊕ S1
1464
+ (in particular we know that St(V1, V2) = 0 for all t ≥ 2). The decomposition
1465
+ of soc(V1) ⊗ soc(V2) follows from the Clebsch-Gordan formula.
1466
+ We now
1467
+ describe S1 in each case.
1468
+ Let us consider the submodules
1469
+ U1 = V (a0) ⊕ V (a1) ⊂ V1, and
1470
+ U2 = V (b0) ⊕ V (b1) ⊂ V2.
1471
+ We know that U1 and U2 are non-faithful uniserial
1472
+
1473
+ sl(2) ⋉ hn
1474
+
1475
+ -modules.
1476
+ From Proposition 4.5 item (iii) we know that
1477
+ S1(V1, V2) ≃ S1(U1, U2),
1478
+ If V1 is FU +
1479
+ a0 or FU(0,m,0) or FU(1,1+m,1) then U1 ≃ Z(a0, 1) and S1 is
1480
+ obtained from Theorem 4.1. If V1 = FU −
1481
+ a0, then U1 = Z(a0 − 1, 1)∗ and S1
1482
+ is also obtained from Theorem 4.1.
1483
+ Finally, if V1 = FU(1,m−1,1), then U1 = E(1, m − 1) and Theorem 4.3
1484
+ implies the remaining cases.
1485
+
1486
+ Theorem 4.7. Let V1 = V (a0) ⊕ V (a1) ⊕ V (a2) and V2 = V (b0) ⊕ V (b1) ⊕
1487
+ V (b2) be the socle decomposition of two standard faithful uniserial
1488
+
1489
+ sl(2) ⋉
1490
+ hn
1491
+
1492
+ -modules. Then
1493
+ soc(V1 ⊗ V2) = S0 ⊕ S1 ⊕ S2
1494
+ where
1495
+ S0 = soc(V1) ⊗ soc(V2) ≃
1496
+ min{a0,b0}
1497
+
1498
+ k=0
1499
+ V (a0 + b0 − 2k)
1500
+ and the following tables describe S1 and S2 as sl(2)-modules (m = 2n − 1):
1501
+ Case n = 1 (m = 1), structure of S1.
1502
+ V1\V2
1503
+ FU(b0,b0+1,b0)
1504
+ FU(b0,b0−1,b0)
1505
+ b0 ≥ 1
1506
+ FU(a0,a0+1,a0)
1507
+ V (a0 + b0 + 1).
1508
+ V (b0 − a1),
1509
+ if a1 ≤ b0;
1510
+ 0,
1511
+ otherwise.
1512
+ FU(a0,a0−1,a0)
1513
+ a0 ≥ 1
1514
+ V (a0 − b1),
1515
+ if b1 ≤ a0;
1516
+ 0,
1517
+ otherwise.
1518
+ 0.
1519
+
1520
+ 18
1521
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
1522
+ Case n = 1 (m = 1), structure of S2.
1523
+ V1\V2
1524
+ FU(b0,b0+1,b0)
1525
+ FU(b0,b0−1,b0)
1526
+ b0 ≥ 1
1527
+ FU(a0,a0+1,a0)
1528
+ V (0),
1529
+ if a0 = b0;
1530
+ 0,
1531
+ if a0 ̸= b0.
1532
+ 0.
1533
+ FU(a0,a0−1,a0)
1534
+ a0 ≥ 1
1535
+ 0.
1536
+ V (0),
1537
+ if a0 = b0;
1538
+ 0,
1539
+ if a0 ̸= b0.
1540
+ Case n > 1 (m ≥ 3), structure of S1.
1541
+ V1\V2
1542
+ FU(b0,b0+m,b0)
1543
+ b0 = 0, 1
1544
+ FU(1,m−1,1)
1545
+ FU(a0,a0+m,a0)
1546
+ a0 = 0, 1
1547
+ V (a0 + b0 + m).
1548
+ V (m − 1),
1549
+ if a0 = 0;
1550
+ 0,
1551
+ otherwise.
1552
+ FU(1,m−1,1)
1553
+ V (m − 1),
1554
+ if b0 = 0;
1555
+ 0,
1556
+ otherwise.
1557
+ V (m − 2).
1558
+ Case n > 1 (m ≥ 3), structure of S2.
1559
+ V1\V2
1560
+ FU(b0,b0+m,b0)
1561
+ b0 = 0, 1
1562
+ FU(1,m−1,1)
1563
+ FU(a0,a0+m,a0)
1564
+ a0 = 0, 1
1565
+ V (0),
1566
+ if a0 = b0;
1567
+ 0,
1568
+ if a0 ̸= b0.
1569
+ 0.
1570
+ FU(1,m−1,1)
1571
+ 0.
1572
+ V (0).
1573
+ Proof. As in the previous theorem, we know from Proposition 4.5 that
1574
+ soc(V1 ⊗ V2) ≃ soc(V1) ⊗ soc(V2) ⊕ S1 ⊕ S2
1575
+ and the decomposition of soc(V1)⊗soc(V2) follows from the Clebsch-Gordan
1576
+ formula. We now describe S1 and S2 in each case.
1577
+ First, we consider S1. We know from Proposition 4.5 that
1578
+ S1(V1, V2) ≃ S1
1579
+
1580
+ E(a0, a1), E(b0, b1)
1581
+
1582
+ .
1583
+ If V1 = FU +
1584
+ a0 and V2 = FU +
1585
+ b0, we know from Theorem 4.1 that
1586
+ S1(V1, V2) = S1(Z(a0, 1), Z(b0, 1)) = V (a0 + b0 + m).
1587
+ If V1 = FU +
1588
+ a0 and V2 = FU −
1589
+ b0, we have
1590
+ S1(V1, V2) =
1591
+
1592
+ S1(Z(a0, 1), Z(b1, 1)∗),
1593
+ if m = 1;
1594
+ S1(Z(a0, 1), E(1, 1 − m)),
1595
+ if m > 1 and b0 = 1;
1596
+
1597
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
1598
+ 19
1599
+ and it follows from Theorems 4.1 and 4.3 that
1600
+ S1(V1, V2) =
1601
+
1602
+
1603
+
1604
+
1605
+
1606
+ V (b1 − a0)
1607
+ if m = 1;
1608
+ V (m − 1),
1609
+ if m > 1, a0 = 0 and b0 = 1;
1610
+ 0,
1611
+ otherwise.
1612
+ This completes the description of S1.
1613
+ The result for S2 follows from item (iv) in Proposition 4.5.
1614
+
1615
+ 5. Intertwining operators
1616
+ In this section we obtain, from Theorems 4.6 and 4.7, the space of in-
1617
+ tertwining operators between the uniserial representations of g = sl(2) ⋉ hn
1618
+ considered in the previous section.
1619
+ Recall that, for any pairs of g-modules U1 and U2, we know that
1620
+ Homg(U1, U2) ≃ (U ∗
1621
+ 1 ⊗ U2)g =
1622
+
1623
+ (U ∗
1624
+ 1 ⊗ U2)hn�sl(2).
1625
+ It follows that Homg(U1, U2) is isomorphic to soc(U ∗
1626
+ 1 ⊗ U2)sl(2) (see (4.1)).
1627
+ Thus, we must identify the cases in which St(U ∗
1628
+ 1 , U2)sl(2) ̸= 0 for t = 0, 1, 2.
1629
+ So let V = V (a0) ⊕ V (a1) ⊕ V (a2) (a0 = a2) and W = V (b0) ⊕ . . . ⊕ V (bℓ)
1630
+ be the socle decomposition of two uniserial
1631
+
1632
+ sl(2) ⋉ hn
1633
+
1634
+ -modules, where V
1635
+ is standard faithful and W is either of type Z or standard faithful. Recall
1636
+ that V ∗ ≃ V and that the socle decomposition of W ∗ is V (bℓ) ⊕ . . . ⊕ V (b0).
1637
+ • Case Ssl(2)
1638
+ 0
1639
+ ̸= 0, W of type Z.
1640
+ It follows from Theorem 4.6 that S0(V ∗, W)sl(2) ̸= 0 if and only if
1641
+ a0 = b0 (and equal to a2). Also, Theorem 4.6 implies that, in these cases,
1642
+ we have dim S0(V ∗, W)sl(2) = 1 and St(V ∗, W)sl(2) = 0, t = 1, 2. Hence
1643
+ Homg(V, W) is 1-dimensional and it is described by the following arrow
1644
+ V = V (a0) ⊕ V (a1) ⊕ V (a0)
1645
+
1646
+ W = V (b0) ⊕ · · · ⊕ V (bℓ).
1647
+ Similarly, from Theorem 4.6 we know that S0(W ∗, V )sl(2) ̸= 0 if and
1648
+ only if a0 = bℓ and in these cases Homg(W, V ) is 1-dimensional and it is
1649
+ described by the following arrow
1650
+ W = V (b0) ⊕ · · · ⊕V (bℓ)
1651
+
1652
+ V = V (a0) ⊕ V (a1) ⊕ V (a0).
1653
+ • Case Ssl(2)
1654
+ 0
1655
+ ̸= 0 or Ssl(2)
1656
+ 2
1657
+ ̸= 0, W standard faithful.
1658
+ It follows from Theorem 4.7 that S0(V, W)sl(2) ̸= 0 if and only if a0 = b0.
1659
+ Hence in what follows, a0 = a2 = b0 = b2. In this case, S1(V, W)sl(2) = 0
1660
+ and dim S0(V, W)sl(2) = 1 (note that if V ≃ W, that is a1 = b1, then
1661
+ Theorem 4.7 says that dim S2(V, W)sl(2) = 1, see below). The non-zero
1662
+
1663
+ 20
1664
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
1665
+ g-morphism corresponding to the 1-dimensional space S0(V, W)sl(2) is de-
1666
+ scribed by the following arrow
1667
+ V = V (a0) ⊕ V (a1) ⊕ V (a0)
1668
+
1669
+ W = V (b0) ⊕ V (b1) ⊕ V (b0).
1670
+ This is clearly not an isomorphism. In the particular case when V ≃ W,
1671
+ the isomorphism is the g-morphism corresponding to the 1-dimensional
1672
+ space S2(V, W)sl(2) (see also Proposition 4.5). Thus
1673
+ dim Homg(V, W) =
1674
+
1675
+ 1,
1676
+ if V ̸≃ W (that is a1 ̸= b1);
1677
+ 2,
1678
+ if V ≃ W (that is a1 = b1).
1679
+ (Since here V and W are of the same type, we do not need to consider
1680
+ Homg(W, V ).)
1681
+ • Case Ssl(2)
1682
+ 1
1683
+ ̸= 0.
1684
+ It follows from Theorems 4.6 and 4.7 that dim Ssl(2)
1685
+ 1
1686
+ = 1 and in all these
1687
+ cases, St(V ∗, W)sl(2) = 0, t = 0, 2. Hence Homg(V, W) (or Homg(W, V ))
1688
+ is 1-dimensional. We describe all these cases below:
1689
+ ◦ Cases with W of type Z and Homg(V, W) ̸= 0.
1690
+ (i) n = 1, a0 = b1, V = FU −
1691
+ a0, W = Z(b0, ℓ), ℓ ≥ 1.
1692
+ V = V (a0) ⊕ V (a0 − 1) ⊕ V (a0)
1693
+
1694
+
1695
+ W = V (b0) ⊕ V (b1) ⊕ · · · ⊕ V (bℓ).
1696
+ (ii) n = 1, a0 = b1, V = FU +
1697
+ a0, W = Z(bℓ, ℓ)∗, ℓ ≥ 1.
1698
+ V = V (a0) ⊕ V (a0 + 1) ⊕ V (a0)
1699
+
1700
+
1701
+ W = V (b0) ⊕ V (b1) ⊕ · · · ⊕ V (bℓ).
1702
+ (iii) n > 1, a0 = 0, 1, V = FU +
1703
+ (a0,a0+m,a0), W = Z(b1, 1)∗.
1704
+ V = V (a0) ⊕ V (a0 + m) ⊕ V (a0)
1705
+
1706
+
1707
+ W = V (b0) ⊕ V (b1).
1708
+ ◦ Cases with W of type Z and Homg(W, V ) ̸= 0.
1709
+ (i) n = 1, a0 = bℓ−1, V = FU +
1710
+ a0, W = Z(b0, ℓ), ℓ ≥ 1.
1711
+ W = V (b0) ⊕ · · · ⊕ V (bℓ−1) ⊕ V (bℓ)
1712
+
1713
+
1714
+ V =V (a0) ⊕ V (a0 + 1) ⊕ V (a0).
1715
+ (ii) n = 1, a0 = bℓ−1, V = FU −
1716
+ a0, W = Z(bℓ, ℓ)∗, ℓ ≥ 1.
1717
+ W = V (b0) ⊕ · · · ⊕ V (bℓ−1) ⊕ V (bℓ)
1718
+
1719
+
1720
+ V =V (a0) ⊕ V (a0 − 1) ⊕ V (a0).
1721
+
1722
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
1723
+ 21
1724
+ (iii) n > 1, V = FU(a0,a0+m,a0), a0 = 0, 1, W = Z(a0, 1).
1725
+ W = V (a0) ⊕ V (a0 + m)
1726
+
1727
+
1728
+ V =V (a0) ⊕ V (a0 + m) ⊕ V (a0).
1729
+ ◦ Cases with W standard faithful and Homg(V, W) ̸= 0.
1730
+ (i) n = 1, a0 = b1, V = FU −
1731
+ a0, W = FU +
1732
+ b0.
1733
+ V = V (a0) ⊕ V (a0 − 1) ⊕ V (a0)
1734
+
1735
+
1736
+ W = V (b0) ⊕ V (b0 + 1) ⊕ V (b0).
1737
+ (ii) n = 1, a0 = b1, V = FU +
1738
+ a0, W = FU −
1739
+ b0.
1740
+ V = V (a0) ⊕ V (a0 + 1) ⊕ V (a0)
1741
+
1742
+
1743
+ W = V (b0) ⊕ V (b0 − 1) ⊕ V (b0).
1744
+ 6. Proof of Theorem 4.3
1745
+ Let µ be a possible highest weight in S1. We start with some general
1746
+ considerations and next we will work out each case.
1747
+ We know from Proposition 4.5 that µ must be highest weight in both
1748
+ V (a) ⊗ V (d) and V (b) ⊗ V (c), that is
1749
+ (6.1)
1750
+ |a − d|, |b − c| ≤ µ ≤ a + d, b + c
1751
+ and µ ≡ a+d ≡ b+c mod 2. We also know that µ is indeed highest weight
1752
+ in S1 if and only if there is a linear combination
1753
+ u0 = q1va,d,µ
1754
+ 0
1755
+ + q2vb,c,µ
1756
+ 0
1757
+ ,
1758
+ with q1, q2 ̸= 0 (see item (i) in Proposition 4.5), that is annihilated by es
1759
+ for all s = 0, . . . , m. Indeed this implies that u0 is also annihilated by z and
1760
+ thus in S1 (see (4.1)).
1761
+ We now describe esva,d,µ
1762
+ 0
1763
+ and esvb,c,µ
1764
+ 0
1765
+ .
1766
+ On the one hand we have (see (2.4))
1767
+ (6.2)
1768
+ va,d,µ
1769
+ 0
1770
+ =
1771
+
1772
+ i,j
1773
+ CG(a
1774
+ 2, a
1775
+ 2 − i; d
1776
+ 2, d
1777
+ 2 − j | µ
1778
+ 2, µ
1779
+ 2 ) va
1780
+ i ⊗ vd
1781
+ j
1782
+
1783
+ 22
1784
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
1785
+ and thus (see (3.2))
1786
+ esva,d,µ
1787
+ 0
1788
+ =
1789
+
1790
+ i,j
1791
+ CG(a
1792
+ 2, a
1793
+ 2 − i; d
1794
+ 2, d
1795
+ 2 − j | µ
1796
+ 2 , µ
1797
+ 2) va
1798
+ i ⊗ esvd
1799
+ j
1800
+ =
1801
+
1802
+ i,j,k
1803
+ (−1)jCG(a
1804
+ 2, a
1805
+ 2 − i; d
1806
+ 2, d
1807
+ 2 − j | µ
1808
+ 2, µ
1809
+ 2 )
1810
+ × CG( c
1811
+ 2, c
1812
+ 2 − k; d
1813
+ 2, − d
1814
+ 2 + j | m
1815
+ 2 , m
1816
+ 2 − s) va
1817
+ i ⊗ vc
1818
+ k
1819
+ =
1820
+
1821
+ i,j,k
1822
+ (−1)kCG(a
1823
+ 2, a
1824
+ 2 − i; d
1825
+ 2, d
1826
+ 2 − k | µ
1827
+ 2 , µ
1828
+ 2)
1829
+ × CG( c
1830
+ 2, c
1831
+ 2 − j; d
1832
+ 2, − d
1833
+ 2 + k | m
1834
+ 2 , m
1835
+ 2 − s) va
1836
+ i ⊗ vc
1837
+ j.
1838
+ (6.3)
1839
+ In this sum, if the coefficient of va
1840
+ i ⊗ vc
1841
+ j is not zero then we must have
1842
+ a
1843
+ 2 − i + d
1844
+ 2 − k = µ
1845
+ 2 ,
1846
+ c
1847
+ 2 − j − d
1848
+ 2 + k = m
1849
+ 2 − s.
1850
+ (6.4)
1851
+ On the other hand, we have (see (2.4))
1852
+ (6.5)
1853
+ vb,c,µ
1854
+ 0
1855
+ =
1856
+
1857
+ i,j
1858
+ CG( b
1859
+ 2, b
1860
+ 2 − i; c
1861
+ 2, c
1862
+ 2 − j | µ
1863
+ 2 , µ
1864
+ 2 ) vb
1865
+ i ⊗ vc
1866
+ j
1867
+ and thus (see (3.2))
1868
+ esvb,c,µ
1869
+ 0
1870
+ =
1871
+
1872
+ i,j
1873
+ CG( b
1874
+ 2, b
1875
+ 2 − i; c
1876
+ 2, c
1877
+ 2 − j | µ
1878
+ 2, µ
1879
+ 2) esvb
1880
+ i ⊗ vc
1881
+ j.
1882
+ =
1883
+
1884
+ i,j,k
1885
+ (−1)iCG( b
1886
+ 2, b
1887
+ 2 − i; c
1888
+ 2, c
1889
+ 2 − j | µ
1890
+ 2, µ
1891
+ 2 )
1892
+ × CG(a
1893
+ 2, a
1894
+ 2 − k; b
1895
+ 2, − b
1896
+ 2 + i | m
1897
+ 2 , m
1898
+ 2 − s) va
1899
+ k ⊗ vc
1900
+ j
1901
+ =
1902
+
1903
+ i,j,k
1904
+ (−1)kCG( b
1905
+ 2, b
1906
+ 2 − k; c
1907
+ 2, c
1908
+ 2 − j | µ
1909
+ 2, µ
1910
+ 2)
1911
+ × CG(a
1912
+ 2, a
1913
+ 2 − i; b
1914
+ 2, − b
1915
+ 2 + k | m
1916
+ 2 , m
1917
+ 2 − s) va
1918
+ i ⊗ vc
1919
+ j.
1920
+ (6.6)
1921
+ In this sum, if the coefficient of va
1922
+ i ⊗ vc
1923
+ j is not zero then we must have
1924
+ b
1925
+ 2 − k + c
1926
+ 2 − j = µ
1927
+ 2 ,
1928
+ a
1929
+ 2 − i − b
1930
+ 2 + k = m
1931
+ 2 − s.
1932
+ (6.7)
1933
+ Either (6.4) or (6.7) imply
1934
+ (6.8)
1935
+ i + j = a + c − m − µ
1936
+ 2
1937
+ + s,
1938
+ (recall that 0 ≤ i ≤ a and 0 ≤ j ≤ c). Now we consider all the cases.
1939
+ (i) The case V2 = E(c, d) with c + d = m and 0 < a ≤ c: Here
1940
+ µ = d + a − 2p, 0 ≤ p ≤ min{a, d}
1941
+
1942
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
1943
+ 23
1944
+ and it follows from (6.8) that
1945
+ (6.9)
1946
+ 0 ≤ i + j = p − d + s.
1947
+ The sum (6.3) is
1948
+ esva,d,µ
1949
+ 0
1950
+ =
1951
+
1952
+ i,j,k
1953
+ (−1)kCG(a
1954
+ 2, a
1955
+ 2 − i; d
1956
+ 2, d
1957
+ 2 − k | a+d
1958
+ 2
1959
+ − p, a+d
1960
+ 2
1961
+ − p)
1962
+ × CG(m−d
1963
+ 2 , m−d
1964
+ 2
1965
+ − j; d
1966
+ 2, − d
1967
+ 2 + k | m
1968
+ 2 , m
1969
+ 2 − s) va
1970
+ i ⊗ vc
1971
+ j.
1972
+ In this sum, it follows from (6.4) that
1973
+ k = p − i
1974
+ j = p − d + s − i.
1975
+ The conditions k ≥ 0 and 0 ≤ j ≤ m − d imply p − m + s ≤ i ≤ min{p, p −
1976
+ d + s}. Therefore, we obtain (see (2.9) and (2.12))
1977
+ esva,d,µ
1978
+ 0
1979
+ =
1980
+ min{p,p−d+s}
1981
+
1982
+ i=max{0,p−m+s}
1983
+ (−1)p−iCG(a
1984
+ 2, a
1985
+ 2 − i; d
1986
+ 2, d
1987
+ 2 − p + i | a+d
1988
+ 2
1989
+ − p, a+d
1990
+ 2
1991
+ − p)
1992
+ × CG(m−d
1993
+ 2 , m−d
1994
+ 2
1995
+ − p + d − s + i; d
1996
+ 2, − d
1997
+ 2 + p − i | m
1998
+ 2 , m
1999
+ 2 − s) va
2000
+ i ⊗ vc
2001
+ p−d+s−i
2002
+ =
2003
+ min{p,p−d+s}
2004
+
2005
+ i=max{0,p−m+s}
2006
+ (−1)p
2007
+
2008
+ (a + d − 2p + 1)! p! (a − i)! (d − p + i)!
2009
+ (a − p)! (d − p)! (a + d − p + 1)! i! (p − i)!
2010
+ ×
2011
+
2012
+ (m − s)! s! (m − d)! d!
2013
+ m! (m − p − s + i)! (p − i)! (d − p + i)! (p − d + s − i)! va
2014
+ i ⊗ vc
2015
+ p−d+s−i.
2016
+ Thus,
2017
+ esva,d,µ
2018
+ 0
2019
+ = (−1)p
2020
+
2021
+ (m − d)! (a + d − 2p + 1)! p! d! (m − s)! s!
2022
+ (a − p)! (d − p)! (a + d − p + 1)! m!
2023
+ wa,d,µ
2024
+ s
2025
+ with
2026
+ wa,d,µ
2027
+ s
2028
+ =
2029
+ min{p,p−d+s}
2030
+
2031
+ i=max{0,p−m+s}
2032
+
2033
+ (a − i)!
2034
+ i! (p − i)!2 (m − p − s + i)! (p − d + s − i)! va
2035
+ i ⊗vc
2036
+ p−d+s−i.
2037
+ On the other hand, the sum (6.6) is
2038
+ esvb,c,µ
2039
+ 0
2040
+ =
2041
+
2042
+ i,j,k
2043
+ (−1)kCG(m−a
2044
+ 2 , m−a
2045
+ 2
2046
+ − k; m−d
2047
+ 2 , m−d
2048
+ 2
2049
+ − j | a+d
2050
+ 2
2051
+ − p, a+d
2052
+ 2
2053
+ − p)
2054
+ × CG(a
2055
+ 2, a
2056
+ 2 − i; m−a
2057
+ 2 , − m−a
2058
+ 2
2059
+ + k | m
2060
+ 2 , m
2061
+ 2 − s) va
2062
+ i ⊗ vc
2063
+ j.
2064
+ In this sum, it follows from (6.7) that
2065
+ j = p − d + s − i
2066
+ k = m − a − s + i
2067
+
2068
+ 24
2069
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
2070
+ and the condition k ≥ 0 implies i ≥ a − m + s, and condition j ≥ 0 implies
2071
+ p − d + s ≥ i. Therefore, we obtain (see (2.9) and (2.12))
2072
+ esvb,c,µ
2073
+ 0
2074
+ =
2075
+ min{a,p−d+s}
2076
+
2077
+ i=max{0,a−m+s}
2078
+ (−1)m−a−s+i
2079
+ × CG(m−a
2080
+ 2 , − m−a
2081
+ 2
2082
+ + s − i; m−d
2083
+ 2 , m−d
2084
+ 2
2085
+ − p + d − s + i | a+d
2086
+ 2
2087
+ − p, a+d
2088
+ 2
2089
+ − p)
2090
+ × CG(a
2091
+ 2, a
2092
+ 2 − i; m−a
2093
+ 2 , m−a
2094
+ 2
2095
+ − s + i | m
2096
+ 2 , m
2097
+ 2 − s) va
2098
+ i ⊗ vc
2099
+ p−d+s−i
2100
+ =
2101
+ min{a,p−d+s}
2102
+
2103
+ i=max{0,a−m+s}
2104
+
2105
+ (a + d − 2p + 1)! (p + m − a − d)! (s − i)! (m − p − s + i)!
2106
+ (d − p)! (a − p)! (m − a − s + i)! (p − d + s − i)! (m − p + 1)!
2107
+ ×
2108
+
2109
+ s! (m − s)! a! (m − a)!
2110
+ m! (a − i)! (m − a − s + i)! i! (s − i)! va
2111
+ i ⊗ vc
2112
+ a−p+s−i.
2113
+ Thus
2114
+ esvb,c,µ
2115
+ 0
2116
+ =
2117
+
2118
+ (m − s)! s! (a + d − 2p + 1)! (p + m − a − d)! a! (m − a)!
2119
+ (d − p)! (a − p)! (m − p + 1)! m!
2120
+ wb,c,µ
2121
+ s
2122
+ where
2123
+ wb,c,µ
2124
+ s
2125
+ =
2126
+ min{a,p−d+s}
2127
+
2128
+ i=max{0,a−m+s}
2129
+
2130
+ (m − p − s + i)!
2131
+ i! (m − a − s + i)!2 (p − d + s − i)! (a − i)!
2132
+ va
2133
+ i ⊗vc
2134
+ p−d+s−i.
2135
+ Now, if a ≤ d and p = a, we have, for all 0 ≤ s ≤ m,
2136
+ wa,d,µ
2137
+ s
2138
+ =
2139
+ min{a,a−d+s}
2140
+
2141
+ i=max{0,a−m+s}
2142
+
2143
+ 1
2144
+ i! (a − i)! (m − a − s + i)! (a − d + s − i)! va
2145
+ i ⊗ vc
2146
+ p−d+s−i
2147
+ = wb,c,µ
2148
+ s
2149
+ .
2150
+ This shows that
2151
+ u0 = (−1)a √
2152
+ d + 1 va,d,µ
2153
+ 0
2154
+
2155
+
2156
+ b + 1 vb,c,µ
2157
+ 0
2158
+ is, indeed, a highest weight vector, of weight µ = d − a = b − c, in S1.
2159
+ If p < a then, for s = d, the sum defining wa,d,µ
2160
+ d
2161
+ has the index i running
2162
+ up to i = a while the sum defining wb,c,µ
2163
+ d
2164
+ has the index i running only up to
2165
+ i = p. In both cases, all the coefficients are non-zero, and thus {wa,d,µ
2166
+ 1
2167
+ , wb,c,µ
2168
+ 1
2169
+ }
2170
+ is linearly independent. This shows that there is no possible µ in S1 and
2171
+ thus S1 = 0. This completes the proof in this case.
2172
+ (ii) The case V2 = E(c, d) with d = c+m: Since a < m ≤ d and by equation
2173
+ (6.1) we have
2174
+ µ = b + c − 2p, 0 ≤ p ≤ min{c, b},
2175
+ µ = a + d − 2p′, 0 ≤ p′ ≤ a.
2176
+ This implies p′ − p = a and hence p′ = a and p = 0. This yields
2177
+ µ = b + c = d − a.
2178
+
2179
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
2180
+ 25
2181
+ First we prove that, if c = 0, then S1(V1, V2) ≃ V (b). In this case, (6.3)
2182
+ becomes
2183
+ esva,d,µ
2184
+ 0
2185
+ =
2186
+
2187
+ i,k
2188
+ (−1)kCG(m−b
2189
+ 2 , m−b
2190
+ 2
2191
+ − i; m
2192
+ 2 , m
2193
+ 2 − k | b
2194
+ 2, b
2195
+ 2)
2196
+ × CG(0, 0; m
2197
+ 2 , − m
2198
+ 2 + k | m
2199
+ 2 , m
2200
+ 2 − s) va
2201
+ i ⊗ v0
2202
+ 0
2203
+ (the index j is 0). It follows from (6.4) that
2204
+ k = m − s
2205
+ i = −b + s.
2206
+ Therefore, esva,d,µ
2207
+ 0
2208
+ = 0 if s < b and, for s ≥ b we have (see (2.9) and (2.11))
2209
+ esva,d,µ
2210
+ 0
2211
+ = (−1)m−sCG(m−b
2212
+ 2 , − m−b
2213
+ 2
2214
+ + m − s; m
2215
+ 2 , − m
2216
+ 2 + s | b
2217
+ 2, b
2218
+ 2)
2219
+ × CG(0, 0; m
2220
+ 2 , m
2221
+ 2 − s | m
2222
+ 2 , m
2223
+ 2 − s) va
2224
+ s−b ⊗ v0
2225
+ 0
2226
+ =
2227
+
2228
+ (b + 1) (m − b)! s!
2229
+ (m + 1)! (s − b)!
2230
+ va
2231
+ s−b ⊗ v0
2232
+ 0.
2233
+ On the other hand, since c = 0 and µ = b, (6.6) becomes (see also (3.2)
2234
+ or (3.3))
2235
+ esvb,c,µ
2236
+ 0
2237
+ = esvb
2238
+ 0 ⊗ v0
2239
+ 0
2240
+ =
2241
+
2242
+
2243
+
2244
+ CG(a
2245
+ 2, a
2246
+ 2 − (s − b); b
2247
+ 2, − b
2248
+ 2 | m
2249
+ 2 , m
2250
+ 2 − s) va
2251
+ s−b ⊗ v0
2252
+ 0,
2253
+ if s ≥ b;
2254
+ 0,
2255
+ if s < b.
2256
+ =
2257
+
2258
+
2259
+
2260
+
2261
+ a! s!
2262
+ (s−b)! m! va
2263
+ s−b ⊗ v0
2264
+ 0,
2265
+ if s ≥ b;
2266
+ 0,
2267
+ if s < b.
2268
+ This shows that
2269
+ u0 =
2270
+
2271
+ b + 1 va,d,µ
2272
+ 0
2273
+
2274
+
2275
+ m + 1 vc,d,µ
2276
+ 0
2277
+ is, indeed, a highest weight vector of weight µ = b, in S1.
2278
+ Now, suppose that c ̸= 0 and set s = m. Recall that µ = b + c = d − a.
2279
+ When we consider the sum (6.3), it follows from (6.4) that
2280
+ j = k = a − i.
2281
+
2282
+ 26
2283
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
2284
+ The condition 0 ≤ j ≤ c implies a − c ≤ i ≤ a and hence (6.3) becomes (see
2285
+ (2.11))
2286
+ emva,d,µ
2287
+ 0
2288
+ =
2289
+ a
2290
+
2291
+ i=max{0,a−c}
2292
+ (−1)a−i CG(a
2293
+ 2, a
2294
+ 2 − i; d
2295
+ 2, d
2296
+ 2 − (a − i) | d−a
2297
+ 2 , d−a
2298
+ 2 )
2299
+ × CG( c
2300
+ 2, c
2301
+ 2 − (a − i); d
2302
+ 2, − d
2303
+ 2 + a − i | m
2304
+ 2 , − m
2305
+ 2 ) va
2306
+ i ⊗ vc
2307
+ a−i
2308
+ =
2309
+ a
2310
+
2311
+ i=max{0,a−c}
2312
+ (−1)i+d−a
2313
+
2314
+ (c + b + 1) (m − b)! (c + b + i)!
2315
+ (c + m + 1)! i!
2316
+ ×
2317
+
2318
+ (m + 1) c! (c + b + i)!
2319
+ (c + m + 1)! (c − m + b + i)! va
2320
+ i ⊗ vc
2321
+ a−i.
2322
+ On the other hand, when we consider the sum (6.6), it follows from (6.7)
2323
+ that
2324
+ j = a − i = −k
2325
+ and the condition k ≥ 0 implies that k = j = 0 and i = a = m − b. Thus,
2326
+ (6.6) is
2327
+ emvb,c,µ
2328
+ 0
2329
+ = CG( b
2330
+ 2, b
2331
+ 2; c
2332
+ 2, c
2333
+ 2 | c+b
2334
+ 2 , c+b
2335
+ 2 ) CG(m−b
2336
+ 2 , − m−b
2337
+ 2 ; b
2338
+ 2, − b
2339
+ 2 | m
2340
+ 2 , − m
2341
+ 2 ) va
2342
+ a ⊗ vc
2343
+ 0
2344
+ = va
2345
+ a ⊗ vc
2346
+ 0.
2347
+ Since c ̸= 0, the sum in emva,d,µ
2348
+ 0
2349
+ has at least two non-zero terms, while
2350
+ the sum in emvc,d,µ
2351
+ 0
2352
+ has a single non-zero term, and thus {emva,d,µ
2353
+ 0
2354
+ , emvc,b,µ
2355
+ 0
2356
+ }
2357
+ is linearly independent. This completes the proof in this case.
2358
+ (iii) The case V2 = E(c, d) with c = d + m: Since b < m ≤ c, it follows from
2359
+ (6.1) that
2360
+ µ = b + c − 2p, 0 ≤ p ≤ b
2361
+ µ = a + d − 2p′, 0 ≤ p′ ≤ min{a, d}.
2362
+ This implies p − p′ = b and hence the only option is p = b, p′ = 0 and this
2363
+ yields
2364
+ µ = a + d = c − b.
2365
+ We compute now esva,d,µ
2366
+ 0
2367
+ . It follows from (6.8) and (6.4) that
2368
+ k = −i
2369
+ j = s − i,
2370
+ and since k ≥ 0, we have k = i = 0 and j = s. Therefore, (6.3) becomes
2371
+ (see also (2.9) and (2.10))
2372
+ esva,d,µ
2373
+ 0
2374
+ = CG(a
2375
+ 2, a
2376
+ 2; d
2377
+ 2, d
2378
+ 2 | a+d
2379
+ 2 , a+d
2380
+ 2 ) CG(d+m
2381
+ 2 , d+m
2382
+ 2
2383
+ − s; d
2384
+ 2, − d
2385
+ 2 | m
2386
+ 2 , m
2387
+ 2 − s) va
2388
+ 0 ⊗ vc
2389
+ s
2390
+ =
2391
+
2392
+ (d+m−s)! (m+1)!
2393
+ (d+m+1)! (m−s)! va
2394
+ 0 ⊗ vc
2395
+ s.
2396
+ As always, the reader should check that all the numbers under the factorial
2397
+ sign are non-negative.
2398
+
2399
+ UNISERIAL REPRESENTATIONS OF THE LIE ALGEBRA sl(2) ⋉ hn
2400
+ 27
2401
+ We compute now esvb,c,µ
2402
+ 0
2403
+ . It follows from (6.8) and (6.7) that
2404
+ j = s − i
2405
+ k = m − a − s + i
2406
+ and conditions k ≥ 0 and j ≥ 0 imply s ≥ i ≥ s − (m − a). Thus, it follows
2407
+ from (6.6), (2.11) and (2.9) that
2408
+ esvb,c,µ
2409
+ 0
2410
+ =
2411
+ min{a,s}
2412
+
2413
+ i=max{0,s−(m−a)}
2414
+ CG(m−a
2415
+ 2 , − m−a
2416
+ 2
2417
+ + s − i; d+m
2418
+ 2 , d+m
2419
+ 2
2420
+ − (s − i) | a+d
2421
+ 2 , a+d
2422
+ 2 )
2423
+ × CG(a
2424
+ 2, a
2425
+ 2 − i; m−a
2426
+ 2 , m−a
2427
+ 2
2428
+ − s + i | m
2429
+ 2 , m
2430
+ 2 − s) va
2431
+ i ⊗ vc
2432
+ s−i
2433
+ =
2434
+ min{a,s}
2435
+
2436
+ i=max{0,s−(m−a)}
2437
+ (−1)s−i�
2438
+ (d+m−s+i)! (m−a)! (a+d+1)
2439
+ (d+m+1)! (m−a−s+i)!
2440
+ ×
2441
+
2442
+ a! (m−a)! (m−s)! s!
2443
+ i! (s−i)! m! (a−i)! (m−a−s+i)! va
2444
+ i ⊗ vc
2445
+ s−i
2446
+ Again, note that all the numbers under the factorial sign are non-negative.
2447
+ For s = m − a = b, the sum giving esvb,c,µ
2448
+ 0
2449
+ has the index i running from
2450
+ i = 0 to i = min{a, b} ̸= 0, while the sum giving esva,d,µ
2451
+ 0
2452
+ has the index i
2453
+ running only up to i = 0. In both cases, all the coefficients are non-zero,
2454
+ and thus {esvb,c,µ
2455
+ 0
2456
+ , esva,d,µ
2457
+ 0
2458
+ } is linearly independent. This shows that there is
2459
+ no possible µ in S1 and thus S1 = 0. This completes this case and the proof
2460
+ of the theorem.
2461
+ References
2462
+ [1] I. Assem, D. Simson, and A. Skowro´nski. Elements of the Representation Theory of
2463
+ Associative Algebras: 1. Techniques of the Representation Theory. Cambridge Uni-
2464
+ versity Press, New York (USA), UK, 2007.
2465
+ [2] M. Auslander, I. Reiten, and S. O. Smalø. Representation Theory of Artin Algebras.
2466
+ Cambridge University Press, New York (USA), Melbourne (Australia), 1995.
2467
+ [3] K. Bongartz and B. Huisgen-Zimmermann. The geometry of uniserial representations
2468
+ of algebras II. Alternate viewpoints and uniqueness. J. Pure Appl. Algebra, 157:23–32,
2469
+ 2001.
2470
+ [4] L. Cagliero, L. Guti´errez Frez, and F. Szechtman. Classification of finite dimen-
2471
+ sional uniserial representations of conformal Galilei algebras. Journal of Mathematical
2472
+ Physics, 57(101706), 2016.
2473
+ [5] L. Cagliero, L. Guti´errez Frez, and F. Szechtman. Free 2-step nilpotent Lie algebras
2474
+ and indecomposable modules. Comm. Algebra, 46:2990–3005, 2018.
2475
+ [6] L. Cagliero, F. Levstein, and F. Szechtman. Nilpotency degree of the nilradical of
2476
+ a solvable Lie algebra on two generators and uniserial modules associated to free
2477
+ nilpotent Lie algebras. Journal of Algebra, 585:447–483, 2021.
2478
+ [7] L. Cagliero and I. G´omez Rivera. Tensor products and intertwining operators for unis-
2479
+ erial representations of the Lie algebras sl(2) ⋉ V (m). submitted (ArXiv:2201.10605).
2480
+ [8] L. Cagliero and F. Szechtman. The classification of uniserial sl(2)⋉V (m)-modules and
2481
+ a new interpretation of the Racah-Wigner 6j-symbol. Journal Algebra, 386:142–175,
2482
+ 2013.
2483
+ [9] L. Cagliero and F. Szechtman. On the theorem of the primitive element with appli-
2484
+ cations to the representation theory of associative and Lie algebras. Canad. Math.
2485
+ Bull., 57:735–748, 2014.
2486
+
2487
+ 28
2488
+ LEANDRO CAGLIERO AND IV´AN G´OMEZ RIVERA
2489
+ [10] L. Cagliero and F. Szechtman. Classification of linked indecomposable modules of a
2490
+ family of solvable Lie algebras over an arbitrary field of characteristic 0. J. of Algebra
2491
+ and Its Applications, 15(1650029), 2016.
2492
+ [11] L. Cagliero and F. Szechtman. Indecomposable modules of 2-step solvable Lie algebras
2493
+ in arbitrary characteristic. Comm. Algebra, 44:1–10, 2016.
2494
+ [12] P. Casati. Irreducible sln+1-representations remain indecomposable restricted to some
2495
+ Abelian subalgebras. Journal Lie Theory, 20:393–407, 2010.
2496
+ [13] P. Casati. The classification of the perfect cyclic sln+1 ⋉ Cn+1-modules. Journal of
2497
+ Algebra, 476:311–343, 2017.
2498
+ [14] P. Casati, S. Minniti, and V. Salari. Indecomposable representations of the Diamond
2499
+ Lie algebra. Journal of Mathematical Physics, 51(033515):20pp, 2010.
2500
+ [15] P. Casati, A. Previtali, and F. Szechtman. Indecomposable modules of a family of
2501
+ solvable lie algebras. Linear Algebra and its Applications, 531:423–446, 2017.
2502
+ [16] V. Chari and A. Moura. The restricted Kirillov-Reshetikhin modules for the current
2503
+ and twisted current algebras. Commun. Math. Phys., 266:431–454, 2006.
2504
+ [17] A. Douglas and H. de Guise. Some nonunitary, indecomposable representations of the
2505
+ Euclidean algebra e(3). J. Phys. A: Math. Theor., 43(085204):13pp, 2010.
2506
+ [18] A. Douglas, D. Kahrobaei, and J. Repka. Classification of embeddings of abelian
2507
+ extensions of Dn into En+1. J. Pure Appl. Algebra, 217:1942–1954, 2013.
2508
+ [19] A. Douglas and A. Premat. A class of nonunitary, finite dimensional representations
2509
+ of the euclidean algebra e(2). Communications in Algebra, 35:1433–1448, 2007.
2510
+ [20] T. Finis. Appendix to the paper “Some uniserial representations of certain special
2511
+ linear groups” by P. Sin and J. G. Thompson. J. Algebra, 398:461–468, 2014.
2512
+ [21] B. Huisgen-Zimmermann. The geometry of uniserial representations of finite dimen-
2513
+ sional algebras. III: Finite uniserial type. Trans. Amer. Math. Soc., 348:4775–4812,
2514
+ 1996.
2515
+ [22] H. P. Jakobsen. Indecomposable finite-dimensional representations of a class of Lie
2516
+ algebras and Lie superalgebras, volume 2027. Lecture Notes in Math., Springer, Hei-
2517
+ delberg, 2011.
2518
+ [23] L. Morotti. Irreducible tensor products of representations of covering groups of sym-
2519
+ metric and alternating groups. Represent. Theory, 25:543–593, 2021.
2520
+ [24] T. Nakayama. On Frobeniusean algebras II. Ann. of Math., 42:1–21, 1941.
2521
+ [25] Z. Nazemian, A. Ghorbani, and M. Behboodi. Uniserial dimension of modules. J.
2522
+ Algebra, 399:894–903, 2014.
2523
+ [26] A. Piard. Sur des repr´esentations ind´ecomposables de dimension finie de SL(2).R2.
2524
+ Journal of Geometry and Physics, 3:1–53, 1986.
2525
+ [27] G. Puninski. Serial rings. Kluwer Academic Publishers, Dordrecht, 2001.
2526
+ [28] P. Sin and J. G. Thompson. Some uniserial representations of certain special linear
2527
+ groups. J. Algebra, 398:448–460, 2014.
2528
+ [29] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum theory of
2529
+ angular momentum. World Scientific, Singapore, 1989.
2530
+ FaMAF-CIEM (CONICET), Universidad Nacional de C´ordoba, Medina Al-
2531
+ lende s/n, Ciudad Universitaria, 5000 C´ordoba, Rep´ublica Argentina.
2532
+ Email address: [email protected]
2533
+ FaMAF-CIEM (CONICET), Universidad Nacional de C´ordoba, Medina Al-
2534
+ lende s/n, Ciudad Universitaria, 5000 C´ordoba, Rep´ublica Argentina.
2535
+ Email address: [email protected]
2536
+
1dFIT4oBgHgl3EQf3yva/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29E1T4oBgHgl3EQfSAP8/content/2301.03062v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e81d882cce82a85dcefa7eb71c8426795017ab6fd10121d517774897bbd0e1b1
3
+ size 595982
29E1T4oBgHgl3EQfSAP8/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e6e19c89e51b5dd5711513cd5121be93a5cf304a13641912fd5b6e853eadcce
3
+ size 5111853
2NA0T4oBgHgl3EQfM_8t/content/tmp_files/2301.02139v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NA0T4oBgHgl3EQfM_8t/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dE3T4oBgHgl3EQfnwqt/content/tmp_files/2301.04628v1.pdf.txt ADDED
@@ -0,0 +1,1388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Face Attribute Editing with
3
+ Disentangled Latent Vectors
4
+ Yusuf Dalva, Hamza Pehlivan, Oyku Irmak Hatipoglu, Cansu Moran, and Aysegul Dundar
5
+ Abstract—We propose an image-to-image translation framework for facial attribute editing with disentangled interpretable latent
6
+ directions. Facial attribute editing task faces the challenges of targeted attribute editing with controllable strength and disentanglement
7
+ in the representations of attributes to preserve the other attributes during edits. For this goal, inspired by the latent space factorization
8
+ works of fixed pretrained GANs, we design the attribute editing by latent space factorization, and for each attribute, we learn a linear
9
+ direction that is orthogonal to the others. We train these directions with orthogonality constraints and disentanglement losses. To
10
+ project images to semantically organized latent spaces, we set an encoder-decoder architecture with attention-based skip connections.
11
+ We extensively compare with previous image translation algorithms and editing with pretrained GAN works. Our extensive experiments
12
+ show that our method significantly improves over the state-of-the-arts. Project page: https://yusufdalva.github.io/vecgan
13
+ Index Terms—Image translation, generative adversarial networks, latent space manipulation, face attribute editing.
14
+ !
15
+ 1
16
+ INTRODUCTION
17
+ Facial attribute editing task has been a popular topic among
18
+ the image translation tasks, and significant improvements
19
+ have been achieved with generative adversarial networks
20
+ (GANs) [4], [5], [20], [26], [36], [40]. Facial attribute editing
21
+ is one of the most challenging translation tasks because only
22
+ one attribute of a face is expected to be modified without
23
+ affecting other attributes, whereas humans are very good at
24
+ detecting if a person’s identity or any other attributes of the
25
+ face change.
26
+ There are two main directions proposed for facial at-
27
+ tribute editing, 1- end-to-end trained image translation
28
+ networks and 2- latent manipulation of pretrained GAN
29
+ networks. For the first one, different image translation ar-
30
+ chitectures are proposed with usually two networks, one
31
+ for encoding style and the other for image editing with
32
+ modified styles are injected into [4], [20]. A style, an at-
33
+ tribute, is usually encoded from another image or sampled
34
+ from a distribution. The attributes both in the encoding
35
+ and editing phases need to be disentangled. To achieve
36
+ such disentanglement, works focus on style encoding and
37
+ progress from a shared style code, SDIT [33], to mixed style
38
+ codes, StarGANv2 [4], to hierarchical disentangled styles,
39
+ HiSD [20]. Among these works, HiSD independently learns
40
+ styles of each attribute, bangs, hair color, and eyeglasses,
41
+ and introduces a local translator which uses attention masks
42
+ to avoid global manipulations. HiSD showcases successes
43
+ on those three local attribute editing tasks and is not tested
44
+ for global attribute editing, e.g., age, smile. Furthermore,
45
+ one limitation of these works is the uninterruptible style
46
+ codes, as one cannot control the intensity of attributes (e.g.,
47
+ blondness) in a straightforward manner.
48
+ The second class of methods builds on well-trained gen-
49
+ erative models, specifically StyleGAN2 models [17], which
50
+
51
+ Y. Dalva, H. Pehlivan, I. Hatipoglu, C. Moran, and A. Dundar are with
52
+ the Department of Computer Science, Bilkent University, Ankara, Turkey.
53
+ organize their latent space as disentangled representations
54
+ with meaningful directions in a completely unsupervised
55
+ way. This approach has two steps; in the first step, an input
56
+ image is embedded into the generative model’s latent space
57
+ via additional training of an encoder or latent optimization.
58
+ In the second step, the embedded latent code is modified
59
+ based on the discovered directions such that when the
60
+ edited code is decoded, an attribute is edited in the input
61
+ image. Embedding images in GAN’s space and exploring
62
+ interpretable directions in latent codes have emerged as
63
+ important research endeavors on the fixed pretrained GANs
64
+ [9], [27], [28], [30], [35]. We refer to these models as StyleGAN
65
+ inversion-based methods throughout the manuscript. How-
66
+ ever, these models are not trained end-to-end. Therefore,
67
+ there is no guarantee that the encoded image lies in the
68
+ natural GAN space, which results in the codes with limited
69
+ editability. When encoders are forced to encode images into
70
+ GAN’s natural latent distribution, the results suffer from
71
+ the lack of faithful reconstruction. Additionally, since the
72
+ model is not trained for this task, there is no guarantee that
73
+ interesting attributes would be disentangled (e.g. eyeglasses
74
+ versus age).
75
+ To overcome the challenges of facial attribute editing
76
+ task, our previous conference work proposed an image-
77
+ to-image translation framework with interpretable latent
78
+ directions, VecGAN [5]. The attribute editing directions of
79
+ VecGAN were learned in the latent space and regularized to
80
+ be orthogonal to each other for style disentanglement. With
81
+ this setup, VecGAN also provided a knob for the control-
82
+ lable strength of the change, a scalar value. In this work, we
83
+ improve upon VecGAN [5] with a novel disentanglement
84
+ loss and architectural changes.
85
+ This manuscript extends its conference version [5] with
86
+ the following additions:
87
+
88
+ We introduce a disentanglement loss which stabilizes
89
+ the training and improves the results as explained in
90
+ Section 3.5.
91
+ arXiv:2301.04628v1 [cs.CV] 11 Jan 2023
92
+
93
+ 2
94
+ Input
95
+ Smile
96
+ Gender
97
+ Age
98
+ Hair Color
99
+ Eyeglasses
100
+ Bangs
101
+ Fig. 1: VecGAN++ image translation results.
102
+
103
+ We augment our generator with attention-based skip
104
+ connections. This way, the network can pass only
105
+ selected information to the decoder. The module is
106
+ explained in Section 3.3. We refer to our final model
107
+ with updated architecture and loss objective as Vec-
108
+ GAN++. Example translation results of VecGAN++
109
+ are given in Fig. 1.
110
+
111
+ We compare our method with several state-of-the-art
112
+ image translation methods, especially with popular
113
+ pretrained GAN-based models. We provide results
114
+ with an extensive number of metrics for quality,
115
+ attribute edit accuracy, identity, and background
116
+ preservation (Section 4.2). Our results show the effec-
117
+ tiveness of our framework with significant improve-
118
+ ments over state-of-the-art as provided in Section 4.3.
119
+
120
+ We provide a comprehensive analysis of our results
121
+ in Section 5. We report metrics as the strength of
122
+ editing increases for our and competing methods. We
123
+ also analyze the projected style codes and show that
124
+ they can classify the targeted attributes of images,
125
+ e.g. hair color, smile.
126
+ 2
127
+ RELATED WORK
128
+ Image to Image Translation. Image-to-image translation
129
+ algorithms aim at preserving a given content from the input
130
+ image while changing targeted attributes. They find a wide
131
+ range of applications from translating semantic maps into
132
+ RGB images [6], [21], [32], RGB images to portrait drawings
133
+ [38] and very popularly to editing faces [2], [4], [7], [11], [20],
134
+ [26], [34], [36], [40]. These algorithms set an encoder-decoder
135
+ architecture and train the models with reconstruction and
136
+ GAN losses [8]. When the translation is designed in a
137
+ unimodal setting, images are processed with an encoder and
138
+ decoder to output translated images from one domain to
139
+ the other [23], [32]. The shortcoming of such a setup is that
140
+ a single input image may correspond to multiple possible
141
+ outputs, which makes the translation problem ambiguous.
142
+ Because of that, multi-modal image translation models are
143
+ proposed in which style is encoded separately from an-
144
+ other image or sampled from a distribution [4], [13]. The
145
+ generator, decoder, receives style and content information.
146
+ This information is either concatenated channel-wise [41], or
147
+ combined with a mask [20] or fed separately to the decoder
148
+ while content goes through the convolutional layers, style
149
+ goes through instance normalization blocks [13], [42]. These
150
+ works use two encoders, one is to extract style, and one
151
+ is to encode content [20], [37]. However, in many cases,
152
+ it is not clear what the content is and what the style is.
153
+ Usually, style is referred to the domain attributes one wants
154
+ to change, and the content is the rest of the attributes, which
155
+ is an ambiguous problem definition. In our work, we design
156
+ the attribute as a learnable linear direction in the latent
157
+ space, and we do not employ separate style and content
158
+ encoders. Instead, we use a single encoder, resulting in a
159
+ more intuitive framework.
160
+ Editing with pretrained GANs (StyleGAN inversion-
161
+ based models). Facial attribute editing is also shown to
162
+ be possible with pretrained GANs. State-of-the-art GAN
163
+ models organize their latent space with interpretable direc-
164
+ tions [16], [17], [39] such that moving along the direction
165
+ only changes one attribute of the image. These directions
166
+ are explored in supervised [27], and unsupervised ways
167
+ [9], [28], [30], [35], and many directions are found for face
168
+ editing, e.g. directions that change the smile, pose, age
169
+ attributes are found, to name a few. To edit a facial attribute
170
+ of an input image, one needs to project the image to a latent
171
+ code in GANs’ latent space [1] such that the generator re-
172
+ constructs the input image from the latent code. There have
173
+ been various architectures [3], [31] and objectives proposed
174
+ to project an image to GAN’s embedding. However, they
175
+ suffer from reconstruction-editability trade-off [29]. That is
176
+ if the image is faithfully reconstructed, it may not lie in the
177
+ true distribution of GANs latent space, and therefore, the
178
+ directions do not work as expected, which prevents editing
179
+ the image. On the other hand, if the projection is close to
180
+ the true distribution, then the reconstruction is poor. We
181
+
182
+ EXEXEXEXEXEXEX3
183
+ also show this behavior in the Results section 4.3 when
184
+ comparing our method with state-of-the-art editing with
185
+ pretrained GANs methods.
186
+ Even though these methods are not as successful as
187
+ the image translation methods, it is still quite remarkable
188
+ when the generative network is only taught to synthesize
189
+ realistic images, it organizes the use of latent space such that
190
+ linear shifts on them change a specific attribute. Inspired by
191
+ these findings, our image-to-image translation framework is
192
+ designed similarly such that a linear shift in the encoded
193
+ features is expected to change a single attribute of an
194
+ image. Unlike previous works, our framework is trained
195
+ end-to-end for translation task, allowing reference-guided
196
+ attribute manipulation via projection, and does not suffer
197
+ from reconstruction-editability trade-off.
198
+ 3
199
+ METHOD
200
+ In this section, we provide an overview of the generator ar-
201
+ chitecture and the training set-up. We follow the hierarchical
202
+ labels defined by [20]. For a single image, its attribute for tag
203
+ i ∈ {1, 2, ..., N} can be defined as j ∈ {1, 2, ..., Mi}, where
204
+ N is the number of tags and Mi is the number of attributes
205
+ for tag i. For example, i can be the tag of hair color, and
206
+ attribute j can take the value of black, brown, or blonde.
207
+ Our framework has two main objectives. As the main
208
+ task, we aim to be able to perform the image-to-image
209
+ translation task in a feature (tag) specific manner. While
210
+ performing this translation, as the second objective, we also
211
+ want to obtain an interpretable feature space that allows us
212
+ to perform tag-specific feature interpolation.
213
+ 3.1
214
+ Generator Architecture
215
+ For the image-to-image translation task, we set an encoder-
216
+ decoder based architecture and latent space translation in
217
+ the middle as given in Fig. 2. We perform the translation
218
+ in the encoded latent space, e, which is obtained by e =
219
+ E(x) where E refers to the encoder. The encoded features go
220
+ through a transformation T which is discussed in the next
221
+ section. The transformed features are then decoded by G
222
+ to reconstruct the translated images. The image generation
223
+ pipeline following feature encoding is described in Eq. 1.
224
+ e′ = T(e, α, i)
225
+ x′ = G(e′)
226
+ (1)
227
+ Previous image-to-image translation networks [4], [20],
228
+ [37] set a shallow encoder-decoder architecture to translate
229
+ an image while preserving the content and a separate deep
230
+ network for style encoding. In most cases, the style en-
231
+ coder includes separate branches for each tag. The shallow
232
+ architecture used to translate images prevents the model
233
+ from making drastic changes in the images, which helps
234
+ preserving the person’s identity. Our framework is different
235
+ as we do not employ a separate style encoder and instead
236
+ have a deep encoder-decoder architecture for translation.
237
+ That is because to be able to organize the latent space in
238
+ an interpretable way, our framework requires a full un-
239
+ derstanding of the image and, therefore, a larger receptive
240
+ field which results in a deeper network architecture. A deep
241
+ architecture with decreasing size of feature size, on the
242
+ other hand, faces the challenges of reconstructing all the fine
243
+ details from the input image.
244
+ With the motivation of helping the network to preserve
245
+ tag-independent features such as the fine details from the
246
+ background, we use attention-based skip connections be-
247
+ tween our encoder and decoder as described in Section 3.3.
248
+ The architectural details of the encoder and decoder are
249
+ as follows: For the encoder, following a 1×1 convolution, we
250
+ use 8 successive blocks that perform downsampling, which
251
+ reduces feature map dimensions to 1x1. In our decoder, we
252
+ have an architecture symmetric to the encoder, which is
253
+ composed of 8 successive upsampling blocks. Except for the
254
+ last downsampling block and the first upsampling block, we
255
+ use instance normalization denoted as (+IN). The channels
256
+ increase as {32, 64, 128, 256, 512, 512, 512, 1024, 2048} (for
257
+ output resolution 256 × 256) in the encoder and decrease
258
+ in a symmetric way in the decoder. Each DownBlock and
259
+ UpBlock has a residual block with 3×3 convolutional filters
260
+ followed by a downsampling and upsampling layer, respec-
261
+ tively. For downsampling, we use average pooling; for up-
262
+ sampling, we use nearest-neighbor. We use the LeakyReLU
263
+ activation layer (with slope 0.2) and instance normalization
264
+ layer in each convolutional module.
265
+ 3.2
266
+ Translation Module
267
+ To achieve a style transformation, we perform the tag-based
268
+ feature manipulation in a linear fashion in the latent space.
269
+ First, we set a feature direction matrix A, which contains
270
+ learnable feature directions for each tag. In our formulation,
271
+ Ai denotes the learned feature direction for tag i. The di-
272
+ rection matrix A is randomly initialized and learned during
273
+ training.
274
+ Our translation module is formulated in Eq. 2, which
275
+ adds the desired shift on top of the encoded features e
276
+ similar to [30].
277
+ T(e, α, i) = e + α × Ai
278
+ (2)
279
+ We compute the shift by subtracting the target style from
280
+ the source style as given in Eq 3.
281
+ α = αt − αs
282
+ (3)
283
+ Since the attributes are designed as linear steps in the
284
+ learnable directions, we find the style shift by subtracting
285
+ the target attribute scale from the source attribute scale. This
286
+ way, the same target attribute αt can have the same impact
287
+ on the translated images no matter what the attributes were
288
+ of the original images. For example, if our target scale
289
+ corresponds to brown hair, the source scale can be coming
290
+ from an image with blonde or back hair, but since we take
291
+ a step for the difference of the scales, they can both be
292
+ translated to an image with the same shade of brown hair.
293
+ There are two alternative pathways to extract the target
294
+ shifting scale for feature (tag) i, αt. The first pathway, named
295
+ the latent-guided path, samples a z ∈ U[0, 1) and applies a
296
+ linear transformation αt = wi,j · z + bi,j, where αt denotes
297
+ sampled shifting scale for tag i and attribute j. We learn
298
+ linear transformation parameters wi,j and bi,j in training
299
+ time. Here tag i can be hair color, and attribute j can be
300
+
301
+ 4
302
+ E
303
+ A
304
+ i
305
+ Ai
306
+ +
307
+ x
308
+ j
309
+ Latent guided
310
+ Reference guided
311
+ Projection
312
+ Ai
313
+ Projection
314
+ Ai
315
+ Removing attribute
316
+ Adding attribute
317
+ A
318
+ i
319
+ x
320
+ -
321
+ Ai
322
+ Skip
323
+ Network
324
+ x
325
+ x
326
+ Attention-based Skip
327
+ Connections
328
+ 256x64x64
329
+ Encoded
330
+ Features
331
+ Feature
332
+ Selection
333
+ Mask
334
+ Edit-Irrelevant
335
+ Features
336
+ E
337
+ 256x64x64
338
+ G
339
+ Inverse
340
+ e’
341
+ s
342
+ e
343
+ Fig. 2: Our translator is built on the idea of interpretable latent directions. We encode images with an Encoder to a latent
344
+ representation from which we change a selected tag (i), e.g. hair color with a learnable direction Ai and a scale α. To
345
+ calculate the scale, we subtract the target style scale from the source style. This operation corresponds to removing an
346
+ attribute and adding an attribute. To remove the image’s attribute, the source style is encoded and projected from the
347
+ source image. To add the target attribute, the target style scale is sampled from a distribution mapped for the given
348
+ attribute (j), e.g. black, blonde, or encoded and projected from a reference image.
349
+ blonde, brown, or back hair. We learn a different transfor-
350
+ mation module for each attribute, denoted as Mi,j(z). Since
351
+ we learn a single direction for every tag, e.g. hair color,
352
+ this transformation module can put the initially sampled z’s
353
+ into the correct scale in the linear line based on the target
354
+ hair color attribute. As the other alternative pathway, we
355
+ encode the scalar value αt in a reference-guided manner.
356
+ We extract αt for tag i from a provided reference image by
357
+ first encoding it into the latent space, er, and projecting er
358
+ via by Ai as given in Eq. 4.
359
+ αt = P(er, Ai) = er · Ai
360
+ ||Ai||
361
+ (4)
362
+ In the reference guidance set-up, we do not use the
363
+ information of attribute j, since it is encoded by the tag i
364
+ features of the image.
365
+ The source scale, αs, is obtained in the same way we
366
+ obtain αt from the reference image. We perform the pro-
367
+ jection for the corresponding tag we want to manipulate, i,
368
+ by P(e, Ai). We formulate our framework with the intuition
369
+ that the scale controls the amount of features to be added.
370
+ Therefore, especially when the attribute is copied over from
371
+ a reference image, the amount of features that will be added
372
+ will be different based on the source image. For this reason,
373
+ we find the amount of shift by subtraction as given in Eq. 3.
374
+ Our framework is intuitive and relies on a single encoder-
375
+ decoder architecture.
376
+ 3.3
377
+ Attention-based Skip Connections
378
+ To separate encoded features into two branches based on
379
+ feature relevancy for edits, we include a skip network S in
380
+ our architecture. This network S includes three consecutive
381
+ convolutional layers that apply 1x1 convolutions where in-
382
+ put and output channels are set as 256. These convolutional
383
+ layers are followed by LeakyReLU activations (with a slope
384
+ of 0.2), and a sigmoid activation function follows the last
385
+ one to mask features.
386
+ While encoding our input, we compute this attention
387
+ mask using the encoded features e where feature dimen-
388
+ sions are 256 × 64 × 64. Using this mask, we compute two
389
+ feature tensors, e′ and s, which correspond to edit-relevant
390
+ and edit-irrelevant features, respectively. We provide the
391
+ equation for our attention mechanism in equations 5 and
392
+ 6.
393
+ e′ = S(e) ∗ e
394
+ (5)
395
+ s = (1 − S(e)) ∗ e
396
+ (6)
397
+ Following this feature filtering step, we encode the em-
398
+ bedding representing image features at the highest level
399
+ using e′. In our decoding step, we combine edit-irrelevant
400
+ features s with decoded features with a summation of
401
+ 64x×64 features. This enables our encoder to focus on face-
402
+ relevant features used in our edits and separate features
403
+ encoding texture details. The attention mechanism in the
404
+ full pipeline is provided in Fig. 2.
405
+ 3.4
406
+ Training pathways
407
+ We train our network using two different paths by modify-
408
+ ing the translation paths defined by [20]. For each iteration
409
+ to optimize our model, we sample a tag i for shift direction,
410
+ a source attribute j as the current attribute, and a target
411
+ attribute ˆj.
412
+
413
+ 5
414
+ Non-translation path. To ensure that the encoder-decoder
415
+ structure preserves the images’ details, we reconstruct the
416
+ input image without applying any style shifts. The resulting
417
+ image is denoted as xn as given in Eq. 7.
418
+ xn = G(E(x))
419
+ (7)
420
+ Cycle-translation path. We apply a cyclic translation to
421
+ ensure we get a reversible translation from a latent guided
422
+ scale. In this path, we first apply a style shift by sampling
423
+ z ∈ U[0, 1) and obtaining target αt with Mi,ˆj(z) for target
424
+ attribute ˆj. The translation uses α that is obtained by sub-
425
+ tracting αt from the source style. The decoder generates an
426
+ image, xt, as given in Eq. 8 where e is encoded features from
427
+ input image x, e = E(x).
428
+ xt = G(T(e, Mi,j(z) − P(e, i), i))
429
+ (8)
430
+ Then by using the original image, x, as a reference image,
431
+ we aim to reconstruct the original image by translating xt.
432
+ Overall, this path attempts to reverse a latent-guided style
433
+ shift with a reference-guided shift. The second translation is
434
+ given in Eq. 9 where et = E(xt).
435
+ xc = G(T(et, P(e, i) − P(et, i), i))
436
+ (9)
437
+ In our learning objectives, we use xn and xc for recon-
438
+ struction and xt and xc for adversarial losses, and Mi,j(z)
439
+ for the shift reconstruction loss. Details about the learning
440
+ objectives are given in the next section.
441
+ 3.5
442
+ Learning objectives
443
+ Given an input image xi,j ∈ Xi,j, where i is the tag to
444
+ manipulate and j is the current attribute of the image, we
445
+ optimize our model with the following objectives. In our
446
+ equations, xi,j is shown as x.
447
+ Adversarial Objective. We learn a discriminator em-
448
+ ploying an architecture with decreasing resolution and in-
449
+ creasing channel size. Like the generator, we build our
450
+ discriminator with channel sizes of {32, 64, 128, 256, 512,
451
+ 512, 512, 1024, 2048}, reducing the feature map dimensions
452
+ to 1x1. We concatenate the extracted style αt from the input
453
+ image to this latent code and apply a 1x1 convolution. This
454
+ final convolution is specific to each tag-attribute pair so that
455
+ the model can use this information.
456
+ During training, our generator performs a style shift
457
+ either in a latent-guided or a reference-guided way, resulting
458
+ in a translated image. In our adversarial loss, we receive
459
+ feedback from the two steps of the cycle-translation path.
460
+ As the first component of the adversarial loss, we feed a
461
+ real image x with tag i and attribute j to the discriminator as
462
+ the real example. To give adversarial feedback to the latent-
463
+ guided path, we use the intermediate image generated in
464
+ the cycle-translation path, xt. Finally, to provide adversarial
465
+ feedback to the reference-guided path, we use the final
466
+ outcome of the cycle-translation path xc. Only x acts as
467
+ a real image; both xt and xc are translated images and
468
+ are treated as fake images with different attributes. The
469
+ discriminator aims to classify whether an image is real or
470
+ fake, given its tag and attribute. The objective is given in Eq.
471
+ 10.
472
+ Ladv = 2log(Di,j(x)) + log(1 − Di,ˆj(xt))
473
+ +log(1 − Di,j(xc))
474
+ (10)
475
+ Shift
476
+ Reconstruction
477
+ Objective.
478
+ As
479
+ the
480
+ cycle-
481
+ consistency
482
+ loss
483
+ performs
484
+ reference-guided
485
+ generation
486
+ followed by latent-guided generation, we utilize a loss
487
+ function to make these two methods consistent with each
488
+ other [13], [18], [19], [20]. Specifically, we would like to
489
+ obtain the same target scale, αt, both from the mapping and
490
+ the encoded reference image generated by the mapped αt.
491
+ The loss function is given in Eq. 11.
492
+ Lshift = ||Mi,j(z) − P(et, i)||1
493
+ (11)
494
+ Those parameters, Mi,j(z) and P(et, i), are calculated for
495
+ the cycle-translation path as given in Eq. 8 and 9.
496
+ Image Reconstruction Objective. In all of our training
497
+ paths, the purpose is to be able to re-generate the original
498
+ image again. To supervise this desired behavior, we use
499
+ L1 loss for reconstruction loss. In our formulation, xn and
500
+ xc are outputs of the non-translation and cycle-translation
501
+ paths, respectively. Formulation of this objective is provided
502
+ in Eq. 12.
503
+ Lrec = ||xn − x||1 + ||xc − x||1
504
+ (12)
505
+ Orthogonality Objective. To encourage the orthogonal-
506
+ ity between directions, we use soft orthogonality regulariza-
507
+ tion based on the Frobenius norm, which is given in Eq. 13.
508
+ This orthogonality further encourages a disentanglement in
509
+ the learned style directions.
510
+ Lortho = ∥AT A − I∥F
511
+ (13)
512
+ Disentanglement Objective We intend to change the
513
+ scale for the desired semantic in each translation. As a reflec-
514
+ tion of this criteria, we penalize the changes in the attributes
515
+ that are not subjected to any translation. For translated tag
516
+ i, input scales α, and edited scales α′, the disentanglement
517
+ loss is formulated in equation 14. In the formulation, αk
518
+ represents the semantic scale for tag k. Scales are calculated
519
+ based on the projection given in Eq. 4.
520
+ Ldis =
521
+
522
+ k̸=i
523
+ ||αk − α′
524
+ k||
525
+ (14)
526
+ We find this disentanglement to be complementary to
527
+ our orthogonality objective. When the model is trained with
528
+ additional disentanglement loss, we observe that orthogo-
529
+ nality loss drops to a lower value.
530
+ Full Objective. Combining all of the loss components
531
+ described, we reach the overall objective for optimization
532
+ as given in Eq. 15. Additionally, we add an L1 loss on the
533
+ matrix A parameters to encourage its sparsity.
534
+ min
535
+ E,G,M,Amax
536
+ D λaLadv + λsLshift + λrLrec
537
+ +λo(Lortho + Ldis) + λspLsparse
538
+ (15)
539
+ We set the following parameters; λa = 1, λrec = 1.5,
540
+ λs = 1, λo = 1 and λsp = 0.1. We use a learning rate of
541
+ 10−4 and train our model for 600K iterations with a batch
542
+ size of 8 on a single GPU.
543
+
544
+ 6
545
+ Input
546
+ Reference
547
+ HiSD
548
+ VecGAN
549
+ Input
550
+ Reference
551
+ Input
552
+ Reference
553
+ VecGAN++
554
+ Fig. 3: Qualitative results of bangs attribute of our final model (VecGAN++ - Ours w/ Attn. Skip + Disen.), VecGAN and
555
+ HiSD. Given reference images, methods extract reference attributes and edit input images accordingly. All methods achieve
556
+ high-quality results. VecGAN++ achieves better edit quality compared to VecGAN. It is important to note that, HiSD learns
557
+ feature-based local translators, which is a successful approach on local edits, e.g. bangs, eyeglasses, and hair color but not
558
+ smile, age, or gender. Our method achieves comparable visual and better quantitative results than HiSD on this local task
559
+ and can also achieve global edits.
560
+ Method
561
+ Lat.
562
+ Ref.
563
+ Avg.
564
+ SDIT [33]
565
+ 33.73
566
+ 33.12
567
+ 33.42
568
+ StarGANv2 [4]
569
+ 26.04
570
+ 25.49
571
+ 25.77
572
+ Elegant [36]
573
+ -
574
+ 22.96
575
+ -
576
+ HiSD [20]
577
+ 21.37
578
+ 21.49
579
+ 21.43
580
+ VecGAN [5]
581
+ 20.17
582
+ 20.72
583
+ 20.45
584
+ Ours w/ Disen.
585
+ 20.23
586
+ 20.57
587
+ 20.40
588
+ Ours w/ Attn. Skip + Disen.
589
+ 20.15
590
+ 20.08
591
+ 20.12
592
+ TABLE 1: Quantitative results for Setting I. Lat: Latent
593
+ guided, Ref: Reference guided.
594
+ 4
595
+ EXPERIMENTS
596
+ 4.1
597
+ Dataset and Settings
598
+ We train our model on CelebA-HQ dataset [22], which con-
599
+ tains 30,000 face images. To extensively compare with state-
600
+ of-the-arts, we follow two training-evaluation protocols as
601
+ follows:
602
+ Setting I. In our first setting, we follow the set-up from
603
+ HiSD [20] to compare our method with end-to-end based
604
+ image translation algorithms. Following HiSD, we use the
605
+ first 3000 images of the CelebA-HQ dataset as the test set
606
+ and 27000 as the training set. These images include annota-
607
+ tions for different attributes from which we use hair color,
608
+ the presence of glass, and bangs attributes for translation
609
+ tasks in this setting. The images are resized to 128 × 128.
610
+ Following the evaluation protocol proposed by HiSD [20],
611
+ we compute FID scores on the bangs addition task. For
612
+ each test image without bangs, we translate them to images
613
+ with bangs with latent and reference guidance. In latent
614
+ guidance, 5 images are generated for each test image by
615
+ randomly sampled scales from a uniform distribution. Then
616
+ this generated set of images is compared with images with
617
+ attribute bangs in terms of their FIDs. FIDs are calculated
618
+ for these 5 sets and averaged. We randomly pick 5 reference
619
+ images for reference guidance to extract the style scale. FIDs
620
+ are calculated for these 5 sets separately and averaged.
621
+ Setting II. We use our second setting to comprehensively
622
+ compare our method with StyleGAN2-based inversion and
623
+ editing methods. For this setting, the training/test split is
624
+ obtained by re-indexing each image in CelebA-HQ back
625
+ to the original CelebA and following the standard split of
626
+ CelebA. This results in 27,176 training and 2,824 test im-
627
+ ages. Our models are trained for hair color, the presence of
628
+ glasses, bangs, age, smiling, and gender attributes. Images
629
+ are resized to 256 × 256 resolution, which is the dimension
630
+ StyleGAN2-based inversion methods use. We evaluate our
631
+ model with smile addition and removal and bangs addi-
632
+ tion attributes. Since the task of smile addition/removal
633
+ requires a high-level understanding of the input face for
634
+ modifying multiple facial components simultaneously, it is
635
+ considered one of the most challenging attributes to edit.
636
+ By benchmarking our model with such an editing task, we
637
+ demonstrate the effectiveness of our framework in terms of
638
+ image understanding.
639
+ 4.2
640
+ Metrics
641
+ We mostly build our evaluation on the FID metric as in
642
+ previous works. Additionally, for smile manipulation, we
643
+ evaluate our results on other metrics such as smile clas-
644
+ sification accuracy, Identity Preservation, and Background
645
+ Preservation, described as follows:
646
+ Frechet Inception Distance (FID): For the FID metric
647
+ [10], we calculated the distance between the feature vectors
648
+ of original and generated images, which are obtained using
649
+ the Inception-V3 model.
650
+ Accuracy (Acc): We train an image classification network
651
+ for smile attribute classification on the training split of
652
+ the CelebA-HQ dataset. We use an ImageNet pretrained
653
+ ResNet-50 model and fine-tune it for this task. The model
654
+ achieves 94% accuracy on the validation set for the smile
655
+ attribute. We use this classifier to evaluate the accuracy
656
+ of the generated images to test if the attribute is correctly
657
+ manipulated.
658
+
659
+ 7
660
+ 1. Smile (+)
661
+ 2. Smile (+)
662
+ 3. Smile (+)
663
+ 4. Smile (-)
664
+ 5. Smile (-)
665
+ 6. Bangs (+)
666
+ 7. Bangs (+)
667
+ 8. Age (+)
668
+ 9. Age (+)
669
+ Input
670
+ VecGAN++
671
+ VecGAN
672
+ e4e
673
+ HFGI
674
+ HyperStyle
675
+ StyleTransformer
676
+ StyleRes
677
+ Fig. 4: Qualitative results of our and competing methods. StyleGAN inversion-based methods do not faithfully reconstruct
678
+ input images. They miss many details from the background and foreground. StyleRes achieves better reconstruction results
679
+ compared to others but not VecGAN models. VecGAN++ and VecGAN achieve high fidelity to the originals with only
680
+ targeted attributes manipulated naturally and realistically. We also observe that VecGAN++ significantly improves over
681
+ VecGAN in many examples.
682
+
683
+ MER
684
+ EXPMER
685
+ EXPMER
686
+ EXPMER8
687
+ Bangs
688
+ Smile
689
+ Method
690
+ FID (+)
691
+ FID (+)
692
+ FID (-)
693
+ Acc (+)
694
+ Acc (-)
695
+ Id (+)
696
+ Id (-)
697
+ BG (+)
698
+ BG (-)
699
+ e4e [29]
700
+ 53.62
701
+ 35.01
702
+ 37.91
703
+ 99.9
704
+ 99.8
705
+ 0.4536
706
+ 0.4382
707
+ 0.7709
708
+ 0.7541
709
+ HyperStyle [3]
710
+ 41.37
711
+ 25.25
712
+ 24.64
713
+ 96.8
714
+ 98.0
715
+ 0.6544
716
+ 0.6771
717
+ 0.7941
718
+ 0.7713
719
+ HFGI [31]
720
+ 40.54
721
+ 23.49
722
+ 26.58
723
+ 99.2
724
+ 96.6
725
+ 0.5522
726
+ 0.5290
727
+ 0.7320
728
+ 0.7324
729
+ StyleTransformer [12]
730
+ 44.66
731
+ 27.64
732
+ 32.71
733
+ 99.9
734
+ 98.4
735
+ 0.5311
736
+ 0.5173
737
+ 0.7767
738
+ 0.7607
739
+ StyleRes [25]
740
+ 40.13
741
+ 20.53
742
+ 21.63
743
+ 99.1
744
+ 99.2
745
+ 0.5647
746
+ 0.5606
747
+ 0.8547
748
+ 0.8720
749
+ VecGAN [5]
750
+ 36.47
751
+ 17.70
752
+ 20.26
753
+ 92.7
754
+ 65.1
755
+ 0.6120
756
+ 0.7727
757
+ 0.9151
758
+ 0.9257
759
+ Ours w/Disen.
760
+ 32.40
761
+ 17.14
762
+ 19.40
763
+ 92.5
764
+ 89.2
765
+ 0.6048
766
+ 0.6517
767
+ 0.9060
768
+ 0.9136
769
+ Ours w/ Attn. Skip + Disen.
770
+ 26.92
771
+ 17.37
772
+ 19.78
773
+ 95.2
774
+ 76.2
775
+ 0.5588
776
+ 0.6665
777
+ 0.8909
778
+ 0.9017
779
+ TABLE 2: Quantitative results for Setting II. (+) and (-) denote the scores for adding and removing an attribute. We
780
+ compare the FID scores for bangs addition. We compare various metrics for smile addition and removal. Explanations
781
+ of the metrics are given in Section 4.2. We achieve better scores than StyleGAN inversion-based methods. We also show
782
+ FID improvements with the disentanglement loss and additional improvements, especially on the addition of bangs with
783
+ attention-based skip connections. We set the attribute strength of StyleGAN inversion-based methods to 2 and 1 for smile
784
+ and bangs attributes, respectively, to report the best FID scores. We provide more analysis on that in Fig. 5.
785
+ 65
786
+ 70
787
+ 75
788
+ 80
789
+ 85
790
+ 90
791
+ 95
792
+ 100
793
+ Accuracy+
794
+ 17.5
795
+ 20.0
796
+ 22.5
797
+ 25.0
798
+ 27.5
799
+ 30.0
800
+ 32.5
801
+ 35.0
802
+ 37.5
803
+ FID+
804
+ e4e
805
+ Hyperstyle
806
+ HFGI
807
+ StyleTransformer
808
+ StyleRes
809
+ VecGAN
810
+ VecGAN++
811
+ 65
812
+ 70
813
+ 75
814
+ 80
815
+ 85
816
+ 90
817
+ 95
818
+ 100
819
+ Accuracy+
820
+ 0.40
821
+ 0.45
822
+ 0.50
823
+ 0.55
824
+ 0.60
825
+ 0.65
826
+ 0.70
827
+ 0.75
828
+ 0.80
829
+ ID+
830
+ e4e
831
+ Hyperstyle
832
+ HFGI
833
+ StyleTransformer
834
+ StyleRes
835
+ VecGAN
836
+ VecGAN++
837
+ 20
838
+ 30
839
+ 40
840
+ 50
841
+ 60
842
+ 70
843
+ 80
844
+ 90
845
+ 100
846
+ Accuracy+
847
+ 0.73
848
+ 0.75
849
+ 0.78
850
+ 0.80
851
+ 0.83
852
+ 0.85
853
+ 0.88
854
+ 0.90
855
+ 0.93
856
+ BG+
857
+ e4e
858
+ Hyperstyle
859
+ HFGI
860
+ StyleTransformer
861
+ StyleRes
862
+ VecGAN
863
+ VecGAN++
864
+ 20
865
+ 30
866
+ 40
867
+ 50
868
+ 60
869
+ 70
870
+ 80
871
+ 90
872
+ 100
873
+ Accuracy-
874
+ 20.0
875
+ 22.5
876
+ 25.0
877
+ 27.5
878
+ 30.0
879
+ 32.5
880
+ 35.0
881
+ 37.5
882
+ 40.0
883
+ FID-
884
+ e4e
885
+ Hyperstyle
886
+ HFGI
887
+ StyleTransformer
888
+ StyleRes
889
+ VecGAN
890
+ VecGAN++
891
+ 20
892
+ 30
893
+ 40
894
+ 50
895
+ 60
896
+ 70
897
+ 80
898
+ 90
899
+ 100
900
+ Accuracy-
901
+ 0.40
902
+ 0.50
903
+ 0.60
904
+ 0.70
905
+ 0.80
906
+ ID-
907
+ e4e
908
+ Hyperstyle
909
+ HFGI
910
+ StyleTransformer
911
+ StyleRes
912
+ VecGAN
913
+ VecGAN++
914
+ 20
915
+ 30
916
+ 40
917
+ 50
918
+ 60
919
+ 70
920
+ 80
921
+ 90
922
+ 100
923
+ Accuracy-
924
+ 0.73
925
+ 0.75
926
+ 0.78
927
+ 0.80
928
+ 0.83
929
+ 0.85
930
+ 0.88
931
+ 0.90
932
+ 0.93
933
+ BG-
934
+ e4e
935
+ Hyperstyle
936
+ HFGI
937
+ StyleTransformer
938
+ StyleRes
939
+ VecGAN
940
+ VecGAN++
941
+ Fig. 5: Plots of FID, ID, and BG metrics as we change the intensity of the attributes and the number of steps to take for
942
+ explored directions. For each intensity, we measure the attribute accuracy in the x-axis. The first row plots present results
943
+ for smile addition, and the second row presents them for smile removal.
944
+ Identity Preservation (Id): To calculate the Id metric, we
945
+ use the CurricularFace model [14] to calculate the similarity
946
+ between the original and generated images. The Curricular-
947
+ Face model uses the ResNet-101 model as a backbone for the
948
+ feature extraction. We calculate the cosine similarity score
949
+ between the features of edited and original images.
950
+ Background Preservation (BG): For the BG metric, we
951
+ first use the facial attribute segmentation masks from the
952
+ CelebAMask-HQ dataset to form background masks. Using
953
+ these masks, we calculate the mean structural similarity
954
+ index between the backgrounds of the original and edited
955
+ images.
956
+ 4.3
957
+ Results
958
+ We extensively compare our results with other end-to-end
959
+ image translation methods. In Setting I, as given in Table 1,
960
+ we compare with SDIT [33], StarGANv2 [4], Elegant [36],
961
+ and HiSD [20] models. Among these methods, HiSD learns
962
+ a hierarchical style disentanglement, whereas StarGANv2
963
+ learns a mixed style code. Therefore StarGANv2, when
964
+ translating images, also edits other attributes and does not
965
+ strictly preserve the identity. HiSD achieves disentangled
966
+ style edits. However, HiSD learns feature-based local trans-
967
+ lators, an approach known to be successful on local edits,
968
+ e.g. bangs, and their model is trained for bangs, eyeglasses,
969
+ and hair color attributes. VecGAN achieves significantly
970
+ better quantitative results than HiSD both in latent-guided
971
+ and reference-guided evaluations, even though they are
972
+ compared on a local edit task. We further achieve im-
973
+ provements with disentanglement loss. We also observe
974
+ with the disentanglement loss, the training becomes more
975
+ stable. With attention-based skip connections, both latent
976
+
977
+ 9
978
+ Smile (-)
979
+ Smile (+)
980
+ Smile (-)
981
+ Input
982
+ VecGAN++
983
+ VecGAN
984
+ e4e
985
+ HFGI
986
+ HyperStyle
987
+ StyleTransformer
988
+ StyleRes
989
+ Fig. 6: Generalization results of our and competing methods. StyleGAN inversion-based methods do not faithfully
990
+ reconstruct input images. The reconstruction problem is more severe on these out-of-domain images than the in-domain
991
+ images presented in Fig. 4.
992
+ and reference-based FID scores improve further.
993
+ Fig. 3 shows reference-guided results of our final model,
994
+ VecGAN++, VecGAN, and HiSD. As shown in Fig. 3, meth-
995
+ ods achieve attribute disentanglement, they do not change
996
+ any other attribute of the image than the bangs tag. Vec-
997
+ GAN++ achieves better edit quality compared to VecGAN.
998
+ It is important to note that, HiSD learns feature-based local
999
+ translators, which is a successful approach on local edits,
1000
+ e.g. bangs, eyeglasses, and hair color but not smile, age, or
1001
+ gender. Our method achieves comparable visual and better
1002
+ quantitative results than HiSD on this local task and can also
1003
+ achieve global edits.
1004
+ In our second set-up of evaluation, we compare our
1005
+ method with state-of-the-art StyleGAN2 inversion-based
1006
+ methods, e4e [29], HyperStyle [3], HFGI [31], StyleTrans-
1007
+ former [12], and StyleRes [25] in Table 2. We compare the
1008
+ methods on a local (bangs) and a global attribute (smile)
1009
+ manipulation. For the smile attribute, we use the direction
1010
+ explored by the InterfaceGAN method [27]. For the bangs
1011
+ attribute, we use the direction discovered by the StyleCLIP
1012
+ method [24]. The strength attribute is set to 2 to report the
1013
+ best FID scores. We provide more analysis on that in Fig.
1014
+ 5. We also show FID improvements with the disentangle-
1015
+ ment loss and additional improvements, especially on the
1016
+ addition of bangs with attention-based skip connections.
1017
+ Our method and StyleGAN inversion-based methods
1018
+ provide a knob to control the editing attribute intensity.
1019
+ We obtain plots provided in Fig. 5 by changing the editing
1020
+ attribute intensity. As we increase the intensity, edits become
1021
+ more detectable. We measure that with a smile classifier.
1022
+ Therefore, we plot FID, Id (Identity), and BG (Background
1023
+ reconstruction) scores with respect to the attribute inten-
1024
+ sity measured by the accuracy of the classifier. Specifically,
1025
+ for VecGAN++ and VecGAN, we set αt given in Eq. 3
1026
+ to {0.0, 0.33, 0.5, 0.66, 1.0}. For StyleGAN inversion-based
1027
+ methods, we set the strength parameter to {1, 2, 3}. These
1028
+ models usually set the strength to 3 for successful smile
1029
+ edits. As shown in Fig. 5, VecGAN++ and VecGAN achieve
1030
+ better FID scores compared to others consistently. With the
1031
+ highest strength, where the accuracy of the classifier goes to
1032
+ 100% for all models, we observe that FID scores for Style-
1033
+ GAN inversion-based model scores drastically get worse,
1034
+ whereas our results are robust. VecGAN++ achieves better
1035
+ FID scores than VecGAN consistently. We find the Id score
1036
+ getting worse as the edit strength increases. That results
1037
+ from changes in the person and the limitations of the Curric-
1038
+ ularFace model. VecGAN++ achieves significantly better BG
1039
+ scores than StyleGAN inversion-based models and slightly
1040
+ worse than VecGAN. We observe that VecGAN++ achieves
1041
+ better edit quality, as reflected in FID scores, than VecGAN.
1042
+ On the other hand, VecGAN does smaller edits, resulting in
1043
+ better Id and BG scores.
1044
+ We provide qualitative comparisons in Fig. 4. StyleGAN
1045
+ inversion-based methods do not faithfully reconstruct input
1046
+ images. They miss many details from the background and
1047
+ foreground. StyleRes achieves better reconstruction results
1048
+ compared to others but still worse than ours as measured
1049
+ by BG metrics. Also note that even though HyperStyle
1050
+ achieves high Id scores that are comparable to ours, their
1051
+ reconstructions miss many image details, making the output
1052
+ images look unrealistic. VecGAN++ and VecGAN achieve
1053
+ high fidelity to the originals with only targeted attributes
1054
+ manipulated naturally and realistically. We also observe
1055
+ that VecGAN++ visibly improves over VecGAN on many
1056
+ examples, especially on the second and third examples for
1057
+ smile and on samples with bangs edits. Additionally, Vec-
1058
+ GAN++ achieves successful age edits, whereas StyleGAN
1059
+ inversion-based methods add eyeglasses very frequently.
1060
+ This shows VecGAN++ and VecGAN provide with better
1061
+ disentanglement between correlated attributes, e.g. age and
1062
+ eyeglasses. This is because our models are trained end-to-
1063
+ end with labeled datasets for this task. We provide more
1064
+ analysis on these comparisons in the next section.
1065
+
1066
+ 10
1067
+ Scale Frequency Distribution for Smile
1068
+ Smiling
1069
+ Not Smiling
1070
+ (a) Histogram of αt distribution of smile tags of VecGAN.
1071
+ Scale Frequency Distribution for Smile
1072
+ Smiling
1073
+ Not Smiling
1074
+ (b) Histogram of αt distribution of smile tags of VecGAN++.
1075
+ (c) Training images plotted based on their αt values extracted
1076
+ for smiling tag from VecGAN++. Zoom in for details.
1077
+ Fig. 7: Analysis of αt for smile tag.
1078
+ 5
1079
+ ANALYSIS AND DISCUSSIONS
1080
+ 5.1
1081
+ Comparing End-to-end Image Translation Networks
1082
+ versus StyleGAN Inversion-based Methods
1083
+ We propose an end-to-end trained image translation net-
1084
+ work in this work and extensively compare our method
1085
+ with StyleGAN inversion-based methods. We note the dif-
1086
+ ferent advantages and disadvantages of both approaches.
1087
+ We observe that end-to-end trained image translation
1088
+ networks, especially our proposed framework, do not suffer
1089
+ from the reconstruction and editability trade-off. This trade-
1090
+ off is pointed out for StyleGAN inversion-based methods
1091
+ [29]. That is, when the inversion parameters are optimized
1092
+ to reconstruct the input images faithfully, they do not lie in
1093
+ the natural StyleGAN distribution space, and therefore the
1094
+ edit quality gets poor for those high-fidelity inversions. That
1095
+ Scale Frequency Distribution for Hair Color
1096
+ Black Hair
1097
+ Brown Hair
1098
+ Blond Hair
1099
+ (a) Histogram of αt distribution of hair color tag of VecGAN.
1100
+ Scale Frequency Distribution for Hair Color
1101
+ Black Hair
1102
+ Brown Hair
1103
+ Blond Hair
1104
+ (b) Histogram of αt distribution of hair color tag of VecGAN++.
1105
+ (c) Training images plotted based on their αt values extracted
1106
+ for hair color tag from VecGAN++. Zoom in for details.
1107
+ Fig. 8: Analysis of αt for hair color tag.
1108
+ is the advantage of our method because it is trained end-to-
1109
+ end, and we learn both reconstruction and editing together.
1110
+ StyleGAN inversion-based methods enjoy many editing
1111
+ capabilities, whereas our framework only achieves pre-
1112
+ defined edits for which it is trained. Those methods that
1113
+ employ pre-trained StyleGANs rely on StyleGAN’s seman-
1114
+ tically rich feature organizations. The editing directions
1115
+ are discovered after StyleGAN is trained. Some methods
1116
+ discover directions in supervised and unsupervised ways.
1117
+ Supervised methods, e.g. InterfaceGAN, require labeled
1118
+ datasets the same as ours. On the other hand, with unsuper-
1119
+ vised methods and text-based editing methods, directions
1120
+ are explored for those that do not have labeled datasets.
1121
+ For example, with the GANSpace method [9], editing di-
1122
+
1123
+ 11
1124
+ rections are found for different expressions, and with the
1125
+ StyleCLIP method [24], editing directions are found for
1126
+ different hairstyles (Mohawk hairstyle, Bob-cut hairstyle,
1127
+ Afro hairstyle, e.g.). That is an advantage of StyleGAN
1128
+ inversion-based methods.
1129
+ Lastly, our method achieves better generalization results
1130
+ as presented in Fig. 6. We apply our image translation
1131
+ methods and StyleGAN inversion-based methods that are
1132
+ trained on high-quality face photographs on Metface images
1133
+ [15] without any tuning. Metface dataset [15] includes face
1134
+ images extracted from the collection of the Metropolitan
1135
+ Museum of Art and exhibits a domain gap with CelebA [22]
1136
+ and FFHQ [16] datasets. StyleGAN inversion based methods
1137
+ do not reconstruct the input images with high fidelity due
1138
+ to the domain gap and output images similar to the style
1139
+ of CelebA and FFHQ. Our method has the advantage of
1140
+ being robust to domain gaps whereas StyleGAN inversion-
1141
+ based methods require fine-tuning the StyleGAN network
1142
+ and inversion encoders on new domains.
1143
+ 5.2
1144
+ Analysis of Projected Styles
1145
+ We explore the behavior of encoded scales from reference
1146
+ images, αt. These scales are supposed to provide informa-
1147
+ tion about the attribute of the image (whether a person
1148
+ smiles or not) and its intensity (how big the smile is). We
1149
+ plot the histograms of αt values from validation images for
1150
+ smile tags and use orange and blue colors depending on
1151
+ their ground-truth tags from the validation list as shown
1152
+ in Fig. 7a and Fig. 7b for VecGAN and VecGAN++, respec-
1153
+ tively. For the smiling tag, αt values are mostly disentangled
1154
+ with a small intersection. For VecGAN, we remove the
1155
+ outliers for visualization purposes. There are some encoded
1156
+ scales far away from the clusters. On the other hand, for
1157
+ VecGAN++ we do not have such a problem and do not
1158
+ remove any data points. Other than that, we find VecGAN
1159
+ and VecGAN++ extracted scale attributes to be similar. Next,
1160
+ we visualize the samples for the smiling tag for VecGAN++.
1161
+ Fig. 7c shows a visualization of validation images plotted
1162
+ based on their αt values extracted for the smiling tag. We
1163
+ visualize a few samples from each bin from the histogram
1164
+ above with the same frequency as the histogram value. The
1165
+ visualization shows that αt values encode the intensity of
1166
+ the smile. The rightmost samples have large smiles, and
1167
+ the leftmost samples look almost angry. On the other hand,
1168
+ the images in the middle space are confusing ones. We also
1169
+ observe many wrong labeling in the CelebA-HQ dataset by
1170
+ going through the middle space.
1171
+ We repeat the same analysis for the hair color tag as
1172
+ provided in Fig. 8a and Fig. 8b for VecGAN and VecGAN++
1173
+ respectively, since hair color tag is a challenging one as it is
1174
+ expected to have a continuous scale with no clear separation
1175
+ between classes. We observe that VecGAN struggles to sep-
1176
+ arate attributes for hair color tag, whereas VecGAN++ does
1177
+ a better separation even though it may not be perfect. We
1178
+ also visualize the validation images based on their αt values
1179
+ extracted for hair color tag in Fig. 8c from VecGAN++. The
1180
+ images go from black hair to brown hair to blonde hair. We
1181
+ observe that the shade of hair goes lighter, but we also note
1182
+ that the extracted scales are not perfect, and there is room
1183
+ for improvement.
1184
+ 6
1185
+ CONCLUSION
1186
+ This paper introduces VecGAN++, an image-to-image trans-
1187
+ lation framework with interpretable latent directions. This
1188
+ framework includes a deep encoder and decoder archi-
1189
+ tecture with latent space manipulation in between. Latent
1190
+ space manipulation is designed as vector arithmetic where
1191
+ for each attribute, a linear direction is learned. This design
1192
+ is encouraged by the finding that well-trained generative
1193
+ models organize their latent space as disentangled repre-
1194
+ sentations with meaningful directions in a completely unsu-
1195
+ pervised way. Therefore, we also extensively compare our
1196
+ method with StyleGAN inversion-based methods and point
1197
+ out their advantages and disadvantages compared to our
1198
+ method. Each change in the architecture and loss function
1199
+ is extensively studied and compared with state-of-the-arts.
1200
+ Experiments show the effectiveness of our framework.
1201
+ REFERENCES
1202
+ [1]
1203
+ R. Abdal, Y. Qin, and P. Wonka.
1204
+ Image2stylegan: How to em-
1205
+ bed images into the stylegan latent space? In Proceedings of the
1206
+ IEEE/CVF International Conference on Computer Vision, pages 4432–
1207
+ 4441, 2019. 2
1208
+ [2]
1209
+ R. Abdal, P. Zhu, N. J. Mitra, and P. Wonka. Styleflow: Attribute-
1210
+ conditioned exploration of stylegan-generated images using con-
1211
+ ditional continuous normalizing flows.
1212
+ ACM Transactions on
1213
+ Graphics (ToG), 40(3):1–21, 2021. 2
1214
+ [3]
1215
+ Y. Alaluf, O. Tov, R. Mokady, R. Gal, and A. Bermano. Hyperstyle:
1216
+ Stylegan inversion with hypernetworks for real image editing.
1217
+ In Proceedings of the IEEE/CVF Conference on Computer Vision and
1218
+ Pattern Recognition, pages 18511–18521, 2022. 2, 8, 9
1219
+ [4]
1220
+ Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. Stargan v2: Diverse image syn-
1221
+ thesis for multiple domains. In Proceedings of the IEEE Conference
1222
+ on Computer Vision and Pattern Recognition, 2020. 1, 2, 3, 6, 8
1223
+ [5]
1224
+ Y. Dalva, S. F. Altindis, and A. Dundar. Vecgan: Image-to-image
1225
+ translation with interpretable latent directions. Proceedings of the
1226
+ European conference on computer vision (ECCV), 2022. 1, 6, 8
1227
+ [6]
1228
+ A. Dundar, K. Sapra, G. Liu, A. Tao, and B. Catanzaro. Panoptic-
1229
+ based image synthesis. In Proceedings of the IEEE/CVF Conference
1230
+ on Computer Vision and Pattern Recognition, pages 8070–8079, 2020.
1231
+ 2
1232
+ [7]
1233
+ Y. Gao, F. Wei, J. Bao, S. Gu, D. Chen, F. Wen, and Z. Lian. High-
1234
+ fidelity and arbitrary face editing. In Proceedings of the IEEE/CVF
1235
+ conference on computer vision and pattern recognition, pages 16115–
1236
+ 16124, 2021. 2
1237
+ [8]
1238
+ I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
1239
+ S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
1240
+ Advances in neural information processing systems, 27, 2014. 2
1241
+ [9]
1242
+ E. H¨ark¨onen, A. Hertzmann, J. Lehtinen, and S. Paris. Ganspace:
1243
+ Discovering interpretable gan controls. Advances in Neural Infor-
1244
+ mation Processing Systems, 33, 2020. 1, 2, 10
1245
+ [10] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
1246
+ iter. Gans trained by a two time-scale update rule converge to a
1247
+ local nash equilibrium. Advances in neural information processing
1248
+ systems, 30, 2017. 6
1249
+ [11] X. Hou, X. Zhang, H. Liang, L. Shen, Z. Lai, and J. Wan. Guided-
1250
+ style: Attribute knowledge guided style manipulation for semantic
1251
+ face editing. Neural Networks, 145:209–220, 2022. 2
1252
+ [12] X. Hu, Q. Huang, Z. Shi, S. Li, C. Gao, L. Sun, and Q. Li. Style
1253
+ transformer for image inversion and editing. In Proceedings of the
1254
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition
1255
+ (CVPR), pages 11337–11346, June 2022. 8, 9
1256
+ [13] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz.
1257
+ Multimodal
1258
+ unsupervised image-to-image translation. Eur. Conf. Comput. Vis.,
1259
+ 2018. 2, 5
1260
+ [14] Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, and F. H. Jilin Li.
1261
+ Curricularface: Adaptive curriculum learning loss for deep face
1262
+ recognition. pages 1–8, 2020. 8
1263
+ [15] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila.
1264
+ Training generative adversarial networks with limited data. Ad-
1265
+ vances in Neural Information Processing Systems, 33:12104–12114,
1266
+ 2020. 11
1267
+
1268
+ 12
1269
+ [16] T. Karras, S. Laine, and T. Aila. A style-based generator archi-
1270
+ tecture for generative adversarial networks. In Proceedings of the
1271
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1272
+ pages 4401–4410, 2019. 2, 11
1273
+ [17] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila.
1274
+ Analyzing and improving the image quality of stylegan. In Pro-
1275
+ ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
1276
+ Recognition, pages 8110–8119, 2020. 1, 2
1277
+ [18] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang.
1278
+ Diverse image-to-image translation via disentangled representa-
1279
+ tions. In Proceedings of the European conference on computer vision
1280
+ (ECCV), pages 35–51, 2018. 5
1281
+ [19] X. Li, J. Hu, S. Zhang, X. Hong, Q. Ye, C. Wu, and R. Ji.
1282
+ At-
1283
+ tribute guided unpaired image-to-image translation with semi-
1284
+ supervised learning. arXiv preprint arXiv:1904.12428, 2019. 5
1285
+ [20] X. Li, S. Zhang, J. Hu, L. Cao, X. Hong, X. Mao, F. Huang,
1286
+ Y. Wu, and R. Ji. Image-to-image translation via hierarchical style
1287
+ disentanglement.
1288
+ In Proceedings of the IEEE/CVF Conference on
1289
+ Computer Vision and Pattern Recognition, pages 8639–8648, 2021. 1,
1290
+ 2, 3, 4, 5, 6, 8
1291
+ [21] G. Liu, A. Dundar, K. J. Shih, T.-C. Wang, F. A. Reda, K. Sapra,
1292
+ Z. Yu, X. Yang, A. Tao, and B. Catanzaro. Partial convolution for
1293
+ padding, inpainting, and image synthesis. IEEE Transactions on
1294
+ Pattern Analysis and Machine Intelligence, 2022. 2
1295
+ [22] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes
1296
+ in the wild. In Proceedings of International Conference on Computer
1297
+ Vision (ICCV), December 2015. 6, 11
1298
+ [23] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu.
1299
+ Semantic image
1300
+ synthesis with spatially-adaptive normalization.
1301
+ In Proceedings
1302
+ of the IEEE Conference on Computer Vision and Pattern Recognition,
1303
+ pages 2337–2346, 2019. 2
1304
+ [24] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, and D. Lischin-
1305
+ ski. Styleclip: Text-driven manipulation of stylegan imagery. In
1306
+ Proceedings of the IEEE/CVF International Conference on Computer
1307
+ Vision, pages 2085–2094, 2021. 9, 11
1308
+ [25] H. Pehlivan, Y. Dalva, and A. Dundar.
1309
+ Styleres: Transforming
1310
+ the residuals for real image editing with stylegan. arXiv preprint
1311
+ arXiv:2212.14359, 2022. 8, 9
1312
+ [26] W. Shen and R. Liu. Learning residual images for face attribute
1313
+ manipulation.
1314
+ In Proceedings of the IEEE conference on computer
1315
+ vision and pattern recognition, pages 4030–4038, 2017. 1, 2
1316
+ [27] Y. Shen, J. Gu, X. Tang, and B. Zhou. Interpreting the latent space
1317
+ of gans for semantic face editing. In Proceedings of the IEEE/CVF
1318
+ Conference on Computer Vision and Pattern Recognition, pages 9243–
1319
+ 9252, 2020. 1, 2, 9
1320
+ [28] Y. Shen and B. Zhou. Closed-form factorization of latent semantics
1321
+ in gans.
1322
+ In Proceedings of the IEEE/CVF Conference on Computer
1323
+ Vision and Pattern Recognition, pages 1532–1540, 2021. 1, 2
1324
+ [29] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or.
1325
+ Designing an encoder for stylegan image manipulation.
1326
+ ACM
1327
+ Transactions on Graphics (TOG), 40(4):1–14, 2021. 2, 8, 9, 10
1328
+ [30] A. Voynov and A. Babenko.
1329
+ Unsupervised discovery of in-
1330
+ terpretable directions in the gan latent space.
1331
+ In International
1332
+ Conference on Machine Learning, pages 9786–9796. PMLR, 2020. 1,
1333
+ 2, 3
1334
+ [31] T. Wang, Y. Zhang, Y. Fan, J. Wang, and Q. Chen. High-fidelity
1335
+ gan inversion for image attribute editing.
1336
+ In Proceedings of the
1337
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1338
+ pages 11379–11388, 2022. 2, 8, 9
1339
+ [32] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro.
1340
+ High-resolution image synthesis and semantic manipulation with
1341
+ conditional gans. In Proceedings of the IEEE conference on computer
1342
+ vision and pattern recognition, pages 8798–8807, 2018. 2
1343
+ [33] Y. Wang, A. Gonzalez-Garcia, J. van de Weijer, and L. Herranz.
1344
+ Sdit: Scalable and diverse cross-domain image translation.
1345
+ In
1346
+ Proceedings of the 27th ACM International Conference on Multimedia,
1347
+ pages 1267–1276, 2019. 1, 6, 8
1348
+ [34] P.-W. Wu, Y.-J. Lin, C.-H. Chang, E. Y. Chang, and S.-W. Liao.
1349
+ Relgan: Multi-domain image-to-image translation via relative at-
1350
+ tributes. In Proceedings of the IEEE/CVF international conference on
1351
+ computer vision, pages 5914–5922, 2019. 2
1352
+ [35] Z. Wu, D. Lischinski, and E. Shechtman. Stylespace analysis: Dis-
1353
+ entangled controls for stylegan image generation. In Proceedings of
1354
+ the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1355
+ pages 12863–12872, 2021. 1, 2
1356
+ [36] T. Xiao, J. Hong, and J. Ma. Elegant: Exchanging latent encodings
1357
+ with gan for transferring multiple face attributes. In Proceedings of
1358
+ the European conference on computer vision (ECCV), pages 168–184,
1359
+ 2018. 1, 2, 6, 8
1360
+ [37] G. Yang, N. Fei, M. Ding, G. Liu, Z. Lu, and T. Xiang. L2m-gan:
1361
+ Learning to manipulate latent space semantics for facial attribute
1362
+ editing.
1363
+ In Proceedings of the IEEE/CVF Conference on Computer
1364
+ Vision and Pattern Recognition, pages 2951–2960, 2021. 2, 3
1365
+ [38] R. Yi, Y.-J. Liu, Y.-K. Lai, and P. L. Rosin. Unpaired portrait draw-
1366
+ ing generation via asymmetric cycle mapping. In Proceedings of the
1367
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1368
+ pages 8217–8225, 2020. 2
1369
+ [39] N. Yu, G. Liu, A. Dundar, A. Tao, B. Catanzaro, L. S. Davis,
1370
+ and M. Fritz.
1371
+ Dual contrastive loss and attention for gans.
1372
+ In
1373
+ Proceedings of the IEEE/CVF International Conference on Computer
1374
+ Vision, pages 6731–6742, 2021. 2
1375
+ [40] G. Zhang, M. Kan, S. Shan, and X. Chen. Generative adversarial
1376
+ network with spatial attention for face attribute editing. In Pro-
1377
+ ceedings of the European conference on computer vision (ECCV), pages
1378
+ 417–432, 2018. 1, 2
1379
+ [41] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang,
1380
+ and E. Shechtman.
1381
+ Multimodal image-to-image translation by
1382
+ enforcing bi-cycle consistency. In Advances in neural information
1383
+ processing systems, pages 465–476, 2017. 2
1384
+ [42] P. Zhu, R. Abdal, Y. Qin, and P. Wonka. Sean: Image synthesis
1385
+ with semantic region-adaptive normalization. In Proceedings of the
1386
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1387
+ pages 5104–5113, 2020. 2
1388
+
2dE3T4oBgHgl3EQfnwqt/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tE1T4oBgHgl3EQf5gWl/content/tmp_files/2301.03513v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tFRT4oBgHgl3EQfnjcF/content/2301.13605v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:705d810782d6eb73d2107fa710479f389f3ccc3fc37c5d2836766cb55c24a165
3
+ size 469732
2tFRT4oBgHgl3EQfnjcF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e217ff79e64e321ea1b1536774e7aee114be8b050859c3f673bd6ad20718a02d
3
+ size 179688
3tE4T4oBgHgl3EQfbQwY/content/tmp_files/2301.05070v1.pdf.txt ADDED
@@ -0,0 +1,905 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ Wildfire Smoke Detection by Computer Vision
5
+ Eldan R., Daniel I.
6
+ December 26, 2022
7
+
8
9
+
10
+ Abstract- Wildfires are becoming more frequent and their
11
+ effects more devastating every day. Climate change has
12
+ directly and indirectly affected the occurrence of these, as well
13
+ as social phenomena have increased the vulnerability of
14
+ people. Consequently, and given the inevitable occurrence of
15
+ these, it is important to have early warning systems that allow
16
+ a timely and effective response.
17
+ Artificial intelligence, machine learning and Computer
18
+ Vision offer an effective and achievable alternative for
19
+ opportune detection of wildfires and thus reduce the risk of
20
+ disasters. YOLOv7 offers a simple, fast, and efficient
21
+ algorithm for training object detection models which can be
22
+ used in early detection of smoke columns in the initial stage
23
+ wildfires.
24
+ The developed model showed promising results, achieving
25
+ a score of 0.74 in the F1 curve when the confidence level is
26
+ 0.298, that is, a higher score at lower confidence levels was
27
+ obtained. This means when the conditions are favorable for
28
+ false positives. The metrics demonstrates the resilience and
29
+ effectiveness of the model in detecting smoke columns.
30
+
31
+ Keywords:
32
+ Early
33
+ Warning,
34
+ Object
35
+ Detection,
36
+ Artificial
37
+ Intelligence, Computer Vision, YOLO.
38
+
39
+ I. INTRODUCTION
40
+
41
+ A wildfire is a fire that, whatever its origin and with danger or
42
+ damage to people, property, or the environment, spreads
43
+ uncontrolled in rural areas, through woody, bushy or herbaceous
44
+ vegetation, alive or dead. In other words, it is an unjustified and
45
+ uncontrolled fire in which the fuels are plants and which, in its
46
+ propagation, can destroy everything in its path ("Wildfires in Chile
47
+ - CONAF").
48
+
49
+ In the last 10 years there have been 67,567 Wildfires, affecting
50
+ an area of 1,246,922 hectares of grassland, scrubland, forest
51
+ plantations, native forest, agricultural land, among others.
52
+
53
+ Climate change has increased the risk of Wildfires both directly
54
+ and indirectly (Borunda, A.). Although the causality of fires is 99.7%
55
+ human, the conditions for the generation of these fires are higher
56
+ than they would be without climate change.
57
+
58
+ Given this scenario, it is significant to have early warning
59
+ systems that, in the event of an inevitable occurrence of a forest fire,
60
+ make it possible to activate and deploy the necessary resources for
61
+ its rapid control and extinction, thus preserving the lives of people,
62
+ their property and the environment.
63
+
64
+ II. FOREST FIRE DETECTION SYSTEMS
65
+
66
+ Wildfires are incidents with a high destructive potential and a
67
+ sudden growth, even more so when weather conditions allow it.
68
+ Therefore, is very important to apply a rapid firefighting strategy that
69
+ prevents fires from growing in extent and severity.
70
+
71
+ The early detection of fires is essential to initiate procedures
72
+ that culminate in firefighting. Among them is the notification of the
73
+ start of the fire to the Regional Coordination Center of CONAF
74
+ (CENCOR) who, in turn, with the respective technical background,
75
+ analyze the situation and generate the dispatch of relevant land
76
+ and/or air resources.
77
+
78
+ A. Mobile Terrestrial Detection
79
+
80
+ The task consists of moving surveillance people to a given
81
+ area, either by vehicle or on foot. This practice is quite common in
82
+ Chile in forestry companies, where it is used to supervise work
83
+ activities.
84
+
85
+ B. Fixed Terrestrial Detection
86
+
87
+ This is the most widely used form of detection in Chile. It
88
+ consists of having a person observing from metal or wooden towers
89
+ that are between 15 and 30 meters high, or from lower booths known
90
+ as detection posts.
91
+
92
+ C. Airborne Detection
93
+
94
+ This detection method uses aircraft, usually single-engine
95
+ high-wing aircraft, to detect fires from the air. The pilot is
96
+ accompanied by an observer, who oversees doing the observation.
97
+ This technique makes possible to observe a large amount of area in
98
+ an abbreviated time and provides accurate and detailed information
99
+ about the detected fire and the area over which it is flown. However,
100
+ its operating cost is high.
101
+
102
+ D. Detection with television systems
103
+
104
+ This method uses television cameras to transmit their signal via
105
+ microwaves to screens at a command post, such as in a vehicle in the
106
+ field or at a coordination center. There, specialists analyze the
107
+ situation based on what they see on the screen.
108
+
109
+ E. Satellite Systems
110
+
111
+ In some parts of the world, due to the lack of forest fire
112
+ protection organizations or detection systems, the only way to know
113
+ what is happening is to use low orbit satellite images, such as those
114
+ provided by the Aqua and Terra satellites.
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+ 2
124
+ III. OBJECT DETECTION BY COMPUTER VISION
125
+
126
+ Computer vision, also known as artificial vision or technical
127
+ vision, is a scientific discipline that involves techniques for
128
+ acquiring, processing, analyzing and understanding images of the
129
+ real world to produce numerical or symbolic information that can be
130
+ processed by computers (J. Morris, 1995). Just as humans use our
131
+ eyes and brains to make sense of the world around us, computer
132
+ vision seeks to create the same effect by allowing a computer to
133
+ perceive and understand an image or sequence of images and act
134
+ accordingly given the situation. This understanding is achieved
135
+ through fields as diverse as geometry, statistics, physics and other
136
+ disciplines. Data collection is achieved in a variety of ways, such as
137
+ image sequences viewed from multiple cameras or multidimensional
138
+ data from medical scanners.
139
+
140
+ Real-time object detection is a particularly important topic in
141
+ computer vision, as it is often a necessary component in computer
142
+ vision systems. Some of its current applications are object tracking,
143
+ public safety and active surveillance, autonomous vehicle driving,
144
+ robotics, medical image analysis, among others.
145
+
146
+ Computing devices that run real-time object detection
147
+ processes usually use CPUs or GPUs for their tasks, however,
148
+ nowadays the computational capacity has improved exponentially
149
+ with the Neural Processing Units (NPU) developed by different
150
+ manufacturers.
151
+
152
+ These devices focus on accelerating operations through
153
+ several types of algorithms, one of the most widely used being the
154
+ multilayer perceptron or Multilayer Perceptron (MLP), an artificial
155
+ neural network formed by multiple layers in such a way that it has
156
+ the ability to solve problems that are not linearly separable.
157
+
158
+ IV. YOLO
159
+
160
+ The object detection algorithm used in the present work is
161
+ YOLO (You only look once), developed by Wang, Chien-Yao et. al,
162
+ whose latest version was recently released in July 2022.
163
+
164
+ YOLO is an algorithm that uses neural networks to provide
165
+ real-time object detection. It is an algorithm known for its speed and
166
+ accuracy and YOLO is currently used in a variety of applications
167
+ such as traffic signal detection, people accounting, detection of
168
+ available spaces in private parking lots, remote animal surveillance,
169
+ among others.
170
+
171
+
172
+ A. Operation of YOLO
173
+
174
+ The YOLO algorithm works by using three techniques:
175
+
176
+ Intersection over Union (IOU).
177
+
178
+ Regression of the bounding box.
179
+
180
+ Residual blocks.
181
+
182
+ B. Residual blocks
183
+
184
+ The analyzed image, which can be a frame of a sequence
185
+ (video), is divided into several grids. Each grid has a dimension SxS.
186
+ The following image shows an example of grids.
187
+ Each cell will detect the objects that appear inside them. For
188
+ example, if an object appears inside a given cell, the cell will
189
+ perform processing on its own and separately from the others.
190
+ Fig. 1 - Example of residual block, source: guidetomlandai.com
191
+ C. Regression of the bounding box
192
+
193
+ A bounding box is an outline that highlights an object within
194
+ an image or cell. Each box has a height, a width, a class (what we
195
+ are looking for: car, dog, traffic light, fire smoke) and a centroid.
196
+ The following image shows an example of a bounding box.
197
+ YOLO uses a single bounding box regression to predict the
198
+ items listed above.
199
+ Fig. 2 - Example of bounding box, source: appsilondatascience.com
200
+ D. Intersection over Union (IOU)
201
+
202
+ Intersection over union is a phenomenon in object detection that
203
+ describes how blocks overlap in an image, where block is understood
204
+ as the set of cells where the detected object is located.
205
+
206
+ YOLO uses IOU to provide an output block surrounding the
207
+ detected object. Each grid cell is responsible for predicting the
208
+ bounding boxes and their confidence score.
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+ y=(pc,br,b,,bh,bw,C
218
+ b
219
+ b
220
+
221
+ Fig. 3 - Example of Intersection over Union, source:
222
+ miro.medium.com
223
+ E. Output result
224
+
225
+ YOLO combines the three techniques for accurate detection.
226
+ First, having the SxS grid of the analyzed image allows to evaluate
227
+ each section individually and be able to detect the bounding boxes
228
+ and their respective confidence scores.
229
+
230
+ For each bounding box, the class of detected object is set and
231
+ finally, using IOU, the frame is adjusted to ensure that the detection
232
+ frame covers the entire real object in the output image.
233
+
234
+ Fig. 4 - Diagram of the YOLO algorithm, source:
235
+ guidetomlandai.com
236
+ V. CREATION OF THE MODEL
237
+
238
+ To detect objects YOLO algorithm requires a model trained
239
+ with the class or classes of the search elements. For this it is
240
+ important to establish specifically where, how and when the model
241
+ will operate to detect fires, for which the following criteria are
242
+ established:
243
+
244
+ A. Location of the observer
245
+
246
+ The analyzed images by the model and used for fire detection
247
+ were obtained from distant sources, with a wide view of valley areas,
248
+ forests and/or mountain ranges, above level and with unpredictable
249
+ atmospheric conditions.
250
+
251
+ Such conditions of observations are those that we could identify
252
+ in an observation tower or fire watch. It should be considered that
253
+ the resolution of these can be varied and not uniform, depending on
254
+ the capture device used (webcam, HD camera).
255
+
256
+ B. Type of wildfire to be detected
257
+
258
+ As the objective of the system is to detect fires in their initial
259
+ stage, we will discard any images with fire and concentrate on smoke
260
+ plumes and their development, ideally taken from cameras in
261
+ different scenarios.
262
+ Fig. 5- Rodelillo airfield webcam, Valparaíso, December 7, 2020,
263
+ 16:20 hours.
264
+ C. Redundancy of training images
265
+
266
+ To generate greater variability and resilience to the model,
267
+ modifications have been made to part of the image dataset to
268
+ increase the amount of material for training.
269
+
270
+ In this regard, the following characteristics were applied to the
271
+ dataset:
272
+
273
+ 1)
274
+ Mirror effect: The images were duplicated with a
275
+ horizontal rotation. This allows to have training material
276
+ for different wind conditions.
277
+
278
+ 2)
279
+ Exposure: Duplicate images were generated with changes
280
+ in exposure between -15% and +15%. This allows
281
+ improving the visibility of the smoke plume in images that
282
+ may have been taken with different levels of ambient
283
+ humidity, which at greater distances distorts the focus and
284
+ sharpness of the image.
285
+
286
+ Also, the redundancy modifications and the labeling of the
287
+ images in the dataset were made in the Roboflow app, a
288
+ computer vision web software that provides many functions for
289
+ upload, label, augmentation, export, train and testing models.
290
+
291
+ VI. SOURCES OF INFORMATION
292
+
293
+ To increase the effectiveness of the model, it is important to
294
+ train it with images that are as similar as possible to the scenarios
295
+ where it will be implemented. In view of the above, different sources
296
+ of information were selected to obtain images with a wide range of
297
+
298
+ Boundingboxes+
299
+ +confidence
300
+ SxSqridoninput
301
+ Final detections
302
+ Classprobabilitymap
303
+ 4
304
+ geographic environments to generate a resilient model that can be
305
+ implemented in different locations.
306
+
307
+ A. High Performance Wireless Research and Education
308
+ Network (HPWREN)
309
+
310
+ The High-Performance Wireless Research and Education
311
+ Network is a University of California partnership project led by the
312
+ San Diego Supercomputing Center and the Institute for Geophysics
313
+ and Planetary Physics at Scripps Institution of Oceanography.
314
+
315
+ HPWREN works as a collaborative cyber infrastructure
316
+ connected to the Internet. The project has a vast network of cameras
317
+ in the State of California, USA, which have been used for wildfire
318
+ observation.
319
+
320
+ In particular, the HPWREN images were obtained from the AI
321
+ for Mankind project, founded by Wei Shung Chung.
322
+
323
+ B. Social Networks
324
+
325
+ Wildfires are high-impact emergencies and are considered by
326
+ society as public interest events. Therefore, a search for images of
327
+ Wildfires was made on the Twitter platform using the hashtag
328
+ "Wildfire" in Spanish, English, Turkish, Greek, Russian and
329
+ Portuguese. This allowed access to a variety of images with different
330
+ types of geography and relatively recent, allowing the generation of
331
+ an updated model training.
332
+
333
+ C. Images created with Artificial Intelligence
334
+
335
+ In an innovative way, the well-known artificial intelligences
336
+ Dall-E from OpenAI and Stable Diffusion from StabilityAI were
337
+ used to generate images using the following input phrase: "Wildfire
338
+ smoke in early stage as seen from an observation tower or high and
339
+ distant point".
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+ Fig. 6 - Forest fire smoke image created with Dall-E
351
+ D. Self-made computer Images
352
+
353
+ To complement the dataset with smoke columns originating in
354
+ different places, images were generated by superimposing layers
355
+ with the Photoshop application. For this purpose, base images of
356
+ cameras and observation towers without smoke were selected and
357
+ new images were artificially created with different types of smoke
358
+ originating from different points.
359
+ VII. MODEL TRAINING
360
+
361
+ YOLOv7 is a deep learning-based object detection algorithm
362
+ that uses a convolutional neural network to detect and classify
363
+ objects in images and videos.
364
+
365
+ To train the algorithm, a set of labeled images containing the
366
+ objects to be detected are needed. The images must be divided in two
367
+ datasets: a training set and a test set. The training set is used to train
368
+ the neural network and the test set is used to evaluate the
369
+ performance of the model once trained.
370
+
371
+ Training process consists in showing the neural network a set
372
+ of labeled images and to make it learn to detect and classify the
373
+ objects in them. To do this, a technique called backpropagation is
374
+ used, which involves adjusting weights of the neural network based
375
+ on the errors made in classifying the objects in the images. This
376
+ process is repeated many times, using different training images each
377
+ time, until the model reaches an acceptable level of accuracy.
378
+
379
+ Once trained, the model can be used to detect and classify
380
+ objects in new images and videos. In general, the larger the training
381
+ set and the better labeled the images are, the better the model
382
+ performs in object detection tasks.
383
+
384
+ The model training dataset contains 1,520 baseline images of
385
+ smoke plumes in different conditions and viewed from different
386
+ perspectives, incorporating varied geographic settings to improve
387
+ model resilience.
388
+
389
+ Applying the redundancy characteristics, the dataset was
390
+ strengthened to 2,712 images, distributed as follows:
391
+
392
+ A. Training Set
393
+
394
+ Set of 2,405 images to train the neural network of the
395
+ algorithm to classify the smoke in them. All the images in the dataset
396
+ contain a bounding box with the exact location of the object to be
397
+ detected, in this case, the smoke plumes.
398
+
399
+ B. Validation Set
400
+
401
+ Set of 228 images on which the model is evaluated after
402
+ training. This set is of relevance for the evaluation metric, as it is the
403
+ first indicator of model performance during the training.
404
+
405
+ C. Test Set
406
+
407
+ Set of 79 images that are unknown to the neural network and
408
+ were used neither for training nor for validation. It is used to assess
409
+ the performance of the model against new scenarios. Its metrics are
410
+ considered the most important because it establishes a performance
411
+ indicator against the desired scenarios.
412
+
413
+ VIII. TRAINING PARAMETERS
414
+
415
+ Model training requires computational power. The higher the
416
+ computational capacity, faster training process will be done, which
417
+ in turn will allow a deeper learning process, achieving better
418
+ performance results.
419
+
420
+
421
+
422
+
423
+ The model training process was performed using a pre-trained
424
+ base model arranged by the YOLOv7 algorithm on the Google Colab
425
+ platform, using an Nvidia A100-SXM4 GPU with 40 Gb of memory.
426
+
427
+ A. Batch Size
428
+
429
+ Batch size is a parameter used in the training process of a
430
+ machine learning model. It refers to the number of training samples
431
+ to be processed before updating the model weights.
432
+
433
+ For example, if the batch size is 32, it means that the model
434
+ will process 32 training samples at a time and then adjust their
435
+ weights accordingly. It will then process another batch of 32 samples
436
+ and adjust the weights again, and so on until all training samples are
437
+ processed.
438
+
439
+ Batch size is a parameter that can significantly affect model
440
+ performance during training. Too small batch size can make training
441
+ slower as more weight updates are performed, but it can also
442
+ improve model accuracy. Otherwise, too large batch size can make
443
+ training faster, but can also reduce model accuracy. Therefore, it is
444
+ important to choose an appropriate batch size based on the needs of
445
+ the model and the data set.
446
+
447
+ The final model is the result of four training phases with
448
+ different batch sizes.
449
+
450
+ B. EPOCH or training iterations
451
+
452
+ An epoch is a complete iteration through the entire training set
453
+ during the training process of a machine learning model. For
454
+ example, if the training set has 1,000 samples and the batch size is
455
+ 32, it will take 32 iterations to complete one epoch, since 32 x 32 =
456
+ 1,000~.
457
+
458
+ During each epoch, the model processes the training samples
459
+ in batches and adjusts their weights accordingly. At the end of each
460
+ epoch, the model's performance is evaluated using a test data set and
461
+ used to assess the model's progress.
462
+ The number of epochs used during model training is another
463
+ parameter that can significantly affect model performance. Too
464
+ small number of epochs can result in an under-fitted model, while
465
+ too large number can result in an over-fitted model. Therefore, it is
466
+ important to choose an appropriate number of epochs based on the
467
+ needs of the model and the data set, the available resources and time.
468
+
469
+ The smoke detection model was trained in four sessions of 300
470
+ epochs and a final session of 500 epochs, with a total duration of
471
+ 32.15 hours.
472
+
473
+ IX. EVALUATION METRICS
474
+
475
+ A. Mean average precision (mAP)
476
+
477
+ [email protected] is a performance measure commonly used in object
478
+ detection tasks that refers to the average detection accuracy mAP
479
+ (mean Average Precision) for different values of the Intersection
480
+ over Union (IoU) threshold.
481
+
482
+ The mAP detection accuracy refers to the average accuracy of
483
+ an object detection model in correctly detecting and classifying
484
+ objects in a set of test images. It is calculated by comparing the
485
+ model predictions with the truth labels of the objects in the test
486
+ images and measuring the average accuracy across all images.
487
+
488
+ The IoU threshold refers to the ratio of overlap between the
489
+ model prediction and the truth label of an object in an image. For
490
+ example, if the IoU threshold is 0.5, it means that the model
491
+ prediction is considered correct only if the overlap between the
492
+ prediction and the truth label is 50% or more.
493
+
494
+ B. F1 Curve
495
+
496
+ The F1 curve is a tool commonly used in classification tasks
497
+ to evaluate the performance of a model. It is used to evaluate the
498
+ accuracy and recall of a model at different classification thresholds.
499
+
500
+ Accuracy refers to the proportion of correct model predictions
501
+ out of the total predictions made. Recall refers to the proportion of
502
+ correct model predictions over the total number of positive cases in
503
+ the data set.
504
+
505
+ The F1 curve is calculated using the formula:
506
+ 𝐹1 = 2 ∗
507
+ (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 )
508
+ (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑅𝑒𝑐𝑎𝑙𝑙)
509
+
510
+ This formula combines accuracy and recall in a single measure
511
+ and is useful when it is important to balance both metrics.
512
+
513
+ To draw the F1 curve, the classification threshold is varied,
514
+ and the accuracy and recall are calculated for each threshold. The
515
+ accuracy and recall values are then plotted on a graph and connected
516
+ by a line. The result is a curve showing how accuracy and recall vary
517
+ as the classification threshold changes. The F1 curve is useful for
518
+ evaluating model performance at different thresholds and for
519
+ choosing the optimal threshold for the model.
520
+
521
+ XI. EVALUATION OF THE MODEL
522
+
523
+ A. Model N° 1
524
+ Fig. 7 - PR Curve Model No. 1 - Own elaboration
525
+ The first trained model shows a mean average mAP accuracy
526
+ of 0.379, that is 37.9% correct on the test set.
527
+
528
+ Regarding the F1 curve, the model obtained a score of 0.44
529
+ when the confidence value is set at 0.215.
530
+
531
+ 1.0
532
+ smoke 0.379
533
+ all classes 0.379 [email protected]
534
+ 0.8 -
535
+ 0.6
536
+ Precision
537
+ 0.4
538
+ 0.2 -
539
+ 0.0 +
540
+ 0.0
541
+ 0.2
542
+ 0.4
543
+ 0.6
544
+ 0.8
545
+ 1.0
546
+ Recall
547
+ 6
548
+ Fig. 8 - Curve F1 Model No. 1 - Own elaboration
549
+
550
+ The above results are considered deficient, since their best
551
+ performance does not exceed 50% effectiveness, and occurs when
552
+ the confidence value of the model is low, therefore, it has a high
553
+ tendency to generate false positives.
554
+
555
+ The confidence level is always a relevant factor in model
556
+ training, because the lower the confidence level is maintained with
557
+ good results, it is a sign of resilient learning and resistance to false
558
+ positives.
559
+
560
+ B. Model No. 2
561
+
562
+ Fig. 9 - PR Curve Model No. 2 - Own elaboration
563
+ The second trained model obtained a mean average mAP
564
+ accuracy of 0.684, that is 68.4% correct on the test set. The result
565
+ implies a significant improvement over the first model and is mainly
566
+ because the weights of the previously trained neural network were
567
+ used for the new model, collecting the previous learning.
568
+
569
+ Regarding the F1 curve, the model obtained a score of 0.69
570
+ when the confidence value is set at 0.313.
571
+
572
+ This result is much better than the previous one, in that it
573
+ obtains 69% accuracy even when the confidence value is low, that is
574
+ when the model is more susceptible to false positives.
575
+ C. Model No. 3
576
+
577
+ For the training of Model No. 3, a cleaning of the dataset was
578
+ performed, eliminating images that were considered ambiguous to
579
+ the human eye or were far from the objective of what the model is
580
+ required to learn to detect. This change allowed to improve the
581
+ training time, however, there were no significant changes in the
582
+ results, keeping the same values of model N° 2.
583
+
584
+ D. Model No. 4
585
+
586
+ Model No. 4 was trained with different parameters than those
587
+ used previously. For the previous cases, batch sizes of 64 and 32
588
+ with 300 iterations were used.
589
+
590
+ For this case a batch size of 16 was used and 500 iterations
591
+ were performed. This increased the training time considerably and
592
+ while it improved the results, it was not a significant increase in the
593
+ first instance.
594
+
595
+ Fig. 10 - PR Curve Model No. 4 - Own elaboration
596
+ In relation to the MAP, a score of 0.698 was obtained, only
597
+ slightly higher than the previous result.
598
+ Fig. 11 - Curve F1 Model No. 4 - Own elaboration
599
+
600
+
601
+
602
+ 1.0
603
+ smoke
604
+ all classes 0.44 at 0.215
605
+ 0.8 -
606
+ 0.6
607
+ 0.4 -
608
+ 0.2
609
+ 0.0 +
610
+ 0.0
611
+ 0.2
612
+ 0.4
613
+ 0.6
614
+ 0.8
615
+ 1.0
616
+ Confidence1.0
617
+ smoke 0.684
618
+ all classes 0.684 [email protected]
619
+ 0.8
620
+ 0.6
621
+ Precision
622
+ 0.4
623
+ 0.2
624
+ 0.0+
625
+ 0.0
626
+ 0.2
627
+ 0.4
628
+ 0.6
629
+ 0.8
630
+ 1.0
631
+ Recall1.0
632
+ smoke 0.698
633
+ all classes 0.698 [email protected]
634
+ 0.8 -
635
+ 0.6
636
+ Precision
637
+ 0.4
638
+ 0.2 -
639
+ 0.0 +
640
+ 0.0
641
+ 0.2
642
+ 0.4
643
+ 0.6
644
+ 0.8
645
+ 1.0
646
+ Recall1.0
647
+ smoke
648
+ all classes 0.74 at 0.298
649
+ 0.8 -
650
+ 0.6 -
651
+ 0.4 -
652
+ 0.2
653
+ 0.0 +
654
+ 0.0
655
+ 0.2
656
+ 0.4
657
+ 0.6
658
+ 0.8
659
+ 1.0
660
+ Confidence
661
+
662
+ However, in relation to the F1 curve, the model showed
663
+ significantly better results, reaching a score of 0.74 when the
664
+ confidence level is 0.298, a higher score was obtained and at lower
665
+ confidence levels, when conditions are advantageous to false
666
+ positives. This demonstrates the resilience and effectiveness of the
667
+ model in detecting smoke plumes.
668
+
669
+ On the other hand, this model proved to make predictions with
670
+ greater confidence than the previous ones, mainly because it
671
+ considers the learning from the previous models.
672
+ Fig. 12 - Test lot Model N° 1 - Own elaboration
673
+ Fig. 13 - Test lot Model N° 4 - Own elaboration
674
+
675
+ XII. SYSTEM INSTALLATION AND
676
+ IMPLEMENTATION
677
+
678
+ To perform inference, the trained model must be loaded into
679
+ an inference application: The first step is to load the trained model
680
+ into an inference application, such as TensorFlow or PyTorch. This
681
+ requires providing the path to the model file and loading it into
682
+ memory.
683
+
684
+ Then, if the input image differs from the parameters expected
685
+ by the model it is necessary to preprocess the input image. This may
686
+ include resizing the image to the dimension expected by the model,
687
+ normalizing the pixel values, and converting the image to a tensor.
688
+
689
+ Once the input image is ready, you can run the model using the
690
+ model inference method and provide the input image as input. This
691
+ will return the model predictions in the form of a tensor.
692
+ Model predictions are often in tensor form and can be difficult
693
+ to interpret directly. Therefore, it is necessary to process the
694
+ predictions to obtain useful information, such as the coordinates of
695
+ the bounding boxes of the detected objects and the corresponding
696
+ object classes.
697
+
698
+ Once the predictions have been processed, it is possible to
699
+ visualize them by overlaying the object labels on the input image or
700
+ by displaying the predictions in tabular form. This can help to
701
+ evaluate the performance of the model and to understand how it
702
+ works.
703
+
704
+ A tensor is a mathematical object used in the field of artificial
705
+ intelligence and object detection to represent and manipulate
706
+ multidimensional data. Tensors are fundamental elements in data
707
+ processing and are widely used in machine learning and data
708
+ analysis.
709
+
710
+ A tensor can be viewed as a generalization of a matrix, which
711
+ is a two-dimensional data structure used to represent and manipulate
712
+ data sets. Like a matrix, a tensor can have more than one dimension,
713
+ and each dimension is known as an axis. Tensor can be used to
714
+ represent data in many different forms, such as images, videos,
715
+ audios and texts.
716
+
717
+ In the area of artificial intelligence and object detection,
718
+ tensors are used to process and analyze large amounts of input data,
719
+ such as images or videos, and to produce output results, such as class
720
+ labels or predictions. Tensors are also used in natural language
721
+ processing and machine translation, among other applications.
722
+
723
+ Fig. 14 - Model No. 4 applied to smoke image with 91% success rate
724
+ To use the model in video cameras, either in real time or by
725
+ obtaining images from them, the capture device must be connected
726
+ to a processing device. This can be a computer or a Raspberry Pi.
727
+
728
+ It is important to point out that the model does not need to be
729
+ implemented in the same device that captures the images from the
730
+ camera, since the architecture designed to meet the objectives of the
731
+ model is built using the client-server mode, where the clients
732
+ correspond to one or several sources of information while the server
733
+
734
+ Humo:0.91
735
+ 8
736
+ corresponds to the source where the model is executed and the
737
+ inferences are made.
738
+
739
+ For the test model, a home computer with an Nvidia RTX 3060
740
+ graphics processing card with 16GB of memory was used, using
741
+ Windows 11 operating system with the Anaconda data analytics
742
+ environment installed.
743
+ The PyTorch library package was installed on the computer
744
+ and through a FrontEnd designed with Flask in Python, a web site
745
+ was generated to capture free access images from Chilean airfield
746
+ cameras through scraping to perform tests.
747
+
748
+ XIII. MODEL IMPROVEMENT
749
+
750
+ Although the trained model presents an acceptable result, the
751
+ latest tests indicated that to improve it, it is necessary to make a
752
+ series of changes, which are detailed below:
753
+
754
+ 1)
755
+ Use a larger and better labeled training set: often, the
756
+ larger the training set and the better labeled the images are,
757
+ the better the performance of the model.
758
+
759
+ 2)
760
+ Adjust model hyperparameters: there are several
761
+ hyperparameters that can affect model performance, such
762
+ as the batch size and the number of epochs used during
763
+ training. Adjusting these hyperparameters can improve
764
+ model performance.
765
+
766
+ 3)
767
+ Use a more complex neural network architecture: using a
768
+ neural network with more layers or with more units in each
769
+ layer can improve model performance, but it can also
770
+ increase training time and the need for more training data.
771
+
772
+ 4)
773
+ Use regularization techniques: Regularization is a
774
+ technique used to avoid overfitting the model and improve
775
+ its
776
+ generalization.
777
+ Some
778
+ common
779
+ regularization
780
+ techniques include L1 and L2 regularization, dropout and
781
+ early stopping.
782
+
783
+ 5)
784
+ Use advanced optimization techniques: There are several
785
+ advanced optimization techniques that can improve model
786
+ performance, such as stochastic gradient descent (SGD),
787
+ Adam and Adagrad. Using these techniques can improve
788
+ training speed and accuracy.
789
+
790
+ XIV. CONCLUSIONS
791
+
792
+ Undoubtedly, the phenomenon of Wildfires will increase. On
793
+ the one hand, due to climate change and, on the other, to social
794
+ phenomena such as migration, the displacement of families from the
795
+ city to the countryside, and intentionality, among others, which will
796
+ significantly increase vulnerability to this type of anthropogenic
797
+ event, both in terms of occurrence and severity.
798
+
799
+ Given this scenario, it is important that authorities, civil
800
+ society, and people in general become aware of the seriousness of
801
+ this situation and adopt preventive behaviors that contribute to
802
+ mitigating the effects of fires through self-care practices such as
803
+ preventive forestry.
804
+
805
+ On the other hand, in the face of the inevitable occurrence of
806
+ forest emergencies, having early warning systems in place will help
807
+ reduce response times and thus ensure that forest emergencies can
808
+ be controlled by first responders in less time, thereby reducing their
809
+ effects on people, their property and the environment.
810
+
811
+ The present model offers an alternative that complements early
812
+ warning systems, both at the state and private levels, through science
813
+ and technology, using the tools that Artificial Intelligence offers and
814
+ that can be implemented in a simple way and with minimal
815
+ knowledge of computer science and programming.
816
+
817
+ Although the current model has an acceptable performance, to
818
+ improve it, it is necessary to have a larger and better labeled training
819
+ set that allows the neural network to learn more and better scenarios
820
+ of forest fire occurrence in the initial stage. Likewise, it is necessary
821
+ to rescue the learning of the previous models in the training process,
822
+ adjusting the parameters so in each learning cycle the efficiency is
823
+ maximized.
824
+
825
+ The resources required by the system are fully achievable by
826
+ the organizations with a low cost vs. benefit, it does not require a
827
+ large number of people in its use since it works mainly in an
828
+ automated way and the investment in infrastructure (cameras,
829
+ internet, towers, masts, etc.), is quickly amortized if compared
830
+ against the cost of maintenance of conventional systems
831
+ (observation towers with their respective towers, respectively).
832
+
833
+ Although this technology is not intended to replace the role of
834
+ human beings in the detection of Wildfires, it does seek to position
835
+ itself as an important support element in the efforts to prevent and
836
+ mitigate the adverse effects that may be generated.
837
+
838
+ ACKNOWLEDGMENTS
839
+
840
+ The present work would not be possible without the support of
841
+ Dwyer, B., Nelson, J. from Roboflow Computer Vision, who trusted
842
+ in this project and sponsored it, granting in their platform features
843
+ that allowed to build a bigger dataset, of better quality, applying
844
+ preprocessing tasks and increasing features, thank you very much.
845
+
846
+ REFERENCES
847
+
848
+ [1] National Forestry Corporation (14 December 2022). CONAF.
849
+ Retrieved from Estadística de Ocurrencia de Incendios Forestales:
850
+ https://www.conaf.cl/wp-
851
+ content/files_mf/1662998364TABLA1_TEMPORADA2021_01_12
852
+ .09.22_version2022.xls
853
+
854
+ [2] Borunda, A. (September 21, 2020). National Geographic. Retrieved
855
+ from
856
+ Science:
857
+ https://www.nationalgeographicla.com/ciencia/2020/09/cual-es-la-
858
+ relacion-entre-los-incendios-forestales-y-el-cambio-climatico
859
+
860
+ [3] Ortega, M. (2013). In Chile Forestal (pp. 37, 38). Corporación
861
+ Nacional Forestal.
862
+
863
+ [4] Morris, J. (1995). Computer vision in robotics. Computer Vision in
864
+ Robotics, 1-20.
865
+
866
+ [5] Dwyer, B., Nelson, J. (2022). Roboflow (Version 1.0) [Software].
867
+ Available from https://roboflow.com. computer vision.
868
+
869
+ [6] Wang, Chien-Yao, Bochkovskiy, Alexey and Liao, Hong-Yuan
870
+ Mark (2022). "YOLOv7: Trainable bag-of-freebies sets new state-
871
+ of-the-art for real-time object detectors. " ("YOLOv7: Trainable bag-
872
+ of-freebies sets new state-of-the-art for real ...") arXiv preprint
873
+ arXiv:2207.02696. https://arxiv.org/abs/2207.02696
874
+
875
+
876
+
877
+ [7] Karimi, G. (April 15, 2021). Introduction to YOLO algorithm for
878
+ object detection. Section.io. https://www.section.io/engineering-
879
+ education/introduction-to-yolo-algorithm-for-object-detection/
880
+
881
+ [8] Aiformankind (August 28, 2020). Wildfire smoke detection research.
882
+ https://github.com/aiformankind/wildfire-smoke-detection-research.
883
+
884
+ [9] S. Abdullah, S. Bertalan, S. Masar, A. Coskun and I. Kale, "A
885
+ wireless sensor network for early forest fire detection and monitoring
886
+ as a decision factor in the context of a complex integrated emergency
887
+ response system," 2017 IEEE Workshop on Environmental, Energy,
888
+ and Structural Monitoring Systems (EESMS), 2017, pp. 1-5, doi:
889
+ 10.1109/EESMS.2017.8052688.
890
+
891
+ [10] Hohberg, S. (09/20/2015). Wildfire Smoke Detection using
892
+ Convolutional Neural Networks. Berlin University of Technology.
893
+ https://www.inf.fu-berlin.de/inst/ag-
894
+ ki/rojas_home/documents/Betreute_Arbeiten/Master-Hohberg.pdf
895
+
896
+ [11] Andreasson, H., & Persson, M. (2016). Wildfire smoke detection
897
+ based on local extremal region segmentation and surveillance. Forest
898
+ Ecology
899
+ and
900
+ Management,
901
+ 379,
902
+ 330-342.
903
+ https://www.sciencedirect.com/science/article/abs/pii/S0379711216
904
+ 301059.
905
+
3tE4T4oBgHgl3EQfbQwY/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf,len=438
2
+ page_content='Wildfire Smoke Detection by Computer Vision Eldan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
3
+ page_content=', Daniel I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
4
+ page_content=' December 26, 2022 deldanr@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
5
+ page_content='com Abstract- Wildfires are becoming more frequent and their effects more devastating every day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
6
+ page_content=' Climate change has directly and indirectly affected the occurrence of these, as well as social phenomena have increased the vulnerability of people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
7
+ page_content=' Consequently, and given the inevitable occurrence of these, it is important to have early warning systems that allow a timely and effective response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
8
+ page_content=' Artificial intelligence, machine learning and Computer Vision offer an effective and achievable alternative for opportune detection of wildfires and thus reduce the risk of disasters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
9
+ page_content=' YOLOv7 offers a simple, fast, and efficient algorithm for training object detection models which can be used in early detection of smoke columns in the initial stage wildfires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
10
+ page_content=' The developed model showed promising results, achieving a score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
11
+ page_content='74 in the F1 curve when the confidence level is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
12
+ page_content='298, that is, a higher score at lower confidence levels was obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
13
+ page_content=' This means when the conditions are favorable for false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
14
+ page_content=' The metrics demonstrates the resilience and effectiveness of the model in detecting smoke columns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
15
+ page_content=' Keywords: Early Warning, Object Detection, Artificial Intelligence, Computer Vision, YOLO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
16
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
17
+ page_content=' INTRODUCTION A wildfire is a fire that, whatever its origin and with danger or damage to people, property, or the environment, spreads uncontrolled in rural areas, through woody, bushy or herbaceous vegetation, alive or dead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
18
+ page_content=' In other words, it is an unjustified and uncontrolled fire in which the fuels are plants and which, in its propagation, can destroy everything in its path ("Wildfires in Chile - CONAF").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
19
+ page_content=' In the last 10 years there have been 67,567 Wildfires, affecting an area of 1,246,922 hectares of grassland, scrubland, forest plantations, native forest, agricultural land, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
20
+ page_content=' Climate change has increased the risk of Wildfires both directly and indirectly (Borunda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
21
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
22
+ page_content=' Although the causality of fires is 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
23
+ page_content='7% human, the conditions for the generation of these fires are higher than they would be without climate change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
24
+ page_content=' Given this scenario, it is significant to have early warning systems that, in the event of an inevitable occurrence of a forest fire, make it possible to activate and deploy the necessary resources for its rapid control and extinction, thus preserving the lives of people, their property and the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
25
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
26
+ page_content=' FOREST FIRE DETECTION SYSTEMS Wildfires are incidents with a high destructive potential and a sudden growth, even more so when weather conditions allow it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
27
+ page_content=' Therefore, is very important to apply a rapid firefighting strategy that prevents fires from growing in extent and severity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
28
+ page_content=' The early detection of fires is essential to initiate procedures that culminate in firefighting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
29
+ page_content=' Among them is the notification of the start of the fire to the Regional Coordination Center of CONAF (CENCOR) who, in turn, with the respective technical background, analyze the situation and generate the dispatch of relevant land and/or air resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
30
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
31
+ page_content=' Mobile Terrestrial Detection The task consists of moving surveillance people to a given area, either by vehicle or on foot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
32
+ page_content=' This practice is quite common in Chile in forestry companies, where it is used to supervise work activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
33
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
34
+ page_content=' Fixed Terrestrial Detection This is the most widely used form of detection in Chile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
35
+ page_content=' It consists of having a person observing from metal or wooden towers that are between 15 and 30 meters high, or from lower booths known as detection posts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
36
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
37
+ page_content=' Airborne Detection This detection method uses aircraft, usually single-engine high-wing aircraft, to detect fires from the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
38
+ page_content=' The pilot is accompanied by an observer, who oversees doing the observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
39
+ page_content=' This technique makes possible to observe a large amount of area in an abbreviated time and provides accurate and detailed information about the detected fire and the area over which it is flown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
40
+ page_content=' However, its operating cost is high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
41
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
42
+ page_content=' Detection with television systems This method uses television cameras to transmit their signal via microwaves to screens at a command post, such as in a vehicle in the field or at a coordination center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
43
+ page_content=' There, specialists analyze the situation based on what they see on the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
44
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
45
+ page_content=' Satellite Systems In some parts of the world, due to the lack of forest fire protection organizations or detection systems, the only way to know what is happening is to use low orbit satellite images, such as those provided by the Aqua and Terra satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
46
+ page_content=' 2 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
47
+ page_content=' OBJECT DETECTION BY COMPUTER VISION Computer vision, also known as artificial vision or technical vision, is a scientific discipline that involves techniques for acquiring, processing, analyzing and understanding images of the real world to produce numerical or symbolic information that can be processed by computers (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
48
+ page_content=' Morris, 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
49
+ page_content=' Just as humans use our eyes and brains to make sense of the world around us, computer vision seeks to create the same effect by allowing a computer to perceive and understand an image or sequence of images and act accordingly given the situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
50
+ page_content=' This understanding is achieved through fields as diverse as geometry, statistics, physics and other disciplines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
51
+ page_content=' Data collection is achieved in a variety of ways, such as image sequences viewed from multiple cameras or multidimensional data from medical scanners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
52
+ page_content=' Real-time object detection is a particularly important topic in computer vision, as it is often a necessary component in computer vision systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
53
+ page_content=' Some of its current applications are object tracking, public safety and active surveillance, autonomous vehicle driving, robotics, medical image analysis, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
54
+ page_content=' Computing devices that run real-time object detection processes usually use CPUs or GPUs for their tasks, however, nowadays the computational capacity has improved exponentially with the Neural Processing Units (NPU) developed by different manufacturers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
55
+ page_content=' These devices focus on accelerating operations through several types of algorithms, one of the most widely used being the multilayer perceptron or Multilayer Perceptron (MLP), an artificial neural network formed by multiple layers in such a way that it has the ability to solve problems that are not linearly separable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
56
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
57
+ page_content=' YOLO The object detection algorithm used in the present work is YOLO (You only look once), developed by Wang, Chien-Yao et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
58
+ page_content=' al, whose latest version was recently released in July 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
59
+ page_content=' YOLO is an algorithm that uses neural networks to provide real-time object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
60
+ page_content=' It is an algorithm known for its speed and accuracy and YOLO is currently used in a variety of applications such as traffic signal detection, people accounting, detection of available spaces in private parking lots, remote animal surveillance, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
61
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
62
+ page_content=' Operation of YOLO The YOLO algorithm works by using three techniques: • Intersection over Union (IOU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
63
+ page_content=' • Regression of the bounding box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
64
+ page_content=' • Residual blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
65
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
66
+ page_content=' Residual blocks The analyzed image, which can be a frame of a sequence (video), is divided into several grids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
67
+ page_content=' Each grid has a dimension SxS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
68
+ page_content=' The following image shows an example of grids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
69
+ page_content=' Each cell will detect the objects that appear inside them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
70
+ page_content=' For example, if an object appears inside a given cell, the cell will perform processing on its own and separately from the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
71
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
72
+ page_content=' 1 - Example of residual block, source: guidetomlandai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
73
+ page_content='com C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
74
+ page_content=' Regression of the bounding box A bounding box is an outline that highlights an object within an image or cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
75
+ page_content=' Each box has a height, a width, a class (what we are looking for: car, dog, traffic light, fire smoke) and a centroid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
76
+ page_content=' The following image shows an example of a bounding box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
77
+ page_content=' YOLO uses a single bounding box regression to predict the items listed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
78
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
79
+ page_content=' 2 - Example of bounding box, source: appsilondatascience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
80
+ page_content='com D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
81
+ page_content=' Intersection over Union (IOU) Intersection over union is a phenomenon in object detection that describes how blocks overlap in an image, where block is understood as the set of cells where the detected object is located.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
82
+ page_content=' YOLO uses IOU to provide an output block surrounding the detected object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
83
+ page_content=' Each grid cell is responsible for predicting the bounding boxes and their confidence score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
84
+ page_content=' y=(pc,br,b,,bh,bw,C b b Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
85
+ page_content=' 3 - Example of Intersection over Union, source: miro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
86
+ page_content='medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
87
+ page_content='com E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
88
+ page_content=' Output result YOLO combines the three techniques for accurate detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
89
+ page_content=' First, having the SxS grid of the analyzed image allows to evaluate each section individually and be able to detect the bounding boxes and their respective confidence scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
90
+ page_content=' For each bounding box, the class of detected object is set and finally, using IOU, the frame is adjusted to ensure that the detection frame covers the entire real object in the output image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
91
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
92
+ page_content=' 4 - Diagram of the YOLO algorithm, source: guidetomlandai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
93
+ page_content='com V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
94
+ page_content=' CREATION OF THE MODEL To detect objects YOLO algorithm requires a model trained with the class or classes of the search elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
95
+ page_content=' For this it is important to establish specifically where, how and when the model will operate to detect fires, for which the following criteria are established: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
96
+ page_content=' Location of the observer The analyzed images by the model and used for fire detection were obtained from distant sources, with a wide view of valley areas, forests and/or mountain ranges, above level and with unpredictable atmospheric conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
97
+ page_content=' Such conditions of observations are those that we could identify in an observation tower or fire watch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
98
+ page_content=' It should be considered that the resolution of these can be varied and not uniform, depending on the capture device used (webcam, HD camera).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
99
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
100
+ page_content=' Type of wildfire to be detected As the objective of the system is to detect fires in their initial stage, we will discard any images with fire and concentrate on smoke plumes and their development, ideally taken from cameras in different scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
101
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
102
+ page_content=' 5- Rodelillo airfield webcam, Valparaíso, December 7, 2020, 16:20 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
103
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
104
+ page_content=' Redundancy of training images To generate greater variability and resilience to the model, modifications have been made to part of the image dataset to increase the amount of material for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
105
+ page_content=' In this regard, the following characteristics were applied to the dataset: 1) Mirror effect: The images were duplicated with a horizontal rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
106
+ page_content=' This allows to have training material for different wind conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
107
+ page_content=' 2) Exposure: Duplicate images were generated with changes in exposure between -15% and +15%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
108
+ page_content=' This allows improving the visibility of the smoke plume in images that may have been taken with different levels of ambient humidity, which at greater distances distorts the focus and sharpness of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
109
+ page_content=' Also, the redundancy modifications and the labeling of the images in the dataset were made in the Roboflow app, a computer vision web software that provides many functions for upload, label, augmentation, export, train and testing models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
110
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
111
+ page_content=' SOURCES OF INFORMATION To increase the effectiveness of the model, it is important to train it with images that are as similar as possible to the scenarios where it will be implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
112
+ page_content=' In view of the above, different sources of information were selected to obtain images with a wide range of Boundingboxes+ +confidence SxSqridoninput Final detections Classprobabilitymap 4 geographic environments to generate a resilient model that can be implemented in different locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
113
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
114
+ page_content=' High Performance Wireless Research and Education Network (HPWREN) The High-Performance Wireless Research and Education Network is a University of California partnership project led by the San Diego Supercomputing Center and the Institute for Geophysics and Planetary Physics at Scripps Institution of Oceanography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
115
+ page_content=' HPWREN works as a collaborative cyber infrastructure connected to the Internet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
116
+ page_content=' The project has a vast network of cameras in the State of California, USA, which have been used for wildfire observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
117
+ page_content=' In particular, the HPWREN images were obtained from the AI for Mankind project, founded by Wei Shung Chung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
118
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
119
+ page_content=' Social Networks Wildfires are high-impact emergencies and are considered by society as public interest events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
120
+ page_content=' Therefore, a search for images of Wildfires was made on the Twitter platform using the hashtag "Wildfire" in Spanish, English, Turkish, Greek, Russian and Portuguese.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
121
+ page_content=' This allowed access to a variety of images with different types of geography and relatively recent, allowing the generation of an updated model training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
122
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
123
+ page_content=' Images created with Artificial Intelligence In an innovative way, the well-known artificial intelligences Dall-E from OpenAI and Stable Diffusion from StabilityAI were used to generate images using the following input phrase: "Wildfire smoke in early stage as seen from an observation tower or high and distant point".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
124
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
125
+ page_content=' 6 - Forest fire smoke image created with Dall-E D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
126
+ page_content=' Self-made computer Images To complement the dataset with smoke columns originating in different places, images were generated by superimposing layers with the Photoshop application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
127
+ page_content=' For this purpose, base images of cameras and observation towers without smoke were selected and new images were artificially created with different types of smoke originating from different points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
128
+ page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
129
+ page_content=' MODEL TRAINING YOLOv7 is a deep learning-based object detection algorithm that uses a convolutional neural network to detect and classify objects in images and videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
130
+ page_content=' To train the algorithm, a set of labeled images containing the objects to be detected are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
131
+ page_content=' The images must be divided in two datasets: a training set and a test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
132
+ page_content=' The training set is used to train the neural network and the test set is used to evaluate the performance of the model once trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
133
+ page_content=' Training process consists in showing the neural network a set of labeled images and to make it learn to detect and classify the objects in them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
134
+ page_content=' To do this, a technique called backpropagation is used, which involves adjusting weights of the neural network based on the errors made in classifying the objects in the images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
135
+ page_content=' This process is repeated many times, using different training images each time, until the model reaches an acceptable level of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
136
+ page_content=' Once trained, the model can be used to detect and classify objects in new images and videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
137
+ page_content=' In general, the larger the training set and the better labeled the images are, the better the model performs in object detection tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
138
+ page_content=' The model training dataset contains 1,520 baseline images of smoke plumes in different conditions and viewed from different perspectives, incorporating varied geographic settings to improve model resilience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
139
+ page_content=' Applying the redundancy characteristics, the dataset was strengthened to 2,712 images, distributed as follows: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
140
+ page_content=' Training Set Set of 2,405 images to train the neural network of the algorithm to classify the smoke in them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
141
+ page_content=' All the images in the dataset contain a bounding box with the exact location of the object to be detected, in this case, the smoke plumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
142
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
143
+ page_content=' Validation Set Set of 228 images on which the model is evaluated after training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
144
+ page_content=' This set is of relevance for the evaluation metric, as it is the first indicator of model performance during the training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
145
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
146
+ page_content=' Test Set Set of 79 images that are unknown to the neural network and were used neither for training nor for validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
147
+ page_content=' It is used to assess the performance of the model against new scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
148
+ page_content=' Its metrics are considered the most important because it establishes a performance indicator against the desired scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
149
+ page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
150
+ page_content=' TRAINING PARAMETERS Model training requires computational power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
151
+ page_content=' The higher the computational capacity, faster training process will be done, which in turn will allow a deeper learning process, achieving better performance results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
152
+ page_content=' The model training process was performed using a pre-trained base model arranged by the YOLOv7 algorithm on the Google Colab platform, using an Nvidia A100-SXM4 GPU with 40 Gb of memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
153
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
154
+ page_content=' Batch Size Batch size is a parameter used in the training process of a machine learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
155
+ page_content=' It refers to the number of training samples to be processed before updating the model weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
156
+ page_content=' For example, if the batch size is 32, it means that the model will process 32 training samples at a time and then adjust their weights accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
157
+ page_content=' It will then process another batch of 32 samples and adjust the weights again, and so on until all training samples are processed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
158
+ page_content=' Batch size is a parameter that can significantly affect model performance during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
159
+ page_content=' Too small batch size can make training slower as more weight updates are performed, but it can also improve model accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
160
+ page_content=' Otherwise, too large batch size can make training faster, but can also reduce model accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
161
+ page_content=' Therefore, it is important to choose an appropriate batch size based on the needs of the model and the data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
162
+ page_content=' The final model is the result of four training phases with different batch sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
163
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
164
+ page_content=' EPOCH or training iterations An epoch is a complete iteration through the entire training set during the training process of a machine learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
165
+ page_content=' For example, if the training set has 1,000 samples and the batch size is 32, it will take 32 iterations to complete one epoch, since 32 x 32 = 1,000~.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
166
+ page_content=' During each epoch, the model processes the training samples in batches and adjusts their weights accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
167
+ page_content=" At the end of each epoch, the model's performance is evaluated using a test data set and used to assess the model's progress." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
168
+ page_content=' The number of epochs used during model training is another parameter that can significantly affect model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
169
+ page_content=' Too small number of epochs can result in an under-fitted model, while too large number can result in an over-fitted model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
170
+ page_content=' Therefore, it is important to choose an appropriate number of epochs based on the needs of the model and the data set, the available resources and time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
171
+ page_content=' The smoke detection model was trained in four sessions of 300 epochs and a final session of 500 epochs, with a total duration of 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
172
+ page_content='15 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
173
+ page_content=' IX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
174
+ page_content=' EVALUATION METRICS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
175
+ page_content=' Mean average precision (mAP) mAP@.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
176
+ page_content='5 is a performance measure commonly used in object detection tasks that refers to the average detection accuracy mAP (mean Average Precision) for different values of the Intersection over Union (IoU) threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
177
+ page_content=' The mAP detection accuracy refers to the average accuracy of an object detection model in correctly detecting and classifying objects in a set of test images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
178
+ page_content=' It is calculated by comparing the model predictions with the truth labels of the objects in the test images and measuring the average accuracy across all images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
179
+ page_content=' The IoU threshold refers to the ratio of overlap between the model prediction and the truth label of an object in an image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
180
+ page_content=' For example, if the IoU threshold is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
181
+ page_content='5, it means that the model prediction is considered correct only if the overlap between the prediction and the truth label is 50% or more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
182
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
183
+ page_content=' F1 Curve The F1 curve is a tool commonly used in classification tasks to evaluate the performance of a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
184
+ page_content=' It is used to evaluate the accuracy and recall of a model at different classification thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
185
+ page_content=' Accuracy refers to the proportion of correct model predictions out of the total predictions made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
186
+ page_content=' Recall refers to the proportion of correct model predictions over the total number of positive cases in the data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
187
+ page_content=' The F1 curve is calculated using the formula: 𝐹1 = 2 ∗ (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ) (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑅𝑒𝑐𝑎𝑙𝑙) This formula combines accuracy and recall in a single measure and is useful when it is important to balance both metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
188
+ page_content=' To draw the F1 curve, the classification threshold is varied, and the accuracy and recall are calculated for each threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
189
+ page_content=' The accuracy and recall values are then plotted on a graph and connected by a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
190
+ page_content=' The result is a curve showing how accuracy and recall vary as the classification threshold changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
191
+ page_content=' The F1 curve is useful for evaluating model performance at different thresholds and for choosing the optimal threshold for the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
192
+ page_content=' XI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
193
+ page_content=' EVALUATION OF THE MODEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
194
+ page_content=' Model N° 1 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
195
+ page_content=' 7 - PR Curve Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
196
+ page_content=' 1 - Own elaboration The first trained model shows a mean average mAP accuracy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
197
+ page_content='379, that is 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
198
+ page_content='9% correct on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
199
+ page_content=' Regarding the F1 curve, the model obtained a score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
200
+ page_content='44 when the confidence value is set at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
201
+ page_content='215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
202
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
203
+ page_content='0 smoke 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
204
+ page_content='379 all classes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
205
+ page_content='379 mAP@0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
206
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
207
+ page_content='8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
208
+ page_content='6 Precision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
209
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
210
+ page_content='2 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
211
+ page_content='0 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
212
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
213
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
214
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
215
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
216
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
217
+ page_content='0 Recall 6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
218
+ page_content=' 8 - Curve F1 Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
219
+ page_content=' 1 - Own elaboration The above results are considered deficient, since their best performance does not exceed 50% effectiveness, and occurs when the confidence value of the model is low, therefore, it has a high tendency to generate false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
220
+ page_content=' The confidence level is always a relevant factor in model training, because the lower the confidence level is maintained with good results, it is a sign of resilient learning and resistance to false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
221
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
222
+ page_content=' Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
223
+ page_content=' 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
224
+ page_content=' 9 - PR Curve Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
225
+ page_content=' 2 - Own elaboration The second trained model obtained a mean average mAP accuracy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
226
+ page_content='684, that is 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
227
+ page_content='4% correct on the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
228
+ page_content=' The result implies a significant improvement over the first model and is mainly because the weights of the previously trained neural network were used for the new model, collecting the previous learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
229
+ page_content=' Regarding the F1 curve, the model obtained a score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
230
+ page_content='69 when the confidence value is set at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
231
+ page_content='313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
232
+ page_content=' This result is much better than the previous one, in that it obtains 69% accuracy even when the confidence value is low, that is when the model is more susceptible to false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
233
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
234
+ page_content=' Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
235
+ page_content=' 3 For the training of Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
236
+ page_content=' 3, a cleaning of the dataset was performed, eliminating images that were considered ambiguous to the human eye or were far from the objective of what the model is required to learn to detect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
237
+ page_content=' This change allowed to improve the training time, however, there were no significant changes in the results, keeping the same values of model N° 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
238
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
239
+ page_content=' Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
240
+ page_content=' 4 Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
241
+ page_content=' 4 was trained with different parameters than those used previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
242
+ page_content=' For the previous cases, batch sizes of 64 and 32 with 300 iterations were used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
243
+ page_content=' For this case a batch size of 16 was used and 500 iterations were performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
244
+ page_content=' This increased the training time considerably and while it improved the results, it was not a significant increase in the first instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
245
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
246
+ page_content=' 10 - PR Curve Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
247
+ page_content=' 4 - Own elaboration In relation to the MAP, a score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
248
+ page_content='698 was obtained, only slightly higher than the previous result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
249
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
250
+ page_content=' 11 - Curve F1 Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
251
+ page_content=' 4 - Own elaboration 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
252
+ page_content='0 smoke all classes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
253
+ page_content='44 at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
254
+ page_content='215 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
255
+ page_content='8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
256
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
257
+ page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
258
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
259
+ page_content='0 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
260
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
261
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
262
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
263
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
264
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
265
+ page_content='0 Confidence1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
266
+ page_content='0 smoke 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
267
+ page_content='684 all classes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
268
+ page_content='684 mAP@0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
269
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
270
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
271
+ page_content='6 Precision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
272
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
273
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
274
+ page_content='0+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
275
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
276
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
277
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
278
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
279
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
280
+ page_content='0 Recall1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
281
+ page_content='0 smoke 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
282
+ page_content='698 all classes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
283
+ page_content='698 mAP@0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
284
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
285
+ page_content='8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
286
+ page_content='6 Precision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
287
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
288
+ page_content='2 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
289
+ page_content='0 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
290
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
291
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
292
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
293
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
294
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
295
+ page_content='0 Recall1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
296
+ page_content='0 smoke all classes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
297
+ page_content='74 at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
298
+ page_content='298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
299
+ page_content='8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
300
+ page_content='6 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
301
+ page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
302
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
303
+ page_content='0 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
304
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
305
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
306
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
307
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
308
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
309
+ page_content='0 Confidence However, in relation to the F1 curve, the model showed significantly better results, reaching a score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
310
+ page_content='74 when the confidence level is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
311
+ page_content='298, a higher score was obtained and at lower confidence levels, when conditions are advantageous to false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
312
+ page_content=' This demonstrates the resilience and effectiveness of the model in detecting smoke plumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
313
+ page_content=' On the other hand, this model proved to make predictions with greater confidence than the previous ones, mainly because it considers the learning from the previous models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
314
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
315
+ page_content=' 12 - Test lot Model N° 1 - Own elaboration Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
316
+ page_content=' 13 - Test lot Model N° 4 - Own elaboration XII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
317
+ page_content=' SYSTEM INSTALLATION AND IMPLEMENTATION To perform inference, the trained model must be loaded into an inference application: The first step is to load the trained model into an inference application, such as TensorFlow or PyTorch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
318
+ page_content=' This requires providing the path to the model file and loading it into memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
319
+ page_content=' Then, if the input image differs from the parameters expected by the model it is necessary to preprocess the input image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
320
+ page_content=' This may include resizing the image to the dimension expected by the model, normalizing the pixel values, and converting the image to a tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
321
+ page_content=' Once the input image is ready, you can run the model using the model inference method and provide the input image as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
322
+ page_content=' This will return the model predictions in the form of a tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
323
+ page_content=' Model predictions are often in tensor form and can be difficult to interpret directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
324
+ page_content=' Therefore, it is necessary to process the predictions to obtain useful information, such as the coordinates of the bounding boxes of the detected objects and the corresponding object classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
325
+ page_content=' Once the predictions have been processed, it is possible to visualize them by overlaying the object labels on the input image or by displaying the predictions in tabular form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
326
+ page_content=' This can help to evaluate the performance of the model and to understand how it works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
327
+ page_content=' A tensor is a mathematical object used in the field of artificial intelligence and object detection to represent and manipulate multidimensional data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
328
+ page_content=' Tensors are fundamental elements in data processing and are widely used in machine learning and data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
329
+ page_content=' A tensor can be viewed as a generalization of a matrix, which is a two-dimensional data structure used to represent and manipulate data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
330
+ page_content=' Like a matrix, a tensor can have more than one dimension, and each dimension is known as an axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
331
+ page_content=' Tensor can be used to represent data in many different forms, such as images, videos, audios and texts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
332
+ page_content=' In the area of artificial intelligence and object detection, tensors are used to process and analyze large amounts of input data, such as images or videos, and to produce output results, such as class labels or predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
333
+ page_content=' Tensors are also used in natural language processing and machine translation, among other applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
334
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
335
+ page_content=' 14 - Model No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
336
+ page_content=' 4 applied to smoke image with 91% success rate To use the model in video cameras, either in real time or by obtaining images from them, the capture device must be connected to a processing device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
337
+ page_content=' This can be a computer or a Raspberry Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
338
+ page_content=' It is important to point out that the model does not need to be implemented in the same device that captures the images from the camera, since the architecture designed to meet the objectives of the model is built using the client-server mode, where the clients correspond to one or several sources of information while the server Humo:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
339
+ page_content='91 8 corresponds to the source where the model is executed and the inferences are made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
340
+ page_content=' For the test model, a home computer with an Nvidia RTX 3060 graphics processing card with 16GB of memory was used, using Windows 11 operating system with the Anaconda data analytics environment installed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
341
+ page_content=' The PyTorch library package was installed on the computer and through a FrontEnd designed with Flask in Python, a web site was generated to capture free access images from Chilean airfield cameras through scraping to perform tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
342
+ page_content=' XIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
343
+ page_content=' MODEL IMPROVEMENT Although the trained model presents an acceptable result, the latest tests indicated that to improve it, it is necessary to make a series of changes, which are detailed below: 1) Use a larger and better labeled training set: often, the larger the training set and the better labeled the images are, the better the performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
344
+ page_content=' 2) Adjust model hyperparameters: there are several hyperparameters that can affect model performance, such as the batch size and the number of epochs used during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
345
+ page_content=' Adjusting these hyperparameters can improve model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
346
+ page_content=' 3) Use a more complex neural network architecture: using a neural network with more layers or with more units in each layer can improve model performance, but it can also increase training time and the need for more training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
347
+ page_content=' 4) Use regularization techniques: Regularization is a technique used to avoid overfitting the model and improve its generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
348
+ page_content=' Some common regularization techniques include L1 and L2 regularization, dropout and early stopping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
349
+ page_content=' 5) Use advanced optimization techniques: There are several advanced optimization techniques that can improve model performance, such as stochastic gradient descent (SGD), Adam and Adagrad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
350
+ page_content=' Using these techniques can improve training speed and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
351
+ page_content=' XIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
352
+ page_content=' CONCLUSIONS Undoubtedly, the phenomenon of Wildfires will increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
353
+ page_content=' On the one hand, due to climate change and, on the other, to social phenomena such as migration, the displacement of families from the city to the countryside, and intentionality, among others, which will significantly increase vulnerability to this type of anthropogenic event, both in terms of occurrence and severity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
354
+ page_content=' Given this scenario, it is important that authorities, civil society, and people in general become aware of the seriousness of this situation and adopt preventive behaviors that contribute to mitigating the effects of fires through self-care practices such as preventive forestry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
355
+ page_content=' On the other hand, in the face of the inevitable occurrence of forest emergencies, having early warning systems in place will help reduce response times and thus ensure that forest emergencies can be controlled by first responders in less time, thereby reducing their effects on people, their property and the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
356
+ page_content=' The present model offers an alternative that complements early warning systems, both at the state and private levels, through science and technology, using the tools that Artificial Intelligence offers and that can be implemented in a simple way and with minimal knowledge of computer science and programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
357
+ page_content=' Although the current model has an acceptable performance, to improve it, it is necessary to have a larger and better labeled training set that allows the neural network to learn more and better scenarios of forest fire occurrence in the initial stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
358
+ page_content=' Likewise, it is necessary to rescue the learning of the previous models in the training process, adjusting the parameters so in each learning cycle the efficiency is maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
359
+ page_content=' The resources required by the system are fully achievable by the organizations with a low cost vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
360
+ page_content=' benefit, it does not require a large number of people in its use since it works mainly in an automated way and the investment in infrastructure (cameras, internet, towers, masts, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
361
+ page_content=' ), is quickly amortized if compared against the cost of maintenance of conventional systems (observation towers with their respective towers, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
362
+ page_content=' Although this technology is not intended to replace the role of human beings in the detection of Wildfires, it does seek to position itself as an important support element in the efforts to prevent and mitigate the adverse effects that may be generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
363
+ page_content=' ACKNOWLEDGMENTS The present work would not be possible without the support of Dwyer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
364
+ page_content=', Nelson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
365
+ page_content=' from Roboflow Computer Vision, who trusted in this project and sponsored it, granting in their platform features that allowed to build a bigger dataset, of better quality, applying preprocessing tasks and increasing features, thank you very much.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
366
+ page_content=' REFERENCES [1] National Forestry Corporation (14 December 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
367
+ page_content=' CONAF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
368
+ page_content=' Retrieved from Estadística de Ocurrencia de Incendios Forestales: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
369
+ page_content='conaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
370
+ page_content='cl/wp- content/files_mf/1662998364TABLA1_TEMPORADA2021_01_12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
371
+ page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
372
+ page_content='22_version2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
373
+ page_content='xls [2] Borunda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
374
+ page_content=' (September 21, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
375
+ page_content=' National Geographic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
376
+ page_content=' Retrieved from Science: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
377
+ page_content='nationalgeographicla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
378
+ page_content='com/ciencia/2020/09/cual-es-la- relacion-entre-los-incendios-forestales-y-el-cambio-climatico [3] Ortega, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
379
+ page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
380
+ page_content=' In Chile Forestal (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
381
+ page_content=' 37, 38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
382
+ page_content=' Corporación Nacional Forestal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
383
+ page_content=' [4] Morris, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
384
+ page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
385
+ page_content=' Computer vision in robotics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
386
+ page_content=' Computer Vision in Robotics, 1-20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
387
+ page_content=' [5] Dwyer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
388
+ page_content=', Nelson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
389
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
390
+ page_content=' Roboflow (Version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
391
+ page_content='0) [Software].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
392
+ page_content=' Available from https://roboflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
393
+ page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
394
+ page_content=' computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
395
+ page_content=' [6] Wang, Chien-Yao, Bochkovskiy, Alexey and Liao, Hong-Yuan Mark (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
396
+ page_content=' "YOLOv7: Trainable bag-of-freebies sets new state- of-the-art for real-time object detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
397
+ page_content=' " ("YOLOv7: Trainable bag- of-freebies sets new state-of-the-art for real .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
398
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
399
+ page_content='") arXiv preprint arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
400
+ page_content='02696.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
401
+ page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
402
+ page_content='org/abs/2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
403
+ page_content='02696 [7] Karimi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
404
+ page_content=' (April 15, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
405
+ page_content=' Introduction to YOLO algorithm for object detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
406
+ page_content=' Section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
407
+ page_content='io.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
408
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
409
+ page_content='section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
410
+ page_content='io/engineering- education/introduction-to-yolo-algorithm-for-object-detection/ [8] Aiformankind (August 28, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
411
+ page_content=' Wildfire smoke detection research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
412
+ page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
413
+ page_content='com/aiformankind/wildfire-smoke-detection-research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
414
+ page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
415
+ page_content=' Abdullah, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
416
+ page_content=' Bertalan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
417
+ page_content=' Masar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
418
+ page_content=' Coskun and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
419
+ page_content=' Kale, "A wireless sensor network for early forest fire detection and monitoring as a decision factor in the context of a complex integrated emergency response system," 2017 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
420
+ page_content=' 1-5, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
421
+ page_content='1109/EESMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
422
+ page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
423
+ page_content='8052688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
424
+ page_content=' [10] Hohberg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
425
+ page_content=' (09/20/2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
426
+ page_content=' Wildfire Smoke Detection using Convolutional Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
427
+ page_content=' Berlin University of Technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
428
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
429
+ page_content='inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
430
+ page_content='fu-berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
431
+ page_content='de/inst/ag- ki/rojas_home/documents/Betreute_Arbeiten/Master-Hohberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
432
+ page_content='pdf [11] Andreasson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
433
+ page_content=', & Persson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
434
+ page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
435
+ page_content=' Wildfire smoke detection based on local extremal region segmentation and surveillance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
436
+ page_content=' Forest Ecology and Management, 379, 330-342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
437
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
438
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
439
+ page_content='com/science/article/abs/pii/S0379711216 301059.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tE4T4oBgHgl3EQfbQwY/content/2301.05070v1.pdf'}
49AzT4oBgHgl3EQffvx7/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4fa4a0d2644edbbfc414b3726ad867749e39d98558069caa6a5972feb3bf289
3
+ size 6946861
49E2T4oBgHgl3EQfOgYr/content/2301.03748v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5d2459a4db9bd3ca8b581c8412edda59146dd9727b71cb1aa61e33a3770993f
3
+ size 4262049
49E2T4oBgHgl3EQfOgYr/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9190d1e806c2c085069ad4aa68b85eca4193d8cc201237a5ebb81781d2c2830
3
+ size 109896
5dE2T4oBgHgl3EQf6wiO/content/2301.04203v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4cec2a1ddd91b9fe06112853090c4c0c1cc403fad98295a88028ba99e7c2ae1
3
+ size 222701
5dE2T4oBgHgl3EQf6wiO/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fd5cdd49f419ab46a61804e14af152414ce905cfd1152eb58bf8c0f206da101
3
+ size 131533
5tFKT4oBgHgl3EQfSy3E/content/2301.11777v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2141530b35ca08b334c206e01f2e1bcf91e8eb2ce280184b440b34b64ebe0b4c
3
+ size 513522
5tFKT4oBgHgl3EQfSy3E/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92ce4dac7e8d0a2118a6fd271f094bccd365e4644a334604b01488f03756add0
3
+ size 2555949
5tFKT4oBgHgl3EQfSy3E/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99a26440c755037f7debe04df206c58f87d4f9a921ea022bc6b8d2f4caf72f3
3
+ size 95946
69AyT4oBgHgl3EQf2vl7/content/tmp_files/2301.00756v1.pdf.txt ADDED
@@ -0,0 +1,1789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Thermal annealing of sputtered Nb3Sn and V3Si thin
2
+ films for superconducting radio-frequency cavities
3
+ Katrina Howard1,2, Zeming Sun1, and Matthias U. Liepe1
4
+ 1 Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell
5
+ University, Ithaca, NY 14853, USA
6
+ 2 Department of Physics, University of Chicago, Chicago, IL 60637, USA
7
+ E-mail: [email protected] (K.H.); [email protected] (Z.S.);
8
+ [email protected] (M.U.L.)
9
+ December 2022
10
+ Abstract.
11
+ Nb3Sn and V3Si thin films are promising candidates as thin films for
12
+ the next generation of superconducting radio-frequency (SRF) cavities.
13
+ However,
14
+ sputtered films often suffer from stoichiometry and strain issues during deposition
15
+ and post annealing. In this study, we explore the structural and chemical effects of
16
+ thermal annealing, both in-situ and post-sputtering, on DC-sputtered Nb3Sn and V3Si
17
+ films of varying thickness on Nb or Cu substrates, extending from our initial studies
18
+ [1]. Through annealing at 950 °C, we successfully enabled recrystallization of 100 nm
19
+ thin Nb3Sn films on Nb substrate with stoichiometric and strain-free grains. For 2 µm
20
+ thick films, we observed the removal of strain and a slight increase in grain size with
21
+ increasing temperature. Annealing enabled a phase transformation from unstable to
22
+ stable structure on V3Si films, while we observed significant Sn loss in 2 µm thick Nb3Sn
23
+ films after high temperature anneals. We observed similar Sn and Si loss on films atop
24
+ Cu substrates during annealing, likely due to Cu-Sn and Cu-Si phase generation and
25
+ subsequent Sn and Si evaporation. These results encourage us to refine our process to
26
+ obtain high-quality sputtered films for SRF use.
27
+ Keywords:
28
+ thermal annealing, A15 superconductors, sputtering, thin film, SRF
29
+ Submitted to: Superconductor Science and Technology
30
+ arXiv:2301.00756v1 [cond-mat.mtrl-sci] 2 Jan 2023
31
+
32
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
33
+ 2
34
+ 1. Introduction
35
+ Nb3Sn and V3Si thin films are of increas-
36
+ ing interest to the superconducting radio-
37
+ frequency community owing to the quest of
38
+ achieving high accelerating gradient and ef-
39
+ ficiency.
40
+ As niobium-based superconducting
41
+ radio-frequency (SRF) cavities are reaching
42
+ the theoretical limits [2], alternative materials
43
+ are of great interest to continue the quest of
44
+ increasing quality factors, accelerating gradi-
45
+ ents, and efficiency [3]. A15 superconductors
46
+ Nb3Sn and V3Si are promising candidates for
47
+ this role, used as thin films inside either Nb
48
+ or Cu cavities [3, 4].
49
+ Both candidates have
50
+ relatively high critical temperatures (Tc,Nb3Sn
51
+ = 18.3 K and Tc,V3Si = 17.1 K), and Nb3Sn
52
+ is predicted to yield a superheating field of ∼
53
+ 440 mT that doubles the Nb limit of ∼ 240 mT
54
+ [3, 5, 6, 7, 8]. These properties could allow cav-
55
+ ity operation at an elevated temperature of ∼ 4
56
+ K and the potential for increased accelerating
57
+ gradients [9]. This higher operating temper-
58
+ ature allows for reduced cryogenic costs and
59
+ simpler infrastructure for particle accelerators
60
+ and their applications [3]. Due to their brittle
61
+ nature and low thermal conductivity, Nb3Sn
62
+ and V3Si are best suited for use as a thin film
63
+ inside a host cavity with better thermal con-
64
+ ductivity, such as Nb or Cu [3, 10, 11].
65
+ Nb3Sn thin films have been achieved
66
+ through vapor diffusion, sputtering, electro-
67
+ plating, and chemical vapor deposition [12, 13,
68
+ 14, 15, 16, 17]. In the state-of-the-art vapor
69
+ diffusion, a niobium cavity is placed in a high-
70
+ temperature vacuum furnace, and then tin or
71
+ tin chloride sources are vaporized and allowed
72
+ to diffuse into the niobium surface for alloy-
73
+ ing [3, 9, 13, 18, 19, 20].
74
+ In contrast, sput-
75
+ tering utilizes high-energy plasma to directly
76
+ eject target materials onto a substrate at low
77
+ temperatures [4, 6, 12, 21, 22]. Alternatively,
78
+ Nb3Sn films are fabricated via electroplating in
79
+ aqueous solutions working at near-room tem-
80
+ peratures and atmospheric pressure followed
81
+ by heat treatment [14, 15, 16, 23], or via chem-
82
+ ical vapor deposition that takes advantage
83
+ of reactions between volatile precursors [24].
84
+ Nb3Sn has been successfully vapor-diffused in-
85
+ side cavities, where a single-cell reached gradi-
86
+ ents of 24 MV/m, while Nb3Sn 9- and 5-cells
87
+ reached 15 MV/m, both with Q0’s on the order
88
+ of 1010 at operating temperature 4.4 K [19, 20].
89
+ In cavity tests, maximum surface fields of 120
90
+ mT (pulsed operation) and 80 – 100 mT (CW)
91
+ have been achieved, showing that Nb3Sn cav-
92
+ ities can be operated reliably in a flux-free
93
+ metastable state above the lower critical field
94
+ of this material (around 40 mT) [7, 25].
95
+ In the sputtering process, the film prop-
96
+ erties are tailored by controlling the Ar/Kr
97
+ plasma pressure, substrate temperature, sput-
98
+ tering voltage, sputtering current, rate of de-
99
+ position, and post-sputtering anneal temper-
100
+ ature/duration. In literature [4, 6, 9, 12, 26],
101
+ sputtered Nb3Sn films have been demonstrated
102
+ on Nb and Cu surfaces by using a stoichio-
103
+ metric Nb3Sn target, by co-sputtering with Nb
104
+ and Sn targets, or through annealing a sput-
105
+ tered Nb/Sn multilayer. A stoichiometric tar-
106
+ get allows for a design where only a single tar-
107
+ get is used [4, 6, 26, 27].
108
+ Co-sputtering in-
109
+ volves the use of separate Nb and Sn targets
110
+ that are sputtering at the same time, allowing
111
+ for tuning of the power applied to each target
112
+ [21, 28]. Multilayer sputtering also uses sepa-
113
+ rate Nb and Sn targets but alternates the use
114
+ of each target to create many ultrathin layers
115
+ of each material [11, 12, 22]. Tc’s above 17.8 K
116
+ have been observed for single-target and mul-
117
+ tilayer sputtering [6, 11, 12].
118
+ V3Si films have been attempted by ther-
119
+ mal diffusion, magnetron sputtering, and high-
120
+ power impulse magnetron sputtering (HiP-
121
+
122
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
123
+ 3
124
+ IMS) [10, 11, 27, 28]. In thermal diffusion, a
125
+ vanadium layer on a silicon-on-insulator sub-
126
+ strate is annealed at high temperature to pro-
127
+ duce V3Si [28]. In the HiPIMS method, power
128
+ is applied as a set of discrete high-energy pulses
129
+ at a low-duty cycle, which can be used to ion
130
+ bombard the substrate, recrystallizing films at
131
+ a low temperature and allowing more control
132
+ of the stoichiometry; this method of deposit-
133
+ ing V3Si films on Cu substrates produced Tc
134
+ up to 10 K [10]. CERN’s magnetron sputtered
135
+ V3Si films on a silver buffer layer upon a Cu
136
+ substrate have reached Tc of 11.2K [27].
137
+ Thermal annealing of the sputtered films,
138
+ either in situ or post-deposition, is required
139
+ to minimize the internal stress induced by
140
+ the
141
+ sputtering
142
+ process
143
+ and
144
+ improve
145
+ the
146
+ stoichiometry and grain structures, which are
147
+ important for their critical temperature and
148
+ cavity RF performance [4, 6, 12].
149
+ However,
150
+ during annealing of sputtered Nb3Sn or Nb/Sn
151
+ multilayers, the films suffer from issues such
152
+ as Sn loss, Cu incorporation into the film
153
+ from Cu substrates, high strain, and interface
154
+ issues at the substrate-film boundary [4, 6,
155
+ 12].
156
+ Sn loss is a critical issue because of
157
+ the dependence of Tc on Sn concentration
158
+ [3]. While annealing is frequently performed
159
+ on Nb3Sn films, these high temperatures have
160
+ led to Sn loss in the furnace and Nb-rich
161
+ films with reduced Tc [6, 12], which motivates
162
+ us to mechanistically understand the phase
163
+ transformation associated with annealing. Cu
164
+ incorporation can occur during annealing,
165
+ which lowers the Tc [4].
166
+ This issue can be
167
+ addressed by using a barrier layer such as
168
+ tantalum to reduce the interdiffusion [27]. The
169
+ interface between Nb3Sn and Cu also suffers
170
+ from strain because of their different thermal
171
+ expansion coefficients and lattice mismatch,
172
+ which can cause cracking in the film [4].
173
+ Cracking can release high initial strain in the
174
+ lattice, but does not relieve microstrain and
175
+ increases surface roughness while decreasing
176
+ the uniformity of the film [4, 29]. Currently, no
177
+ sputtered Nb3Sn cavity test has been reported.
178
+ Moreover, V3Si is much less studied than
179
+ Nb3Sn, and there has been no RF test to date
180
+ [10, 11, 27].
181
+ One goal of this work is to optimize
182
+ the sputtering capability of these alternative
183
+ SRF materials at Cornell and compare our
184
+ results with existing efforts in the SRF field.
185
+ Most importantly, we aim to systematically
186
+ investigate the effect of thermal annealing on
187
+ the sputtered Nb3Sn and V3Si thin films in
188
+ order to better understand these observed
189
+ issues and design an optimal process for
190
+ SRF use.
191
+ By understanding the impacts
192
+ of deposition and annealing parameters, our
193
+ goal is to find the root of the issues in
194
+ stoichiometry and strain of thin films. With
195
+ such knowledge, we hope to provide insights
196
+ for the development of sputtered Nb3Sn and
197
+ V3Si cavities.
198
+ In this study, we investigate
199
+ Nb3Sn and V3Si films of different thicknesses
200
+ on both Nb and Cu substrates to optimize
201
+ the
202
+ best
203
+ conditions
204
+ that
205
+ minimize
206
+ strain
207
+ while producing required stoichiometry and
208
+ superconducting properties.
209
+ 2. Methods
210
+ Nb3Sn and V3Si thin films were deposited
211
+ using a DC-sputtering system at the Cornell
212
+ Center for Materials Research. A high vacuum
213
+ of 10−6 torr base pressure was achieved using
214
+ a cryo-pumped system. All depositions were
215
+ performed at 5 mTorr Ar pressure. A rotating
216
+ stage was used, when possible, to ensure
217
+ uniformity during deposition.
218
+ As summarized in Table 1, the sputtering
219
+ parameters varied were the film material
220
+ (Nb3Sn vs.
221
+ V3Si), substrate material (Nb
222
+
223
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
224
+ 4
225
+ Table 1. Sputtering parameters for Nb3Sn and V3Si film deposition.
226
+ Film
227
+ Substrate Substrate
228
+ holder
229
+ Temperature
230
+ (°C)
231
+ Voltage
232
+ (V)
233
+ Current
234
+ (A)
235
+ Nominal
236
+ thickness
237
+ Nb3Sn
238
+ Nb
239
+ Rotating
240
+ 25
241
+ 596
242
+ 0.15
243
+ 100 nm
244
+ Nb3Sn
245
+ Nb
246
+ Rotating
247
+ > 25
248
+ 589
249
+ 0.26
250
+ 2 µm
251
+ Nb3Sn
252
+ Cu
253
+ Heated
254
+ 550
255
+ 466
256
+ 0.214
257
+ 300 nm
258
+ V3Si
259
+ Nb
260
+ Rotating
261
+ > 25
262
+ 811
263
+ 0.196
264
+ 2 µm
265
+ V3Si
266
+ Cu
267
+ Heated
268
+ 550
269
+ 819
270
+ 0.222
271
+ 300 nm
272
+ vs.
273
+ Cu),
274
+ deposition
275
+ temperature
276
+ (room
277
+ temperature vs. 550 °C in situ heating), and
278
+ film thickness (100 nm, 300 nm, and 2 µm).
279
+ Bulk Nb3Sn and V3Si targets were used, and
280
+ they were purchased from ACI alloy, Inc. The
281
+ impurity concentrations as received were 0.01
282
+ at.%.
283
+ Nb and Cu squared substrates of 1 cm2
284
+ area were used in order to provide insights
285
+ for applications in Nb and Cu substrate
286
+ cavities.
287
+ Before deposition, Nb substrates
288
+ were electropolished, and Cu substrates were
289
+ chemically
290
+ polished
291
+ to
292
+ ensure
293
+ a
294
+ smooth
295
+ surface.
296
+ The Nb3Sn and V3Si films were designed
297
+ to have thicknesses of 100 nm and 2 µm on
298
+ Nb substrates and 300 nm on Cu substrates.
299
+ The deposition rate was 2.5 ˚A/s for all samples
300
+ except for the V3Si film on Cu substrate which
301
+ was 1.8 ˚A/s (as there was difficulty lighting
302
+ the plasma). The deposition temperature for
303
+ the thick 2 µm samples is subject to error
304
+ because the temperature is uncontrolled upon
305
+ the rotating stage and increased through the
306
+ 133-minute deposition.
307
+ Subsequently, a 550
308
+ ℃ heating stage was applied to investigate the
309
+ effect of in situ heating during deposition.
310
+ After the sputtering process, films were
311
+ annealed in a series of elevated temperatures
312
+ at 600 ℃, 700 ℃, 800 ℃, and 950 ℃, each
313
+ for 6 hours, in a Lindberg high-vacuum (3 ×
314
+ 10−7 Torr) furnace. The heating rate was 10
315
+ ℃ per minute, and the annealing was followed
316
+ by furnace cooling.
317
+ Structural and chemical analyses were
318
+ conducted between anneals to characterize the
319
+ films. These analysis methods included scan-
320
+ ning electron microscope (SEM) to observe
321
+ the grain structure and size, energy disper-
322
+ sive X-ray (EDS) and X-ray photoelectron
323
+ (XPS) spectroscopies to determine the atomic
324
+ composition, and X-ray diffraction (XRD) to
325
+ gain insight into the crystal structure of the
326
+ film and calculate the strain.
327
+ In this anal-
328
+ ysis, the key features are the quality of the
329
+ film surfaces (smoothness, uniformity, grain
330
+ shape/size), the stoichiometry of the films, and
331
+ the existence and strain of Nb3Sn and V3Si
332
+ diffraction planes. Note that EDS results were
333
+ calibrated with regard to the electron penetra-
334
+ tion depth in each material and the film thick-
335
+ ness.
336
+ Finally, on the 100 nm thin Nb3Sn film
337
+ that yields the best performance, we verified
338
+ its critical temperature using a quantum
339
+ design physical property measurement system
340
+ (PPMS) and quantified the surface roughness
341
+ using atomic force microscopy (AFM).
342
+
343
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
344
+ 5
345
+ 3. Results and Discussion
346
+ In this section, we first analyze the recrystal-
347
+ lization behavior observed in the 100 nm thin
348
+ Nb3Sn films annealed and discuss the super-
349
+ conducting, composition, and surface proper-
350
+ ties of these films. Next, we show the compo-
351
+ sition and strain evolutions as a function of an-
352
+ nealing temperature in the 2 µm thick Nb3Sn
353
+ and V3Si films (on Nb) and attempt to under-
354
+ stand the Sn loss and strain relief mechanisms.
355
+ Finally, we show the ternary phase transforma-
356
+ tion upon annealing in the 300 nm thick Nb3Sn
357
+ and V3Si films that were deposited on Cu sub-
358
+ strates.
359
+ Representative surface morphologies
360
+ of samples upon deposition and after 700 °C
361
+ and 950 °C anneals are shown in figure S1.
362
+ 3.1. Thin Nb3Sn film: Recrystallization
363
+ 3.1.1.
364
+ Recrystallization behavior Figure 1
365
+ shows the evolution of surface morphology
366
+ with increasing temperature for the 100 nm
367
+ thin Nb3Sn film on Nb substrate.
368
+ We ob-
369
+ served evident grain recrystallization at 950 ℃
370
+ anneals. The grain size increased from a few
371
+ nanometers as deposited (figure 1a) to approx-
372
+ imately 300 nm after annealing (figure 1d).
373
+ Recrystallization occurs through the release of
374
+ strain energy during annealing and the subse-
375
+ quent migration of grain boundaries [30].
376
+ Here, we discuss the driving force and
377
+ boundary mobility for thermodynamic con-
378
+ siderations of this recrystallization annealing.
379
+ The stored energy per unit volume (Es) at a
380
+ strain level (ϵ) of 0.2, the maximum strain
381
+ measured from our sputtered films, is 2.7 ×
382
+ 109 J/m3, based on a 1-dimensional elastic as-
383
+ sumption, Es = 1/2 Eϵ2, where E is Young’s
384
+ modulus and the value for Nb3Sn at 300 K is
385
+ 13.7 × 1011 dyn/cm2 [31]. Indeed, this value
386
+ is dramatically larger than the typical lightly-
387
+ Figure 1. Surface SEM images for 100 nm thin Nb3Sn
388
+ films on Nb substrates: (a) as-deposited (a), and (b-d)
389
+ after annealing: (b) 600 ℃, (c) 800 ℃, and (d) 950 ℃.
390
+
391
+ a
392
+ um
393
+ (c)Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
394
+ 6
395
+ Figure 2. XRD patterns taken from the 100 nm thin Nb3Sn film as a function of annealing temperature: (a)
396
+ as-deposited, (b) 600 ℃, (c) 700 ℃, (d) 800 ℃, (e) 950 ℃. Observed Nb3Sn diffraction planes are labeled at the
397
+ top.
398
+ deformed energy of 105 J/m3 for driving recrys-
399
+ tallization in metals [32]. This suggests a suffi-
400
+ cient driving force from the sputtering-induced
401
+ strain within the film to enable the recrystal-
402
+ lization annealing.
403
+ Our X-ray diffraction data (figure 2)
404
+ shows the Nb3Sn phase is consistent in terms of
405
+ grain orientation at all annealing temperatures
406
+ including
407
+ 950
408
+
409
+ recrystallizations.
410
+ We
411
+ find Nb3Sn peaks near the known powder
412
+ diffraction peaks at 2θ = 33.6°, 37.7°, 41.5°,
413
+ 62.8°, 65.6°, 70.6°, and 82.9°[34]. Due to the
414
+ large penetration depth of the X-ray probe,
415
+ strong Nb substrate diffractions are seen at 2θ
416
+ = 38.4°, 53.3°, and 69.3°. A complete list of
417
+ known peak locations is shown in table S1.
418
+ As the annealing temperature was increased
419
+ to 950 ℃, the grain orientations of Nb3Sn
420
+ remained while the growth of grain size was
421
+ significant.
422
+ We assume this recrystallization follows a
423
+ boundary migration mechanism and evaluate
424
+ the
425
+ boundary
426
+ mobility
427
+ by
428
+ the
429
+ Arrhenius
430
+ law, d = A × exp (- Ea / RT), where d is the
431
+ equilibrium grain size, A is the pre-exponential
432
+ factor, Ea is the activation energy, and T is
433
+ annealing temperature. The apparent values
434
+ of the pre-exponential factor and activation
435
+
436
+ 100 nm Nb.Sn XRD
437
+ (200) (210) (211)
438
+ (320) (321)(400)
439
+ (421)
440
+ a) as-deposited
441
+ (
442
+ b) i600 ℃
443
+ c)i700 ℃C
444
+ d) i800 ℃
445
+ e) 950 ℃
446
+ 30
447
+ 50
448
+ 40
449
+ 60
450
+ 70
451
+ 80
452
+ 90
453
+ 20 (degrees)Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
454
+ 7
455
+ energy were determined to be 2.59 × 105 and
456
+ 63 ± 2 kJ/mol, respectively, by Schelb [33].
457
+ At an annealing temperature of 950 ℃, the
458
+ maximum attainable grain size is in the range
459
+ of 434 – 643 nm. The observed ∼ 300 nm grain
460
+ size in our work is reasonable considering the
461
+ influence from annealing time (6 h in our work
462
+ versus up to 200 h in Schelb’s work).
463
+ In
464
+ summary,
465
+ recrystallization
466
+ anneal
467
+ above 800 ℃ is effective in relieving the built-in
468
+ strain from sputtering and thus forming stoi-
469
+ chiometric Nb3Sn along with grain coarsening.
470
+ 3.1.2. Film properties
471
+ Superconducting prop-
472
+ erties, atomic composition, and surface rough-
473
+ ness were investigated on the 100 nm Nb3Sn
474
+ sample after the 950 ℃ annealing for 6 hours.
475
+ As shown in figure 3, the critical temperature
476
+ is determined to be 17.5 K, while the Nb/Sn
477
+ stoichiometry is 3/1 after sputtering away the
478
+ surface oxides. Similarly, Sayeed et al. [6] re-
479
+ ported Tc values of 17.68 – 17.83 K for 350
480
+ nm Nb3Sn sputtered films that were annealed
481
+ at 800 ℃ for 24 hours and 1000 ℃ for 1 hour
482
+ with low Sn loss.
483
+ They observed significant
484
+ degradation of Tc down to 10.95 K as a con-
485
+ sequence of the dramatic Sn loss down to 4%
486
+ after annealing for 24 h at 1000 ℃. In contrast,
487
+ we did not observe the Sn loss in the 100 nm
488
+ thin films after annealing. We infer recrystal-
489
+ lization plays a major role in retaining the Sn
490
+ ratio as well as maintaining Tc ∼ 17.5 K in the
491
+ 100 nm thin films, with the relatively short an-
492
+ nealing time helping to retain the film proper-
493
+ ties. However, our 2 µm thick films as detailed
494
+ in Section 3.2 showed similar Sn loss behavior
495
+ at increasing annealing temperatures as com-
496
+ pared to the 350 nm thick films in Sayeed’s
497
+ work [6], which indicates the importance of a
498
+ recrystallization process to obtain stoichiomet-
499
+ ric Nb3Sn films with Tc 17.5 K. Additionally,
500
+ the atomic force microscopy (AFM) result is
501
+ Figure 3.
502
+ Film properties for the 100 nm thin
503
+ Nb3Sn film on a Nb substrate after 950 ℃ annealing.
504
+ (a) Resistive transition and critical temperature, (b)
505
+ XPS spectrum showing the atomic composition after
506
+ sputtering away the surface 20 nm layer, and (c) AFM
507
+ image showing low surface roughness.
508
+ shown in figure 3c. The film shows low surface
509
+ roughness, with an average roughness of 18.3
510
+ nm, RMS roughness of 25.3 nm, and a maxi-
511
+ mum height difference of 600 nm. In contrast,
512
+ Nb substrates used have an average roughness
513
+ of ∼ 70 nm.
514
+
515
+ a
516
+ 5.0E-07
517
+ 4.0E-07
518
+ Resistivity [Ohm-cm]
519
+ 3.0E-07
520
+ 2.0E-07
521
+ 1.0E-07
522
+ 0.0E+00
523
+ 0
524
+ 5
525
+ 10
526
+ 15
527
+ 20
528
+ 25
529
+ Temperature [K]
530
+ (b
531
+ 6.0E+04
532
+ Nb: 75.2 at.%
533
+ Sn 3d
534
+ units]
535
+ Sn: 24.8 at.%
536
+ 5.0E+04
537
+ I Nb 3p
538
+ [arbitrary
539
+ 4.0E+04
540
+ Nb 3s
541
+ Intensity
542
+ 3.0E+04
543
+ 2.0E+04
544
+ 300
545
+ 350
546
+ 400
547
+ 450
548
+ 500
549
+ 550
550
+ 600
551
+ Binding energy [eV]
552
+ 0
553
+ (c)
554
+ nm
555
+ 40
556
+ 20
557
+ un
558
+ 5
559
+ 0
560
+ -20
561
+ -40
562
+ 0
563
+ 5
564
+ 10
565
+ μmThermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
566
+ 8
567
+ 3.2. Thick Nb3Sn and V3Si films: relation of
568
+ strain and composition change
569
+ Thermal annealing was performed on 2 µm
570
+ thick
571
+ Nb3Sn
572
+ and
573
+ V3Si
574
+ films
575
+ on
576
+ the
577
+ Nb
578
+ substrate.
579
+ The initial thickness of the films
580
+ greatly altered the annealing behaviors as
581
+ compared to results from 100 nm thin films.
582
+ 3.2.1.
583
+ 2 µm thick Nb3Sn films The Nb3Sn
584
+ grains nucleated in a triangular shape and
585
+ remained in that shape at all annealing
586
+ temperatures studied (figure 4a and 4b). We
587
+ speculate that these small triangular-shaped
588
+ grains with 100 – 200 nm in size were induced
589
+ by the high built-in stress and subsequent
590
+ plastic deformation during deposition.
591
+ In-
592
+ plane
593
+ stress
594
+ is
595
+ typical
596
+ in
597
+ physical
598
+ vapor
599
+ sputtering, and small grains with angular
600
+ shapes are favored under the stress [35]. This
601
+ argument is supported by the in situ stress
602
+ versus grain size relationship in Leib’s work
603
+ [36].
604
+ Upon annealing, as shown in figure 5a, the
605
+ 2 µm thick Nb3Sn films experienced significant
606
+ Sn loss from the as-deposited ∼ 24% down
607
+ to 21% after the initial anneal at 600 ℃
608
+ and further down to nearly 2% after the 950
609
+ ℃ anneal.
610
+ Conversely, Nb3Sn phases were
611
+ barely observed in the X-ray diffraction until
612
+ Nb3Sn peaks appeared at 800 ℃ and 950 ℃
613
+ anneals. The strain (ϵ) for a given plane was
614
+ calculated by ϵ = (aT - a0) / a0, where aT is the
615
+ measured lattice constant from Nb3Sn plane
616
+ diffraction and a0 is the lattice parameter from
617
+ database [34]. (Internal strains calculated for
618
+ all samples are summarized in Table S2.) The
619
+ relative strain (∆ϵ), shown in figure 6a, was
620
+ obtained by normalizing strain to the high-
621
+ temperature anneal limit where we observe
622
+ negligible strains.
623
+ Here,
624
+ we
625
+ analyze
626
+ the
627
+ effect
628
+ of
629
+ film
630
+ Figure 4. Surface SEM images for 2 µm thick Nb3Sn
631
+ (a, b) and V3Si (c, d) films on Nb substrates: (a, c)
632
+ as-deposited and (b, d) after 950 ℃ annealing.
633
+
634
+ umThermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
635
+ 9
636
+ thickness on the strain.
637
+ The internal strain
638
+ (ϵ) in a biaxial thin film system where in-
639
+ plane stresses are equal (δ = δ11 = δ22) can
640
+ be
641
+ described
642
+ by
643
+ a
644
+ linear
645
+ relationship
646
+ as
647
+ ϵ = (2 S1 + 1/2 S2 sin2φ) δ, where φ is the angle
648
+ from
649
+ the
650
+ film
651
+ normal
652
+ to
653
+ the
654
+ diffraction
655
+ plane normal, and S1 and S2 are the X-
656
+ ray elastic constants that are determined,
657
+ in an elastic isotropic scenario, by Young’s
658
+ modulus (E) and Poisson’s ratio (υ) and
659
+ given by – υ / E and (1 + υ) / E, respectively
660
+ [36].
661
+ The
662
+ built-in
663
+ stress
664
+ increases
665
+ with
666
+ film thickness (or deposition time at a fixed
667
+ deposition
668
+ rate)
669
+ in
670
+ a
671
+ polycrystalline
672
+ film
673
+ system when the deposition goes beyond the
674
+ initial instantaneous stress stage (< 10 nm
675
+ thickness) [35].
676
+ This positive correlation,
677
+ although slightly affected by the growth-
678
+ interrupt
679
+ stress
680
+ relaxation
681
+ effect
682
+ and
683
+ the
684
+ heating effect, suggests high strain in the 2
685
+ µm thick film; however, the high in-plane
686
+ stress during thicker film sputtering results
687
+ in plastic deformation as indicated by the
688
+ observation of small grain sizes and high
689
+ density of boundaries (figure 4a).
690
+ Furthermore, we cannot fully explain the
691
+ Sn loss in the course of annealing the sputtered
692
+ Nb3Sn films, i.e., the decrease of Sn/(Nb+Sn)
693
+ atomic ratios with the increasing annealing
694
+ temperature (figure 5a).
695
+ Note that this
696
+ Sn loss behavior is repeatedly observed in
697
+ previous Nb3Sn sputtering work [6, 12].
698
+ At
699
+ the annealing temperatures studied, pure Sn
700
+ phases are not expected due to their low
701
+ vaporization temperatures (e.g., 800 ℃ at 10−6
702
+ Torr), so we primarily consider Nb-Sn alloy
703
+ phases in the film.
704
+ The as-deposited film
705
+ showed a 23 – 25% Sn atomic ratio which
706
+ suggests minimal Sn-rich phases (Nb6Sn5 and
707
+ NbSn2) based on the Nb-Sn phase diagram [3];
708
+ these Sn-rich phases were also not observed
709
+ in the X-ray diffraction.
710
+ Without Sn or Sn-
711
+ Figure 5.
712
+ (a) Sn/[Sn+Nb] or Si/[Si+V] ratios in
713
+ the Nb3Sn and V3Si films, respectively, as a function
714
+ of annealing temperature for the 2 µm thick films
715
+ sputtered on Nb substrates and the 300 nm thick films
716
+ on Cu substrates (discussed in Section 3.3). Note that
717
+ the high Si ratios for Cu substrate samples are due to
718
+ exclusion of Cu signals for calculation. As-deposited
719
+ Sn/Si composition on 2 µm thick films are 23 – 25 %.
720
+ (b) Example of the EDS spectrum taken on the 2 µm
721
+ thick V3Si film for generating the composition dataset.
722
+ rich phases, merely Nb3Sn is expected in this
723
+ study as indicated by the 23 – 25% Sn ratio,
724
+ but XRD did not show any detectable Nb3Sn
725
+ diffractions upon deposition; the crystalline
726
+ Nb3Sn
727
+ phase
728
+ has
729
+ an
730
+ extremely
731
+ high
732
+ (>
733
+ 2100 ℃) phase transformation temperature,
734
+ making it unlikely to explain the Sn loss.
735
+ We,
736
+ therefore,
737
+ suspect
738
+ the
739
+ generation
740
+ of
741
+
742
+ 45
743
+ 42
744
+ 42
745
+ (a)
746
+ 39
747
+ 40
748
+ 35
749
+ 29
750
+ 30
751
+ 24
752
+ 25
753
+ 23
754
+ 23
755
+ 23
756
+ 22
757
+ 20
758
+ 21
759
+ 20
760
+ 15
761
+ 13
762
+ 10
763
+ 10
764
+ 4
765
+ 5
766
+ 0
767
+ 500
768
+ 600
769
+ 700
770
+ 800
771
+ 900
772
+ 1000
773
+ Annealing Temperature (°C)
774
+ 2 μm V3Si
775
+ i 2 μm Nb3Sn -300 nm Nb3Sn
776
+ 300 nm V3Si
777
+ 8000
778
+ (b)
779
+ Si
780
+ V
781
+ 7000
782
+ V
783
+ 6000
784
+ 5000
785
+ eV
786
+ cps/
787
+ 4000
788
+ 3000
789
+ 2000
790
+ V
791
+ 1000
792
+ 0
793
+ 0
794
+ 1
795
+ 2
796
+ 3
797
+ 4
798
+ 5
799
+ 6
800
+ keVThermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
801
+ 10
802
+ Figure 6. (a) Relative strain that is normalized to
803
+ the high-temperature anneal limit, as a function of
804
+ annealing temperature for the 100 nm and 2 µm Nb3Sn
805
+ films on Nb substrates together with the 300 nm Nb3Sn
806
+ film on Cu substrates.
807
+ (b) Temperature-dependent
808
+ strain diagram calculated from stable (s) and unstable
809
+ (u) (220) diffraction peak shifting for 2 µm and 300 nm
810
+ V3Si films on the Nb and Cu substrates, respectively.
811
+ (c) Example of the XRD patterns taken on the 2 µm
812
+ thick V3Si film showing the stable and unstable (220)
813
+ diffraction peaks for generating the strain diagram.
814
+ amorphous Nb3Sn phases in the film.
815
+ Such
816
+ amorphous phases were reported when using
817
+ non-equilibrium processing techniques [38, 39].
818
+ This could cause the loss of Sn alloys via
819
+ the generation of α-Nb and also explain the
820
+ appearance of Nb3Sn diffraction for anneals
821
+ above 800 ℃, which likely corresponds to
822
+ the crystallization temperature. This requires
823
+ further investigation.
824
+ 3.2.2. 2 µm thick V3Si films
825
+ Different from
826
+ thick Nb3Sn films, the as-deposited 2 µm
827
+ thick V3Si film (figure 6b) exhibits a high
828
+ strain of 15%, which supports the positive
829
+ relationship between strain and film thickness
830
+ in an elastic scenario for thick (> 10 nm)
831
+ polycrystalline films. The initial film shows a
832
+ near-stoichiometric value of Si (∼ 23%) shown
833
+ in figure 5b.
834
+ Upon annealing, the V3Si film shows a
835
+ constant Si concentration for all temperatures;
836
+ see figure 5a.
837
+ In contrast, the strain within
838
+ the film is significantly relieved together with
839
+ a transition from the unstable V3Si structure
840
+ to the stable structure between 800 ℃ and 950
841
+ ℃ (figure 6b). The structural transformation
842
+ is observed through the shifting of the (220)
843
+ and (222) diffraction peaks in figure 6c.
844
+ These behaviors demonstrate that thermal
845
+ annealing contributes to strain reduction and
846
+ structural stabilization in a thick sputtered
847
+ film.
848
+ However,
849
+ as shown in figure 4d,
850
+ large cracks begin to appear on the film
851
+ after the first anneal at 600 ℃, coinciding
852
+ with a shift toward a more angular grain
853
+ shape with increasing temperature. The high
854
+ strain induced by the sputtering deposition is
855
+ responsible for the cracks although thermal
856
+ relaxation has reduced a significant amount of
857
+ lattice strain.
858
+
859
+ 0.015
860
+ (a)
861
+ 0.01
862
+ 0.005
863
+ (unitless)
864
+ 0
865
+ 300
866
+ 500
867
+ 700
868
+ 900
869
+ -0.005
870
+ Strain
871
+ -0.01
872
+ -0.015
873
+ -0.02
874
+ -0.025
875
+ Temperature (°C)
876
+ 100 nm Nb3Sn
877
+ 2 μum Nb3Sn --300 nm Nb3Sn
878
+ 0.2
879
+ (b)
880
+ Unstable with high strain
881
+ 0.15
882
+ Strain (unitless)
883
+ Unstable →> Stable
884
+ 0.1
885
+ transition
886
+ 0.05
887
+ Stable with low strain
888
+ 0
889
+ 300
890
+ 400
891
+ 500
892
+ 600
893
+ 700
894
+ 800
895
+ 900
896
+ 1000
897
+ -0.05
898
+ Temperature (°C)
899
+ -→--2 μm 220u
900
+ -2 μm 220s
901
+ -蒙--2 μm 222u
902
+ 2 μm 222s
903
+ 300 nm 220s -
904
+ - 300 nm 222u
905
+ (c)
906
+ Inensity
907
+ Shift at 800 °C
908
+ Relative J
909
+ 52.5
910
+ 53
911
+ 53.5
912
+ 54
913
+ 54.5
914
+ 55
915
+ 20 (degrees)
916
+ upon deposition :
917
+ 600 °C
918
+ 800°℃C
919
+ 950°CThermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
920
+ 11
921
+ 3.3. Nb3Sn and V3Si films on Cu substrates:
922
+ ternary alloy systems
923
+ By studying the temperature-atomic percent-
924
+ age phase diagrams of Nb-Sn [3] and V-Si [45],
925
+ as well as the three-element composition phase
926
+ diagrams of Cu-Nb-Sn [40, 41, 42] and Cu-V-
927
+ Si [43, 44], we can gain insight into the phase
928
+ transformations our films undergo during the
929
+ annealing process.
930
+ As shown in figures 7a and 7c, 300 nm
931
+ thick Nb3Sn and V3Si films were sputtered on
932
+ Cu substrates using a 550 ℃ in situ heating
933
+ stage.
934
+ Upon annealing, both films undergo
935
+ dramatic grain structure changes due to the
936
+ generation of Cu-Sn or Cu-Si phases. Nb3Sn
937
+ grains start with rounded grains collecting in
938
+ finger-like formations as deposited on a Cu
939
+ surface (figure 7a) and they remelt into small
940
+ angular grains collecting in regions of differing
941
+ densities after 950 ℃ anneal (figure 7b).
942
+ In
943
+ contrast, V3Si grains begin with a finger-like
944
+ pattern after deposition (figure 7c) and end
945
+ with small angular grains and large artifacts
946
+ scattered across the surface after 950 ℃ anneal
947
+ (figure 7d). Overall, there is a trend of grain
948
+ angularization and pattern restructuring with
949
+ increasing temperature.
950
+ The ternary phase transformation that
951
+ includes
952
+ Cu-alloy
953
+ in
954
+ the
955
+ films
956
+ primarily
957
+ determines the film properties. As shown in
958
+ figure 5a, the 300 nm Nb3Sn films on Cu
959
+ substrates suffer from the Sn loss similar to
960
+ 2 µm thick films on Nb substrates, but the
961
+ mechanism is different. According to the Nb-
962
+ Sn-Cu phase diagram [40, 41, 42], Cu-Sn and
963
+ Nb-Sn phases generate at low temperatures
964
+ (e.g., 675 ℃ [40]) and these Cu-Sn transform
965
+ into liquid at 800 ℃ under atmospheric
966
+ pressure [41], and at high temperatures (e.g.,
967
+ 1000 ℃ [42]), only Nb3Sn and Cu exist.
968
+ In
969
+ our study, high-vacuum annealing vaporized
970
+ Figure 7.
971
+ Surface SEM images for 300 nm Nb3Sn
972
+ (a, b) and V3Si (c, d) films on Cu substrates: (a, c)
973
+ as-deposited and (b, d) after 950 ℃ annealing.
974
+
975
+ μmThermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
976
+ 12
977
+ the Cu-Sn phases leading to a continuous loss
978
+ of Sn with increasing temperature.
979
+ Also,
980
+ we observed low-intensity Nb3Sn diffraction
981
+ at all temperatures whereas convoluted XRD
982
+ peaks that are possibly from Cu-Sn and other
983
+ Nb-Sn phases appeared at low temperatures.
984
+ These observations match with the existence
985
+ of Nb3Sn in the phase diagram at high
986
+ temperatures although the majority of the film
987
+ was evaporated.
988
+ Different from Nb-Sn-Cu, the V-Si-Cu
989
+ phase diagram [43, 44] shows Cu-Si and V-
990
+ Si phases at low temperatures (e.g., 700 ℃
991
+ [43]), but there is no liquid phase at high
992
+ temperatures (e.g., 800 ℃ [44]). Instead, these
993
+ phases transform into V-Si and Cu phases. In
994
+ our study, as shown in figure 5a, the Si/(Si+V)
995
+ ratio begins with a high value of 42% due to
996
+ the presence of Cu-Si phases generated during
997
+ the 550 ℃ in situ heated deposition; note that
998
+ Cu signal is evident, but is not included in the
999
+ calculation.
1000
+ After annealing, the Si/(Si+V)
1001
+ ratio drops to 20% at 950 ℃. This phenomenon
1002
+ strongly supports the disappearance of Cu-
1003
+ Si phases in the phase diagram, and only
1004
+ V-Si phases together with some Cu metallic
1005
+ inclusions are expected in the annealed films.
1006
+ Our diffraction data suggest these V-Si phases
1007
+ include the stable (220) and unstable (222)
1008
+ V3Si structures.
1009
+ 4. Conclusions and Outlook
1010
+ In this study,
1011
+ we have demonstrated the
1012
+ capability of annealing the sputtered thin films
1013
+ to produce successful Nb3Sn and V3Si surfaces
1014
+ that have the potential for use inside SRF
1015
+ cavities. We observe that annealing is required
1016
+ to release the strain in the film and promote
1017
+ grain growth.
1018
+ For our Nb3Sn samples, the
1019
+ best results are found on the recrystallized 100
1020
+ nm film, where large grains form at 950 ℃
1021
+ anneals.
1022
+ These films are also smooth and
1023
+ have minimal surface defects.
1024
+ The 2 µm
1025
+ Nb3Sn films are not able to overcome the
1026
+ built-in stress and plastic deformation during
1027
+ sputtering, and likely form an amorphous Nb-
1028
+ Sn phase that leads to nearly complete Sn loss
1029
+ upon annealing. In contrast, the V3Si samples
1030
+ retain the stoichiometry at high temperatures,
1031
+ along with a transition in the grain shape to
1032
+ become more angular.
1033
+ Most interesting was
1034
+ the behavior of these films with respect to the
1035
+ unstable and stable phases of V3Si.
1036
+ In the
1037
+ 2 µm film, there was a complete transition
1038
+ from unstable to stable at 800 ℃ along with
1039
+ consistent stoichiometry. Because we observe
1040
+ this transition and the proper stoichiometry
1041
+ at high temperatures, we determine these are
1042
+ successful V3Si films.
1043
+ For the Cu substrate samples, 550 °C in
1044
+ situ heated deposition and the subsequent low-
1045
+ temperature anneals produce Cu-Si and Cu-
1046
+ Sn phases.
1047
+ These phases transform at high
1048
+ temperatures, extracting high concentrations
1049
+ of Cu inclusions in the film. The Cu impurities
1050
+ and Cu-related phases could adversely affect
1051
+ the SRF performance of Nb3Sn/V3Si films
1052
+ inside Cu cavities. In a future study, we would
1053
+ be interested in the use of an ultrathin buffer
1054
+ layer between the Cu and the superconducting
1055
+ layer to prevent this effect [27].
1056
+ In our results, we observed a similar
1057
+ Sn loss as in previous studies [6].
1058
+ We are
1059
+ interested in finding ways to prevent this loss
1060
+ such as minimizing strong undercooling and
1061
+ avoiding disordered Nb-Sn phases or using
1062
+ encapsulation during the annealing process.
1063
+ We would like to obtain the benefits of
1064
+ annealing such as recrystallization and strain
1065
+ removal while avoiding events such as Sn loss
1066
+ and cracking.
1067
+ Because the 100 nm Nb3Sn
1068
+ film was successful, it would be important in
1069
+ a future study to further investigate films of
1070
+
1071
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
1072
+ 13
1073
+ similar thickness to optimize grain growth and
1074
+ RF performance.
1075
+ Data Availability Statement
1076
+ The data that support the findings of this
1077
+ study are available upon reasonable request
1078
+ from the authors.
1079
+ Conflicts of Interest
1080
+ The authors declare no competing financial
1081
+ interests.
1082
+ Acknowledgements
1083
+ This work was supported by the U.S. Na-
1084
+ tional Science Foundation under Award PHY-
1085
+ 1549132, the Center for Bright Beams. This
1086
+ work made use of the Cornell Center for Ma-
1087
+ terials Research Shared Facilities which are
1088
+ supported through the NSF MRSEC program
1089
+ (DMR-1719875).
1090
+ References
1091
+ [1] Howard K, Liepe M and Sun Z 2021 Thermal
1092
+ annealing of sputtered Nb3Sn and V3Si thin
1093
+ films for superconducting RF cavities Proc.
1094
+ SRF’21 (East Lansing, MI, USA) 82-85 doi:
1095
+ 10.18429/JACoW-SRF2021-SUPFDV009
1096
+ [2] Grassellino A et al. 2017 Unprecedented qual-
1097
+ ity factors at accelerating gradients up to 45
1098
+ MVm−1 in niobium superconducting resonators
1099
+ via low temperature nitrogen infusion Super-
1100
+ cond. Sci. Technol. 30 9 doi:
1101
+ 10.1088/1361-
1102
+ 6668/aa7afe
1103
+ [3] Posen S and Hall D L 2017 Nb3Sn supercon-
1104
+ ducting radiofrequency cavities:
1105
+ fabrication,
1106
+ results, properties, and prospects Supercond.
1107
+ Sci. Technol. 30 033004 doi:
1108
+ 10.1088/1361-
1109
+ 6668/30/3/033004
1110
+ [4] Ilyina E A et al. 2019 Development of sputtered
1111
+ Nb3Sn films on copper substrates for supercon-
1112
+ ducting radiofrequency applications Supercond.
1113
+ Sci. Technol. 32 035002 doi:
1114
+ 10.1088/1361-
1115
+ 6668/aaf61f
1116
+ [5] Valles N and Liepe M 2011 The Superheating
1117
+ Field of Niobium:
1118
+ Theory and Experiment
1119
+ Proc. SRF’2011 (Chicago, IL, USA) 293-301
1120
+ https://accelconf.web.cern.ch/SRF2011/papers/
1121
+ tuioa05.pdf
1122
+ [6] Sayeed M N et al. 2021 Properties of Nb3Sn
1123
+ films fabricated by magnetron sputtering from
1124
+ a single target Appl. Surf. Sci. 541 148528 doi:
1125
+ 10.1016/j.apsusc.2020.148528
1126
+ [7] Keckert S et al. 2019 Critical fields of Nb3Sn pre-
1127
+ pared for superconducting cavities Supercond.
1128
+ Sci. Technol. 32 075004 doi:
1129
+ 10.1088/1361-
1130
+ 6668/ab119e
1131
+ [8] Catelani G and Sethna J P 2008 Temperature de-
1132
+ pendence of the superheating field for supercon-
1133
+ ductors in the high-κ London limit Phys. Rev.
1134
+ B 78 224509 doi: 10.1103/PhysRevB.78.224509
1135
+ [9] Porter R D et al. 2019 Progress in Nb3Sn SRF
1136
+ cavities at Cornell University Proc. NAPAC’19
1137
+ 37-40
1138
+ doi:
1139
+ 10.18429/JACoW-NAPAC2019-
1140
+ MOYBB3
1141
+ [10] Estrin F L et al. 2021 Using HiPIMS for V3Si
1142
+ superconducting thin films presented at 9th
1143
+ Int. Workshop on Thin Films and New Ideas
1144
+ for Pushing the Limits of RF Superconductivity
1145
+ https://indico.jlab.org/event/405/contributions/
1146
+ 8111/
1147
+ [11] Deambrosis
1148
+ S
1149
+ M
1150
+ et
1151
+ al.
1152
+ 2007
1153
+ The
1154
+ progress
1155
+ on
1156
+ Nb3Sn
1157
+ and
1158
+ V3Si
1159
+ Proc.
1160
+ SRF’2007
1161
+ (Beijing,
1162
+ China)
1163
+ 392-399
1164
+ http://accelconf.web.cern.ch/accelconf/srf2007/
1165
+ PAPERS/WE203.pdf
1166
+ [12] Sayeed M N et al. 2019 Structural and super-
1167
+ conducting properties of Nb3Sn films grown
1168
+ by multilayer sequential magnetron sputter-
1169
+ ing
1170
+ J.
1171
+ Alloys
1172
+ Compd.
1173
+ 800
1174
+ 272–278
1175
+ doi:
1176
+ 10.1016/j.jallcom.2019.06.017
1177
+ [13] Lee J et al. 2019 Atomic-scale analyses of Nb3Sn
1178
+ on Nb prepared by vapor diffusion for super-
1179
+ conducting radiofrequency cavity applications:
1180
+ a correlative study Supercond. Sci. Technol. 32
1181
+ 024001 doi: 10.1088/1361-6668/aaf268
1182
+ [14] Barzi E et al. 2016 Synthesis of superconducting
1183
+ Nb3Sn coatings on Nb substrates Supercond.
1184
+ Sci. Technol. 29 015009 doi:
1185
+ 10.1088/0953-
1186
+ 2048/29/1/015009
1187
+ [15] Sun
1188
+ Z
1189
+ et
1190
+ al.
1191
+ 2021
1192
+ Toward
1193
+ stoichiometric
1194
+ and low-surface-roughness Nb3Sn thin films
1195
+ via
1196
+ direct
1197
+ electrochemical
1198
+ deposition
1199
+ Proc.
1200
+
1201
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
1202
+ 14
1203
+ SRF’21 (East Lansing, MI, USA) 710-713 doi:
1204
+ 10.18429/JACoW-SRF2021-WEOTEV03
1205
+ [16] Sun Z et al. 2019 Electroplating of Sn film on
1206
+ Nb substrate for generating Nb3Sn thin films
1207
+ and post laser annealing Proc. SRF’19 (Dres-
1208
+ den, Germany) 51-54 doi: 10.18429/JACoW-
1209
+ SRF2019-MOP014
1210
+ [17] Xiao L et al. 2019 The technical study of
1211
+ Nb3Sn film deposition on copper by HiPIMS
1212
+ Proc. SRF’19 (Dresden, Germany) 846-847 doi:
1213
+ 10.18429/JACoW-SRF2019-THP008
1214
+ [18] Becker C et al. 2015 Analysis of Nb3Sn surface
1215
+ layers
1216
+ for
1217
+ superconducting
1218
+ radio
1219
+ frequency
1220
+ cavity
1221
+ applications
1222
+ Appl.
1223
+ Phys.
1224
+ Lett.
1225
+ 106
1226
+ 082602 doi: 10.1063/1.4913617
1227
+ [19] Posen S et al. 2021 Advances in Nb3Sn super-
1228
+ conducting radiofrequency cavities towards first
1229
+ practical accelerator applications Supercond.
1230
+ Sci. Technol. 34 025007 doi:
1231
+ 10.1088/1361-
1232
+ 6668/abc7f7
1233
+ [20] Eremeev G et al. 2020 Nb3Sn multicell cavity
1234
+ coating system at Jefferson Lab Rev. Sci.
1235
+ Instrum. 91 073911 doi: 10.1063/1.5144490
1236
+ [21] Sch¨afer N et al. 2020 Kinetically induced low-
1237
+ temperature synthesis of Nb3Sn thin films J.
1238
+ Appl. Phys. 128 133902 doi: 10.1063/5.0015376
1239
+ [22] Ito R et al. 2019 Nb3Sn thin film coating
1240
+ method for superconducting multilayered struc-
1241
+ ture Proc. SRF’19 (Dresden, Germany) 628-
1242
+ 631 doi: 10.18429/JACoW-SRF2019-TUP077
1243
+ [23] Lu M et al. 2019 Electrochemical deposition of
1244
+ Nb3Sn on the surface of copper substrates
1245
+ Proc. SRF’19 (Dresden, Germany) 624-627 doi:
1246
+ 10.18429/JACoW-SRF2019-TUP076
1247
+ [24] Ge M et al. 2019 CVD coated copper substrate
1248
+ SRF cavity research at Cornell University
1249
+ Proc. SRF’19 (Dresden, Germany) 381-385 doi:
1250
+ 10.18429/JACoW-SRF2019-TUFUB8
1251
+ [25] Godeke A et al. 2006 Nb3Sn for radio frequency
1252
+ cavities Lawrence Berkeley National Laboratory
1253
+ https://escholarship.org/uc/item/6d3753q7
1254
+ [26] Rosaz G et al. 2015 Development of Nb3Sn coat-
1255
+ ings by magnetron sputtering for SRF cavities
1256
+ Proc. SRF’15 (Whistler, BC, Canada) 691-694
1257
+ doi: 10.18429/JACoW-SRF2015-TUPB051
1258
+ [27] Fernandez S 2020 Magnetron sputtered Nb3Sn
1259
+ and V3Si thin films on copper substrates for
1260
+ SRF application presented at Nb3SnSRF’20
1261
+ https://indico.classe.cornell.edu/event/1806/
1262
+ contributions/1491/
1263
+ [28] Zhang W et al. 2021 Thin film synthesis of
1264
+ superconductor on insulator A15 vanadium
1265
+ silicide Sci. Rep. 11 2358 doi: 10.1038/s41598-
1266
+ 021-82046-1
1267
+ [29] Tan W et al. 2017 Nb3Sn thin film deposi-
1268
+ tion on copper by DC magnetron sputtering
1269
+ Proc. SRF’17 512-515 doi: 10.18429/JACoW-
1270
+ SRF2017-TUPB055
1271
+ [30] Doherty R D et al. 1997 Current issues in recrys-
1272
+ tallization: a review Mater. Sci. Eng. A 238
1273
+ 219-274 doi: 10.1016/S0921-5093(97)00424-3
1274
+ [31] Bussiere J F et al. 1980 Young’s modulus of
1275
+ polycrystalline Nb3Sn between 4.2 and 300 K
1276
+ J. Appl. Phys. 51 1024 doi: 10.1063/1.327730
1277
+ [32] Humphreys F J and Hatherly M Recrystallization
1278
+ and Related Annealing Phenomena, 2nd Edi-
1279
+ tion, Elsevier Ltd., Amsterdam, 2004.
1280
+ [33] Schelb
1281
+ W
1282
+ 1981
1283
+ Electron
1284
+ microscopic
1285
+ exami-
1286
+ nation
1287
+ of multifilamentary bronze-processed
1288
+ Nb3Sn
1289
+ J.
1290
+ Mater.
1291
+ Sci.
1292
+ 16
1293
+ 2575–2582
1294
+ doi:
1295
+ 10.1007/BF01113599
1296
+ [34] Jain A et al. 2013 The Materials Project:
1297
+ A
1298
+ materials
1299
+ genome
1300
+ approach
1301
+ to
1302
+ accelerating
1303
+ materials innovation APL Mater. 1 011002 doi:
1304
+ 10.1063/1.4812323
1305
+ [35] Abadias G et al. 2018 Stress in thin films
1306
+ and coatings: Current status, challenges and
1307
+ prospects J. Vac. Sci. Technol. A 36 020801 doi:
1308
+ 10.1116/1.5011790
1309
+ [36] Leib J S Relationships between grain structure
1310
+ and stress in thin Volmer-Weber metallic films
1311
+ Massachusetts Institute of Technology, 2018.
1312
+ [37] Vink
1313
+ T
1314
+ J
1315
+ et
1316
+ al.
1317
+ 1993
1318
+ Stress,
1319
+ strain,
1320
+ and
1321
+ microstructure in thin tungsten films deposited
1322
+ by dc magnetron sputtering J. Appl. Phys. 74
1323
+ 15 doi: 10.1063/1.354842
1324
+ [38] Matsuki K et al. 1988 New amorphous Cu-Nb-
1325
+ (Si, Ge or Sn) alloys prepared by mechanical
1326
+ alloying of elemental powders Mater. Sci. Eng.
1327
+ 97 47-51 doi: 10.1016/0025-5416(88)90010-9
1328
+ [39] Masumoto T et al. 1980 Superconductivity of duc-
1329
+ tile Nb-Based amorphous alloys Trans. Jpn.
1330
+ Inst. Met. 21 115-122 doi:
1331
+ 10.2320/mater-
1332
+ trans1960.21.115
1333
+ [40] Neijmeijer W L and Kolster B H 1987 The ternary
1334
+ system Nb-Sn-Cu at 675 °C Int. J. Mater. Res.
1335
+ 78 730-737 doi: 10.1515/ijmr-1987-781009
1336
+ [41] Pan V M et al. 1980 Phase equilibria and
1337
+ superconducting
1338
+ properties
1339
+ in
1340
+ niobium-tin-
1341
+ copper alloys USSR
1342
+ [42] Hopkins R H et al. 1977 Phase relations and
1343
+ diffusion layer formation in the systems Cu-Nb-
1344
+
1345
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
1346
+ 15
1347
+ Sn and Cu-Nb-Ge Metall. Trans. A 8 91-97 doi:
1348
+ 10.1515/ijmr-1987-781009
1349
+ [43] Reid
1350
+ J
1351
+ S
1352
+ et
1353
+ al.
1354
+ 1992
1355
+ Thermodynamics
1356
+ of
1357
+ (Cr, Mo, Nb, Ta, V, or W)-Si-Cu ternary
1358
+ systems
1359
+ J.
1360
+ Mater.
1361
+ Res.
1362
+ 7
1363
+ 2424-2428
1364
+ doi:
1365
+ 10.1557/JMR.1992.2424
1366
+ [44] Savitskii E M et al. 1979 Influence of copper on
1367
+ the structure and superconducting properties of
1368
+ transition metals Inorg. Mater. 15 512-515
1369
+ [45] Okamoto H et al. 2010 Si-V (Silicon-Vanadium)
1370
+ J. Phase Equilib. Diffus. 31 409–410 doi:
1371
+ 10.1007/s11669-010-9733-5
1372
+
1373
+ Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
1374
+ 16
1375
+ Appendix
1376
+ Figure S1. SEM map of all samples upon deposition, after 700 °C anneal, and after 950 °C anneal.
1377
+
1378
+ As-deposited
1379
+ 700 °℃
1380
+ 950 °C
1381
+ 100 nm Nb,Sn
1382
+ um
1383
+ 300 nm Nb,Sn 2 μm Nb3Sn
1384
+ 2 μm V3Si
1385
+ 300 nm V,SiThermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
1386
+ 17
1387
+ Table S1. X-ray diffraction (XRD) peaks of Nb3Sn, V3Si (stable vs. unstable), substrates Nb and Cu, and
1388
+ other possibly relevant phases (NbSn2, Nb6Sn5, V5Si3, V6Si5, Nb3Cu, V3Cu Cu15Si4, Cu3Si4, and V (unstable)
1389
+ from reference [34]. For NbSn2, Nb6Sn5, V5Si3, and V6Si5 peaks, we only listed the prominent points.
1390
+
1391
+ ID
1392
+ 20
1393
+ plane
1394
+ ID
1395
+ 20
1396
+ plane
1397
+ ID
1398
+ 20
1399
+ plane
1400
+ NbSn2
1401
+ 31.5
1402
+ 131
1403
+ V3Cu-cubic
1404
+ 43.2
1405
+ 220
1406
+ Nb3Sn
1407
+ 62.8
1408
+ 320
1409
+ Nb3Sn
1410
+ 33.6
1411
+ 200
1412
+ Cu15Si4
1413
+ 43.8
1414
+ 332
1415
+ Nb3Sn
1416
+ 65.5
1417
+ 321
1418
+ NbSn2
1419
+ 34.2
1420
+ 133
1421
+ VsSi3
1422
+ 44.1
1423
+ 411
1424
+ V3Si-unstable
1425
+ 65.7
1426
+ 222
1427
+ Cu15Si4
1428
+ 34.6
1429
+ 321
1430
+ V3Si-unstable
1431
+ 45.1
1432
+ 211
1433
+ V3Si-stable
1434
+ 69.2
1435
+ 222
1436
+ V3Si-unstable
1437
+ 36.5
1438
+ 200
1439
+ Cu15Si4
1440
+ 45.8
1441
+ 422
1442
+ Nb
1443
+ 69.3
1444
+ 211
1445
+ Nb6Sn5
1446
+ 37.2
1447
+ 26
1448
+ V3Cu-tetragonal
1449
+ 46.8
1450
+ 4
1451
+ V-unstable
1452
+ 69.6
1453
+ 220
1454
+ NbSn2
1455
+ 37.3
1456
+ 117
1457
+ VsSi
1458
+ 47.2
1459
+ 222
1460
+ Nb3Sn
1461
+ 70.6
1462
+ 400
1463
+ Nb3Sn
1464
+ 37.7
1465
+ 210
1466
+ V3Si-stable
1467
+ 47.4
1468
+ 211
1469
+ V3Si-unstable
1470
+ 71.8
1471
+ 321
1472
+ Nb
1473
+ 38.3
1474
+ 110
1475
+ V-unstable
1476
+ 47.6
1477
+ 200
1478
+ V3Si-stable
1479
+ 72.5
1480
+ 320
1481
+ V3Si-stable
1482
+ 38.3
1483
+ 200
1484
+ Cu15Si4
1485
+ 47.8
1486
+ 510
1487
+ Nb3Cu
1488
+ 71.3
1489
+ 422
1490
+ Nb6Sn5
1491
+ 38.5
1492
+ 222
1493
+ VsCu-tetragonal
1494
+ 49.4
1495
+ 200
1496
+ Cu
1497
+ 74
1498
+ 220
1499
+ Nb3Cu
1500
+ 39.3
1501
+ 220
1502
+ CusSi
1503
+ 49.5
1504
+ 4
1505
+ V3Si-stable
1506
+ 75.7
1507
+ 321
1508
+ VsSi3
1509
+ 39.4
1510
+ 321
1511
+ Cu
1512
+ 50.4
1513
+ 200
1514
+ V3Si-unstable
1515
+ 77.6
1516
+ 400
1517
+ NbSn2
1518
+ 40.9
1519
+ 224
1520
+ CusSi
1521
+ 50.6
1522
+ 200
1523
+ V-stable
1524
+ 78.3
1525
+ 211
1526
+ V-unstable
1527
+ 40.9
1528
+ 111
1529
+ V3Si-unstable
1530
+ 52.6
1531
+ 220
1532
+ V3Cu-cubic
1533
+ 79.1
1534
+ 422
1535
+ Nb3Sn
1536
+ 41.5
1537
+ 211
1538
+ Nb
1539
+ 53.3
1540
+ 200
1541
+ Nb3Sn
1542
+ 80.5
1543
+ 420
1544
+ V3Cu-tetragonal
1545
+ 41.7
1546
+ 112
1547
+ Nb3Sn
1548
+ 54.4
1549
+ 310
1550
+ V3Si-stable
1551
+ 82
1552
+ 400
1553
+ VeSis
1554
+ 42.3
1555
+ 321
1556
+ V3Si-stable
1557
+ 55.3
1558
+ 220
1559
+ Nb
1560
+ 82.1
1561
+ 220
1562
+ Cu
1563
+ 42.3
1564
+ 111
1565
+ Nb3Cu
1566
+ 56.9
1567
+ 400
1568
+ Nb3Sn
1569
+ 82.9
1570
+ 421
1571
+ V-stable
1572
+ 42.7
1573
+ 110
1574
+ V3Si-unstable
1575
+ 59.4
1576
+ 310
1577
+ V-unstable
1578
+ 84.1
1579
+ 311
1580
+ VeSis
1581
+ 42.8
1582
+ 132
1583
+ Nb3Sn
1584
+ 60.1
1585
+ 222
1586
+ Nb3Sn
1587
+ 85.3
1588
+ 322
1589
+ V3Si-stable
1590
+ 43
1591
+ 210
1592
+ V-stable
1593
+ 62
1594
+ 200
1595
+ V-unstable
1596
+ 88.7
1597
+ 222
1598
+ VsSi3
1599
+ 43
1600
+ 420
1601
+ V3Si-stable
1602
+ 62.5
1603
+ 310
1604
+ V3Si-unstable
1605
+ 88.9
1606
+ 420
1607
+ CusSi
1608
+ 43.2
1609
+ 112
1610
+ V3Cu-cubic
1611
+ 62.7
1612
+ 400
1613
+ Cu
1614
+ 89.8
1615
+ 311Thermal annealing of sputtered Nb3Sn and V3Si thin films for superconducting RF cavities
1616
+ 18
1617
+ Table S2. Strain for all detected peaks compared to known peak locations.
1618
+
1619
+ 2 um V3si
1620
+ peak plane (2theta)
1621
+ temperature (C)
1622
+ 200s (38.3)
1623
+ 210s (43)
1624
+ 211s (47.4) 220u/s (52.6/55.3) 222u/s (65.7/69.2)
1625
+ 320s (72.5)
1626
+ 321s (75.7)
1627
+ 400s (82)
1628
+ 25
1629
+ 0.141414
1630
+ 0.1416167
1631
+ -0.0091019
1632
+ 600
1633
+ 0.143407
1634
+ 0.1431387
1635
+ -0.0091019
1636
+ 800
1637
+ -0.00371
1638
+ 0.010709926
1639
+ 0.002333
1640
+ 0.0154283
1641
+ -0.0056307
1642
+ 0.0069136
1643
+ -0.0091019
1644
+ 950
1645
+ -0.00371
1646
+ 0.0129835
1647
+ 0.006355
1648
+ 0.0119857
1649
+ -0.0056307
1650
+ 0.004912598
1651
+ 0.0092106
1652
+ -0.0091019
1653
+ 100 nm Nb3Sn
1654
+ peak plane (2theta)
1655
+ temperature (C)
1656
+ 200 (33.6)
1657
+ 210 (37.7)
1658
+ 211 (41.5)
1659
+ 320 (62.8)
1660
+ 321 (65.6)
1661
+ 400 (70.6)
1662
+ 421 (82.9)
1663
+ 25
1664
+ -0.03165
1665
+ 0.007852
1666
+ -0.01337
1667
+ 0.002509
1668
+ 600
1669
+ -0.01792
1670
+ -0.01337
1671
+ 0.000687
1672
+ 0.004506
1673
+ 800
1674
+ -0.00378
1675
+ -0.00833
1676
+ -0.01311
1677
+ 0.003501
1678
+ -0.00941
1679
+ 0.00817
1680
+ 0.003506
1681
+ 950
1682
+ -0.01232
1683
+ -0.00833
1684
+ -0.01311
1685
+ 0.004946
1686
+ -0.01073
1687
+ 0.006914
1688
+ 0.000522
1689
+ 2 um Nb3Sn
1690
+ peak plane (2theta)
1691
+ temperature (C)
1692
+ 200 (33.6)
1693
+ 210 (37.7)
1694
+ 211 (41.5)
1695
+ 310 (54.4)
1696
+ 320 (62.8)
1697
+ 321 (65.6)
1698
+ 400 (70.6)
1699
+ 421 (82.9)
1700
+ 322 (85.3)
1701
+ 25
1702
+ -0.008331347
1703
+ -0.02744
1704
+ 600
1705
+ -0.02263
1706
+ 800
1707
+ -0.0066434
1708
+ -0.018277662
1709
+ -0.0086
1710
+ -0.02585
1711
+ 0.004946
1712
+ -0.008075188
1713
+ -0.009077
1714
+ -0.11031
1715
+ 950
1716
+ -0.009488
1717
+ -0.018277662
1718
+ -0.0086
1719
+ -0.02101
1720
+ 0.004946
1721
+ -0.010732407
1722
+ -0.00787
1723
+ 0.000522439
1724
+ -0.11031
1725
+ 300nmNb3Sn
1726
+ peak plane (2theta)
1727
+ temperature (C)
1728
+ 200 (33.6)
1729
+ 210 (37.7)
1730
+ 310 (54.4)
1731
+ 320 (62.8)
1732
+ 420 (80.5)
1733
+ 421 (82.9)
1734
+ 322 (85.3)
1735
+ 550
1736
+ -0.00581
1737
+ 600
1738
+ -0.00949
1739
+ -0.00581
1740
+ 800
1741
+ -0.0009
1742
+ -0.02073
1743
+ 0.016175
1744
+ 0.010778
1745
+ 0.009809
1746
+ 0.004506
1747
+ -0.12049
1748
+ 950
1749
+ -0.00664
1750
+ -0.01084
1751
+ 0.015205
1752
+ 0.014072
1753
+ -0.11966
1754
+ 300 nm V3Si
1755
+ peak plane (2theta)
1756
+ temperature (C)
1757
+ 200u (36.5)
1758
+ 200s (38.3)
1759
+ 210s (43)
1760
+ 211u (45.1)
1761
+ 211s (47.4)
1762
+ 220s (55.3)310u (59.4)
1763
+ 310s (62.5)222u (65.7) 320s (72.5)400u (77.6)
1764
+ 400s (82) 420u (88.9)
1765
+ 550
1766
+ 600
1767
+ -0.0049
1768
+ -0.00108
1769
+ 0.151889
1770
+ 800
1771
+ 0.147913
1772
+ -0.00121
1773
+ -0.0049
1774
+ 0.15903
1775
+ 0.014506
1776
+ 0.020642
1777
+ 0.171245
1778
+ -0.00709
1779
+ 0.157062
1780
+ -0.0058
1781
+ 0.157251
1782
+ -0.00317
1783
+ 0.158064
1784
+ 950
1785
+ -0.0005
1786
+ 0.020642
1787
+ 0.161794
1788
+ -0.00016
1789
+ 0.149852
69AyT4oBgHgl3EQf2vl7/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7NAzT4oBgHgl3EQfEvqd/content/tmp_files/2301.00999v1.pdf.txt ADDED
@@ -0,0 +1,2141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Highly efficient storage of 25-dimensional photonic qudit in a cold-atom-based
2
+ quantum memory
3
+ Ming-Xin Dong,1, 2, 3 Wei-Hang Zhang,1, 2 Lei Zeng,1, 2 Ying-Hao Ye,1, 2 Da-Chuang
4
+ Li,3, ∗ Guang-Can Guo,1, 2 Dong-Sheng Ding,1, 2, † and Bao-Sen Shi1, 2, ‡
5
+ 1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China.
6
+ 2Synergetic Innovation Center of Quantum Information and Quantum Physics,
7
+ University of Science and Technology of China, Hefei, Anhui 230026, China.
8
+ 3School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui 230601, China.
9
+ (Dated: January 4, 2023)
10
+ Building an efficient quantum memory in high-dimensional Hilbert spaces is one of the funda-
11
+ mental requirements for establishing high-dimensional quantum repeaters, where it offers many
12
+ advantages over two-dimensional quantum systems, such as a larger information capacity and en-
13
+ hanced noise resilience. To date, there have been no reports about how to achieve an efficient
14
+ high-dimensional quantum memory. Here, we experimentally realize a quantum memory that is op-
15
+ erational in Hilbert spaces of up to 25 dimensions with a storage efficiency of close to 60%. The
16
+ proposed approach exploits the spatial-mode-independent interaction between atoms and photons
17
+ which are encoded in transverse size-invariant orbital angular momentum modes.
18
+ In particular,
19
+ our memory features uniform storage efficiency and low cross-talk disturbance for 25 individual
20
+ spatial modes of photons, thus allowing storing arbitrary qudit states programmed from 25 eigen-
21
+ states within the high-dimensional Hilbert spaces, and eventually contributing to the storage of
22
+ a 25-dimensional qudit state. These results would have great prospects for the implementation of
23
+ long-distance high-dimensional quantum networks and quantum information processing.
24
+ Introduction.
25
+ Quantum memories [1, 2] that enable
26
+ quantum state storage and its on-demand retrieval are
27
+ essential requirements for quantum-repeater-based quan-
28
+ tum communication networks [3, 4] and scalable quan-
29
+ tum computation [5]. The storage efficiency exceeding
30
+ the 50% threshold [6–8] is necessary for practical appli-
31
+ cations due to the fundamental requirements of beating
32
+ the quantum no-cloning limit without post-selection [9]
33
+ or realizing error correction in linear optical quantum
34
+ computation [10]. Although quantum memory has been
35
+ widely demonstrated in conventional two-dimensional (or
36
+ qubit) quantum systems, it is highly desirable to realize
37
+ a high-dimensional quantum memory since manipulating
38
+ a photon in a high-dimensional Hilbert space, i.e., qu-
39
+ dit, provides many advantages over the qubit systems in
40
+ terms of practical quantum information processing. For
41
+ example, qudits enable networks to carry more informa-
42
+ tion and increase their channel capacity via superdense
43
+ coding in quantum communication [11–13]; for quantum
44
+ cryptography, it has been shown that qudits can provide
45
+ a more secure flux of information against eavesdroppers
46
+ [14–17] since the upper bound of limited cloning fidelity,
47
+ given by F d
48
+ clon = 1/2+1/(d+1), scales inversely with the
49
+ dimension [11], and they also feature a better resilience
50
+ to noise [18, 19]. Moreover, qudit systems allow the sim-
51
+ plification of quantum logic gates [20], and permit the
52
+ enhanced fault tolerance [21] as well as the efficient dis-
53
+ tillation of resource states [22] in quantum computation.
54
+ In this regard, the capability to sufficiently store the qu-
55
+ dit resources with high efficiency is of crucial importance
56
+ for constituting high-dimensional networks so as to dis-
57
+ tribute high-capacity information in long-distance quan-
58
+ tum communication and facilitate the complex quantum
59
+ computation.
60
+ Qubit memories have been widely demonstrated in
61
+ many schemes that usually encode photons in polariza-
62
+ tion [6, 7, 23–25] degree of freedom (DOF). However, such
63
+ DOF can only support the two-dimensional encodings in-
64
+ volved with the quantum memory operation. To build up
65
+ a qudit memory that can store high-dimensional informa-
66
+ tion, alternative DOFs, such as which-path [26–30], and
67
+ time-bin [31–33], have been proposed in a variety of phys-
68
+ ical systems. In addition, the photonic transverse spatial
69
+ mode, e.g., orbital angular momentum (OAM) mode [34–
70
+ 42], has attracted rapidly growing interest because of its
71
+ advance of inherent infinite dimensionality. The storage
72
+ of these spatial qutrit states with an efficiency of 20% us-
73
+ ing the electromagnetically induced transparency (EIT)
74
+ scheme [43] and efficiency of approximately 30% through
75
+ the off-resonant Raman protocol [40, 44, 45] have been
76
+ reported. However, to date, the maximum available di-
77
+ mensionality of quantum memory in experiment is lim-
78
+ ited to d=3 and their efficiencies are far below the 50%
79
+ threshold, largely limiting their practical applications in
80
+ quantum information processing. The implementation of
81
+ quantum memories both having high efficiency and sup-
82
+ porting high dimensions is highly desirable but remains
83
+ an open challenge.
84
+ There are two main challenges to realizing efficient
85
+ high-dimensional quantum memories. The first is to es-
86
+ tablish a uniform light-matter interface to achieve iden-
87
+ tical efficiencies for different spatial modes. The im-
88
+ balanced storage efficiencies in storing different spatial
89
+ modes will significantly degrade the storage fidelity of
90
+ arXiv:2301.00999v1 [quant-ph] 3 Jan 2023
91
+
92
+ 2
93
+ SLM1
94
+ State preparation
95
+ Quantum storage
96
+ Signal
97
+ Control
98
+ SLM2
99
+ To SPCM
100
+ To ICCD camera
101
+ MOT
102
+ State analyser
103
+ λ/4
104
+ λ/2 Lens
105
+ PBS
106
+ 4-f imaging system
107
+ L1
108
+ f
109
+ f
110
+ L2
111
+ L3
112
+ L4
113
+ L5
114
+ L6
115
+ S
116
+ C
117
+ 4-f imaging system
118
+ 3
119
+ 1
120
+ 2
121
+ FIG. 1.
122
+ Schematic experimental setup.
123
+ The qudit signal,
124
+ encoded in POV mode via SLM 1 and lens L1, is mapped
125
+ into the atomic ensemble for subsequent storage. Here, the
126
+ signal and control fields are both circularly polarized (σ+),
127
+ and the control field is beam expanded to have a waist of
128
+ 4 mm to completely cover the signal field at the centre of
129
+ medium.
130
+ the qudit state with the increase of dimensionality. Tak-
131
+ ing the experiment using Laguerre-Gaussian (LG) mode
132
+ as a case in point, the rapidly scaling of the mode waist
133
+ in √m (m is the number of modes) [39] will lead to sig-
134
+ nificant differences in light-matter interactions for dif-
135
+ ferent modes, thus largely limiting its applicability in
136
+ higher-dimensional quantum storage. The second chal-
137
+ lenge is to constitute a highly efficient storage medium
138
+ capable of storing multiple modes as many as possible
139
+ [46]. To achieve this, one needs to take into account sev-
140
+ eral physical parameters simultaneously in the storage
141
+ process, including the transverse spatial extent of the
142
+ storage medium, the waist size of the input modes, and
143
+ the optical depth (OD) of the medium [7, 47]. Therefore,
144
+ the uniform and efficient storage of a large number of
145
+ modes is technically challenging.
146
+ Here, we demonstrate a high-dimensional quantum
147
+ memory working up to a 25-dimensional Hilbert space
148
+ with a storage efficiency of close to 60%, using the
149
+ EIT protocol [48–53] in a laser-cooled atomic ensem-
150
+ ble. Through constituting a highly efficient spatial-mode-
151
+ independent light-matter interface where photons are en-
152
+ coded in a unique perfect optical vortex (POV) mode
153
+ [54] with invariant transverse size, we are able to store
154
+ a 25-dimensional qudit by mapping it onto the 25 bal-
155
+ anced spatial modes at the centre of the storage medium,
156
+ and coherently retrieve these components with identical
157
+ efficiencies via a control laser. The demonstrated high-
158
+ dimensional quantum memory with high efficiency herein
159
+ is promising for high-capacity quantum communication
160
+ and high-dimensional quantum information processing.
161
+ Model and experimental setup.
162
+ Our memory scheme
163
+ based on spatial-mode-independent light-matter interac-
164
+ tion is involved with a three-level Λ-type atomic system,
165
+ where the signal field (with a Rabi frequency Ωp) drives
166
+ the level |1⟩ to |3⟩ and the control field (with a Rabi
167
+ frequency Ωc) drives the level |2⟩ to |3⟩ (Fig. 1, dashed
168
+ circle). The dynamical evolution of the probe field un-
169
+ der the slowly-varying envelope approximation can be de-
170
+ scribed by the Maxwell equation as follows:
171
+ �1
172
+ c
173
+
174
+ ∂t + ∂
175
+ ∂z
176
+
177
+ Ωp = iDeffΓ
178
+ 2L σ31
179
+ (1)
180
+ where Γ denotes the decay rate of |3⟩, L is the length
181
+ of medium, and σ31 represents the atomic coherence be-
182
+ tween levels |1⟩ and |3⟩. Deff ∝ Ntrg31L represents the
183
+ effective OD of an atomic ensemble, where we define an
184
+ effective atomic density Ntr while considering a struc-
185
+ tured light field interacts with the storage medium in
186
+ the transverse orientation.
187
+ g31 represents the photon-
188
+ atom coupling coefficient between |1⟩ and |3⟩. It can be
189
+ observed from Eq. (1) that Deff significantly affects the
190
+ performance of storage, and we derive the numerical re-
191
+ lation between the storage efficiency and OD by solving
192
+ the Maxwell-Bloch equations [54].
193
+ For a spatial multi-mode quantum memory, it is nec-
194
+ essary to take into account the effective light-matter in-
195
+ teraction volume for different spatial modes. Here, we
196
+ focus on the coupling of the structure field with the
197
+ storage medium in the cross section, because the trans-
198
+ verse extent of the storage medium is a crucial parame-
199
+ ter in determining the capacity of multi-mode memory
200
+ [46].
201
+ We assume the atomic ensemble with a Gaus-
202
+ sian distribution of the density in the radial direction
203
+ Ntr(r) = N0 exp[−r2/(2σ2
204
+ r)].
205
+ N0 refers to the mean
206
+ atomic density, and σr represents the half width of the
207
+ atomic ensemble [54]. In this work, we propose a scheme
208
+ to establish a uniform light-matter interface for the mem-
209
+ ory of a variety of modes via interacting the photons
210
+ encoded in POV mode with the storage medium. Theo-
211
+ retically, such spatial modes feature identical transverse
212
+ sizes for different m, and thus they are subject to the
213
+ same Ntr(r) of atoms when they undergo the storage
214
+ process.
215
+ The interaction strength between the desired
216
+ POV modes and medium is uniform, which manifests as
217
+ the same Deff and ultimately contributes to the same
218
+ storage efficiency for different m. Based on this mech-
219
+ anism, we constitute a spatial-mode-independent quan-
220
+ tum memory for the further implementation of storage
221
+ of high-dimensional quantum states.
222
+ The experimental set-up for a high-dimensional quan-
223
+ tum memory is schematically depicted in Fig. 1.
224
+ The
225
+ qudits encoded in each spatial mode are formed on the
226
+ basis of the POV eigenstates |ℓ⟩ (ℓ is chosen from -12 to
227
+ 12), which is accomplished by means of a Fourier trans-
228
+ formation of the Bessel-Gaussian (B-G) state.
229
+ In this
230
+ regard, we initially prepare the B-G states by project-
231
+ ing the attenuated coherent states at the single-photon
232
+ level onto a phase-only spatial light modulator (SLM1) to
233
+ shape the wave-fronts of photons (Fig. 1, top left). The
234
+ phase patterns loaded on the SLM are programmed by a
235
+
236
+ 2 /4 2 /2
237
+ Lens
238
+ PBSO3
239
+ 80
240
+ 60
241
+ 40
242
+ 20
243
+ 0
244
+ 80
245
+ 60
246
+ 40
247
+ 20
248
+ 0
249
+ 80
250
+ 60
251
+ 40
252
+ 20
253
+ 0
254
+ 80
255
+ 60
256
+ 40
257
+ 20
258
+ 0
259
+ 80
260
+ 60
261
+ 40
262
+ 20
263
+ 0
264
+ 0
265
+ 0.5
266
+ 1.5
267
+ 2
268
+ 1
269
+ Counts (/1500 s)
270
+ Time (μs)
271
+ Intensity distribution
272
+ Input
273
+ Retrieval
274
+ (MHz)
275
+ Retrieval
276
+ Memory
277
+ Input
278
+ Control
279
+ = -12
280
+
281
+ = -6
282
+
283
+ = 0
284
+
285
+ = 6
286
+
287
+ = 12
288
+
289
+ = -6
290
+
291
+ OD=198
292
+ = 0
293
+
294
+ OD=205
295
+ = -12
296
+
297
+ OD=194
298
+ = 6
299
+
300
+ OD=202
301
+ = 12
302
+
303
+ OD=194
304
+ Transmission
305
+ Experiment
306
+ Fitting
307
+ η=60.2%
308
+ η=55.7%
309
+ η=59.6%
310
+ η=60.4%
311
+ η=59.3%
312
+ (a)
313
+ (b)
314
+ (c)
315
+ (d)
316
+ = -12
317
+
318
+ = -6
319
+
320
+ = 0
321
+
322
+ = 6
323
+
324
+ = 12
325
+
326
+ -12
327
+ -12
328
+ -10
329
+ -10
330
+ -8
331
+ -8
332
+ -6
333
+ -6
334
+ -4
335
+ -4
336
+ -2
337
+ -2
338
+ 0
339
+ 0
340
+ 2
341
+ 2
342
+ 4
343
+ 4
344
+ 6
345
+ 6
346
+ 8
347
+ 8
348
+ 10
349
+ 10
350
+ 12
351
+ 12
352
+ Input modes
353
+ Quanta of POV
354
+ Output modes
355
+ Efficiency
356
+ 0.6
357
+ 0.48
358
+ 0.36
359
+ 0.24
360
+ 0.12
361
+ 0
362
+ (e)
363
+ FIG. 2. Performance of spatial multi-mode quantum storage. (a) Measured absorption spectra for various spatial modes versus
364
+ the signal detuning from the atomic resonance |1⟩ → |3⟩, where the relative computer-controlled holograms loaded on the
365
+ surface of SLM1 are illustrated in the top right. (b) Transverse intensity distributions of various modes recorded at the imaging
366
+ plane of the second 4-f imaging system before (left) and after (right) storage. (c) Temporal waveforms of input (blue) and
367
+ retrieved (red) pulses with temporal lengths of about 500 ns for different modes. (d) Storage efficiencies versus the quanta of
368
+ POV mode. The shaded area represents the maximum fitted value that has been expected, with a span of 1 sigma. (e) 25×25
369
+ input-retrieved cross-talk matrix formed by the basis set from ℓ = −12 to 12.
370
+ combination of Bessel and Gaussian functions. Lens L1
371
+ acting as a Fourier transformer is then used to transform
372
+ the B-G states to the POV states, which are subsequently
373
+ mapped into the centre of the atomic medium for stor-
374
+ age with the assistance of a carefully aligned 4-f imaging
375
+ system.
376
+ We next store and retrieve the POV states via the EIT
377
+ storage protocol in a rubidium medium. To ensure a high
378
+ storage efficiency of quantum memory, it is essential to
379
+ prepare an optically thick atomic ensemble with a large
380
+ OD, which is implemented by using a two-dimensional
381
+ dark-line magneto-optical trap (MOT) technique in our
382
+ work.
383
+ After a programmable storage time, the signal
384
+ photons are retrieved from the memory and sent into
385
+ a qudit state analyser, including the other 4-f imaging
386
+ system consisting of lenses L4 and L5, a Fourier lens L6,
387
+ as well as a spatial-mode projector based on SLM2, a
388
+ single-mode fiber (SMF) and a single-photon counting
389
+ module (SPCM), to fully characterize the output states;
390
+ see the right panel of Fig. 1.
391
+ Performance of multi-mode quantum memory.
392
+ The
393
+ key to achieving multi-mode storage in our scheme is to
394
+ exploit the mode-independent light-matter interaction.
395
+ To confirm the accomplishment of this particular photon-
396
+ atom interface, we first measure the absorption spectra
397
+ for a variety of spatial modes, i.e. ℓ ∈ {−12, −6, 0, 6, 12}
398
+ by scanning the detuning of signal from −2π × 30 to
399
+ +2π ×30 MHz, as depicted in Fig. 2(a). The nearly iden-
400
+ tical OD (∼200) for various |ℓ⟩ indicates that the inter-
401
+ actions between POV photons and atoms have hardly
402
+
403
+ |ψ1
404
+
405
+ |ψ2
406
+
407
+ |ψ3
408
+
409
+ |ψ4
410
+
411
+ |ψ5
412
+
413
+ |ψ6
414
+ (a)
415
+ (c)
416
+ (b)
417
+ (d)
418
+ 1
419
+ rk
420
+ rk
421
+ rk
422
+ =
423
+ 5
424
+ =
425
+ 10
426
+ =
427
+ 0
428
+ 20
429
+ 40
430
+ 60
431
+ 80
432
+ 100
433
+ FIG. 3. Characteristics of high-dimensional storage. (a) Dis-
434
+ tributions of storage mode bandwidth for different radial wave
435
+ vectors kr = 1, 5, 10, where the kr of 5 is used in the context.
436
+ (b) Qudit states with d = 2, 5, 10, 15, 20 and 25 (see par-
437
+ ticular expressions in Ref [54]) versus storage efficiency. (c)
438
+ Numerical simulation of two-dimensional fidelity as a function
439
+ of storage-efficiency-uniformity κ1. (d) Theoretical analysis of
440
+ fidelity versus κ1 and κ2 in the case of qudit with d = 3.
441
+ any correlation with their mode number, thus allowing
442
+ our memory to be capable of carrying multiple spatial
443
+ modes simultaneously. As shown in Fig. 2(b), the spa-
444
+ tial profiles of POV eigenstates with a mean photon
445
+ number of n=0.5 in the transverse orientation are de-
446
+
447
+ 4
448
+
449
+ 〉 〉
450
+ |5
451
+ |6
452
+ +
453
+ 〉 〉
454
+ -
455
+ |5
456
+ |6
457
+ i
458
+ Re[ ]
459
+ χ
460
+ Im[ ]
461
+ χ
462
+ -0.5
463
+ 1.0
464
+
465
+ |0
466
+
467
+ |0
468
+
469
+ |12
470
+
471
+ |
472
+ 12
473
+ -0.5
474
+ 1.0
475
+ -0.5
476
+ 1.0
477
+ -0.5
478
+ 1.0
479
+ -0.5
480
+ 1.0
481
+ -0.5
482
+ 1.0
483
+ -0.5
484
+ 1.0
485
+ -0.5
486
+ 1.0
487
+
488
+ |0
489
+
490
+ |12
491
+
492
+ |0
493
+
494
+ |12
495
+
496
+ |0
497
+
498
+ |12
499
+
500
+ |5
501
+
502
+ |5
503
+
504
+ |6
505
+
506
+ |
507
+ 6
508
+
509
+ |5
510
+
511
+ |
512
+ 6
513
+
514
+ |5
515
+
516
+ |
517
+ 6
518
+
519
+ |5
520
+
521
+ |
522
+ 6
523
+
524
+ |5
525
+
526
+ |6
527
+
528
+ |5
529
+
530
+ |6
531
+
532
+ |5
533
+
534
+ |6
535
+ 〉 〉
536
+ |0
537
+ |12
538
+ +
539
+ 〉 〉
540
+ -
541
+ |0
542
+ |12
543
+ i
544
+ Re[ ]
545
+ χ
546
+ -1.0
547
+ 1.0
548
+ 0.0
549
+ Re[ ]
550
+ χ
551
+ -1.0
552
+ 1.0
553
+ 0.0
554
+ Re[ ]
555
+ χ
556
+ -1.0
557
+ 1.0
558
+ 0.0
559
+ Re[ ]
560
+ χ
561
+ -1.0
562
+ 1.0
563
+ 0.0
564
+
565
+ |1
566
+
567
+ |5
568
+
569
+ |9
570
+
571
+ |1
572
+
573
+ |5
574
+
575
+ |9 Im[ ]
576
+ χ
577
+ -1.0
578
+ 1.0
579
+ 0.0
580
+ Im[ ]
581
+ χ
582
+ -1.0
583
+ 1.0
584
+ 0.0
585
+ Im[ ]
586
+ χ
587
+ -1.0
588
+ 1.0
589
+ 0.0
590
+ Im[ ]
591
+ χ
592
+ -1.0
593
+ 1.0
594
+ 0.0
595
+
596
+ |2
597
+
598
+ |
599
+
600
+ 6
601
+ |10
602
+ |
603
+ 2
604
+
605
+ |
606
+ 6
607
+
608
+ |
609
+ 10
610
+
611
+ |
612
+ -3
613
+
614
+ |
615
+ -7
616
+
617
+ |
618
+ -11
619
+
620
+ |-4
621
+
622
+ |
623
+ -4
624
+
625
+ |-8
626
+
627
+ |
628
+ -8
629
+
630
+ |-12
631
+
632
+ |
633
+ -12
634
+
635
+ |0
636
+
637
+ |
638
+ 12
639
+
640
+ |0
641
+
642
+ |
643
+ 12
644
+
645
+ |0
646
+
647
+ |
648
+ 12
649
+ (a)
650
+ (b)
651
+ (c)
652
+ |
653
+ Input
654
+ Retrieval
655
+ Input
656
+ Retrieval
657
+ Input
658
+ Retrieval
659
+ Input
660
+ Retrieval
661
+ Input
662
+
663
+ |( )
664
+ 0
665
+
666
+ |12
667
+ 2
668
+ +
669
+ /
670
+
671
+ |0
672
+ |
673
+
674
+ ( )
675
+
676
+ 5
677
+ | 6
678
+ 2
679
+ +
680
+ /
681
+ -
682
+ ( )
683
+ 〉 i
684
+ |
685
+
686
+ 5
687
+ | 6
688
+ 2
689
+ /
690
+ ( )
691
+
692
+ +
693
+ +
694
+ |
695
+
696
+ 1
697
+
698
+ |9
699
+ | 5
700
+ 3
701
+ /
702
+ ( )
703
+
704
+ +
705
+ +
706
+ |
707
+
708
+ 2
709
+
710
+ |10
711
+ | 6
712
+ 3
713
+ /
714
+ ( )
715
+
716
+ +
717
+ +
718
+ |
719
+
720
+ -3
721
+
722
+ |-11
723
+ | -7
724
+ 3
725
+ /
726
+ ( )
727
+
728
+ +
729
+ +
730
+ |
731
+
732
+ -4
733
+
734
+ |-12
735
+ | -8
736
+ 3
737
+ /
738
+
739
+ |1
740
+
741
+ |5
742
+
743
+ |9
744
+
745
+ |1
746
+
747
+ |5
748
+
749
+ |9
750
+
751
+
752
+ |2
753
+
754
+ |6
755
+ |
756
+ 2
757
+
758
+ |
759
+ 6
760
+
761
+ |
762
+ 10
763
+
764
+ |10
765
+
766
+ |-3
767
+
768
+ |-7
769
+
770
+ |-11
771
+
772
+ |-3
773
+
774
+ |-7
775
+
776
+ |-11
777
+
778
+ |
779
+ -3
780
+
781
+ |
782
+ -7
783
+
784
+ |
785
+ -11
786
+
787
+ |
788
+ -4
789
+
790
+ |
791
+ -8
792
+
793
+ |
794
+ -12
795
+
796
+ |-4
797
+
798
+ |-8
799
+
800
+ |-12
801
+ FIG. 4. Demonstration of the storage of quantum states pro-
802
+ grammed by arbitrary quanta.
803
+ (a) Reconstructed real and
804
+ imaginary parts of density matrices of the retrieved arbitrary
805
+ quantum states with d=2 in different subspaces. (b) Single-
806
+ photon interference fringes for different states.
807
+ (c) Recon-
808
+ structed density matrices of the retrieved qudits with d=3
809
+ in arbitrarily selected subspaces. The upper panel illustrates
810
+ the spatial profiles of the corresponding quantum states be-
811
+ fore and after storage. The mean number of photons per pulse
812
+ here is n = 0.5.
813
+ tected by an ICCD camera (iStar 334T series, Andor)
814
+ working at the single-photon level. The calculated high
815
+ values S of similarity [36] between input and retrieved
816
+ states are 99.65%, 99.63%, 99.65%, 99.61% and 99.54%
817
+ for ℓ = −12, −6, 0, 6, 12 respectively, implying a faithful
818
+ quantum storage for POV states.
819
+ Figure 2(c) shows the temporal waveforms of the in-
820
+ put (blue) and retrieved pulses (red) after a one-pulse-
821
+ delay storage time for various spatial modes.
822
+ As can
823
+ be seen, the retrievals have almost the same waveforms
824
+ for different inputs, providing a clear evidence that our
825
+ memory exhibits identical characteristics for different
826
+ POV modes. To fully analyze the capacity of this spa-
827
+ tial multi-mode quantum memory, we investigate the
828
+ memory efficiencies of POV eigenstates across the en-
829
+ tire range (from -12 to 12) with a step of ∆ℓ = 1; see
830
+ Fig. 2(d). Their approximately the same values at around
831
+ 57% clearly illustrate that our memory enables 25 spatial-
832
+ mode storage with efficiency beyond 50%. Note that the
833
+ overall storage-efficiency distributions for different radial
834
+ wave vector kr [54] in a wider mode range are shown
835
+ in Fig. 3(a). Figure 2(e) gives the experimental cross-
836
+ talk between the 25 orthogonal bases after retrieval. The
837
+ average contrast [54], given by C = 1/25 �
838
+ m Cm, is esti-
839
+ mated to be 92.4±1.6%, thereby revealing a low overlap
840
+ noise between orthogonal spatial modes.
841
+ In multi-mode memory, the uniform storage efficiency
842
+ for each POV eigenstate plays a crucial role in high-
843
+ dimensional storage. We consider a high-dimensional
844
+ quantum superposition state with the dimensional-
845
+ ity of d,
846
+ i.e. the so-called qudit state |ψ⟩Input
847
+ =
848
+ 1/
849
+
850
+ d (|ℓ1⟩ + |ℓ2⟩ + · · · + |ℓd⟩) as input. The retrieved
851
+ state after storage can be written as
852
+ |ψ⟩Retrieval = 1/
853
+ ��d
854
+ m=1 η2m(η1 |ℓ1⟩ + η2 |ℓ2⟩ + · · ·
855
+ + ηd |ℓd⟩)
856
+ (2)
857
+ where η1, · · · , ηd denote the storage efficiency for the cor-
858
+ responding eigenmodes. |ψ⟩Retrieval can be further sim-
859
+ plified to η/
860
+
861
+ d (|ℓ1⟩ + |ℓ2⟩ + · · · + |ℓd⟩) if η1, · · · , ηd are
862
+ all equal to a constant represented by η. In this case, the
863
+ storage efficiency of the qudits has no dependence on the
864
+ dimensionality d, as displayed by the results in Fig. 3(b).
865
+ Thus, our memory allows storing arbitrarily dimensional
866
+ qudits with the same efficiency even when d is up to 25.
867
+ Storage fidelity is a critical performance parameter
868
+ that has to be taken into account in quantum mem-
869
+ ory. For the storage of qudit in terms of multiple spatial
870
+ modes, its fidelity is extremely sensitive to the unifor-
871
+ mity of the storage efficiency for the internal orthogonal
872
+ states. For simplicity, we consider the case of quantum
873
+ states with d = 2, as shown in Fig. 3(c), where a pa-
874
+ rameter κ1 is defined as the ratio of storage efficiencies
875
+ between |ℓ1⟩ and |ℓ2⟩, i.e. κ1 = η2/η1. It can be found
876
+ that the imbalanced atomic storage (κ1 ≪ 1) would
877
+ largely reduce the fidelity, as estimated by the formula
878
+ F =
879
+
880
+ Tr
881
+ ��√ρTρretrieval√ρT
882
+ ��2, where ρT and ρretrieval
883
+ represent the density matrices corresponding to the tar-
884
+ get and retrieval states. In Fig. 4(a), we reconstruct the
885
+ retrieved density matrices using the quantum state to-
886
+ mography (QST) method for a set of qubit states con-
887
+ stituted by arbitrary eigenstates (e.g. |0⟩, |12⟩, |5⟩, |6⟩
888
+ are chosen herein) after storage. The average fidelity of
889
+ 95.8% without any corrections is in good agreement with
890
+ the theoretical expectation, and the measured single-
891
+ photon interference fringes [Fig. 4(b)] with an average
892
+ visibility of 92.3% demonstrate that the coherence be-
893
+ tween two components of the qubits is well preserved
894
+ during storage.
895
+ In analogy to the case of d = 2, Fig. 3(d) illustrates the
896
+ effect of efficiency-uniformity between internal modes on
897
+ the fidelity for d = 3, where κ2 is defined as η3/η1. To
898
+ obtain a high fidelity, κ1 and κ2 should both approach
899
+ unity. In Fig. 4(c), we randomly choose three eigenvec-
900
+ tors in the range from |−12⟩ to |12⟩ to prepare the high-
901
+ dimensional states for storage. The high mean fidelity
902
+ is measured to be 96.4% owing to κ1 ≈ κ2 ≈ 1.
903
+ Note
904
+ that these results can hardly be obtained in those exper-
905
+ iments [39] using conventional vortex modes (e.g., LG
906
+ mode) because of the inevitable non-uniform efficiency
907
+ for different spatial modes.
908
+ Moreover, we characterize
909
+ the retrieved state of |ψ2⟩ for d =5, and the raw fi-
910
+ delity reaches 90.7±0.7% (the error bar is estimated from
911
+ Poissonian statistics and using Monte Carlo simulations),
912
+ as shown in the right panel of Fig. 5. All these experi-
913
+ mental results indicate our memory capability of storing
914
+
915
+ 1
916
+ 11
917
+ -
918
+ 1
919
+ 1
920
+ 1
921
+ 1
922
+ 1
923
+ 1
924
+ 1
925
+ 1
926
+ 1-
927
+ 1
928
+ 1
929
+ -
930
+ -
931
+ /
932
+ 1
933
+ -
934
+ 1
935
+ 1
936
+ -
937
+ -
938
+ 1
939
+ -
940
+ 1
941
+ 1
942
+ 1
943
+ 1
944
+ 1
945
+ 1
946
+ 1-
947
+ -
948
+ -
949
+ 1
950
+ -
951
+ 1
952
+ 1
953
+ 1
954
+ -
955
+ 1
956
+ 1
957
+ 1
958
+ 1
959
+ 1
960
+ 1
961
+ 11
962
+ 11
963
+ 1
964
+ 1-
965
+ 1
966
+ -
967
+ 1
968
+ 1
969
+ -
970
+ 1
971
+ -
972
+ -
973
+ 1
974
+ 1
975
+ 1
976
+ 1
977
+ 1-
978
+ 1
979
+ -
980
+ -
981
+ 1
982
+ 1
983
+ -
984
+ 1
985
+ 1
986
+ -
987
+ 1
988
+ 1
989
+ 1
990
+ 1
991
+ 1
992
+ 1CC-
993
+ -
994
+ 1
995
+ -
996
+ 1
997
+ 1
998
+ 1
999
+ 1
1000
+ 1
1001
+ 1
1002
+ -
1003
+ 1
1004
+ 1
1005
+ 1
1006
+ -
1007
+ 1
1008
+ 1
1009
+ 1
1010
+ 1
1011
+ -
1012
+ 1
1013
+ 1
1014
+ 1
1015
+ 1
1016
+ -
1017
+ 1
1018
+ 1
1019
+ 1
1020
+ <
1021
+ 1
1022
+ 1一
1023
+ 1
1024
+ 1
1025
+ 1
1026
+ 1
1027
+ 1
1028
+ 1
1029
+ 1
1030
+ 1
1031
+ 1
1032
+ 1
1033
+ 1
1034
+ 1
1035
+ 1一
1036
+ -
1037
+ 1
1038
+ 1
1039
+ -
1040
+ 1
1041
+ 1
1042
+ 1
1043
+ 1
1044
+ -
1045
+ -
1046
+ 1
1047
+ 1
1048
+ 1
1049
+ 1
1050
+ 1
1051
+ 1
1052
+ 1
1053
+ -
1054
+ 1
1055
+ 1
1056
+ 1
1057
+ 1
1058
+ -
1059
+ 1
1060
+ 1
1061
+ 1
1062
+ <
1063
+ 1
1064
+ 11
1065
+ 1
1066
+ 1
1067
+ 1
1068
+ 1
1069
+ 1
1070
+ 1
1071
+ 1
1072
+ 11
1073
+ / /
1074
+ -
1075
+ 1
1076
+ 1
1077
+ 1
1078
+ -
1079
+ 1
1080
+ 1
1081
+ 1
1082
+ 1
1083
+ 1
1084
+ -
1085
+ 1
1086
+ 1
1087
+ 1
1088
+ -
1089
+ 1
1090
+ 1
1091
+ 1
1092
+ 1
1093
+ 1
1094
+ 1
1095
+ 1
1096
+ 1
1097
+ -
1098
+ 1
1099
+ 1
1100
+ 1
1101
+ <
1102
+ 1
1103
+ 11
1104
+ 1
1105
+ 1
1106
+ 1
1107
+ 1
1108
+ 1
1109
+ 1
1110
+ 1
1111
+ 1
1112
+ 1
1113
+ 1
1114
+ 1
1115
+ 1
1116
+ 1
1117
+ 1
1118
+ 11
1119
+ 1
1120
+ 1
1121
+ 1
1122
+ 1
1123
+ 1
1124
+ 1
1125
+ 1
1126
+ 1
1127
+ 1
1128
+ 1
1129
+ 1
1130
+ 1
1131
+ 1
1132
+ 1
1133
+ 1
1134
+ 1
1135
+ 1
1136
+ 11
1137
+ 1
1138
+ 1
1139
+ 1
1140
+ 1
1141
+ 15
1142
+
1143
+ |-2
1144
+
1145
+ |
1146
+ -2
1147
+
1148
+ |-1
1149
+
1150
+ |
1151
+ -1
1152
+
1153
+ |0
1154
+
1155
+ |
1156
+ 0
1157
+
1158
+ |1
1159
+
1160
+ |1
1161
+ |2
1162
+
1163
+ |2
1164
+ -1.0
1165
+ -0.5
1166
+ 0.0
1167
+ 0.5
1168
+ 1.0
1169
+ Re[ ]
1170
+ χ
1171
+
1172
+ |-2
1173
+
1174
+ |
1175
+ -2
1176
+
1177
+ |-1
1178
+
1179
+ |
1180
+ -1
1181
+
1182
+ |0
1183
+
1184
+ |
1185
+ 0
1186
+
1187
+ |1
1188
+
1189
+ |1
1190
+
1191
+ |2
1192
+
1193
+ |2
1194
+ -1.0
1195
+ -0.5
1196
+ 0.0
1197
+ 0.5
1198
+ 1.0
1199
+ Im[ ]
1200
+ χ
1201
+
1202
+ FIG. 5. Storage in high-dimensional space exceeding the clas-
1203
+ sical benchmark. The measured fidelities as a function of the
1204
+ mean photon number per pulse n. The purple/yellow points
1205
+ are experimental data without/with background subtraction.
1206
+ The blue solid line is the classical limit after considering the
1207
+ finite storage efficiency and Poissonian statistics of the input.
1208
+ arbitrary-mode-encoded qudit states programmed from
1209
+ 25 eigenvectors.
1210
+ To further prove the quantum nature of the mem-
1211
+ ory, we compare the fidelities obtained in our experi-
1212
+ ment with the maximum available fidelities in a classical
1213
+ memory device based on a completely classical strategy
1214
+ [6, 24, 37, 38]. After considering the Poissonian statistics
1215
+ of photon number for a coherent state, the classical fi-
1216
+ delity threshold for a state with a fixed photon number
1217
+ N can be written as
1218
+ Fclass(n) =
1219
+
1220
+
1221
+ N=1
1222
+ �N + 1
1223
+ N + 2
1224
+
1225
+ e−nnN
1226
+ (1 − e−n)N!
1227
+ (3)
1228
+ where n is the mean photon number per pulse. As pre-
1229
+ sented in Fig. 5, the solid line is the theoretically classical
1230
+ limit after taking η = 0.57 in our work. We observe that
1231
+ all the experimental points exceed the classical bench-
1232
+ mark for different mean photon numbers, which confirms
1233
+ the quantum character of our device.
1234
+ We now turn to study the capability of our memory to
1235
+ store a 25-dimensional quantum state. The main chal-
1236
+ lenge to achieving the storage of a 25-dimensional qudit
1237
+ state is to preserve the identical memory efficiency for
1238
+ each mode, thus preventing the decay of coherence be-
1239
+ tween 25 spatial modes during the storage process. Here,
1240
+ a 25-dimensional qudit state |Ψ⟩ given by a coherent su-
1241
+ perposition of 25 individual spatial modes from |−12⟩ to
1242
+ |12⟩ is prepared for the demonstration of 25-dimensional
1243
+ qudit storage, which is represented as
1244
+ |Ψ⟩ =
1245
+ 1
1246
+
1247
+ 25
1248
+ +12
1249
+
1250
+ ℓ=−12
1251
+ |ℓ⟩
1252
+ (4)
1253
+ To fully characterize the retrieved state, we perform
1254
+ the high-dimensional QST [54, 55], where the real and
1255
+ imaginary parts of the reconstructed density matrix with-
1256
+ out (with) background correction are plotted in the log-
1257
+ ical basis of {|−12⟩ ,|−11⟩, |−10⟩, · · · , |12⟩}, as shown
1258
+
1259
+ |-12
1260
+
1261
+ |12
1262
+
1263
+ |0
1264
+
1265
+ |
1266
+ -12
1267
+
1268
+ |
1269
+ 0
1270
+ |
1271
+ -12
1272
+
1273
+
1274
+ |-12
1275
+
1276
+ |12
1277
+
1278
+ |0
1279
+
1280
+ |
1281
+ -12
1282
+
1283
+ |
1284
+ 0
1285
+ |
1286
+ -12
1287
+
1288
+
1289
+ |-12
1290
+
1291
+ |12
1292
+
1293
+ |0
1294
+
1295
+ |
1296
+ -12
1297
+
1298
+ |
1299
+ 0
1300
+ |
1301
+ -12
1302
+
1303
+
1304
+ |-12
1305
+
1306
+ |12
1307
+
1308
+ |0
1309
+
1310
+ |
1311
+ -12
1312
+
1313
+ |
1314
+ 0
1315
+ |
1316
+ -12
1317
+
1318
+ -0.1
1319
+ 0.1
1320
+ -0.1
1321
+ 0.1
1322
+ -0.1
1323
+ 0.1
1324
+ -0.1
1325
+ 0.1
1326
+ Re( )
1327
+ ρraw
1328
+ Re( )
1329
+ ρcorr
1330
+ Im( )
1331
+ ρcorr
1332
+ Im( )
1333
+ ρraw
1334
+ (a)
1335
+ (c)
1336
+ (b)
1337
+ (d)
1338
+ FIG. 6.
1339
+ Experimental realization of 25-dimensional qudit
1340
+ storage.
1341
+ The characterization of the retrieved qudit state
1342
+ |ψ6⟩ after the storage process by performing QST. (a)/(c) and
1343
+ (b)/(d) are the real and imaginary parts of the reconstructed
1344
+ density matrices for retrieved state |ψ6⟩ without/with back-
1345
+ ground correction, respectively.
1346
+ in Fig. 6(a,b) (Fig. 6(c,d)), respectively.
1347
+ The raw fi-
1348
+ delity between the retrieved states and ideal state is esti-
1349
+ mated to be 72.8 ± 0.6%, where the imperfection fidelity
1350
+ is mainly caused by the dark counts of the detector and
1351
+ residual control laser leakage. After the subtraction of
1352
+ the background, the fidelity reaches 90.3 ± 0.6%, far ex-
1353
+ ceeding the classical limit of 70.2% for mean photon num-
1354
+ ber n = 0.5, where the memory efficiency of state |ψ6⟩
1355
+ equals to 60% is taken into account. Note that the resid-
1356
+ ual fidelity is primarily due to the imperfections in the qu-
1357
+ dit preparation and measurement. All the above results
1358
+ clearly beat the classical benchmark, thus demonstrating
1359
+ the quantum character of our 25-dimensional memory
1360
+ implementation.
1361
+ Conclusion.
1362
+ In summary,
1363
+ we have experimentally
1364
+ demonstrated the efficient quantum storage for high-
1365
+ dimensional quantum states with d up to 25 using the
1366
+ POV modes of photons. The reported high-dimensional
1367
+ quantum memory achieves a storage efficiency of >50%,
1368
+ exceeding the threshold value for practical quantum in-
1369
+ formation applications. Remarkably, the dimensionality
1370
+ of this memory is scalable to as high as 100 through
1371
+ further optimization of the waist of POV modes [54],
1372
+ thus presenting a clear route to the scalability of di-
1373
+ mensions. In addition, our multi-mode memory is also
1374
+ promising for the compatibility with fiber-based quan-
1375
+ tum information transfer systems, which are capable of
1376
+ spatially-structured photon transmission [56, 57].
1377
+ The
1378
+ high-dimensional quantum memory demonstrated herein
1379
+ gives a great perspective for the practical high-capacity
1380
+ and long-distance quantum communication networks.
1381
+ This work was supported by National Key R&D Pro-
1382
+
1383
+ 1
1384
+ 1-
1385
+ -
1386
+ 1
1387
+ 1
1388
+ 1
1389
+ 1
1390
+ 1
1391
+ 1
1392
+ 1
1393
+ -
1394
+ 1
1395
+ 1
1396
+ 1
1397
+ 1
1398
+ 1
1399
+ 1
1400
+ 1
1401
+ -
1402
+ 1
1403
+ 1
1404
+ 1
1405
+ 1
1406
+ 10.10
1407
+ 0.05
1408
+ 0.00
1409
+ -0.05
1410
+ -0.101
1411
+ 1
1412
+ 0.10
1413
+ +
1414
+ 4
1415
+ +
1416
+ -
1417
+ 0.05
1418
+ :
1419
+ 71
1420
+ 0.00
1421
+ 1
1422
+ +
1423
+
1424
+ +
1425
+ +
1426
+ -0.05
1427
+ 4
1428
+ +
1429
+ T
1430
+ +
1431
+ 4
1432
+ +
1433
+ 1
1434
+ +
1435
+ *
1436
+ +
1437
+ 1
1438
+ +
1439
+ -0.10
1440
+ 1
1441
+ 1
1442
+ 40.10
1443
+ 0.05
1444
+ 0.00
1445
+ -0.05
1446
+ -0.101
1447
+ 0.10
1448
+ -
1449
+ 7
1450
+ 4
1451
+ 7
1452
+ 0.05
1453
+ /
1454
+ T
1455
+ T
1456
+ 0.00
1457
+ 4
1458
+ T
1459
+ 1
1460
+ +
1461
+ 4
1462
+ 5
1463
+ 1
1464
+ T
1465
+ -0.05
1466
+ 1
1467
+ :
1468
+ 1
1469
+ 1
1470
+ -0.10
1471
+ 1
1472
+ T
1473
+ T
1474
+ 16
1475
+ gram of China (Grants No.
1476
+ 2017YFA0304800), Anhui
1477
+ Initiative in Quantum Information Technologies (Grant
1478
+ No. AHY020200), the National Natural Science Founda-
1479
+ tion of China (Grants No. U20A20218, No. 61722510,
1480
+ No. 11934013, No. 11604322, No. 12204461), and the In-
1481
+ novation Fund from CAS, and the Youth Innovation Pro-
1482
+ motion Association of CAS under Grant No. 2018490.
1483
1484
1485
1486
+ [1] A. I. Lvovsky, B. C. Sanders, W. Tittel, Optical quantum
1487
+ memory. Nat. photon. 3, 706–714 (2009).
1488
+ [2] N. Sangouard, C. Simon, H. De Riedmatten, N. Gisin,
1489
+ Quantum repeaters based on atomic ensembles and linear
1490
+ optics. Rev. Mod. Phys. 83, 33 (2011).
1491
+ [3] H.-J. Briegel, W. D¨ur, J. I. Cirac, P. Zoller, Quantum
1492
+ repeaters: the role of imperfect local operations in quan-
1493
+ tum communication. Phys. Rev. Lett. 81, 5932 (1998).
1494
+ [4] H. J. Kimble, The quantum internet. Nature 453, 1023–
1495
+ 1030 (2008).
1496
+ [5] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P.
1497
+ Dowling, G. J. Milburn, Linear optical quantum com-
1498
+ puting with photonic qubits. Rev. Mod. Phys. 79, 135
1499
+ (2007).
1500
+ [6] P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet,
1501
+ J. Laurat, Highly-efficient quantum memory for polar-
1502
+ ization qubits in a spatially-multiplexed cold atomic en-
1503
+ semble. Nat. Commun. 9, 363 (2018).
1504
+ [7] Y. Wang, et al., Efficient quantum memory for single-
1505
+ photon polarization qubits.
1506
+ Nat. Photon. 13, 346–351
1507
+ (2019).
1508
+ [8] J. Guo, et al., High-performance raman quantum mem-
1509
+ ory with optimal control in room temperature atoms.
1510
+ Nat. Commun. 10, 1–6 (2019).
1511
+ [9] F. Grosshans, P. Grangier, Quantum cloning and telepor-
1512
+ tation criteria for continuous quantum variables. Phys.
1513
+ Rev. A 64, 010301(R) (2001).
1514
+ [10] M. Varnava, D. E. Browne, T. Rudolph, Loss tolerance in
1515
+ one-way quantum computation via counterfactual error
1516
+ correction. Phys. Rev. Lett. 97, 120501 (2006).
1517
+ [11] M. Erhard, R. Fickler, M. Krenn, A. Zeilinger, Twisted
1518
+ photons: new quantum perspectives in high dimensions.
1519
+ Light Sci. Appl. 7, 17146–17146 (2018).
1520
+ [12] M. Erhard, M. Krenn, A. Zeilinger, Advances in high-
1521
+ dimensional quantum entanglement. Nat. Rev. Phys. 2,
1522
+ 365–381 (2020).
1523
+ [13] M. Krenn,
1524
+ et al.,
1525
+ Generation and confirmation of
1526
+ a (100×100)-dimensional entangled quantum system.
1527
+ PNAS 111, 6243–6247 (2014).
1528
+ [14] H. Bechmann-Pasquinucci, W. Tittel, Quantum cryptog-
1529
+ raphy using larger alphabets. Phys. Rev. A 61, 062308
1530
+ (2000).
1531
+ [15] H. Bechmann-Pasquinucci, A. Peres, Quantum cryptog-
1532
+ raphy with 3-state systems. Phys. Rev. Lett. 85, 3313
1533
+ (2000).
1534
+ [16] N. J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Secu-
1535
+ rity of quantum key distribution using d-level systems.
1536
+ Phys. Rev. Lett. 88, 127902 (2002).
1537
+ [17] S. Walborn, D. Lemelle, M. Almeida, P. S. Ribeiro,
1538
+ Quantum key distribution with higher-order alphabets
1539
+ using spatially encoded qudits.
1540
+ Phys. Rev. Lett. 96,
1541
+ 090501 (2006).
1542
+ [18] L. Sheridan, V. Scarani, Security proof for quantum
1543
+ key distribution using qudit systems. Phys. Rev. A 82,
1544
+ 030301(R) (2010).
1545
+ [19] S. Ecker, et al., Overcoming noise in entanglement dis-
1546
+ tribution. Phys. Rev. X 9, 041042 (2019).
1547
+ [20] B. P. Lanyon, et al., Simplifying quantum logic using
1548
+ higher-dimensional hilbert spaces. Nat. Phys. 5, 134–140
1549
+ (2009).
1550
+ [21] E. T. Campbell, Enhanced fault-tolerant quantum com-
1551
+ puting in d-level systems. Phys. Rev. Lett. 113, 230501
1552
+ (2014).
1553
+ [22] E. T. Campbell, H. Anwar, D. E. Browne, Magic-state
1554
+ distillation in all prime dimensions using quantum reed-
1555
+ muller codes. Phys. Rev. X 2, 041021 (2012).
1556
+ [23] D.-S. Ding, et al., Raman quantum memory of photonic
1557
+ polarized entanglement. Nat. Photon. 9, 332–338 (2015).
1558
+ [24] M. G¨undo˘gan, P. M. Ledingham, A. Almasi, M. Cris-
1559
+ tiani, H. De Riedmatten, Quantum storage of a photonic
1560
+ polarization qubit in a solid. Phys. Rev. Lett. 108, 190504
1561
+ (2012).
1562
+ [25] Z. Xu, et al., Long lifetime and high-fidelity quantum
1563
+ memory of photonic polarization qubit by lifting zeeman
1564
+ degeneracy. Phys. Rev. Lett. 111, 240503 (2013).
1565
+ [26] C.-W. Chou, et al., Measurement-induced entanglement
1566
+ for excitation stored in remote atomic ensembles. Nature
1567
+ 438, 828–832 (2005).
1568
+ [27] D. L. Moehring, et al., Entanglement of single-atom
1569
+ quantum bits at a distance. Nature 449, 68–71 (2007).
1570
+ [28] K. S. Choi, H. Deng, J. Laurat, H. Kimble, Mapping pho-
1571
+ tonic entanglement into and out of a quantum memory.
1572
+ Nature 452, 67–71 (2008).
1573
+ [29] Y. Pu, et al., Experimental realization of a multiplexed
1574
+ quantum memory with 225 individually accessible mem-
1575
+ ory cells. Nat. Commun. 8, 1–6 (2017).
1576
+ [30] L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S.
1577
+ Wang, S. Li, H. Wang, Spatial multiplexing of atom-
1578
+ photon entanglement sources using feedforward control
1579
+ and switching networks. Phys. Rev. Lett. 119, 130505
1580
+ (2017).
1581
+ [31] C. Simon, H. de. Riedmatten, M. Afzelius, N. Sangouard,
1582
+ H. Zbinden, N. Gisin, Quantum repeaters with photon
1583
+ pair sources and multimode memories. Phys. Rev. Lett.
1584
+ 98, 190503 (2007).
1585
+ [32] E. Saglamyurek, et al., Broadband waveguide quantum
1586
+ memory for entangled photons.
1587
+ Nature 469, 512–515
1588
+ (2011).
1589
+ [33] C. Clausen, et al., Quantum storage of photonic entan-
1590
+ glement in a crystal. Nature 469, 508–511 (2011).
1591
+ [34] M. Krenn, M. Malik, M. Erhard, A. Zeilinger, Orbital
1592
+ angular momentum of photons and the entanglement of
1593
+ laguerre–gaussian modes. Phil. Trans. R. Soc. A. 375,
1594
+ 20150442 (2017).
1595
+ [35] S.
1596
+ Franke-Arnold,
1597
+ Optical
1598
+ angular
1599
+ momentum
1600
+ and
1601
+ atoms. Phil. Trans. R. Soc. A. 375, 20150435 (2017).
1602
+ [36] D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, G.-C. Guo, Single-
1603
+ photon-level quantum image memory based on cold
1604
+ atomic ensembles. Nat. Commun. 4, 2527 (2013).
1605
+ [37] A. Nicolas, et al., A quantum memory for orbital angular
1606
+ momentum photonic qubits.
1607
+ Nat. Photon. 8, 234–238
1608
+ (2014).
1609
+
1610
+ 7
1611
+ [38] V. Parigi, et al., Storage and retrieval of vector beams of
1612
+ light in a multiple-degree-of-freedom quantum memory.
1613
+ Nat. Commun. 6, 7706 (2015).
1614
+ [39] D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang,
1615
+ X.-S. Wang, Y.-K. Jiang, B.-S. Shi, G.-C. Guo, Quantum
1616
+ storage of orbital angular momentum entanglement in an
1617
+ atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015).
1618
+ [40] W. Zhang, et al., Experimental realization of entangle-
1619
+ ment in multiple degrees of freedom between two quan-
1620
+ tum memories. Nat. Commun. 7, 1–7 (2016).
1621
+ [41] C. Wang, et al., Efficient quantum memory of orbital
1622
+ angular momentum qubits in cold atoms. Quantum Sci.
1623
+ Technol. 6, 045008 (2021).
1624
+ [42] Y.-H. Ye,
1625
+ et al.,
1626
+ Long-lived storage of orbital an-
1627
+ gular
1628
+ momentum
1629
+ quantum
1630
+ states.
1631
+ arXiv preprint
1632
+ arXiv:2203.10884 (2022).
1633
+ [43] D.-S. Ding, et al., Toward high-dimensional-state quan-
1634
+ tum memory in a cold atomic ensemble. Phys. Rev. A
1635
+ 90, 042301 (2014).
1636
+ [44] K. Reim, et al., Towards high-speed optical quantum
1637
+ memories. Nat. Photon. 4, 218–221 (2010).
1638
+ [45] K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N.
1639
+ K. Langford, I. A. Walmsley, Single-photon-level quan-
1640
+ tum memory at room temperature. Phys. Rev. Lett. 107,
1641
+ 053603 (2011).
1642
+ [46] A. Grodecka-Grad, E. Zeuthen, A. S. Sørensen, High-
1643
+ capacity spatial multimode quantum memories based on
1644
+ atomic ensembles. Phys. Rev. Lett. 109, 133601 (2012).
1645
+ [47] M. T. Cao, et al., Efficient reversible entanglement trans-
1646
+ fer between light and quantum memories.
1647
+ Optica 7,
1648
+ 1440–1444 (2020).
1649
+ [48] T. Chaneli`ere, et al., Storage and retrieval of single pho-
1650
+ tons transmitted between remote quantum memories.
1651
+ Nature 438, 833–836 (2005).
1652
+ [49] M. D. Eisaman, et al., Electromagnetically induced
1653
+ transparency with tunable single-photon pulses. Nature
1654
+ 438, 837–841 (2005).
1655
+ [50] H. Zhang, et al., Preparation and storage of frequency-
1656
+ uncorrelated entangled photons from cavity-enhanced
1657
+ spontaneous parametric downconversion. Nat. Photon.
1658
+ 5, 628–632 (2011).
1659
+ [51] H.-N. Dai, et al., Holographic storage of biphoton entan-
1660
+ glement. Phys. Rev. Lett. 108, 210501 (2012).
1661
+ [52] Y.-H. Chen, M.-J. Lee, I-C. Wang, S. Du, Y.-F. Chen,
1662
+ Y.-C. Chen, I. A. Yu, Coherent optical memory with high
1663
+ storage efficiency and large fractional delay. Phys. Rev.
1664
+ Lett. 110, 083601 (2013).
1665
+ [53] Y.-F. Hsiao, et al., Highly efficient coherent optical mem-
1666
+ ory based on electromagnetically induced transparency.
1667
+ Phys. Rev. Lett. 120, 183602 (2018).
1668
+ [54] See Supplemental Material for the details.
1669
+ [55] R. T. Thew, K. Nemoto, A. G. White, W. J. Munro, Qu-
1670
+ dit quantum-state tomography. Phys. Rev. A 66, 012303
1671
+ (2002).
1672
+ [56] J. Liu, et al., Multidimensional entanglement transport
1673
+ through single-mode fiber. Sci. Adv. 6, eaay0837 (2020).
1674
+ [57] H. Cao, et al., Distribution of high-dimensional orbital
1675
+ angular momentum entanglement over a 1 km few-mode
1676
+ fiber. Optica 7, 232–237 (2020).
1677
+
1678
+ Supplemental Material for Highly efficient storage of 25-dimensional photonic qudit in
1679
+ a cold-atom-based quantum memory
1680
+ Ming-Xin Dong,1, 2, 3 Wei-Hang Zhang,1, 2 Lei Zeng,1, 2 Ying-Hao Ye,1, 2 Da-Chuang
1681
+ Li,3, ∗ Guang-Can Guo,1, 2 Dong-Sheng Ding,1, 2, † and Bao-Sen Shi1, 2, ‡
1682
+ 1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China.
1683
+ 2Synergetic Innovation Center of Quantum Information and Quantum Physics,
1684
+ University of Science and Technology of China, Hefei, Anhui 230026, China.
1685
+ 3School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui 230601, China.
1686
+ (Dated: January 4, 2023)
1687
+ arXiv:2301.00999v1 [quant-ph] 3 Jan 2023
1688
+
1689
+ I. EXPERIMENT DETAILS
1690
+ As depicted in Fig. 1, the relevant quantum states |1⟩, |2⟩ and |3⟩ correspond to the 85Rb atomic hyperfine levels
1691
+ ��5S1/2, F = 2
1692
+
1693
+ ,
1694
+ ��5S1/2, F = 3
1695
+
1696
+ and
1697
+ ��5P1/2, F = 3
1698
+
1699
+ respectively. Here, the POV signal is resonant with the atomic
1700
+ transition of |1⟩ ↔ |3⟩, and the auxiliary control field with Rabi frequency of 2π × 20.07 MHz dynamically drives
1701
+ the transition of |2⟩ ↔ |3⟩ to achieve reversible transfer between photonic states and atomic collective spin excitation
1702
+ during the storage process. The control field entering into the atomic medium has an angle of 3° with respect to the
1703
+ signal to write and read the photonic qudit state. After an on-demand storage time, the retrieved state is characterized
1704
+ by a state analyser. The qudit analyser is set for implementing related projective measurements of the retrieved states
1705
+ into distinct bases. Before signal photons being measured by the detector, two homemade Fabry-Perot etalons (with
1706
+ a total transmittance of 64%, an isolation rate of 46 dB and a bandwidth of 500 MHz), acting as frequency filters,
1707
+ are inserted into the path (not shown in Fig. 1) to reduce the noise scattered from the control field. The outputs
1708
+ are finally detected by the SPCM (avalanche diode, PerkinElmer SPCM-AQR-16-FC; 60% efficiency, maximum dark
1709
+ count rate of 25/s) for recording the relative measurement counts.
1710
+ 4-f imaging system.
1711
+ The first 4-f imaging system shown in Fig. 1 is used to map the photonic POV modes onto
1712
+ the centre of the storage medium, and mainly consists of lenses L2 and L3, which are separated by a distance of
1713
+ f2 + f3. Here, f2 and f3 refer to the focal lengths of lenses L2 and L3. The focal lengths of lenses L1, L2, L3, L4, L5
1714
+ and L6 are 75, 500, 300, 300, 500 and 75 mm, respectively. The POV spatial structure is located in the front focal
1715
+ plane of L2, and its image is obtained at the back focal plane of L3. In addition, this shrunken 4-f imaging system
1716
+ is further exploited to reduce the waist of the input photonic modes, with a scaling ratio of f3/f2, to better match
1717
+ with the transverse size of the storage medium.
1718
+ High-d state expressions.
1719
+ In Fig. 3(b) of main text, the used six quantum states are |ψ1⟩ = (|0⟩ + |12⟩) /
1720
+
1721
+ 2, |ψ2⟩ =
1722
+ 1/
1723
+
1724
+ 5 �ℓ=+2
1725
+ ℓ=−2 |ℓ⟩, |ψ3⟩ = 1/
1726
+
1727
+ 10
1728
+ ��ℓ=−1
1729
+ ℓ=−5 |ℓ⟩ + �ℓ=+5
1730
+ ℓ=+1 |ℓ⟩
1731
+
1732
+ , |ψ4⟩ = 1/
1733
+
1734
+ 15 �ℓ=+7
1735
+ ℓ=−7 |ℓ⟩, |ψ5⟩ = 1/
1736
+
1737
+ 20(�ℓ=−1
1738
+ ℓ=−10 |ℓ⟩ +
1739
+ �ℓ=+10
1740
+ ℓ=+1 |ℓ⟩), |ψ6⟩ = 1/
1741
+
1742
+ 25 �ℓ=+12
1743
+ ℓ=−12 |ℓ⟩, respectively.
1744
+ II. HIGH-OPTICAL-DEPTH COLD ATOMIC ENSEMBLE
1745
+ We trap the cold atoms of Rubidium 85 (85Rb) in a two-dimensional dark-line MOT. Each trapping laser beam
1746
+ has a power of 36 mW with a beam waist of 2 cm. Two vertically oriented repump laser beams have a total power of
1747
+ 60 mW with a beam waist of 2 cm, with two copper bars located in their central positions to prepare two dark-line
1748
+ images [1, 2]. These images are overlapped at the centre of the MOT along the longitudinal axis by using two 4-f
1749
+ imaging systems, and thus constituting a dark-line volume. Here, the diameters of the copper bars are 1.5 mm. The
1750
+ experimental repetition rate is 100 Hz, and the experimental operation window is 1.3 ms, during which the MOT
1751
+ magnetic field is switched off completely. Initially, all of the atoms are prepared in the ground state |1⟩ by turning off
1752
+ the repump laser 500 µs earlier than the trapping laser. Thanks to the high OD herein, we have achieved a storage
1753
+ efficiency of 72.3% for a single photon in Gaussian mode, as shown in Fig. S1.
1754
+ Figure S1 shows the temporal waveforms of input (blue) and retrieved pulses (red) after a one-pulse-delay storage
1755
+ time for Gaussian mode. The storage efficiency of quantum memory can be defined as
1756
+ η =
1757
+
1758
+ |ψretrieval(t)|2 dt
1759
+
1760
+ |ψinput(t)|2 dt
1761
+ (1)
1762
+ where ψinput(t) and ψretrival(t) represent the input and retrieved quantum states.
1763
+ The storage efficiency for the
1764
+ Gaussian mode is estimated to be 72.3% by integrating the counts of photons in their entire temporal waveforms.
1765
+ III. PREPARATION AND ANALYSIS OF POV MODES
1766
+ The structured light beams carrying OAM are of many interests due to their wide applications in micromanipulation
1767
+ [3], optical imaging [4] and quantum information processing [5, 6]. The photons carrying OAM are described by a
1768
+ helical phase factor eiℓφ, with ℓ being the topological charge indicating the OAM of ℓℏ per photon and φ is the
1769
+ azimuthal angle.
1770
+ Here, ℓ takes any integer values, therefore the available Hilbert-space dimension is infinite in
1771
+ principle, which provides a huge information capacity for classical and quantum information systems. However, the
1772
+ 2
1773
+
1774
+ Counts (/1500 s)
1775
+ Time (μs)
1776
+ 0
1777
+ 0.5
1778
+ 1.5
1779
+ 2
1780
+ 1
1781
+ 120
1782
+ 160
1783
+ 80
1784
+ 40
1785
+ 0
1786
+ Memory
1787
+ Control
1788
+ Retrieval
1789
+ Input
1790
+ FIG. S1. The temporal waveform of input (blue) and retrieved (red) pulses for Gaussian mode.
1791
+ conventional optical vortices, e.g., LG beams, always exhibit a strong dependence of their transverse size on the
1792
+ topological charge number, thus limiting their further applications in some circumstances, such as optical trapping
1793
+ and tweezing, multiplexed optical communication using a single fibre with a fixed annular index profile [7], as well
1794
+ as the high-dimensional quantum information processing [8]. To overcome these limitations, the concept of a perfect
1795
+ optical vortex [9, 10] has been proposed whose radius is independent of ℓ. The POV mode is defined as the Fourier
1796
+ transformation of a B-G function, and the complex field amplitude is given by
1797
+ Eℓ
1798
+ POV(r, φ) = iℓ−1 ωg
1799
+ ω0
1800
+ exp(iℓφ) × exp(−r2 + r2
1801
+ r
1802
+ ω2
1803
+ 0
1804
+ )Iℓ(2rrr
1805
+ ω2
1806
+ 0
1807
+ )
1808
+ (2)
1809
+ where ωg is the beam waist of the Gaussian mode, ω0= 2f/kωg denotes the beam waist of the Gaussian mode at the
1810
+ focal plane with a wave vector k=2π/λ, in which f is the focal length of the Fourier lens. rr=krf/k is the radius of
1811
+ POV mode (kr is the radial wave vector). For the case of large kr and small ω0, Eq. (4) can be further reduced to
1812
+ EPOV (r, φ) ∝ iℓ−1/krδ (r − rr) exp (iℓφ)
1813
+ (3)
1814
+ where δ(r) represents the Dirac delta function. We can clearly observe that this ideal POV mode has a transverse
1815
+ radius of rr which is independent of ℓ. In the experiments, one can obtain the POV mode at the Fourier plane of the
1816
+ B-G phase. In addition, the radius of the perfect vortex could be controlled by varying the radial wave vector kr of
1817
+ the B-G beam.
1818
+ IV. THEORETICAL ANALYSIS OF THE MODE-INDEPENDENT QUANTUM STORAGE
1819
+ We consider a three-level atom model in the storage process, and the dynamics of the laser-driven atomic system
1820
+ can be described by the master equation as follows
1821
+ ∂ˆρ
1822
+ ∂t = − i
1823
+ ℏ[Hint, ˆρ] − 1
1824
+ 2
1825
+
1826
+ ˆΓ, ˆρ
1827
+
1828
+ (4)
1829
+ where Hint is the interaction Hamiltonian that describes the light-atom coupling, and the second term attributes to
1830
+ the atomic relaxation that describes the radiative decay and the decoherence processes of the excited state and ground
1831
+ state. Under the rotating-wave approximation [11], Hint is given by
1832
+ Hint = −ℏ
1833
+ 2
1834
+
1835
+
1836
+ 0
1837
+ 0
1838
+ Ωp
1839
+ 0
1840
+ −2(∆ωp − ∆ωc)
1841
+ Ωc
1842
+ Ωp
1843
+ Ωc
1844
+ −2∆ωp
1845
+
1846
+
1847
+ (5)
1848
+ 3
1849
+
1850
+ rr
1851
+ σ
1852
+ r
1853
+ σ
1854
+ 1
1855
+ rk
1856
+ rk
1857
+ rk
1858
+ =
1859
+ 5
1860
+ =
1861
+ 10
1862
+ =
1863
+ FIG. S2. (left) Schematic of the cross-section distribution of the POV mode and atomic ensemble with cylindrical symmetry.
1864
+ (Right) The measured storage efficiency η as a function of quanta of POV for several radial wave vectors kr = 1, 5, 10. The
1865
+ symbols are experimental data and the solid lines are the theoretically simulated curves. The fitting parameters {Tp, σr, κ}
1866
+ are {300 ns, 0.275 ± 0.025 mm, 1.1}, respectively. It can be seen that the theoretical calculations are in good agreement with
1867
+ the experimental results.
1868
+ where Ωp(c) and ∆ωp(c) denote the Rabi frequency and detuning of the signal (control) field, respectively.
1869
+ The
1870
+ Maxwell-Bloch equations can then be written as
1871
+ ∂tσ31 = (i∆ωp − γ31)σ31 + i
1872
+ 2Ωcσ21 + i
1873
+ 2Ωp
1874
+ ∂tσ21 = [i(∆ωp − ∆ωc) − γ21] σ21 + i
1875
+ 2Ωcσ31
1876
+ (1/c∂t + ∂z)Ωp = i DeffΓ
1877
+ 2L σ31
1878
+ (6)
1879
+ Here, σij represents the atomic coherence between levels |i⟩ and |j⟩. As referred to Ref. [12], we can obtain the
1880
+ numerical relation between the effective atomic optical depth Deff and storage efficiency η by taking the Fourier
1881
+ transform, which is given by
1882
+ η = exp(−2γ21DeffΓ/Ω2
1883
+ c)
1884
+
1885
+ 1 + 32 ln 2 γ31DeffΓ
1886
+ (TpΩ2c)2
1887
+ × 1
1888
+ 2
1889
+
1890
+ �erf(2
1891
+
1892
+ ln 2κ) + erf(2
1893
+
1894
+ ln 2 DeffΓ/(TpΩ2
1895
+ c) − κ
1896
+
1897
+ 1 + 32 ln 2 γ31DeffΓ
1898
+ (TpΩ2c)2
1899
+ )
1900
+
1901
+
1902
+ (7)
1903
+ where γ21 is the ground-state decoherence rate between levels |2⟩ and |1⟩. γ31 = Γ/2 is the decay rate of |3⟩ ↔|1⟩. Tp
1904
+ denotes the full width at half maximum (FWHM) of signal pulse duration. κ is the proportionality of the time span,
1905
+ when the control field is switched off, to the Tp.
1906
+ As depicted in the main text, we take into account that the atomic ensemble has a Gaussian distribution of the
1907
+ density in the radial direction Ntr(r) = N0 exp[−r2/(2σ2
1908
+ r)] (Fig. S2, left). rr=krf/k represents the transverse size
1909
+ of the POV mode of signal. The same value of rr for different quanta ℓ results in a mode-independent light-matter
1910
+ interaction, which is the key to realizing high-dimensional quantum storage in our work.
1911
+ V. STORAGE-EFFICIENCY DISTRIBUTION FOR A WIDE MODE SPECTRUM
1912
+ The left panel of Fig. S2 depicts the transverse distribution of POV photons and atomic ensemble. The radius size
1913
+ of the POV mode with kr = 5 at the centre of the MOT is theoretically estimated to be rr = 218 µm, which is very
1914
+ close to the measured value of 222 µm detected by the ICCD camera.
1915
+ The POV mode can be derived from the Fourier transformation of a Bessel function. As the generation of an ideal
1916
+ Bessel beam is difficult in the experiment, we turn to its finite-energy approximation, i.e., the Bessel-Gaussian beam,
1917
+ 4
1918
+
1919
+ 0
1920
+ -50
1921
+ 50
1922
+ 100
1923
+ -100
1924
+ rk
1925
+ 5
1926
+ 7
1927
+ 9
1928
+ 11
1929
+ OD
1930
+ 120
1931
+ 200
1932
+ 280
1933
+ 360
1934
+
1935
+ 0
1936
+ -50
1937
+ 50
1938
+ 100
1939
+ 0.8
1940
+ 0.6
1941
+ 0.4
1942
+ 0.2
1943
+ 0
1944
+ -100
1945
+
1946
+ (a)
1947
+ (b)
1948
+ FIG. S3.
1949
+ Theoretical simulations of the multi-mode storage performance.
1950
+ a, The distribution of storage efficiency η as a
1951
+ function of kr and ℓ. b, The storage efficiency η versus OD and ℓ with kr = 13.
1952
+ to prepare POV. When the quanta of POV is invloved in a large range, it is worthwhile to consider a second-moment
1953
+ width of the beam profile in the practical physical process, which is defined as [13]:
1954
+ ωℓ = ω0
1955
+
1956
+ ℓ + 1 + rr
1957
+
1958
+ 1 + Iℓ+1(r2r/ω2
1959
+ 0)/Iℓ(r2r/ω2
1960
+ 0)
1961
+ (8)
1962
+ From this, we can find that the ratio of rr and ω0 is a crucial parameter that could evaluate the quality of POV,
1963
+ where rr/ω0 ≫ 1 is the ideal case. As shown in Fig. S2 (right), the storage efficiency of POV decreases as ℓ increases
1964
+ in the case of large quanta, which agrees well with the theoretical result obtained by combining Eqs. (7) and (8).
1965
+ To achieve mode-independent quantum storage over a wider range, one can control the Bessel parameters, e.g. kr,
1966
+ whereas the limitation of the radius size it causes in the atomic ensemble should be taken into account. This difficulty
1967
+ can be overcome by adjusting the scaling ratio of the controllable 4-f imaging system used in our work. The capacity
1968
+ of quantum memory allows for scaling in our scheme, which has a great prospect to achieve a higher-dimensional
1969
+ quantum memory by means of further optimization of several physical parameters, such as kr and OD. To clearly
1970
+ display it, we theoretically investigate these parameters for improving the storage efficiency and uniform-efficiency-
1971
+ mode range, as shown in Fig. S3. The uniform-efficiency-mode range increase with the increase of kr whereas the
1972
+ uniform efficiency is decreased (Fig. S3(a)). This limitation can be overcome by further improving the OD of the
1973
+ storage medium, as shown in Fig. S3(b). Therefore, we can achieve a quantum memory enabling higher mode and
1974
+ having higher storage efficiency based on our scheme.
1975
+ VI. DEFINITIONS OF SIMILARITY AND CROSS-TALK
1976
+ To quantitatively assess the preservation of spatial structures for input and retrieved states, we calculate the
1977
+ similarity S = �
1978
+ i
1979
+
1980
+ j AijBij/
1981
+ ���
1982
+ i
1983
+
1984
+ j A2
1985
+ ij
1986
+ � ��
1987
+ i
1988
+
1989
+ j B2
1990
+ ij
1991
+
1992
+ , where A and B denote the grey-scale matrices of two
1993
+ images [5], and the subscripts i and j represent different pixels. The cross-talk disturbance in our work is quantified
1994
+ by defining a contrast Cm = (Emm − Emn,max) /Emm, where m, n refer to the input and projected mode numbers
1995
+ chosen from -12 to 12, and Emm, Emn,max represent the diagonal coefficients and maximal off-diagonal coefficients
1996
+ inside the 25×25 matrix [Fig. 2(e)], and the average contrast is estimated by C = 1/25 �
1997
+ m Cm.
1998
+ VII. STORAGE OF COHERENT SUPERPOSITION STATES WITH SPECIFIC MODES
1999
+ We access the storage of coherent superposition states, |ψ±ℓ⟩ = (|− |ℓ|⟩ + |+ |ℓ|⟩) /
2000
+
2001
+ 2, which are encoded in POV
2002
+ modes with quanta from low-order alphabets to high-order alphabets. The correspondingly coherent interference
2003
+ 5
2004
+
2005
+ +
2006
+ -1
2007
+ 1
2008
+ +
2009
+ -2
2010
+ 2
2011
+ +
2012
+ -3
2013
+ 3
2014
+ +
2015
+ -4
2016
+ 4
2017
+ +
2018
+ -5
2019
+ 5
2020
+ +
2021
+ -6
2022
+ 6
2023
+ +
2024
+ -7
2025
+ 7
2026
+ +
2027
+ -8
2028
+ 8
2029
+ +
2030
+ -9
2031
+ 9
2032
+ +
2033
+ -10
2034
+
2035
+ 10
2036
+
2037
+ +
2038
+ -11
2039
+
2040
+ 11
2041
+
2042
+ +
2043
+ -12
2044
+
2045
+ 12
2046
+
2047
+ Input
2048
+ Retrieval
2049
+ FIG. S4. The intensity distributions for input (upper layer) and retrieved (lower layer) superposition states.
2050
+ patterns are shown in Fig. S4 when we chose ℓ from 1 to 12. The similarities between inputs (top) and outputs
2051
+ (bottom) are estimated to be 99.74%, 99.64%, 99.55%, 99.70%, 99.40%, 99.70%, 99.69%, 99.70%, 99.66%, 99.60%,
2052
+ 99.62%, 99.63%, indicating the high-fidelity storage for various superposition states. Meanwhile, the calculated storage
2053
+ efficiencies for these states are 60.6%, 62.1%, 62.1%, 64.8%, 62.2%, 62.6%, 60.9%, 62.8%, 61.2%, 65.5%, 60.7%, 60.2%,
2054
+ manifesting approximately the same value for different ℓ, which agrees well with the theoretical expectation.
2055
+ VIII. DIMENSION VERSUS STORAGE TIME
2056
+ We have measured the storage time of memory for qudits with different dimensions, as shown in Fig. S5. Here,
2057
+ the input qudit states of �ℓ=+1
2058
+ ℓ=−1 |ℓ⟩ /
2059
+
2060
+ 3, �ℓ=+2
2061
+ ℓ=−2 |ℓ⟩ /
2062
+
2063
+ 5, �ℓ=+5
2064
+ ℓ=−5 |ℓ⟩ /
2065
+
2066
+ 11, �ℓ=+12
2067
+ ℓ=−12 |ℓ⟩ /
2068
+
2069
+ 25 with dimensions of d =
2070
+ 3, 5, 11, 25 respectively, are used to display the relation of storage time with dimensions. It can easily be observed
2071
+ that our quantum memory is robust to the dimensions of quantum states since the storage time is almost the same
2072
+ for different dimensional qudits. Our memory features identical storage characters (e.g. storage efficiency and storage
2073
+ time) for 25 POV modes with l from -12, -11, -10 · · · 10, 11, 12. Thus, these same quantum storage characters for 25
2074
+ individual eigenstates allow us to store arbitrary qudits with dimensions d between 1 to 25, which shows the strong
2075
+ programmability of our memory. In conclusion, it has great prospects for building a higher-dimensional quantum
2076
+ memory using our scheme.
2077
+ FIG. S5. The storage time for qudits with different dimensions.
2078
+ 6
2079
+
2080
+ IX. HIGH-DIMENSIONAL QST
2081
+ QST is an efficient and robust technique for accurately characterizing the measured quantum states. Thus, to
2082
+ determine the full states of the retrieval in the storage process, we use a high-dimensional QST to reconstruct the
2083
+ density matrix. The d-dimensional density matrix ρd can be described by
2084
+ ˆρd = 1
2085
+ d
2086
+ d2−1
2087
+
2088
+ j=0
2089
+ rjˆλj
2090
+ (9)
2091
+ where ˆλj represents the operator for a SU(d) system, and rj =
2092
+
2093
+ ˆλj
2094
+
2095
+ = Tr[ˆρˆλj] is the expectation value of the
2096
+ operators. In practical measurements, an arbitrary but complete set of basis states {|ψi⟩} is exploited to implement the
2097
+ related projection operations with operators {ˆµi = |ψi⟩ ⟨ψi|}. Owing to the completeness of ˆµi, this can be written as
2098
+ ˆµi = �
2099
+ j Aj
2100
+ i ˆλj. Here, we take the corresponding measurement values ni = N ⟨ψi|ˆρ|ψi⟩ = NTr[ˆρˆµi]=N �
2101
+ j Aj
2102
+ iTr[ˆρˆλj] =
2103
+ N �
2104
+ j Aj
2105
+ irj (N is a constant of proportionality, which is dependent on the detector efficiency and count of photons).
2106
+ The density matrix can finally be written as ˆρd = N −1 �
2107
+ i,j
2108
+
2109
+ Aj
2110
+ i
2111
+ �−1
2112
+ niˆλj/d.
2113
+ Ultimately, we use the maximum-
2114
+ likelihood estimation technique with the combination of 625 individually projected measurement values to derive a
2115
+ physical density matrix for a 25-d qudit, as shown in Fig. 6 of main text.
2116
2117
2118
2119
+ [1] Y. Wang, et al., Efficient quantum memory for single-photon polarization qubits. Nat. Photon. 13, 346–351 (2019).
2120
+ [2] S. Zhang, et al., A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci.
2121
+ Instrum. 83, 073102 (2012).
2122
+ [3] D. G. Grier, A revolution in optical manipulation. Nature 424, 810–816 (2003).
2123
+ [4] N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, A. V. Sergienko, Object identification using correlated orbital
2124
+ angular momentum states. Phys. Rev. Lett. 110, 043601 (2013).
2125
+ [5] D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, G.-C. Guo, Single-photon-level quantum image memory based on cold atomic ensembles.
2126
+ Nat. Commun. 4, 2527 (2013).
2127
+ [6] A. Nicolas, et al., A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014).
2128
+ [7] H. Yan, E. Zhang, B. Zhao, K. Duan, Free-space propagation of guided optical vortices excited in an annular core fiber.
2129
+ Opt. Express 20, 17904–17915 (2012).
2130
+ [8] W. Zhang, et al., Experimental realization of entanglement in multiple degrees of freedom between two quantum memories.
2131
+ Nat. Commun. 7, 1–7 (2016).
2132
+ [9] P. Vaity, L. Rusch, Perfect vortex beam: Fourier transformation of a bessel beam. Opt. Lett. 40, 597–600 (2015).
2133
+ [10] M. Liu, et al., Broadband generation of perfect poincar´e beams via dielectric spin-multiplexed metasurface. Nat. Commun.
2134
+ 12, 1–9 (2021).
2135
+ [11] M. Fleischhauer, A. Imamoglu, J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media. Rev.
2136
+ Mod. Phys. 77, 633 (2005).
2137
+ [12] Y.-F. Hsiao, et al., Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys.
2138
+ Rev. Lett. 120, 183602 (2018).
2139
+ [13] J. Pinnell, V. Rodr´ıguez-Fajardo, A. Forbes, How perfect are perfect vortex beams? Opt. Lett. 44, 5614–5617 (2019).
2140
+ 7
2141
+
7NAzT4oBgHgl3EQfEvqd/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dE2T4oBgHgl3EQflAdd/content/tmp_files/2301.03984v1.pdf.txt ADDED
@@ -0,0 +1,1764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03984v1 [hep-th] 10 Jan 2023
2
+ Probing Pole Skipping through Scalar-Gauss-Bonnet coupling
3
+ Banashree Baishya∗ and Kuntal Nayek†
4
+ Department of Physics,
5
+ Indian Institute of Technology Guwahati,
6
+ Guwahati 781039, India
7
+ (Dated: January 11, 2023)
8
+ The holographic phenomena of pole skipping have been studied in the presence of scalar-Gauss-
9
+ Bonnet interaction in the four-dimensional Anti-de Sitter-Schwarzchild black hole background. Pole
10
+ skipping points are special points in phase space where the bulk linearised differential equations
11
+ have multiple ingoing solutions. Those special points are claimed to be connected to chaos. In this
12
+ paper, we initiated a novel study on understanding the response of those special points under the
13
+ application of external sources. The source is identified with the holographic dual operator of the
14
+ bulk scalar field with its non-normalizable solutions. We analyze in detail the dynamics of pole
15
+ skipping points in both sound and shear channels, considering linear perturbation in bulk. In the
16
+ perturbative regime, characteristic parameters for chaos, namely Lyapunov exponent and butterfly
17
+ velocity, remain unchanged. However, the diffusion coefficient has evolved non-trivially under the
18
+ external source.
19
20
21
+
22
+ 2
23
+ CONTENTS
24
+ 1. Introduction
25
+ 2
26
+ 2. Holographic Gravity Background
27
+ 3
28
+ 3. Scalar field perturbation
29
+ 5
30
+ 4. Metric perturbations
31
+ 7
32
+ 4.1. Shear Channel
33
+ 7
34
+ 4.2. Sound Channel
35
+ 10
36
+ 5. Analysis of chaos
37
+ 12
38
+ 5.1. From vv component of linearised Einstein equation
39
+ 12
40
+ 5.2. From the master equation
41
+ 12
42
+ 6. Discussions
43
+ 13
44
+ A. Coefficient of Master Equation: Shear Channel
45
+ 14
46
+ B. Coefficient of Master Equation: Sound Channel
47
+ 14
48
+ Acknowledgements
49
+ 15
50
+ References
51
+ 15
52
+ 1.
53
+ INTRODUCTION
54
+ Chaos, at the classical level, explains various macroscopic phenomena of hydrodynamics from a microscopic view-
55
+ point. These phenomena are local criticality, zero temperature entropy, diffusion transport, Lyapunov exponent, and
56
+ butterfly velocity. At the quantum level, chaos is similarly essential to studying those phenomena [1–3]. Recently,
57
+ chaos in many body systems has drawn tremendous interest. It can be observed from the energy density two-point
58
+ function. Since the holographic tools have an extensive advantage in studying those two-point functions from gravity
59
+ theory, nowadays, the AdS/CFT correspondence [4, 5] is being used to describe the chaotic behavior in many-body
60
+ quantum system [6–9]. However, using the holographic description, the microscopic behavior of quantum chaos was
61
+ first established in [10]. The two-point energy density function can be described with the four-point out-of-time-
62
+ ordered correlator(OTOC).
63
+ ⟨V (t, ⃗x)W(0)V (t, ⃗x)W(0)⟩β0 ≈ eλL(t−|⃗x|/vB)
64
+ (1.1)
65
+ where λL is the Lyapunov exponent and vB is the butterfly velocity related to chaos. For a chaotic system, the
66
+ two-point energy density function shows non-uniqueness around some special points in momentum space (ω, k).
67
+ Holographically, the OTOC is non-uniquely defined at those points. These points are where the poles and zeros of
68
+ the energy density function overlap. They are marked as the Pole-skipping (PS) points. For example, the boundary
69
+ two-point (Green’s) function is a the ratio of the normalized mode to the non-normalized mode of the bulk field Φ,
70
+ which generally takes the form as GR ∝ Φb(ω,k)
71
+ Φa(ω,k), At the pole-skipping point, Φb(ω∗, k∗) = Φa(ω∗, k∗) = 0 and makes
72
+ the Green’s function ill-defined. The line of poles is defined by Φa(ω∗, k∗) = 0 whereas the line of zeros is given by
73
+ Φb(ω∗, k∗) = 0. Thus the pole-skipping points are some special locations in the ω − k plane. By analyzing the shock
74
+ waves in an eternal black-hole background, chaos parameters are related to OTOC [11]. At the above special points
75
+ (ω∗, k∗) of energy-density two-point function, one can relate the parameters of chaos as,
76
+ ω∗ = iλL,
77
+ k∗ = iλL
78
+ vB
79
+ (1.2)
80
+ where λL and vB are the Lyapunov exponent and butterfly velocity associated with the considered chaotic system.
81
+ However, the behavior of the energy density function is universal for maximally chaotic systems. The microscopic
82
+ dynamics of various hydrodynamic quantities are deeply related to the near-horizon analysis of holographic gravity.
83
+ Indeed, the pole-skipping points can be identified from the in-going bulk field near the horizon. At those special
84
+
85
+ 3
86
+ points, the bulk field leads to the multi-valued Green’s function at the boundary[12]. In simple words, there is no
87
+ unique in-going solution at the horizon for those pole-skipping points. This holographic study has been performed for
88
+ various bulk theories [9, 13–21]. In [12, 22], the pole-skipping points have been found for the BTZ background. They
89
+ have shown the intersection of the lines of poles and zeros and the existence of two regular in-going solutions near the
90
+ horizon. The pole-skipping has been also studied with finite coupling correction [23], with higher curvature correction
91
+ [24] and also in the case of zero temperature [25]. Hydrodynamics transport phenomena have been studied with the
92
+ pole-skipping [26–28]. Similar pole-skipping points have been also evaluated for the fermionic models [22, 29]. In
93
+ the above articles, we have seen the pole-skipping points in the ω − k plane located at Im(ω) are related to chaos.
94
+ However, they follow the chaos bound [30]. We have also seen that these special points describe various hydrodynamic
95
+ mechanisms apart from chaos, e.g., the momentum density two-point function gives shear viscosity, diffusion modes,
96
+ etc.
97
+ Higher curvature corrections and stringy correction to the pole-skipping have been explicitly studied [23, 24]. Due
98
+ to the effect of these corrections, the Lyapunov exponent and butterfly velocity have been modified. In this article,
99
+ we discuss the effect of the higher order Gauss-Bonnet curvature term coupled with a scalar functional ζ(φ) ∼ φp of
100
+ a scalar field φ, where p is an integer. However, the effect of this coupling is considered to be so trivial that no back-
101
+ reaction is included in the bulk solution. In the bulk theory, we take the standard four-dimensional Schwarzchild-Anti
102
+ de-Sitter metric which asymptotically reduces to pure AdS. So, on the boundary, we have a Conformal Field Theory at
103
+ a finite temperature which is maximally chaotic in nature. Therefore without modification (due to back-reaction) the
104
+ chaos profile remains unaffected. In this background, we have studied the pole-skipping points for scalar and metric
105
+ perturbations. We expect the effect of interaction on the pole-skipping points. We show this effect with respect to
106
+ the variation of the source of the scalar field located on the boundary. We plot those effects for different powers p. In
107
+ the sound channel, the flow and decay of energy density are expected to be affected by this interaction. Unlike the
108
+ interaction-free background, we find decay in momentum density in the shear channel at a higher value of p. Here
109
+ we have pointed out the variation of the diffusion coefficient with the scalar source. It also shows consistent behavior
110
+ with the effect of interaction.
111
+ We briefly mention the result of this work as follows. We have noticed the effect of the interaction on the solution
112
+ of the scalar field. To show this, we have plotted the values of the scalar φ at the boundary against its value on the
113
+ boundary, i.e., scalar source Os. The relation between these two quantities has shown non-linearity for higher power
114
+ p of scalar. However, for a low regime of source value, it remains linear. Similarly in the pole-skipping points of the
115
+ scalar field, we find an additional correction term in k due to the interaction. Because of this correction, the imaginary
116
+ value of k decreases. As we are interested in the perturbative regime, we will not allow the scalar source to increase
117
+ much. In all of the plots, we will take the maximum value of the scalar source in O(100). In the shear channel, we
118
+ find a similar effect on k. However, for p > 3, we find imaginary k which implies the exponential decay or growth of
119
+ the corresponding density function. Here we calculate the diffusion coefficient from the lowest point. It shows that
120
+ the rate of diffusion decreases with the increase of scalar source and it is always below 1/4πT for p > 3. On the
121
+ other hand, in the sound channel, we find the effect of interaction for all p > 1 are similar. In this channel, without
122
+ interaction, k4 has pure real (< 0) values. Due to interaction, it encounters an imaginary part which increases with
123
+ the effect of the scalar source. As the real k4 < 0 gives k with equal real and imaginary parts indicating the energy
124
+ transport and decay/growth respectively. With the effect of interaction, the real and imaginary parts of k become
125
+ unequal. Thus one can conclude this is a result of the variation of thermal transport due to interaction.
126
+ We have organized the paper as follows. In section 2, we briefly describe our model, showing Einstein’s equation
127
+ and background metric. We have also talked about the behaviour of the background scalar field and calculated the
128
+ source and condensation values. In section 3, we have studied pole-skipping for scalar field perturbation. The metric
129
+ perturbations – shear and sound modes – have been discussed in section 4. In the following section, we have calculated
130
+ the chaos-related parameters, first, from the perturbed vv component and then from the master equation. Finally,
131
+ we concluded our results with a brief overview of the paper in section 6.
132
+ 2.
133
+ HOLOGRAPHIC GRAVITY BACKGROUND
134
+ Now, in the holographic model, as we want to study pole-skipping at finite temperatures, we need to use a black
135
+ hole solution in bulk. We consider a four-dimensional Anti-de Sitter Schwarzchild black hole. Holographically, the
136
+ boundary theory is three-dimensional gauge theory. The bulk metric asymptotically gives (3 + 1) dimensional AdS
137
+ space. So, the corresponding boundary theory is a finite temperature field theory. Initially, we consider pure black
138
+ hole solution and associated Einstein’s action in the bulk theory as,
139
+ SEH =
140
+
141
+ d4x√−g (κR + Λ)
142
+ (2.1)
143
+
144
+ 4
145
+ where κ = (16πGN)−1 is a constant related to the four-dimensional Newton’s constant with mass dimensions 2 (here
146
+ we set it to unity.). The associated field equation
147
+ Gµν ≡ Rµν − 1
148
+ 2Rgµν = 1
149
+ 2κΛgµν
150
+ (2.2)
151
+ gives the 3 + 1 dimensional AdS-Schwarzchild black hole solution
152
+ ds2 = L2 �
153
+ −r2f(r)dt2 +
154
+ dr2
155
+ r2f(r) + h(r)
156
+
157
+ dx2 + dy2��
158
+ (2.3)
159
+ f(r) = 1 −
160
+ � r0
161
+ r
162
+ �3 ,
163
+ h(r) = r2
164
+ Where L is the AdS radius. In the Einstein action, R is the Ricci scalar of the background (2.3) and Λ is related to the
165
+ cosmological constant in four dimensions. In our case, Λ = 6κ/L2 and r is the radial coordinate of the black hole with
166
+ the horizon radius r0. The horizon radius is related to the temperature T of the black hole as 4πT = r2
167
+ 0f ′(r0) = 3r0,
168
+ where prime denotes derivative w.r.t. r.
169
+ Now in the action (2.1), we have added a perturbative term 1
170
+ 2α′ζ(φ)RGB, where α′ is arbitrary coupling constant
171
+ which is very small (≪ 1) real number. It acts as the perturbation parameter. ζ(φ) is a dimensionless real scalar
172
+ functional of the minimally coupled scalar field φ of mass m. In this present study, we have considered ζ(φ) = Lpφp,
173
+ p ∈ Z+. In this present discussion, we will consider L = 1. The term RGB is the higher-ordered Gauss-Bonnet
174
+ curvature term (in 4d), which is coupled to the scalar φ(r) through ζ. Gauss-Bonnet term can be written as,
175
+ RGB = RµνρσRµνρσ − 4RµνRµν + R2.
176
+ With this scalar-Gauss-Bonnet interaction term, the background action takes the following form as
177
+ S =
178
+
179
+ d4x√−g
180
+
181
+ κR + Λ + α′
182
+ 2 ζ(φ)RGB
183
+
184
+ .
185
+ (2.4)
186
+ For p = 0, pole-skipping has been exclusively studied previously in the five dimensions [24] and it has considered the
187
+ back-reaction of the higher curvature on the background. In our study, we are interested in p ̸= 0 cases and treating
188
+ α′ as a perturbative parameter, our background will remain unaffected by the back-reaction of the scalar field. Now
189
+ taking the variation of the metric tensor in (2.4), we get the Einstein equation as follows
190
+ (κ − 2α′∇ρ∇ρζ(φ))Gµν − 1
191
+ 2gµν
192
+
193
+ Λ + 1
194
+ 2α′ζ(φ)RGB
195
+
196
+ + α′ζ(φ)
197
+
198
+ RRµν − 4RρµRρ
199
+ ν + R ρστ
200
+ µ
201
+ Rνρστ
202
+
203
+ −α′ �
204
+ R∇(µ∇ν)ζ(φ) − 4Rρ(µ∇ν)∇ρζ(φ) + 2
205
+
206
+ gµνRρσ + Rµ(ρσ)ν
207
+
208
+ ∇ρ∇σζ(φ)
209
+
210
+ = 0,
211
+ (2.5)
212
+ where Gµν is the Einstein tensor.
213
+ The aforementioned scalar field φ is a minimally coupled scalar in the black hole background (2.1). In the interaction
214
+ term, the scalar couples with the second-order curvature terms. Taking this curvature coupling into account the Klein-
215
+ Gordon equation of φ becomes,
216
+ 1
217
+ √−g ∂µ
218
+ �√−ggµν∂νφ
219
+
220
+ − m2φ + α′
221
+ 2 RGB
222
+
223
+ ∂φζ(φ) = 0
224
+ (2.6)
225
+ Our aim would be to compute the near horizon in going modes and their properties. Therefore, it is fruitful to perform
226
+ our calculations in the ingoing Eddington-Finkelstein co-ordinate. So, we consider v = t + r∗, where v is the null
227
+ co-ordinate and r∗ is the tortoise co-ordinate. The metric (2.3) transforms into,
228
+ ds2 = −r2f(r)dv2 + 2dvdr + r2 �
229
+ dx2 + dy2�
230
+ .
231
+ (2.7)
232
+ The metric (2.3) is singular at r = r0. In this new coordinate, the apparent singularity is removed. The metric has
233
+ rotational symmetry in the (x, y) plane. In the background (2.7),
234
+ R = −12,
235
+ RGB(r) = 12
236
+
237
+ 2 + r6
238
+ 0
239
+ r6
240
+
241
+ .
242
+ At horizon, RGB(r0) = 36 and at the boundary RGB(r → ∞) ≈ 24. So, in the action (2.4), the scalar-Gauss-Bonnet
243
+ interaction term can be considered as perturbation if α′ ≪ 1 where the scalar is assumed to be constant of O(1) at
244
+ both ends.
245
+
246
+ 5
247
+ In this background, the Klein-Gordon equation turns out to be,
248
+ r2f(r)φ′′(r) +
249
+
250
+ r2f ′(r) + 4rf(r)
251
+
252
+ φ′(r) − m2φ(r) + α′
253
+ 2 RGB
254
+
255
+ ∂φζ(φ) = 0.
256
+ (2.8)
257
+ The asymptotic (r → ∞) behavior of equation (2.8) gives the following
258
+ lim
259
+ r→∞ φ(r) = Osr∆−3 + Ocr−∆.
260
+ (2.9)
261
+ Where, at infinity (where is our boundary), the leading coefficient Os is the source, and the subleading coefficient
262
+ Oc is the condensation of the dual boundary dual operator.
263
+ The scaling dimension of the dual operator ∆ =
264
+ 3/2 +
265
+
266
+ 9/4 + m2. There is a lower bound on the scalar mass called the bound of BF (Breitenlohner and Freedman)
267
+ which states that m2 ≥ −d2/4 for (d + 1) gravitational background. Otherwise, the background solution will be
268
+ unstable. In our case, this bound will be m2 > −9/4. From equation (2.9), we can write,
269
+ lim
270
+ r→∞ rφ′(r) = (∆ − 3)Osr∆−3 − ∆Ocr−∆.
271
+ (2.10)
272
+ Now, we can easily get the source and condensation from equations (2.9) and (2.10) by some algebra as shown in [31]
273
+ as
274
+ Os = lim
275
+ r→∞
276
+ r3−∆ (∆φ(r) + rφ′(r))
277
+ 2∆ − 3
278
+ (2.11)
279
+ Oc = lim
280
+ r→∞
281
+ r∆ ((∆ − 3)φ(r) − rφ′(r))
282
+ 2∆ − 3
283
+ .
284
+ (2.12)
285
+ Since our background is neutral, the scalar field will not form any condensation. Rather, in the next sections, we will
286
+ mainly see the effect of the source in the channels.
287
+ 3.
288
+ SCALAR FIELD PERTURBATION
289
+ In this section, we study the dispersion relation associated with the scalar field φ which is a minimally coupled
290
+ scalar with mass m. This scalar field φ is regular at the horizon and decays in the asymptotic limit. With these
291
+ conditions, the solution of the scalar can be found from the equation (2.8). Now assuming the scalar field is a function
292
+ of the radial coordinate r only, i.e., ζ(φ) = φ(r)p. We take the near-horizon expansion of the field as
293
+ φ(r) =
294
+
295
+
296
+ n=0
297
+ φ(n)(r0) × (r − r0)n = φ(r0) + φ′(r0)(r − r0) + φ′′(r0)(r − r0)2 + · · ·
298
+ where, φ(n) ≡ dnφ(r)
299
+ drn |r=r0. From these series, the first three derivatives of φ at r = r0 can be found as,
300
+ φ′ (r0) = m2φ (r0) − 18α′pφ (r0)p−1
301
+ 3r0
302
+ φ′′ (r0) = −18α′p
303
+
304
+ pm2 − 12
305
+
306
+ φ (r0)p−1 + m2 �
307
+ m2 − 6
308
+
309
+ φ (r0)
310
+ 18r2
311
+ 0
312
+ φ′′′ (r0) =
313
+ 1
314
+ 162r3
315
+ 0
316
+
317
+ −18α′p
318
+
319
+ (2(p − 2)p + 3)m4 + 6(3 − 7p)m2 + 432
320
+
321
+ φ (r0)p−1
322
+ +m2 �
323
+ (m2 − 6)(m2 − 9) − 3(m2 − 18)
324
+
325
+ φ (r0)
326
+
327
+ Similarly, we can also find the higher order derivatives in terms of φ(r0). We can solve the scalar field from (2.8)
328
+ numerically by providing some horizon value to the scalar field. From this solution, we can evaluate Os and Oc
329
+ as shown in (2.11). For the near horizon study, the regularity condition of the scalar field on the horizon is very
330
+ important. So, for numerical evaluation of the source Os or to get a consistent solution of φ(r); φ(r0) should be finite
331
+ and small enough so that the near-horizon expansion remains convergent. From the plot of φ(r0) vs Os, we can say
332
+ that at lower values of source Os, the relation between these two quantities is almost linear. But at higher values it
333
+ becomes non-linear and the degree of non-linearity strongly depends on the power (p) of the interaction. Due to this
334
+ fact, in this present work, we will confine our all numerical calculations to the low-value regime of the Os or φ(r0).
335
+
336
+ 6
337
+ 0
338
+ 1
339
+ 2
340
+ 3
341
+ 4
342
+ 5
343
+ -1
344
+ 0
345
+ 1
346
+ 2
347
+ 3
348
+ 4
349
+ 5
350
+ 6
351
+ s
352
+ ϕ[r0]
353
+ Figure 1. Left: The plot of Os vs φ(r0) for p = 2 (green color), p = 3 (red color), p = 4 (blue color) and p = 5 (magenta color).
354
+ Here we have taken scalar mass m2 = −2, α′ = 0.001, and r0 = 1.
355
+ ▲▲
356
+
357
+
358
+ ▲▲
359
+
360
+
361
+
362
+
363
+ ▲▲
364
+ -4
365
+ -2
366
+ 0
367
+ 2
368
+ 4
369
+ -3.5
370
+ -3.0
371
+ -2.5
372
+ -2.0
373
+ -1.5
374
+ -1.0
375
+ -0.5
376
+ 0.0
377
+ Im[k]
378
+ Im[ω]
379
+ 2 π T
380
+ 0.0
381
+ 0.2
382
+ 0.4
383
+ 0.6
384
+ 0.8
385
+ 1.0
386
+ 1.2
387
+ -1.5
388
+ -1.0
389
+ -0.5
390
+ 0.0
391
+ 0.5
392
+ 1.0
393
+ s
394
+ k1
395
+ 2
396
+ Figure 2. Left: The plot of
397
+ Im[ω]
398
+ 2πT
399
+ vs Im [k] at α′ = 0.01 for p = 1 (orange circle), p = 2 (green rectangle) and p = 3 (red
400
+ triangle). Right: The plot of k2
401
+ 1 vs Os for p = 2 (green dot-dashed line), p = 3 (red dashed line) and p = 4 (blue dotted line).
402
+ Here we have taken scalar mass m2 = −2, α′ = 0.01 and r0 = 1.
403
+ Now to study the dispersion relation of the scalar field, we take the perturbation φ(r) → φ(r)+ e−iωv+ikxϕ(r). The
404
+ linearized equation from (2.8) is
405
+ r2f(r)ϕ′′(r)+
406
+
407
+ r2f ′(r) + 4rf(r) − 2iω
408
+
409
+ ϕ′(r)+
410
+
411
+ 6α′(p − 1)p
412
+
413
+ f(r)2 − 2f(r) + 3
414
+
415
+ φ(r)p−2 − k2 + m2r2 + 2irω
416
+ r2
417
+
418
+ ϕ(r) = 0
419
+ (3.1)
420
+ Expanding the solution near the horizon r = r0 and using the matrix method as given in [22], we get the pole skipping
421
+ points (ω, k). We find the lowest order point is ω1 = − 3
422
+ 2ir0 = −2iπT and
423
+ k2
424
+ 1 + r2
425
+ 0
426
+
427
+ m2 − 18α′p(p − 1)φ (r0)p−2 + 3
428
+
429
+ = 0
430
+ Without any perturbation (α′ = 0), we get the results for pure Schwarzchild black hole k2
431
+ 1 = −(3 + m2)r2
432
+ 0, i.e., k1 is
433
+ completely imaginary. But, due to the effect of the interaction, k1 can be real after a particular value of Os. Similar
434
+ behaviour is also found for the higher-order pole-skipping points. Though we keep α′ small enough in the perturbative
435
+ regime, k2
436
+ 1 becomes positive as the scalar source increases. So k becomes real. From the equation of the perturbed
437
+ scalar (3.1), it is clear to predict that for p = 0 and 1, there is no effect on (ω, k), i.e., we get the values of the black
438
+ hole background without any perturbation. For p ≥ 2, p effects k1 in similar way as α′ does. For the small enough
439
+ Os, we have found k in the imaginary plane which has been plotted in the left panel of Figure 2. Here we have plotted
440
+ first three poles (ω, k) in the complex plane for p = 1, 2 & 3. For p = 1 & 2, we have found 2n-number of points for
441
+ kn, i.e., n number of complex roots for kn. However, for p = 3, we have found one real and n − 1 complex root of
442
+ each kn. Because of these real roots, we have three points on the Im(k) axis. For p = 2, the interaction imposes a
443
+ constant shift in k. But for p ≥ 3 the shift due to the interaction is proportional to the source. So, as the source
444
+ goes to zero, kn becomes the same as the pure AdS black hole. These have been shown in the right panel of the same
445
+ figure. Here, we have presented the variation of k2
446
+ 1 with the scalar source Os for p = 2, 3 & 4. It is found that k1
447
+
448
+ 7
449
+ becomes real-valued above a certain value of Os. Now, if we allow only the imaginary values of k1, we need to put a
450
+ cutoff on Os. The same behaviour can be found for the higher order k. However as we go to higher order in poles or
451
+ in interaction, we need to impose a smaller cutoff on the source value to get the pure imaginary root of k.
452
+ 4.
453
+ METRIC PERTURBATIONS
454
+ In the pole-skipping phenomena, we study the properties of the stress-energy tensor of the boundary field theory.
455
+ Now with AdS/CFT duality, the bulk fields are mapped to boundary operators. Therefore, the boundary stress-energy
456
+ tensors are associated with the metric perturbation of the bulk. In our bulk, we consider the metric perturbation
457
+ gµν → gµν + e−iωv+ikxδgµν(r),
458
+ (4.1)
459
+ where ω and k are energy and momentum parameters of the fluctuation and the fluctuation propagates radially. So,
460
+ in the boundary field theory, we have the two points correlators which are < Tvv, Tvv >, < Tvv, Tvx >, < Tvv, Txx >,
461
+ < Tvv, Tyy > in longitudinal mode and < Tvy, Tvy >, < Tvy, Txy >, < Txy, Txy > in a transverse mode where Tµν is the
462
+ stress-energy tensor on the boundary. The metric perturbation: δgvv, δgvx, δgxx, δgyy and δgvy, δgxy are associated
463
+ to the above two modes respectively. We impose the radial gauge condition δgrµ = 0 for all µ. We also use the
464
+ traceless perturbation for simplicity, i.e., gµνδgµν = 0 which gives δgyy = −δgxx. However the longitudinal modes
465
+ are actually the scalar modes, it does not couple with a minimally coupled scalar. Therefore we can perturb only
466
+ gµν without effecting φ. Finally, we have three independent perturbations in longitudinal mode and two in transverse
467
+ mode.
468
+ 4.1.
469
+ Shear Channel
470
+ As the momentum vector (ω, k) of the metric fluctuation is taken along (v, x)-plane, for shear mode, we consider
471
+ the components coupled to y-direction. Here we take gxy and gvy as the only non-vanishing perturbations and these
472
+ are completely decoupled from the longitudinal perturbations. These are associated with Tvy, Txy on the boundary.
473
+ The linearised Einstein equations will give the dynamics of these fluctuations. At some special values of (ω, k), the
474
+ solution of those equations near the horizon becomes non-unique and gives more than one independent solution. Those
475
+ special points (ω, k) in this holographic gravity background are connected to the coincidence of poles and zeros of the
476
+ boundary Greens function, Gµy,νy where µ, ν = v, x.
477
+ Now we put these perturbations in the metric (2.7) and find the linearised form of the field equation (2.5) with
478
+ only non-vanishing perturbations gxy and gvy. We find that vy, ry and xy components of the linearised equations
479
+ are only non-trivial, whereas other equations are self-satisfied. Out of these three equations, we find two coupled
480
+ second-order differential equations as δg′′
481
+ vy(r) = f1
482
+
483
+ δg′
484
+ vy, δgvy, δgxy
485
+
486
+ and δg′′
487
+ xy(r) = f2
488
+
489
+ δg′
490
+ vy, δgvy, δgxy
491
+
492
+ .
493
+ Again,
494
+ under diffeomorphism transformation with the vector field e−iωv+ikxξµ, one can show that δgvy and δgxy will form a
495
+ gauge invariant combination Zsh as,
496
+ Zsh = 1
497
+ r2 (ωδgxy + kδgvy) .
498
+ So, two second-order differential equations (DE) of δgvy and δgxy combine into a single second-order DE of Zsh. The
499
+ final master equation is
500
+ MshZ′′
501
+ sh(r) + PshZ′
502
+ sh(r) + QshZsh(r) = 0.
503
+ (4.2)
504
+ Where, the coefficients Msh, Psh and Qsh are functions of ω, k and φ(r). The details expressions are given in Appendix
505
+ A. There we have considered the coefficients up to α′ order. As α′ = 0 the master equation reduces to the same as
506
+ the pure AdS black hole. The near horizon structure of the master variable is taken as follows.
507
+ Zsh =
508
+
509
+ n=0
510
+ Zn × (r − r0)n.
511
+ Now we expand the master equation (4.2) around r = r0. At zeroth order O((r − r0)0), it gives the linear algebraic
512
+ equation of Z0 and Z1. The coefficients of Z0 and Z1 are functions of two primary variables ω and k. So, at a
513
+ particular point, ω = ω1 the vanishing of the coefficient of Z1 indicates that Z1 is arbitrary. Again at the same ω
514
+ value, we find a special value of k = k1 where the coefficient of Z0 vanishes. Therefore at the point (ω1, k1) the
515
+ near horizon solution of Zsh is defined with two arbitrary parameter Z0, Z1 and the solution is combination of two
516
+
517
+ 8
518
+ 0.0
519
+ 0.5
520
+ 1.0
521
+ 1.5
522
+ 2.0
523
+ 2.5
524
+ 0.85
525
+ 0.90
526
+ 0.95
527
+ 1.00
528
+ 1.05
529
+ 1.10
530
+ 1.15
531
+ s
532
+ k12
533
+ 3 r02
534
+ 0.0
535
+ 0.5
536
+ 1.0
537
+ 1.5
538
+ 2.0
539
+ 2.5
540
+ 0.0
541
+ 0.2
542
+ 0.4
543
+ 0.6
544
+ 0.8
545
+ 1.0
546
+ 1.2
547
+ s
548
+ kn
549
+ 2
550
+ 3 √n r0
551
+ 2
552
+ Figure 3. Left: The plot of
553
+ k2
554
+ 1
555
+ 3r2
556
+ 0 vs Os where p = 2 (green color), p = 3 (magenta color), p = 4 (blue color), and p = 5 (red
557
+ color). Right: The plot of
558
+ k2
559
+ n
560
+ 3√nr2
561
+ 0 vs Os for n = 1 (green color), n = 2 (blue color), n = 3 (magenta color) and for two different
562
+ powers p = 2 (solid line) and p = 5 (dashed line). Here we have taken α′ = 0.001 and m2 = −2.0.
563
+ arbitrary solutions C1(r − r0)Z0 + C2(r − r0)Z1. So we find a non-unique solution at the point (ω1, k1) – which is the
564
+ first order pole-skipping point. Here we find ω1 = − 3
565
+ 2ir0 and
566
+ k2
567
+ 1 = 3r2
568
+ 0
569
+
570
+ 1 − 3α′φ(r0)p ξ(2ξ2 − ξ − 17)
571
+ 2ξ + 1
572
+
573
+ (4.3)
574
+ where, ξ = mp2/3 We find ω1 same as the previous result [8] for AdS4 black hole. But k1 contains a non-trivial shift
575
+ due to the interaction. At α′ = 0, it gives the same k2
576
+ 1 as given in [8]. With nonzero α′, the shift in momentum
577
+ depends on the details properties of the scalar field and its interaction namely, power p of the interacting field φ, the
578
+ value of the field at horizon φ(r0) and mass of it m. Now the scalar mass m can not be zero to get the nonzero shift.
579
+ Also, we need to maintain the value of α′ in such a way that the shift remains small enough, i.e., the absolute value of
580
+ the correction term inside the square bracket in (4.3) is always less than unity. Next few higher-order pole-skipping
581
+ points are ωn = − 3
582
+ 2inr0 for n = 2, 3, . . . and
583
+ k2
584
+ 2 = 3
585
+
586
+ 2r2
587
+ 0
588
+
589
+ 1 −
590
+ 3α′ξφ(r0)p
591
+ 4(2ξ + 1 −
592
+
593
+ 2)2
594
+
595
+ 12ξ4 + 4(21 −
596
+
597
+ 2)ξ3 + (209 − 74
598
+
599
+ 2)ξ2 + (134 − 238
600
+
601
+ 2)ξ + 136 + 20
602
+
603
+ 2)
604
+ ��
605
+ (4.4)
606
+ k2
607
+ 3 = 3
608
+
609
+ 3r2
610
+ 0
611
+
612
+ 1 +
613
+ ξ(5 −
614
+
615
+ 3)
616
+ 66(6ξ − 3 + 2
617
+
618
+ 3)3
619
+
620
+ −3888ξ6 + 54432ξ5 − (32400 − 21528
621
+
622
+ 3)ξ4 + (976140 − 224964
623
+
624
+ 3)ξ3
625
+ −(1108017 − 786374
626
+
627
+ 3)ξ2 + (1134059 − 427507
628
+
629
+ 3)ξ + 295381
630
+
631
+ 3 − 222201
632
+ ��
633
+ (4.5)
634
+ and so on. In all of these k values, the absolute value of the perturbative correction increases with φ(r0) or the source
635
+ Os but the sign of the term is solely decided by the factor pm2. We find that k2
636
+ n can be both greater or less than
637
+ 3√nr2
638
+ 0 depending on the value of pm2. For example k2
639
+ 1 > 3r2
640
+ 0 for 3
641
+ 4
642
+
643
+ 1 −
644
+
645
+ 137
646
+
647
+ ≤ m2p < − 3
648
+ 2 and − 9
649
+ 4 ≤ m2 ≤ − 5
650
+ 4.
651
+ However, for other higher mode points k2
652
+ n is always less than 3√nr2
653
+ 0. It puts no further restriction on scalar mass.
654
+ In Figure 3, we have plotted
655
+ k2
656
+ 1
657
+ 3r2
658
+ 0 . The ratio has been varied with the scalar source Os for four different order of
659
+ interaction p = 2, 3, 4 & 5 with perturbation parameter α′ = 0.001 and scalar mass m2 = −2. Fig.3 depicts that
660
+ while the source is off the ratio is equal to unity. As the source increases from zero, the ratio deviates from unity
661
+ and increases or decreases according to the power of the Scalar-Gauss-Bonnet interaction term p. At the given mass
662
+ value, for 0 < p ≤ 4, the ratio increases with source, and for p ≥ 5 the ratio decreases from unity. The same has
663
+ been depicted in the left panel of the figure. Whereas on the right panel of the same figure, k2
664
+ 1/(3r2
665
+ 0), k2
666
+ 2/(3
667
+
668
+ 2r2
669
+ 0)
670
+ and k2
671
+ 3/(3
672
+
673
+ 3r2
674
+ 0) have been varied with the scalar source for p = 2 and p = 5. k2
675
+ 1/(3r2
676
+ 0) increases with source Os for
677
+ p = 2 and decreases for p = 5 which is consistent with analytical observations as discussed above. On the other hand,
678
+ k2
679
+ 2/(3
680
+
681
+ 2r2
682
+ 0) and k2
683
+ 3/(3
684
+
685
+ 3r2
686
+ 0) decrease with source for both p = 2 & 5.
687
+ It has already been observed that for pure Schwarzchild-AdS4 background, the first order pole-skipping point
688
+ obeying the dispersion relation ω = −iDsk2 emerges from the boundary Greens function [8].
689
+ However, the first
690
+
691
+ 9
692
+
693
+
694
+
695
+
696
+
697
+
698
+
699
+
700
+
701
+
702
+
703
+
704
+ -3
705
+ -2
706
+ -1
707
+ 0
708
+ 1
709
+ 2
710
+ 3
711
+ -3.0
712
+ -2.5
713
+ -2.0
714
+ -1.5
715
+ -1.0
716
+ -0.5
717
+ 0.0
718
+ k
719
+ Im[
720
+ ω
721
+ 2 π T
722
+ ]
723
+ 0.0
724
+ 0.5
725
+ 1.0
726
+ 1.5
727
+ 2.0
728
+ 2.5
729
+ 1.35
730
+ 1.40
731
+ 1.45
732
+ 1.50
733
+ 1.55
734
+ 1.60
735
+ s
736
+ 4π×sT
737
+ Diffusion Coefficient vs Scalar Source
738
+ Figure 4. Left: The plot of PS points in ω − k plane for α′ = 0 (blue color) and α′ = 0.001 (red color), φ(r0) = 1.1, p = 3 and
739
+ m2 = −2. Three different shapes have been used for three different modes. The solid curve (gray color) is ω = −ik2
740
+ 4πT . Right:
741
+ Plot of 4πDsT vs Os for p = 2 (red line), p = 3 (blue line) and p = 4 (green line), m2 = −2.0 and α′ = 0.001.
742
+ pole-skipping point gives an upper bound on the diffusion constant. The diffusion constant is related to the first order
743
+ pole-skipping as Ds = iω1
744
+ k2
745
+ 1 . Here, in our case, we find the diffusion constant Ds as
746
+ Ds = iω1
747
+ k2
748
+ 1
749
+ =
750
+ 1
751
+ 2r0
752
+
753
+ 1 + 3α′φ(r0)p ξ(2ξ2 − ξ − 17)
754
+ 2ξ + 1
755
+
756
+ (4.6)
757
+ For d + 2 dimensional pure AdS-Schwarzchild black hole, the diffusion constant is bounded as 1 ≤ 4πDsT ≤ d+1
758
+ d
759
+ 1. If
760
+ the scalar field follows the BF bound and unitarity condition, the scalar mass follows the bound −2.25 < m2 < −1.25.
761
+ DsT in (4.6) can be found in 1 ≤ 4πDsT ≤ 3
762
+ 2 for all p ≤ 6 for the mass ranges given in Table I. In the allowed mass
763
+ range, the diffusion constant violates the bounds for p ≥ 7. In Figure 4, the left panel have shown the plot of the
764
+ pole-skipping points in the ω −k plane. Here we have plotted the standard dispersion relation of the boundary theory
765
+ in a low-frequency regime, ω(k) = −iDsk2 where Ds =
766
+ 1
767
+ 4πT given in [8]. When α′ = 0 or the perturbative correction
768
+ is very small, the first pole-skipping point falls on the dispersion curve. As the e��ect of interaction increases the
769
+ first pole-skipping point skips the dispersion curve. However, the other pole-skipping points always stay away from
770
+ the dispersion curve. At the right panel of Figure 4, we have plotted the diffusion constant obtained in (4.6). Here
771
+ the 4πDsT have been varied with the scalar source for three different p values. As the source is zero the diffusion
772
+ constants for all 2 ≤ p ≤ 6 become equal to the upper bound
773
+ 3
774
+ 8πT . In the plot, as the source increases from zero, the
775
+ diffusion constants start falling from the highest bound. For the coupling function ζ(φ) ∼ φ2 and φ3, the diffusion
776
+ constant decreases monotonically. At a particular value of the source, 4πDsT has become equal to unity, and for
777
+ further increase of source value, it has fallen below its lower bound. However, for p = 4, the diffusion constant is found
778
+ to remain very close to its upper bound for a comparatively long range of Os. After that, it started decreasing very
779
+ rapidly and reached below 1. At these higher values of the source, the diffusion constant for p = 4 has two different
780
+ values for a single value of scalar source Os. It seems unusual. So we should control the source not to exceed ∼ 3.
781
+ Again though we know that the diffusion constant should not violate its lower bound, our results are not unphysical.
782
+ Table I. The mass range associated to p to follow the allowed bound of the diffusion coefficient
783
+ Interaction order p (φp)
784
+ mass range
785
+ p = 1
786
+ −2.25 < m2 < −1.5
787
+ p = 2
788
+ −2.25 < m2 < −1.25
789
+ p = 3
790
+ −2.25 < m2 < −1.25
791
+ p = 4
792
+ −2.007 < m2 < −1.25
793
+ p = 5
794
+ −1.605 < m2 < −1.25
795
+ p = 6
796
+ −1.338 < m2 < −1.25
797
+ 1 For pure Schwarzchild-AdSd+2, the shear mode diffusion rate is
798
+ 1
799
+ 4πT , where T = d+1
800
+ 4π r0 and r0 is the horizon [32]. So DsT is independent
801
+ of the dimensions of the black hole. The first order pole-skipping point of the shear mode is dimension dependent, ω = − d+1
802
+ 2 ir0 and
803
+ k2
804
+ 1 = d(d+1)
805
+ 2
806
+ r2
807
+ 0. Therefore iω1
808
+ k2
809
+ 1 =
810
+ 1
811
+ d r0 = d+1
812
+ d
813
+ 1
814
+ 4πT
815
+
816
+ 10
817
+ Since our whole calculation is assumed to be in a perturbative regime, we are free to choose any tiny value of α′
818
+ and any small range of the scalar source for the numerical evaluation. Thus the better estimation in our case always
819
+ makes 1 ≪ 4πDsT ≤ 3
820
+ 2 for 1 < p ≤ 6.
821
+ 4.2.
822
+ Sound Channel
823
+ The longitudinal components of the metric perturbation are called the scalar or sound modes of the perturbation.
824
+ These are associated with the energy density correlation on the boundary. The corresponding stress-energy tensor in
825
+ this mode are Tvv, Tvx, Txx and Tyy on the boundary field theory. These make the two points correlation functions
826
+ Gvv,vv, Gvv,vx, Gvv,xx and Gvv,yy which are induced by the metric perturbations. In holographic gravity theory the
827
+ required perturbations are δgvv, δgvx and δgxx with the trace-less perturbation, i.e., δgyy = −δgxx. Like the shear
828
+ mode, the metric perturbations also combine into a diffeomorphism invariant master variable Zso.
829
+ Zso = 1
830
+ r2
831
+
832
+ k2δgvv + 2ωkδgvx − k2
833
+ 2
834
+
835
+ 2f ′(r) + rf(r) − 4ω2
836
+ k2
837
+
838
+ δgxx
839
+
840
+ (4.7)
841
+ The second-order differential equations of δgvv(r), δgvx(r) and δgxx(r) are combined into the master equation.
842
+ MsoZ′′
843
+ so(r) + PsoZ′
844
+ so(r) + QsoZso(r) = 0
845
+ (4.8)
846
+ The coefficients of (4.8) are linear in α′ which are given in appendix B. At α′ = 0, the master equation reduces to the
847
+ same for the pure Schwarzchild-AdS4 background. Considering the near horizon structure of Zso similar to Zsh, we
848
+ find the pole-skipping points for various orders.
849
+ Here we find two types of pole-skipping points from this master equation (4.8).
850
+ The denominator of all the
851
+ coefficients of the equation contains a common term 3k2 − 4ω2 + k2f(r). At the near horizon regime, it introduces
852
+ a pole at 3k2 − 4ω2 = 0. Now if we consider 3k2 ̸= 4ω2 we get only ωn = − 3
853
+ 2inr0 for n = 1, 2 · · · at the lower-half
854
+ plane of complex ω. But when we impose the condition 3k2 = 4ω2, we can also find ω in the upper-half plane of ω,
855
+ ωn = 3
856
+ 2inr0. It will be discussed later. Now we focus on the unequal condition.
857
+ For 3k2 ̸= 4ω2, the first order pole-skipping point is found at ωn = − 3
858
+ 2nir0 = −2πnT and first few k4
859
+ n are given as
860
+ k4
861
+ 1 + 9r4
862
+ 0 − α′(3 + 3i)m2p r4
863
+ 0
864
+
865
+ m2p + (6 + 6i)
866
+
867
+ φ (r0)p = 0
868
+ (4.9)
869
+ k4
870
+ 2 + 18r4
871
+ 0 + α′ 3m2p r4
872
+ 0
873
+
874
+ m2p
875
+ ��
876
+ 5
877
+
878
+ 2 − 2i
879
+
880
+ m2p + 40i − 64
881
+
882
+ 2
883
+
884
+ + 126
885
+
886
+ 3
887
+
888
+ 2 − 4i
889
+ ��
890
+ φ (r0)p
891
+ 5
892
+
893
+ 2 − 2i
894
+ = 0
895
+ (4.10)
896
+ k4
897
+ 3 + 27r4
898
+ 0 − α′ 2m2p r4
899
+ 0φ (r0)p
900
+ 91
901
+
902
+ 3 + 63i
903
+ ��
904
+ 37
905
+
906
+ 3 + 3i
907
+
908
+ m6p3 − 21
909
+
910
+ 61
911
+
912
+ 3 + 11i
913
+
914
+ m4p2 + 63
915
+
916
+ 306
917
+
918
+ 3 + 31i
919
+
920
+ m2p
921
+ −27
922
+
923
+ 5369
924
+
925
+ 3 + 69i
926
+ ��
927
+ = 0
928
+ (4.11)
929
+ Higher order k can also be found in the same way. At α′ = 0, we get the Schwarzchild-AdS4 values k4
930
+ 1 = −9r4
931
+ 0, k4
932
+ 2 =
933
+ −18r4
934
+ 0, k4
935
+ 3 = −27r4
936
+ 0 and so on. In (4.9), the imaginary part 3α′ �
937
+ 12 + pm2�
938
+ m2pr4
939
+ 0φ(r0)p is zero for m2 = − 12
940
+ p which
941
+ is beyond the BF bound − 9
942
+ 4 < m2 for p ≤ 4. But for p ≥ 5 we can make k4
943
+ 1 real at the above value of m2. A similar
944
+ behaviour is also expected from the higher order k. Here we have compared the position of pole skipping points of
945
+ φ2 interaction with the absence of interaction (α′ = 0) in Figure 5. The real and imaginary parts of k have been
946
+ separately plotted against ω/2iπT . In both cases, the real and imaginary parts are almost equal to each other in each
947
+ mode. For each part, the values have mirror symmetry with respect to the Re[k] = Im[k] = 0 axes. The shift due
948
+ to interaction is very hard to identify in k1. For k2 and k3 on the other hand, one observes a measurable amount of
949
+ shift. It has been depicted in above Figure 5. Without interaction, in each of these three modes, four real numbers
950
+ make four k. With interaction, the same happened for k1. But for k2 and k3 eight real numbers makes four complex
951
+ values of k.
952
+ Again we have numerically shown the variation of k with the source Os of the scalar in Figure 6. At the left plot of
953
+ this figure, we have plotted the real and imaginary parts of k4/(9r4
954
+ 0) against the scalar source. Here we have evaluated
955
+ the ratio of our result with the result of pure AdS-Schwarzchild. This ratio has no explicit r0 dependent. It depends
956
+ on scalar mass, interaction order, and scalar value on the horizon. For α′ = 0.001, m2 = −2, and for different p the
957
+ ratio has been evaluated. When the source is off, the imaginary part of the mentioned ratio is zero, whereas the real
958
+ part is −1. Which is consistent with the case without interaction. The imaginary part in k4 is contributed only from
959
+ the interaction. As we have seen at the small value source is linearly proportional to φ(r0), so, φ(r0) also goes to
960
+ zero as the source becomes zero and thus vanishes the correction term in (4.9). For p = 2, 3, 4 & 5 we have found the
961
+
962
+ 11
963
+ -4
964
+ -2
965
+ 0
966
+ 2
967
+ 4
968
+ -3.0
969
+ -2.5
970
+ -2.0
971
+ -1.5
972
+ -1.0
973
+ -0.5
974
+ 0.0
975
+ Re[k]
976
+ Im[
977
+ ω
978
+ 2 π T
979
+ ]
980
+ -4
981
+ -2
982
+ 0
983
+ 2
984
+ 4
985
+ -3.0
986
+ -2.5
987
+ -2.0
988
+ -1.5
989
+ -1.0
990
+ -0.5
991
+ 0.0
992
+ Im[k]
993
+ Im[
994
+ ω
995
+ 2 π T
996
+ ]
997
+ Figure 5. The plot of real part (right panel) and imaginary part (left panel) of k vs
998
+ ω
999
+ 2πT for p = 2, m2 = −2, α′ = 0 (solid
1000
+ rectangle) and α′ = 0.01 (open circle).
1001
+ 0
1002
+ 1
1003
+ 2
1004
+ 3
1005
+ 4
1006
+ 5
1007
+ -1.5
1008
+ -1.0
1009
+ -0.5
1010
+ 0.0
1011
+ 0.5
1012
+ Os
1013
+ k14
1014
+ 9 r04
1015
+ 0.0
1016
+ 0.5
1017
+ 1.0
1018
+ 1.5
1019
+ 2.0
1020
+ 2.5
1021
+ -1.5
1022
+ -1.0
1023
+ -0.5
1024
+ 0.0
1025
+ 0.5
1026
+ Os
1027
+ kn4
1028
+ 9 n r04
1029
+ Figure 6. Left: The plot of real (solid line) and imaginary (dashed line) parts of
1030
+ k4
1031
+ 1
1032
+ 9r4
1033
+ 0 vs Os for different order η. For α′ = 0.001,
1034
+ m2 = −2, p = 2 (green color), p = 3 (red color), p = 4 (blue color) and p = 5 (magenta color). Right: The plot of real (solid
1035
+ line) and imaginary (dashed line) parts of
1036
+ k4
1037
+ n
1038
+ 9nr4
1039
+ 0 vs Os for different pole-skipping points. For α′ = 0.001, m2 = −2, p = 3, n = 1
1040
+ (magenta color), n = 2 (blue color) and n = 3 (red color).
1041
+ same behaviour as Os → 0. Now if the source is turned on and increased gradually, as long as the source is small
1042
+ enough, both the imaginary and real parts change slowly. However, as p increases the rate of change also increases.
1043
+ The reason is clear from the presence of φ(r0)p factor in the correction terms. During this change the imaginary part
1044
+ of the ratio k4
1045
+ 1/9r4
1046
+ 0 shifts from 0 towards −1 and the real part changes in the exact opposite direction. Therefore
1047
+ the absolute value of the real (imaginary) part decreases (increases). Thus at some point on Os, real and imaginary
1048
+ lines cross each other where their value is exactly equal and lie in between 0 and 1. Again after a certain amount of
1049
+ increase in the source, the real part crosses the horizontal axis. At that value Os, k4
1050
+ 1 becomes a completely imaginary
1051
+ number. These two cross-over points highly depend on p, in the given plot, the p = 3 plot has made the first cross-over
1052
+ whereas the p = 1 plot has made the last cross-over. As the source value increases further the real (imaginary) values
1053
+ become more and more positive (negative). Since we are interested in the perturbative effect, we will not consider
1054
+ those high values of k4
1055
+ 1. At the right panel of the same figure, we have plotted the ratio k4
1056
+ n/(9nr4
1057
+ 0) where n = 1, 2 & 3.
1058
+ Here interaction order is fixed at φ3. We have noticed that the behaviour of the real and imaginary parts of the
1059
+ ratio is almost identical to the left panel. We have found the two cross-overs for each of the three modes of k. At
1060
+ these cross-over points, the behaviour of k2
1061
+ n is completely identical to before. For the lowest order pole-skipping, k1,
1062
+ the cross-over happened at the highest Os value, and the cross-over points come closer to Os = 0 as the order of
1063
+ pole-skipping increases. Therefore the order of interaction and the order of the pole-skipping affect k in the same
1064
+ way. Mainly the location of the cross-over points is almost identically affected by these two parameters. However, the
1065
+ cross-over points can be found analytically from (4.9)-(4.11). For example, the real and imaginary parts of k4
1066
+ 1 are
1067
+ Re[k4
1068
+ 1] = −9r4
1069
+ 0
1070
+
1071
+ 1 − 1
1072
+ 3α′p2m4φ(r0)p
1073
+
1074
+ Im[k4
1075
+ 1] = 3α′pm2r4
1076
+ 0
1077
+
1078
+ 12 + pm2�
1079
+ φ(r0)p
1080
+
1081
+ 12
1082
+ The first cross-over happens at the value of Os corresponding to φ(r0) =
1083
+
1084
+ −4α′m2p
1085
+ �−1/p where the real and imaginary
1086
+ part of k4
1087
+ 1 are equal to each other. The (second) cross-over on the Os axis occurs for φ(r0) =
1088
+
1089
+ 3
1090
+ α′p2m4
1091
+ �1/p
1092
+ . Here k4
1093
+ 1
1094
+ is completely imaginary 9ir4
1095
+ 0
1096
+
1097
+ 12
1098
+ m2p + 1
1099
+
1100
+ . The first cross-over occurs only if m2 < 0. For a moment if we assume that
1101
+ m2 > 0, then there is only the second cross-over where the k4
1102
+ 1 becomes completely imaginary.
1103
+ 5.
1104
+ ANALYSIS OF CHAOS
1105
+ 5.1.
1106
+ From vv component of linearised Einstein equation
1107
+ From the shock wave analysis, it is found that the exponential factor of OTOC can be directly observed from
1108
+ the δE00 component of the linearized Einstein equation in the in-going Eddington-Finkelstein co-ordinate. In the
1109
+ discussed background (2.7), the information about OTOC can be obtained from the vv component of the equation
1110
+ (2.5). Considering the metric perturbation coupled with the vv component of the metric (which are actually the
1111
+ perturbations associated with the sound mode) one can write the δEvv at r = r0 as follows.
1112
+ δgvv(r0)
1113
+
1114
+ k2 − 2ir0ω
1115
+
1116
+ + kδgvx(r0) (2ω − 3ir0) = 0
1117
+ (5.1)
1118
+ Since it is well-known that at the special points (ω∗, k∗), we have no constraint on the perturbed metric components
1119
+ at r = r0 [7]. Therefore in the above equation the coefficients of δgvv(r0) and δgvx(r0) have to zero. Thus we have
1120
+ ω∗ = 3ir0
1121
+ 2
1122
+ = 2πiT,
1123
+ k2
1124
+ ∗ = −3r2
1125
+ 0
1126
+ (5.2)
1127
+ This (ω∗, k∗) is the zeroth order pole-skipping point which is connected to the Lyapunov exponent and butterfly
1128
+ velocity as shown in (1.2). In our model, we get, λL = 2πT and vB =
1129
+
1130
+ 3
1131
+ 2 , which is the exact result[8] as in the case
1132
+ of background where the coupling term is not present in the action.
1133
+ 5.2.
1134
+ From the master equation
1135
+ In the last section, where we have discussed the pole-skipping of the sound mode perturbation, we took the condition
1136
+ that 3k2 ̸= 4ω2. Because we have seen at the horizon the differential equation (4.8) encounters a singularity. Here
1137
+ we will discuss that issue. From past works [8, 24], we have seen that 3k2 = 4ω2 had come with a new set of points
1138
+ (ω, k) in Im[ω] > 0 plane which was actually related to the chaos parameters. In our case, we can re-arrange the
1139
+ master equation (4.8) as
1140
+ Z′′
1141
+ so(r) + P(r)Z′
1142
+ so(r) + Q(r)Zso(r) = 0
1143
+ (5.3)
1144
+ In this equation, the denominators of both P(r) and Q(r) has a multiplicative factor of (3 + f(r)) k2 − 4ω2 which
1145
+ reduces to 3k2 − 4ω2 at r = r0. So to get the regular solution of (5.3) at r = r0, we must impose an extra condition
1146
+ on ω or k. Here we will find it.
1147
+ First we put k =
1148
+ 2
1149
+
1150
+ 3ω in (5.3) and expand it around r = r0. We find that P(r) and Q(r) process the first and
1151
+ second order pole at r = r0.
1152
+ P(r) =
1153
+ P−1
1154
+ (r − r0) + O
1155
+
1156
+ (r − r0)0�
1157
+ ,
1158
+ P−1 = −1 − 2iω
1159
+ 3r0
1160
+ − 144α′ir0ωζ′(r0)
1161
+ 3r0 − 2iω
1162
+ Q(r) =
1163
+ Q−2
1164
+ (r − r0)2 + O
1165
+
1166
+ (r − r0)−1�
1167
+ ,
1168
+ Q−2 = 1 + 2iω
1169
+ 3r0
1170
+ + 4iα′ω(27r2
1171
+ 0 + 12ir0ω + 4ω2)ζ′(r0)
1172
+ r0(3r0 − 2iω)
1173
+ Therefore r = r0 is a regular singular point for the differential equation (5.3). Now, suppose Zso has a series solution
1174
+ near the singular point given as
1175
+ Zso = (r − r0)l
1176
+
1177
+ n∈[0,Z+)
1178
+ Zn(r − r0)n
1179
+ (5.4)
1180
+ The only condition which makes this solution regular at the horizon is l = 0, 1, 2, · · ·. Therefore the first recursion
1181
+ relation coming from (5.3) is
1182
+ l2 + l (P−1 − 1) + Q−2 = 0.
1183
+ (5.5)
1184
+
1185
+ 13
1186
+ This gives two roots (say, l1 and l2) in the following form.
1187
+ l1 = 1 − 6α′(3r0 − 2iω)ζ′(r0)
1188
+ l2 = 1 + 2iω
1189
+ 3r0
1190
+ + 6α′ (3r0 + 2iω)2
1191
+ 3r0 − 2iω ζ′(r0)
1192
+ So for arbitrary interaction, the only possible integer roots are l1 = 1 and l2 = 0. This gives only two values of ω as
1193
+ ± 3
1194
+ 2ir0. Therefore we get the same values of the chaos parameters as we have already found in the last subsection.
1195
+ 6.
1196
+ DISCUSSIONS
1197
+ Here in this article, we have studied the pole-skipping phenomena in non-extremal gravity theory in presence of
1198
+ the Gauss-Bonnet-scalar interaction. We have considered a four-dimensional Schwarzchild-AdS black hole solution
1199
+ as the holographic bulk theory. On the boundary, we have a finite temperature conformal theory. The interaction
1200
+ is sourced by an operator of dimension ∆ of the boundary theory, which is dual to the scalar field φ in the bulk.
1201
+ In the Einstein action, the interaction term is added perturbatively (2.1). In the perturbative approximation, this
1202
+ external scalar source has no effect on the original bulk solution but made a nontrivial contribution in the linearised
1203
+ field equations (2.5). We have found that k of the pole-skipping points (ω, k) corresponding to the scalar field and
1204
+ metric perturbation have been affected by the external scalar source Os. Whereas, ω remains unchanged.
1205
+ Unlike the unperturbed model, the minimally coupled scalar φ has contained both real and imaginary k in the
1206
+ pole-skipping points. As the source is increased, the points of the imaginary k plane have moved into the real k plane.
1207
+ We have presented these facts pictorially in Figure 2. In Schwarzchild-AdS4 without external effect [8], k is always
1208
+ real in the shear mode. Here we have found that the shear mode k has the possibility to have both real and imaginary
1209
+ values depending on the effect of the scalar source. We have analytically found the effect of the interaction on the
1210
+ first three poles located at ωn = −2inπT and corresponding k ∼ T which are given in (4.3), (4.4) & (4.5). The first
1211
+ order pole-point k2
1212
+ 1 is always greater than 3r2
1213
+ 0 for ζ = φ, φ2, φ3 & φ4 and has decreased for other higher powers of φ.
1214
+ However, for the second and other higher orders of pole-skipping, k2 has always decreased with the increasing source
1215
+ for all positive integer powers of φ in ζ(φ). These have been shown in Figure 3. Here, the increase (or decrease)
1216
+ of real k implies a slow (or fast) rate of momentum transportation in shear mode and the imaginary k means the
1217
+ exponential decay of the momentum density. As a result, when positive k2
1218
+ 1 has increased with the increasing source
1219
+ Os, the mobility of the corresponding modes has decreased. Thus the decreasing mobility has decreased the value of
1220
+ diffusion coefficient Ds. In Figure 4, we have presented this consistent behaviour of diffusion coefficient. At Os → 0,
1221
+ k2
1222
+ 1 is at a minimum value, and therefore, momentum flow is maximum which has given the maximum value of Ds.
1223
+ So, due to the effect of the external source, the flow of momentum in shear mode has decreased for η ≤ 4, otherwise,
1224
+ it has increased.
1225
+ In the sound mode, the first three pole-skipping points have been derived from the master equation as ωn = −2inT
1226
+ and corresponding kn ∼ T is given in (4.9), (4.10) & (4.11).
1227
+ In the non-perturbative case where either α′ → 0
1228
+ or Os → 0, our results have reduced into the pole-skipping points of pure Schwarzchild-AdS4 background [8], i.e,
1229
+ k4
1230
+ n = −9nr4
1231
+ 0. It gives a complex value (of equal real and imaginary parts) of k. As the source is turned on, we have
1232
+ found that an imaginary part has been added with the negative real part of k4. It means the real and imaginary
1233
+ part of k is no more equal. We have shown all of these in Figure 6. However, from the OTOC calculation in the
1234
+ last section, we have found the Lyapunov exponent λ = −iω = 2πT and the butterfly velocity vb =
1235
+
1236
+ 3
1237
+ 2
1238
+ where
1239
+ ω0 = 2iπT and k0 = ± 4
1240
+
1241
+ 3iπT . These results have been further verified with a different approach by analyzing the
1242
+ power series solution of the sound mode master equation near the horizon. Therefore (ω0, k0) is considered as the
1243
+ lowest order pole-skipping point in sound mode instead of (ω1, k1). So the pole-skipping points of sound mode are
1244
+ (ω0, k0), (ω2, k2), (ω3, k3) and so on. The pole-skipping points (ω, k) describe the flow of energy density. Here k has
1245
+ both the real and imaginary parts. It signifies that the real part is associated with the flow of the energy density in
1246
+ longitudinal mode whereas the imaginary part of k is related to the exponential decay of the energy density. Therefore
1247
+ with the effect of interaction, when the energy density diffusion has increased the exponential decay has decreased
1248
+ and vice-versa. It would be interesting to study these flows and decays quantitatively.
1249
+ However, we have found some non-trivial effects of the interaction on the sound mode and shear mode. We have not
1250
+ found any effect on the chaotic behaviour. The reason is mainly the perturbative approach to the interaction term.
1251
+ If one considers the backreaction of the interaction, the Lyapunov exponent and the butterfly velocity are expected
1252
+ to be affected by the interaction. With backreaction, one can expect k0 and k1 to be equal in the sound mode.
1253
+
1254
+ 14
1255
+ Appendix A: Coefficient of Master Equation: Shear Channel
1256
+ Three coefficients of the master equation can be written in the linear order of the perturbation parameter α′
1257
+ Msh(r) = M(0)
1258
+ sh + α′M(1)
1259
+ sh + O(α′2)
1260
+ Psh(r) = P(0)
1261
+ sh + α′P(1)
1262
+ sh + O(α′2)
1263
+ Qsh(r) = Q(0)
1264
+ sh + α′Q(1)
1265
+ sh + O(α′2)
1266
+ (A.1)
1267
+ We have found the above functions as follows.
1268
+ M(0)
1269
+ sh = r2f(r)
1270
+ (A.2)
1271
+ P(0)
1272
+ sh = ωf(r)
1273
+
1274
+ 5rω + 2ik2�
1275
+ − 8k2rf(r)2 + ω2(3r − 2iω)
1276
+ ω2 − k2f(r)
1277
+ (A.3)
1278
+ Q(0)
1279
+ sh = −10k2r2f(r)2 + f(r)
1280
+
1281
+ k4 + 9ik2rω + 4r2ω2�
1282
+ + ω
1283
+
1284
+ k2(−ω − 3ir) + 6rω(r − iω)
1285
+
1286
+ r2 (ω2 − k2f(r))
1287
+ (A.4)
1288
+ and
1289
+ M(1)
1290
+ sh = 0
1291
+ (A.5)
1292
+ P(1)
1293
+ sh =
1294
+ r2f(r)
1295
+ (ω2 − k2f(r))2
1296
+
1297
+ rζ′′(r)
1298
+
1299
+ ω2 − k2f(r)
1300
+ � �
1301
+ f(r)
1302
+
1303
+ 2k2f(r) + ω2�
1304
+ − 3ω2�
1305
+ + ζ′(r)
1306
+
1307
+ f(r)
1308
+
1309
+ k2f(r)
1310
+
1311
+ 4k2f(r) − 6k2
1312
+ −11ω2�
1313
+ + 24k2ω2 − 2ω4�
1314
+ − 9k2ω2�
1315
+ − ωF
1316
+
1317
+ (A.6)
1318
+ Q(1)
1319
+ sh =
1320
+ 1
1321
+ r (ω2 − k2f(r))2
1322
+
1323
+ rζ′′(r)
1324
+
1325
+ ω2 − k2f(r)
1326
+ � �
1327
+ f(r)
1328
+
1329
+ ω2 �
1330
+ 4k2 − irω
1331
+
1332
+ − 2k2f(r)
1333
+
1334
+ −3r2f(r) + k2 + 3r2 + irω
1335
+ ��
1336
+ +ω3(−2ω + 3ir)
1337
+
1338
+ + ζ′(r)
1339
+
1340
+ f(r)
1341
+
1342
+ f(r)
1343
+
1344
+ −k2f(r)
1345
+
1346
+ −14k2r2f(r) + 3k4 + 4k2r(6r + iω) + 34r2ω2�
1347
+ + 3k6
1348
+ +6k4 �
1349
+ 3r2 + irω + ω2�
1350
+ + k2rω2(72r + 11iω) + 2r2ω4�
1351
+ + ω2 �
1352
+ −6k4 − 3k2 �
1353
+ 18r2 + 8irω + ω2�
1354
+ +2rω(−6r + iω))) + 3ω3 �
1355
+ 6r2ω + k2(ω + 3ir)
1356
+ ��
1357
+ + ir
1358
+
1359
+ 2ω2 − f(r)
1360
+
1361
+ k2 − 2irω
1362
+ ��
1363
+ F
1364
+
1365
+ (A.7)
1366
+ where,
1367
+ F = 6k2r2ω(f(r) − 1) [r(f(r) − 3)f(r)ζ′′(r) − 3((f(r) − 2)f(r) + 3)ζ′(r)]2 /
1368
+
1369
+ rζ′′(r)
1370
+
1371
+ f(r)
1372
+
1373
+ f(r)
1374
+
1375
+ k2 − 3irω
1376
+
1377
+ −3k2 + 3irω
1378
+
1379
+ − 18irω
1380
+
1381
+ − 3ζ′(r)
1382
+
1383
+ (f(r) − 2)f(r)
1384
+
1385
+ k2 − irω
1386
+
1387
+ + 3
1388
+
1389
+ k2 + 3irω
1390
+ ��
1391
+ + ir3ω(f(r) − 3)f(r)ζ′′′(r)
1392
+
1393
+ Here the ζ function takes its appropriate form.
1394
+ Appendix B: Coefficient of Master Equation: Sound Channel
1395
+ Three coefficients of the master equation can be written in the linear order of the perturbation parameter α′
1396
+ Mso(r) = M(0)
1397
+ so + α′M(1)
1398
+ so + O(α′2)
1399
+ Pso(r) = P(0)
1400
+ so + α′P(1)
1401
+ so + O(α′2)
1402
+ Qso(r) = Q(0)
1403
+ so + α′Q(1)
1404
+ so + O(α′2)
1405
+ (B.1)
1406
+ where,
1407
+ M(0)
1408
+ so = r4f(r)
1409
+ (B.2)
1410
+ P(0)
1411
+ so = r2 �
1412
+ f(r)
1413
+
1414
+ 11k2rf(r) + 2k2(6r − iω) − 20rω2�
1415
+ +
1416
+
1417
+ 3k2 − 4ω2�
1418
+ (3r − 2iω)
1419
+
1420
+ k2f(r) + 3k2 − 4ω2
1421
+ (B.3)
1422
+ Q(0)
1423
+ so = −f(r)
1424
+
1425
+ −25k2r2f(r) + k4 + 12k2r(r + iω) + 16r2ω2�
1426
+ − 3k4 + k2(9r + 2iω)(3r − 2iω) − 24rω2(r − iω)
1427
+ k2f(r) + 3k2 − 4ω2
1428
+ (B.4)
1429
+ M(1)
1430
+ so = 0
1431
+ (B.5)
1432
+
1433
+ 15
1434
+ P(1)
1435
+ so =
1436
+ r2f(r)
1437
+ (2irω + k2) (k2f(r) + 3k2 − 4ω2)3
1438
+
1439
+ r3ζ′′(r)
1440
+
1441
+ f(r)
1442
+
1443
+ k2f(r)
1444
+
1445
+ k2f(r)2 �
1446
+ 9k4 + 2k2r(−24r + 25iω) + 64r2ω2�
1447
+ +2f(r)
1448
+
1449
+ −27k6 + 6k4 �
1450
+ 24r2 − 9irω + 11ω2�
1451
+ + 4k2rω2(−72r + 17iω) + 128r2ω4�
1452
+ + 12
1453
+
1454
+ 3k2 − 4ω2� �
1455
+ 2k4
1456
+ +k2 �
1457
+ −12r2 − 4irω + 3ω2�
1458
+ + 2rω2(8r + 3iω)
1459
+ ��
1460
+ + 2
1461
+
1462
+ 3k2 − 2ω2� �
1463
+ 3k2 − 4ω2�2 �
1464
+ k2 + 2irω
1465
+ ��
1466
+ − 3
1467
+
1468
+ 3k2
1469
+ −4ω2�3 �
1470
+ k2 + 2irω
1471
+ ��
1472
+ + 4ζ′(r)
1473
+
1474
+ f(r)
1475
+
1476
+ k2f(r)
1477
+
1478
+ r2f(r)
1479
+
1480
+ −k2f(r)
1481
+
1482
+ 5k4 + 3k2r(−12r + 7iω) + 48r2ω2�
1483
+ + 9k6
1484
+ +k4 �
1485
+ −180r2 + 33irω − 26ω2�
1486
+ + 4k2rω2(96r + 5iω) − 192r2ω4�
1487
+ + 3k8 + 4k6 �
1488
+ 36r2 + 6irω − ω2�
1489
+ +k4r
1490
+
1491
+ 324r3 + 243ir2ω − 324rω2 − 32iω3�
1492
+ − 8k2r2ω2 �
1493
+ 90r2 + 81irω − 34ω2�
1494
+ + 48r3ω4(8r + 9iω)
1495
+
1496
+ +
1497
+
1498
+ 3k2 − 4ω2� �
1499
+ 3k8 − k6 �
1500
+ 63r2 + 4ω2�
1501
+ − k4r
1502
+
1503
+ 108r3 + 171ir2ω − 126rω2 + 8iω3�
1504
+ + 8k2r2ω2 �
1505
+ 18r2 + 27irω
1506
+ −ω2�
1507
+ − 16ir3ω5��
1508
+ + 9k2r2 �
1509
+ 3k2 − 4ω2�2 �
1510
+ k2 + 2irω
1511
+ ���
1512
+ (B.6)
1513
+ Q(1)
1514
+ so = −
1515
+ 1
1516
+ r (2irω + k2) (f(r)k2 + 3k2 − 4ω2)3
1517
+ ��
1518
+ ω(3r + 2iω)
1519
+
1520
+ 2rω − ik2� �
1521
+ 3k2 − 4ω2�3 + f(r)
1522
+
1523
+ f(r)
1524
+
1525
+ f(r)
1526
+
1527
+ −3k8
1528
+ +18
1529
+
1530
+ −19r2 − 2iωr + ω2�
1531
+ k6 + 4r(3r − iω)
1532
+
1533
+ 108r2 + 99iωr − 26ω2�
1534
+ k4 − 8r2ω2 �
1535
+ 360r2 + 234iωr − 85ω2�
1536
+ k2
1537
+ +32r3ω4(48r + 35iω) + f(r)
1538
+
1539
+ 3k8 + r(180r + 23iω)k6 − 2r2 �
1540
+ 576r2 − 108iωr + 257ω2�
1541
+ k4 + 64r3ω2(30r
1542
+ −iω)k2 − r2 �
1543
+ 43k4 + 6r(41iω − 40r)k2 + 320r2ω2�
1544
+ f(r)k2 − 512r4ω4��
1545
+
1546
+
1547
+ 3k2 − 4ω2� �
1548
+ 9k6 + 6
1549
+
1550
+ 18r2
1551
+ +3iωr − 7ω2�
1552
+ k4 + 8irω
1553
+
1554
+ 45r2 + 42iωr − 11ω2�
1555
+ k2 + 8r2ω3(ω − 60ir)
1556
+ ��
1557
+ k2 +
1558
+
1559
+ k2 + 2irω
1560
+ � �
1561
+ 3k2 − 4ω2�2 �
1562
+ 3k4
1563
+ +
1564
+
1565
+ 9r2 − 18iωr + 14ω2�
1566
+ k2 − 4irω3���
1567
+ ζ′′(r)r3 +
1568
+ ��
1569
+ k2 + 2irω
1570
+ � �
1571
+ 3k6 + 2ω(−3ir − 2ω)k4 − 6r2 �
1572
+ 9r2 + 6iωr
1573
+ −2ω2�
1574
+ k2 + 72r4ω2� �
1575
+ 3k2 − 4ω2�2 + f(r)
1576
+
1577
+ 2
1578
+
1579
+ 3k2 − 4ω2� �
1580
+ 3k10 +
1581
+
1582
+ 63r2 + 18iωr − 4ω2�
1583
+ k8 − r
1584
+
1585
+ 189r3 + 18iωr2
1586
+ +66ω2r + 28iω3�
1587
+ k6 + 2r2ω
1588
+
1589
+ −297ir3 + 315ωr2 + 6iω2r + 28ω3�
1590
+ k4 + 8ir3ω3 �
1591
+ 63r2 + 18iωr + 4ω2�
1592
+ k2
1593
+ +32r4ω5(6ir + ω)
1594
+
1595
+ + f(r)
1596
+
1597
+ 3k12 +
1598
+
1599
+ −90r2 + 36iωr − 4ω2�
1600
+ k10 + 12r
1601
+
1602
+ 171r3 + 63iωr2 + 24ω2r − 4iω3�
1603
+ k8
1604
+ +4r2 �
1605
+ 972r4 + 1971iωr3 − 1863ω2r2 − 186iω3r − 32ω4�
1606
+ k6 − 32r3ω2 �
1607
+ 270r3 + 531iωr2 − 243ω2r − iω3�
1608
+ k4
1609
+ +64r4ω4 �
1610
+ 72r2 + 132iωr − 13ω2�
1611
+ k2 + 2r2f(r)
1612
+
1613
+ 3
1614
+
1615
+ −15k8 − 2
1616
+
1617
+ 186r2 + 37iωr − 9ω2�
1618
+ k6 + 2r
1619
+
1620
+ −396r3
1621
+ −417iωr2 + 339ω2r + 50iω3�
1622
+ k4 + 8r2ω2 �
1623
+ 180r2 + 232iωr − 73ω2�
1624
+ k2 − 64r3(8r + 13iω)ω4�
1625
+ + f(r)
1626
+
1627
+ −3k8
1628
+ +r(21r − 20iω)k6 + 2r2 �
1629
+ 684r2 − 24iωr + 43ω2�
1630
+ k4 − 8r3(300r + 91iω)ω2k2 + r2 �
1631
+ 47k4 + 12r(17iω − 30r)k2
1632
+ +480r2ω2�
1633
+ f(r)k2 + 768r4ω4��
1634
+ k2 + 256ir5ω7���
1635
+ ζ′(r)
1636
+
1637
+ (B.7)
1638
+ ACKNOWLEDGEMENTS
1639
+ We would like to acknowledge Debaprasad Maity for his useful suggestions.
1640
+ [1] Y. Gu, X. L. Qi and D. Stanford, “Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models,” JHEP
1641
+ 05 (2017), 125 doi:10.1007/JHEP05(2017)125 [arXiv:1609.07832 [hep-th]].
1642
+ [2] A. A. Patel and S. Sachdev, “Quantum chaos on a critical Fermi surface,” Proc. Nat. Acad. Sci. 114 (2017), 1844-1849
1643
+ doi:10.1073/pnas.1618185114 [arXiv:1611.00003 [cond-mat.str-el]].
1644
+ [3] S. Grozdanov, K. Schalm and V. Scopelliti, “Kinetic theory for classical and quantum many-body chaos,” Phys. Rev. E
1645
+ 99 (2019) no.1, 012206 doi:10.1103/PhysRevE.99.012206 [arXiv:1804.09182 [hep-th]].
1646
+ [4] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2
1647
+ (1998), 231-252 doi:10.1023/A:1026654312961 [arXiv:hep-th/9711200 [hep-th]].
1648
+ [5] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,”
1649
+ Phys. Rept. 323 (2000), 183-386 doi:10.1016/S0370-1573(99)00083-6 [arXiv:hep-th/9905111 [hep-th]].
1650
+ [6] M. Blake, H. Lee and H. Liu, “A quantum hydrodynamical description for scrambling and many-body chaos,” JHEP 10
1651
+ (2018), 127 doi:10.1007/JHEP10(2018)127 [arXiv:1801.00010 [hep-th]].
1652
+ [7] M. Blake, R. A. Davison, S. Grozdanov and H. Liu, “Many-body chaos and energy dynamics in holography,” JHEP 10
1653
+ (2018), 035 doi:10.1007/JHEP10(2018)035 [arXiv:1809.01169 [hep-th]].
1654
+ [8] M. Blake, R. A. Davison and D. Vegh, “Horizon constraints on holographic Green’s functions,” JHEP 01 (2020), 077
1655
+ doi:10.1007/JHEP01(2020)077 [arXiv:1904.12883 [hep-th]].
1656
+
1657
+ 16
1658
+ [9] M.
1659
+ Blake
1660
+ and
1661
+ R.
1662
+ A.
1663
+ Davison,
1664
+ “Chaos
1665
+ and
1666
+ pole-skipping
1667
+ in
1668
+ rotating
1669
+ black
1670
+ holes,”
1671
+ JHEP
1672
+ 01
1673
+ (2022),
1674
+ 013
1675
+ doi:10.1007/JHEP01(2022)013 [arXiv:2111.11093 [hep-th]].
1676
+ [10] S. Grozdanov, K. Schalm and V. Scopelliti, “Black hole scrambling from hydrodynamics,” Phys. Rev. Lett. 120 (2018)
1677
+ no.23, 231601 doi:10.1103/PhysRevLett.120.231601 [arXiv:1710.00921 [hep-th]].
1678
+ [11] S. H. Shenker and D. Stanford, “Stringy effects in scrambling,” JHEP 05 (2015), 132 doi:10.1007/JHEP05(2015)132
1679
+ [arXiv:1412.6087 [hep-th]].
1680
+ [12] M. Natsuume and T. Okamura, “Nonuniqueness of Green’s functions at special points,” JHEP 12 (2019), 139
1681
+ doi:10.1007/JHEP12(2019)139 [arXiv:1905.12015 [hep-th]].
1682
+ [13] M. Natsuume and T. Okamura, “Holographic chaos, pole-skipping, and regularity,” PTEP 2020 (2020) no.1, 013B07
1683
+ doi:10.1093/ptep/ptz155 [arXiv:1905.12014 [hep-th]].
1684
+ [14] Y. Ahn, V. Jahnke, H. S. Jeong and K. Y. Kim, “Scrambling in Hyperbolic Black Holes: shock waves and pole-skipping,”
1685
+ JHEP 10 (2019), 257 doi:10.1007/JHEP10(2019)257 [arXiv:1907.08030 [hep-th]].
1686
+ [15] Y. Ahn, V. Jahnke, H. S. Jeong, K. Y. Kim, K. S. Lee and M. Nishida, “Pole-skipping of scalar and vector fields in hyperbolic
1687
+ space: conformal blocks and holography,” JHEP 09 (2020), 111 doi:10.1007/JHEP09(2020)111 [arXiv:2006.00974 [hep-th]].
1688
+ [16] M. A. G. Amano, M. Blake, C. Cartwright, M. Kaminski and A. P. Thompson, “Chaos and pole-skipping in a simply
1689
+ spinning plasma,” [arXiv:2211.00016 [hep-th]].
1690
+ [17] K.
1691
+ Sil,
1692
+ “Pole
1693
+ skipping
1694
+ and
1695
+ chaos
1696
+ in
1697
+ anisotropic
1698
+ plasma:
1699
+ a
1700
+ holographic
1701
+ study,”
1702
+ JHEP
1703
+ 03
1704
+ (2021),
1705
+ 232
1706
+ doi:10.1007/JHEP03(2021)232 [arXiv:2012.07710 [hep-th]].
1707
+ [18] M. Atashi and K. Bitaghsir Fadafan, “Holographic pole – skipping of flavor branes,” JHAP 3 (2022) no.1, 39-46
1708
+ doi:10.22128/jhap.2022.519.1020
1709
+ [19] H. Yuan and X. H. Ge, “Pole-skipping and hydrodynamic analysis in Lifshitz, AdS2 and Rindler geometries,” JHEP 06
1710
+ (2021), 165 doi:10.1007/JHEP06(2021)165 [arXiv:2012.15396 [hep-th]].
1711
+ [20] K. Y. Kim, K. S. Lee and M. Nishida, “Holographic scalar and vector exchange in OTOCs and pole-skipping phenomena,”
1712
+ JHEP 04 (2021), 092 [erratum: JHEP 04 (2021), 229] doi:10.1007/JHEP04(2021)092 [arXiv:2011.13716 [hep-th]].
1713
+ [21] C. Choi,
1714
+ M. Mezei and G. S´arosi,
1715
+ “Pole skipping away from maximal chaos,”
1716
+ doi:10.1007/JHEP02(2021)207
1717
+ [arXiv:2010.08558 [hep-th]].
1718
+ [22] N.
1719
+ Ceplak,
1720
+ K.
1721
+ Ramdial
1722
+ and
1723
+ D.
1724
+ Vegh,
1725
+ “Fermionic
1726
+ pole-skipping
1727
+ in
1728
+ holography,”
1729
+ JHEP
1730
+ 07
1731
+ (2020),
1732
+ 203
1733
+ doi:10.1007/JHEP07(2020)203 [arXiv:1910.02975 [hep-th]].
1734
+ [23] M. Natsuume and T. Okamura, “Pole-skipping with finite-coupling corrections,” Phys. Rev. D 100 (2019) no.12, 126012
1735
+ doi:10.1103/PhysRevD.100.126012 [arXiv:1909.09168 [hep-th]].
1736
+ [24] X. Wu,
1737
+ “Higher
1738
+ curvature
1739
+ corrections
1740
+ to
1741
+ pole-skipping,”
1742
+ JHEP
1743
+ 12
1744
+ (2019),
1745
+ 140
1746
+ doi:10.1007/JHEP12(2019)140
1747
+ [arXiv:1909.10223 [hep-th]].
1748
+ [25] M. Natsuume and T. Okamura, “Pole-skipping and zero temperature,” Phys. Rev. D 103 (2021) no.6, 066017
1749
+ doi:10.1103/PhysRevD.103.066017 [arXiv:2011.10093 [hep-th]].
1750
+ [26] S. Grozdanov, “On the connection between hydrodynamics and quantum chaos in holographic theories with stringy cor-
1751
+ rections,” JHEP 01 (2019), 048 doi:10.1007/JHEP01(2019)048 [arXiv:1811.09641 [hep-th]].
1752
+ [27] S. Grozdanov, P. K. Kovtun, A. O. Starinets and P. Tadi´c, “The complex life of hydrodynamic modes,” JHEP 11 (2019),
1753
+ 097 doi:10.1007/JHEP11(2019)097 [arXiv:1904.12862 [hep-th]].
1754
+ [28] W. Li, S. Lin and J. Mei, “Thermal diffusion and quantum chaos in neutral magnetized plasma,” Phys. Rev. D 100 (2019)
1755
+ no.4, 046012 doi:10.1103/PhysRevD.100.046012 [arXiv:1905.07684 [hep-th]].
1756
+ [29] N. Ceplak and D. Vegh, “Pole-skipping and Rarita-Schwinger fields,” Phys. Rev. D 103 (2021) no.10, 106009
1757
+ doi:10.1103/PhysRevD.103.106009 [arXiv:2101.01490 [hep-th]].
1758
+ [30] J. Maldacena, S. H. Shenker and D. Stanford, “A bound on chaos,” JHEP 08 (2016), 106 doi:10.1007/JHEP08(2016)106
1759
+ [arXiv:1503.01409 [hep-th]].
1760
+ [31] S. Chakrabarti, D. Maity and W. Wahlang, “Probing the Holographic Fermi Arc with scalar field: Numerical and analytical
1761
+ study,” JHEP 07 (2019), 037 doi:10.1007/JHEP07(2019)037 [arXiv:1902.08826 [hep-th]].
1762
+ [32] P. Kovtun, D. T. Son and A. O. Starinets, “Holography and hydrodynamics: Diffusion on stretched horizons,” JHEP 10
1763
+ (2003), 064 doi:10.1088/1126-6708/2003/10/064 [arXiv:hep-th/0309213 [hep-th]].
1764
+
7dE2T4oBgHgl3EQflAdd/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE1T4oBgHgl3EQfCQLF/content/2301.02863v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b0c6a3c792a211973a315eeebb8336162c4be5d71a8715d965166ce5a87588d
3
+ size 320595
9tE1T4oBgHgl3EQfCQLF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e1fa133bc6872dc52d39a3d5ebd7981e7ae6740d311576552226469c5739c98
3
+ size 4063277
9tE1T4oBgHgl3EQfCQLF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3089e019c6c9146324d3e8aecdc53f5ecde455315c0fb2443fbc6e727fa25ca5
3
+ size 153737
9tE4T4oBgHgl3EQfdwyk/content/2301.05094v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4469593b65b5e6e0fad5c0c79531abacf59c97f70cfbc7a0fbf78a30de3c0e
3
+ size 6810715
9tE4T4oBgHgl3EQfdwyk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7bcfa7b56e84bb66a3a2d6fc898e542a861c6487ab0d8251884c3560eb24aa1
3
+ size 2424877
9tE4T4oBgHgl3EQfdwyk/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0a12ad48756691400205ef9472d083afdc3ded084e6f391f332bf7fe6abae5c
3
+ size 79035
BNE3T4oBgHgl3EQfswvl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c05f229fc8933125893ce9fdcd7b2cb147cc43a541a8ba897cd0f999f2638fad
3
+ size 5505069
BdAyT4oBgHgl3EQf4Ppc/content/tmp_files/2301.00782v1.pdf.txt ADDED
@@ -0,0 +1,1256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00782v1 [math.AP] 2 Jan 2023
2
+ ON MULTIDIMENSIONAL AXISYMMETRIC OSCILLATIONS OF
3
+ A COLLISIONAL COLD PLASMA
4
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
5
+ Abstract. We study the influence of the friction term on the radially sym-
6
+ metric solutions of the repulsive Euler-Poisson equations with a non-zero back-
7
+ ground, corresponding to cold plasma oscillations in many spatial dimensions.
8
+ It is shown that for any arbitrarily small constant non-negative constant fric-
9
+ tion coefficient, there exists a neighborhood of the zero stationary solution in
10
+ the C1 norm such that the solution of the Cauchy problem with initial data
11
+ belonging to this neighborhood remains globally smooth in time. Moreover,
12
+ this solution stabilizes to the zero as t → ∞. This result contrasts with the
13
+ situation of zero friction, where any small deviation from the zero equilibrium
14
+ generally leads to a blow-up. Our method allows to estimate the lifetime of
15
+ smooth solutions. Further we prove that for any initial data one can find such
16
+ friction coefficient that the respective solution to the Cauchy problem keeps
17
+ smoothness for all t > 0 and stabilizes to zero.
18
+ 1. Introduction
19
+ We study a frictional version of the repulsive Euler-Poisson equations
20
+ ∂n
21
+ ∂t + div (nV) = 0,
22
+ ∂V
23
+ ∂t + (V · ∇) V = k ∇Φ − ν V,
24
+ ∆Φ = n − n0,
25
+ (1)
26
+ where the the scalar functions n and Φ are the density and a repulsive (for k > 0)
27
+ force potential, respectively, the vector V is the velocity, they depend on the time
28
+ t and the point x ∈ Rd, d ≥ 1. Here n0 > 0 is the density background, ν > 0 is a
29
+ friction coefficient.
30
+ If we denote ∇Φ = −E, and set n0 = 1, such that
31
+ n = 1 − div E,
32
+ (2)
33
+ we can remove n from (1) and rewrite it as
34
+ ∂V
35
+ ∂t + (V · ∇) V = −E − νV,
36
+ ∂E
37
+ ∂t + Vdiv E = V.
38
+ (3)
39
+ In this paper we study the Cauchy problem for (1) or (3) and our main concern
40
+ is to study initial data that guarantee a globally smooth solution.
41
+ System (3) corresponds to the hydrodynamics of “cold” or electron plasma in the
42
+ non-relativistic approximation in dimensionless quantities (see, e.g., [1], [5], [8]). In
43
+ this interpretation the friction coefficient characterizes the intensity of electron-ion
44
+ collisions during plasma oscillations. The cold plasma equations is now very popular
45
+ object of study, may be more popular than the Euler-Poisson equations themselves.
46
+ The reason is that the cold plasma in used in the accelerators of electrons in the
47
+ 2020 Mathematics Subject Classification. Primary 35Q60; Secondary 35L60, 35L67, 34M10.
48
+ Key words and phrases. Euler-Poisson equations, quasilinear hyperbolic system, cold plasma,
49
+ blow up.
50
+ 1
51
+
52
+ 2
53
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
54
+ wake wave of a powerful laser pulse [11]. From this point of view the initial data
55
+ (i.e. the initial laser pulse) that corresponds to a solution that cannot survive being
56
+ smooth are not applicable technically.
57
+ System (3) in 1D case was studied [13], however, in the multidimensional case
58
+ it is very difficult from both mathematical and physical points of view. Indeed, it
59
+ describes a non-hyperbolic superposition of different types of waves, each of them
60
+ have a tendency to break out in a finite time. Therefore the theoretical results here
61
+ are very scarce.
62
+ The situation is more optimistic if we restrict ourselves to the class of axisym-
63
+ metric solutions. Thus, we consider one-dimensional solutions in space, given on
64
+ the half-line. In [10], [3], [18], [17] it was shown that for n0 = 0, k > 0 and n0 ≥ 0,
65
+ k < 0 in the non-frictional case there is a threshold in terms of the initial data.
66
+ Namely, one can specify exactly the class of initial data corresponding to a globally
67
+ smooth solution, and these data form a neighborhood of the stationary state in the
68
+ C1 -norm. As it has been recently shown [15], for n0 > 0, k > 0, ν = 0 the situation
69
+ is strikingly different: namely, for d ̸= 1 and d ̸= 4 an arbitrarily small pertur-
70
+ bation of the zero stationary state blows up in the general case. The exception
71
+ is the initial data in the form of a simple wave, starting from which the solution
72
+ can remain globally smooth and tend to an affine solution as t → ∞. In any case,
73
+ the initial data corresponding to simple waves form a zero-measure manifold in the
74
+ neighborhood of the stationary state.
75
+ In this paper, we study the effect of constant friction on the blow-up process.
76
+ Namely, we establish that the presence of friction normalizes the situation with the
77
+ threshold for the initial data. Namely, for an arbitrarily small ν > 0 and any d,
78
+ there exists a neighborhood of the zero stationary state in the C1-norm such that
79
+ the corresponding solution of the Cauchy problem preserves smoothness (Theorem
80
+ 1). For small ν, Theorem 2 gives sufficient conditions guaranteeing blow-up or non-
81
+ blow-up in terms of initial data, which can be applied to numerical tests. Besides,
82
+ we show that for any initial data, one can find ν such that the corresponding
83
+ solution of the Cauchy problem is globally smooth (Theorem 3). In other words,
84
+ this situation is absolutely analogous to d = 1, and the increase in spatial dimension
85
+ does not lead to any new phenomena.
86
+ Thus, we consider axisymmetric solutions of (3)
87
+ V = F(t, r)r,
88
+ E = G(t, r)r,
89
+ where r = (x1, x2, ..., xd) is the radius-vector, r =
90
+
91
+ x2
92
+ 1 + x2
93
+ 2 + ... + x2
94
+ d.
95
+ The initial data that correspond to these solutions are
96
+ (V, E)|t=0 = (V0(r), E0(r)) = (F0(r)r, G0(r)r),
97
+ (F0(r), G0(r)) ∈ C2(¯R+).
98
+ (4)
99
+ We assume that (V0(r), E0(r)) are bounded together with their derivatives uni-
100
+ formly on r ∈ ¯R+ and denote ∥f∥C1(R+) =
101
+ 1�
102
+ i=0
103
+ sup
104
+ r∈R+
105
+ |f (i)(r)|.
106
+ The physically natural condition n|t=0 > 0 dictates divE < 1, see (2).
107
+ The main results of the paper are as follows.
108
+ Theorem 1. 1. For arbitrary small ν > 0 there exists ε(ν) > 0, such that the
109
+ solution of the problem (3) - (4) satisfying
110
+ ∥V0(r), E0(r)∥C1(R+) < ε,
111
+ (5)
112
+
113
+ AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA
114
+ 3
115
+ keeps C1 - smoothness for all t > 0. Moreover,
116
+ ∥V, E∥C1(R+) ≤ const e− ν
117
+ 2 t → 0,
118
+ t → ∞.
119
+ (6)
120
+ Let us denote
121
+ u0 = div V0 − dF0,
122
+ v0 = div E0 − dG0,
123
+ H0 = u0,
124
+ H1 =
125
+ �d − 2
126
+ 2
127
+ F0 − ν
128
+ 2
129
+
130
+ − v0,
131
+ φ = −d + 2
132
+ 2
133
+ G + (d − 2)νF − (d − 2)(d − 4)
134
+ 2
135
+ F 2,
136
+ J+ = 1 − ν2
137
+ 4 − d + 2
138
+ 2
139
+ G− + ν(d − 2)F+ + (1 − δ3d)(d − 2)(d − 4)
140
+ 2
141
+ F 2
142
+ +,
143
+ M± =
144
+ �1 − dG∓
145
+ 1 − dG0
146
+ � d+2
147
+ 2d
148
+ ,
149
+ 0 < M− < M+,
150
+ where (G, F) is the solution of the problem (12) subject to initial data (G0, F0),
151
+ G− < 0 and G+ > 0, G+ < 1
152
+ d are the left and right roots of equation (15) or (14),
153
+ F = 0 (they depend on (G0, F0)), F+ is given as (33) , δij is the Kronecker symbol.
154
+ The next theorem gives more information about the size of the neighborhood of
155
+ the origin containing globally smooth solutions in the case of small ν.
156
+ Theorem 2. Let ν < 2.
157
+ a) A sufficient condition on initial data (4) that guaranties the smoothness of
158
+ the solution of the problem (3) - (4) for all t > 0 is the following:
159
+ inf
160
+ r∈R+)
161
+ F1(ν, V0(r), E0(r)) < 1,
162
+ (7)
163
+ F1(ν, V0(r), E0(r)) = 2
164
+ ν M+
165
+
166
+ H2
167
+ 0 +
168
+
169
+ 1 − ν2
170
+ 4
171
+ �−1
172
+ H2
173
+ 1
174
+ e
175
+
176
+
177
+ 0
178
+ |φ(τ|dτ
179
+ .
180
+ b) If there exists T > 0 such that
181
+ inf
182
+ r∈R+)
183
+ F2(T, ν, V0(r), E0(r)) < 1,
184
+ (8)
185
+ F2(T, ν, V0(r), E0(r)) = 2
186
+ ν M+
187
+
188
+ H2
189
+ 0 +
190
+
191
+ 1 − ν2
192
+ 4
193
+ �−1
194
+ H2
195
+ 1
196
+ e
197
+
198
+ J+−1+ ν2
199
+ 4
200
+
201
+ T ,
202
+ then the solution of the problem (3) - (4) preserves smoothness for t ∈ [0, T ].
203
+ c) If the initial data (4) are such that there exists a point r ∈ R+ for which
204
+ condition
205
+ F3(ν, V0(r), E0(r)) ≥ 1,
206
+ (9)
207
+ F3(ν, V0(r), E0(r)) = 2
208
+ ν M−
209
+
210
+ H2
211
+ 0 + J−1
212
+ + H2
213
+ 1,
214
+ H0 ≤ 0,
215
+ H1 < 0
216
+ holds. Then the solution of problem (3) - (4) blows up within t <
217
+ π
218
+
219
+ J+ .
220
+
221
+ 4
222
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
223
+ Theorem 3. For arbitrary initial data (4) there exists such ν > 0 that the solution
224
+ of problem (3) - (4) keeps C1 - smoothness for all t > 0 and the asymptotic property
225
+ ∥V, E∥C1(R+) ≤ const e− ν−√
226
+ 4−ν2
227
+ 2
228
+ t → 0,
229
+ t → ∞.
230
+ (10)
231
+ holds.
232
+ Theorems 1, 2 and 3 can be reformulated in the terms of the Euler-Poisson
233
+ equations (1). The stationary stationary state in this case is
234
+ V = 0,
235
+ Φ = const,
236
+ n = 1.
237
+ In this work we use the technique of linearization my means of the Radon lemma,
238
+ the same as in [15]. It turn out to be very convenient for the analysis of the non-
239
+ strictly hyperbolic systems often arising when studying the reduced cold plasma
240
+ equations.
241
+ The paper is organised as follows: Sec.2 is devoted to auxiliary results on the
242
+ behavior of solution and its derivatives, Secs.3, 4 and 5 contain the proofs of The-
243
+ orems 1, 2, and 3, respectively. Sec.6 is devoted to a discussion on the importance
244
+ of the results for physics and the formulation of future problems in this area.
245
+ 2. Behavior of solutions along characteristics
246
+ We use the fact that V = F(t, r)r, E = G(t, r)r and get
247
+ ∂F
248
+ ∂t + Fr∂F
249
+ ∂r = −F 2 − G − νF,
250
+ ∂G
251
+ ∂t + Fr∂G
252
+ ∂r = F − dFG.
253
+ (11)
254
+ (V0, E0) = (F(0, r)r, G(0, r)r) = (F0(r)r, G0(r)r),
255
+ (F0(r), G0(r)) ∈ C2(R+).
256
+ 2.1. Physical constraints on solution components. Let us fix r0 ∈ ¯R+. Along
257
+ the characteristics ˙r = ∂r
258
+ ∂t = Fr, r(0) = r0, of the system (11), the functions F
259
+ and G obey the system of equations
260
+ ˙F = −F 2 − G − νF,
261
+ ˙G = F − dFG.
262
+ (12)
263
+ Therefore
264
+ dG
265
+ F(1 − dG) = dr
266
+ Fr,
267
+ 1 − dG = const · r−d.
268
+ (13)
269
+ Since r ≥ 0, the sign of the expression 1 − dG does not change, i.e. sign(1 − dG) =
270
+ sign(1−dG(0, r0)). Therefore, the motion on the phase plane (G, F) corresponding
271
+ to system (12) occurs either in the half-plane G < 1
272
+ d, or in the half-plane G > 1
273
+ d,
274
+ or on the line G = 1
275
+ d.
276
+ The equilibria of (12) are the following:
277
+ • if ν <
278
+ 2
279
+
280
+ d, then there exists the only point (F = 0, G = 0), a stable focus;
281
+ • if ν =
282
+ 2
283
+
284
+ d, then there exist two points: (F = 0, G = 0), a stable focus, and
285
+ (F = − ν
286
+ 2, G = 1
287
+ d), a saddle-node.
288
+ • if ν >
289
+ 2
290
+
291
+ d, then there exist three points: (F = 0, G = 0), a stable focus
292
+ (ν < 2) or a stable node, otherwise, and (F = −
293
+ ν±√
294
+ ν2�� 4
295
+ d
296
+ 2
297
+ , G =
298
+ 1
299
+ d), a
300
+ saddle and an unstable node.
301
+
302
+ AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA
303
+ 5
304
+ We see that there are no equilibria in the domain G >
305
+ 1
306
+ d, hence there are no
307
+ bounded trajectories in this region. If the motion on the plane (G, F) starts from
308
+ the point for which G(0, r(0)) >
309
+ 1
310
+ d, then the phase trajectory rests in the half-
311
+ plane G >
312
+ 1
313
+ d and G(t, r(t)) → +∞ for t → t∗ < ∞. Moreover, due to (13), we
314
+ have r(t) → 0 for t → t∗. In this case, we get a contradiction with the positivity of
315
+ density, since n = 1 − div E = 1 − Grr − dG > 0. On the line G = 1
316
+ d the density is
317
+ zero.
318
+ Thus, we study the problem only in the half-plane G < 1
319
+ d, F ∈ R.
320
+ 2.2. Boundedness of the solution. In the half-plane G < 1
321
+ d, F ∈ R system (12)
322
+ has one equilibrium (0, 0). It corresponds to the stationary state V = E = 0 and it
323
+ is stable for any values of the parameters d and ν > 0. Namely, as a linear analysis
324
+ show,
325
+ • if 0 < ν < 2 it is a stable focus;
326
+ • if ν = 2 it is a stable degenerate node;
327
+ • if ν > 2 it is a stable node.
328
+ Lemma 1. There exists δ > 0 such that if the initial data (F0(r0), G0(r0)) belong
329
+ to the δ- neighborhood of the origin, r0 ∈ ¯R+, then any solution to (12) tends to
330
+ zero exponentially as t → +∞.
331
+ The proof follows from the fact that (0, 0) is asymptotically stable for all choices
332
+ of parameters ν, d. □
333
+ Lemma 2. Let Φ(G, F) = Φ(G0, F0) be a closed phase curve corresponding to the
334
+ solution of system (12) for ν = 0 with initial data (F0, G0). Then the phase curve
335
+ corresponding to the solution of system (12) ν > 0 with initial data (F0, G0) lies
336
+ strictly inside the curve Φ(G, F) = Φ(G0, F0).
337
+ Proof. Let us construct the phase curve of (12) at ν = 0, i.e the solution of
338
+ dF
339
+ dG = −
340
+ F 2 + G
341
+ F(1 − dG).
342
+ It implies
343
+ dZ
344
+ dG = −
345
+ 2
346
+ 1 − dGZ −
347
+ 2G
348
+ 1 − dG,
349
+ Z(G) = F 2.
350
+ The solution is
351
+ Φ(G, F) = (d − 2)F 2 − 2G + 1
352
+ (d − 2)(1 − dG)
353
+ 2
354
+ d
355
+ = Φ(G0, F0) = Cd,
356
+ (14)
357
+ Cd = (d − 2)F 2
358
+ 0 − 2G0 + 1
359
+ (d − 2)(1 − dG0)
360
+ 2
361
+ d ,
362
+ for d ̸= 2
363
+ Φ(G, F) = 2F 2 + ln(1 − 2G)(1 − 2G) + 1
364
+ 2(1 − 2G)
365
+ = Φ(G0, F0) = C2,
366
+ (15)
367
+ C2 = 2F 2
368
+ 0 + ln(1 − 2G0)(1 − 2G0) + 1
369
+ 2(1 − 2G0)
370
+ ,
371
+ for d = 2. As it was shown in [15] The curves given as (15) and (14) are bounded,
372
+ they contain the origin and intersect the axis F = 0 in two points: (G−, 0), G− < 0,
373
+ and (G+, 0), G+ > 0, see the pictures in [15].
374
+
375
+ 6
376
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
377
+ Let us consider V (t) = Φ(G, F) as a Lyapunov function in the half-plane G < 1
378
+ d,
379
+ F ∈ R. The derivative of V (t) due to system (12) is
380
+ dV
381
+ dt = −
382
+ 2νF 2
383
+ (1 − dG)
384
+ 2
385
+ d ≤ 0.
386
+ (16)
387
+ If we denote (G(t), F(t)) and ( ¯G(t), ¯F(t)) the point on the phase curve of (12) for
388
+ ν > 0 and ν = 0, respectively. and Thus, the distance |(G(t), F(t))| < |( ¯G(t), ¯F(t))|,
389
+ t > 0, since dV
390
+ dt = 0 if and only if F = 0 and F = 0 does not solve (12). □
391
+ Lemma 3. System (12) has no limit cycles in the half-plane G < 1
392
+ d, F ∈ R.
393
+ Proof. We use the Lyapunov function from Lemma 2 to prove the absence of a
394
+ limit cycle by contradiction.
395
+ Assume that a limit cycle (a closed trajectory Γ)
396
+ exists. Then it contains a stable equilibrium (0, 0) inside. We denote as d(Y1, Y2)
397
+ the distance between points Y1(t) = (G1(t), F1(t)), Y2(t) = (G2(t), F2(t)).
398
+ For
399
+ some initial point Y (t0) = (G∗, F∗) on Γ there exists a time t1 > t0 such that
400
+ Y (t1) = Y (t0) and, accordingly, d(Y (t0), Y (t1)) = 0. The curve Γ contains (0, 0)
401
+ inside, so there are two points on this trajectory for which F = 0, they are (G+, 0)
402
+ and (G−, 0), 0 < G+ < 1
403
+ d, G− < 0. At these points dV (G+,0)
404
+ dt
405
+ = dV (G−,0)
406
+ dt
407
+ = 0. At
408
+ other points of Γ we have dV
409
+ dt < 0. Then the function V (t) does not increase along
410
+ Γ. Moreover, dV
411
+ dt = 0 only at two points on Γ, so V (t) strictly decreases along the
412
+ trajectory, i.e., V (t1) − V (t0) < 0 for t1 > t0. For the above points Y (t0), Y (t1),
413
+ therefore d(Y (t0), Y (t1)) > 0. Thus, we obtain a contradiction. □
414
+ Thus, Lemmas 1, 2 and 3 imply the following property of the phase trajectories:
415
+ Lemma 4. Let d ≥ 2. Then the phase curves of system (12) are bounded in the
416
+ half-plane G < 1
417
+ d, F ∈ R and tends to zero as t → +∞.
418
+ Remark 1. Lemma 4 is not valid for d ≥ 1. Indeed, in this case the system (12)
419
+ coincides with the system (17) for the derivatives. As was shown in [13], for any
420
+ ν > 0 there exists a point on the phase plane such that the phase curve starting
421
+ from this point goes to infinity as t → t∗ < ∞.
422
+ 2.3. Study of the behavior of derivatives. This section closely follows [15], but
423
+ for the convenience of the reader we give a sketch of the reasonings.
424
+ Let us denote D = div V, λ = div E. Equations (3) imply
425
+ ∂D
426
+ ∂t + (V · ∇D) = −D2 + 2(d − 1)FD − d(d − 1)F 2 − λ − νD,
427
+ ∂λ
428
+ ∂t + (V · ∇λ) = D(1 − λ).
429
+ Along the characteristics given as ˙r = Fr the functions D, λ obey
430
+ ˙D = −D2 + 2(d − 1)FD − d(d − 1)F 2 − λ − νD,
431
+ ˙λ = D(1 − λ).
432
+ (17)
433
+ We introduce new variables u = D − dF, v = λ − dG. Systems (17) and (12) imply
434
+ ˙u = −u2 − 2uF − v − νu,
435
+ ˙v = −uv + (1 − dG)u − dFv.
436
+ (18)
437
+ System (18) can be linearized my means of the Radon lemma (e.g. [6], [12]).
438
+
439
+ AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA
440
+ 7
441
+ Theorem 4. [The Radon lemma] A matrix Riccati equation
442
+ ˙W = M21(t) + M22(t)W − WM11(t) − WM12(t)W,
443
+ (19)
444
+ (W = W(t) is a matrix (n×m), M21 is a matrix (n×m), M22 is a matrix (m×m),
445
+ M11 is a matrix (n×n), M12 is a matrix (m×n)) is equivalent to the homogeneous
446
+ linear matrix equation
447
+ ˙Y = M(t)Y,
448
+ M =
449
+
450
+ M11
451
+ M12
452
+ M21
453
+ M22
454
+
455
+ ,
456
+ (20)
457
+ (Y = Y (t) is a matrix (n × (n + m)), M is a matrix ((n + m) × (n + m)) ) in the
458
+ following sense.
459
+ Let on some interval J ∈ R the matrix-function Y (t) =
460
+ � Q(t)
461
+ P(t)
462
+
463
+ (Q is a
464
+ matrix (n × n), P is a matrix (n × m)) be a solution of (20) with the initial data
465
+ Y (0) =
466
+
467
+ I
468
+ W0
469
+
470
+ (I is the identity matrix (n × n), W0 is a constant matrix (n × m)) and det Q ̸= 0
471
+ on J . Then W(t) = P(t)Q−1(t) is the solution of (19) with W(0) = W0 on J .
472
+ Let us (18) as (19) with
473
+ W =
474
+
475
+ u
476
+ v
477
+
478
+ ,
479
+ M11 =
480
+ �0�
481
+ ,
482
+ M12 =
483
+ �1
484
+ 0�
485
+ ,
486
+ M21 =
487
+ �0
488
+ 0
489
+
490
+ ,
491
+ M22 =
492
+ �−2 F − ν
493
+ −1
494
+ 1 − d G
495
+ −d F
496
+
497
+ .
498
+ Then according Theorem 4 the solition of (18) is
499
+ W(t) = P(t)
500
+ Q(t),
501
+ where P(t) = (p1(t), p2(t))T and Q(t) solves the linear system
502
+ � Q
503
+ P
504
+ �·
505
+ = M
506
+ � Q
507
+ P
508
+
509
+ ,
510
+ M =
511
+
512
+
513
+ 0
514
+ 1
515
+ 0
516
+ 0
517
+ −2F − ν
518
+ −1
519
+ 0
520
+ 1 − dG
521
+ −dF
522
+
523
+
524
+ (21)
525
+ subject to the initial data
526
+ � Q
527
+ P
528
+
529
+ (0) =
530
+
531
+ 1
532
+ W0
533
+
534
+ ,
535
+ W0 =
536
+ � u0
537
+ v0
538
+
539
+ =
540
+ � div V0 − dF0(r0)
541
+ div E0 − dG0(r0)
542
+
543
+ .
544
+ Since the vector function P(t) and the function Q(t) are components of the solution
545
+ of a linear system of differential equations with continuous coefficients, these func-
546
+ tions do not go to infinity for any finite value of t. Hence the functions u, v go to
547
+ infinity along the characteristic starting from the point r0 ∈ R if and only if there
548
+ exists a finite t∗ > 0 such that Q(t∗, r0) = 0. Since u = D − dF, v = λ − dG and
549
+ the functions G, F are bounded, the derivatives of the solution of (3) are bounded
550
+ if and only if the functions u, v are bounded. Thus, the conditions for the bound-
551
+ edness of derivatives coincide with the conditions under which the function Q(t)
552
+ does not vanish for any finite t.
553
+ System (21) implies
554
+
555
+ 8
556
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
557
+ Q(t) = 1 +
558
+ t
559
+
560
+ 0
561
+ p1(τ)dτ,
562
+ ˙p1 = −(2F + ν)p1 − p2,
563
+ ˙p2 = (1 − dG)p1 − dFp2.
564
+ It follows
565
+ ¨p1 + ((d + 2)F + ν) ˙p1 + (2 ˙F + (1 − dG) + dF(2F + ν))p1 = 0,
566
+ and, taking into account ˙F = −F 2 − G − νF,
567
+ ¨p1 + ((d + 2)F + ν) ˙p1 + (2(d − 1)F 2 − (2 + d)G + (d − 2)νF + 1)p1 = 0.
568
+ We change
569
+ p1(t) = H(t)e− ν
570
+ 2 te
571
+ − d+2
572
+ 2
573
+ t�
574
+ 0
575
+ F (τ)dτ
576
+ and obtain
577
+ ¨H + JH = 0,
578
+ (22)
579
+ with
580
+ J = 1 − 1
581
+ 4ν2 − (d − 2)(d − 4)
582
+ 4
583
+ F 2 + (d − 2)νF − (d + 2)
584
+ 2
585
+ G.
586
+ Thus,
587
+ Q(t) = 1 +
588
+ t
589
+
590
+ 0
591
+ p1(τ)dτ = 1 +
592
+ t
593
+
594
+ 0
595
+ H(τ)e− ν
596
+ 2 τe
597
+ − d+2
598
+ 2
599
+ τ�
600
+ 0
601
+ F (ξ)dξ
602
+ dτ.
603
+ Thus, for the boundedness of derivatives, it is necessary to require that for all
604
+ t > 0 condition
605
+ t
606
+
607
+ 0
608
+ H(τ)e− ν
609
+ 2 τe
610
+ − d+2
611
+ 2
612
+ τ�
613
+ 0
614
+ F (ξ)dξ
615
+ dτ > −1
616
+ (23)
617
+ holds.
618
+ It is easy to check that
619
+ H(0) = H0 = u0,
620
+ ˙H(0) = H1 =
621
+ �d − 2
622
+ 2
623
+ F0 − ν
624
+ 2
625
+
626
+ u0 − v0.
627
+ (24)
628
+ 3. Proof of Theorem 1
629
+ First of all, we notice that condition (5) follows from
630
+ sup
631
+ r∈R+
632
+ |(rG0(r), rF0(r), u0(r), v0(r))| < ε,
633
+ (25)
634
+ where |(x1, . . . , xk)| =
635
+
636
+ x2
637
+ 1 + · · · + x2
638
+ k, k ∈ N.
639
+ Since we are interested in small values of ν, we restrict ourselves to the case of
640
+ ν < 2.
641
+ 1. Let us fix r ∈ R+. The matrix of linearization of the system of four equations
642
+ (12), (18), consists of two blocks
643
+ �−ν
644
+ −1
645
+ 1
646
+ 0
647
+
648
+ , its complex conjugate eigenvalues
649
+ are λ1,2 = − ν±ih1
650
+ 2
651
+ , where h1 =
652
+
653
+ 4 − ν2.
654
+ therefore the equilibrium the origin
655
+
656
+ AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA
657
+ 9
658
+ on the phase space G, F, u, v is asymptotically stable. This implies that for any
659
+ sufficiently small ε - neighborhood of the origin there exists δ(ε) < ε such that if
660
+ |(rG0, rF0, u0, v0)| < δ, then |(G, F, u, v)| < ε. Moreover,
661
+ |rG, rF, u, v| ≤ C1e− ν
662
+ 2 t,
663
+ C1 = const,
664
+ (26)
665
+ the constant C1 depends on ν and ε, [4], Ch.XIII, Sec.1, ε = ε(ν, r).
666
+ Thus, in condition (25) we take ε(ν) = inf
667
+ r∈R+
668
+ ε(ν, r). The asymptotics (6) follows
669
+ immediately.
670
+ 4. Proof of Theorem 2
671
+ There is an alternative method to proof Theorem 1. Namely, we can show that
672
+ for an arbitrary small ν > 0 there exists ε(ν) > 0 such that if (25) holds, then
673
+ ���
674
+ t
675
+
676
+ 0
677
+ H(τ)e− ν
678
+ 2 τe
679
+ − d+2
680
+ 2
681
+ τ�
682
+ 0
683
+ F (ξ)dξ
684
+
685
+ ��� < 1
686
+ (27)
687
+ for all t > 0. This condition evidently implies (23), therefore the derivatives of the
688
+ considered solution are bounded, and the solution of (3), (4) keeps smoothness.
689
+ However, detailed estimates of the functions under the sign of integral gives us
690
+ a possibility to obtain more or less practical sufficient condition that guarantees
691
+ smoothness of solutions in terms of initial data.
692
+ 1. Let us denote S(t) = e
693
+ − d+2
694
+ 2
695
+ t�
696
+ 0
697
+ F (ξ)dξ
698
+ . Then ˙S = − d+2
699
+ 2 FS, and, as follows from
700
+ (12),
701
+ S =
702
+ ��� 1 − dG
703
+ 1 − dG0
704
+ ���
705
+ d+2
706
+ 2d ,
707
+ (28)
708
+ therefore, due to (16),
709
+ 0 < M− < S < M+,
710
+ M+ =
711
+ ���1 − dG−
712
+ 1 − dG0
713
+ ���
714
+ d+2
715
+ 2d ,
716
+ M− =
717
+ ���1 − dG+
718
+ 1 − dG0
719
+ ���
720
+ d+2
721
+ 2d
722
+ (29)
723
+ where G− < 0 is the point, where the curve (14) (or (15)) intersects the axis F = 0,
724
+ see Lemma 2.
725
+ 2. To estimate H(t) we use the following result [2] (Th.2, Ch.2): all solution of
726
+ the equation
727
+ ¨z + (1 + ϕ(t))z = 0,
728
+
729
+
730
+ |ϕ(τ)|dτ < ∞
731
+ are bounded. Moreover, z2 + ˙z2 ≤ (y2 + ˙y2) e
732
+ 2
733
+ t�
734
+ 0
735
+ |ϕ(τ)|dτ
736
+ , where y is a solution of
737
+ ¨y + y = 0 such that z(0) = y(0), ˙z(0) = ˙y(0). It implies
738
+ z2 ≤ (y2 + ˙y2) e
739
+ 2
740
+ t�
741
+ 0
742
+ |ϕ(τ)|dτ
743
+ = (y2(0) + ˙y2(0)) e
744
+ 2
745
+ t�
746
+ 0
747
+ |ϕ(τ)|dτ
748
+ .
749
+ (30)
750
+ In (22) we can change the time variable as t1 = h1t, to obtain ¨H + J1H = 0,
751
+ where J1 = 1 + ϕ1(t1),
752
+ ϕ1(t1) = 1
753
+ h1
754
+
755
+ −(d − 2)(d − 4)
756
+ 4
757
+ F 2 + (d − 2)νF − (d + 2)
758
+ 2
759
+ G
760
+
761
+ .
762
+
763
+ 10
764
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
765
+ From (26) we can conclude that |ϕ1(t1)| ≤ const e−
766
+ ν
767
+ 2h1 t1. Since
768
+
769
+
770
+ |ϕ1(τ)|dτ < ∞,
771
+ then |H(t1)| is bounded for all initial data H(0), ˙H(0). Now we go back to the time
772
+ variable t and use the notation of Theorem 2 for φ and J+. Taking into account
773
+ (30) we get
774
+ |H(t)| ≤
775
+
776
+ H2
777
+ 0 + 4H2
778
+ 1
779
+ 4 − ν2 e
780
+
781
+
782
+ 0
783
+ |φ(τ)|dτ
784
+ .
785
+ (31)
786
+ and
787
+ |H(t)| ≤
788
+
789
+ H2
790
+ 0 + 4 ˙H2
791
+ 0
792
+ 4 − ν2 e
793
+ t�
794
+ 0
795
+ |φ(τ)|dτ
796
+
797
+
798
+ H2
799
+ 0 + 4H2
800
+ 1
801
+ 4 − ν2 e
802
+
803
+ J+−1+ ν2
804
+ 4
805
+
806
+ T ,
807
+ (32)
808
+ for every T > 0.
809
+ 3. Note that due to Lemma 2, for all t > 0 the points (G, F) lie inside the
810
+ bounded curves (15) or (14), therefore the maximal (positive) G+ and minimal
811
+ (negative) G− values of G, as well as maximum of F 2, denoted as F 2
812
+ +, can be found
813
+ from the analytic expression for these curves. Therefore for every (G0, F0) we can
814
+ find J+ = const such that J ≤ J+, where J is given as (23).
815
+ Estimates (29), (31), (27) imply condition (7), whereas (29), (32), (27) imply
816
+ condition (8), if we substitute (24) and use the notation of Theorem 2.
817
+ We can only notice that we do not need to know the value of F+, which appear
818
+ in J+. Indeed, for d = 2 the expression for J+ does not contain F+, for d > 2 the
819
+ value of F+ can be found via G.
820
+ Let us prove the latter statement.
821
+ At the maximum point of (14) we have
822
+ dF
823
+ dG = 0, i.e. F 2 = −G. Therefore, the value of G, at which the extremum is
824
+ reached, can be found from the equation
825
+ −G = 2G − 1
826
+ d − 2 + (1 − dG)
827
+ 2
828
+ d Cd,
829
+ Cd = (d − 2)F 2
830
+ 0 − 2G0 + 1
831
+ (d − 2)(1 − dG0)
832
+ 2
833
+ d ,
834
+ which solution is G = 1
835
+ d
836
+
837
+ 1 − ((d − 2)Cd)
838
+ d−2
839
+ d
840
+
841
+ . Thus,
842
+ F+ = 1
843
+ d
844
+
845
+ ((d − 2)Cd)
846
+ d−2
847
+ d
848
+ − 1
849
+
850
+ .
851
+ (33)
852
+ 4. Now we prove (9). Let us denote as H∗ < 0 the value of H(t) at the point t∗
853
+ of a negative minimum. Assume that we know the estimate H∗ ≤ H∗
854
+ + < 0, then
855
+ t
856
+
857
+ 0
858
+ H(τ)e− ν
859
+ 2 τe
860
+ − d+2
861
+ 2
862
+ τ�
863
+ 0
864
+ F (ξ)dξ
865
+ dτ < 2H∗
866
+ +M+
867
+ ν
868
+ < −1,
869
+ is a sufficient condition for the blow-up.
870
+ Let H+(t) be the solution to the Cauchy problem
871
+ ¨H+ + J+H+ = 0,
872
+ H+(0) = H(0),
873
+ ˙H+(0) = ˙H(0).
874
+ Indeed, it is easy to check that
875
+ d
876
+ dt
877
+
878
+ H2 +
879
+ ˙H2
880
+ J+
881
+
882
+ = 2(J+ − J)
883
+ J+
884
+ H ˙H.
885
+
886
+ AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA
887
+ 11
888
+ Since H(0) ≤ 0, ˙H(0) < 0, then for t ∈ (0, t∗) we have H ˙H ≥ 0 and H2 +
889
+ ˙H2
890
+ J+ ≥
891
+ H2(0) +
892
+ ˙H2(0)
893
+ J+ , and in the point of minimum H2
894
+ ∗ ≥ H2(0) +
895
+ ˙H2(0)
896
+ J+
897
+ ≡ (H∗
898
+ +)2. Note
899
+ that H(t) obtains its minimum on the semi-period of H+, i.e. t∗ ≤
900
+ π
901
+
902
+ J+ . Now it
903
+ rests to substitute (24).
904
+ Thus, Theorem 2 is proved.
905
+ 5. Proof of Theorem 3
906
+ Now we assume ν > 2 and fix r0 ∈ R+.
907
+ 1. The eigenvalues of the matrix of linearization of (12) are now real and nega-
908
+ tive: λ1,2 = − ν±h2
909
+ 2
910
+ , where h2 =
911
+
912
+ ν2 − 4. Therefore ([4], Ch.XIII, Sec.1)
913
+ |(G, F)| ≤ C2e− ν−h2
914
+ 2
915
+ t,
916
+ C2 = const > 0,
917
+ (34)
918
+ 2. We change the time as t2 = h2
919
+ 2 t, and rewrite (22) as ¨H − J2H = 0, where
920
+ J2 = 1 + ϕ2(t),
921
+ ϕ2(t) = − 4
922
+ h2
923
+ 2
924
+
925
+ −(d − 2)(d − 4)
926
+ 4
927
+ F 2 + (d − 2)νF − (d + 2)
928
+ 2
929
+ G
930
+
931
+ .
932
+ The equation
933
+ u′′ − (1 + ϕ2(τ))u = 0,
934
+
935
+
936
+ |ϕ2(τ)|dτ < ∞,
937
+ has two solution such that u(t) ∼ eτ and u(t) ∼ e−τ as τ → ∞ [2]. Moreover, for
938
+ |ϕ2| < 1 the solution is non-oscillating and has at most one root for t2 > 0. Thus,
939
+ (22) has two non-oscillating solutions H(t) ∼ e
940
+ h2
941
+ 2 t and H(t) ∼ e− h2
942
+ 2 t as t → ∞.
943
+ 3. Due to (29), it is enough to prove that
944
+ ���
945
+ t
946
+
947
+ 0
948
+ H(τ)e− ν
949
+ 2 τdτ
950
+ ��� → 0,
951
+ ν → ∞.
952
+ (35)
953
+ To this aim we perform twice the integration by parts to obtain
954
+ t
955
+
956
+ 0
957
+ H(τ)e− ν
958
+ 2 τdτ = Ψ(H(t), ν) +
959
+ t
960
+
961
+ 0
962
+ H(τ)e− ν
963
+ 2 τR(τ)dτ,
964
+ where
965
+ Ψ(H(t), ν) = ν
966
+ 2 (H(0) − H(t)e− ν
967
+ 2 t) + ˙H(0) − ˙H(t)e− ν
968
+ 2 t,
969
+ R(t) = (d − 2)(d − 4)
970
+ 4
971
+ F 2 + (d − 2)νF − (d + 2)
972
+ 2
973
+ G.
974
+ Taking into account (24),
975
+ Ψ(H(t), ν) = d − 2
976
+ 2
977
+ F0u0 − v0 − ν
978
+ 2 H(t)e− ν
979
+ 2 t − ˙H(t)e− ν
980
+ 2 t.
981
+ 4. Let us denote as ¯H the solution of (22), (24) with R = 0, which formally
982
+ corresponds to F = G = 0. This solution can be found explicitly as
983
+ ¯H(t) = H(0) cosh h2t
984
+ 2 + 2 ˙H(0)
985
+ h2
986
+ sinh h2t
987
+ 2 ,
988
+
989
+ 12
990
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
991
+ and
992
+ Ψ( ¯H(t), ν) = u0
993
+ h2
994
+ e− ν
995
+ 2 t sinh h2t
996
+ 2
997
+ +
998
+ �d − 2
999
+ 2
1000
+ F0u0 − v0
1001
+ � �
1002
+ 1 − e− ν
1003
+ 2 t
1004
+
1005
+ cosh h2t
1006
+ 2 + ν
1007
+ h2
1008
+ sinh h2t
1009
+ 2
1010
+ ��
1011
+ .
1012
+ It can be readily checked that for any fixed t > 0 as ν → ∞ we have
1013
+ 1
1014
+ h2
1015
+ e− ν
1016
+ 2 t sinh 1
1017
+ 2h2t = 1
1018
+ ν + O
1019
+ � 1
1020
+ ν2
1021
+
1022
+ ,
1023
+ 1 − e− ν
1024
+ 2 t
1025
+
1026
+ cosh h2t
1027
+ 2 + ν
1028
+ h2
1029
+ sinh h2t
1030
+ 2
1031
+
1032
+ = t
1033
+ ν + O
1034
+ � 1
1035
+ ν2
1036
+
1037
+ ,
1038
+ therefore Ψ( ¯H(t), ν) → 0 as ν → ∞.
1039
+ 5. Further we are going to prove that
1040
+ H(t) = ¯H(t) + O
1041
+ �1
1042
+ ν
1043
+
1044
+ ,
1045
+ ˙H(t) = ˙¯H(t) + O(1),
1046
+ ν → ∞,
1047
+ t > 0.
1048
+ (36)
1049
+ Indeed, w(t) = H(t) − ¯H(t) is the solution to the non-homogeneous problem
1050
+ ¨w − h2
1051
+ 4 w = −RH,
1052
+ w(0) = ˙w(0),
1053
+ therefore, taking into account (34), we have
1054
+ w(t)
1055
+ =
1056
+ 1
1057
+ h2
1058
+
1059
+ e− h2t
1060
+ 2
1061
+ t
1062
+
1063
+ 0
1064
+ R(τ)H(τ)e
1065
+ h2τ
1066
+ 2 dτ − e
1067
+ h2t
1068
+ 2
1069
+ t
1070
+
1071
+ 0
1072
+ R(τ)H(τ)e− h2τ
1073
+ 2 dτ
1074
+
1075
+  =
1076
+ 1
1077
+ h2
1078
+ t
1079
+
1080
+ 0
1081
+ R(τ)H(τ) sinh h2(τ − t)
1082
+ 2
1083
+ dτ = O
1084
+ �1
1085
+ ν
1086
+
1087
+ ,
1088
+ ˙w(t) = O(1),
1089
+ ν → ∞.
1090
+ 6. Now we show that for any fixed t > 0 as ν → ∞
1091
+ t
1092
+
1093
+ 0
1094
+ H(τ)e− ν
1095
+ 2 τR(τ)dτ = o
1096
+
1097
+
1098
+ t
1099
+
1100
+ 0
1101
+ H(τ)e− ν
1102
+ 2 τdτ
1103
+
1104
+  .
1105
+ (37)
1106
+ Indeed, (34) implies that there exists a constant R0 > 0 such that |R(t)| ≤
1107
+ R0e− ν−h2
1108
+ 2
1109
+ t. Therefore
1110
+ ��� 1
1111
+ R0
1112
+ t
1113
+
1114
+ 0
1115
+ H(τ)e− ν
1116
+ 2 τR(τ)dτ −
1117
+ t
1118
+
1119
+ 0
1120
+ H(τ)e− ν
1121
+ 2 τdτ
1122
+ ��� ≤
1123
+ t
1124
+
1125
+ 0
1126
+ ���H(τ)
1127
+ ���
1128
+ ���R(τ)
1129
+ R0
1130
+ − 1
1131
+ ��� e− ν
1132
+ 2 τdτ ≤
1133
+ t
1134
+
1135
+ 0
1136
+ | ¯H(τ) + w(τ)||e− ν−h2
1137
+ 2
1138
+ τ − 1| e− ν
1139
+ 2 τdτ =
1140
+ t
1141
+
1142
+ 0
1143
+ ��� ¯H(τ) + O
1144
+ �1
1145
+ ν
1146
+ � ��� e− ν
1147
+ 2 τdτ · O
1148
+ � 1
1149
+ ν
1150
+
1151
+ =
1152
+ o
1153
+ �1
1154
+ ν
1155
+
1156
+ → 0,
1157
+ ν → ∞,
1158
+ what implies (37).
1159
+
1160
+ AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA
1161
+ 13
1162
+ 7. Thus, for a fixed t > 0 we have
1163
+ Ψ(H(t), ν) = ν
1164
+ 2 (H(0) − ( ¯H(t) + w(t))e− ν
1165
+ 2 t) + ˙H(0) − ( ˙¯H(t) + ˙w(t))e− ν
1166
+ 2 t =
1167
+ Ψ( ¯H(t), ν) − ( ˙w(t) + ν
1168
+ 2 w(t))e− ν
1169
+ 2 t → 0,
1170
+ ν → ∞,
1171
+ due to (36). Together with (37) it implies (35).
1172
+ The asymptotic property (10) can be proved as in Theorem 1.
1173
+ 6. Discussion
1174
+ We proved that for axisymmetric multidimensional oscillations of a cold plasma
1175
+ the constant linear dumping, which corresponds to a constant coefficient of the
1176
+ frequency of collisions between particles ν, serves as a mollifier. Moreover, Theorem
1177
+ 3 tells us that for an arbitrary initial pulse we can choose such a large coefficient
1178
+ ν that the solution will remain smooth for all t > 0 and decay to the rest state.
1179
+ However, this scenario does not make physical sense, since we cannot control the
1180
+ collision rate, which is relatively small (ν ≪ 1) according to the measurements.
1181
+ The theoretical result of Theorem 1 is predictable. Physicists know that small
1182
+ axisymmetric smooth deviations of the rest state persist in collisional media, see
1183
+ [9], [7] for the cylindrical case and references therein. They would be interested in
1184
+ the more or less exact size of the neighborhood of the rest state corresponding to
1185
+ smooth solutions. The criterion of smoothness in the terms of initial data can be
1186
+ obtained analytically for d = 1, see [13]. Theorem 2 gives some information about
1187
+ the lifetime of a smooth solution for a fixed ν. However, this is not a criterion, but
1188
+ only sufficient conditions. The condition (7) is more precise, but it is difficult to
1189
+ use in practice, since we do not know the analytical solution (12). Condition (8)
1190
+ is more rough than (7), but more convenient, since we can check arbitrary initial
1191
+ data (4) and decide what the lifetime that we can guaranty for the solution of the
1192
+ Cauchy problem (3), (4).
1193
+ Note that the problem of blow-up or non-blow-up for specific initial data and a
1194
+ specific coefficient ν can still be solved numerically. Indeed, we solve system (12),
1195
+ (22) for each r and check the condition (23).
1196
+ Further, it should be noted that the constant collision frequency is only an
1197
+ assumption that simplifies the asymptotic analysis.
1198
+ Actually ν is a function of
1199
+ density n. It is shown in [14] that in the case d = 1 for ν = ν0nγ, γ > 1 each
1200
+ solution of the Cauchy problem is smooth for all initial data. A similar problem for
1201
+ the multidimensional case is completely open. It would be natural to expect that
1202
+ the form of ν(n) depends on d.
1203
+ Another important problem is to study how collisions between particles affect so-
1204
+ lutions without radial symmetry. The first approach to this difficult problem would
1205
+ be to study affine solutions for which (V, E) = (F(t)r, G(t)r), where F(t), G(t) are
1206
+ matrices (d × d). As shown in [15], under the assumption of radial symmetry, such
1207
+ solutions are globally smooth. Nevertheless, as was recently proved [16], an arbi-
1208
+ trarily small deviation from radial symmetry in the class of affine solution blows
1209
+ up, although the oscillation breaking mechanism is very subtle. The linearization
1210
+ shows that the constant damping prevents the blow-up of asymmetric affine so-
1211
+ lutions. However, it is interesting to investigate whether this property holds for
1212
+ arbitrary asymmetric oscillations.
1213
+
1214
+ 14
1215
+ OLGA S. ROZANOVA*, MARIA I. DELOVA
1216
+ Acknowledgments
1217
+ Supported by the Moscow Center for Fundamental and Applied Mathematics
1218
+ under the agreement 075-15-2019-1621.
1219
+ References
1220
+ [1] A.F. Alexandrov, L.S. Bogdankevich, and A.A. Rukhadze, “Principles of plasma electrody-
1221
+ namics,” Springer series in electronics and photonics, Springer, Berlin Heidelberg, 1984.
1222
+ [2] R. Bellman, “Stability Theory of Differential Equations,” Dover Books on Mathematics,
1223
+ Mineola, 1953.
1224
+ [3] D. Chae, and E. Tadmor, On the finite time blow-up of the Euler-Poisson equations in Rn,
1225
+ Commun. Math. Sci., Vol.6(3) (2008), 785–789.
1226
+ [4] Coddington E.A., and Levinson N. “Theory of Ordinary Differential Equations,” McGraw-
1227
+ Hill, New York, 1955.
1228
+ [5] R. C. Davidson, “Methods in nonlinear plasma theory,” Acad. Press, New York, 1972.
1229
+ [6] G. Freiling, A survey of nonsymmetric Riccati equations, Linear Algebra and its Applications,
1230
+ Vol.351-352 (2002), 243–270.
1231
+ [7] A.A. Frolov, and E.V. Chizhonkov, The effect of electron-ion collisions on breaking cylindrical
1232
+ plasma oscillations. Math Models. Comput. Simul. Vol.11 (2019), 438–450.
1233
+ [8] V. L. Ginzburg, “Propagation of electromagnetic waves in plasma,” Pergamon, New York,
1234
+ 1970.
1235
+ [9] L.M. Gorbunov, A.A. Frolov, and E.V. Chizhonkov, N.E. Andreev, Breaking of nonlinear
1236
+ cylindrical plasma oscillations, Plasma Physics Reports, Vol. 36 (4) (2010), 345–356.
1237
+ [10] S. Engelberg, H. Liu, and E. Tadmor, Critical thresholds in Euler-Poisson equations, Indiana
1238
+ University Mathematics Journal, Vol.50 (2001), 109–157.
1239
+ [11] E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron
1240
+ accelerators, Rev. Mod. Phys., Vol. 81 (2009), 1229-1285.
1241
+ [12] W. T. Reid, “Riccati differential equations,” Academic Press, New York, 1972.
1242
+ [13] O. Rozanova, E. Chizhonkov, and M. Delova, Exact thresholds in the dynamics of cold plasma
1243
+ with electron-ion collisions, AIP Conference Proceedings, Vol.2302 (1) (2020), 060012.
1244
+ [14] O.S. Rozanova, Suppression of singularities of solutions of the Euler-Poisson system with
1245
+ density-dependent damping, Physica D: Nonlinear Phenomena Vol.429 (2022), 133077.
1246
+ [15] O.S. Rozanova, On the behavior of multidimensional radially symmetric solutions of the
1247
+ repulsive Euler-Poisson equations, Physica D: Nonlinear Phenomena Vol. 443 (2023), 133578.
1248
+ [16] O.S. Rozanova, and M.K. Turzinsky, On the properties of affine solutions of cold plasma
1249
+ equations, submitted, arXiv:2211.16894 (2022).
1250
+ [17] C. Tan, Eulerian dynamics in multidimensions with radial symmetry, SIAM Journal on
1251
+ Mathematical Analysis, Vol. 53 (3) (2021), 3040–3071.
1252
+ [18] D. Wei, E. Tadmor, and H. Bae, Critical thresholds in multi-dimensional Euler-Poisson
1253
+ equations with radial symmetry. Commun. Math. Sci., Vol. 10(1)(2012), 75–86.
1254
+ Mathematics and Mechanics Department, Lomonosov Moscow State University, Lenin-
1255
+ skie Gory, Moscow, 119991, Russian Federation, [email protected]
1256
+
BdAyT4oBgHgl3EQf4Ppc/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf,len=426
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
3
+ page_content='00782v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
4
+ page_content='AP] 2 Jan 2023 ON MULTIDIMENSIONAL AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL COLD PLASMA OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
5
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
6
+ page_content=' DELOVA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
7
+ page_content=' We study the influence of the friction term on the radially sym- metric solutions of the repulsive Euler-Poisson equations with a non-zero back- ground, corresponding to cold plasma oscillations in many spatial dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
8
+ page_content=' It is shown that for any arbitrarily small constant non-negative constant fric- tion coefficient, there exists a neighborhood of the zero stationary solution in the C1 norm such that the solution of the Cauchy problem with initial data belonging to this neighborhood remains globally smooth in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
9
+ page_content=' Moreover, this solution stabilizes to the zero as t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
10
+ page_content=' This result contrasts with the situation of zero friction, where any small deviation from the zero equilibrium generally leads to a blow-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
11
+ page_content=' Our method allows to estimate the lifetime of smooth solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
12
+ page_content=' Further we prove that for any initial data one can find such friction coefficient that the respective solution to the Cauchy problem keeps smoothness for all t > 0 and stabilizes to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
13
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
14
+ page_content=' Introduction We study a frictional version of the repulsive Euler-Poisson equations ∂n ∂t + div (nV) = 0, ∂V ∂t + (V · ∇) V = k ∇Φ − ν V, ∆Φ = n − n0, (1) where the the scalar functions n and Φ are the density and a repulsive (for k > 0) force potential, respectively, the vector V is the velocity, they depend on the time t and the point x ∈ Rd, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
15
+ page_content=' Here n0 > 0 is the density background, ν > 0 is a friction coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
16
+ page_content=' If we denote ∇Φ = −E, and set n0 = 1, such that n = 1 − div E, (2) we can remove n from (1) and rewrite it as ∂V ∂t + (V · ∇) V = −E − νV, ∂E ∂t + Vdiv E = V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
17
+ page_content=' (3) In this paper we study the Cauchy problem for (1) or (3) and our main concern is to study initial data that guarantee a globally smooth solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
18
+ page_content=' System (3) corresponds to the hydrodynamics of “cold” or electron plasma in the non-relativistic approximation in dimensionless quantities (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
19
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
20
+ page_content=', [1], [5], [8]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
21
+ page_content=' In this interpretation the friction coefficient characterizes the intensity of electron-ion collisions during plasma oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
22
+ page_content=' The cold plasma equations is now very popular object of study, may be more popular than the Euler-Poisson equations themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
23
+ page_content=' The reason is that the cold plasma in used in the accelerators of electrons in the 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
24
+ page_content=' Primary 35Q60;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
25
+ page_content=' Secondary 35L60, 35L67, 34M10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
26
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
27
+ page_content=' Euler-Poisson equations, quasilinear hyperbolic system, cold plasma, blow up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
28
+ page_content=' 1 2 OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
29
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
30
+ page_content=' DELOVA wake wave of a powerful laser pulse [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
31
+ page_content=' From this point of view the initial data (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
32
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
33
+ page_content=' the initial laser pulse) that corresponds to a solution that cannot survive being smooth are not applicable technically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
34
+ page_content=' System (3) in 1D case was studied [13], however, in the multidimensional case it is very difficult from both mathematical and physical points of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
35
+ page_content=' Indeed, it describes a non-hyperbolic superposition of different types of waves, each of them have a tendency to break out in a finite time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
36
+ page_content=' Therefore the theoretical results here are very scarce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
37
+ page_content=' The situation is more optimistic if we restrict ourselves to the class of axisym- metric solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
38
+ page_content=' Thus, we consider one-dimensional solutions in space, given on the half-line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
39
+ page_content=' In [10], [3], [18], [17] it was shown that for n0 = 0, k > 0 and n0 ≥ 0, k < 0 in the non-frictional case there is a threshold in terms of the initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
40
+ page_content=' Namely, one can specify exactly the class of initial data corresponding to a globally smooth solution, and these data form a neighborhood of the stationary state in the C1 -norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
41
+ page_content=' As it has been recently shown [15], for n0 > 0, k > 0, ν = 0 the situation is strikingly different: namely, for d ̸= 1 and d ̸= 4 an arbitrarily small pertur- bation of the zero stationary state blows up in the general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
42
+ page_content=' The exception is the initial data in the form of a simple wave, starting from which the solution can remain globally smooth and tend to an affine solution as t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
43
+ page_content=' In any case, the initial data corresponding to simple waves form a zero-measure manifold in the neighborhood of the stationary state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
44
+ page_content=' In this paper, we study the effect of constant friction on the blow-up process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
45
+ page_content=' Namely, we establish that the presence of friction normalizes the situation with the threshold for the initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
46
+ page_content=' Namely, for an arbitrarily small ν > 0 and any d, there exists a neighborhood of the zero stationary state in the C1-norm such that the corresponding solution of the Cauchy problem preserves smoothness (Theorem 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
47
+ page_content=' For small ν, Theorem 2 gives sufficient conditions guaranteeing blow-up or non- blow-up in terms of initial data, which can be applied to numerical tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
48
+ page_content=' Besides, we show that for any initial data, one can find ν such that the corresponding solution of the Cauchy problem is globally smooth (Theorem 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
49
+ page_content=' In other words, this situation is absolutely analogous to d = 1, and the increase in spatial dimension does not lead to any new phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
50
+ page_content=' Thus, we consider axisymmetric solutions of (3) V = F(t, r)r, E = G(t, r)r, where r = (x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
51
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
52
+ page_content=', xd) is the radius-vector, r = � x2 1 + x2 2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
53
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
54
+ page_content=' + x2 d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
55
+ page_content=' The initial data that correspond to these solutions are (V, E)|t=0 = (V0(r), E0(r)) = (F0(r)r, G0(r)r), (F0(r), G0(r)) ∈ C2(¯R+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
56
+ page_content=' (4) We assume that (V0(r), E0(r)) are bounded together with their derivatives uni- formly on r ∈ ¯R+ and denote ∥f∥C1(R+) = 1� i=0 sup r∈R+ |f (i)(r)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
57
+ page_content=' The physically natural condition n|t=0 > 0 dictates divE < 1, see (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
58
+ page_content=' The main results of the paper are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
59
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
60
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
61
+ page_content=' For arbitrary small ν > 0 there exists ε(ν) > 0, such that the solution of the problem (3) - (4) satisfying ∥V0(r), E0(r)∥C1(R+) < ε, (5) AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA 3 keeps C1 - smoothness for all t > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
62
+ page_content=' Moreover, ∥V, E∥C1(R+) ≤ const e− ν 2 t → 0, t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
63
+ page_content=' (6) Let us denote u0 = div V0 − dF0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
64
+ page_content=' v0 = div E0 − dG0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
65
+ page_content=' H0 = u0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
66
+ page_content=' H1 = �d − 2 2 F0 − ν 2 � − v0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
67
+ page_content=' φ = −d + 2 2 G + (d − 2)νF − (d − 2)(d − 4) 2 F 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
68
+ page_content=' J+ = 1 − ν2 4 − d + 2 2 G�� + ν(d − 2)F+ + (1 − δ3d)(d − 2)(d − 4) 2 F 2 +,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
69
+ page_content=' M± = �1 − dG∓ 1 − dG0 � d+2 2d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
70
+ page_content=' 0 < M− < M+,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
71
+ page_content=' where (G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
72
+ page_content=' F) is the solution of the problem (12) subject to initial data (G0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
73
+ page_content=' F0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
74
+ page_content=' G− < 0 and G+ > 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
75
+ page_content=' G+ < 1 d are the left and right roots of equation (15) or (14),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
76
+ page_content=' F = 0 (they depend on (G0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
77
+ page_content=' F0)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
78
+ page_content=' F+ is given as (33) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
79
+ page_content=' δij is the Kronecker symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
80
+ page_content=' The next theorem gives more information about the size of the neighborhood of the origin containing globally smooth solutions in the case of small ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
81
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
82
+ page_content=' Let ν < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
83
+ page_content=' a) A sufficient condition on initial data (4) that guaranties the smoothness of the solution of the problem (3) - (4) for all t > 0 is the following: inf r∈R+) F1(ν, V0(r), E0(r)) < 1, (7) F1(ν, V0(r), E0(r)) = 2 ν M+ � H2 0 + � 1 − ν2 4 �−1 H2 1 e ∞ � 0 |φ(τ|dτ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
84
+ page_content=' b) If there exists T > 0 such that inf r∈R+) F2(T, ν, V0(r), E0(r)) < 1, (8) F2(T, ν, V0(r), E0(r)) = 2 ν M+ � H2 0 + � 1 − ν2 4 �−1 H2 1 e � J+−1+ ν2 4 � T , then the solution of the problem (3) - (4) preserves smoothness for t ∈ [0, T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
85
+ page_content=' c) If the initial data (4) are such that there exists a point r ∈ R+ for which condition F3(ν, V0(r), E0(r)) ≥ 1, (9) F3(ν, V0(r), E0(r)) = 2 ν M− � H2 0 + J−1 + H2 1, H0 ≤ 0, H1 < 0 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
86
+ page_content=' Then the solution of problem (3) - (4) blows up within t < π √ J+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
87
+ page_content=' 4 OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
88
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
89
+ page_content=' DELOVA Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
90
+ page_content=' For arbitrary initial data (4) there exists such ν > 0 that the solution of problem (3) - (4) keeps C1 - smoothness for all t > 0 and the asymptotic property ∥V, E∥C1(R+) ≤ const e− ν−√ 4−ν2 2 t → 0, t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
91
+ page_content=' (10) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
92
+ page_content=' Theorems 1, 2 and 3 can be reformulated in the terms of the Euler-Poisson equations (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
93
+ page_content=' The stationary stationary state in this case is V = 0, Φ = const, n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
94
+ page_content=' In this work we use the technique of linearization my means of the Radon lemma, the same as in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
95
+ page_content=' It turn out to be very convenient for the analysis of the non- strictly hyperbolic systems often arising when studying the reduced cold plasma equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
96
+ page_content=' The paper is organised as follows: Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
97
+ page_content='2 is devoted to auxiliary results on the behavior of solution and its derivatives, Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
98
+ page_content='3, 4 and 5 contain the proofs of The- orems 1, 2, and 3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
99
+ page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
100
+ page_content='6 is devoted to a discussion on the importance of the results for physics and the formulation of future problems in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
101
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
102
+ page_content=' Behavior of solutions along characteristics We use the fact that V = F(t, r)r, E = G(t, r)r and get ∂F ∂t + Fr∂F ∂r = −F 2 − G − νF, ∂G ∂t + Fr∂G ∂r = F − dFG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
103
+ page_content=' (11) (V0, E0) = (F(0, r)r, G(0, r)r) = (F0(r)r, G0(r)r), (F0(r), G0(r)) ∈ C2(R+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
104
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
105
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
106
+ page_content=' Physical constraints on solution components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
107
+ page_content=' Let us fix r0 ∈ ¯R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
108
+ page_content=' Along the characteristics ˙r = ∂r ∂t = Fr, r(0) = r0, of the system (11), the functions F and G obey the system of equations ˙F = −F 2 − G − νF, ˙G = F − dFG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
109
+ page_content=' (12) Therefore dG F(1 − dG) = dr Fr, 1 − dG = const · r−d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
110
+ page_content=' (13) Since r ≥ 0, the sign of the expression 1 − dG does not change, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
111
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
112
+ page_content=' sign(1 − dG) = sign(1−dG(0, r0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
113
+ page_content=' Therefore, the motion on the phase plane (G, F) corresponding to system (12) occurs either in the half-plane G < 1 d, or in the half-plane G > 1 d, or on the line G = 1 d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
114
+ page_content=' The equilibria of (12) are the following: if ν < 2 √ d, then there exists the only point (F = 0, G = 0), a stable focus;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
115
+ page_content=' if ν = 2 √ d, then there exist two points: (F = 0, G = 0), a stable focus, and (F = − ν 2, G = 1 d), a saddle-node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
116
+ page_content=' if ν > 2 √ d, then there exist three points: (F = 0, G = 0), a stable focus (ν < 2) or a stable node, otherwise, and (F = − ν±√ ν2− 4 d 2 , G = 1 d), a saddle and an unstable node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
117
+ page_content=' AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA 5 We see that there are no equilibria in the domain G > 1 d, hence there are no bounded trajectories in this region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
118
+ page_content=' If the motion on the plane (G, F) starts from the point for which G(0, r(0)) > 1 d, then the phase trajectory rests in the half- plane G > 1 d and G(t, r(t)) → +∞ for t → t∗ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
119
+ page_content=' Moreover, due to (13), we have r(t) → 0 for t → t∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
120
+ page_content=' In this case, we get a contradiction with the positivity of density, since n = 1 − div E = 1 − Grr − dG > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
121
+ page_content=' On the line G = 1 d the density is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
122
+ page_content=' Thus, we study the problem only in the half-plane G < 1 d, F ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
123
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
124
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
125
+ page_content=' Boundedness of the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
126
+ page_content=' In the half-plane G < 1 d, F ∈ R system (12) has one equilibrium (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
127
+ page_content=' It corresponds to the stationary state V = E = 0 and it is stable for any values of the parameters d and ν > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
128
+ page_content=' Namely, as a linear analysis show, if 0 < ν < 2 it is a stable focus;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
129
+ page_content=' if ν = 2 it is a stable degenerate node;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
130
+ page_content=' if ν > 2 it is a stable node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
131
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
132
+ page_content=' There exists δ > 0 such that if the initial data (F0(r0), G0(r0)) belong to the δ- neighborhood of the origin, r0 ∈ ¯R+, then any solution to (12) tends to zero exponentially as t → +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
133
+ page_content=' The proof follows from the fact that (0, 0) is asymptotically stable for all choices of parameters ν, d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
134
+ page_content=' □ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
135
+ page_content=' Let Φ(G, F) = Φ(G0, F0) be a closed phase curve corresponding to the solution of system (12) for ν = 0 with initial data (F0, G0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
136
+ page_content=' Then the phase curve corresponding to the solution of system (12) ν > 0 with initial data (F0, G0) lies strictly inside the curve Φ(G, F) = Φ(G0, F0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
137
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
138
+ page_content=' Let us construct the phase curve of (12) at ν = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
139
+ page_content='e the solution of dF dG = − F 2 + G F(1 − dG).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
140
+ page_content=' It implies dZ dG = − 2 1 − dGZ − 2G 1 − dG, Z(G) = F 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
141
+ page_content=' The solution is Φ(G, F) = (d − 2)F 2 − 2G + 1 (d − 2)(1 − dG) 2 d = Φ(G0, F0) = Cd, (14) Cd = (d − 2)F 2 0 − 2G0 + 1 (d − 2)(1 − dG0) 2 d , for d ̸= 2 Φ(G, F) = 2F 2 + ln(1 − 2G)(1 − 2G) + 1 2(1 − 2G) = Φ(G0, F0) = C2, (15) C2 = 2F 2 0 + ln(1 − 2G0)(1 − 2G0) + 1 2(1 − 2G0) , for d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
142
+ page_content=' As it was shown in [15] The curves given as (15) and (14) are bounded, they contain the origin and intersect the axis F = 0 in two points: (G−, 0), G− < 0, and (G+, 0), G+ > 0, see the pictures in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
143
+ page_content=' 6 OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
144
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
145
+ page_content=' DELOVA Let us consider V (t) = Φ(G, F) as a Lyapunov function in the half-plane G < 1 d, F ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
146
+ page_content=' The derivative of V (t) due to system (12) is dV dt = − 2νF 2 (1 − dG) 2 d ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
147
+ page_content=' (16) If we denote (G(t), F(t)) and ( ¯G(t), ¯F(t)) the point on the phase curve of (12) for ν > 0 and ν = 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
148
+ page_content=' and Thus, the distance |(G(t), F(t))| < |( ¯G(t), ¯F(t))|, t > 0, since dV dt = 0 if and only if F = 0 and F = 0 does not solve (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
149
+ page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
150
+ page_content=' System (12) has no limit cycles in the half-plane G < 1 d, F ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
151
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
152
+ page_content=' We use the Lyapunov function from Lemma 2 to prove the absence of a limit cycle by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
153
+ page_content=' Assume that a limit cycle (a closed trajectory Γ) exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
154
+ page_content=' Then it contains a stable equilibrium (0, 0) inside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
155
+ page_content=' We denote as d(Y1, Y2) the distance between points Y1(t) = (G1(t), F1(t)), Y2(t) = (G2(t), F2(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
156
+ page_content=' For some initial point Y (t0) = (G∗, F∗) on Γ there exists a time t1 > t0 such that Y (t1) = Y (t0) and, accordingly, d(Y (t0), Y (t1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
157
+ page_content=' The curve Γ contains (0, 0) inside, so there are two points on this trajectory for which F = 0, they are (G+, 0) and (G−, 0), 0 < G+ < 1 d, G− < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
158
+ page_content=' At these points dV (G+,0) dt = dV (G−,0) dt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
159
+ page_content=' At other points of Γ we have dV dt < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
160
+ page_content=' Then the function V (t) does not increase along Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
161
+ page_content=' Moreover, dV dt = 0 only at two points on Γ, so V (t) strictly decreases along the trajectory, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
162
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
163
+ page_content=', V (t1) − V (t0) < 0 for t1 > t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
164
+ page_content=' For the above points Y (t0), Y (t1), therefore d(Y (t0), Y (t1)) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
165
+ page_content=' Thus, we obtain a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
166
+ page_content=' □ Thus, Lemmas 1, 2 and 3 imply the following property of the phase trajectories: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
167
+ page_content=' Let d ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
168
+ page_content=' Then the phase curves of system (12) are bounded in the half-plane G < 1 d, F ∈ R and tends to zero as t → +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
169
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
170
+ page_content=' Lemma 4 is not valid for d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
171
+ page_content=' Indeed, in this case the system (12) coincides with the system (17) for the derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
172
+ page_content=' As was shown in [13], for any ν > 0 there exists a point on the phase plane such that the phase curve starting from this point goes to infinity as t → t∗ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
173
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
174
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
175
+ page_content=' Study of the behavior of derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
176
+ page_content=' This section closely follows [15], but for the convenience of the reader we give a sketch of the reasonings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
177
+ page_content=' Let us denote D = div V, λ = div E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
178
+ page_content=' Equations (3) imply ∂D ∂t + (V · ∇D) = −D2 + 2(d − 1)FD − d(d − 1)F 2 − λ − νD, ∂λ ∂t + (V · ∇λ) = D(1 − λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
179
+ page_content=' Along the characteristics given as ˙r = Fr the functions D, λ obey ˙D = −D2 + 2(d − 1)FD − d(d − 1)F 2 − λ − νD, ˙λ = D(1 − λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
180
+ page_content=' (17) We introduce new variables u = D − dF, v = λ − dG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
181
+ page_content=' Systems (17) and (12) imply ˙u = −u2 − 2uF − v − νu, ˙v = −uv + (1 − dG)u − dFv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
182
+ page_content=' (18) System (18) can be linearized my means of the Radon lemma (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
183
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
184
+ page_content=' [6], [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
185
+ page_content=' AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA 7 Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
186
+ page_content=' [The Radon lemma] A matrix Riccati equation ˙W = M21(t) + M22(t)W − WM11(t) − WM12(t)W, (19) (W = W(t) is a matrix (n×m), M21 is a matrix (n×m), M22 is a matrix (m×m), M11 is a matrix (n×n), M12 is a matrix (m×n)) is equivalent to the homogeneous linear matrix equation ˙Y = M(t)Y, M = � M11 M12 M21 M22 � , (20) (Y = Y (t) is a matrix (n × (n + m)), M is a matrix ((n + m) × (n + m)) ) in the following sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
187
+ page_content=' Let on some interval J ∈ R the matrix-function Y (t) = � Q(t) P(t) � (Q is a matrix (n × n), P is a matrix (n × m)) be a solution of (20) with the initial data Y (0) = � I W0 � (I is the identity matrix (n × n), W0 is a constant matrix (n × m)) and det Q ̸= 0 on J .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
188
+ page_content=' Then W(t) = P(t)Q−1(t) is the solution of (19) with W(0) = W0 on J .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
189
+ page_content=' Let us (18) as (19) with W = � u v � , M11 = �0� , M12 = �1 0� , M21 = �0 0 � , M22 = �−2 F − ν −1 1 − d G −d F � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
190
+ page_content=' Then according Theorem 4 the solition of (18) is W(t) = P(t) Q(t), where P(t) = (p1(t), p2(t))T and Q(t) solves the linear system � Q P �· = M � Q P � , M = \uf8eb \uf8ed 0 1 0 0 −2F − ν −1 0 1 − dG −dF \uf8f6 \uf8f8 (21) subject to the initial data � Q P � (0) = � 1 W0 � , W0 = � u0 v0 � = � div V0 − dF0(r0) div E0 − dG0(r0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
191
+ page_content=' Since the vector function P(t) and the function Q(t) are components of the solution of a linear system of differential equations with continuous coefficients, these func- tions do not go to infinity for any finite value of t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
192
+ page_content=' Hence the functions u, v go to infinity along the characteristic starting from the point r0 ∈ R if and only if there exists a finite t∗ > 0 such that Q(t∗, r0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
193
+ page_content=' Since u = D − dF, v = λ − dG and the functions G, F are bounded, the derivatives of the solution of (3) are bounded if and only if the functions u, v are bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
194
+ page_content=' Thus, the conditions for the bound- edness of derivatives coincide with the conditions under which the function Q(t) does not vanish for any finite t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
195
+ page_content=' System (21) implies 8 OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
196
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
197
+ page_content=' DELOVA Q(t) = 1 + t � 0 p1(τ)dτ, ˙p1 = −(2F + ν)p1 − p2, ˙p2 = (1 − dG)p1 − dFp2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
198
+ page_content=' It follows ¨p1 + ((d + 2)F + ν) ˙p1 + (2 ˙F + (1 − dG) + dF(2F + ν))p1 = 0, and, taking into account ˙F = −F 2 − G − νF, ¨p1 + ((d + 2)F + ν) ˙p1 + (2(d − 1)F 2 − (2 + d)G + (d − 2)νF + 1)p1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
199
+ page_content=' We change p1(t) = H(t)e− ν 2 te − d+2 2 t� 0 F (τ)dτ and obtain ¨H + JH = 0, (22) with J = 1 − 1 4ν2 − (d − 2)(d − 4) 4 F 2 + (d − 2)νF − (d + 2) 2 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
200
+ page_content=' Thus, Q(t) = 1 + t � 0 p1(τ)dτ = 1 + t � 0 H(τ)e− ν 2 τe − d+2 2 τ� 0 F (ξ)dξ dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
201
+ page_content=' Thus, for the boundedness of derivatives, it is necessary to require that for all t > 0 condition t � 0 H(τ)e− ν 2 τe − d+2 2 τ� 0 F (ξ)dξ dτ > −1 (23) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
202
+ page_content=' It is easy to check that H(0) = H0 = u0, ˙H(0) = H1 = �d − 2 2 F0 − ν 2 � u0 − v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
203
+ page_content=' (24) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
204
+ page_content=' Proof of Theorem 1 First of all, we notice that condition (5) follows from sup r∈R+ |(rG0(r), rF0(r), u0(r), v0(r))| < ε, (25) where |(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
205
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
206
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
207
+ page_content=' , xk)| = � x2 1 + · · · + x2 k, k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
208
+ page_content=' Since we are interested in small values of ν, we restrict ourselves to the case of ν < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
209
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
210
+ page_content=' Let us fix r ∈ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
211
+ page_content=' The matrix of linearization of the system of four equations (12), (18), consists of two blocks �−ν −1 1 0 � , its complex conjugate eigenvalues are λ1,2 = − ν±ih1 2 , where h1 = √ 4 − ν2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
212
+ page_content=' therefore the equilibrium the origin AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA 9 on the phase space G, F, u, v is asymptotically stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
213
+ page_content=' This implies that for any sufficiently small ε - neighborhood of the origin there exists δ(ε) < ε such that if |(rG0, rF0, u0, v0)| < δ, then |(G, F, u, v)| < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
214
+ page_content=' Moreover, |rG, rF, u, v| ≤ C1e− ν 2 t, C1 = const, (26) the constant C1 depends on ν and ε, [4], Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
215
+ page_content='XIII, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
216
+ page_content='1, ε = ε(ν, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
217
+ page_content=' Thus, in condition (25) we take ε(ν) = inf r∈R+ ε(ν, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
218
+ page_content=' The asymptotics (6) follows immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
219
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
220
+ page_content=' Proof of Theorem 2 There is an alternative method to proof Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
221
+ page_content=' Namely, we can show that for an arbitrary small ν > 0 there exists ε(ν) > 0 such that if (25) holds, then ��� t � 0 H(τ)e− ν 2 τe − d+2 2 τ� 0 F (ξ)dξ dτ ��� < 1 (27) for all t > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
222
+ page_content=' This condition evidently implies (23), therefore the derivatives of the considered solution are bounded, and the solution of (3), (4) keeps smoothness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
223
+ page_content=' However, detailed estimates of the functions under the sign of integral gives us a possibility to obtain more or less practical sufficient condition that guarantees smoothness of solutions in terms of initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
224
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
225
+ page_content=' Let us denote S(t) = e − d+2 2 t� 0 F (ξ)dξ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
226
+ page_content=' Then ˙S = − d+2 2 FS, and, as follows from (12), S = ��� 1 − dG 1 − dG0 ��� d+2 2d , (28) therefore, due to (16), 0 < M− < S < M+, M+ = ���1 − dG− 1 − dG0 ��� d+2 2d , M− = ���1 − dG+ 1 − dG0 ��� d+2 2d (29) where G− < 0 is the point, where the curve (14) (or (15)) intersects the axis F = 0, see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
227
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
228
+ page_content=' To estimate H(t) we use the following result [2] (Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
229
+ page_content='2, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
230
+ page_content='2): all solution of the equation ¨z + (1 + ϕ(t))z = 0, ∞ � |ϕ(τ)|dτ < ∞ are bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
231
+ page_content=' Moreover, z2 + ˙z2 ≤ (y2 + ˙y2) e 2 t� 0 |ϕ(τ)|dτ , where y is a solution of ¨y + y = 0 such that z(0) = y(0), ˙z(0) = ˙y(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
232
+ page_content=' It implies z2 ≤ (y2 + ˙y2) e 2 t� 0 |ϕ(τ)|dτ = (y2(0) + ˙y2(0)) e 2 t� 0 |ϕ(τ)|dτ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
233
+ page_content=' (30) In (22) we can change the time variable as t1 = h1t, to obtain ¨H + J1H = 0, where J1 = 1 + ϕ1(t1), ϕ1(t1) = 1 h1 � −(d − 2)(d − 4) 4 F 2 + (d − 2)νF − (d + 2) 2 G � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
234
+ page_content=' 10 OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
235
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
236
+ page_content=' DELOVA From (26) we can conclude that |ϕ1(t1)| ≤ const e− ν 2h1 t1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
237
+ page_content=' Since ∞ � |ϕ1(τ)|dτ < ∞, then |H(t1)| is bounded for all initial data H(0), ˙H(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
238
+ page_content=' Now we go back to the time variable t and use the notation of Theorem 2 for φ and J+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
239
+ page_content=' Taking into account (30) we get |H(t)| ≤ � H2 0 + 4H2 1 4 − ν2 e ∞ � 0 |φ(τ)|dτ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
240
+ page_content=' (31) and |H(t)| ≤ � H2 0 + 4 ˙H2 0 4 − ν2 e t� 0 |φ(τ)|dτ ≤ � H2 0 + 4H2 1 4 − ν2 e � J+−1+ ν2 4 � T , (32) for every T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
241
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
242
+ page_content=' Note that due to Lemma 2, for all t > 0 the points (G, F) lie inside the bounded curves (15) or (14), therefore the maximal (positive) G+ and minimal (negative) G− values of G, as well as maximum of F 2, denoted as F 2 +, can be found from the analytic expression for these curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
243
+ page_content=' Therefore for every (G0, F0) we can find J+ = const such that J ≤ J+, where J is given as (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
244
+ page_content=' Estimates (29), (31), (27) imply condition (7), whereas (29), (32), (27) imply condition (8), if we substitute (24) and use the notation of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
245
+ page_content=' We can only notice that we do not need to know the value of F+, which appear in J+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
246
+ page_content=' Indeed, for d = 2 the expression for J+ does not contain F+, for d > 2 the value of F+ can be found via G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
247
+ page_content=' Let us prove the latter statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
248
+ page_content=' At the maximum point of (14) we have dF dG = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
249
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
250
+ page_content=' F 2 = −G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
251
+ page_content=' Therefore, the value of G, at which the extremum is reached, can be found from the equation −G = 2G − 1 d − 2 + (1 − dG) 2 d Cd, Cd = (d − 2)F 2 0 − 2G0 + 1 (d − 2)(1 − dG0) 2 d , which solution is G = 1 d � 1 − ((d − 2)Cd) d−2 d � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
252
+ page_content=' Thus, F+ = 1 d � ((d − 2)Cd) d−2 d − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
253
+ page_content=' (33) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
254
+ page_content=' Now we prove (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
255
+ page_content=' Let us denote as H∗ < 0 the value of H(t) at the point t∗ of a negative minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
256
+ page_content=' Assume that we know the estimate H∗ ≤ H∗ + < 0, then t � 0 H(τ)e− ν 2 τe − d+2 2 τ� 0 F (ξ)dξ dτ < 2H∗ +M+ ν < −1, is a sufficient condition for the blow-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
257
+ page_content=' Let H+(t) be the solution to the Cauchy problem ¨H+ + J+H+ = 0, H+(0) = H(0), ˙H+(0) = ˙H(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
258
+ page_content=' Indeed, it is easy to check that d dt � H2 + ˙H2 J+ � = 2(J+ − J) J+ H ˙H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
259
+ page_content=' AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA 11 Since H(0) ≤ 0, ˙H(0) < 0, then for t ∈ (0, t∗) we have H ˙H ≥ 0 and H2 + ˙H2 J+ ≥ H2(0) + ˙H2(0) J+ , and in the point of minimum H2 ∗ ≥ H2(0) + ˙H2(0) J+ ≡ (H∗ +)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
260
+ page_content=' Note that H(t) obtains its minimum on the semi-period of H+, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
261
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
262
+ page_content=' t∗ ≤ π √ J+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
263
+ page_content=' Now it rests to substitute (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
264
+ page_content=' Thus, Theorem 2 is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
265
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
266
+ page_content=' Proof of Theorem 3 Now we assume ν > 2 and fix r0 ∈ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
267
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
268
+ page_content=' The eigenvalues of the matrix of linearization of (12) are now real and nega- tive: λ1,2 = − ν±h2 2 , where h2 = √ ν2 − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
269
+ page_content=' Therefore ([4], Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
270
+ page_content='XIII, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
271
+ page_content='1) |(G, F)| ≤ C2e− ν−h2 2 t, C2 = const > 0, (34) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
272
+ page_content=' We change the time as t2 = h2 2 t, and rewrite (22) as ¨H − J2H = 0, where J2 = 1 + ϕ2(t), ϕ2(t) = − 4 h2 2 � −(d − 2)(d − 4) 4 F 2 + (d − 2)νF − (d + 2) 2 G � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
273
+ page_content=' The equation u′′ − (1 + ϕ2(τ))u = 0, ∞ � |ϕ2(τ)|dτ < ∞, has two solution such that u(t) ∼ eτ and u(t) ∼ e−τ as τ → ∞ [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
274
+ page_content=' Moreover, for |ϕ2| < 1 the solution is non-oscillating and has at most one root for t2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
275
+ page_content=' Thus, (22) has two non-oscillating solutions H(t) ∼ e h2 2 t and H(t) ∼ e− h2 2 t as t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
276
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
277
+ page_content=' Due to (29), it is enough to prove that ��� t � 0 H(τ)e− ν 2 τdτ ��� → 0, ν → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
278
+ page_content=' (35) To this aim we perform twice the integration by parts to obtain t � 0 H(τ)e− ν 2 τdτ = Ψ(H(t), ν) + t � 0 H(τ)e− ν 2 τR(τ)dτ, where Ψ(H(t), ν) = ν 2 (H(0) − H(t)e− ν 2 t) + ˙H(0) − ˙H(t)e− ν 2 t, R(t) = (d − 2)(d − 4) 4 F 2 + (d − 2)νF − (d + 2) 2 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
279
+ page_content=' Taking into account (24), Ψ(H(t), ν) = d − 2 2 F0u0 − v0 − ν 2 H(t)e− ν 2 t − ˙H(t)e− ν 2 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
280
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
281
+ page_content=' Let us denote as ¯H the solution of (22), (24) with R = 0, which formally corresponds to F = G = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
282
+ page_content=' This solution can be found explicitly as ¯H(t) = H(0) cosh h2t 2 + 2 ˙H(0) h2 sinh h2t 2 , 12 OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
283
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
284
+ page_content=' DELOVA and Ψ( ¯H(t), ν) = u0 h2 e− ν 2 t sinh h2t 2 + �d − 2 2 F0u0 − v0 � � 1 − e− ν 2 t � cosh h2t 2 + ν h2 sinh h2t 2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
285
+ page_content=' It can be readily checked that for any fixed t > 0 as ν → ∞ we have 1 h2 e− ν 2 t sinh 1 2h2t = 1 ν + O � 1 ν2 � , 1 − e− ν 2 t � cosh h2t 2 + ν h2 sinh h2t 2 � = t ν + O � 1 ν2 � , therefore Ψ( ¯H(t), ν) → 0 as ν → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
286
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
287
+ page_content=' Further we are going to prove that H(t) = ¯H(t) + O �1 ν � , ˙H(t) = ˙¯H(t) + O(1), ν → ∞, t > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
288
+ page_content=' (36) Indeed, w(t) = H(t) − ¯H(t) is the solution to the non-homogeneous problem ¨w − h2 4 w = −RH, w(0) = ˙w(0), therefore, taking into account (34), we have w(t) = 1 h2 \uf8eb \uf8ede− h2t 2 t � 0 R(τ)H(τ)e h2τ 2 dτ − e h2t 2 t � 0 R(τ)H(τ)e− h2τ 2 dτ \uf8f6 \uf8f8 = 1 h2 t � 0 R(τ)H(τ) sinh h2(τ − t) 2 dτ = O �1 ν � , ˙w(t) = O(1), ν → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
289
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
290
+ page_content=' Now we show that for any fixed t > 0 as ν → ∞ t � 0 H(τ)e− ν 2 τR(τ)dτ = o \uf8eb \uf8ed t � 0 H(τ)e− ν 2 τdτ \uf8f6 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
291
+ page_content=' (37) Indeed, (34) implies that there exists a constant R0 > 0 such that |R(t)| ≤ R0e− ν−h2 2 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
292
+ page_content=' Therefore ��� 1 R0 t � 0 H(τ)e− ν 2 τR(τ)dτ − t � 0 H(τ)e− ν 2 τdτ ��� ≤ t � 0 ���H(τ) ��� ���R(τ) R0 − 1 ��� e− ν 2 τdτ ≤ t � 0 | ¯H(τ) + w(τ)||e− ν−h2 2 τ − 1| e− ν 2 τdτ = t � 0 ��� ¯H(τ) + O �1 ν � ��� e− �� 2 τdτ · O � 1 ν � = o �1 ν � → 0, ν → ∞, what implies (37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
293
+ page_content=' AXISYMMETRIC OSCILLATIONS OF A COLLISIONAL PLASMA 13 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
294
+ page_content=' Thus, for a fixed t > 0 we have Ψ(H(t), ν) = ν 2 (H(0) − ( ¯H(t) + w(t))e− ν 2 t) + ˙H(0) − ( ˙¯H(t) + ˙w(t))e− ν 2 t = Ψ( ¯H(t), ν) − ( ˙w(t) + ν 2 w(t))e− ν 2 t → 0, ν → ∞, due to (36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
295
+ page_content=' Together with (37) it implies (35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
296
+ page_content=' The asymptotic property (10) can be proved as in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
297
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
298
+ page_content=' Discussion We proved that for axisymmetric multidimensional oscillations of a cold plasma the constant linear dumping, which corresponds to a constant coefficient of the frequency of collisions between particles ν, serves as a mollifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
299
+ page_content=' Moreover, Theorem 3 tells us that for an arbitrary initial pulse we can choose such a large coefficient ν that the solution will remain smooth for all t > 0 and decay to the rest state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
300
+ page_content=' However, this scenario does not make physical sense, since we cannot control the collision rate, which is relatively small (ν ≪ 1) according to the measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
301
+ page_content=' The theoretical result of Theorem 1 is predictable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
302
+ page_content=' Physicists know that small axisymmetric smooth deviations of the rest state persist in collisional media, see [9], [7] for the cylindrical case and references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
303
+ page_content=' They would be interested in the more or less exact size of the neighborhood of the rest state corresponding to smooth solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
304
+ page_content=' The criterion of smoothness in the terms of initial data can be obtained analytically for d = 1, see [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
305
+ page_content=' Theorem 2 gives some information about the lifetime of a smooth solution for a fixed ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
306
+ page_content=' However, this is not a criterion, but only sufficient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
307
+ page_content=' The condition (7) is more precise, but it is difficult to use in practice, since we do not know the analytical solution (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
308
+ page_content=' Condition (8) is more rough than (7), but more convenient, since we can check arbitrary initial data (4) and decide what the lifetime that we can guaranty for the solution of the Cauchy problem (3), (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
309
+ page_content=' Note that the problem of blow-up or non-blow-up for specific initial data and a specific coefficient ν can still be solved numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
310
+ page_content=' Indeed, we solve system (12), (22) for each r and check the condition (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
311
+ page_content=' Further, it should be noted that the constant collision frequency is only an assumption that simplifies the asymptotic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
312
+ page_content=' Actually ν is a function of density n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
313
+ page_content=' It is shown in [14] that in the case d = 1 for ν = ν0nγ, γ > 1 each solution of the Cauchy problem is smooth for all initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
314
+ page_content=' A similar problem for the multidimensional case is completely open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
315
+ page_content=' It would be natural to expect that the form of ν(n) depends on d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
316
+ page_content=' Another important problem is to study how collisions between particles affect so- lutions without radial symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
317
+ page_content=' The first approach to this difficult problem would be to study affine solutions for which (V, E) = (F(t)r, G(t)r), where F(t), G(t) are matrices (d × d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
318
+ page_content=' As shown in [15], under the assumption of radial symmetry, such solutions are globally smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
319
+ page_content=' Nevertheless, as was recently proved [16], an arbi- trarily small deviation from radial symmetry in the class of affine solution blows up, although the oscillation breaking mechanism is very subtle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
320
+ page_content=' The linearization shows that the constant damping prevents the blow-up of asymmetric affine so- lutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
321
+ page_content=' However, it is interesting to investigate whether this property holds for arbitrary asymmetric oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
322
+ page_content=' 14 OLGA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
323
+ page_content=' ROZANOVA*, MARIA I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
324
+ page_content=' DELOVA Acknowledgments Supported by the Moscow Center for Fundamental and Applied Mathematics under the agreement 075-15-2019-1621.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
325
+ page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
326
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
327
+ page_content=' Alexandrov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
328
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
329
+ page_content=' Bogdankevich, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
330
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
331
+ page_content=' Rukhadze, “Principles of plasma electrody- namics,” Springer series in electronics and photonics, Springer, Berlin Heidelberg, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
332
+ page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
333
+ page_content=' Bellman, “Stability Theory of Differential Equations,” Dover Books on Mathematics, Mineola, 1953.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
334
+ page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
335
+ page_content=' Chae, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
336
+ page_content=' Tadmor, On the finite time blow-up of the Euler-Poisson equations in Rn, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
337
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
338
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
339
+ page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
340
+ page_content='6(3) (2008), 785–789.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
341
+ page_content=' [4] Coddington E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
342
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
343
+ page_content=', and Levinson N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
344
+ page_content=' “Theory of Ordinary Differential Equations,” McGraw- Hill, New York, 1955.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
345
+ page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
346
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
347
+ page_content=' Davidson, “Methods in nonlinear plasma theory,” Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
348
+ page_content=' Press, New York, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
349
+ page_content=' [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
350
+ page_content=' Freiling, A survey of nonsymmetric Riccati equations, Linear Algebra and its Applications, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
351
+ page_content='351-352 (2002), 243–270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
352
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
353
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
354
+ page_content=' Frolov, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
355
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
356
+ page_content=' Chizhonkov, The effect of electron-ion collisions on breaking cylindrical plasma oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
357
+ page_content=' Math Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
358
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
359
+ page_content=' Simul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
360
+ page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
361
+ page_content='11 (2019), 438–450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
362
+ page_content=' [8] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
363
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
364
+ page_content=' Ginzburg, “Propagation of electromagnetic waves in plasma,” Pergamon, New York, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
365
+ page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
366
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
367
+ page_content=' Gorbunov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
368
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
369
+ page_content=' Frolov, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
370
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
371
+ page_content=' Chizhonkov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
372
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
373
+ page_content=' Andreev, Breaking of nonlinear cylindrical plasma oscillations, Plasma Physics Reports, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
374
+ page_content=' 36 (4) (2010), 345–356.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
375
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
376
+ page_content=' Engelberg, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
377
+ page_content=' Liu, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
378
+ page_content=' Tadmor, Critical thresholds in Euler-Poisson equations, Indiana University Mathematics Journal, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
379
+ page_content='50 (2001), 109–157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
380
+ page_content=' [11] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
381
+ page_content=' Esarey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
382
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
383
+ page_content=' Schroeder, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
384
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
385
+ page_content=' Leemans, Physics of laser-driven plasma-based electron accelerators, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
386
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
387
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
388
+ page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
389
+ page_content=' 81 (2009), 1229-1285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
390
+ page_content=' [12] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
391
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
392
+ page_content=' Reid, “Riccati differential equations,” Academic Press, New York, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
393
+ page_content=' [13] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
394
+ page_content=' Rozanova, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
395
+ page_content=' Chizhonkov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
396
+ page_content=' Delova, Exact thresholds in the dynamics of cold plasma with electron-ion collisions, AIP Conference Proceedings, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
397
+ page_content='2302 (1) (2020), 060012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
398
+ page_content=' [14] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
399
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
400
+ page_content=' Rozanova, Suppression of singularities of solutions of the Euler-Poisson system with density-dependent damping, Physica D: Nonlinear Phenomena Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
401
+ page_content='429 (2022), 133077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
402
+ page_content=' [15] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
403
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
404
+ page_content=' Rozanova, On the behavior of multidimensional radially symmetric solutions of the repulsive Euler-Poisson equations, Physica D: Nonlinear Phenomena Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
405
+ page_content=' 443 (2023), 133578.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
406
+ page_content=' [16] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
407
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
408
+ page_content=' Rozanova, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
409
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
410
+ page_content=' Turzinsky, On the properties of affine solutions of cold plasma equations, submitted, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
411
+ page_content='16894 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
412
+ page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
413
+ page_content=' Tan, Eulerian dynamics in multidimensions with radial symmetry, SIAM Journal on Mathematical Analysis, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
414
+ page_content=' 53 (3) (2021), 3040–3071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
415
+ page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
416
+ page_content=' Wei, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
417
+ page_content=' Tadmor, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
418
+ page_content=' Bae, Critical thresholds in multi-dimensional Euler-Poisson equations with radial symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
419
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
420
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
421
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
422
+ page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
423
+ page_content=' 10(1)(2012), 75–86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
424
+ page_content=' Mathematics and Mechanics Department, Lomonosov Moscow State University, Lenin- skie Gory, Moscow, 119991, Russian Federation, rozanova@mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
425
+ page_content='math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
426
+ page_content='msu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
427
+ page_content='su' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdAyT4oBgHgl3EQf4Ppc/content/2301.00782v1.pdf'}
BtFIT4oBgHgl3EQf_yzx/content/tmp_files/2301.11417v1.pdf.txt ADDED
@@ -0,0 +1,1007 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Are Labels Needed for Incremental Instance Learning?
2
+ Mert Kilickaya
3
+ Eindhoven University of Technology
4
5
+ Joaquin Vanschoren
6
+ Eindhoven University of Technology
7
8
+ Abstract
9
+ In this paper, we learn to classify visual object instances,
10
+ incrementally and via self-supervision (self-incremental).
11
+ Our learner observes a single instance at a time, which
12
+ is then discarded from the dataset. Incremental instance
13
+ learning is challenging, since longer learning sessions ex-
14
+ acerbate forgetfulness, and labeling instances is cumber-
15
+ some. We overcome these challenges via three contribu-
16
+ tions: i). We propose VINIL, a self-incremental learner that
17
+ can learn object instances sequentially, ii). We equip VINIL
18
+ with self-supervision to by-pass the need for instance la-
19
+ belling, iii). We compare VINIL to label-supervised vari-
20
+ ants on two large-scale benchmarks [6, 33], and show that
21
+ VINIL significantly improves accuracy while reducing for-
22
+ getfulness.
23
+ 1. Introduction
24
+ This paper strives for incrementally learning to recognize
25
+ visual object instances. Visual instance recognition aims to
26
+ retrieve different views of an input object instance image.
27
+ It can be seen as fine-grained object recognition, where the
28
+ goal is to distinguish different instantiations of the same ob-
29
+ ject, such as cup 1 from cup 2. Instance recognition finds
30
+ applications in many domains, such as in visual search [40],
31
+ tracking [5,48,49] and localization [60].
32
+ Learning to distinguish across object instances is chal-
33
+ lenging, as object instances differ from each other via only
34
+ little nuances. To learn visual object instances, researchers
35
+ generally resort to metric learning [52]. Two views of the
36
+ same object, such as those, can be obtained via capturing
37
+ the object from multiple angles, are fed to a deep convolu-
38
+ tional network such as ResNet [22]. Deep net is then forced
39
+ to pull representations of the same object together, while
40
+ pushing the representations of all the other objects within a
41
+ large batch.
42
+ In doing so, researchers iterate over potentially million-
43
+ scale datasets over and over to obtain a better metric space.
44
+ Then, the deep net is used to query a large database of im-
45
+ ages by comparing the feature representation of the query
46
+ input image with the database representations. While work-
47
+ ing well in practice, sifting through the whole dataset via
48
+ multiple iterations may not be possible, due to privacy (a
49
+ portion of the data may have to be deleted), or scale (i.e.
50
+ scaling to a billion images).
51
+ This paper builds upon incremental learning to miti-
52
+ gate privacy and scale issues. In incremental learning, the
53
+ learner observes images from a certain class for a num-
54
+ ber of iterations. Then, the data of the previous class is
55
+ discarded, and the learner receives examples from a novel
56
+ category. Such approach is called class-incremental learn-
57
+ ing, and receives an increasing amount of attention re-
58
+ cently [27,36,37,57].
59
+ Existing class-incremental learners are ill-suited for
60
+ instance-incremental learning for two reasons. First, class-
61
+ incremental learners rely on full label supervision. Collect-
62
+ ing such annotation at the instance level is very expensive.
63
+ Second, despite years of efforts, class-incremental learners
64
+ are forgetful, since they lose performance on previously ob-
65
+ served categories.
66
+ This paper proposes Visual Self-Incremental Instance
67
+ Learning, VINIL, to perform instance-incremental learn-
68
+ ing, consider Figure 1. VINIL observes multiple views of
69
+ a single instance at a time, which is then discarded from
70
+ the dataset.
71
+ Such examples can be easily captured via
72
+ turntable cameras [6,18,29,38] or via hand-interactions [15,
73
+ 34, 50].
74
+ Then, VINIL extracts its own supervision via
75
+ self-supervision [56], therefore self-incremental.
76
+ Self-
77
+ incremental learning not only is label-efficient, it also con-
78
+ sistently outperforms competitive label-supervised variants,
79
+ as we will show. In summary, this paper makes three con-
80
+ tributions:
81
+ I. We propose VINIL, a realistic, scalable incremental in-
82
+ stance learner,
83
+ II. VINIL performs self-incremental learning, by-passing
84
+ the need for heavy instance supervision,
85
+ III. VINIL is trained without labels, and is consistently
86
+ more accurate and less forgetful across benchmarks [6,
87
+ 33].
88
+ arXiv:2301.11417v1 [cs.CV] 26 Jan 2023
89
+
90
+ Label
91
+ VINIL
92
+ CNN
93
+ Phone 1
94
+ Phone 1
95
+
96
+ CNN
97
+ Cup 50
98
+ Phone 1
99
+ Phone 2
100
+
101
+ Cup 50
102
+ x
103
+ y
104
+ classifier
105
+ t=0
106
+ x
107
+ y
108
+ classifier
109
+ t=1000
110
+ VINIL
111
+ SSL
112
+ x
113
+ x’
114
+ t=0
115
+ x
116
+ x’
117
+ t=1000
118
+ VINIL
119
+ SSL
120
+
121
+ VINIL
122
+ SSL
123
+ x
124
+ x’
125
+ t=1
126
+ Figure 1. Top: Label-incremental learning requires instance-labels, and learns a new class weight per-instance. Therefore, it does not
127
+ scale well with high number of visual instances, and is prone to forgetting previous instances. Bottom: In this paper we propose self-
128
+ incremental instance learning: VINIL. VINIL solely focuses on learning a discriminative embedding. VINIL extracts its own supervision
129
+ for incremental learning from different views of the same instance using Self-Supervised Learning (SSL). As a result, VINIL is not only
130
+ label-free, but also more scalable and much less prone to forgetting.
131
+ 2. Related Work
132
+ Visual Instance Recognition. Visual instance recognition
133
+ aims to distinguish across different instances of an object
134
+ category (i.e. bottle A from bottle B). Researchers re-frame
135
+ many vision problem as visual instance search, to retrieve
136
+ similar products [23, 32, 40, 52], to track target objects [5,
137
+ 48,49], or to geo-localize an image [31,46,51,53,59]. The
138
+ dominant technique is to induce a discriminative embedding
139
+ space, often with the help of metric learning [14,23]. These
140
+ works demand access to the whole dataset at all times as
141
+ well as fine-grained similarity labels. Instead, in this pa-
142
+ per, we classify visual object instances, incrementally and
143
+ without label supervision.
144
+ Class-Incremental Learning. Class-incremental learning
145
+ expands an existing deep classifier with novel objects [36].
146
+ In doing so, the goal is to retain performance on the pre-
147
+ vious categories (i.e. prevent forgetting). To prevent for-
148
+ getting, two lines of research are popular: Regularization
149
+ and Memory. Regularization prevents abrupt changes in
150
+ network weights [28, 30, 43] whereas Memory techniques
151
+ replay part of the previous data [4,24,45,47].
152
+ We differ from conventional class-incremental learning
153
+ in two major ways. First, class-incremental learning oper-
154
+ ates on object-category level, whereas we operate on the in-
155
+ stance level. The challenges of instance-incremental learn-
156
+ ing goes far beyond that of class-incremental learning. Sec-
157
+ ond, most of the class-incremental learners assume access
158
+ to fully labeled datasets for learning, which is sub-optimal
159
+ if not impossible in case of instance learning. To that end,
160
+ we propose to utilize self-supervision, and adapt prominent
161
+ techniques for evaluation.
162
+ More specifically, we experiment with Elastic Weight
163
+ Consolidation (EwC) as a regularization approach [28] and
164
+ Replay as a memory approach [45] due to their ease of adap-
165
+ tation in a label-free (i.e. self-supervised) setting.
166
+ Self-Supervised Learning. Self-supervision designs pre-
167
+ text tasks to learn deep representations without labels. Early
168
+ approaches predict rotations [19] or patches [39], whereas
169
+ recently contrastive learning dominates [8, 11, 12, 21]. In
170
+ this work, we utilize self-supervision as a replacement of
171
+ instance labels to extract learning signals. We experiment
172
+ with BarlowTwins [56] for its high performance, and ease
173
+ of integration to incremental learning setup.
174
+ Incremental Self-Supervised Learning. Recently, there
175
+ has been a surge of interest in use of self-supervision to re-
176
+ place label supervision for incremental learning. We iden-
177
+ tify three main directions.
178
+ i) Pre-training:
179
+ Researchers use self-supervised learn-
180
+ ing either for pre-training prior to incremental learning
181
+ stage [7, 17, 26] or as an auxiliary loss function to improve
182
+ feature discrimination [58]. However, these papers still re-
183
+ quire labels during the incremental learning stage.
184
+ ii) Replay:
185
+ Second line of techniques propose replay-
186
+ based methods [10, 35, 42] to supplement self-supervised
187
+ learners with stored data within the memory. However, they
188
+ require large amounts of exemplars to be stored within the
189
+ memory to work effectively.
190
+ iii) Regularization: Third line of work proposes to reg-
191
+ ularize self-learned representations [16,20,35].
192
+ In this work, we focus on regularization-based self-
193
+ incremental learning. More specifically, we closely follow
194
+ UCL [35] and ask ourselves: What is the contribution of
195
+ self-supervision for instance incremental learning? Instead
196
+ of proposing a yet another model, we benchmark Barlow-
197
+ Twins [56], and compare it to the strong baseline of label-
198
+ supervised incremental learning.
199
+
200
+ Method
201
+ Supervision
202
+ Input
203
+ Memory
204
+ Loss
205
+ Fine-Tuning
206
+ Label-supervised
207
+ (x, y)
208
+ 
209
+ CE(y, y′)
210
+ Fine-Tuning
211
+ Self-supervised
212
+ (x)
213
+ 
214
+ BT(x, x′)
215
+ EwC
216
+ Label-supervised
217
+ (x, y)
218
+ 
219
+ CE(y, y′) + Reg(Θ, y′)
220
+ EwC
221
+ Self-supervised
222
+ (x)
223
+ 
224
+ BT(x, x′) + Reg(Θ)
225
+ Replay
226
+ Label-supervised
227
+ (x, y)
228
+ (xm, ym)
229
+ CE(y, y′) + CE(ym, ym′)
230
+ Replay
231
+ Self-supervised
232
+ (x)
233
+ (xm)
234
+ BT(x, x′) + BT(xm, xm′)
235
+ Table 1. VINIL performs incremental instance learning via self-supervision, and is compared with label-supervision. We use memory
236
+ replay [45] and weight regularization [28] as well as simple fine-tuning. Fine-Tuning [44] relies on Cross-Entropy (CE) or BarlowTwins
237
+ (BT) [56] to perform incremental learning. EwC [28] penalizes abrupt changes in network weights via regularization (Reg(·)). Replay [45]
238
+ replays a part of previous data in the form of input-labels (label-supervised) or input-only (self-supervised).
239
+ 3. VINIL
240
+ We present an overview of VINIL in Table 1. The goal
241
+ of VINIL is to train an embedding network f(·)θt parame-
242
+ terized by θt. The network maps an input image x to a D-
243
+ dimensional discriminative embedding h = fθt(x) which
244
+ will then be used to query the database to retrieve differ-
245
+ ent views of the input query for instance recognition. Here,
246
+ t denotes the incremental learning step, where the tasks
247
+ are arriving sequentially: T = (T1, T2, ..., Tt). We train
248
+ VINIL via minimizing the following objective:
249
+ L = wc · Linst + (1 − wc) · Lincr
250
+ (1)
251
+ where wc controls the contribution of instance classification
252
+ loss Linst and incremental learning loss Lincr. Incremen-
253
+ tal learning loss either corresponds to memory replay [45]
254
+ or weight regularization [28] whereas instance classifica-
255
+ tion loss Linst is either cross-entropy with labels or a self-
256
+ supervision objective.
257
+ 3.1. Incremental Learning
258
+ Fine-Tuning.
259
+ A vanilla way to perform incremental in-
260
+ stance learning is to apply simple fine-tuning via SGD [44].
261
+ In SGD, no incremental learning loss is applied (i.e. wc =
262
+ 1.0) and the sole objective is classification.
263
+ In case of label-supervision, a task is defined by a dataset
264
+ Dlabel
265
+ t
266
+ = {(xi,t, yi,t)kt
267
+ i=1} where kt is the data size at time
268
+ t. Then, SGD corresponds to instance discrimination via
269
+ cross-entropy Linst = CE(yi,t, y′
270
+ i,t). Here, instance cate-
271
+ gory prediction for the instance i at time step t is obtained
272
+ with a simple MLP classifier. Notice that this classifier will
273
+ expand in size linearly with the number of instance cate-
274
+ gories.
275
+ In case of VINIL, a task is defined by a dataset Dself
276
+ t
277
+ =
278
+ {(xi,t)nt
279
+ i=1} (i.e. no labels).
280
+ Then, SGD corresponds
281
+ to minimizing the self-supervision objective Linst
282
+ =
283
+ BT(xi,t, x′
284
+ i,t) where BT(·) is the BarlowTwins [56].
285
+ EwC [28]. EwC penalizes big changes in network weights
286
+ via comparing the weights in the current and the previous
287
+ incremental learning step. Originally, EwC re-weights the
288
+ contribution of each weight to the loss function as a function
289
+ of instance classification logits (i.e. label-supervision). In
290
+ VINIL, in the absence of labels, we omit this re-weighting
291
+ and simply use identity matrix.
292
+ Replay [45]. Replay replays a portion of the past data from
293
+ previous incremental steps to mitigate forgetting. In case of
294
+ label-supervision, this corresponds to replaying both the in-
295
+ put data and their labels via cross-entropy: CE(ym
296
+ i,t, ym′
297
+ i,t )
298
+ where ym′
299
+ i,t is the instance categories for the memory in-
300
+ stance i at time t. For VINIL, we simply replay the input
301
+ memory data and its augmented view via self-supervsion of
302
+ BarlowTwins as BT(xm
303
+ i,t, xm′
304
+ i,t ).
305
+ 3.2. Self-Supervised Learning
306
+ In BarlowTwins, the features are extracted from the orig-
307
+ inal and the augmented view of the input image with a
308
+ siamese deep network, at time step t as: (zi,t, z′
309
+ i,t) =
310
+ (fθt(xi,t), fθt(x′
311
+ i,t)) where x′
312
+ i,t = aug(xi, t) is the aug-
313
+ mented view of the input. BarlowTwins minimizes the re-
314
+ dundancy across views while maximizing the representa-
315
+ tional information. This is achieved via operating on the
316
+ cross-covariance matrix via:
317
+ BT =
318
+
319
+ i
320
+ (1 − Cii)2 + wb ·
321
+
322
+ i
323
+
324
+ j̸=i
325
+ (Cij)2
326
+ (2)
327
+ where:
328
+ Cij =
329
+
330
+ β zβ,iz′
331
+ β,j
332
+
333
+ β
334
+
335
+ z2
336
+ β,i · �
337
+ β
338
+
339
+ (z′
340
+ β,j)2
341
+ (3)
342
+ is the cross-correlation matrix.
343
+ Here,
344
+ wb
345
+ controls
346
+ invariance-redundancy reduction trade-off, i and j corre-
347
+ sponds to network’s output dimensions.
348
+
349
+ 4. Experimental Setup
350
+ Implementation. All the networks are implemented in Py-
351
+ Torch [41]. We use ResNet-18 [22] as the backbone f(·),
352
+ and a single-layer MLP for the instance classifier. We train
353
+ for 200 epochs for each incremental steps with a learning
354
+ rate 0.001 decayed via cosine annealing. We use SGD op-
355
+ timizer with momentum 0.9 and batch-size 256. We use
356
+ random cropping and scaling for augmentation.
357
+ We
358
+ follow
359
+ the
360
+ original
361
+ implementation
362
+ of
363
+ Bar-
364
+ lowTwins [1]. 10% of the data is stored within the memory
365
+ for replay [45]. We set scalars as: wc = 0.7, wb = 0.03
366
+ Datasets. We evaluate VINIL on iLab-20M [6] and Core-
367
+ 50 [33], since they are large-scale, sufficiently different, and
368
+ widely adopted in incremental learning.
369
+ iLab-20M is a turntable dataset of vehicles. It consists
370
+ of 10 objects (i.e. bus, car, plane) with varying ([25, 160])
371
+ number of instances per category. Objects are captured by
372
+ varying the background and the camera angle, leading to 14
373
+ examples per-instance. We use the public splits provided
374
+ in [3] with 125k training and 31k gallery images.
375
+ Core-50 is a hand-held object dataset used in bench-
376
+ marking incremental learning algorithms. The dataset in-
377
+ cludes 10 objects (i.e. phones, adaptors, scissors) with 50
378
+ instances per-category. Each instance is captured for 300
379
+ frames, across 11 different backgrounds. We use 120k train-
380
+ ing and 45k gallery images [2].
381
+ Protocol. We first divide each dataset into 5 tasks, with 2
382
+ object categories per-task. Then, each task is subdivided
383
+ into N object instance tasks depending on the dataset. We
384
+ discard the classifier of label-supervised variants after train-
385
+ ing, and evaluate all models with instance retrieval perfor-
386
+ mance via k-NN with k = 100 neighbors on the gallery set,
387
+ as is the standard in SSL [8,11–13,21].
388
+ We use the mean-pooled activations of LAYER4 of
389
+ ResNet to represent images. All exemplars in the gallery
390
+ set are used as query.
391
+ Metrics. We rely on two well established metrics to eval-
392
+ uate the performance of the models, namely accuracy and
393
+ forgetting.
394
+ i). Accuracy measures whether if we can retrieve differ-
395
+ ent views of the same instance from the gallery set given a
396
+ query. We measure accuracy for each incremental learning
397
+ steps, which is then averaged across all sessions.
398
+ ii).
399
+ Forgetting measures the discrepancy of accuracy
400
+ across different sessions. Concretely, it compares the max-
401
+ imum accuracy across all sessions with the accuracy in the
402
+ last step.
403
+ 5. Experiments
404
+ Our experiments address the following research ques-
405
+ tions: Q1: Can VINIL improve performance and reduce
406
+ forgetting in comparison to label-supervision? Q2: Does
407
+ VINIL learn incrementally generalizable representations
408
+ across datasets? Q3: What makes VINIL effective against
409
+ label-supervision?
410
+ 5.1.
411
+ How
412
+ Does
413
+ VINIL
414
+ Compare
415
+ to
416
+ Label-
417
+ Supervision?
418
+ First,
419
+ we compare VINIL’s performance to label-
420
+ supervision. The results are presented in Table 2.
421
+ Method
422
+ Supervision
423
+ Core-50
424
+ iLab-20M
425
+ Accuracy (↑)
426
+ Forgetting (↓)
427
+ Accuracy (↑)
428
+ Forgetting (↓)
429
+ SGD
430
+ Label
431
+ 71.450
432
+ 22.436
433
+ 89.340
434
+ 6.500
435
+ SGD
436
+ VINIL
437
+ 74.914
438
+ 4.802
439
+ 90.398
440
+ 0.000
441
+ Replay
442
+ Label
443
+ 88.180
444
+ 6.741
445
+ 84.464
446
+ 5.696
447
+ Replay
448
+ VINIL
449
+ 67.677
450
+ 10.095
451
+ 90.543
452
+ 0.000
453
+ EwC
454
+ Label
455
+ 75.117
456
+ 18.268
457
+ 87.690
458
+ 4.535
459
+ EwC
460
+ VINIL
461
+ 73.011
462
+ 2.167
463
+ 90.655
464
+ 0.000
465
+ Table 2. Visual Incremental Instance Learning on Core-50 [33]
466
+ and iLab-20M [6]. VINIL outperforms label-supervised variants
467
+ for 4 out of 6 settings, while significantly reducing forgetfulness
468
+ on both datasets.
469
+ This indicates self-incremental learning is a
470
+ strong, label-free alternative to label-supervision.
471
+ VINIL Yields Competitive Accuracy. We first compare
472
+ the accuracies obtained by VINIL vs.
473
+ label-supervision.
474
+ We observe that VINIL yields competitive accuracy against
475
+ label-supervision: In 4 out of 6 setting, VINIL outperforms
476
+ label-supervised variants.
477
+ VINIL Mitigates Forgetting. Secondly, we compare the
478
+ forget rates of VINIL vs. label-supervision (lower is better).
479
+ We observe that VINIL consistently leads to much lower
480
+ forget rates in comparison to label-supervision. On iLab-
481
+ 20M dataset, VINIL results in no forgetting. On the more
482
+ challenging dataset of Core-50, the difference across forget
483
+ rates are even more pronounced: Label-supervision suffers
484
+ from 22% forget rate whereas VINIL only by 4%, a relative
485
+ drop of 80% with SGD.
486
+ Label-supervision Leverages Memory. Our last observa-
487
+ tion is that memory improves the accuracy and reduces for-
488
+ getfulness of label-supervision. In contrast, the use of mem-
489
+ ory disrupts self-supervised representations. This indicates
490
+ that replaying both inputs and labels ((xi, yi)) as opposed
491
+ to input-only ((xi), as in self-supervision) may lead to im-
492
+ balanced training due to limited memory size [9,25,54].
493
+ In summary, we conclude that VINIL is an efficient,
494
+ label-free alternative to label-supervised incremental in-
495
+ stance learning.
496
+ VINIL improves accuracy while reduc-
497
+ ing forget rate.
498
+ We also observe that label-supervision
499
+
500
+ closes the gap when an additional memory of past data is
501
+ present. This motivates further research for improving self-
502
+ incremental instance learners with memory.
503
+ 5.2. Can VINIL Generalize Across Datasets?
504
+ After confirming the efficacy of VINIL within the same
505
+ dataset, we now move on to a more complicated setting:
506
+ Cross-dataset generalization. In cross-dataset generaliza-
507
+ tion, we first perform incremental training on Core-50, and
508
+ then evaluate on iLab-20M. Then, we perform incremental
509
+ training on iLab-20M and then evaluate on Core-50.
510
+ Cross-dataset generalization between Core-50 and iLab-
511
+ 20M is challenging due to the following reasons: i). Cam-
512
+ era: Core-50 is captured with a hand-held camera whereas
513
+ iLab-20M is captured on a platform with a turntable cam-
514
+ era, ii). Object Categories: Object categories are disjoint, as
515
+ no common objects are present in each dataset, iii). Object
516
+ Types: iLab-20M exhibits toy objects of vehicles whereas
517
+ Core-50 exhibits hand-interacted daily-life objects.
518
+ The results are presented in Table 3. We present train-
519
+ and-test on the same dataset as well as the relative drop (∆)
520
+ for reference.
521
+ Train on=⇒
522
+ Core-50
523
+ iLab-20M
524
+ iLab-20M
525
+ Core-50
526
+ Test on=⇒
527
+ Core-50
528
+ Core-50
529
+ iLab-20M
530
+ iLab-20M
531
+ Method
532
+ Supervision
533
+ Accuracy
534
+ Accuracy
535
+ %∆(↓)
536
+ Accuracy
537
+ Accuracy
538
+ %∆(↓)
539
+ SGD
540
+ Label
541
+ 71.450
542
+ 59.850
543
+ 16
544
+ 89.340
545
+ 67.249
546
+ 24
547
+ SGD
548
+ VINIL
549
+ 74.914
550
+ 66.704
551
+ 10
552
+ 90.398
553
+ 76.302
554
+ 15
555
+ Replay
556
+ Label
557
+ 88.180
558
+ 55.692
559
+ 36
560
+ 84.464
561
+ 69.412
562
+ 17
563
+ Replay
564
+ VINIL
565
+ 67.677
566
+ 61.857
567
+ 8
568
+ 90.543
569
+ 76.125
570
+ 15
571
+ EwC
572
+ Label
573
+ 75.117
574
+ 59.030
575
+ 21
576
+ 87.690
577
+ 70.087
578
+ 20
579
+ EwC
580
+ VINIL
581
+ 73.011
582
+ 70.648
583
+ 3
584
+ 90.655
585
+ 75.793
586
+ 16
587
+ Table 3. Cross-Dataset Generalization on Core-50 and iLab-20M
588
+ datasets. VINIL is consistently more robust in cross-dataset gen-
589
+ eralization when compared with label-supervision. The results in-
590
+ dicate that self-supervision improves the generality of visual rep-
591
+ resentations, for instance-incremental setup.
592
+ VINIL Yields Generalizable Representations. We first
593
+ observe that VINIL consistently yields higher accuracy and
594
+ lower drop rate across all 6 settings in both datasets. This
595
+ indicates that self-supervision extracts more generalizable
596
+ visual representations from the dataset.
597
+ Label-supervision Overfits with Memory. Secondly, we
598
+ observe that label-supervised variants with memory gener-
599
+ alizes via overfitting on the training dataset. Replay with
600
+ label-supervision leads to the biggest drop rate of 36% on
601
+ Core-50, when trained with iLab-20M. This implies the use
602
+ of the memory drastically reduces generality of visual rep-
603
+ resentations. A potential explanation is that, since replay
604
+ utilizes the same set of examples within the limited mem-
605
+ ory repeatedly throughout learning, this forces the network
606
+ to over-fit to those examples.
607
+ T=0
608
+ T=1
609
+ T=2
610
+ T=3
611
+ T=4
612
+ Incremental Time Steps
613
+ 0
614
+ 1
615
+ 2
616
+ 3
617
+ 4
618
+ Accuracy per Task
619
+ 96.19
620
+ 85.25
621
+ 81.97
622
+ 86.22
623
+ 83.77
624
+ 74.19
625
+ 77.59
626
+ 70.08
627
+ 70.30
628
+ 69.10
629
+ 83.16
630
+ 83.71
631
+ 90.34
632
+ 83.47
633
+ 81.66
634
+ 93.58
635
+ 86.62
636
+ 84.92
637
+ 95.42
638
+ 88.08
639
+ 94.36
640
+ 84.13
641
+ 77.51
642
+ 89.85
643
+ 94.17
644
+ 70
645
+ 75
646
+ 80
647
+ 85
648
+ 90
649
+ 95
650
+ Figure 2. Task-level performance of Label-supervision (SGD).
651
+ Label-supervision is biased towards recent task.
652
+ T=0
653
+ T=1
654
+ T=2
655
+ T=3
656
+ T=4
657
+ Incremental Time Steps
658
+ 0
659
+ 1
660
+ 2
661
+ 3
662
+ 4
663
+ Accuracy per Task
664
+ 75.18
665
+ 85.25
666
+ 91.50
667
+ 93.41
668
+ 95.27
669
+ 63.80
670
+ 68.95
671
+ 72.24
672
+ 73.02
673
+ 74.13
674
+ 66.55
675
+ 81.37
676
+ 87.78
677
+ 87.53
678
+ 88.06
679
+ 71.49
680
+ 82.92
681
+ 92.58
682
+ 95.81
683
+ 96.33
684
+ 72.01
685
+ 81.00
686
+ 93.54
687
+ 95.95
688
+ 98.20
689
+ 65
690
+ 70
691
+ 75
692
+ 80
693
+ 85
694
+ 90
695
+ 95
696
+ Figure 3. Task-level performance of VINIL (SGD). VINIL im-
697
+ proves its performance with incoming data, and is less biased to-
698
+ wards recent task.
699
+ We conclude that VINIL extracts generalizable visual
700
+ representations from the training source to perform instance
701
+ incremental training. We also conclude that the astound-
702
+ ing performance of label-supervision equipped with mem-
703
+ ory comes with the cost of overfit, leading to drastic drop in
704
+ case of visual discrepancies across datasets.
705
+ 5.3. What Factors Affect VINIL’s Performance?
706
+ VINIL Mitigates Bias Towards Recent Task. We present
707
+ the heatmaps of the performance for all 5 main tasks, when
708
+ each task is introduced sequentially, for label-supervision in
709
+ Figure 2 and for VINIL in Figure 3 on iLab-20M [6]. Each
710
+ row presents the accuracy for each task, as the tasks are in-
711
+ troduced sequentially. For example, the entry (0, 2) denotes
712
+ the performance on Task-0 when the Task-2 is introduced.
713
+ Considering Figure 2 for label-supervision, observe how
714
+ the tasks achieve their peak performance when they are
715
+ being introduced to the model, hence the higher numbers
716
+
717
+ within the diagonal. Then, the performance degrades dras-
718
+ tically as more and more tasks are being introduced. This
719
+ indicates label-supervision fails to leverage more data. We
720
+ call such phenomenon ”recency bias”, as the model is bi-
721
+ ased towards the most recently introduced task.
722
+ In contrast, in Figure 3 for VINIL, the performance on
723
+ each task improves sequentially with the incoming stream
724
+ of new tasks. This indicates self-supervised representations
725
+ are less biased towards the recent task, and can leverage
726
+ data to improve performance. This renders them as a viable
727
+ option when incremental learning for longer learning steps,
728
+ such as in incremental instance learning.
729
+ VINIL Focuses on the Object Instance. We present the
730
+ activations of the last layer of ResNet, at different incre-
731
+ mental time steps, in Figure 4.
732
+ Label
733
+ VINIL
734
+ t=0
735
+ t=1
736
+ t=2
737
+ t=3
738
+ t=4
739
+ Input
740
+ Label
741
+ Label
742
+ Label
743
+ Incremental Learning Time Steps
744
+ VINIL
745
+ VINIL
746
+ VINIL
747
+ Figure 4. Activations of the last layer of ResNet [22], throughout
748
+ the incremental learning steps. We compare label-supervision with
749
+ VINIL (SGD). Notice how the attention of the label-supervised
750
+ variant is disrupted after a few learning tasks. Instead, VINIL
751
+ learns to segment out the target object, successfully suppressing
752
+ the background context, such as the hand or the background.
753
+ Observe how VINIL learns to segment out the target ob-
754
+ ject from the background. This allows the model to ac-
755
+ curately distinguish across different instances of the same
756
+ object sharing identical backgrounds.
757
+ In contrast, label-
758
+ supervised variant progressively confuses the object with
759
+ the background. We call such a phenomenon ”attentional
760
+ deficiency” of label-supervised representations.
761
+ VINIL Stores Instance-level Information.
762
+ We present
763
+ nearest neighbors for three queries in Figure 5. We use
764
+ the average-pooled activations of the last ResNet layer on
765
+ Core-50 trained with SGD.
766
+ Observe how VINIL retrieves the same instance in dif-
767
+ ferent viewpoints, such as for the light bulb and can. In
768
+ contrast, label-supervision is distracted by the background
769
+ context, as it retrieves irrelevant objects with identical back-
770
+ ground. This indicates self-supervision generalizes via stor-
771
+ ing instance-level information. We present a failure case in
772
+ the last row, as both models fail to represent an object with
773
+ holes and un-familiar rotation.
774
+ We conclude that VINIL can improve its performance
775
+ with incoming stream of data, and generalizes via focusing
776
+ on the target object and storing instance-level details to per-
777
+ form instance-incremental learning.
778
+ 6. Discussion
779
+ This paper presented VINIL, a self-incremental visual
780
+ instance learner. VINIL sequentially learns visual object in-
781
+ stances, with no label supervision, via only self-supervision
782
+ of BarlowTwins [56]. Below, we summarize our main dis-
783
+ cussion points:
784
+ Self vs. Label-supervision? We demonstrate that self-
785
+ supervision not only omits the need for labels, but it is also
786
+ more accurate and less forgetful.
787
+ W/ or W/o Memory? Our results show that the use
788
+ of memory boosts label-supervised instance incremental
789
+ learning, however the improvement comes with the cost of
790
+ over-fitting on the training source.
791
+ SGD [44] vs. Replay [45] vs. EwC [28]? We demon-
792
+ strate that with the use of self-supervision, VINIL closes the
793
+ gap between simple fine-tuning via SGD and more compli-
794
+ cated, compute-intensive techniques like memory replay or
795
+ regularization via EwC.
796
+ What Makes VINIL Effective? VINIL retains repre-
797
+ sentations across tasks, and is able to store and focus on
798
+ instance-level information, which are crucial for instance-
799
+ incremental learning.
800
+ Limitation. VINIL is executed with regularization [28]
801
+ and memory [45].
802
+ One can also consider dynamic net-
803
+ works [55] whose architectures are updated with incoming
804
+ task data. VINIL is a scalable alternative to dynamic incre-
805
+ mental network training due to abundant unlabeled data.
806
+
807
+ Q0传
808
+ 00QDLabel
809
+ Query
810
+ Nearest Neighbors
811
+ Label
812
+ Descending
813
+ Label
814
+ VINIL
815
+ VINIL
816
+ VINIL
817
+ Figure 5. Five nearest neighbors for three object instance queries on Core-50 [33] with SGD. Green is a success, red is a failure. Observe
818
+ how VINIL retrieves object instances in different views. The last column showcases a failure case, where both models fail to represent an
819
+ object with holes (scissor).
820
+ References
821
+ [1] https://research.facebook.com/publications/barlow-twins-
822
+ self-supervised-learning-via-redundancy-reduction/. 4
823
+ [2] https://vlomonaco.github.io/core50/index.html.dataset. 4
824
+ [3] https://github.com/gyhandy/Group-Supervised-Learning. 4
825
+ [4] Yogesh Balaji, Mehrdad Farajtabar, Dong Yin, Alex Mott,
826
+ and Ang Li. The effectiveness of memory replay in large
827
+ scale continual learning. arXiv preprint, 2020. 2
828
+ [5] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea
829
+ Vedaldi, and Philip HS Torr. Fully-convolutional siamese
830
+ networks for object tracking. In ECCV, 2016. 1, 2
831
+ [6] Ali Borji, Saeed Izadi, and Laurent Itti. ilab-20m: A large-
832
+ scale controlled object dataset to investigate deep learning.
833
+ In CVPR, 2016. 1, 4, 5
834
+ [7] Lucas Caccia and Joelle Pineau. Special: Self-supervised
835
+ pretraining for continual learning. arXiv preprint, 2021. 2
836
+ [8] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
837
+
838
+ otr Bojanowski, and Armand Joulin. Unsupervised learn-
839
+ ing of visual features by contrasting cluster assignments.
840
+ NeurIPS, 2020. 2, 4
841
+ [9] Francisco
842
+ Manuel
843
+ Castro,
844
+ Manuel
845
+ J.
846
+ Mar´ın-Jim´enez,
847
+ Nicol´as Guil Mata, Cordelia Schmid, and Alahari Karteek.
848
+ End-to-end incremental learning. ArXiv, 2018. 4
849
+ [10] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin.
850
+ Co2l: Con-
851
+ trastive continual learning. In ICCV, 2021. 2
852
+ [11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
853
+ offrey Hinton. A simple framework for contrastive learning
854
+ of visual representations. In ICML. PMLR, 2020. 2, 4
855
+ [12] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
856
+ Improved baselines with momentum contrastive learning.
857
+ arXiv preprint, 2020. 2, 4
858
+ [13] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
859
+ resentation learning. In CVPR, 2021. 4
860
+ [14] Sumit Chopra, Raia Hadsell, and Yann LeCun.
861
+ Learning
862
+ a similarity metric discriminatively, with application to face
863
+ verification. In CVPR, 2005. 2
864
+ [15] Hehe Fan, Tao Zhuo, Xin Yu, Yi Yang, and Mohan Kankan-
865
+ halli. Understanding atomic hand-object interaction with hu-
866
+ man intention. IEEE TCSVT, 2021. 1
867
+ [16] Enrico Fini, Victor G Turrisi da Costa, Xavier Alameda-
868
+ Pineda, Elisa Ricci, Karteek Alahari, and Julien Mairal. Self-
869
+ supervised models are continual learners. In CVPR, 2022. 2
870
+ [17] Jhair Gallardo, Tyler L Hayes, and Christopher Kanan.
871
+ Self-supervised training enhances online continual learning.
872
+ arXiv preprint, 2021. 2
873
+ [18] Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM
874
+ Smeulders. The amsterdam library of object images. IJCV,
875
+ 2005. 1
876
+ [19] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
877
+ supervised representation learning by predicting image rota-
878
+ tions. arXiv preprint, 2018. 2
879
+ [20] Alex Gomez-Villa, Bartlomiej Twardowski, Lu Yu, An-
880
+ drew D Bagdanov, and Joost van de Weijer.
881
+ Continually
882
+ learning self-supervised representations with projected func-
883
+ tional regularization. In CVPR, 2022. 2
884
+ [21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
885
+ Girshick. Momentum contrast for unsupervised visual rep-
886
+ resentation learning. In CVPR, 2020. 2, 4
887
+ [22] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
888
+ residual learning for image recognition. CVPR, 2016. 1, 4, 6
889
+ [23] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
890
+ fense of the triplet loss for person re-identification. arXiv
891
+ preprint, 2017. 2
892
+ [24] Stella Ho, Ming Liu, Lan Du, Longxiang Gao, and Yong Xi-
893
+ ang. Prototypes-guided memory replay for continual learn-
894
+ ing. arXiv preprint, 2021. 2
895
+ [25] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
896
+ Dahua Lin. Learning a unified classifier incrementally via
897
+ rebalancing. CVPR, 2019. 4
898
+ [26] Dapeng Hu, Shipeng Yan, Qizhengqiu Lu, HONG Lanqing,
899
+ Hailin Hu, Yifan Zhang, Zhenguo Li, Xinchao Wang, and
900
+ Jiashi Feng. How well does self-supervised pre-training per-
901
+ form with streaming data? In ICLR, 2021. 2
902
+ [27] Minsoo Kang, Jaeyoo Park, and Bohyung Han.
903
+ Class-
904
+ incremental learning by knowledge distillation with adaptive
905
+ feature consolidation. In CVPR, 2022. 1
906
+ [28] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
907
+ Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
908
+ Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
909
+ Barwinska, et al. Overcoming catastrophic forgetting in neu-
910
+ ral networks. Proceedings of the national academy of sci-
911
+ ences, 2017. 2, 3, 6
912
+ [29] Yann LeCun, Fu Jie Huang, and Leon Bottou.
913
+ Learning
914
+ methods for generic object recognition with invariance to
915
+ pose and lighting. In CVPR, 2004. 1
916
+ [30] Zhizhong Li and Derek Hoiem. Learning without forgetting.
917
+ TPAMI, 2017. 2
918
+ [31] Tsung-Yi Lin, Serge Belongie, and James Hays. Cross-view
919
+ image geolocalization. In CVPR, 2013. 2
920
+ [32] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
921
+ Raj, and Le Song. Sphereface: Deep hypersphere embedding
922
+ for face recognition. In CVPR, 2017. 2
923
+ [33] Vincenzo Lomonaco and Davide Maltoni. Core50: a new
924
+ dataset and benchmark for continuous object recognition. In
925
+ CoRL. PMLR, 2017. 1, 4, 7
926
+ [34] Jian Ma and Dima Damen. Hand-object interaction reason-
927
+ ing. arXiv preprint, 2022. 1
928
+ [35] Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu,
929
+ and Sung Ju Hwang. Representational continuity for unsu-
930
+ pervised continual learning. In ICLR, 2021. 2
931
+ [36] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel
932
+ Menta, Andrew D Bagdanov, and Joost van de Weijer. Class-
933
+ incremental learning: survey and performance evaluation on
934
+ image classification. arXiv preprint, 2020. 1, 2
935
+ [37] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essen-
936
+ tials for class incremental learning. In CVPR, 2021. 1
937
+ [38] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al.
938
+ Columbia object image library (coil-100). 1996. 1
939
+ [39] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
940
+ visual representations by solving jigsaw puzzles. In ECCV,
941
+ 2016. 2
942
+ [40] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
943
+ Savarese. Deep metric learning via lifted structured feature
944
+ embedding. In CVPR, 2016. 1, 2
945
+ [41] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
946
+ Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
947
+ ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
948
+ differentiation in pytorch. 2017. 4
949
+ [42] Senthil Purushwalkam, Pedro Morgado, and Abhinav Gupta.
950
+ The challenges of continuous self-supervised learning. arXiv
951
+ preprint, 2022. 2
952
+ [43] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
953
+ Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
954
+ without forgetting by maximizing transfer and minimizing
955
+ interference. arXiv preprint, 2018. 2
956
+ [44] Herbert E. Robbins. A stochastic approximation method. An-
957
+ nals of Mathematical Statistics, 2007. 3, 6
958
+ [45] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-
959
+ licrap, and Gregory Wayne. Experience replay for continual
960
+ learning. NeurIPS, 2019. 2, 3, 4, 6
961
+
962
+ [46] Yujiao Shi and Hongdong Li. Beyond cross-view image re-
963
+ trieval: Highly accurate vehicle localization using satellite
964
+ image. In CVPR, pages 17010–17020, 2022. 2
965
+ [47] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
966
+ Continual learning with deep generative replay. NeurIPS,
967
+ 2017. 2
968
+ [48] Bing Shuai, Andrew Berneshawi, Xinyu Li, Davide Modolo,
969
+ and Joseph Tighe. Siammot: Siamese multi-object tracking.
970
+ In CVPR, 2021. 1, 2
971
+ [49] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.
972
+ Siamese instance search for tracking. In CVPR, 2016. 1,
973
+ 2
974
+ [50] Bugra Tekin, Federica Bogo, and Marc Pollefeys. H+ o: Uni-
975
+ fied egocentric recognition of 3d hand-object poses and in-
976
+ teractions. In CVPR, 2019. 1
977
+ [51] Shruti Vyas, Chen Chen, and Mubarak Shah. Gama: Cross-
978
+ view video geo-localization. arXiv preprint, 2022. 2
979
+ [52] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing
980
+ Lin. Deep metric learning with angular loss. In ICCV, 2017.
981
+ 1, 2
982
+ [53] Daniel Wilson, Xiaohan Zhang, Waqas Sultani, and Safwan
983
+ Wshah. Visual and object geo-localization: A comprehen-
984
+ sive survey. arXiv preprint, 2021. 2
985
+ [54] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
986
+ Zicheng Liu, Yandong Guo, and Yun Raymond Fu. Large
987
+ scale incremental learning. CVPR, 2019. 4
988
+ [55] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
989
+ Hwang. Lifelong learning with dynamically expandable net-
990
+ works. ArXiv, 2018. 6
991
+ [56] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
992
+ St´ephane Deny. Barlow twins: Self-supervised learning via
993
+ redundancy reduction. In ICML, 2021. 1, 2, 3, 6
994
+ [57] Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu.
995
+ Class-incremental learning via dual augmentation. NeurIPS,
996
+ 2021. 1
997
+ [58] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-
998
+ Lin Liu.
999
+ Prototype augmentation and self-supervision for
1000
+ incremental learning. In CVPR, 2021. 2
1001
+ [59] Sijie Zhu, Mubarak Shah, and Chen Chen. Transgeo: Trans-
1002
+ former is all you need for cross-view image geo-localization.
1003
+ In CVPR, 2022. 2
1004
+ [60] Sijie Zhu, Taojiannan Yang, and Chen Chen. Vigor: Cross-
1005
+ view image geo-localization beyond one-to-one retrieval. In
1006
+ CVPR, 2021. 1
1007
+
BtFIT4oBgHgl3EQf_yzx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE0T4oBgHgl3EQfQACa/content/tmp_files/2301.02187v1.pdf.txt ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02187v1 [math.LO] 3 Jan 2023
2
+ Growth of Log-Analytic Functions
3
+ Tobias Kaiser
4
+ Abstract.
5
+ We show that unary log-analytic functions are
6
+ polynomially bounded. In the higher dimensional case glob-
7
+ ally a log-analytic function can have exponential growth. We
8
+ show that a log-analytic function is polynomially bounded on
9
+ a definable set which contains the germ of every ray at infinity.
10
+ Introduction
11
+ Log-analytic functions have been defined by Lion and Rolin in their seminal
12
+ paper [5]. They are iterated compositions from either side of globally sub-
13
+ analytic functions (see [2]) and the global logarithm.
14
+ In [3] it was shown
15
+ that from the point of view of differentiability log-analytic functions behave
16
+ similarly to globally subanalytic functions. We have strong quasianalyticity
17
+ and Tamm’s theorem hold. But with respect to growth properties log-analytic
18
+ functions behave in a different way compared to globally subanalytic functions.
19
+ Globally subanalytic functions are polynomially bounded. This holds also for
20
+ log-analytic funtions of one variable. But in higher dimension surprisingly the
21
+ situation changes. Although the global exponential function is not involved
22
+ in the definition of log-analytic functions, a log-analytic function in at least
23
+ two variables can have exponential growth. We construct an example where
24
+ the function is not polynomially bounded on every dense definable set. But
25
+ polynomially boundedness holds on a definable set which is ‘thick’ at infinity:
26
+ We show that a log-analytic function is polynomially bounded on a definable
27
+ set which contains the germ of every ray at infinity.
28
+ Notations
29
+ By N = {1, 2, . . .} we denote the set of natural numbers and by N0 = {0, 1, 2, . . .}
30
+ the set of nonnegative integers.
31
+ For t ∈ R we set R>t := {x ∈ R | x > t} and R≥t := {x ∈ R | x ≥ t}.
32
+ Denoting by | | the euclidean norm on Rn we set Sn−1 := {x ∈ Rn | |x| = 1}.
33
+ Given a subset A of Rn we denote by A its closure.
34
+ By π : Rn × R → Rn, (x, y) �→ x, we denote the projection on all but the last
35
+ coordinate. For a subset A of Rn × R and x ∈ Rn we set Ax := {y ∈ R |
36
+ (x, y) ∈ A}.
37
+ By expk respectively logk we denote the k-times iterated of the exponential
38
+ function respectively the logarithm.
39
+ 2010 Mathematics Subject Classification: 03C64, 14P15, 26A09, 26A12, 32B20
40
+ Keywords and phrases: log-analytic functions, polynomially bounded, exponential growth
41
+ 1
42
+
43
+ The Results
44
+ We assume basic knowledge of o-minimality (see for example van den Dries
45
+ [1] and van den Dries and Miller [2]). By definable we mean definable in the
46
+ o-minimal structure Ran,exp (with parameters).
47
+ Setting and Preliminaries
48
+ We recall the precise definition of a log-analytic function (see Lion and Rolin
49
+ [5]) and state consequences of preparation results on special sets (compare with
50
+ [3]).
51
+ 1. Definition
52
+ Let X ⊂ Rn be definable and let f : X → R be a function.
53
+ (a) Let k ∈ N0. By induction on k we define that f is log-analytic of order
54
+ at most k.
55
+ Base case: The function f is log-analytic of order at most 0 if f is
56
+ piecewise the restriction of globally subanalytic functions; i.e. there is a
57
+ finite decomposition Y of X into definable sets such that for Y ∈ Y there
58
+ is a globally subanalytic function F : Rn → R such that f|Y = F|Y .
59
+ Inductive step: The function f is log-analytic of order at most k if the
60
+ following holds. There is a finite decomposition Y of X into definable sets
61
+ such that for Y ∈ Y there are p, q ∈ N0, a globally subanalytic function
62
+ F : Rp+q → R and log-analytic functions g1, ..., gp : Y → R, h1, . . . , hq :
63
+ Y → R>0 of order at most k − 1 such that
64
+ f|Y = F
65
+
66
+ g1, ..., gp, log(h1), ..., log(hq)
67
+
68
+ .
69
+ (b) Let k ∈ N0. We call f log-analytic of order k if f is log-analytic of
70
+ order at most k but not of order at most k − 1.
71
+ (c) We call f log-analytic if it is log-analytic of order k for some k ∈ N0.
72
+ 2. Definition
73
+ We call a definable cell Y ⊂ Rn+1 simple at infinity if for every x ∈ π(Y )
74
+ we have Yx = R>dx for some dx ∈ R≥0.
75
+ 3. Remark
76
+ Let Y be a definable cell decomposition of Rn × R>0. Then
77
+ Rn =
78
+
79
+ {π(Y ) | Y ∈ Y simple at infinity}.
80
+ 2
81
+
82
+ We set e0 := 0 and ek := exp(ek−1) for k ∈ N.
83
+ 4. Definition
84
+ Let k ∈ N0. A cell Y ⊂ Rn+1 which is simple at infinity is called k-simple at
85
+ infinity if inf Yx ≥ ek for all x ∈ π(Y ).
86
+ 5. Proposition
87
+ Let f : Rn × R → R, (x, y) �→ f(x, y), be log-analytic of order k. Then there is
88
+ a definable cell decomposition Y of Rn × R such that for every Y ∈ Y which is
89
+ simple at infinity the cell Y is k-simple at infinity such that
90
+ f|Y (x, y) = a(x)yq0 log(y)q1 · · · logk(y)qku(x, y)
91
+ where
92
+ (1) a : π(Y ) → R is log-analytic and continuous,
93
+ (2) q0, . . . , qk ∈ Q,
94
+ (3) u : Y → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(x, y) ≤ d
95
+ for all (x, y) ∈ Y .
96
+ Proof:
97
+ This follows from [3, Theorem 2.30] using the substitution r �→ 1/r.
98
+
99
+ Statement and Proof of the Results
100
+ 6. Definition
101
+ Let n ∈ N and let f : Rn → R be a function.
102
+ (a) If n = 1 we say that f is polynomially bounded at infinity if there
103
+ are constants t ∈ R>0 and N ∈ N such that |f(x)| ≤ xN for all x > t.
104
+ (b) If n > 1 we say that f is polynomially bounded at infinity if there
105
+ are constants t ∈ R>0 and N ∈ N such that |f(x)| ≤ |x|N for all |x| > t.
106
+ Let f be as above and let A ⊂ Rn be unbounded. We say that f is polynomially
107
+ bounded at infinity on A if
108
+ 1Af is polynomially bounded at infinity.
109
+ We handle the unary case first.
110
+ 7. Proposition
111
+ Let f : R → R be log-analytic. Then f is polynomially bounded.
112
+ Proof:
113
+ 3
114
+
115
+ By Proposition 5 we find k ∈ N0 and t ≥ ek such that
116
+ f(x) = axq0 log(x)q1 · · · logk(x)qku(x)
117
+ on R≥t where
118
+ (1) a ∈ R,
119
+ (2) q0, . . . , qk ∈ Q,
120
+ (3) u : R>t → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(x) ≤ d
121
+ for all x > t.
122
+ This gives that f(x) behaves asymptotically as xq0 log(x)q1 · · · logk(x)qk at +∞
123
+ (unless in the trivial case a = 0). By the growth properties of the logarithm
124
+ we are done.
125
+
126
+ 8. Definition
127
+ A subset C of Rn is called a cone if x ∈ C implies rx ∈ C for all r ∈ R≥0.
128
+ Given a cone C with C ⊋ {0} we denote by B(C) := C ∩ Sn−1 its base. Note
129
+ that C = R≥0 · B(C).
130
+ 9. Proposition
131
+ Let n ≥ 2 and let f : Rn → R be log-analytic. Then there is a cone C with
132
+ nonempty interior such that f is polynomially bounded at infinity on C.
133
+ Proof:
134
+ We consider the polar coordinates ϕ : Sn−1 × R≥0 → Rn, (v, r) → rv. Let
135
+ g : Sn−1 × R≥0 → R, (v, r) �→ f(ϕ(v, r)). By Remark 3 and Proposition 5
136
+ we find k ∈ N0 and an open cell Y that is k-simple at infinity such that
137
+ g|Y (x) = a(v)rq0 log(r)q1 · · · logk(r)qku(v, r) where
138
+ (1) a : π(Y ) → R is log-analytic and continuous,
139
+ (2) q0, . . . , qk ∈ Q,
140
+ (3) u : Y → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(v, r) ≤ d
141
+ for all (v, r) ∈ Y .
142
+ Choose an open ball B in π(Y ) such that its closure is contained in π(Y ).
143
+ Then by continuity a is bounded on B.
144
+ By the growth properties of the
145
+ iterated logarithms we get that g is polynomially bounded on Y ∩ (B × R).
146
+ We consider the cone C := R≥0 ·B which has nonempty interior. By continuity
147
+ there is R > 1 such that the function x �→ inf Yx on B is bounded from above
148
+ by R. Therefore we find some N ∈ N such that |f(x)| ≤ |x|N for all x ∈ C with
149
+ 4
150
+
151
+ |x| > R. By the very definition we obtain that f is polynomially bounded at
152
+ infinity on C.
153
+
154
+ In the higher dimensional case global (polynomially) boundedness may fail
155
+ simply if the pole locus is not bounded. Consider for example the function
156
+ f : R2 → R, (x, y) �→
157
+
158
+
159
+
160
+ 1
161
+ x−y
162
+ x ̸= y,
163
+ if
164
+ 0
165
+ x = y.
166
+ Then clearly sup|(x,y)|=r |f(x, y)| = ∞ for all r > 0.
167
+ But even if one restricts to continuous functions a log-analytic function may
168
+ be not be polynomially bounded if n ≥ 2.
169
+ 10. Proposition
170
+ Let n ≥ 2. There is a continuous log-analytic function f : Rn → R which is
171
+ not polynomially bounded at infinity.
172
+ Proof:
173
+ It suffices to deal with the case n = 2. Consider the function
174
+ h : R>1 × R>0 → R, (x, y) �→ −y
175
+
176
+ (log y)2 − 2 log y + 2 − x
177
+
178
+ .
179
+ Claim 1: The following holds:
180
+ (1) The function h is log-analytic and continuous.
181
+ (2) For every x > 1 there exists maxy>0 h(x, y) ∈ R.
182
+ (3) The function α : R>1 → R, x �→ maxy>0 h(x, y), is given by α(x) =
183
+ 2exp(√x)(√x − 1).
184
+ Proof of Claim 1:
185
+ (1) being clear, we have to show (2) and (3). For x > 1 we have
186
+ lim
187
+ yր∞ h(x, y) = −∞, lim
188
+ yց0 h(x, y) = 0
189
+ and
190
+ ∂h
191
+ ∂y h(x, y) = −(log y)2 + x
192
+ which vanishes exactly for y = exp(√x) and y = exp(−√x). We have
193
+ h(x, exp(√x)) = 2exp(√x)(√x − 1), h(x, exp(−√x)) = −2exp(√x)(√x + 1).
194
+ This implies that for x > 1 the function R>0 → R, y �→ h(x, y), attains its
195
+ maximum at y = exp(√x) with this maximum being given by
196
+ max
197
+ y>0 h(x, y) = 2exp(√x)(√x − 1).
198
+ 5
199
+
200
+ This shows (2) and (3).
201
+ ■Claim 1
202
+ Let a ∈ R>1 be the (uniquely determined) value such that 2exp(√a)(√a−1) =
203
+ 1. Let
204
+ g : R≥0×[0, 1] → R, (x, y) �→
205
+
206
+
207
+
208
+ max
209
+
210
+ h(x, y/(1 − y)), 1
211
+
212
+ ,
213
+ (x, y) ∈ R>a× ]0, 1[,
214
+ if
215
+ 1,
216
+ (x, y) /∈ R>a× ]0, 1[.
217
+ Claim 2: The following holds:
218
+ (1) The function g is continuous and log-analytic.
219
+ (2) The function β : R≥0 → R, x �→ max0≤y≤1 g(x, y), is given by β(x) = 1
220
+ for x ≤ a and β(x) = α(x) for x > a.
221
+ Proof of Claim 2:
222
+ For (1) note that for b > a
223
+ lim
224
+ x→b,yր1 g(x, y) =
225
+ lim
226
+ x→b,yր∞ max
227
+
228
+ h(x, y), 1
229
+
230
+ = 1,
231
+ lim
232
+ x→b,yց0g(x, y) =
233
+ lim
234
+ x→b,yց0 max
235
+
236
+ h(x, y), 1
237
+
238
+ = 1,
239
+ that for 0 < c < 1
240
+ lim
241
+ xցa,y→c g(x, y) =
242
+ lim
243
+ xցa,y→c max
244
+
245
+ h(x, y/(1 − y)), 1
246
+
247
+ = 1,
248
+ and that
249
+ lim
250
+ xցa,yց0 g(x, y) =
251
+ lim
252
+ xցa,yց0 max
253
+
254
+ h(x, y/(1 − y)), 1
255
+
256
+ = 1,
257
+ lim
258
+ xցa,yր1 g(x, y) =
259
+ lim
260
+ xցa,yր1 max
261
+
262
+ h(x, y/(1 − y)), 1
263
+
264
+ = 1.
265
+ For (2) note that for x > a
266
+ max
267
+ 0≤y≤1 g(x, y) = max
268
+ y>0 h(x, y) = 2exp(√x)(√x − 1).
269
+ ■Claim 2
270
+ Let
271
+ f : R2 → R, (x, y) �→
272
+
273
+
274
+
275
+ g
276
+
277
+ |(x, y)|2, arg((x, y)/|(x, y)|)/2π
278
+
279
+ ,
280
+ (x, y) ̸= (0, 0),
281
+ if
282
+ 1,
283
+ (x, y) = (0, 0),
284
+ where the argument function is given by arg : S1 → [0, 2π[ with arg((1, 0)) = 0
285
+ and counterclockwise orientation. Then f is continuous and log-analytic. Let
286
+ 6
287
+
288
+ γ : R≥0 → R≥0, r �→ max|(x,y)|=r |f(x, y)|. Then γ(r) = α(r2) for all r ≥ 0.
289
+ Hence
290
+ max
291
+ |(x,y)|=r |f(x, y)| ≥ exp(r)
292
+ for all sufficiently large r.
293
+
294
+ The question is how “big” we can choose a set where polynomially bounded-
295
+ ness at infinity holds. In Proposition 9 we have shown that we can choose a
296
+ nonempty open cone. By the continuity of the counterexample in Proposition
297
+ 10 we cannot hope for a dense definable set (or equivalently, a definable set
298
+ with dimension of the complement being smaller than n):
299
+ 11. Corollary
300
+ Let n ≥ 2. There is log-analytic function f : Rn → R such that f is not
301
+ polynomially bounded on every dense definable subset.
302
+ 12. Remark
303
+ Note that the above counterexample is globally given by composition of glob-
304
+ ally subanalytic functions and the logarithm, not only piecewise.
305
+ To formulate an optimal result we need to introduce some setting to speak
306
+ about the ultimate size of a set at ∞. The first definition mimics the tangential
307
+ cone at finite points (see for example Kurdyka and Raby [4]).
308
+ We fix an unbounded definable subset A of Rn. We let dim∞ A to be dim(A ∩
309
+ {x ∈ Rn | |x| > r}) for sufficiently large r (note that this stabilizes) and call
310
+ it the dimension of A at infinity.
311
+ 13. Definition
312
+ (a) We let B(A, ∞) to be the set of all v ∈ Sn−1 such that for every r, ε > 0
313
+ there is x ∈ A with |x| > r and
314
+ ��x/|x| − v
315
+ �� < ε. We call C(A, ∞) :=
316
+ R≥0 · B(A, ∞) the tangent cone of A at infinity.
317
+ (b) We let Bstr(A, ∞) to be the set of all v ∈ Sn−1 such that there is some
318
+ t ∈ R≥0 with R≥t · v ⊂ A. We call Cstr(A, ∞) := R≥0 · Bstr(A, ∞) the
319
+ strong tangent cone of A at infinity.
320
+ 14. Remark
321
+ (1) We have Cstr(A, ∞) ⊂ C(A, ∞).
322
+ (2) The tangent cone C(A, ∞) of A at infinity is closed and definable with
323
+ dim C(A, ∞) ≤ dim∞ A.
324
+ 7
325
+
326
+ (3) The strong tangent cone Cstr(A, ∞) of A at infinity is definable with
327
+ dim Cstr(A, ∞) ≤ dim∞ A.
328
+ (4) For r > 0 let B(A, r) := {x/r | x ∈ A and |x| = r}. Then B(A, ∞) is
329
+ the Hausdorff limit of the family
330
+
331
+ B(A, r)
332
+
333
+ r∈R>0 (compare with Lion and
334
+ Speissegger [6]) and
335
+ Bstr(A, ∞) = lim sup
336
+ r>0
337
+ B(A, r) =
338
+
339
+ r>0
340
+
341
+ s>r
342
+ B(A, s).
343
+ The next concept will carry more information. A (closed) ray R in Rn is of
344
+ the form R = a + R≥0 · v where a ∈ Rn and v ∈ Sn−1. We parametrize the
345
+ set R of all rays by the bijection Rn × Sn−1 → R, (a, v) �→ a + R≥0 · v. For
346
+ limit considerations it is natural to identify two rays R1 and R2 if R1 ⊂ R2 or
347
+ R2 ⊂ R1. This is an equivalence relation ∼ on R. A canonical representative
348
+ of the equivalence class of a ray R = a + R≥0 · v is given by o + R≥0 · v where
349
+ o ∈ a + R · v with o ⊥ v (or, equivalently, o realizes the distance of the line
350
+ a + R · v to the origin). A ray of this form is called a standardized ray. We
351
+ identify the set R/ ∼ with the set of the standardized rays and parametrize it
352
+ by the bijection S := {(o, v) ∈ Rn×Sn−1 | o ⊥ v} → R/ ∼, (o, v) �→ o+R≥0·v.
353
+ 15. Definition
354
+ (a) We denote by RC(A, ∞) the union of all standardized rays R = o+R≥0·v
355
+ such that for every r, ε > 0 there are x ∈ A and y ∈ R with |x| = |y| > r
356
+ and |x − y| < ε and call it the the tangent ray cone of A at infinity.
357
+ (b) We denote by RCstr(A, ∞) the union of all standardized rays R = o +
358
+ R≥0 · v such that o + R≥t · v ⊂ A for some t ∈ R≥0 and call it the strong
359
+ tangent ray cone of A at infinity.
360
+ 16. Remark
361
+ (1) We have RCstr(A, ∞) ⊂ RC(A, ∞).
362
+ (2) The tangent ray cone RCA,∞ of A at infinity is closed and definable with
363
+ dim RCA,∞ ≤ dim∞ A.
364
+ (3) The strong tangent ray cone RCstr
365
+ A,∞ of A at infinity is definable with
366
+ dim RCstr
367
+ A,∞ ≤ dim∞ A.
368
+ (4) We have C(A, ∞) ⊂ RC(A, ∞). In fact, the following stronger statement
369
+ holds: A standardized ray o + R≥0 · v is contained in RC(A, ∞) if and
370
+ only if R≥0 · v is contained in C(A, ∞).
371
+ (5) We have Cstr(A, ∞) ⊂ RCstr(A, ∞).
372
+ 8
373
+
374
+ 17. Example
375
+ Consider the half-strip
376
+ S := {(x, y) ∈ R2 | x > 0, 0 < y < 1}.
377
+ We have
378
+ C(S, ∞) = R≥0 · (1, 0), Cstr(S, ∞) = ∅
379
+ and
380
+ RC(S, ∞) =
381
+
382
+ (0, t) + R≥0 · (1, 0)
383
+ �� t ∈ R
384
+
385
+ ,
386
+ RCstr(S, ∞) =
387
+
388
+ (0, t) + R≥0 · (1, 0)
389
+ �� 0 < t < 1
390
+
391
+ .
392
+ 18. Definition
393
+ (a) We call A spherically dense at infinity if C(A, ∞) = Rn. We call A
394
+ strongly spherically dense at infinity if Cstr(A, ∞) = Rn.
395
+ (b) We call A ray dense at infinity if RC(A, ∞) contains every standard-
396
+ ized ray. We call A strongly ray dense at infinity if RCstr(A, ∞)
397
+ contains every standardized ray.
398
+ 19. Remark
399
+ (1) A is spherically dense at infinity if and only if A is ray dense at infinity.
400
+ (2) If A is strongly ray dense at infinity then A is strongly spherically dense
401
+ at infinity. The converse does in general not hold.
402
+ Proof:
403
+ (1): The direction from right to the left being clear by definition we show the
404
+ direction from left to the right. Let o+R≥0 ·v ∈ R/ ∼ where (o, v) ∈ S. Then
405
+ R≥0 · v ∈ C(A, ∞) since A is spherically dense at infinity. By the definition of
406
+ the tangent ray cone we obtain that o + R≥0 · v ⊂ RC(A, ∞).
407
+ (2): The first statement ist clear. For the second one consider the complement
408
+ of the above half-strip.
409
+
410
+ Hence the notion of ray density at infinity does not give anything new. We
411
+ have included it for completeness and symmetry.
412
+ Here is now the final optimal result.
413
+ 9
414
+
415
+ 20. Theorem
416
+ Let n ≥ 2 and let f : Rn → R be log-analytic. Then there is a definable subset
417
+ U of Rn which is strongly ray dense at infinity such that f is polynomially
418
+ bounded at infinity on U.
419
+ Proof:
420
+ Consider the semialgebraic map Φ : S × R≥0 → Rn, (o, v, r) �→ o + rv, and
421
+ the log-analytic function F := f ◦ Φ : S × R≥0 → R. Let F be log-analytic
422
+ of order k ∈ N0. By Proposition 5 we find a definable cell decomposition Y of
423
+ S × R≥0 such that for every Y ∈ Y which is simple at infinity the cell Y is
424
+ k-simple at infinity such that
425
+ F|Y (o, v, r) = a(o, y)rq0 log(r)q1 · · · logk(r)qku(o, v, r)
426
+ where
427
+ (1) a : π(Y ) → R is log-analytic and continuous,
428
+ (2) q0, . . . , qk ∈ Q,
429
+ (3) u : Y → R is log-analytic and there is d = dY ∈ R>0 such that 0 ≤
430
+ u(o, v, r) ≤ d for all (o, v, r) ∈ Y .
431
+ We fix Y ∈ Y simple at infinity. Let Z := π(Y ) and δ : Z → R≥0, (o, v) �→
432
+ inf Y(o,v). We set frZS := (Z \ Z) ∩S. By passing to a finer cell decomposition
433
+ of S we may assume that frZS ̸= ∅. For s ∈ R≥0 let
434
+ Z(s) :=
435
+
436
+ (o, v) ∈ Z
437
+ �� |(o, v)| ≤ s, dist((o, v), frSZ) ≥ s
438
+
439
+ .
440
+ Then Z(s) is compact for every s ≥ 0. We set
441
+ ∆ : R≥0 → R≥0, s �→ max
442
+
443
+ |a(o, v)|
444
+ �� (o, v) ∈ Z(s)
445
+
446
+ .
447
+ Note that this is well-defined since a is continuous. Note that here by con-
448
+ vention max ∅ = 0. The function ∆ is increasing and definable. Hence by van
449
+ den Dries and Miller [2] it is bounded by an iterated exponential expl for some
450
+ l ∈ N0. Choose N = NY ∈ N with N > |q0| + . . . + |qn|. We set
451
+ WY :=
452
+
453
+ (o, v, r) ∈ S × R>0 | (o, v) ∈ Z(logl(r)), r > max{el, δ(o, v)}
454
+
455
+ .
456
+ For (o, v, r) ∈ WY we have
457
+ |F(o, v, r)| = |a(o, v)|rq0 log(r)q1 · · ·logk(r)qku(o, v, r) ≤ dY rrNY .
458
+ We set VY := Φ(WY ). We obtain that |f(x)| ≤ dY |x|NY +1 on VY .
459
+ 10
460
+
461
+ Let U be the union of all VY with Y ∈ Y simple at infinity. Then U is definable.
462
+ We show that this U does the job. Let R = o + R≥0 · v be a standardized ray
463
+ and let r > 0. By Remark 3 we find Y ∈ Y that is simple at infinity such
464
+ that (o, v) ∈ Z. Note that we use the above notations. There is s ∈ R>0
465
+ such that (o, v) ∈ Z(s). By the definition of WY we find t > 0 such that
466
+ {(o, v)} × R≥t ⊂ WY . This gives o + R≥t · v ⊂ VY ⊂ U. So U is strongly ray
467
+ dense. Let
468
+ dU := max{dy | Y ∈ Y simple at infinity}
469
+ and
470
+ NU := max{Ny | Y ∈ Y simple at infinity}.
471
+ Then |f(x)| ≤ dU|x|NU+1 for all x ∈ U. Hence f is polynomially bounded on
472
+ U.
473
+ ■.
474
+ 21. Concluding Remarks
475
+ In Corollary 11 we have found for n ≥ 2 a log-analytic function f : Rn → R
476
+ and a definable open und unbounded set W such that r �→ infx∈W,|x|=r |f(x)| is
477
+ of exponential growth. By Proposition 7 the set W cannot contain the image
478
+ of an unbounded log-analytic curve. By the same methods as in the proof of
479
+ Theorem 20 we can find an open and definable set U such that f is polyno-
480
+ mially bounded at infinity on U and U contains the germ of every unbounded
481
+ log-analytic curves up to a certain complexity (where the complexity is the
482
+ complexity of terms in the language Lan(−1, ( n√...)n=2,3,..., log), compare with
483
+ [3, Remark 1.2]). An open question is whether we can find such an U that
484
+ contains the germ of every unbounded log-analytic curve.
485
+ References
486
+ (1) L. van den Dries: Tame Topology and O-minimal Structures. London Math. Soc.
487
+ Lecture Notes Series 248, Cambridge University Press, 1998.
488
+ (2) L. van den Dries and C. Miller: Geometric categories and o-minimal structures. Duke
489
+ Math. J. 84 (1996), no. 2, 497-540.
490
+ (3) T. Kaiser and Andre Opris: Differentiability Properties of Log-Analytic Functions.
491
+ Rocky Mountain Journal of Mathematics 52 (2022) no. 4, 1423-1443.
492
+ (4) K. Kurdyka, G. Raby: Densit´e des ensembles sous-analytiques. Ann. Inst. Fourier
493
+ 39 (1989), no. 3, 753-771.
494
+ (5) J.-M. Lion, J.-P. Rolin: Th´eor`eme de pr´eparation pour les fonctions logarithmico-
495
+ exponentielles. Ann. Inst. Fourier 47 (1997), no. 3, 859-884.
496
+ (6) J.-M. Lion, P. Speissegger: A geometric proof of the definability of Hausdorff limits.
497
+ Sel. Math., New Ser. 10 (2004), no. 3, 377-390.
498
+ Tobias Kaiser, University of Passau, Faculty of Computer Science and Mathematics
499
+ [email protected], D-94030 Germany
500
+ 11
501
+
CNE0T4oBgHgl3EQfQACa/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf,len=293
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
3
+ page_content='02187v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
4
+ page_content='LO] 3 Jan 2023 Growth of Log-Analytic Functions Tobias Kaiser Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
5
+ page_content=' We show that unary log-analytic functions are polynomially bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
6
+ page_content=' In the higher dimensional case glob- ally a log-analytic function can have exponential growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
7
+ page_content=' We show that a log-analytic function is polynomially bounded on a definable set which contains the germ of every ray at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
8
+ page_content=' Introduction Log-analytic functions have been defined by Lion and Rolin in their seminal paper [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
9
+ page_content=' They are iterated compositions from either side of globally sub- analytic functions (see [2]) and the global logarithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
10
+ page_content=' In [3] it was shown that from the point of view of differentiability log-analytic functions behave similarly to globally subanalytic functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
11
+ page_content=' We have strong quasianalyticity and Tamm’s theorem hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
12
+ page_content=' But with respect to growth properties log-analytic functions behave in a different way compared to globally subanalytic functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
13
+ page_content=' Globally subanalytic functions are polynomially bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
14
+ page_content=' This holds also for log-analytic funtions of one variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
15
+ page_content=' But in higher dimension surprisingly the situation changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
16
+ page_content=' Although the global exponential function is not involved in the definition of log-analytic functions, a log-analytic function in at least two variables can have exponential growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
17
+ page_content=' We construct an example where the function is not polynomially bounded on every dense definable set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
18
+ page_content=' But polynomially boundedness holds on a definable set which is ‘thick’ at infinity: We show that a log-analytic function is polynomially bounded on a definable set which contains the germ of every ray at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
19
+ page_content=' Notations By N = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
20
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
21
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
22
+ page_content='} we denote the set of natural numbers and by N0 = {0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
23
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
24
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
25
+ page_content='} the set of nonnegative integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
26
+ page_content=' For t ∈ R we set R>t := {x ∈ R | x > t} and R≥t := {x ∈ R | x ≥ t}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
27
+ page_content=' Denoting by | | the euclidean norm on Rn we set Sn−1 := {x ∈ Rn | |x| = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
28
+ page_content=' Given a subset A of Rn we denote by A its closure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
29
+ page_content=' By π : Rn × R → Rn, (x, y) �→ x, we denote the projection on all but the last coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
30
+ page_content=' For a subset A of Rn × R and x ∈ Rn we set Ax := {y ∈ R | (x, y) ∈ A}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
31
+ page_content=' By expk respectively logk we denote the k-times iterated of the exponential function respectively the logarithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
32
+ page_content=' 2010 Mathematics Subject Classification: 03C64, 14P15, 26A09, 26A12, 32B20 Keywords and phrases: log-analytic functions, polynomially bounded, exponential growth 1 The Results We assume basic knowledge of o-minimality (see for example van den Dries [1] and van den Dries and Miller [2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
33
+ page_content=' By definable we mean definable in the o-minimal structure Ran,exp (with parameters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
34
+ page_content=' Setting and Preliminaries We recall the precise definition of a log-analytic function (see Lion and Rolin [5]) and state consequences of preparation results on special sets (compare with [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
35
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
36
+ page_content=' Definition Let X ⊂ Rn be definable and let f : X → R be a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
37
+ page_content=' (a) Let k ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
38
+ page_content=' By induction on k we define that f is log-analytic of order at most k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
39
+ page_content=' Base case: The function f is log-analytic of order at most 0 if f is piecewise the restriction of globally subanalytic functions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
40
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
41
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
42
+ page_content=' there is a finite decomposition Y of X into definable sets such that for Y ∈ Y there is a globally subanalytic function F : Rn → R such that f|Y = F|Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
43
+ page_content=' Inductive step: The function f is log-analytic of order at most k if the following holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
44
+ page_content=' There is a finite decomposition Y of X into definable sets such that for Y ∈ Y there are p, q ∈ N0, a globally subanalytic function F : Rp+q → R and log-analytic functions g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
45
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
46
+ page_content=', gp : Y → R, h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
47
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
48
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
49
+ page_content=' , hq : Y → R>0 of order at most k − 1 such that f|Y = F � g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
50
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
51
+ page_content=', gp, log(h1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
52
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
53
+ page_content=', log(hq) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
54
+ page_content=' (b) Let k ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
55
+ page_content=' We call f log-analytic of order k if f is log-analytic of order at most k but not of order at most k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
56
+ page_content=' (c) We call f log-analytic if it is log-analytic of order k for some k ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
57
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
58
+ page_content=' Definition We call a definable cell Y ⊂ Rn+1 simple at infinity if for every x ∈ π(Y ) we have Yx = R>dx for some dx ∈ R≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
59
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
60
+ page_content=' Remark Let Y be a definable cell decomposition of Rn × R>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
61
+ page_content=' Then Rn = � {π(Y ) | Y ∈ Y simple at infinity}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
62
+ page_content=' 2 We set e0 := 0 and ek := exp(ek−1) for k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
63
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
64
+ page_content=' Definition Let k ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
65
+ page_content=' A cell Y ⊂ Rn+1 which is simple at infinity is called k-simple at infinity if inf Yx ≥ ek for all x ∈ π(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
66
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
67
+ page_content=' Proposition Let f : Rn × R → R, (x, y) �→ f(x, y), be log-analytic of order k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
68
+ page_content=' Then there is a definable cell decomposition Y of Rn × R such that for every Y ∈ Y which is simple at infinity the cell Y is k-simple at infinity such that f|Y (x, y) = a(x)yq0 log(y)q1 · · · logk(y)qku(x, y) where (1) a : π(Y ) → R is log-analytic and continuous, (2) q0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
69
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
70
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
71
+ page_content=' , qk ∈ Q, (3) u : Y → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(x, y) ≤ d for all (x, y) ∈ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
72
+ page_content=' Proof: This follows from [3, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
73
+ page_content='30] using the substitution r �→ 1/r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
74
+ page_content=' ■ Statement and Proof of the Results 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
75
+ page_content=' Definition Let n ∈ N and let f : Rn → R be a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
76
+ page_content=' (a) If n = 1 we say that f is polynomially bounded at infinity if there are constants t ∈ R>0 and N ∈ N such that |f(x)| ≤ xN for all x > t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
77
+ page_content=' (b) If n > 1 we say that f is polynomially bounded at infinity if there are constants t ∈ R>0 and N ∈ N such that |f(x)| ≤ |x|N for all |x| > t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
78
+ page_content=' Let f be as above and let A ⊂ Rn be unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
79
+ page_content=' We say that f is polynomially bounded at infinity on A if 1Af is polynomially bounded at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
80
+ page_content=' We handle the unary case first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
81
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
82
+ page_content=' Proposition Let f : R → R be log-analytic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
83
+ page_content=' Then f is polynomially bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
84
+ page_content=' Proof: 3 By Proposition 5 we find k ∈ N0 and t ≥ ek such that f(x) = axq0 log(x)q1 · · · logk(x)qku(x) on R≥t where (1) a ∈ R, (2) q0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
85
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
86
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
87
+ page_content=' , qk ∈ Q, (3) u : R>t → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(x) ≤ d for all x > t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
88
+ page_content=' This gives that f(x) behaves asymptotically as xq0 log(x)q1 · · · logk(x)qk at +∞ (unless in the trivial case a = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
89
+ page_content=' By the growth properties of the logarithm we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
90
+ page_content=' ■ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
91
+ page_content=' Definition A subset C of Rn is called a cone if x ∈ C implies rx ∈ C for all r ∈ R≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
92
+ page_content=' Given a cone C with C ⊋ {0} we denote by B(C) := C ∩ Sn−1 its base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
93
+ page_content=' Note that C = R≥0 · B(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
94
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
95
+ page_content=' Proposition Let n ≥ 2 and let f : Rn → R be log-analytic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
96
+ page_content=' Then there is a cone C with nonempty interior such that f is polynomially bounded at infinity on C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
97
+ page_content=' Proof: We consider the polar coordinates ϕ : Sn−1 × R≥0 → Rn, (v, r) → rv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
98
+ page_content=' Let g : Sn−1 × R≥0 → R, (v, r) �→ f(ϕ(v, r)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
99
+ page_content=' By Remark 3 and Proposition 5 we find k ∈ N0 and an open cell Y that is k-simple at infinity such that g|Y (x) = a(v)rq0 log(r)q1 · · · logk(r)qku(v, r) where (1) a : π(Y ) → R is log-analytic and continuous, (2) q0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
100
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
101
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
102
+ page_content=' , qk ∈ Q, (3) u : Y → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(v, r) ≤ d for all (v, r) ∈ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
103
+ page_content=' Choose an open ball B in π(Y ) such that its closure is contained in π(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
104
+ page_content=' Then by continuity a is bounded on B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
105
+ page_content=' By the growth properties of the iterated logarithms we get that g is polynomially bounded on Y ∩ (B × R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
106
+ page_content=' We consider the cone C := R≥0 ·B which has nonempty interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
107
+ page_content=' By continuity there is R > 1 such that the function x �→ inf Yx on B is bounded from above by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
108
+ page_content=' Therefore we find some N ∈ N such that |f(x)| ≤ |x|N for all x ∈ C with 4 |x| > R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
109
+ page_content=' By the very definition we obtain that f is polynomially bounded at infinity on C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
110
+ page_content=' ■ In the higher dimensional case global (polynomially) boundedness may fail simply if the pole locus is not bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
111
+ page_content=' Consider for example the function f : R2 → R, (x, y) �→ \uf8f1 \uf8f2 \uf8f3 1 x−y x ̸= y, if 0 x = y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
112
+ page_content=' Then clearly sup|(x,y)|=r |f(x, y)| = ∞ for all r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
113
+ page_content=' But even if one restricts to continuous functions a log-analytic function may be not be polynomially bounded if n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
114
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
115
+ page_content=' Proposition Let n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
116
+ page_content=' There is a continuous log-analytic function f : Rn → R which is not polynomially bounded at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
117
+ page_content=' Proof: It suffices to deal with the case n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
118
+ page_content=' Consider the function h : R>1 × R>0 → R, (x, y) �→ −y � (log y)2 − 2 log y + 2 − x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
119
+ page_content=' Claim 1: The following holds: (1) The function h is log-analytic and continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
120
+ page_content=' (2) For every x > 1 there exists maxy>0 h(x, y) ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
121
+ page_content=' (3) The function α : R>1 → R, x �→ maxy>0 h(x, y), is given by α(x) = 2exp(√x)(√x − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
122
+ page_content=' Proof of Claim 1: (1) being clear, we have to show (2) and (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
123
+ page_content=' For x > 1 we have lim yր∞ h(x, y) = −∞, lim yց0 h(x, y) = 0 and ∂h ∂y h(x, y) = −(log y)2 + x which vanishes exactly for y = exp(√x) and y = exp(−√x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
124
+ page_content=' We have h(x, exp(√x)) = 2exp(√x)(√x − 1), h(x, exp(−√x)) = −2exp(√x)(√x + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
125
+ page_content=' This implies that for x > 1 the function R>0 → R, y �→ h(x, y), attains its maximum at y = exp(√x) with this maximum being given by max y>0 h(x, y) = 2exp(√x)(√x − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
126
+ page_content=' 5 This shows (2) and (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
127
+ page_content=' ■Claim 1 Let a ∈ R>1 be the (uniquely determined) value such that 2exp(√a)(√a−1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
128
+ page_content=' Let g : R≥0×[0, 1] → R, (x, y) �→ \uf8f1 \uf8f2 \uf8f3 max � h(x, y/(1 − y)), 1 � , (x, y) ∈ R>a× ]0, 1[, if 1, (x, y) /∈ R>a× ]0, 1[.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
129
+ page_content=' Claim 2: The following holds: (1) The function g is continuous and log-analytic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
130
+ page_content=' (2) The function β : R≥0 → R, x �→ max0≤y≤1 g(x, y), is given by β(x) = 1 for x ≤ a and β(x) = α(x) for x > a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
131
+ page_content=' Proof of Claim 2: For (1) note that for b > a lim x→b,yր1 g(x, y) = lim x→b,yր∞ max � h(x, y), 1 � = 1, lim x→b,yց0g(x, y) = lim x→b,yց0 max � h(x, y), 1 � = 1, that for 0 < c < 1 lim xցa,y→c g(x, y) = lim xցa,y→c max � h(x, y/(1 − y)), 1 � = 1, and that lim xցa,yց0 g(x, y) = lim xցa,yց0 max � h(x, y/(1 − y)), 1 � = 1, lim xցa,yր1 g(x, y) = lim xցa,yր1 max � h(x, y/(1 − y)), 1 � = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
132
+ page_content=' For (2) note that for x > a max 0≤y≤1 g(x, y) = max y>0 h(x, y) = 2exp(√x)(√x − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
133
+ page_content=' ■Claim 2 Let f : R2 → R, (x, y) �→ \uf8f1 \uf8f2 \uf8f3 g � |(x, y)|2, arg((x, y)/|(x, y)|)/2π � , (x, y) ̸= (0, 0), if 1, (x, y) = (0, 0), where the argument function is given by arg : S1 → [0, 2π[ with arg((1, 0)) = 0 and counterclockwise orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
134
+ page_content=' Then f is continuous and log-analytic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
135
+ page_content=' Let 6 γ : R≥0 → R≥0, r �→ max|(x,y)|=r |f(x, y)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
136
+ page_content=' Then γ(r) = α(r2) for all r ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
137
+ page_content=' Hence max |(x,y)|=r |f(x, y)| ≥ exp(r) for all sufficiently large r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
138
+ page_content=' ■ The question is how “big” we can choose a set where polynomially bounded- ness at infinity holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
139
+ page_content=' In Proposition 9 we have shown that we can choose a nonempty open cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
140
+ page_content=' By the continuity of the counterexample in Proposition 10 we cannot hope for a dense definable set (or equivalently, a definable set with dimension of the complement being smaller than n): 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
141
+ page_content=' Corollary Let n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
142
+ page_content=' There is log-analytic function f : Rn → R such that f is not polynomially bounded on every dense definable subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
143
+ page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
144
+ page_content=' Remark Note that the above counterexample is globally given by composition of glob- ally subanalytic functions and the logarithm, not only piecewise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
145
+ page_content=' To formulate an optimal result we need to introduce some setting to speak about the ultimate size of a set at ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
146
+ page_content=' The first definition mimics the tangential cone at finite points (see for example Kurdyka and Raby [4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
147
+ page_content=' We fix an unbounded definable subset A of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
148
+ page_content=' We let dim∞ A to be dim(A ∩ {x ∈ Rn | |x| > r}) for sufficiently large r (note that this stabilizes) and call it the dimension of A at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
149
+ page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
150
+ page_content=' Definition (a) We let B(A, ∞) to be the set of all v ∈ Sn−1 such that for every r, ε > 0 there is x ∈ A with |x| > r and ��x/|x| − v �� < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
151
+ page_content=' We call C(A, ∞) := R≥0 · B(A, ∞) the tangent cone of A at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
152
+ page_content=' (b) We let Bstr(A, ∞) to be the set of all v ∈ Sn−1 such that there is some t ∈ R≥0 with R≥t · v ⊂ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
153
+ page_content=' We call Cstr(A, ∞) := R≥0 · Bstr(A, ∞) the strong tangent cone of A at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
154
+ page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
155
+ page_content=' Remark (1) We have Cstr(A, ∞) ⊂ C(A, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
156
+ page_content=' (2) The tangent cone C(A, ∞) of A at infinity is closed and definable with dim C(A, ∞) ≤ dim∞ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
157
+ page_content=' 7 (3) The strong tangent cone Cstr(A, ∞) of A at infinity is definable with dim Cstr(A, ∞) ≤ dim∞ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
158
+ page_content=' (4) For r > 0 let B(A, r) := {x/r | x ∈ A and |x| = r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
159
+ page_content=' Then B(A, ∞) is the Hausdorff limit of the family � B(A, r) � r∈R>0 (compare with Lion and Speissegger [6]) and Bstr(A, ∞) = lim sup r>0 B(A, r) = � r>0 � s>r B(A, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
160
+ page_content=' The next concept will carry more information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
161
+ page_content=' A (closed) ray R in Rn is of the form R = a + R≥0 · v where a ∈ Rn and v ∈ Sn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
162
+ page_content=' We parametrize the set R of all rays by the bijection Rn × Sn−1 → R, (a, v) �→ a + R≥0 · v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
163
+ page_content=' For limit considerations it is natural to identify two rays R1 and R2 if R1 ⊂ R2 or R2 ⊂ R1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
164
+ page_content=' This is an equivalence relation ∼ on R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
165
+ page_content=' A canonical representative of the equivalence class of a ray R = a + R≥0 · v is given by o + R≥0 · v where o ∈ a + R · v with o ⊥ v (or, equivalently, o realizes the distance of the line a + R · v to the origin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
166
+ page_content=' A ray of this form is called a standardized ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
167
+ page_content=' We identify the set R/ ∼ with the set of the standardized rays and parametrize it by the bijection S := {(o, v) ∈ Rn×Sn−1 | o ⊥ v} → R/ ∼, (o, v) �→ o+R≥0·v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
168
+ page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
169
+ page_content=' Definition (a) We denote by RC(A, ∞) the union of all standardized rays R = o+R≥0·v such that for every r, ε > 0 there are x ∈ A and y ∈ R with |x| = |y| > r and |x − y| < ε and call it the the tangent ray cone of A at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
170
+ page_content=' (b) We denote by RCstr(A, ∞) the union of all standardized rays R = o + R≥0 · v such that o + R≥t · v ⊂ A for some t ∈ R≥0 and call it the strong tangent ray cone of A at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
171
+ page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
172
+ page_content=' Remark (1) We have RCstr(A, ∞) ⊂ RC(A, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
173
+ page_content=' (2) The tangent ray cone RCA,∞ of A at infinity is closed and definable with dim RCA,∞ ≤ dim∞ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
174
+ page_content=' (3) The strong tangent ray cone RCstr A,∞ of A at infinity is definable with dim RCstr A,∞ ≤ dim∞ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
175
+ page_content=' (4) We have C(A, ∞) ⊂ RC(A, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
176
+ page_content=' In fact, the following stronger statement holds: A standardized ray o + R≥0 · v is contained in RC(A, ∞) if and only if R≥0 · v is contained in C(A, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
177
+ page_content=' (5) We have Cstr(A, ∞) ⊂ RCstr(A, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
178
+ page_content=' 8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
179
+ page_content=' Example Consider the half-strip S := {(x, y) ∈ R2 | x > 0, 0 < y < 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
180
+ page_content=' We have C(S, ∞) = R≥0 · (1, 0), Cstr(S, ∞) = ∅ and RC(S, ∞) = � (0, t) + R≥0 · (1, 0) �� t ∈ R � , RCstr(S, ∞) = � (0, t) + R≥0 · (1, 0) �� 0 < t < 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
181
+ page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
182
+ page_content=' Definition (a) We call A spherically dense at infinity if C(A, ∞) = Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
183
+ page_content=' We call A strongly spherically dense at infinity if Cstr(A, ∞) = Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
184
+ page_content=' (b) We call A ray dense at infinity if RC(A, ∞) contains every standard- ized ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
185
+ page_content=' We call A strongly ray dense at infinity if RCstr(A, ∞) contains every standardized ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
186
+ page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
187
+ page_content=' Remark (1) A is spherically dense at infinity if and only if A is ray dense at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
188
+ page_content=' (2) If A is strongly ray dense at infinity then A is strongly spherically dense at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
189
+ page_content=' The converse does in general not hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
190
+ page_content=' Proof: (1): The direction from right to the left being clear by definition we show the direction from left to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
191
+ page_content=' Let o+R≥0 ·v ∈ R/ ∼ where (o, v) ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
192
+ page_content=' Then R≥0 · v ∈ C(A, ∞) since A is spherically dense at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
193
+ page_content=' By the definition of the tangent ray cone we obtain that o + R≥0 · v ⊂ RC(A, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
194
+ page_content=' (2): The first statement ist clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
195
+ page_content=' For the second one consider the complement of the above half-strip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
196
+ page_content=' ■ Hence the notion of ray density at infinity does not give anything new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
197
+ page_content=' We have included it for completeness and symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
198
+ page_content=' Here is now the final optimal result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
199
+ page_content=' 9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
200
+ page_content=' Theorem Let n ≥ 2 and let f : Rn → R be log-analytic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
201
+ page_content=' Then there is a definable subset U of Rn which is strongly ray dense at infinity such that f is polynomially bounded at infinity on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
202
+ page_content=' Proof: Consider the semialgebraic map Φ : S × R≥0 → Rn, (o, v, r) �→ o + rv, and the log-analytic function F := f ◦ Φ : S × R≥0 → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
203
+ page_content=' Let F be log-analytic of order k ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
204
+ page_content=' By Proposition 5 we find a definable cell decomposition Y of S × R≥0 such that for every Y ∈ Y which is simple at infinity the cell Y is k-simple at infinity such that F|Y (o, v, r) = a(o, y)rq0 log(r)q1 · · · logk(r)qku(o, v, r) where (1) a : π(Y ) → R is log-analytic and continuous, (2) q0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
205
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
206
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
207
+ page_content=' , qk ∈ Q, (3) u : Y → R is log-analytic and there is d = dY ∈ R>0 such that 0 ≤ u(o, v, r) ≤ d for all (o, v, r) ∈ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
208
+ page_content=' We fix Y ∈ Y simple at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
209
+ page_content=' Let Z := π(Y ) and δ : Z → R≥0, (o, v) �→ inf Y(o,v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
210
+ page_content=' We set frZS := (Z \\ Z) ∩S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
211
+ page_content=' By passing to a finer cell decomposition of S we may assume that frZS ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
212
+ page_content=' For s ∈ R≥0 let Z(s) := � (o, v) ∈ Z �� |(o, v)| ≤ s, dist((o, v), frSZ) ≥ s � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
213
+ page_content=' Then Z(s) is compact for every s ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
214
+ page_content=' We set ∆ : R≥0 → R≥0, s �→ max � |a(o, v)| �� (o, v) ∈ Z(s) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
215
+ page_content=' Note that this is well-defined since a is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
216
+ page_content=' Note that here by con- vention max ∅ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
217
+ page_content=' The function ∆ is increasing and definable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
218
+ page_content=' Hence by van den Dries and Miller [2] it is bounded by an iterated exponential expl for some l ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
219
+ page_content=' Choose N = NY ∈ N with N > |q0| + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
220
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
221
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
222
+ page_content=' + |qn|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
223
+ page_content=' We set WY := � (o, v, r) ∈ S × R>0 | (o, v) ∈ Z(logl(r)), r > max{el, δ(o, v)} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
224
+ page_content=' For (o, v, r) ∈ WY we have |F(o, v, r)| = |a(o, v)|rq0 log(r)q1 · · ·logk(r)qku(o, v, r) ≤ dY rrNY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
225
+ page_content=' We set VY := Φ(WY ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
226
+ page_content=' We obtain that |f(x)| ≤ dY |x|NY +1 on VY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
227
+ page_content=' 10 Let U be the union of all VY with Y ∈ Y simple at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
228
+ page_content=' Then U is definable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
229
+ page_content=' We show that this U does the job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
230
+ page_content=' Let R = o + R≥0 · v be a standardized ray and let r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
231
+ page_content=' By Remark 3 we find Y ∈ Y that is simple at infinity such that (o, v) ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
232
+ page_content=' Note that we use the above notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
233
+ page_content=' There is s ∈ R>0 such that (o, v) ∈ Z(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
234
+ page_content=' By the definition of WY we find t > 0 such that {(o, v)} × R≥t ⊂ WY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
235
+ page_content=' This gives o + R≥t · v ⊂ VY ⊂ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
236
+ page_content=' So U is strongly ray dense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
237
+ page_content=' Let dU := max{dy | Y ∈ Y simple at infinity} and NU := max{Ny | Y ∈ Y simple at infinity}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
238
+ page_content=' Then |f(x)| ≤ dU|x|NU+1 for all x ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
239
+ page_content=' Hence f is polynomially bounded on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
240
+ page_content=' ■.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
241
+ page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
242
+ page_content=' Concluding Remarks In Corollary 11 we have found for n ≥ 2 a log-analytic function f : Rn → R and a definable open und unbounded set W such that r �→ infx∈W,|x|=r |f(x)| is of exponential growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
243
+ page_content=' By Proposition 7 the set W cannot contain the image of an unbounded log-analytic curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
244
+ page_content=' By the same methods as in the proof of Theorem 20 we can find an open and definable set U such that f is polyno- mially bounded at infinity on U and U contains the germ of every unbounded log-analytic curves up to a certain complexity (where the complexity is the complexity of terms in the language Lan(−1, ( n√.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
245
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
246
+ page_content=')n=2,3,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
247
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
248
+ page_content=', log), compare with [3, Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
249
+ page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
250
+ page_content=' An open question is whether we can find such an U that contains the germ of every unbounded log-analytic curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
251
+ page_content=' References (1) L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
252
+ page_content=' van den Dries: Tame Topology and O-minimal Structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
253
+ page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
254
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
255
+ page_content=' Lecture Notes Series 248, Cambridge University Press, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
256
+ page_content=' (2) L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
257
+ page_content=' van den Dries and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
258
+ page_content=' Miller: Geometric categories and o-minimal structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
259
+ page_content=' Duke Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
260
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
261
+ page_content=' 84 (1996), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
262
+ page_content=' 2, 497-540.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
263
+ page_content=' (3) T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
264
+ page_content=' Kaiser and Andre Opris: Differentiability Properties of Log-Analytic Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
265
+ page_content=' Rocky Mountain Journal of Mathematics 52 (2022) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
266
+ page_content=' 4, 1423-1443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
267
+ page_content=' (4) K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
268
+ page_content=' Kurdyka, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
269
+ page_content=' Raby: Densit´e des ensembles sous-analytiques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
270
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
271
+ page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
272
+ page_content=' Fourier 39 (1989), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
273
+ page_content=' 3, 753-771.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
274
+ page_content=' (5) J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
275
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
276
+ page_content=' Lion, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
277
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
278
+ page_content=' Rolin: Th´eor`eme de pr´eparation pour les fonctions logarithmico- exponentielles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
279
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
280
+ page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
281
+ page_content=' Fourier 47 (1997), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
282
+ page_content=' 3, 859-884.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
283
+ page_content=' (6) J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
284
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
285
+ page_content=' Lion, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
286
+ page_content=' Speissegger: A geometric proof of the definability of Hausdorff limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
287
+ page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
288
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
289
+ page_content=', New Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
290
+ page_content=' 10 (2004), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
291
+ page_content=' 3, 377-390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
292
+ page_content=' Tobias Kaiser, University of Passau, Faculty of Computer Science and Mathematics tobias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
293
+ page_content='kaiser@uni-passau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
294
+ page_content='de, D-94030 Germany 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf'}
D9E1T4oBgHgl3EQf-QZ6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42676a03bac6545afee7e5dbe322158c7b4975f2482058e02e9a1a329fe48de
3
+ size 355189