jackkuo commited on
Commit
24e6199
·
verified ·
1 Parent(s): 770e473

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9AyT4oBgHgl3EQfRPbk/vector_store/index.faiss +3 -0
  2. -NE3T4oBgHgl3EQfSglq/content/tmp_files/2301.04433v1.pdf.txt +0 -0
  3. -NE3T4oBgHgl3EQfSglq/content/tmp_files/load_file.txt +0 -0
  4. -dE3T4oBgHgl3EQfSgnV/content/tmp_files/2301.04434v1.pdf.txt +2137 -0
  5. -dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt +0 -0
  6. .gitattributes +66 -0
  7. 0NAzT4oBgHgl3EQfDPod/vector_store/index.faiss +3 -0
  8. 0tFST4oBgHgl3EQfVziF/content/tmp_files/2301.13778v1.pdf.txt +1461 -0
  9. 0tFST4oBgHgl3EQfVziF/content/tmp_files/load_file.txt +0 -0
  10. 19E4T4oBgHgl3EQfaQyU/vector_store/index.faiss +3 -0
  11. 1tE4T4oBgHgl3EQfzg0x/content/tmp_files/2301.05274v1.pdf.txt +0 -0
  12. 1tE4T4oBgHgl3EQfzg0x/content/tmp_files/load_file.txt +0 -0
  13. 29E1T4oBgHgl3EQfSAP8/vector_store/index.pkl +3 -0
  14. 2dAyT4oBgHgl3EQfbvf7/content/2301.00271v1.pdf +3 -0
  15. 2dAyT4oBgHgl3EQfbvf7/vector_store/index.pkl +3 -0
  16. 3NAyT4oBgHgl3EQf1vm8/content/2301.00741v1.pdf +3 -0
  17. 3NAyT4oBgHgl3EQf1vm8/vector_store/index.pkl +3 -0
  18. 3dAzT4oBgHgl3EQfuf2L/content/tmp_files/2301.01692v1.pdf.txt +510 -0
  19. 3dAzT4oBgHgl3EQfuf2L/content/tmp_files/load_file.txt +222 -0
  20. 3tE1T4oBgHgl3EQfSQPo/content/2301.03065v1.pdf +3 -0
  21. 3tE1T4oBgHgl3EQfSQPo/vector_store/index.faiss +3 -0
  22. 3tE1T4oBgHgl3EQfSQPo/vector_store/index.pkl +3 -0
  23. 4dAyT4oBgHgl3EQfP_bc/content/2301.00038v1.pdf +3 -0
  24. 4dAyT4oBgHgl3EQfP_bc/vector_store/index.faiss +3 -0
  25. 4dAyT4oBgHgl3EQfP_bc/vector_store/index.pkl +3 -0
  26. 4dE0T4oBgHgl3EQfeQDL/vector_store/index.faiss +3 -0
  27. 69E0T4oBgHgl3EQffAC0/content/tmp_files/2301.02399v1.pdf.txt +0 -0
  28. 69E0T4oBgHgl3EQffAC0/content/tmp_files/load_file.txt +0 -0
  29. 69E1T4oBgHgl3EQfBgJT/vector_store/index.faiss +3 -0
  30. 79FLT4oBgHgl3EQfsi_P/vector_store/index.faiss +3 -0
  31. 8NE4T4oBgHgl3EQfCwsd/content/tmp_files/2301.04862v1.pdf.txt +648 -0
  32. 8NE4T4oBgHgl3EQfCwsd/content/tmp_files/load_file.txt +511 -0
  33. 9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf +0 -0
  34. 9tFPT4oBgHgl3EQfYzRy/content/tmp_files/2301.13075v1.pdf.txt +351 -0
  35. 9tFPT4oBgHgl3EQfYzRy/content/tmp_files/load_file.txt +267 -0
  36. ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf +3 -0
  37. ANFRT4oBgHgl3EQftjjG/vector_store/index.faiss +3 -0
  38. ANFRT4oBgHgl3EQftjjG/vector_store/index.pkl +3 -0
  39. BNE3T4oBgHgl3EQfswvl/content/2301.04671v1.pdf +3 -0
  40. BNFQT4oBgHgl3EQfNDZv/content/tmp_files/2301.13270v1.pdf.txt +910 -0
  41. BNFQT4oBgHgl3EQfNDZv/content/tmp_files/load_file.txt +0 -0
  42. CdAyT4oBgHgl3EQfePjS/content/tmp_files/2301.00319v1.pdf.txt +938 -0
  43. CdAyT4oBgHgl3EQfePjS/content/tmp_files/load_file.txt +0 -0
  44. DNE1T4oBgHgl3EQfWQQt/content/tmp_files/2301.03111v1.pdf.txt +701 -0
  45. DNE1T4oBgHgl3EQfWQQt/content/tmp_files/load_file.txt +319 -0
  46. DtFJT4oBgHgl3EQfBiw4/vector_store/index.pkl +3 -0
  47. H9AzT4oBgHgl3EQfHvt9/content/tmp_files/2301.01050v1.pdf.txt +0 -0
  48. H9AzT4oBgHgl3EQfHvt9/content/tmp_files/load_file.txt +0 -0
  49. H9FIT4oBgHgl3EQfYCsV/vector_store/index.pkl +3 -0
  50. HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf +3 -0
-9AyT4oBgHgl3EQfRPbk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84dfbbaa02a3ce1acab301654ec3d6adb46d457ffc0c02caf08417b6102f270d
3
+ size 4653101
-NE3T4oBgHgl3EQfSglq/content/tmp_files/2301.04433v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
-NE3T4oBgHgl3EQfSglq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-dE3T4oBgHgl3EQfSgnV/content/tmp_files/2301.04434v1.pdf.txt ADDED
@@ -0,0 +1,2137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Springer Nature 2021 LATEX template
2
+ Multilingual Entity and Relation Extraction
3
+ from Unified to Language-specific Training
4
+ Zixiang Wang1, Jian Yang1, Tongliang Li1, Jiaheng
5
+ Liu1, Ying Mo1, Jiaqi Bai1, Longtao He2 and Zhoujun Li1*
6
+ 1State Key Lab of Software Development Environment, Beihang
7
+ University, Beijing, Beijing, China.
8
+ 2National Computer Network Emergency Response Technical
9
+ Team/Coordination Center of China, Beijing, Beijing, China.
10
+ *Corresponding author(s). E-mail(s): [email protected];
11
+ Contributing authors: [email protected];
12
13
14
15
+ Abstract
16
+ Entity and relation extraction is a key task in information extraction,
17
+ where the output can be used for downstream NLP tasks. Existing
18
+ approaches for entity and relation extraction tasks mainly focus on
19
+ the English corpora and ignore other languages. Thus, it is critical to
20
+ improving performance in a multilingual setting. Meanwhile, multilingual
21
+ training is usually used to boost cross-lingual performance by trans-
22
+ ferring knowledge from languages (e.g., high-resource) to other (e.g.,
23
+ low-resource) languages. However, language interference usually exists
24
+ in multilingual tasks as the model parameters are shared among all
25
+ languages. In this paper, we propose a two-stage multilingual train-
26
+ ing method and a joint model called Multilingual Entity and Relation
27
+ Extraction framework (mERE) to mitigate language interference across
28
+ languages. Specifically, we randomly concatenate sentences in differ-
29
+ ent languages to train a Language-universal Aggregator (LA), which
30
+ narrows the distance of embedding representations by obtaining the
31
+ unified language representation. Then, we separate parameters to mit-
32
+ igate interference via tuning a Language-specific Switcher (LS), which
33
+ includes several independent sub-modules to refine the language-specific
34
+ 1
35
+ arXiv:2301.04434v1 [cs.CL] 11 Jan 2023
36
+
37
+ Springer Nature 2021 LATEX template
38
+ 2
39
+ Article Title
40
+ feature representation. After that, to enhance the relational triple extrac-
41
+ tion, the sentence representations concatenated with the relation feature
42
+ are used to recognize the entities. Extensive experimental results show
43
+ that our method outperforms both the monolingual and multilingual
44
+ baseline methods. Besides, we also perform detailed analysis to show
45
+ that mERE is lightweight but effective on relational triple extraction
46
+ and mERE is easy to transfer to other backbone models of multi-field
47
+ tasks, which further demonstrates the effectiveness of our method.
48
+ Keywords: Joint extraction, Information extraction, Multilingual entity and
49
+ relation extraction, Relational triple
50
+ 1 Introduction
51
+ Entity and relation extraction (ERE) contains two sub-tasks called named
52
+ entity recognition (NER) [1–4] and relation classification (RC) [5, 6], which is
53
+ the fundamental step of automatic knowledge graphs (KGs) [7] construction,
54
+ knowledge discovery and intelligent question answering system. The results of
55
+ ERE are typically described as a relational triple (h, r, t), where h and t are
56
+ the head entity and the tail entity, respectively, and r denotes the relation
57
+ between them. For example, for the sentence “Big Ben is in UK.” with a
58
+ predefined relation called “Locate in”, an ideal relational triple of this sentence
59
+ is expressed as (Big Ben, Locate in, UK).
60
+ As a large amount of data is available from different languages on the
61
+ Internet, it is important to utilize such valuable resources and develop multilin-
62
+ gual entity and relation extraction models, which can operate across language
63
+ barriers. However, most existing methods propose to solve ERE on English
64
+ corpora, which can only deal with the monolingual extraction task. The main
65
+ reason is that many languages suffer from the scarcity of corpora in ERE.
66
+ Thus, multilingual training is proposed to help each other in a shared model,
67
+ where the well-trained knowledge of high-resource languages can be trans-
68
+ ferred to low-resource languages with a small amount of data. Recently, [8]
69
+ propose a multilingual dataset called SMiLER, which is the first work to apply
70
+ both monolingual and multilingual training. The authors in [8] introduce the
71
+ multilingual entity and relation extraction model (i.e., HERBERTa) without
72
+ considering interference across languages. However, such language interfer-
73
+ ence is prevalent in multilingual tasks because of parameter sharing [9–11].
74
+ As shown in Figure 1, to mitigate interference among languages, we propose
75
+ to extract the feature representation of the corresponding language sentence.
76
+ First, to facilitate the cross-lingual transfer among different languages, mul-
77
+ tilingual representations are supposed to be closed under similar semantics
78
+ using cross-lingual sentence-level concatenation. Then, based on the shared
79
+ multilingual parameters, the language-specific representations derived from
80
+ the independent modules can mitigate interference among multiple languages.
81
+
82
+ Springer Nature 2021 LATEX template
83
+ Article Title
84
+ 3
85
+ Specifically, we propose a two-stage multilingual training method and an
86
+ 我爱吃苹果。
87
+ amo le mele.
88
+ I love apples.
89
+ J'adore les pommes.
90
+
91
+ Unified
92
+ Feature
93
+ Chinese
94
+ Feature
95
+ Italian
96
+ Feature
97
+ English
98
+ Feature
99
+ French
100
+ Feature
101
+ Fig. 1 This example includes 4 sentences from different languages, which express the same
102
+ meaning. The four arrows represent four independent sentence representations extracted
103
+ from different languages.
104
+ effective model called multilingual Entity and Relation Extraction framework
105
+ (mERE) to address the multilingual ERE task. In the first stage, we utilize a
106
+ cross-lingual encoder to encode different language sentences and extract rela-
107
+ tions directly. Then, we train the joint model with our Language-universal
108
+ Aggregator (LA) to generate the unified language feature, which narrows the
109
+ distance of similar semantic representation across languages. LA consists of
110
+ a self-attention layer and is trained by random multi-sentences concatena-
111
+ tion, which is used to learn semantic similarities in multilingual training. In
112
+ the second stage, to alleviate the interference among languages, we freeze the
113
+ parameters of LA and cross-lingual encoder in the first stage and optimize the
114
+ independent parameters via fine-tuning the model with a Language-specific
115
+ Switcher (LS), which consists of several independent sub-modules to produce
116
+ the specific language features. Meanwhile, a selection mechanism is applied
117
+ to choose the optimal group of sub-modules from LS, which enables the sub-
118
+ module to share the same parameters with a certain group of languages. Such
119
+ an automatic sub-module selection mechanism saves many model parameters
120
+ when the number of languages is large. After that, each token representation
121
+ is concatenated with the relation representation to enhance the recognition
122
+ of the positions of entities in a sentence. Finally, in mERE, we adopt joint
123
+ training to mitigate the error propagation problem.
124
+ We conduct extensive experiments on the SMiLER benchmark of 14 lan-
125
+ guages with 36 relations (including no relation) in total. The experimental
126
+ results demonstrate that our method outperforms previous monolingual and
127
+ multilingual ERE baseline methods by a large margin across languages, which
128
+ demonstrates that our method can effectively mitigate language interference
129
+ by improving representation quality among languages. Besides, we conduct
130
+ detailed experiments to analyze how our method affects relational triple extrac-
131
+ tion. Moreover, our method is simple but effective, and it is also easy to transfer
132
+ to different backbone models of multi-field tasks with lightweight modules.
133
+
134
+ Springer Nature 2021 LATEX template
135
+ 4
136
+ Article Title
137
+ 2 Related Work
138
+ Information Extraction Information extraction mainly focuses on extract-
139
+ ing knowledge from unstructured text. A well-known system called Never-
140
+ Ending Language Learner was reading the Web for almost 10 years to collect
141
+ new instances of pre-defined relations and entity types [12]. Instead of the pre-
142
+ defined entity and relation types, Open Information Extraction (OpenIE) has
143
+ also attracted much attention during the past decade. A notable example is
144
+ TextRunner [13], which utilizes a syntactic parser to extract triples from the
145
+ Internet automatically. Many systems have been proposed subsequently, such
146
+ as rule-based systems [14–16] and clause based systems [17, 18]. Recent super-
147
+ vised methods are divided into three categories based on different architectures:
148
+ (1) Generation-based models are typically sequence-to-sequence structure [19–
149
+ 21]. (2) Sequence labeling-based models using Begin Inside Outside (BIO)
150
+ or Subject Relation Object None (SRON) to label every word in a sentence
151
+ [22, 23]. (3) Span-based model takes advantage of span level feature which can
152
+ be sufficiently exploited [24].
153
+ Entity and Relation Extraction Early entity and relation extraction tasks
154
+ use a pipeline approach, which are two separate subtasks including named
155
+ entity recognition and relation classification. [25] first works on Recurrent Neu-
156
+ ral Network (RNN) based model for extraction, capturing the semantics of the
157
+ entity and its adjacent phrases through parsing trees. While [26] uses a syntac-
158
+ tic tree-based RNN model to add weights to the important phrases. [27] first
159
+ used a Convolutional Neural Network (CNN) structure to fuse the extracted
160
+ word and sentence level features for extraction work. [28] uses a CNN structure
161
+ based on a dependency tree to improve the performance. However, the pipeline
162
+ approach has inevitable deficiencies: (1) The architecture ignores the interac-
163
+ tions between entities and relations, causing the error propagation problem. (2)
164
+ Some of the extracted entities are redundant in the named entity recognition
165
+ phase, resulting in a degradation of performance in the relation classification
166
+ phase.
167
+ Most studies focus on the joint approach, which models entity recognition
168
+ and relation classification in the same network and naturally relieves error
169
+ propagation problem. The initial joint models are feature-based methods that
170
+ heavily rely on NLP tools and manual efforts [29–32]. Recent joint models are
171
+ typically neural network-based methods, which benefit from their excellent fea-
172
+ ture learning capability. SPTree [33] is the first joint model based on the neural
173
+ network method. Due to the two subtasks decoding with independent decoders
174
+ but sharing parameters of the same encoding layers, this architecture also is
175
+ known as parameters sharing. Following such kind of structure, [34] proposed
176
+ an LSTM-based network that decodes entities and a CNN network to classify
177
+ relations. [35, 36] employ CRF to improve performance of entity recognition.
178
+ [37–40] use a pre-trained model called bidirectional encoder representation
179
+ from transformers (BERT) to improve the accuracy of entity recognition. [41]
180
+ proposes a multi-feature fusion sentence representation and decoder sequence
181
+ annotation to handle the overlapping triples which are overlapped with one
182
+
183
+ Springer Nature 2021 LATEX template
184
+ Article Title
185
+ 5
186
+ or two entities. Another architecture is joint decoding, which extracts entity
187
+ pairs and corresponding relations simultaneously in one stage. NovelTagging
188
+ [42] first proposes a tagging scheme to implement a joint decoding manner.
189
+ But it cannot figure out the overlapping problem. The sequence-to-sequence
190
+ scheme [43–46] models relational triples as a sequence, which can naturally
191
+ deal with the nested entity and overlapping problem.
192
+ Multilingual Models Multilingual models are a type of model that per-
193
+ forms cross-lingual transfer among different languages, such as multilingual
194
+ pre-training [47–51] and machine translation [11, 52–54]. Specifically, mBERT
195
+ pre-trained on 104 languages in Wikipedia has a strong ability for cross-
196
+ lingual transfer. Multilingual neural machine translation (MNMT) trains a
197
+ single NMT model in multiple language pairs supporting translation direc-
198
+ tions between multiple languages by sharing parameters [55–58]. Early studies
199
+ mainly utilize high-resource languages to help low-resource languages and
200
+ even perform zero-shot transfer translation [59, 60]. Recent studies focus on
201
+ designing language-specific components to mitigate the language interference
202
+ in shared parameters, especially on high-resource pairs [11, 61, 62]. Our method
203
+ boosts the sentence representation quality from superior unified representation
204
+ to further language-specific representation.
205
+ Multilingual Entity and Relation Extraction Existing entity and rela-
206
+ tion extraction datasets are insufficient in diversity and size. English is always
207
+ used to be training corpora. [8] presents a new, large and diversified dataset
208
+ Samsung MultiLingual Entity and Relation Extraction (SMiLER) dataset to
209
+ entity and relation extraction both for English and multilingual setting. This
210
+ is currently the most comprehensive and largest multilingual dataset.
211
+ In this paper, we propose a multilingual entity and relation extraction
212
+ framework called mERE with two-stage training strategies. In the first stage,
213
+ we concatenate random sentences and use the self-attention mechanism [63]
214
+ to learn the unified representation across languages. Inspired by MoE [64],
215
+ we use several sub-modules with a selection mechanism to learn the specific
216
+ representation of each language in the second stage. Such two-stage learning
217
+ greatly improves the performance of relational triple extraction.
218
+ 3 Methodology
219
+ In this section, we introduce the details of our training method for the multi-
220
+ lingual joint extraction model as shown in Figure 2. We propose a two-stage
221
+ training strategy. In the first stage, we train a Language-universal Aggrega-
222
+ tor (LA) for learning the unified representations among multiple languages. In
223
+ the second stage, we freeze the parameters and fine-tune the Language-specific
224
+ Switcher (LS), which is applied to select specific feature representations of
225
+ various languages.
226
+
227
+ Springer Nature 2021 LATEX template
228
+ 6
229
+ Article Title
230
+ FR: Tour Eiffel à Paris.
231
+ EN: Big Ben is in UK.
232
+ ES: España en Europa.
233
+ IT: Torre pendente di Pisa in Italia.
234
+ ….
235
+ Cross-lingual Pretrained Encoder
236
+ Embeddings
237
+ Classifier
238
+ Relation
239
+ [CLS]
240
+ [CLS]
241
+ 𝜃1
242
+ 𝜃2
243
+ 𝜃3
244
+ 𝜃4
245
+ Language-universal Aggregator
246
+ Language-specific
247
+ Switcher
248
+ Entity1
249
+ Entity2
250
+ Big
251
+ Ben
252
+ UK
253
+ Weighted sum
254
+ NER
255
+ Concatenate
256
+ Encoder
257
+ RC
258
+ Switcher-based
259
+ Tuning
260
+ NER
261
+ LA
262
+ Encoder
263
+ RC
264
+ NER
265
+ LA
266
+ LS
267
+ Freeze
268
+ Multilingual
269
+ Training
270
+ Selection
271
+ Distribution
272
+ Fig. 2 The left part shows the two-stage training strategy. The right part is our frame-
273
+ work with Language-universal Aggregator (LA) for unified representation generation and
274
+ Language-specific Switcher (LS) for language-specific feature extraction. We first train the
275
+ LA with a concatenation of 2 random sentence representations, which are denoted as the
276
+ green boxes (English) and yellow boxes (Italian) below the figure. Note that each sentence
277
+ representation is directly regarded as input of LA during the evaluation stage. Then, we
278
+ freeze part of the parameters and fine-tune the LS with all sub-modules during the training
279
+ stage. The figure illustrates 4 sub-modules of LS with a top-2 strategy during evaluation.
280
+ 3.1 Task Formulation
281
+ The goal of multilingual joint entity and relation extraction aims to identify all
282
+ possible relational triples from sentences in different languages. Formally, given
283
+ a sentence X from multilingual corpora D = {Dn}N
284
+ n=1, where N represents
285
+ the number of the all languages Lall = {Ln}N
286
+ n=1. The probability of the target
287
+ triple Y = {s, r, o} is defined as below:
288
+ P(Y | X) = p(r | X; φ)p(s, o | X, r; ϕ),
289
+ (1)
290
+ where r denotes relation, s and o are subject (head entity) and object (tail
291
+ entity), respectively. p(r | X; φ) means relation is only related to sentence X,
292
+ and p(s, o | X, r; ϕ) means the entity pair (s, o) is related to both sentence X
293
+ and the relation r that they shared.
294
+ 3.2 Language-aggregation Training
295
+ We train the model with Language-universal Aggregator (LA) to learn the
296
+ unified representation, which effectively narrows the distance of semantic
297
+ representations across different languages. To obtain context representations
298
+ of each token from the multilingual sentences, we utilize the cross-lingual
299
+ pre-trained encoder for building a multilingual model. Given the sentence
300
+ XLn = {xLn
301
+ 1 , . . . , xLn
302
+ i
303
+ , . . . , xLn
304
+ m } with m tokens (including [CLS], [SEP] and
305
+
306
+ Springer Nature 2021 LATEX template
307
+ Article Title
308
+ 7
309
+ [PAD]), xLn
310
+ i
311
+ ∈ Rd is the i-th token embedding and d is the embedding size.
312
+ The whole sentence is encoded by the cross-lingual pre-trained encoder:
313
+ hLn = H(XLn; φ),
314
+ (2)
315
+ where hLn = {hLn
316
+ 1 , . . . , hLn
317
+ i
318
+ , . . . , hLn
319
+ m } ∈ Rm×d represents the encoded rep-
320
+ resentation and d is the hidden size. H denotes the cross-lingual pre-trained
321
+ encoder. Meanwhile, a relation classifier W r ∈ Rd×U is used to project pooled
322
+ output vector hp (from the [CLS] token) to the relation rc, where U is the
323
+ number of relation types. The relation extraction is defined as:
324
+ rc = hpW r,
325
+ (3)
326
+ To better learn the unified semantic representation among multiple lan-
327
+ guages, we randomly sample s sentences of different languages from the
328
+ training corpora to generate the cross-lingual representations using Equation 2
329
+ and concatenate them to obtain hcat = [h
330
+ LX1
331
+ 1
332
+ , . . . , h
333
+ LXi
334
+ i
335
+ , . . . , hLXs
336
+ s
337
+ ], where LXi
338
+ denotes the language symbol of the i-th sentence. Considering that each token
339
+ needs to capture the dependency of inner-sentence and acquire semantic sim-
340
+ ilarity representation of inter-sentence among languages, we train LA which
341
+ applies the self-attention mechanism for fusing the information of the given
342
+ concatenated representation:
343
+ ˆhcat = SF(QKT
344
+ √ϵ )V
345
+ (4)
346
+ where Q = hcatWq, K = hcatWk and V = hcatWv. SF represents the softmax
347
+ operation. The three-parameter matrices Wq, Wk, and Wv are trainable. The
348
+ term 1/√ϵ is the scaling factor. ˆhcat = {ˆh
349
+ LX1
350
+ 1
351
+ , . . . , ˆh
352
+ LXi
353
+ i
354
+ , . . . , ˆhLXs
355
+ s
356
+ } and ˆh
357
+ LXi
358
+ i
359
+ is
360
+ i-th element. Instead of using language-specific features generated via Equation
361
+ 8, we directly utilize each element representation in ˆh
362
+ LXi
363
+ i
364
+ to train the model
365
+ via Equation 9.
366
+ 3.3 Language-specific Training
367
+ To acquire features of a specific language, we freeze the parameters of language
368
+ aggregation and cross-lingual encoder in the first training stage and fine-tune
369
+ the model with LS. After obtaining the unified representation via LA, we
370
+ extract the language-specific features via the LS with the selection mechanism
371
+ from the unified representations.
372
+ Given the language symbol Ln ∈ Lall(1 ≤ n ≤ N) and our LS θ =
373
+ {θt}T
374
+ t=1(1 ≤ t ≤ T , 1 ≤ T ≤ N), our selection mechanism is used to select
375
+ corresponding sub-modules θf(Ln), in which f(·) is a function that maps a lan-
376
+ guage to corresponding LS modules. To design an appropriate map function for
377
+ our selection mechanism, each sentence is prefixed to the corresponding lan-
378
+ guage symbol, which enables the model to correctly route sentences. Besides,
379
+
380
+ Springer Nature 2021 LATEX template
381
+ 8
382
+ Article Title
383
+ all sub-modules from LS attend to the selection procedure during the training
384
+ stage, which solves the undifferentiability problem. Specifically, the function
385
+ ft(·) indicates the probability of selection of sub-module θt:
386
+ ft (Ln) =
387
+ exp
388
+
389
+ eLn
390
+ t
391
+
392
+ �T
393
+ i=1 exp
394
+
395
+ eLn
396
+ i
397
+
398
+ (5)
399
+ where eLn
400
+ i
401
+ is i-th element of the probability vector eLn = El[n]Wf. El ∈
402
+ RN×d denotes the look-up table for all language prefix embeddings. The router
403
+ matrix Wf ∈ Rd×T is used to project eLn which are normalized via a softmax
404
+ distribution over the total T modules.
405
+ For each sub-module θt from θ, we utilize Eθt(·) to transform unified feature
406
+ representation ˆhLn into language-specific feature branch ˜hLn
407
+ θt :
408
+ ˜hLn
409
+ θt = Eθt(ˆhLn)
410
+ (6)
411
+ Eθt(ˆhLn) = LN
412
+
413
+ σ(ˆhLnWu)Wd + ˆhLn�
414
+ (7)
415
+ where ˆhLn ∈ Rm×d is an element of ˆhcat. Wu ∈ Rd×b and Wd ∈ Rb×d are
416
+ projection matrices (b > d). σ is the ReLU activation function and LN(·) is
417
+ the layer normalization function. The right part of Figure 2 corresponds to
418
+ Equation 7.
419
+ To ensure gradients are propagated to all sub-modules of LS {θt}T
420
+ t=1, we
421
+ apply the weighted average for obtaining the language-specific feature:
422
+ ˜hLn =
423
+ T
424
+
425
+ t=1
426
+ ft(Ln)Eθt
427
+
428
+ ˆhLn�
429
+ (8)
430
+ Note that for the whole process, function ft(Ln) in Equation 8 permits
431
+ differentiability of the router.
432
+ In the evaluation stage, it is necessary to prune several sub-module branches
433
+ with the lowest selection probabilities to obtain the best performance. There-
434
+ fore, we use the top-K strategy to select the best k(1 ≤ k ≤ T ) sub-modules
435
+ with the highest probabilities to generate the language-specific representation.
436
+ When k = T indicates all sub-modules involved in the calculation which means
437
+ the selection mechanism is the same as the training stage. The mapping pro-
438
+ cess is described as: Ln −→ {πLn
439
+ 1 , . . . , πLn
440
+ i
441
+ , . . . , πLn
442
+ k } ∈ Π(k), where πLn
443
+ i
444
+ is
445
+ one of the sub-module index that corresponds to language Ln and Π(k) is the
446
+ space of all k-length combinations of Ck
447
+ T in total.
448
+ After obtaining the language-specific representation from LS, we create
449
+ four matrices to recognize the head and tail positions of two named entities. To
450
+ enhance the accuracy of recognition, we add a relation feature that constrains
451
+ the extracted entities that are only related to the relevant relation. Formally,
452
+ given a language-specific representation ˜hLn ∈ Rm×d of the m-length sentence
453
+
454
+ Springer Nature 2021 LATEX template
455
+ Article Title
456
+ 9
457
+ and the relation vector re retrieved from relation embedding table Er ∈ RI×d,
458
+ where I is the number of relations, the two entities are recognized as followed:
459
+ entityx = (η((˜hLn ⊕ re)Wy))Uy
460
+ (9)
461
+ where the symbol collection entity={head, tail}, x={start,end} and y =
462
+ {hs, he, ts, te}. We concatenate the relation vector with each token rep-
463
+ resentation to enhance the recognition of entities, namely ˜hLn ⊕ re
464
+ =
465
+ {[˜hLn
466
+ 1 , re], . . . , [˜hLn
467
+ i
468
+ , re], . . . , [˜hLn
469
+ m , re]} ∈ Rm×2d. Wy ∈ R2d×d are four down
470
+ projection matrices and Uy ∈ Rd×1 are four index projection matrices. η
471
+ denotes tanh activation function. Note that we use ground-truth relation as
472
+ input in training entity recognition, which conforms to the joint training
473
+ method in our architecture.
474
+ 3.4 Training Objective
475
+ Our model presented in Figure 2 is trained jointly on multilingual ERE cor-
476
+ pora. We first train the model only using a multilingual training strategy for
477
+ our Language-universal Aggregator. Based on the unified language representa-
478
+ tion, we fine-tune the model with Language-specific Switcher for learning the
479
+ language-specific feature in the next step. The objective is to minimize the two
480
+ training loss functions which are defined below:
481
+ LLAT =
482
+ M
483
+
484
+ m=1
485
+ E(x,y)∼Dm[Lere(x, y; Θ)]
486
+ (10)
487
+ LLST =
488
+ M
489
+
490
+ m=1
491
+ E(x,y)∼Dm[Lere(x, y; Θ, θ)]
492
+ (11)
493
+ where D means multilingual entity and relation extraction training corpora
494
+ and M denotes the number of the samples. Θ indicates shared parameters and
495
+ θ is parameters in LS with selection mechanism. Lere is the loss function for
496
+ entity and relation extraction, which is defined as below:
497
+ Lere = α
498
+ 2 (Lstart
499
+ h
500
+ + L end
501
+ h
502
+ + L start
503
+ t
504
+ + L end
505
+ t
506
+ ) + βLrel
507
+ (12)
508
+ where each L with any superscript is a cross-entropy loss. The subscripts with
509
+ h and t indicate the head entity and tail entity respectively. The start and end
510
+ of superscripts denote the first token index and last token index of an entity
511
+ separately. Lrel is the loss function for relation classification. α and β are two
512
+ weights on entity recognition loss and relation classification loss respectively.
513
+
514
+ Springer Nature 2021 LATEX template
515
+ 10
516
+ Article Title
517
+ 4 Experiments
518
+ 4.1 Datasets
519
+ We evaluate our model on the dataset SMiLER [8], which is the largest
520
+ and most diversified multilingual dataset for multilingual entity and relation
521
+ extraction tasks with 14 languages from 36 relation types. The SMiLER con-
522
+ sists of about 1.1M annotated sentences from Wikipedia and DBpedia, which
523
+ includes English (En), Korean (Ko), Italian (It), French (Fr), German (De),
524
+ Portuguese (Pt), Nederlands (Nl), Polish (Pl), Spanish (Es), Arabic (Ar), Rus-
525
+ sian (Ru), Swedish (Sv), Farsi (Fa), Ukrainian (Uk). The relation types belong
526
+ to roughly nine domains: location, organization, person, animal, art, device,
527
+ measurement, event, and no relation. The statistics of SMiLER are shown in
528
+ Table 1. As the development set in SMiLER is not publicly available, we only
529
+ randomly extract the sentences from the training set to create new files with
530
+ the same split ratio as the original paper.
531
+ Table 1 The statistics of SMiLER dataset. English corpora include full-size, middle-size,
532
+ and small-size. The languages are ordered from high-resource languages (left) to
533
+ low-resource languages (right).
534
+ Languages
535
+ EN-full
536
+ EN-mid
537
+ It
538
+ Fr
539
+ De
540
+ Pt
541
+ Nl
542
+ En-small
543
+ Ko
544
+ Pl
545
+ Es
546
+ Ar
547
+ Ru
548
+ Sv
549
+ Fa
550
+ Uk
551
+ sentences num.
552
+ 748k
553
+ 269k
554
+ 76k
555
+ 62k
556
+ 53k
557
+ 45k
558
+ 40k
559
+ 35k
560
+ 20k
561
+ 17k
562
+ 12k
563
+ 9k
564
+ 7k
565
+ 5k
566
+ 3k
567
+ 1k
568
+ relation types
569
+ 36
570
+ 36
571
+ 22
572
+ 22
573
+ 22
574
+ 22
575
+ 22
576
+ 32
577
+ 28
578
+ 22
579
+ 22
580
+ 9
581
+ 8
582
+ 22
583
+ 8
584
+ 7
585
+ 4.2 Implementation Details
586
+ We conduct experiments on SMiLER, 14 languages in total. EN-small is
587
+ treated as our English corpora. We utilize mBERT as our cross-lingual encoder.
588
+ We train our model with AdamW, the learning rate is 3e-5 and weight decay
589
+ is 0.1. The batch size is set to 16 on Tesla V100 GPU. The hidden size d is 768
590
+ and dimension b of projection matrices Wu and Wd is 1024. The max sequence
591
+ length is 256 and we concatenate 2 sentences during the first training stage. For
592
+ the second training stage, we freeze most parameters in the first stage except
593
+ the relation classifier and 8 matrices used to predict entities from Equation 9.
594
+ The sub-module number T of LS is set to 6 (2 layers for 3 sub-modules and 1
595
+ layer for the other). The epoch is set to 5 at the first stage. The max epoch of
596
+ the second stage is set to 8 with an early stopping mechanism. The loss weights
597
+ are set to 2 in named entity recognition and 1 in relation classification.
598
+ In the evaluation stage, we set k = 3 in the top-K strategy to select the
599
+ sub-modules in LS. We adopt standard micro-F1 metric to calculate scores on
600
+ the models. The extracted entity pair is regarded as correct if the predictions
601
+ of the head entity and tail entity are both the same as the ground truth. A
602
+ triple is treated as correct if the entity pair and the corresponding relation
603
+ type are all correct. no relation type is included in relation prediction. We
604
+ also add a mask for the relation that is not absent in a language.
605
+
606
+ Springer Nature 2021 LATEX template
607
+ Article Title
608
+ 11
609
+ 4.3 Baselines
610
+ As far as we know, the SMiLER is a new dataset and thus only an existing
611
+ method for multilingual ERE without publishing source code. The relevant
612
+ task is cross-lingual relation classification, which is also few in studies. There-
613
+ fore, we reproduce the following competitive baselines to compare with our
614
+ proposed approach for a fair comparison:
615
+ • HEBERTa [8]: A multilingual entity and relation extraction framework
616
+ called Hybrid Entity and Relation extraction BERT, which achieves the
617
+ state-of-the-art performance on SMiLER. HERBERTa uses a pipeline train-
618
+ ing manner that combines two independent BERT models. The first
619
+ sub-model classifies the input sequence as one of 36 pre-defined relations
620
+ (including no relation). The relation generated from the first sub-model is
621
+ then fed to the second BERT and concatenated with the same input sequence
622
+ as the input of the second model for entity recognition.
623
+ • mBERT [65]: A cross-lingual model first uses the mBERT as a backbone
624
+ for RC, which is trained on 104 languages with the corresponding Wikipedia
625
+ dumps. We reproduce the results with the code shared at https://github.
626
+ com/boun-tabi/RELX
627
+ • MTMB [65]: A multilingual pre-training scheme called Matching the Mul-
628
+ tilingual Blanks (MTMB). The framework shows several advantages against
629
+ the mBERT on monolingual tasks and achieves significant improvements in
630
+ cross-lingual transfer. Note that this framework is only designed for RC and
631
+ not adapted to entity and relation extraction. Therefore, we simply modified
632
+ the output layer of the baseline to conduct the ERE task.
633
+ In addition to the above baselines, we also build a simplified multilin-
634
+ gual joint entity and relation extraction framework called mERE-LS-LA as a
635
+ basic structure which is concatenated relation representation with the sentence
636
+ representation to enhance the extraction performance.
637
+ Table 2 The F1 scores of different models. * denotes the model is reproduced by us on
638
+ our experiment settings. - denotes that the language data is not involved both in the
639
+ training and the evaluation stage. MONO, EURO, and SVO mean training data in 3
640
+ different language groups. The languages are ordered from high-resource languages (left) to
641
+ low-resource languages (right). The bold font number is the best score in each language.
642
+ Test Sets
643
+ AVG
644
+ It
645
+ Fr
646
+ De
647
+ Pt
648
+ Nl
649
+ En
650
+ Ko
651
+ Pl
652
+ Es
653
+ Ar
654
+ Ru
655
+ Sv
656
+ Fa
657
+ Uk
658
+ HERBERTa*
659
+ 75.5
660
+ 83.9
661
+ 68.7
662
+ 71.5
663
+ 72.1
664
+ 78.5
665
+ 60.9
666
+ 80.4
667
+ 83.1
668
+ 60.0
669
+ 88.4
670
+ 79.4
671
+ 84.8
672
+ 79.6
673
+ 65.0
674
+ mBERT*1
675
+ 75.2
676
+ 81.5
677
+ 68.2
678
+ 70.7
679
+ 71.0
680
+ 77.6
681
+ 59.9
682
+ 78.5
683
+ 81.1
684
+ 61.3
685
+ 89.5
686
+ 81.7
687
+ 81.5
688
+ 79.6
689
+ 70.0
690
+ MTMB*1
691
+ 75.6
692
+ 80.9
693
+ 67.8
694
+ 70.9
695
+ 70.3
696
+ 79.1
697
+ 58.3
698
+ 79.3
699
+ 82.2
700
+ 58.2
701
+ 91.1
702
+ 74.1
703
+ 83.7
704
+ 77.8
705
+ 85.0
706
+ mERE
707
+ 77.9
708
+ 81.7
709
+ 70.3
710
+ 73.4
711
+ 74.3
712
+ 81.1
713
+ 62.3
714
+ 82.7
715
+ 81.6
716
+ 64.7
717
+ 91.6
718
+ 83.1
719
+ 83.7
720
+ 79.6
721
+ 80.0
722
+ mERE (EURO)
723
+ 70.9
724
+ 81.4
725
+ 70.2
726
+ 72.1
727
+ 74.2
728
+ -
729
+ 62.2
730
+ -
731
+ -
732
+ 65.2
733
+ -
734
+ -
735
+ -
736
+ -
737
+ -
738
+ mERE (SVO)
739
+ 75.7
740
+ 81.3
741
+ 70.0
742
+ 72.9
743
+ 73.3
744
+ 80.6
745
+ 62.1
746
+ -
747
+ 81.0
748
+ 64.7
749
+ -
750
+ 83.1
751
+ 83.7
752
+ -
753
+ 80.0
754
+ mERE-LS
755
+ 77.2
756
+ 80.9
757
+ 69.7
758
+ 72.0
759
+ 73.5
760
+ 80.4
761
+ 62.2
762
+ 80.4
763
+ 81.6
764
+ 62.1
765
+ 91.6
766
+ 83.1
767
+ 84.8
768
+ 77.8
769
+ 80.0
770
+ mERE-LS-LA (MONO)
771
+ 70.9
772
+ 81.2
773
+ 68.3
774
+ 67.1
775
+ 68.4
776
+ 77.9
777
+ 58.6
778
+ 79.3
779
+ 79.0
780
+ 48.4
781
+ 90.0
782
+ 72.5
783
+ 80.4
784
+ 66.7
785
+ 55.0
786
+ mERE-LS-LA
787
+ 76.5
788
+ 81.3
789
+ 69.0
790
+ 71.9
791
+ 71.4
792
+ 80.3
793
+ 60.3
794
+ 76.4
795
+ 84.2
796
+ 60.7
797
+ 90.0
798
+ 83.9
799
+ 83.7
800
+ 77.8
801
+ 80.0
802
+ 1We modified the output layer to implement the entity recognition to accommodate the
803
+ ERE task. We train the model in the joint training method.
804
+
805
+ Springer Nature 2021 LATEX template
806
+ 12
807
+ Article Title
808
+ 4.4 Models and Languages Comparison
809
+ The results presented from the Tables are rounded to one decimal place. From
810
+ Table 2, our method improves multilingual baselines by a large margin over pre-
811
+ vious baselines. There is a 2.3% improvement on averaged F1 score compared
812
+ with the previous strongest baseline MTMB which outperforms HERBERTa
813
+ due to its strong multilingual pre-training scheme. Our mERE achieves the
814
+ best scores on 8 out of 14 languages, especially on high-resource languages.
815
+ The other 5 out of 6 languages achieve the second-best scores. Surprisingly,
816
+ even our baseline mERE-LS-LA has 0.9% improvement over the MTMB. It
817
+ seems that our basic structure is more effective on multilingual entity and rela-
818
+ tion extraction tasks. Compared with mERE-LS that only uses LA, our full
819
+ model mERE has nearly 0.7% F1 value improvement on average and yields
820
+ similar or higher results on 13 languages except for Sv. The improvement can
821
+ be attributed to our switcher-based language-specific training strategy, which
822
+ finally extracts accurate information for entity recognition in each language.
823
+ Compared with our baseline mERE-LS-LA, our full model mERE has nearly
824
+ 1.4% F1 value improvement on average which means mERE-LS also has nearly
825
+ 0.7% F1 value improvement on average. All such impressive results demon-
826
+ strate that our full model mERE truly enhances the representation quality
827
+ and mitigates language interference to a certain extent.
828
+ We set several language groups to analyze the impact of different languages:
829
+ (1)MONO: 14 languages in monolingual training. (2)EURO: It, Fr, Pt, De,
830
+ Es, En. (3)SVO2: EURO, Ru, Sv, Nl, Pl, Uk. The default is all languages
831
+ in multilingual training from Table 2. Compared with mERE-LS-LA training
832
+ in multilingual corpora, we can observe that multilingual training achieves
833
+ much higher results than mERE-LS-LA (MONO) monolingual training from
834
+ Table 2, especially on low-resource languages. Such as improvements of Uk
835
+ (25%), Fa (11.1%), and Ru (11.4%). It demonstrates that languages with less
836
+ training data can benefit most from high-resource languages in multilingual
837
+ training including ERE tasks. The results of the EURO family group are close
838
+ to mERE. It is worth noting that Es achieves the best score in the EURO
839
+ group. We conclude that Es benefits a lot from similarities of languages that
840
+ are in the same language family even with less training data. In the SVO
841
+ group, we can also visualize that most languages in EURO decrease slightly
842
+ with the interference of other non-EURO languages. The different language
843
+ families, or the languages with a big difference in syntactic structures might
844
+ be the main interference among languages. However, compared with mERE
845
+ (SVO), mERE yields the same results on low-resource languages and somewhat
846
+ higher results on high-resource languages even the three non-SVO (Fa, Ar, and
847
+ Ko) data involved during the training stage. We suppose that these non-SVO
848
+ languages which are big different from others and are all low-resource may
849
+ facilitate distinguishing high-resource languages in learning language-specific
850
+ 2SVO stands for the relative position of the Subject, Verb, and Object in the typical affirmative
851
+ sentence. We treat Korean, Farsi, and Arabic as non-SVO languages. Arabic is VSO, while Korean
852
+ and Farsi are SOV.
853
+
854
+ Springer Nature 2021 LATEX template
855
+ Article Title
856
+ 13
857
+ features due to each sub-module from LS being independent, without sharing
858
+ parameters in the same space. Lastly, we also observe some duplicated F1
859
+ scores across low-resource languages. This phenomenon is caused by a small
860
+ number of sentences in test sets.
861
+ 4.5 Entity and Relation Analysis
862
+ Figure 3 shows F1 scores of relation and entity pair of mERE and mERE-LS-
863
+ LA. We can observe that the relation classification seems to be easier than the
864
+ named entity recognition. The correctness of entity pair extraction is the main
865
+ bottleneck of the model performance. With the help of our LA and LS, mERE
866
+ achieves higher results on entity pair recognition compared with mERE-LS-
867
+ LA in general. Surprisingly, we can visualize that the performance of relation
868
+ classification also has a slight improvement in mERE. We conclude that the
869
+ improvement of the named entity recognition facilitates relation classification.
870
+ Since information interaction between two sub-tasks can benefit each other in
871
+ the joint training architecture.
872
+ 50
873
+ 55
874
+ 60
875
+ 65
876
+ 70
877
+ 75
878
+ 80
879
+ 85
880
+ 90
881
+ 95
882
+ 100
883
+ Total
884
+ It
885
+ Fr
886
+ De
887
+ Pt
888
+ Nl
889
+ En
890
+ Ko
891
+ Pl
892
+ Es
893
+ Ar
894
+ Ru
895
+ Sv
896
+ Fa
897
+ Uk
898
+ Relation(mERE)
899
+ Entity Pair(mERE)
900
+ Relation(mERE-LS-LA)
901
+ Entity Pair(mERE-LS-LA)
902
+ Fig. 3 The F1 scores of relations and entity pairs on all languages.
903
+ F1 scores of detailed relation labels are shown in Figure 4. Most of the
904
+ relations achieve higher F1 scores across languages, such as “no relation” and
905
+ “has-type”. Part of relations differs widely across languages, such as relation
906
+ “has-child”(F1 = 100 on Nl, F1 = 33 on De, F1 = 0 on Es). The big difference
907
+ is caused by the number of relations of training data in each language. For
908
+ some relations that occur F1 = 0 scores, we find out the relations (e.g won-
909
+ award on Nl. has-parent on Pl. has-child on Es) are only one test sample.
910
+ Such low results for some languages could be explained by a smaller number
911
+ of relations in the test set.
912
+
913
+ Springer Nature 2021 LATEX template
914
+ 14
915
+ Article Title
916
+ En
917
+ It
918
+ Fr
919
+ Pt
920
+ Es
921
+ De
922
+ Ar
923
+ Nl
924
+ Ru
925
+ Pl
926
+ Uk
927
+ Sv
928
+ Fa
929
+ Ko
930
+ no_relation
931
+ is-where
932
+ birth-place
933
+ has-type
934
+ movie-has-director
935
+ has-occupation
936
+ from-country
937
+ has-genre
938
+ has-author
939
+ has-population
940
+ headquarters
941
+ is-member-of
942
+ org-has-member
943
+ has-parent
944
+ org-has-founder
945
+ has-spouse
946
+ won-award
947
+ has-nationality
948
+ org-leader
949
+ starring
950
+ has-edu
951
+ has-child
952
+ event-year
953
+ has-sibling
954
+ has-length
955
+ invented-when
956
+ has-tourist-attraction
957
+ has-lifespan
958
+ first-product
959
+ has-height
960
+ has-highest-mountain
961
+ invented-by
962
+ has-weight
963
+ post-code
964
+ loc-leader
965
+ eats
966
+ 85
967
+ 100
968
+ 100
969
+ 86
970
+ 91
971
+ 100
972
+ 100
973
+ 86
974
+ 100
975
+ 100
976
+ 75
977
+ 100
978
+ 97
979
+ 90
980
+ 96
981
+ 88
982
+ 81
983
+ 90
984
+ 85
985
+ 93
986
+ 97
987
+ 60
988
+ 89
989
+ 91
990
+ 92
991
+ 89
992
+ 89
993
+ 94
994
+ 84
995
+ 89
996
+ 50
997
+ 81
998
+ 84
999
+ 92
1000
+ 92
1001
+ 97
1002
+ 100
1003
+ 95
1004
+ 100
1005
+ 97
1006
+ 91
1007
+ 95
1008
+ 100
1009
+ 100
1010
+ 100
1011
+ 94
1012
+ 76
1013
+ 100
1014
+ 99
1015
+ 100
1016
+ 92
1017
+ 99
1018
+ 100
1019
+ 100
1020
+ 100
1021
+ 100
1022
+ 59
1023
+ 72
1024
+ 68
1025
+ 79
1026
+ 67
1027
+ 83
1028
+ 100
1029
+ 70
1030
+ 100
1031
+ 96
1032
+ 100
1033
+ 67
1034
+ 100
1035
+ 98
1036
+ 25
1037
+ 75
1038
+ 30
1039
+ 57
1040
+ 56
1041
+ 66
1042
+ 72
1043
+ 67
1044
+ 0
1045
+ 86
1046
+ 91
1047
+ 83
1048
+ 75
1049
+ 86
1050
+ 67
1051
+ 92
1052
+ 100
1053
+ 93
1054
+ 100
1055
+ 100
1056
+ 100
1057
+ 100
1058
+ 100
1059
+ 100
1060
+ 94
1061
+ 92
1062
+ 100
1063
+ 60
1064
+ 100
1065
+ 100
1066
+ 100
1067
+ 100
1068
+ 100
1069
+ 100
1070
+ 94
1071
+ 100
1072
+ 96
1073
+ 100
1074
+ 100
1075
+ 100
1076
+ 99
1077
+ 100
1078
+ 100
1079
+ 100
1080
+ 100
1081
+ 67
1082
+ 100
1083
+ 100
1084
+ 83
1085
+ 80
1086
+ 78
1087
+ 100
1088
+ 100
1089
+ 100
1090
+ 100
1091
+ 77
1092
+ 92
1093
+ 77
1094
+ 88
1095
+ 100
1096
+ 82
1097
+ 91
1098
+ 100
1099
+ 0
1100
+ 100
1101
+ 100
1102
+ 96
1103
+ 88
1104
+ 100
1105
+ 100
1106
+ 95
1107
+ 88
1108
+ 100
1109
+ 100
1110
+ 86
1111
+ 88
1112
+ 100
1113
+ 57
1114
+ 100
1115
+ 100
1116
+ 100
1117
+ 0
1118
+ 100
1119
+ 100
1120
+ 83
1121
+ 92
1122
+ 90
1123
+ 100
1124
+ 100
1125
+ 89
1126
+ 100
1127
+ 100
1128
+ 100
1129
+ 100
1130
+ 89
1131
+ 90
1132
+ 60
1133
+ 83
1134
+ 86
1135
+ 100
1136
+ 50
1137
+ 89
1138
+ 95
1139
+ 50
1140
+ 50
1141
+ 100
1142
+ 0
1143
+ 100
1144
+ 79
1145
+ 63
1146
+ 92
1147
+ 75
1148
+ 67
1149
+ 67
1150
+ 0
1151
+ 100
1152
+ 100
1153
+ 91
1154
+ 75
1155
+ 67
1156
+ 100
1157
+ 80
1158
+ 100
1159
+ 100
1160
+ 100
1161
+ 0
1162
+ 100
1163
+ 86
1164
+ 67
1165
+ 100
1166
+ 50
1167
+ 0
1168
+ 33
1169
+ 100
1170
+ 0
1171
+ 100
1172
+ 92
1173
+ 100
1174
+ 0
1175
+ 33
1176
+ 100
1177
+ 100
1178
+ 100
1179
+ 100
1180
+ 67
1181
+ 100
1182
+ 100
1183
+ 87
1184
+ 83
1185
+ 62
1186
+ 80
1187
+ 100
1188
+ 100
1189
+ 100
1190
+ 100
1191
+ 78
1192
+ 100
1193
+ 50
1194
+ 100
1195
+ 100
1196
+ 88
1197
+ 50
1198
+ 56
1199
+ 100
1200
+ 0
1201
+ 100
1202
+ 100
1203
+ 100
1204
+ 100
1205
+ 0
1206
+ 20
1207
+ 40
1208
+ 60
1209
+ 80
1210
+ 100
1211
+ Fig. 4 The F1 scores of all relation labels on all languages. The darker color means a higher
1212
+ F1 score, while the lighter color means a lower F1 score.
1213
+ Figure 5 shows F1 scores of head entities and tail entities. We can observe
1214
+ that F1 scores of head entities are much higher than tail entities among most
1215
+ languages. It seems that head entities are easier to be recognized than tail
1216
+ entities. It is because the head entity always occurs at the beginning position
1217
+ of the sentence and thus the model probably memorizes the position, while the
1218
+ tail entity does not have any consistent position which is hard to predict.
1219
+ 4.6 Ablation Study
1220
+ Sentences Concatenation To validate the effect of the number of sentences
1221
+ for learning the unified features among different languages, we conduct sev-
1222
+ eral experiments on the different numbers of sentences in concatenation. We
1223
+ learn from Figure 6 that there are evident F1 improvements with LA on dif-
1224
+ ferent concatenation numbers of sentences over only one sentence encoding.
1225
+ The multilingual model obtains the best performance when concatenating with
1226
+ the sentence pair. The increasing number of concatenated sentences has a
1227
+ slight decrease in performance. We conjecture that increasing the number of
1228
+ sentences may also bring somewhat interference.
1229
+
1230
+ Springer Nature 2021 LATEX template
1231
+ Article Title
1232
+ 15
1233
+ 50
1234
+ 55
1235
+ 60
1236
+ 65
1237
+ 70
1238
+ 75
1239
+ 80
1240
+ 85
1241
+ 90
1242
+ 95
1243
+ 100
1244
+ Total It
1245
+ Fr
1246
+ De
1247
+ Pt
1248
+ Nl
1249
+ En
1250
+ Ko
1251
+ Pl
1252
+ Es
1253
+ Ar
1254
+ Ru
1255
+ Sv
1256
+ Fa
1257
+ Uk
1258
+ head entity
1259
+ tail entity
1260
+ Fig. 5 The performance of head entities (blue bar) and tail entities (orange bar) on different
1261
+ languages.
1262
+ 1
1263
+ 2
1264
+ 3
1265
+ 4
1266
+ Languages
1267
+ 76.6
1268
+ 76.7
1269
+ 76.8
1270
+ 76.9
1271
+ 77.0
1272
+ 77.1
1273
+ F1 score
1274
+ mERE-LS
1275
+ Fig. 6 The performance of sentences concatenation in the first training stage.
1276
+ Selection Mechanism To observe how the selection mechanism affects our
1277
+ model performance, we also train one-to-one sub-modules of LS called mERE14
1278
+ without using the selection mechanism in the second training stage. Each inde-
1279
+ pendent sub-module corresponds to a language and each sentence is routed via
1280
+ a language prefix which represents the number of sub-module. We can visualize
1281
+ from Figure 7 that increasing the number of parameters also improves obvi-
1282
+ ously over mERE-LS-LA. Nonetheless, the mERE14 will suffer from the sharp
1283
+ increasing training time and inference time, and big space consumption when
1284
+ the number of languages is large enough. Instead of increasing parameters,
1285
+ our Language-specific Switcher can effectively ameliorate extraction quality
1286
+ with only slight extra parameters and less time consumption. Since similar
1287
+ languages tend to select the same sub-modules from our LS. The mERE saves
1288
+
1289
+ Springer Nature 2021 LATEX template
1290
+ 16
1291
+ Article Title
1292
+ nearly 700M model capacity in our statistics and achieves better performance
1293
+ among most languages compared with mERE14. It is obvious that mERE is
1294
+ light and easy to transfer to other multi-field tasks. Selection Distribution
1295
+ It
1296
+ Fr
1297
+ De
1298
+ Pt
1299
+ Nl
1300
+ En
1301
+ Ko
1302
+ Pl
1303
+ Es
1304
+ Ar
1305
+ Ru
1306
+ Sv
1307
+ Fa
1308
+ Uk
1309
+ Languages
1310
+ 60
1311
+ 62
1312
+ 64
1313
+ 66
1314
+ 68
1315
+ 70
1316
+ 72
1317
+ 74
1318
+ 76
1319
+ 78
1320
+ 80
1321
+ 82
1322
+ 84
1323
+ 86
1324
+ 88
1325
+ 90
1326
+ 92
1327
+ 94
1328
+ F1 scores
1329
+ mERE-LS-LA
1330
+ mERE14
1331
+ mERE
1332
+ Fig. 7 The performance of three models on 14 languages. mERE14 utilizes 14 one-to-one
1333
+ sub-modules of LS without the selection mechanism. Each sub-module corresponds to a
1334
+ language.
1335
+ Figure 8 illustrates the heatmap of selection probability on 6 sub-modules from
1336
+ LS for each language. For each sub-module from top to bottom in Figure 8,
1337
+ we can visualize θ1 pays more attention to low-resource languages while θ4,
1338
+ θ5, and θ6 pay more attention to languages from the EURO family, which
1339
+ are mostly high-resource languages. The θ2 and θ3 seem to be more balanced
1340
+ on parameters sharing of languages except for 2 or 3 prominent languages.
1341
+ We conclude that some sub-modules are mainly used to extract features from
1342
+ similar languages and others are used to assist the specific languages.
1343
+ For each language from left to right, we can visualize that the selected
1344
+ sub-modules with higher probabilities are easy to distinguish in high-resource
1345
+ languages. In contrast, the selection probabilities across all sub-modules are
1346
+ relatively similar on low-resource languages in total. We conclude that train-
1347
+ ing data is rich enough to determine which way to route on high-resource
1348
+ languages and a more balanced selection decision is made on less training
1349
+ data. It is learned from Figure 8 that there are nearly 3 out of 6 prominently
1350
+ higher selection probabilities on the high-resource languages, and so do the
1351
+ low-resource languages with careful observation. It proves that only 3 sub-
1352
+ modules play the dominant role in refining the language-specific feature for
1353
+ each language. To avoid interference from the other irrelevant sub-modules,
1354
+ we adopt a top-K strategy to filter out 6 − k sub-modules with lower selec-
1355
+ tion probabilities in the evaluation stage. The top-6 strategy means selecting
1356
+ all sub-modules, which is the same as the training stage and the performance
1357
+ is relatively low (77.74) on average, while our mERE achieves the best perfor-
1358
+ mance (77.87) when adopting the top-3 strategy. It demonstrates that filtering
1359
+ out the least important sub-modules is necessary to enhance the prediction
1360
+ quality, which also reduces the redundant parameters in the evaluation. The
1361
+
1362
+ Springer Nature 2021 LATEX template
1363
+ Article Title
1364
+ 17
1365
+ top-1 achieves the worst performance (77.60), which demonstrates the part of
1366
+ sub-modules are also helpful for the task. Therefore, the best performance is
1367
+ obtained when the k value is balanced in all languages. Layer Number of
1368
+ It
1369
+ Fr
1370
+ De
1371
+ Pt
1372
+ Nl
1373
+ En
1374
+ Ko
1375
+ Pl
1376
+ Es
1377
+ Ar
1378
+ Ru
1379
+ Sv
1380
+ Fa
1381
+ Uk
1382
+
1383
+ 1
1384
+
1385
+ 2
1386
+
1387
+ 3
1388
+
1389
+ 4
1390
+
1391
+ 5
1392
+
1393
+ 6
1394
+ Fig. 8 The selection probability distributions of 6 sub-modules from LS on 14 languages.
1395
+ The sub-modules {θ}6
1396
+ 1 are numbered from 1 to 6. The languages are ordered from high-
1397
+ resource languages (left) to low-resource languages (right). The darker color means a higher
1398
+ selection probability to the corresponding sub-module and a lower probability to select a
1399
+ certain sub-module when the color is lighter.
1400
+ Language-specific Switcher Table 3 used to evaluate the effect of the layer
1401
+ number of LS. We divide the 6 sub-modules into 2 groups (each group has the
1402
+ same layer number) with different combinations of layer numbers to accommo-
1403
+ date the scenarios, such as high- and low-resource language feature extraction.
1404
+ From Table 3, we can observe that the combination 1-2 achieves the best F1
1405
+ score on average. The combinations which are set to 1-1 and 4-4 also achieve
1406
+ better performance. With the increase or decrease of the layer number to a cer-
1407
+ tain degree, the performances are almost the same, which maintains relatively
1408
+ low averaged F1 scores. The full layer number combination 4-4 is an exception
1409
+ in the case, which demonstrates the performance still can be improved when
1410
+ the model capacity is large enough. According to the outcomes from Table 3,
1411
+ we conclude that the layer number of LS obviously impacts the results, with
1412
+ the best results attained when a balance is reached.
1413
+ 5 Conclusion
1414
+ In this paper, we introduce a two-stage training method and a robust frame-
1415
+ work called mERE for multilingual entity and relation extraction, which
1416
+ ameliorates the sentence representation quality and mitigates the language
1417
+ interference among multiple languages. Specifically, we first learn the gener-
1418
+ alities across all languages to obtain the unified language representation via
1419
+ the Language-universal Aggregator and then learn the specialties of each lan-
1420
+ guage via the Language-specific Switcher. Experimental results demonstrate
1421
+
1422
+ Springer Nature 2021 LATEX template
1423
+ 18
1424
+ Article Title
1425
+ Table 3 The different layer numbers of sub-modules. Every 3 sub-modules in a group has
1426
+ the same layer numbers. Layer Num.01 and Layer Num.02 denote the layer number of the
1427
+ first group and second group respectively.
1428
+ Layer Num.01
1429
+ Layer Num.02
1430
+ AVG
1431
+ IT
1432
+ FR
1433
+ DE
1434
+ PT
1435
+ NL
1436
+ EN
1437
+ KO
1438
+ PL
1439
+ ES
1440
+ AR
1441
+ RU
1442
+ SV
1443
+ FA
1444
+ UK
1445
+ 1
1446
+ 1
1447
+ 77.4
1448
+ 81.3
1449
+ 69.1
1450
+ 72.1
1451
+ 73.4
1452
+ 80.4
1453
+ 63.1
1454
+ 81.9
1455
+ 81.3
1456
+ 63.4
1457
+ 91.1
1458
+ 85.4
1459
+ 83.7
1460
+ 77.8
1461
+ 80.0
1462
+ 1
1463
+ 2
1464
+ 77.9
1465
+ 81.7
1466
+ 70.3
1467
+ 73.4
1468
+ 74.3
1469
+ 81.1
1470
+ 62.3
1471
+ 82.7
1472
+ 81.6
1473
+ 64.7
1474
+ 91.6
1475
+ 83.1
1476
+ 83.7
1477
+ 79.6
1478
+ 80.0
1479
+ 1
1480
+ 3
1481
+ 77.5
1482
+ 81.5
1483
+ 69.4
1484
+ 72.8
1485
+ 73.8
1486
+ 81.1
1487
+ 62.2
1488
+ 81.9
1489
+ 81.3
1490
+ 64.7
1491
+ 90.5
1492
+ 83.1
1493
+ 83.7
1494
+ 79.6
1495
+ 80.0
1496
+ 1
1497
+ 4
1498
+ 77.5
1499
+ 81.0
1500
+ 70.2
1501
+ 72.5
1502
+ 74.1
1503
+ 80.8
1504
+ 62.2
1505
+ 82.2
1506
+ 81.3
1507
+ 65.6
1508
+ 90.5
1509
+ 83.1
1510
+ 83.7
1511
+ 77.8
1512
+ 80.0
1513
+ 2
1514
+ 2
1515
+ 77.8
1516
+ 81.7
1517
+ 70.1
1518
+ 73.1
1519
+ 74.1
1520
+ 81.0
1521
+ 62.3
1522
+ 81.9
1523
+ 81.6
1524
+ 66.1
1525
+ 90.5
1526
+ 83.1
1527
+ 83.7
1528
+ 79.6
1529
+ 80.0
1530
+ 2
1531
+ 3
1532
+ 77.4
1533
+ 81.1
1534
+ 70.2
1535
+ 72.7
1536
+ 74.1
1537
+ 80.9
1538
+ 62.1
1539
+ 82.5
1540
+ 81.3
1541
+ 65.2
1542
+ 90.5
1543
+ 81.5
1544
+ 83.7
1545
+ 77.8
1546
+ 80.0
1547
+ 2
1548
+ 4
1549
+ 77.4
1550
+ 81.3
1551
+ 70.2
1552
+ 72.2
1553
+ 74.2
1554
+ 81.0
1555
+ 62.2
1556
+ 81.4
1557
+ 81.0
1558
+ 64.7
1559
+ 90.5
1560
+ 81.5
1561
+ 83.7
1562
+ 79.6
1563
+ 80.0
1564
+ 3
1565
+ 3
1566
+ 77.4
1567
+ 81.6
1568
+ 70.4
1569
+ 72.5
1570
+ 73.3
1571
+ 81.0
1572
+ 62.1
1573
+ 82.7
1574
+ 81.0
1575
+ 64.7
1576
+ 91.1
1577
+ 81.5
1578
+ 83.7
1579
+ 77.8
1580
+ 80.0
1581
+ 3
1582
+ 4
1583
+ 77.5
1584
+ 81.5
1585
+ 70.2
1586
+ 73.3
1587
+ 73.9
1588
+ 81.4
1589
+ 62.7
1590
+ 83.0
1591
+ 81.0
1592
+ 64.3
1593
+ 90.5
1594
+ 82.3
1595
+ 83.7
1596
+ 77.8
1597
+ 80.0
1598
+ 4
1599
+ 4
1600
+ 77.7
1601
+ 81.1
1602
+ 70.2
1603
+ 73.1
1604
+ 74.2
1605
+ 80.9
1606
+ 62.3
1607
+ 81.9
1608
+ 81.6
1609
+ 65.6
1610
+ 90.5
1611
+ 83.1
1612
+ 83.7
1613
+ 79.6
1614
+ 80.0
1615
+ that our method significantly outperforms both monolingual and multilingual
1616
+ ERE baselines, which demonstrates that our framework can extract relational
1617
+ triples among various languages well. Moreover, our framework is also light
1618
+ and easy to transfer to other backbone models of multi-field tasks.
1619
+ In the future, we will pay more attention to complex multilingual relational
1620
+ triple extraction, such as overlapping relational triples or multiple relational
1621
+ triples. Besides, we will also do further research on a better contextual repre-
1622
+ sentation among multiple languages. Although there is a long way to experience
1623
+ in multilingual entity and relation extraction tasks, it is important to inves-
1624
+ tigate the valuable structured information in many other languages for the
1625
+ downstream NLP tasks.
1626
+ Acknowledgments.
1627
+ This work was supported in part by the National Nat-
1628
+ ural Science Foundation of China (Grant Nos. 62276017, U1636211, 61672081),
1629
+ the 2022 Tencent Big Travel Rhino-Bird Special Research Program, and the
1630
+ Fund of the State Key Laboratory of Software Development Environment
1631
+ (Grant No. SKLSDE-2021ZX-18).
1632
+ References
1633
+ [1] Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence
1634
+ tagging. CoRR abs/1508.01991 (2015) 1508.01991
1635
+ [2] Wang, J., Shou, L., Chen, K., Chen, G.: Pyramid: A layered model for
1636
+ nested named entity recognition. In: Jurafsky, D., Chai, J., Schluter,
1637
+ N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meet-
1638
+ ing of the Association for Computational Linguistics, ACL 2020,
1639
+ Online, July 5-10, 2020, pp. 5918–5928. Association for Computational
1640
+ Linguistics, ??? (2020). https://doi.org/10.18653/v1/2020.acl-main.525.
1641
+ https://doi.org/10.18653/v1/2020.acl-main.525
1642
+ [3] Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.:
1643
+ Spanbert: Improving pre-training by representing and predicting spans.
1644
+ Trans. Assoc. Comput. Linguistics 8, 64–77 (2020). https://doi.org/10.
1645
+ 1162/tacl a 00300
1646
+
1647
+ Springer Nature 2021 LATEX template
1648
+ Article Title
1649
+ 19
1650
+ [4] Tan, Z., Shen, Y., Zhang, S., Lu, W., Zhuang, Y.: A sequence-to-set net-
1651
+ work for nested named entity recognition. In: Zhou, Z. (ed.) Proceedings
1652
+ of the Thirtieth International Joint Conference on Artificial Intelligence,
1653
+ IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp.
1654
+ 3936–3942. ijcai.org, ??? (2021). https://doi.org/10.24963/ijcai.2021/542.
1655
+ https://doi.org/10.24963/ijcai.2021/542
1656
+ [5] Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction
1657
+ via reading comprehension. In: Levy, R., Specia, L. (eds.) Proceedings
1658
+ of the 21st Conference on Computational Natural Language Learning
1659
+ (CoNLL 2017), Vancouver, Canada, August 3-4, 2017, pp. 333–342. Asso-
1660
+ ciation for Computational Linguistics, ??? (2017). https://doi.org/10.
1661
+ 18653/v1/K17-1034. https://doi.org/10.18653/v1/K17-1034
1662
+ [6] Li, J., Wang, R., Zhang, N., Zhang, W., Yang, F., Chen, H.: Logic-guided
1663
+ semantic representation learning for zero-shot relation classification. In:
1664
+ Scott, D., Bel, N., Zong, C. (eds.) Proceedings of the 28th International
1665
+ Conference on Computational Linguistics, COLING 2020, Barcelona,
1666
+ Spain (Online), December 8-13, 2020, pp. 2967–2978. International Com-
1667
+ mittee on Computational Linguistics, ??? (2020). https://doi.org/10.
1668
+ 18653/v1/2020.coling-main.265. https://doi.org/10.18653/v1/2020.coling-
1669
+ main.265
1670
+ [7] Lin, Q., Mao, R., Liu, J., Xu, F., Cambria, E.: Fusing topology contexts
1671
+ and logical rules in language models for knowledge graph completion. Inf.
1672
+ Fusion 90, 253–264 (2023). https://doi.org/10.1016/j.inffus.2022.09.020
1673
+ [8] Seganti, A., Firlag, K., Skowronska, H., Satlawa, M., Andruszkiewicz, P.:
1674
+ Multilingual entity and relation extraction dataset and model. In: Merlo,
1675
+ P., Tiedemann, J., Tsarfaty, R. (eds.) Proceedings of the 16th Conference
1676
+ of the European Chapter of the Association for Computational Linguis-
1677
+ tics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, pp. 1946–1955.
1678
+ Association for Computational Linguistics, ??? (2021). https://doi.org/
1679
+ 10.18653/v1/2021.eacl-main.166. https://doi.org/10.18653/v1/2021.eacl-
1680
+ main.166
1681
+ [9] Wang, Z., Lipton, Z.C., Tsvetkov, Y.: On negative interference in mul-
1682
+ tilingual models: Findings and A meta-learning treatment. In: Webber,
1683
+ B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Confer-
1684
+ ence on Empirical Methods in Natural Language Processing, EMNLP
1685
+ 2020, Online, November 16-20, 2020, pp. 4438–4450. Association for Com-
1686
+ putational Linguistics, ??? (2020). https://doi.org/10.18653/v1/2020.
1687
+ emnlp-main.359. https://doi.org/10.18653/v1/2020.emnlp-main.359
1688
+ [10] Gong, H., Li, X., Genzel, D.: Adaptive sparse transformer for multilingual
1689
+ translation. CoRR abs/2104.07358 (2021) 2104.07358
1690
+
1691
+ Springer Nature 2021 LATEX template
1692
+ 20
1693
+ Article Title
1694
+ [11] Yang, J., Yin, Y., Ma, S., Zhang, D., Li, Z., Wei, F.: High-resource
1695
+ language-specific training for multilingual neural machine translation. In:
1696
+ Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Con-
1697
+ ference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July
1698
+ 2022, pp. 4461–4467. ijcai.org, ??? (2022). https://doi.org/10.24963/ijcai.
1699
+ 2022/619. https://doi.org/10.24963/ijcai.2022/619
1700
+ [12] Mitchell, T.M., Cohen, W.W., Jr., E.R.H., Talukdar, P.P., Yang, B.,
1701
+ Betteridge, J., Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B., Krish-
1702
+ namurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N.,
1703
+ Platanios, E.A., Ritter, A., Samadi, M., Settles, B., Wang, R.C., Wijaya,
1704
+ D., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-
1705
+ ending learning. Commun. ACM 61(5), 103–115 (2018). https://doi.org/
1706
+ 10.1145/3191513
1707
+ [13] Yates, A., Banko, M., Broadhead, M., Cafarella, M.J., Etzioni, O., Soder-
1708
+ land, S.: Textrunner: Open information extraction on the web. In: Sidner,
1709
+ C.L., Schultz, T., Stone, M., Zhai, C. (eds.) Human Language Technology
1710
+ Conference of the North American Chapter of the Association of Com-
1711
+ putational Linguistics, Proceedings, April 22-27, 2007, Rochester, New
1712
+ York, USA, pp. 25–26. The Association for Computational Linguistics,
1713
+ ??? (2007). https://aclanthology.org/N07-4013/
1714
+ [14] Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open infor-
1715
+ mation extraction. In: Proceedings of the 2011 Conference on Empirical
1716
+ Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011,
1717
+ John McIntyre Conference Centre, Edinburgh, UK, A Meeting of SIG-
1718
+ DAT, a Special Interest Group of The ACL, pp. 1535–1545. ACL, ???
1719
+ (2011). https://aclanthology.org/D11-1142/
1720
+ [15] de S´a Mesquita, F., Schmidek, J., Barbosa, D.: Effectiveness and efficiency
1721
+ of open relation extraction. In: Proceedings of the 2013 Conference on
1722
+ Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21
1723
+ October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A Meeting
1724
+ of SIGDAT, a Special Interest Group of The ACL, pp. 447–457. ACL, ???
1725
+ (2013). https://aclanthology.org/D13-1043/
1726
+ [16] White, A.S., Reisinger, D.A., Sakaguchi, K., Vieira, T., Zhang, S.,
1727
+ Rudinger, R., Rawlins, K., Durme, B.V.: Universal decompositional
1728
+ semantics on universal dependencies. In: Su, J., Carreras, X., Duh,
1729
+ K. (eds.) Proceedings of the 2016 Conference on Empirical Meth-
1730
+ ods in Natural Language Processing, EMNLP 2016, Austin, Texas,
1731
+ USA, November 1-4, 2016, pp. 1713–1723. The Association for Compu-
1732
+ tational Linguistics, ??? (2016). https://doi.org/10.18653/v1/d16-1177.
1733
+ https://doi.org/10.18653/v1/d16-1177
1734
+
1735
+ Springer Nature 2021 LATEX template
1736
+ Article Title
1737
+ 21
1738
+ [17] Corro, L.D., Gemulla, R.: Clausie: clause-based open information extrac-
1739
+ tion. In: Schwabe, D., Almeida, V.A.F., Glaser, H., Baeza-Yates,
1740
+ R., Moon, S.B. (eds.) 22nd International World Wide Web Con-
1741
+ ference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pp.
1742
+ 355–366. International World Wide Web Conferences Steering Com-
1743
+ mittee / ACM, ??? (2013). https://doi.org/10.1145/2488388.2488420.
1744
+ https://doi.org/10.1145/2488388.2488420
1745
+ [18] Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic
1746
+ structure for open domain information extraction. In: Proceedings of the
1747
+ 53rd Annual Meeting of the Association for Computational Linguistics
1748
+ and the 7th International Joint Conference on Natural Language Pro-
1749
+ cessing of the Asian Federation of Natural Language Processing, ACL
1750
+ 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pp.
1751
+ 344–354. The Association for Computer Linguistics, ??? (2015). https:
1752
+ //doi.org/10.3115/v1/p15-1034. https://doi.org/10.3115/v1/p15-1034
1753
+ [19] Cui, L., Wei, F., Zhou, M.: Neural open information extraction. In:
1754
+ Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting
1755
+ of the Association for Computational Linguistics, ACL 2018, Melbourne,
1756
+ Australia, July 15-20, 2018, Volume 2: Short Papers, pp. 407–413. Associa-
1757
+ tion for Computational Linguistics, ??? (2018). https://doi.org/10.18653/
1758
+ v1/P18-2065. https://aclanthology.org/P18-2065/
1759
+ [20] Kolluru, K., Aggarwal, S., Rathore, V., Mausam, Chakrabarti, S.: Imojie:
1760
+ Iterative memory-based joint open information extraction. In: Juraf-
1761
+ sky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of
1762
+ the 58th Annual Meeting of the Association for Computational Lin-
1763
+ guistics, ACL 2020, Online, July 5-10, 2020, pp. 5871–5886. Association
1764
+ for Computational Linguistics, ??? (2020). https://doi.org/10.18653/v1/
1765
+ 2020.acl-main.521. https://doi.org/10.18653/v1/2020.acl-main.521
1766
+ [21] Li, T., Wang, Z., Li, Z.: Low resource quantitative information extraction
1767
+ via structure searching and prefix-based text generation. AAAI Press, ???
1768
+ (2023)
1769
+ [22] Stanovsky, G., Michael, J., Zettlemoyer, L., Dagan, I.: Supervised open
1770
+ information extraction. In: Walker, M.A., Ji, H., Stent, A. (eds.) Pro-
1771
+ ceedings of the 2018 Conference of the North American Chapter of
1772
+ the Association for Computational Linguistics: Human Language Tech-
1773
+ nologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6,
1774
+ 2018, Volume 1 (Long Papers), pp. 885–895. Association for Compu-
1775
+ tational Linguistics, ??? (2018). https://doi.org/10.18653/v1/n18-1081.
1776
+ https://doi.org/10.18653/v1/n18-1081
1777
+ [23] Kolluru, K., Adlakha, V., Aggarwal, S., Mausam, Chakrabarti, S.:
1778
+
1779
+ Springer Nature 2021 LATEX template
1780
+ 22
1781
+ Article Title
1782
+ Openie6: Iterative grid labeling and coordination analysis for open
1783
+ information
1784
+ extraction.
1785
+ In:
1786
+ Webber,
1787
+ B.,
1788
+ Cohn,
1789
+ T.,
1790
+ He,
1791
+ Y.,
1792
+ Liu,
1793
+ Y. (eds.) Proceedings of the 2020 Conference on Empirical Meth-
1794
+ ods in Natural Language Processing, EMNLP 2020, Online, Novem-
1795
+ ber 16-20, 2020, pp. 3748–3761. Association for Computational Lin-
1796
+ guistics, ??? (2020). https://doi.org/10.18653/v1/2020.emnlp-main.306.
1797
+ https://doi.org/10.18653/v1/2020.emnlp-main.306
1798
+ [24] Zhan, J., Zhao, H.: Span model for open information extraction on
1799
+ accurate corpus. In: The Thirty-Fourth AAAI Conference on Artificial
1800
+ Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
1801
+ Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
1802
+ sium on Educational Advances in Artificial Intelligence, EAAI 2020, New
1803
+ York, NY, USA, February 7-12, 2020, pp. 9523–9530. AAAI Press, ???
1804
+ (2020)
1805
+ [25] Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic composition-
1806
+ ality through recursive matrix-vector spaces. In: Tsujii, J., Henderson, J.,
1807
+ Pasca, M. (eds.) Proceedings of the 2012 Joint Conference on Empiri-
1808
+ cal Methods in Natural Language Processing and Computational Natural
1809
+ Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island,
1810
+ Korea, pp. 1201–1211. ACL, ??? (2012). https://aclanthology.org/D12-
1811
+ 1110/
1812
+ [26] Hashimoto, K., Miwa, M., Tsuruoka, Y., Chikayama, T.: Simple cus-
1813
+ tomization of recursive neural networks for semantic relation classifica-
1814
+ tion. In: Proceedings of the 2013 Conference on Empirical Methods in
1815
+ Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand
1816
+ Hyatt Seattle, Seattle, Washington, USA, A Meeting of SIGDAT, a
1817
+ Special Interest Group of The ACL, pp. 1372–1376. ACL, ??? (2013).
1818
+ https://aclanthology.org/D13-1137/
1819
+ [27] Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via
1820
+ convolutional deep neural network. In: Hajic, J., Tsujii, J. (eds.) COLING
1821
+ 2014, 25th International Conference on Computational Linguistics, Pro-
1822
+ ceedings of the Conference: Technical Papers, August 23-29, 2014, Dublin,
1823
+ Ireland, pp. 2335–2344. ACL, ??? (2014). https://aclanthology.org/C14-
1824
+ 1220/
1825
+ [28] Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classifi-
1826
+ cation via convolutional neural networks with simple negative sam-
1827
+ pling. In: M`arquez, L., Callison-Burch, C., Su, J., Pighin, D., Marton,
1828
+ Y. (eds.) Proceedings of the 2015 Conference on Empirical Meth-
1829
+ ods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
1830
+ September 17-21, 2015, pp. 536–540. The Association for Computa-
1831
+ tional Linguistics, ??? (2015). https://doi.org/10.18653/v1/d15-1062.
1832
+
1833
+ Springer Nature 2021 LATEX template
1834
+ Article Title
1835
+ 23
1836
+ https://doi.org/10.18653/v1/d15-1062
1837
+ [29] Roth, D., Yih, W.: A linear programming formulation for global inference
1838
+ in natural language tasks. In: Ng, H.T., Riloff, E. (eds.) Proceed-
1839
+ ings of the Eighth Conference on Computational Natural Language
1840
+ Learning, CoNLL 2004, Held in Cooperation with HLT-NAACL 2004,
1841
+ Boston, Massachusetts, USA, May 6-7, 2004, pp. 1–8. ACL, ??? (2004).
1842
+ https://aclanthology.org/W04-2401/
1843
+ [30] Kate, R.J., Mooney, R.J.: Joint entity and relation extraction using card-
1844
+ pyramid parsing. In: Lapata, M., Sarkar, A. (eds.) Proceedings of the
1845
+ Fourteenth Conference on Computational Natural Language Learning,
1846
+ CoNLL 2010, Uppsala, Sweden, July 15-16, 2010, pp. 203–212. ACL, ???
1847
+ (2010). https://aclanthology.org/W10-2924/
1848
+ [31] Yu, X., Lam, W.: Jointly identifying entities and extracting relations
1849
+ in encyclopedia text via A graphical model approach. In: Huang, C.,
1850
+ Jurafsky, D. (eds.) COLING 2010, 23rd International Conference on
1851
+ Computational Linguistics, Posters Volume, 23-27 August 2010, Beijing,
1852
+ China, pp. 1399–1407. Chinese Information Processing Society of China,
1853
+ ??? (2010). https://aclanthology.org/C10-2160/
1854
+ [32] Li, Q., Ji, H.: Incremental joint extraction of entity mentions and rela-
1855
+ tions. In: Proceedings of the 52nd Annual Meeting of the Association
1856
+ for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
1857
+ MD, USA, Volume 1: Long Papers, pp. 402–412. The Association for
1858
+ Computer Linguistics, ??? (2014). https://doi.org/10.3115/v1/p14-1038.
1859
+ https://doi.org/10.3115/v1/p14-1038
1860
+ [33] Miwa, M., Bansal, M.: End-to-end relation extraction using lstms on
1861
+ sequences and tree structures. In: Proceedings of the 54th Annual Meet-
1862
+ ing of the Association for Computational Linguistics, ACL 2016, August
1863
+ 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for
1864
+ Computer Linguistics, ??? (2016). https://doi.org/10.18653/v1/p16-1105.
1865
+ https://doi.org/10.18653/v1/p16-1105
1866
+ [34] Zheng, S., Hao, Y., Lu, D., Bao, H., Xu, J., Hao, H., Xu, B.: Joint
1867
+ entity and relation extraction based on a hybrid neural network. Neuro-
1868
+ computing 257, 59–66 (2017). https://doi.org/10.1016/j.neucom.2016.12.
1869
+ 075
1870
+ [35] Tan, Z., Zhao, X., Wang, W., Xiao, W.: Jointly extracting multiple triplets
1871
+ with multilayer translation constraints. In: The Thirty-Third AAAI Con-
1872
+ ference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
1873
+ Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
1874
+ AAAI Symposium on Educational Advances in Artificial Intelligence,
1875
+ EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp.
1876
+
1877
+ Springer Nature 2021 LATEX template
1878
+ 24
1879
+ Article Title
1880
+ 7080–7087. AAAI Press, ??? (2019). https://doi.org/10.1609/aaai.v33i01.
1881
+ 33017080. https://doi.org/10.1609/aaai.v33i01.33017080
1882
+ [36] Liu, J., Chen, S., Wang, B., Zhang, J., Li, N., Xu, T.: Attention
1883
+ as relation: Learning supervised multi-head self-attention for relation
1884
+ extraction. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth Inter-
1885
+ national Joint Conference on Artificial Intelligence, IJCAI 2020, pp.
1886
+ 3787–3793. ijcai.org, ??? (2020). https://doi.org/10.24963/ijcai.2020/524.
1887
+ https://doi.org/10.24963/ijcai.2020/524
1888
+ [37] Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation,
1889
+ and event extraction with contextualized span representations. In: Inui,
1890
+ K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Confer-
1891
+ ence on Empirical Methods in Natural Language Processing and the 9th
1892
+ International Joint Conference on Natural Language Processing, EMNLP-
1893
+ IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 5783–5788.
1894
+ Association for Computational Linguistics, ??? (2019). https://doi.org/
1895
+ 10.18653/v1/D19-1585. https://doi.org/10.18653/v1/D19-1585
1896
+ [38] Eberts, M., Ulges, A.: Span-based joint entity and relation extraction
1897
+ with transformer pre-training. In: Giacomo, G.D., Catal´a, A., Dilkina,
1898
+ B., Milano, M., Barro, S., Bugar´ın, A., Lang, J. (eds.) ECAI 2020 - 24th
1899
+ European Conference on Artificial Intelligence, 29 August-8 September
1900
+ 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 -
1901
+ Including 10th Conference on Prestigious Applications of Artificial Intel-
1902
+ ligence (PAIS 2020). Frontiers in Artificial Intelligence and Applications,
1903
+ vol. 325, pp. 2006–2013. IOS Press, ??? (2020). https://doi.org/10.3233/
1904
+ FAIA200321. https://doi.org/10.3233/FAIA200321
1905
+ [39] Ji, B., Yu, J., Li, S., Ma, J., Wu, Q., Tan, Y., Liu, H.: Span-based
1906
+ joint entity and relation extraction with attention-based span-specific
1907
+ and contextual semantic representations. In: Scott, D., Bel, N., Zong,
1908
+ C. (eds.) Proceedings of the 28th International Conference on Compu-
1909
+ tational Linguistics, COLING 2020, Barcelona, Spain (Online), Decem-
1910
+ ber 8-13, 2020, pp. 88–99. International Committee on Computational
1911
+ Linguistics, ??? (2020). https://doi.org/10.18653/v1/2020.coling-main.8.
1912
+ https://doi.org/10.18653/v1/2020.coling-main.8
1913
+ [40] Qiao, B., Zou, Z., Huang, Y., Fang, K., Zhu, X., Chen, Y.: A joint model
1914
+ for entity and relation extraction based on BERT. Neural Comput. Appl.
1915
+ 34(5), 3471–3481 (2022). https://doi.org/10.1007/s00521-021-05815-z
1916
+ [41] Lai, T., Cheng, L., Wang, D., Ye, H., Zhang, W.: RMAN: relational
1917
+ multi-head attention neural network for joint extraction of entities and
1918
+ relations. Appl. Intell. 52(3), 3132–3142 (2022). https://doi.org/10.1007/
1919
+ s10489-021-02600-2
1920
+
1921
+ Springer Nature 2021 LATEX template
1922
+ Article Title
1923
+ 25
1924
+ [42] Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction
1925
+ of entities and relations based on a novel tagging scheme. In: Barzilay, R.,
1926
+ Kan, M. (eds.) Proceedings of the 55th Annual Meeting of the Association
1927
+ for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 -
1928
+ August 4, Volume 1: Long Papers, pp. 1227–1236. Association for Compu-
1929
+ tational Linguistics, ??? (2017). https://doi.org/10.18653/v1/P17-1113.
1930
+ https://doi.org/10.18653/v1/P17-1113
1931
+ [43] Zeng, X., Zeng, D., He, S., Liu, K., Zhao, J.: Extracting relational facts
1932
+ by an end-to-end neural model with copy mechanism. In: Gurevych, I.,
1933
+ Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting of the Associa-
1934
+ tion for Computational Linguistics, ACL 2018, Melbourne, Australia, July
1935
+ 15-20, 2018, Volume 1: Long Papers, pp. 506–514. Association for Compu-
1936
+ tational Linguistics, ??? (2018). https://doi.org/10.18653/v1/P18-1047.
1937
+ https://aclanthology.org/P18-1047/
1938
+ [44] Zeng, X., He, S., Zeng, D., Liu, K., Liu, S., Zhao, J.: Learning the extrac-
1939
+ tion order of multiple relational facts in a sentence with reinforcement
1940
+ learning. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the
1941
+ 2019 Conference on Empirical Methods in Natural Language Processing
1942
+ and the 9th International Joint Conference on Natural Language Process-
1943
+ ing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp.
1944
+ 367–377. Association for Computational Linguistics, ??? (2019). https:
1945
+ //doi.org/10.18653/v1/D19-1035. https://doi.org/10.18653/v1/D19-1035
1946
+ [45] Nayak, T., Ng, H.T.: Effective modeling of encoder-decoder archi-
1947
+ tecture
1948
+ for
1949
+ joint
1950
+ entity
1951
+ and
1952
+ relation
1953
+ extraction.
1954
+ In:
1955
+ The
1956
+ Thirty-
1957
+ Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
1958
+ Thirty-Second Innovative Applications of Artificial Intelligence Con-
1959
+ ference, IAAI 2020, The Tenth AAAI Symposium on Educational
1960
+ Advances
1961
+ in
1962
+ Artificial
1963
+ Intelligence,
1964
+ EAAI
1965
+ 2020,
1966
+ New
1967
+ York,
1968
+ NY,
1969
+ USA, February 7-12, 2020, pp. 8528–8535. AAAI Press, ??? (2020).
1970
+ https://ojs.aaai.org/index.php/AAAI/article/view/6374
1971
+ [46] Wang, Z., Yang, L., Yang, J., Li, T., He, L., Li, Z.: A triple relation
1972
+ network for joint entity and relation extraction. Electronics 11(10) (2022).
1973
+ https://doi.org/10.3390/electronics11101535
1974
+ [47] Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of
1975
+ deep bidirectional transformers for language understanding. In: Burstein,
1976
+ J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of
1977
+ the North American Chapter of the Association for Computational Lin-
1978
+ guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
1979
+ MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
1980
+ 4171–4186. Association for Computational Linguistics, ??? (2019). https:
1981
+ //doi.org/10.18653/v1/n19-1423. https://doi.org/10.18653/v1/n19-1423
1982
+
1983
+ Springer Nature 2021 LATEX template
1984
+ 26
1985
+ Article Title
1986
+ [48] Yang, J., Ma, S., Zhang, D., Wu, S., Li, Z., Zhou, M.: Alternating language
1987
+ modeling for cross-lingual pre-training. In: AAAI 2020, pp. 9386–9393
1988
+ (2020)
1989
+ [49] Conneau,
1990
+ A.,
1991
+ Khandelwal,
1992
+ K.,
1993
+ Goyal,
1994
+ N.,
1995
+ Chaudhary,
1996
+ V.,
1997
+ Wen-
1998
+ zek, G., Guzm´an, F., Grave, E., Ott, M., Zettlemoyer, L., Stoy-
1999
+ anov, V.: Unsupervised cross-lingual representation learning at scale.
2000
+ In:
2001
+ Proceedings
2002
+ of
2003
+ the
2004
+ 58th
2005
+ Annual
2006
+ Meeting
2007
+ of
2008
+ the
2009
+ Association
2010
+ for Computational Linguistics. Association for Computational Lin-
2011
+ guistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.747.
2012
+ https://aclanthology.org/2020.acl-main.747
2013
+ [50] Yang, J., Ma, S., Dong, L., Huang, S., Huang, H., Yin, Y., Zhang, D.,
2014
+ Yang, L., Li, Z., Wei, F.: Ganlm: Encoder-decoder pre-training with
2015
+ an auxiliary discriminator. CoRR abs/2212.10218 (2022) 2212.10218.
2016
+ https://doi.org/10.48550/arXiv.2212.10218
2017
+ [51] Liu, J., Yu, T., Peng, H., Sun, M., Li, P.: Cross-lingual cross-modal con-
2018
+ solidation for effective multilingual video corpus moment retrieval. In:
2019
+ NAACL 2022, pp. 1854–1862 (2022)
2020
+ [52] Yang, J., Yin, Y., Ma, S., Zhang, D., Wu, S., Guo, H., Li, Z.,
2021
+ Wei, F.: UM4: unified multilingual multiple teacher-student model for
2022
+ zero-resource neural machine translation. In: Raedt, L.D. (ed.) Pro-
2023
+ ceedings of the Thirty-First International Joint Conference on Artifi-
2024
+ cial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.
2025
+ 4454–4460. ijcai.org, ??? (2022). https://doi.org/10.24963/ijcai.2022/618.
2026
+ https://doi.org/10.24963/ijcai.2022/618
2027
+ [53] Yang, J., Ma, S., Huang, H., Zhang, D., Dong, L., Huang, S., Muzio, A.,
2028
+ Singhal, S., Hassan, H., Song, X., Wei, F.: Multilingual machine transla-
2029
+ tion systems from microsoft for WMT21 shared task. In: WMT@EMNLP
2030
+ 2021, pp. 446–455 (2021)
2031
+ [54] Guo, H., Liu, J., Huang, H., Yang, J., Li, Z., Zhang, D., Wei, F.: Lvp-
2032
+ m3: Language-aware visual prompt for multilingual multimodal machine
2033
+ translation. EMNLP (2022)
2034
+ [55] Firat, O., Cho, K., Bengio, Y.: Multi-way, multilingual neural machine
2035
+ translation with a shared attention mechanism. In: Knight, K., Nenkova,
2036
+ A., Rambow, O. (eds.) NAACL HLT 2016, The 2016 Conference
2037
+ of the North American Chapter of the Association for Computa-
2038
+ tional Linguistics: Human Language Technologies, San Diego California,
2039
+ USA, June 12-17, 2016, pp. 866–875. The Association for Compu-
2040
+ tational Linguistics, ??? (2016). https://doi.org/10.18653/v1/n16-1101.
2041
+ https://doi.org/10.18653/v1/n16-1101
2042
+
2043
+ Springer Nature 2021 LATEX template
2044
+ Article Title
2045
+ 27
2046
+ [56] Johnson, M., Schuster, M., Le, Q.V., Krikun, M., Wu, Y., Chen, Z., Tho-
2047
+ rat, N., Vi´egas, F.B., Wattenberg, M., Corrado, G., Hughes, M., Dean, J.:
2048
+ Google’s multilingual neural machine translation system: Enabling zero-
2049
+ shot translation. Trans. Assoc. Comput. Linguistics 5, 339–351 (2017).
2050
+ https://doi.org/10.1162/tacl a 00065
2051
+ [57] Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S.,
2052
+ Baines, M., Celebi, O., Wenzek, G., Chaudhary, V., Goyal, N., Birch, T.,
2053
+ Liptchinsky, V., Edunov, S., Auli, M., Joulin, A.: Beyond english-centric
2054
+ multilingual machine translation. J. Mach. Learn. Res. 22, 107–110748
2055
+ (2021)
2056
+ [58] Lin, Z., Pan, X., Wang, M., Qiu, X., Feng, J., Zhou, H., Li, L.: Pre-training
2057
+ multilingual neural machine translation by leveraging alignment informa-
2058
+ tion. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the
2059
+ 2020 Conference on Empirical Methods in Natural Language Processing,
2060
+ EMNLP 2020, Online, November 16-20, 2020, pp. 2649–2663. Association
2061
+ for Computational Linguistics, ??? (2020). https://doi.org/10.18653/v1/
2062
+ 2020.emnlp-main.210. https://doi.org/10.18653/v1/2020.emnlp-main.210
2063
+ [59] Aharoni, R., Johnson, M., Firat, O.: Massively multilingual neural
2064
+ machine translation. In: Burstein, J., Doran, C., Solorio, T. (eds.) Pro-
2065
+ ceedings of the 2019 Conference of the North American Chapter of the
2066
+ Association for Computational Linguistics: Human Language Technolo-
2067
+ gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume
2068
+ 1 (Long and Short Papers), pp. 3874–3884. Association for Compu-
2069
+ tational Linguistics, ??? (2019). https://doi.org/10.18653/v1/n19-1388.
2070
+ https://doi.org/10.18653/v1/n19-1388
2071
+ [60] Zhang, B., Williams, P., Titov, I., Sennrich, R.: Improving massively
2072
+ multilingual neural machine translation and zero-shot translation. In:
2073
+ Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings
2074
+ of the 58th Annual Meeting of the Association for Computational Lin-
2075
+ guistics, ACL 2020, Online, July 5-10, 2020, pp. 1628–1639. Association
2076
+ for Computational Linguistics, ??? (2020). https://doi.org/10.18653/v1/
2077
+ 2020.acl-main.148. https://doi.org/10.18653/v1/2020.acl-main.148
2078
+ [61] V´azquez, R., Raganato, A., Tiedemann, J., Creutz, M.: Multilingual NMT
2079
+ with a language-independent attention bridge. In: Augenstein, I., Gella,
2080
+ S., Ruder, S., Kann, K., Can, B., Welbl, J., Conneau, A., Ren, X., Rei, M.
2081
+ (eds.) Proceedings of the 4th Workshop on Representation Learning for
2082
+ NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019, pp. 33–39.
2083
+ Association for Computational Linguistics, ??? (2019). https://doi.org/
2084
+ 10.18653/v1/w19-4305. https://doi.org/10.18653/v1/w19-4305
2085
+ [62] Philip, J., Berard, A., Gall´e, M., Besacier, L.: Monolingual adapters
2086
+
2087
+ Springer Nature 2021 LATEX template
2088
+ 28
2089
+ Article Title
2090
+ for zero-shot neural machine translation. In: Webber, B., Cohn, T.,
2091
+ He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empir-
2092
+ ical Methods in Natural Language Processing, EMNLP 2020, Online,
2093
+ November 16-20, 2020, pp. 4465–4470. Association for Computational Lin-
2094
+ guistics, ??? (2020). https://doi.org/10.18653/v1/2020.emnlp-main.361.
2095
+ https://doi.org/10.18653/v1/2020.emnlp-main.361
2096
+ [63] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
2097
+ A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In:
2098
+ Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vish-
2099
+ wanathan, S., Garnett, R. (eds.) Advances in Neural Information
2100
+ Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017).
2101
+ https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
2102
+ Paper.pdf
2103
+ [64] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton,
2104
+ G., Dean, J.: Outrageously large neural networks: The sparsely-gated
2105
+ mixture-of-experts layer. In: International Conference on Learning Rep-
2106
+ resentations (2017). https://openreview.net/forum?id=B1ckMDqlg
2107
+ [65] K¨oksal,
2108
+ A.,
2109
+ ¨Ozg¨ur,
2110
+ A.:
2111
+ The
2112
+ RELX
2113
+ dataset
2114
+ and
2115
+ matching
2116
+ the
2117
+ multilingual blanks for cross-lingual relation classification. In: Find-
2118
+ ings
2119
+ of
2120
+ the
2121
+ Association
2122
+ for
2123
+ Computational
2124
+ Linguistics:
2125
+ EMNLP
2126
+ 2020,
2127
+ pp.
2128
+ 340–350.
2129
+ Association
2130
+ for
2131
+ Computational
2132
+ Linguistics,
2133
+ Online
2134
+ (2020).
2135
+ https://doi.org/10.18653/v1/2020.findings-emnlp.32.
2136
+ https://www.aclweb.org/anthology/2020.findings-emnlp.32
2137
+
-dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -4727,3 +4727,69 @@ KE[[:space:]]Research[[:space:]]Center[[:space:]]Intro/vector_store/index.faiss
4727
  VdE1T4oBgHgl3EQfbATf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4728
  -dA0T4oBgHgl3EQfPP9i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4729
  VdE1T4oBgHgl3EQfbATf/content/2301.03169v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4727
  VdE1T4oBgHgl3EQfbATf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4728
  -dA0T4oBgHgl3EQfPP9i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4729
  VdE1T4oBgHgl3EQfbATf/content/2301.03169v1.pdf filter=lfs diff=lfs merge=lfs -text
4730
+ BNE3T4oBgHgl3EQfswvl/content/2301.04671v1.pdf filter=lfs diff=lfs merge=lfs -text
4731
+ a9E5T4oBgHgl3EQfew9G/content/2301.05621v1.pdf filter=lfs diff=lfs merge=lfs -text
4732
+ n9E4T4oBgHgl3EQfuw0c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4733
+ 3tE1T4oBgHgl3EQfSQPo/content/2301.03065v1.pdf filter=lfs diff=lfs merge=lfs -text
4734
+ kNAyT4oBgHgl3EQfyPlA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4735
+ 4dAyT4oBgHgl3EQfP_bc/content/2301.00038v1.pdf filter=lfs diff=lfs merge=lfs -text
4736
+ U9E_T4oBgHgl3EQfxhwl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4737
+ 69E1T4oBgHgl3EQfBgJT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4738
+ IdE3T4oBgHgl3EQfuguG/content/2301.04685v1.pdf filter=lfs diff=lfs merge=lfs -text
4739
+ ddFAT4oBgHgl3EQf6h5C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4740
+ y9E2T4oBgHgl3EQfhgf_/content/2301.03950v1.pdf filter=lfs diff=lfs merge=lfs -text
4741
+ MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf filter=lfs diff=lfs merge=lfs -text
4742
+ 79FLT4oBgHgl3EQfsi_P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4743
+ _NE5T4oBgHgl3EQfSA5Z/content/2301.05525v1.pdf filter=lfs diff=lfs merge=lfs -text
4744
+ tdAzT4oBgHgl3EQfc_wl/content/2301.01411v1.pdf filter=lfs diff=lfs merge=lfs -text
4745
+ 3tE1T4oBgHgl3EQfSQPo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4746
+ 4dE0T4oBgHgl3EQfeQDL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4747
+ e9FKT4oBgHgl3EQfAy1w/content/2301.11700v1.pdf filter=lfs diff=lfs merge=lfs -text
4748
+ e9FKT4oBgHgl3EQfAy1w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4749
+ -9AyT4oBgHgl3EQfRPbk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4750
+ g9E3T4oBgHgl3EQf4AtG/content/2301.04768v1.pdf filter=lfs diff=lfs merge=lfs -text
4751
+ s9E5T4oBgHgl3EQfKg7i/content/2301.05467v1.pdf filter=lfs diff=lfs merge=lfs -text
4752
+ 2dAyT4oBgHgl3EQfbvf7/content/2301.00271v1.pdf filter=lfs diff=lfs merge=lfs -text
4753
+ PtFOT4oBgHgl3EQf4zQ-/content/2301.12951v1.pdf filter=lfs diff=lfs merge=lfs -text
4754
+ g9E3T4oBgHgl3EQf4AtG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4755
+ etE0T4oBgHgl3EQfXAB2/content/2301.02286v1.pdf filter=lfs diff=lfs merge=lfs -text
4756
+ _9AyT4oBgHgl3EQfqvjk/content/2301.00550v1.pdf filter=lfs diff=lfs merge=lfs -text
4757
+ a9E2T4oBgHgl3EQfFQYC/content/2301.03643v1.pdf filter=lfs diff=lfs merge=lfs -text
4758
+ S9E3T4oBgHgl3EQfZwr5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4759
+ IdE3T4oBgHgl3EQfuguG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4760
+ INFIT4oBgHgl3EQfYSsB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4761
+ ANFRT4oBgHgl3EQftjjG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4762
+ ntFRT4oBgHgl3EQfbTfo/content/2301.13560v1.pdf filter=lfs diff=lfs merge=lfs -text
4763
+ ntFRT4oBgHgl3EQfbTfo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4764
+ a9E2T4oBgHgl3EQfFQYC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4765
+ ZNE3T4oBgHgl3EQf2Avb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4766
+ btFPT4oBgHgl3EQfxDUf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4767
+ l9E3T4oBgHgl3EQfKQkw/content/2301.04351v1.pdf filter=lfs diff=lfs merge=lfs -text
4768
+ k9E0T4oBgHgl3EQf7wIz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4769
+ 4dAyT4oBgHgl3EQfP_bc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4770
+ yNE0T4oBgHgl3EQf-wIo/content/2301.02817v1.pdf filter=lfs diff=lfs merge=lfs -text
4771
+ K9AzT4oBgHgl3EQfVvwt/content/2301.01288v1.pdf filter=lfs diff=lfs merge=lfs -text
4772
+ ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf filter=lfs diff=lfs merge=lfs -text
4773
+ ZNE3T4oBgHgl3EQf2Avb/content/2301.04752v1.pdf filter=lfs diff=lfs merge=lfs -text
4774
+ PtFOT4oBgHgl3EQf4zQ-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4775
+ 19E4T4oBgHgl3EQfaQyU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4776
+ c9E5T4oBgHgl3EQffw9-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4777
+ c9E5T4oBgHgl3EQffw9-/content/2301.05629v1.pdf filter=lfs diff=lfs merge=lfs -text
4778
+ 0NAzT4oBgHgl3EQfDPod/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4779
+ TtE3T4oBgHgl3EQfEAn3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4780
+ HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf filter=lfs diff=lfs merge=lfs -text
4781
+ ZdE0T4oBgHgl3EQfnAFi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4782
+ eNE0T4oBgHgl3EQf5gKT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4783
+ HtE3T4oBgHgl3EQfWwou/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4784
+ XdFRT4oBgHgl3EQfNjdq/content/2301.13510v1.pdf filter=lfs diff=lfs merge=lfs -text
4785
+ l9E3T4oBgHgl3EQfKQkw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4786
+ YdFQT4oBgHgl3EQfeDYW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4787
+ kNE3T4oBgHgl3EQf5gsm/content/2301.04781v1.pdf filter=lfs diff=lfs merge=lfs -text
4788
+ 3NAyT4oBgHgl3EQf1vm8/content/2301.00741v1.pdf filter=lfs diff=lfs merge=lfs -text
4789
+ e9AzT4oBgHgl3EQfafwj/content/2301.01368v1.pdf filter=lfs diff=lfs merge=lfs -text
4790
+ yNE0T4oBgHgl3EQf-wIo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4791
+ INFIT4oBgHgl3EQfYSsB/content/2301.11247v1.pdf filter=lfs diff=lfs merge=lfs -text
4792
+ ctE1T4oBgHgl3EQfxgX2/content/2301.03424v1.pdf filter=lfs diff=lfs merge=lfs -text
4793
+ q9E2T4oBgHgl3EQfKwbV/content/2301.03707v1.pdf filter=lfs diff=lfs merge=lfs -text
4794
+ k9E0T4oBgHgl3EQf7wIz/content/2301.02779v1.pdf filter=lfs diff=lfs merge=lfs -text
4795
+ wNFST4oBgHgl3EQfQzi0/content/2301.13760v1.pdf filter=lfs diff=lfs merge=lfs -text
0NAzT4oBgHgl3EQfDPod/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:953ebfb91bafd0bfd41743ecabf306ddc2c1badd4b8da75886fb0547894b9353
3
+ size 6029357
0tFST4oBgHgl3EQfVziF/content/tmp_files/2301.13778v1.pdf.txt ADDED
@@ -0,0 +1,1461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Differentially Private Distributed Bayesian
2
+ Linear Regression with MCMC
3
+ Barı¸s Alparslan1, Sinan Yıldırım1, 2, and S¸. ˙Ilker Birbil3
4
+ 1Faculty of Engineering and Natural Sciences, Sabancı University, ˙Istanbul, Turkey∗
5
+ 2Center of Excellence in Data Analytics (VER˙IM), Sabancı University, ˙Istanbul, Turkey
6
+ 3Department of Business Analytics, University of Amsterdam, Amsterdam, The Netherlands
7
+ February 1, 2023
8
+ Abstract
9
+ We propose a novel Bayesian inference framework for distributed differentially private
10
+ linear regression. We consider a distributed setting where multiple parties hold parts of the
11
+ data and share certain summary statistics of their portions in privacy-preserving noise. We
12
+ develop a novel generative statistical model for privately shared statistics, which exploits a
13
+ useful distributional relation between the summary statistics of linear regression. Bayesian
14
+ estimation of the regression coefficients is conducted mainly using Markov chain Monte Carlo
15
+ algorithms, while we also provide a fast version to perform Bayesian estimation in one iteration.
16
+ The proposed methods have computational advantages over their competitors. We provide
17
+ numerical results on both real and simulated data, which demonstrate that the proposed
18
+ algorithms provide well-rounded estimation and prediction.
19
+ Keywords: Differential privacy, linear regression, distributed learning, MCMC
20
+ 1
21
+ Introduction
22
+ Linear regression is a mathematical method that lies at the core of statistical research. Many
23
+ researchers have been working on linear regression since the 19th century, and hence, many
24
+ well-known solution methods exist. On a separate note, privacy-preserving statistical learning has
25
+ gained popularity and importance in recent years, with differential privacy prevailing as the most
26
+ commonly used definition for privacy (Dwork, 2006; Dwork et al., 2014a; Dankar and El Emam,
27
+ 2013). As a result, there is a recent but growing interest in differentially private linear regression.
28
+ Many works in the data privacy literature do not mainly focus on regression but are motivated by
29
+ or can be applied to regression. As an example, differentially private empirical risk minimisation
30
+ (Chaudhuri et al., 2009; Bassily et al., 2014; Abadi et al., 2016; Kuru et al., 2022) can be applied to
31
+ regression once it is cast as a data-driven optimisation problem. Many general-purpose Bayesian
32
+ differentially private estimation methods can also be used in regression problems. Williams and
33
+ Mcsherry (2010) is one of the first works that considered a hierarchical model for the privatised
34
+ data and Bayesian estimation for the model parameters. Zhang et al. (2016) analyse several
35
+ differential privacy mechanisms for posterior sampling and suggest using these mechanisms also
36
+ ∗The study was funded by the Scientific and Technological Research Council of Turkey (T¨UB˙ITAK) ARDEB
37
+ Grant No 120E534. Barı¸s Alparslan and Sinan Yıldırım were supported by the project.
38
+ 1
39
+ arXiv:2301.13778v1 [stat.ML] 31 Jan 2023
40
+
41
+ for linear regression. Dimitrakakis et al. (2017) developed a posterior sampling query algorithm
42
+ to combine differential privacy and Bayesian inference. Contrary to those one-sample approaches,
43
+ general-purpose differentially private Markov chain Monte Carlo (MCMC) algorithms, which aim
44
+ to identify the posterior distribution via iterative sampling, can also be applied to regression
45
+ (Wang et al., 2015; Foulds et al., 2016; Wang et al., 2015; Yıldırım and Ermi¸s, 2019; Heikkil¨a
46
+ et al., 2019; Gong, 2022; Alparslan and Yıldırım, 2022; Ju et al., 2022).
47
+ Several works in the literature are somewhat more directly related to differentially private regression.
48
+ Zhang et al. (2012) suggested a functional mechanism method, which is based on perturbing
49
+ polynomial objective functions with privacy-preserving noise. As an alternative, Dwork et al.
50
+ (2014b); Wang (2018) considered perturbation of summary statistics. Alabi et al. (2022) provide
51
+ a technical discussion on different point estimation methods for differentially private simple linear
52
+ regression, that is when we have a single feature. Ferrando et al. (2022) present a method to
53
+ compute confidence intervals for the coefficients of linear regression. Cai et al. (2021) study the
54
+ rates of convergence for parameter estimation with differential privacy via output perturbation,
55
+ where a non-private estimator is perturbed. All those works consider point estimation of the
56
+ linear regression parameters.
57
+ In this paper, we focus on differential private distributed Bayesian inference for the parameters of
58
+ linear regression. We use a novel hierarchical model that relies on a distributional relationship
59
+ (Proposition 1) between the summary statistics of linear regression, which, to the best of our
60
+ knowledge, has not been exploited so far. We propose Bayesian inference algorithms that take
61
+ perturbations of summary statistics as observations. The general inferential tool we pick in this
62
+ paper is MCMC, a well-known framework for iterative sampling from posterior distributions. As
63
+ we shall see, the proposed MCMC algorithms in this paper already have lower computational
64
+ complexities per iteration than their closest competitors in Bernstein and Sheldon (2019). Addi-
65
+ tionally, we also propose much faster Bayesian estimation methods that perform estimation in
66
+ one iteration. Finally, we assume a distributed setting where the total dataset is shared among
67
+ multiple parties (data nodes), who want to collaborate for the inference of a common parameter,
68
+ see e.g., Heikkil¨a et al. (2017) for such a setting. The non-distributed setting is just a special
69
+ case (single data holder) for our methodology.
70
+ This paper has connections with several works in the literature, yet it has significant differences
71
+ from each of those, as we shall explain below.
72
+ For the privacy-preserving mechanism, we consider adding noise to summary statistics of linear
73
+ regression, similarly to Wang (2018); Bernstein and Sheldon (2019). The adaSSP framework of
74
+ Wang (2018) motivates the fast Bayesian estimation methods developed in this paper. However,
75
+ adaSSP is a point estimation method while we aim for a posterior distribution. The latter work,
76
+ Bernstein and Sheldon (2019), is particularly related to this paper as they also study Bayesian
77
+ linear regression with differential privacy using perturbed statistics of data. However, there are
78
+ some important differences between our work and that of Bernstein and Sheldon (2019). These
79
+ differences stem from the choice of summary statistics and the consequent hierarchical structure
80
+ used for modelling linear regression. Those modelling differences lead to significant differences in
81
+ the inference methods as well as significant computational advantages for our methods. Specifically,
82
+ the computational complexity of our methods is O(d3), where d is the number of features. This
83
+ order is much less than the O(d6) of Bernstein and Sheldon (2019). Finally, neither Wang (2018)
84
+ nor Bernstein and Sheldon (2019) has considered a distributed learning setting like we do in
85
+ 2
86
+
87
+ this paper, although both works can be modified for the distributed setting after moderate
88
+ modifications.
89
+ Foulds et al. (2016); Heikkil¨a et al. (2017) are other differentially Bayesian inference methods
90
+ that target posterior distributions of perturbed summary statistics of sensitive data. The one by
91
+ Heikkil¨a et al. (2017) is particularly interesting because they consider a distributed setting and
92
+ present linear regression as their showcase example. However, we differ from those works in the
93
+ way we model the perturbed statistics and in the choice of inference methods. Specifically, Foulds
94
+ et al. (2016); Heikkil¨a et al. (2017) treat the perturbed statistics as if not perturbed, while we
95
+ incorporate the effect of perturbation in our model.
96
+ Recently, Alparslan and Yıldırım (2022) and Ju et al. (2022) employ data augmentation for
97
+ modelling sensitive and privatised data and propose MCMC for Bayesian inference, the latter work
98
+ having linear regression as a major application. Their methods have O(n) complexity per iteration
99
+ in general where n is the number of instances in the data set, which can be slow when n is large.
100
+ In contrast, our methods are scalable in data size since their computational complexities do not
101
+ depend on n. We note that Alparslan and Yıldırım (2022, Section 4.2) also present an MCMC
102
+ method scalable with n that exploits the approximate normality of additive summary statistics.
103
+ However, a direct application of that would lead to an algorithm with O(d6) computational
104
+ complexity (per iteration), like in Bernstein and Sheldon (2019).
105
+ The paper is organised as follows: In Section 2 we review differential privacy. In Section 3 we lay
106
+ out the hierarchical model for differentially private distributed linear regression with perturbed
107
+ summary statistics. In Section 4, we present and discuss the aspects of the proposed inference
108
+ algorithms. Section 5, we provide numerical experiments. We conclude in Section 6.
109
+ Notation:
110
+ Matrices and vectors are shown in bold-face notation. For a matrix A, its transpose,
111
+ trace, and determinant (whenever they exist) are AT , tr(A), and |A|, respectively. For any
112
+ sequence {ai}i≥0, we let ai:j = (ai, . . . , aj). We write x ∼ P to mean the random variable x
113
+ has distribution P. N(m, Σ) stands for the multivariate normal distribution with mean m and
114
+ covariance Σ. Wishart and inverse-Wishart distributions with scale matrix Λ and κ degrees of
115
+ freedom are shown as W(Λ, κ) and IW(Λ, κ), respectively. IG(a, b) stands for the inverse-gamma
116
+ distribution with shape and scale parameters a and b. We augment those notations with x to
117
+ denote the respective probability density functions (pdf), e.g., as N(x; m, Σ).
118
+ 2
119
+ Differential Privacy
120
+ Differential privacy (Dwork, 2006, 2008) concerns randomised algorithms that run on sensitive,
121
+ or usually private, data. A randomised algorithm takes an input data set D ∈ D and returns a
122
+ random output in O, where the randomness is intrinsic to the algorithm. A differentially private
123
+ algorithm constrains the difference between the probability distributions of the outputs obtained
124
+ from neighbouring data sets. We say two data sets are neighbours if they differ by one individual’s
125
+ piece of data.
126
+ Definition 1 (Differential privacy). A randomised algorithm M : D �→ O is (ϵ, δ)-differentially
127
+ private (DP) if for any pair of neighbouring data sets D, D′ ∈ D and for any subset O ⊆ O of the
128
+ of support domain, it satisfies
129
+ P[M(D) ∈ O] ≤ eϵP[M(D′) ∈ O] + δ.
130
+ 3
131
+
132
+ The definition implies that smaller (ϵ, δ) leads to more privacy.
133
+ Privacy-preserving algorithms often use noise-adding mechanisms. A popular noise-adding mecha-
134
+ nism is the Gaussian mechanism (Dwork et al., 2006), which perturbs a function f : D �→ Rk of
135
+ the sensitive data, for some k ≥ 1, with a random noise drawn from the Gaussian distribution.
136
+ The amount of the added noise depends on the L2-sensitivity of the function, given by
137
+ ∆f =
138
+ max
139
+ neighbourD1,D2∈D∥f(D1) − f(D2)∥2.
140
+ An (ϵ, δ)-DP Gaussian mechanism returns
141
+ f(D) + ∆fσ(ϵ, δ)v,
142
+ v ∼ N(0, Ik)
143
+ (1)
144
+ upon taking D as the input, where the quantity σ(ϵ, δ) ensures (ϵ, δ)-DP. In this work, we take
145
+ σ(ϵ, δ) as the analytical solution given in Balle and Wang (2018, Algorithm 1) due to its tightness.
146
+ The Gaussian mechanism is also central to other forms of privacy, such as zero-concentrated DP
147
+ (Bun and Steinke, 2016) and Gaussian DP (Dong et al., 2022).
148
+ In this paper, we consider (ϵ, δ)-DP as the type of privacy and the Gaussian mechanism to generate
149
+ noisy observations. Moreover, the proposed methods in this paper never use the sensitive data
150
+ once given the noisy observations generated using the Gaussian mechanism, hence exploiting the
151
+ post-processing property of differential privacy (Dwork and Roth, 2014).
152
+ Theorem 1 (Post-processing). If M : D �→ O be (ϵ, δ)-DP and let f : O → O′ be another mapping
153
+ independent of D given M(D). Then fM : D �→ O′ with fM(D) = f(M(D)) is (ϵ, δ)-DP.
154
+ 3
155
+ Differentially Private Distributed Linear Regression
156
+ In this section, we present a new hierarchical model for differentially private distributed linear
157
+ regression. For ease of exposition, we first present a model with a single data holder, then
158
+ generalise the model for the distributed setting.
159
+ 3.1
160
+ Basic Model and Privacy Setup
161
+ Suppose we have a sequence of random variables {(xi, yi) : i = 1, . . . , n}, where xi ∈ X ⊆ Rd×1
162
+ are the feature vectors and yi ∈ Y ⊆ R is the i’th response variable. We consider the normal
163
+ linear regression to model the dependency between xi and yi. Specifically,
164
+ yi = xT
165
+ i θ + ei,
166
+ ei
167
+ i.i.d.
168
+ ∼ N(0, σ2
169
+ y),
170
+ i = 1, . . . , n,
171
+ where θ ∈ Rd is the vector of the linear regression coefficients. We assume that the feature vectors
172
+ xi’s are i.i.d. with distribution Px. Below, we will particularly focus on the case when Px can be
173
+ assumed to be a normal distribution. However, we will also present algorithms for general Px.
174
+ In matrix notation, the above can shortly be expressed as
175
+ y = Xθ + e,
176
+ e ∼ N(0, σ2
177
+ yIn),
178
+ where X =
179
+
180
+ xT
181
+ 1
182
+ . . .
183
+ xT
184
+ n
185
+ �T is the so-called design matrix, y =
186
+
187
+ y1
188
+ . . .
189
+ yn
190
+ �T . Additionally, we
191
+ also define the summary statistics of X and y given by
192
+ S := XT X,
193
+ z := XT y,
194
+ 4
195
+
196
+ respectively. We assume a setup where S and z are privately released as the noisy summary
197
+ statistics ˆS and ˆz are constructed as
198
+ ˆS = S + σsM,
199
+ (2)
200
+ ˆz = z + σzv,
201
+ v ∼ N(0, Id),
202
+ (3)
203
+ where M is a d × d symmetric matrix with its upper triangular elements drawn from N(0, 1).
204
+ Dwork et al. (2014b) arrange σs and σz so that both (2) and (3) are (ϵ/2, δ/2) differentially
205
+ private, leading to (ϵ, δ)-DP overall. Differently than Dwork et al. (2014b), we set
206
+ σs = σz = ∆szσ(ϵ, δ),
207
+ where σ(ϵ, δ) is given in Balle and Wang (2018, Algorithm 1), and ∆sz is the overall L2 sensitivity
208
+ of [S, z], given by
209
+ ∆sz =
210
+
211
+ ∥X∥4 + ∥X∥2∥Y ∥2
212
+ with ∥X∥ = maxx∈X ∥x∥2 and ∥Y ∥ = maxy∈Y |y|.
213
+ Based on the above relations, we shall represent a hierarchical model that enables Bayesian
214
+ inference of θ given ˆS and ˆz. One important element of our modelling approach is the following
215
+ result that establishes the conditional distribution of z given S, θ, and σ2
216
+ y.
217
+ Proposition 1. For the normal linear regression model, we have
218
+ z|S, θ, σ2
219
+ y ∼ N(Sθ, Sσ2
220
+ y).
221
+ Proof. First, note that,
222
+ E[z|X, θ, σ2
223
+ y] = E[XT Xθ + XT e] = Sθ,
224
+ (4)
225
+ Cov(z|X, θ, σ2
226
+ y) = XT Xσ2
227
+ y = Sσ2
228
+ y,
229
+ (5)
230
+ and observe that both moments depend on X through its statistic S. Therefore, the conditional
231
+ density of z given S, θ, and σ2
232
+ y is
233
+ p(z|X, θ, σ2
234
+ y) = N(z; Sθ, Sσ2
235
+ y).
236
+ Next, define the function f : Rn×d �→ [0, ∞) with f(X) = p(z|X, θ, σ2
237
+ y) and let CS,θ,σ2y = {X :
238
+ XT X = S}, Since the function f is constant over CS,θ,σ2y, we can write
239
+ p(z|S) =
240
+
241
+ CS,θ,σ2y
242
+ fdPx = N(z; Sθ, Sσ2
243
+ y),
244
+ where the second equation is by moment equations in (4) and (5) above. This concludes the
245
+ proof.
246
+ Finally, we assign prior distributions for θ, σ2
247
+ y as
248
+ θ ∼ N(m, C),
249
+ σ2
250
+ y ∼ IG(a, b).
251
+ (6)
252
+ 5
253
+
254
+ At this point, it is worth discussing some important modelling differences between our work and
255
+ Bernstein and Sheldon (2019). In Bernstein and Sheldon (2019), the central limit theorem (CLT)
256
+ is applied to
257
+
258
+ S, z, yT y
259
+
260
+ , leading to a normality assumption for the whole vector. In contrast,
261
+ we use the exact conditional distribution p(z|S, θ, σ2) thanks to Proposition 1. Moreover, unlike
262
+ Bernstein and Sheldon (2019), we do not require a noisy version yT y, hence have a slight advantage
263
+ of using less privacy-preserving noise. In summary, our model has a different hierarchical structure
264
+ and requires less privacy-preserving noise.
265
+ 3.2
266
+ Distributed Setting
267
+ Next, we extend our model to the distributed setting, where the total data are shared among
268
+ J ≥ 1 data holders as
269
+ (X, y) = {(Xj, yj); j = 1, . . . , J}.
270
+ (7)
271
+ We let ni be number of rows in each xi, so that n = n1 + . . . + nJ. Each data holder j shares
272
+ their own summary statistics Sj = XT
273
+ j Xj, zj = XT
274
+ j yj with privacy-preserving noise
275
+ ˆSj = Sj + σsMj,
276
+ ˆzj = z + σzvj,
277
+ vj ∼ N(0, Id).
278
+ (8)
279
+ Note that, to preserve a given (ϵ, δ)-DP overall, each party must provide that level of privacy
280
+ for their data, hence σs and σz are the same as before. The hierarchical structure of the overall
281
+ model (specified for normally distributed xi’s) is shown in Figure 1.
282
+ Figure 1: Differentially private distributed linear regression model (specified for normally distributed xi’s.)
283
+ The distributed setting deserves separate consideration than the single data holder case for a couple
284
+ of reasons: Firstly, the node-specific observations ( ˆS1, ˆz1), . . . , ( ˆSJ, ˆzJ) are altogether statistically
285
+ more informative on θ than their aggregates �J
286
+ j=1 ˆSj and �J
287
+ j=1 ˆzj. This is because the aggregate
288
+ versions are not sufficient statistics of the node-specific observations ( ˆS1, ˆz1), . . . , ( ˆSJ, ˆzJ) with
289
+ respect to θ (even when σ2
290
+ y is known.) Therefore, when the node-specific observations are available,
291
+ one should not, in principle, trivially aggregate them and apply an inference method designed for
292
+ J = 1 using those aggregates.
293
+ Secondly, the partitioning of data as in (7) can be relevant to data privacy applications even
294
+ outside the distributed learning framework, rendering the methodology in Section 4 useful in a
295
+ 6
296
+
297
+ broader sense. For example, batches of (x, y)-type of data may be donated to a common data
298
+ collector as in (8). At this point, a particular and interesting relation exists with pan-privacy
299
+ applications (Dwork et al., 2010). Imagine that sensitive data from individuals are collected
300
+ sequentially in time, and the data holder is concerned about possible intrusions into the memory
301
+ where the sensitive data are stored. Then, one possible way to ensure the privacy of the data
302
+ against such possible intrusions, which is the promise of pan-privacy, is to store the noisy statistics
303
+ of every new batch of data and erase the original sensitive data. Then, at any time the data
304
+ collector has data of the form ( ˆS1, ˆz1), . . . , ( ˆSJ, ˆzJ), each pair corresponding to a batch. As a
305
+ result, inference algorithms as in Section 4 can be applied.
306
+ 4
307
+ Algorithms for Bayesian Inference
308
+ Bayesian inference targets the posterior distribution of the latent variables of the model, in
309
+ particular θ, given the observations ˆS1:J and ˆz1:J. We present several Bayesian inference algorithms
310
+ for the hierarchical model described in the previous section. In addition to other concerns like
311
+ computational budget, the choice among those approaches mainly depends on the specification of
312
+ Px as the distribution of S directly depends on it. In this paper, we have considered the following
313
+ two cases and devised algorithms for each of them:
314
+ 1. In some cases it may be adequate to specify Px = N(0, Σx). This leads to S|Σx ∼ W(Σx, n).
315
+ Further, to account for the uncertainty about the covariance Σx, one can treat it as a random
316
+ variable with Σx ∼ IW(Λ, κ). Figure 1 shows the hierarchical structure of the distributed
317
+ setting with those specifications. We defer discussing the conflict between the normality and
318
+ boundedness assumptions to Remark 1 towards the end of Section 4.1.
319
+ 2. As the second case, we assume a general (non-normal) Px. A normal approximation, based on
320
+ the CLT, could be considered for the distribution S (Wilson and Ghahramani, 2011). However,
321
+ this would require the knowledge (or accurate estimation) of up to the fourth moments of Px
322
+ as well as expensive computations for sampling S. We circumvent those difficulties by plugging
323
+ in a point estimate of S given ˆS and use it during the sampling process as if it is the true
324
+ S itself. Then, we develop two different algorithms for inference of θ, one being an MCMC
325
+ algorithm and the other providing a closed form-solution for the posterior of θ following a
326
+ rough point-wise estimation of σ2
327
+ y. Note that these algorithms with fixed S do not require a
328
+ distribution for x.
329
+ Next, we provide the details of our approaches and the resulting algorithms.
330
+ 4.1
331
+ Normally Distributed Features
332
+ In this section, we present an MCMC algorithm for Bayesian inference for the differentially private
333
+ distributed linear regression model when Px = N(0, Σx) and Σx ∼ IW(Λ, κ). The latent variables
334
+ involved in this variant are θ, Σx, σ2
335
+ y, S1:J, z1:J. Their posterior distribution given ˆS1:J, ˆz1:J can
336
+ be written as
337
+ p(θ, σ2
338
+ y, Σx, z1:J, S1:J|ˆz1:J, ˆS1:J) ∝ p(θ)p(σ2
339
+ y)p(Σx)
340
+ J
341
+
342
+ j=1
343
+ p(zj|θ, σ2
344
+ y, S)p(Sj|Σx)p( ˆSj|Sj)p(ˆzj|zj).
345
+ (9)
346
+ 7
347
+
348
+ One could design an MCMC algorithm for this posterior distribution that updates θ, σ2
349
+ y, Σx, z1:J,
350
+ S1:J in turn based on their full conditional distributions. However, such an algorithm suffers from
351
+ poor convergence because of a high posterior correlation between θ and z1:J (as verified in our
352
+ numerical studies). It is well known that highly correlated variables result in poor convergence
353
+ if they are updated one conditional on the other. To alleviate that problem, we work with the
354
+ reduced model where z1:J are integrated out. The reduced model has θ, Σx, σ2
355
+ y as its latent
356
+ variables, whose joint posterior distribution can be written as
357
+ p(θ, σ2
358
+ y,Σx, S|ˆz, ˆS) ∝ p(θ)p(σ2
359
+ y)p(Σx)
360
+ J
361
+
362
+ j=1
363
+ p(Sj|Σx)p( ˆSj|Sj)p(ˆzj|Sj, θ, σ2
364
+ y),
365
+ (10)
366
+ where p(ˆz|S, θ, σ2
367
+ y) = N(ˆz; Sθ, σ2
368
+ ySθ + σ2
369
+ zId).
370
+ We would like to sample from the posterior distribution in (10) via MCMC that updates θ, σ2
371
+ y,
372
+ Σx, S1:J in turn based on their full conditional distributions. The variables θ and Σx enjoy
373
+ closed-form full conditional distributions (see Appendix A for the derivations):
374
+ Σx|S1:J, ˆS1:J, ˆz1:J ∼ IW
375
+
376
+ �Λ +
377
+ J
378
+
379
+ j=1
380
+ Sj, κ + n
381
+
382
+ � ,
383
+ (11)
384
+ θ|σ2
385
+ y, ˆz, S1:J ∼ N(mp, Σp),
386
+ (12)
387
+ where the posterior moments for θ are
388
+ Σ−1
389
+ p
390
+ =
391
+ J
392
+
393
+ j=1
394
+ Sj(σ2
395
+ ySj + σ2
396
+ zI)−1Sj + C−1,
397
+ mp = Σp
398
+
399
+
400
+ J
401
+
402
+ j=1
403
+ Sj(σ2
404
+ ySj + σ2
405
+ zI)−1 ˆzj + C−1m
406
+
407
+ � .
408
+ The full-conditional distributions of S1:J and σ2
409
+ y have no closed form; hence we design Metropolis-
410
+ Hastings (MH) moves to update them. For σ2
411
+ y, one can simply use a random-walk MH move
412
+ targeting p(σ2
413
+ y|θ, S1:J, ˆz1:J). For S1:J, their full conditional distribution can be factorised as
414
+ p(S1:J| ˆS1:J, ˆz1:J, Σx, σ2
415
+ y, θ) =
416
+ J
417
+
418
+ j=1
419
+ p(Sj| ˆSj, ˆzj, Σx, σ2
420
+ y, θ),
421
+ where each factor is given by
422
+ p(Sj| ˆSj, ˆzj, Σx, σ2
423
+ y, θ) ∝ p(ˆzj|Sj, θ, σ2
424
+ y)p(Sj|Σx)p( ˆSj|Sj).
425
+ Thanks to that factorised form, each Sj can be updated with an MH move independently and
426
+ in parallel. For the MH algorithm to update one Sj, we propose a new value from a Wishart
427
+ distribution as S′
428
+ j ∼ W(Sj/α, α), which has mean Sj and variance determined by α. In our
429
+ experiments, we adjust a using ideas from the adaptive MCMC framework (Andrieu and Thoms,
430
+ 2008) to target an acceptance rate of around 0.2.
431
+ Algorithm 1 represents the overall MCMC algorithm for the hierarchical model for differentially
432
+ Bayesian distributed linear regression when Px is a normal distribution with a random covariance
433
+ matrix having an inverse-Wishart distribution. We call this algorithm MCMC-normalX.
434
+ 8
435
+
436
+ Algorithm 1: MCMC-normalX - one iteration
437
+ Input: Current values of S1:J, θ, σ2
438
+ y, Σx; observations ˆS1:J,ˆz1:J; noise variances σ2
439
+ s, σ2
440
+ z;
441
+ proposal parameters a, σ2
442
+ q; hyperparameters a, b, κ, Λ, m, C.
443
+ Output: New sample of Σx, S, σ2
444
+ y, θ
445
+ 1 Sample Σx using (11).
446
+ 2 for j = 1, 2, . . . J do
447
+ 3
448
+ Update Sj via an MH move targeting p(Sj|Σx, θ, ˆzj).
449
+ 4 Sample θ using (12).
450
+ 5 Update σ2
451
+ y via an MH move targeting p(σ2
452
+ y|θ, S1:J, ˆz1:J).
453
+ Remark 1. Admittedly, a potential concern is a conflict between the normality and boundedness
454
+ assumptions (both for x and y). However, we also note that the collected data often happen
455
+ to have some natural boundaries (which can be exploited to determine the sensitivity of the
456
+ shared statistics), and yet the normal distribution is still used for modelling and subsequent
457
+ inference mainly for sake of tractability. With the normality assumption, one can implement
458
+ computationally efficient algorithms at the expense of minor modelling inaccuracies. While we
459
+ acknowledge the methodologies in Alparslan and Yıldırım (2022, Section 4.2) and Ju et al. (2022)
460
+ that can correctly incorporate the effect of truncation into inference, we remark that those methods
461
+ pay the price of exactness by having O(n) computational complexity per iteration.
462
+ 4.2
463
+ Features with a General Distribution
464
+ The normality assumption for xi’s in Section 2 may not be adequate for some data sets. Moreover,
465
+ when d is large, updating Sj’s can be the bottleneck of MCMC-normalX in Algorithm 1 in terms of
466
+ computation time and convergence. We propose two algorithms to address both of those concerns.
467
+ As it turns out, those algorithms provide accurate estimations even for the case of normally
468
+ distributed features; see Section 5.1.
469
+ Our approach for xi’s with a general distribution is based on estimating Sj’s from the beginning,
470
+ using some principled estimation method, and fixing Sj’s to those estimates during the whole
471
+ course of the inference procedure. In that way, we obtain a faster MCMC algorithm at the expense
472
+ of targeting an approximate posterior distribution. Moreover, we have observed in our experiments
473
+ that this variant is quite competitive in terms of accuracy, especially when the total number of
474
+ nodes J increases. We call this variant MCMC-fixedS and present it in Algorithm 2.
475
+ As for estimating Sj’s, one could simply consider taking the privately shared ˆSj as an estimator
476
+ for Sj, but ˆSj is not necessarily a positive (semi-)definite matrix. Instead, we propose the nearest
477
+ positive semi-definite matrix of to ˆSj as the estimator of Sj in terms of the Frobenius norm. (The
478
+ nearest positive definite matrix to ˆSj does not exist.) To find the nearest positive semi-definite
479
+ matrix, we follow Higham (1988) and apply the following procedure for each j = 1, . . . , J: (i)
480
+ Calculate the eigendecomposition ˆSj = EDET , where E is a matrix of eigenvectors, and D is a
481
+ diagonal matrix consisting of the eigenvalues λi. (ii) The nearest symmetric positive semi-definite
482
+ matrix is �Sj = ED+ET , where D+ is a diagonal matrix with D+(i, i) = max{D(i, i), 0}.
483
+ Note that �Sj found above is the maximum likelihood estimator of Sj given ˆSj (over the set
484
+ of positive semi-definite matrices) since the conditional distribution of ˆSj given Sj is a normal
485
+ 9
486
+
487
+ Algorithm 2: MCMC-fixedS - one iteration
488
+ Input: Current values of θ, σ2
489
+ y; estimates ˆS1:J, observations ˆz1:J; noise variance σ2
490
+ z, and
491
+ hyperparameters a, b, m, C.
492
+ Output: New sample of σ2
493
+ y, θ.
494
+ 1 Use S1:J = �S1:J throughout.
495
+ 2 Sample θ using (12).
496
+ 3 Update σ2
497
+ y via an MH move targeting p(σ2
498
+ y|θ, S1:J, ˆz1:J).
499
+ Algorithm 3: Bayes-fixedS-fast
500
+ Input: ˆS1:J, ˆz1:J; noise variance: σ2
501
+ z; estimate ˜σ2
502
+ y of σ2
503
+ y; hyperparameters: m, C.
504
+ Output: Estimate ˆθ.
505
+ 1 for j = 1, 2, . . . J do
506
+ 2
507
+ Calculate the estimate �Sj for Sj using ˆSj.
508
+ 3
509
+ Calculate Σj = �Sj(˜σ2
510
+ y �Sj + σ2
511
+ zI)−1 �Sj.
512
+ 4
513
+ Calculate mj = �Sj(˜σ2
514
+ y �Sj + σ2
515
+ zI)−1 ˆzj.
516
+ 5 return Posterior moments of θ: Σ−1
517
+ post = �J
518
+ j=1 Σj + C−1,
519
+ mpost = Σpost
520
+
521
+ C−1m + �J
522
+ j=1 mj
523
+
524
+ .
525
+ distribution with mean Sj.
526
+ MCMC-fixedS in Algorithm 2 is faster than MCMC-normalX in Algorithm 1, since it avoids the step
527
+ to update Sj’s, which constitutes the main computational burden on Algorithm 1. However,
528
+ MCMC-fixedS can be made even faster by fixing σ2
529
+ y also. As a crude estimator, we used ˜σ2
530
+ y = ∥Y∥/3
531
+ throughout the experiments. When σ2
532
+ y is fixed in addition to S1:J, we end up with a non-iterative
533
+ method where the posterior distribution of θ is calculated in closed form. We call the resulting
534
+ algorithm Bayes-fixedS-fast and present it in Algorithm 3. Algorithm 3 does nothing but
535
+ returns the moments of the posterior distribution of θ given �Sj’s, ˆzj’s, ˜σ2
536
+ y, and the prior parameters
537
+ for θ.
538
+ 4.3
539
+ Computational Cost
540
+ All our methods described in this section require O(d3) computation (per iteration for the iterative
541
+ ones in Algorithms 1 and 2, or as a whole for the fast version in Algorithm 3) since they deal with
542
+ d × d matrices. In contrast, as Bernstein and Sheldon (2019) apply CLT to the vector [S, z, yT y],
543
+ their methods deal with covariance matrices of size (d2 + d + 1) explicitly, which leads to O(d6)
544
+ computation per MCMC iteration. For even moderate d, this computational difference becomes
545
+ dramatic and the latter may be prohibitive. Moreover, the complexity of our methods does not
546
+ depend on n. This is in contrast to the O(n) complexity of general-purpose methods, such as
547
+ Alparslan and Yıldırım (2022, Section 4.3) and Ju et al. (2022), that can be applied to linear
548
+ regression.
549
+ 10
550
+
551
+ 4.4
552
+ Extensions
553
+ We mention two other variants of our methodology, deferring the details to Appendix B.
554
+ Another solution for dealing with non-normal Px could be to average the feature vectors in X
555
+ (and the corresponding response variables in y), so that the averaged rows of X can be modelled
556
+ as approximately normal, due to CLT. This enables using the methods devised for normally
557
+ distributed features. For the details of this approach, see Appendix B.1.
558
+ Secondly, if the features are normally distributed but the data are not centred, we need to
559
+ include the intercept parameter, which corresponds to appending xi with a one from the left, and
560
+ MCMC-normalX does not directly apply. In that case, we can modify the hierarchical model that
561
+ accommodates the non-centralised features and the intercept parameter and still benefit from
562
+ the sampling techniques involved in MCMC-normalX in Algorithm 1. Appendix B.2 contains the
563
+ details of the modified hierarchical model.
564
+ 5
565
+ Numerical Experiments
566
+ We present several numerical evaluations of the proposed methods, MCMC-normalX, MCMC-fixedS,
567
+ and Bayes-fixedS-fast with simulated and real data. We compare our algorithms with two
568
+ methods: adaSSP of Wang (2018) and the MCMC method of Bernstein and Sheldon (2019) for
569
+ differentially private linear regression that we call MCMC-B&S. Note that adaSSP and MCMC-B&S
570
+ are originally proposed for the non-distributed setting, that is, J = 1. For a comprehensive
571
+ comparison, we have implemented their extensions for J ≥ 1. The details of those extensions are
572
+ provided in Appendix C. In particular, we have carefully generalised the model in Bernstein and
573
+ Sheldon (2019) for J ≥ 1 similarly as we have done for our model in Section 3.2. What we call
574
+ MCMC-B&S is the adaptation of Bernstein and Sheldon (2019, Algorithm 1) for this generalised
575
+ model (and (ϵ, δ)-DP). The code to replicate all of the experiments in this section can be found at
576
+ https://github.com/sinanyildirim/Bayesian_DP_dist_LR.git.
577
+ 5.1
578
+ Experiments with Simulated Data
579
+ We have considered two different configurations, (n = 105, d = 2) and (n = 105, d = 5), for
580
+ the problem size. For each (n, d), we have simulated the data as follows: We have generated
581
+ θ ∼ N(0, Id), xi ∼ N(0, Σx) where Σx ∼ IW(Λ, κ) with κ = d + 1 and selected the scale matrix
582
+ randomly as Λ = V T V , where V is a d × d matrix of i.i.d. variables from N(0, 1). The response
583
+ variables y have been generated with σ2
584
+ y = 1. For inference, we have used the same Λ, κ as above
585
+ and a = 20, b = 0.5, m = 0d×1, C = (a − 1)/bId for the other hyperparameters.
586
+ We have evaluated the methods at all combinations of J ∈ {1, 5, 10} and ϵ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}.
587
+ All the MCMC algorithms have been run for 104 iterations. For each (J, ϵ) pair, we have tried
588
+ each method 50 times (each with different noisy observations) to obtain average performances.
589
+ For performance metrics, we have looked at the mean squared errors (MSE) of (i) the estimates ˆθ,
590
+ and (ii) the predictions ˆy(xtest) generated by the methods. For the Bayesian methods, ˆθ is taken as
591
+ the mean posterior, which can be numerically estimated for the MCMC algorithms. For prediction
592
+ performance, we have calculated E[ˆy(xtest) − ytest]2. For the Bayesian methods, ˆy(xtest) is the
593
+ posterior predictive expectation of ytest at xtest. For adaSSP, we simply take ˆy(xtest) = xT
594
+ test ˆθ.
595
+ 11
596
+
597
+ The results are summarised in Figure 2. We observe that MCMC-fixedS and Bayes-fixedS-fast
598
+ outperform adaSSP and MCMC-B&S in almost all cases both in terms of estimation and prediction.
599
+ Comparing the full-scale algorithms MCMC-normalX and MCMC-B&S (that involve updates of S), we
600
+ observe a clear advantage of MCMC-normalX at d = 2, but MCMC-B&S becomes more competitive at
601
+ d = 5. This can be attributed to the fact that MCMC-B&S requires the extra statistic yT y, unlike
602
+ MCMC-normalX, which causes MCMC-B&S to use more noisy statistics. This difference becomes more
603
+ significant at small d, where the relative effect of the presence of yT y on the sensitivity is more
604
+ significant. Finally, all methods improve as ϵ grows, which is expected.
605
+ 0.1
606
+ 0.2
607
+ 0.5
608
+ 1
609
+ 2
610
+ 5
611
+ 10
612
+ 0
613
+ -9.5
614
+ -9
615
+ -8.5
616
+ -8
617
+ -7.5
618
+ (log-)MSE: prediction, J = 1
619
+ MCMC-normalX
620
+ MCMC-fixedS
621
+ Bayes-fixedS-fast
622
+ MCMC-B&S
623
+ adaSSP
624
+ 0.1
625
+ 0.2
626
+ 0.5
627
+ 1
628
+ 2
629
+ 5
630
+ 10
631
+ 0
632
+ -9
633
+ -8
634
+ -7
635
+ -6
636
+ (log-)MSE: prediction, J = 5
637
+ 0.1
638
+ 0.2
639
+ 0.5
640
+ 1
641
+ 2
642
+ 5
643
+ 10
644
+ 0
645
+ -9
646
+ -8
647
+ -7
648
+ -6
649
+ -5
650
+ (log-)MSE: prediction, J = 10
651
+ 0.1
652
+ 0.2
653
+ 0.5
654
+ 1
655
+ 2
656
+ 5
657
+ 10
658
+ 0
659
+ -10.5
660
+ -10
661
+ -9.5
662
+ -9
663
+ (log-)MSE: estimation J = 1
664
+ 0.1
665
+ 0.2
666
+ 0.5
667
+ 1
668
+ 2
669
+ 5
670
+ 10
671
+ 0
672
+ -10.5
673
+ -10
674
+ -9.5
675
+ -9
676
+ -8.5
677
+ -8
678
+ -7.5
679
+ (log-)MSE: estimation J = 5
680
+ 0.1
681
+ 0.2
682
+ 0.5
683
+ 1
684
+ 2
685
+ 5
686
+ 10
687
+ 0
688
+ -10
689
+ -9
690
+ -8
691
+ -7
692
+ -6
693
+ (log-)MSE: estimation J = 10
694
+ 0.1
695
+ 0.2
696
+ 0.5
697
+ 1
698
+ 2
699
+ 5
700
+ 10
701
+ 0
702
+ -6
703
+ -5
704
+ -4
705
+ -3
706
+ -2
707
+ (log-)MSE: prediction, J = 1
708
+ MCMC-normalX
709
+ MCMC-fixedS
710
+ Bayes-fixedS-fast
711
+ MCMC-B&S
712
+ adaSSP
713
+ 0.1
714
+ 0.2
715
+ 0.5
716
+ 1
717
+ 2
718
+ 5
719
+ 10
720
+ 0
721
+ -5
722
+ -4
723
+ -3
724
+ -2
725
+ -1
726
+ (log-)MSE: prediction, J = 5
727
+ 0.1
728
+ 0.2
729
+ 0.5
730
+ 1
731
+ 2
732
+ 5
733
+ 10
734
+ 0
735
+ -4
736
+ -3
737
+ -2
738
+ -1
739
+ 0
740
+ (log-)MSE: prediction, J = 10
741
+ 0.1
742
+ 0.2
743
+ 0.5
744
+ 1
745
+ 2
746
+ 5
747
+ 10
748
+ 0
749
+ -3
750
+ -2.5
751
+ -2
752
+ -1.5
753
+ -1
754
+ (log-)MSE: estimation J = 1
755
+ 0.1
756
+ 0.2
757
+ 0.5
758
+ 1
759
+ 2
760
+ 5
761
+ 10
762
+ 0
763
+ -3
764
+ -2.5
765
+ -2
766
+ -1.5
767
+ -1
768
+ (log-)MSE: estimation J = 5
769
+ 0.1
770
+ 0.2
771
+ 0.5
772
+ 1
773
+ 2
774
+ 5
775
+ 10
776
+ 0
777
+ -2.5
778
+ -2
779
+ -1.5
780
+ -1
781
+ -0.5
782
+ (log-)MSE: estimation J = 10
783
+ Figure 2: Averaged prediction and estimation performances (over 50 runs). Top row: n = 105, d = 2, Bottom row:
784
+ n = 105, d = 5.
785
+ 0
786
+ 10
787
+ 20
788
+ d
789
+ 0
790
+ 2
791
+ 4
792
+ 6
793
+ 8 #10-3
794
+ J = 1
795
+ MCMC-normalX
796
+ MCMC-fixedS
797
+ MCMC-B&S
798
+ 0
799
+ 10
800
+ 20
801
+ d
802
+ 0
803
+ 0.005
804
+ 0.01
805
+ 0.015
806
+ 0.02
807
+ J = 5
808
+ 0
809
+ 10
810
+ 20
811
+ d
812
+ 0
813
+ 0.01
814
+ 0.02
815
+ 0.03
816
+ 0.04
817
+ J = 10
818
+ Figure 3: Run times per iteration for MCMC algorithms
819
+ We also compare the computation times of the MCMC algorithms MCMC-normalX, MCMC-fixedS,
820
+ and MCMC-B&S1. Figure 3 shows the run-times of the algorithms vs d. The drastic difference in
821
+ computational loads explained in Section 4.3 is also visible in the figure. While MCMC-B&S may be
822
+ improved in terms of accuracy as d increases, the O(d6) dramatically slows it down.
823
+ 1The algorithms were run in MATLAB 2021b on an Apple M1 chip with 8 cores and 16 GB LPDDR4 memory.
824
+ 12
825
+
826
+ 5.2
827
+ Experiments with Real Data
828
+ For the real data case, we have used four different data sets from the UCI Machine Learning
829
+ Repository. We have disregarded the columns including string data or key values (ID, name,
830
+ date, etc.), and we have considered the most right-hand column as y. The finalised data sets are
831
+ summarised below.
832
+ data set
833
+ n
834
+ d
835
+ hyperlinks
836
+ power plant energy
837
+ 7655
838
+ 4
839
+ view link
840
+ bike sharing
841
+ 13904
842
+ 14
843
+ view link
844
+ air quality
845
+ 7486
846
+ 12
847
+ view link
848
+ 3d road
849
+ 347900
850
+ 3
851
+ view link
852
+ For prediction, we have taken 80% of the data for training and the rest for testing. We present the
853
+ average prediction performances (out of 50 runs) in Table 1 for each dataset and J with ϵ = 1. We
854
+ observe that the prediction performances of the compared methods are close, while MCMC-fixed-S
855
+ and Bayes-fixed-S are arguably the most stable ones. When J > 1 (the distributed data setting),
856
+ those two methods beat adaSSP and MCMC-B&S more satisfactorily.
857
+ Table 1: Averaged prediction performances (over 50 runs) for the real datasets - ϵ = 1
858
+ J
859
+ data sets
860
+ MCMC-normalX
861
+ MCMC-fixedS
862
+ Bayes-fixedS-fast
863
+ MCMC-B&S
864
+ adaSSP
865
+ J = 1
866
+ PowerPlant
867
+ 0.0129
868
+ 0.0129
869
+ 0.0129
870
+ 0.0128
871
+ 0.0139
872
+ BikeSharing
873
+ 0.0024
874
+ 0.0021
875
+ 0.0021
876
+ 0.0020
877
+ 0.0107
878
+ AirQuality
879
+ 0.0060
880
+ 0.0057
881
+ 0.0057
882
+ 0.0062
883
+ 0.0066
884
+ 3droad
885
+ 0.0229
886
+ 0.0229
887
+ 0.0229
888
+ 0.0229
889
+ 0.0229
890
+ J = 5
891
+ PowerPlant
892
+ 0.0133
893
+ 0.0134
894
+ 0.0134
895
+ 0.0136
896
+ 0.0235
897
+ BikeSharing
898
+ 0.0174
899
+ 0.0045
900
+ 0.0045
901
+ 0.0086
902
+ 0.0382
903
+ AirQuality
904
+ 0.0142
905
+ 0.0100
906
+ 0.0099
907
+ 0.0130
908
+ 0.0227
909
+ 3droad
910
+ 0.0229
911
+ 0.0229
912
+ 0.0229
913
+ 0.0229
914
+ 0.0229
915
+ J = 10
916
+ PowerPlant
917
+ 0.0142
918
+ 0.0143
919
+ 0.0143
920
+ 0.0143
921
+ 0.0351
922
+ BikeSharing
923
+ 0.0812
924
+ 0.0082
925
+ 0.0082
926
+ 0.0137
927
+ 0.0526
928
+ AirQuality
929
+ 0.0985
930
+ 0.0117
931
+ 0.0117
932
+ 0.0216
933
+ 0.0314
934
+ 3droad
935
+ 0.0229
936
+ 0.0229
937
+ 0.0229
938
+ 0.0229
939
+ 0.0229
940
+ 6
941
+ Conclusion
942
+ We propose a novel Bayesian inference framework, with MCMC being its main workhorse, for a
943
+ differentially private distributed linear regression setting where the data is partitioned among the
944
+ data holders. We provide several Bayesian inference algorithms suited to the developed hierarchical
945
+ model for linear regression. Those algorithms can be preferred one over the other depending on
946
+ the computational budget, model specifics, or how much we know about the underlying statistical
947
+ facts of the data. We exploit the conditional structure between the summary statistics of linear
948
+ regression, as given in Proposition 1, which leads to feasible algorithms with computational
949
+ advantages over their competitors. The numerical experiments show that the proposed methods
950
+ are competitive with their state-of-the-art alternatives in terms of accuracy.
951
+ The extensions mentioned in Section 4.4 indicate potential future directions. There is also room
952
+ 13
953
+
954
+ for improvement of MCMC-normalX. We chose the most common MH moves to update σ2
955
+ y and
956
+ Sj’s, without paying much attention to their efficiencies. Especially for large d, more advanced
957
+ techniques, such as those stemming from Hamiltonian Monte Carlo (Neal, 2001) or pseudo-marginal
958
+ MCMC (Andrieu and Roberts, 2009), may be employed to facilitate the mixing of the algorithm.
959
+ 7
960
+ Acknowledgement
961
+ The study was funded by the Scientific and Technological Research Council of Turkey (T¨UB˙ITAK)
962
+ ARDEB Grant No 120E534.
963
+ Supplementary material:
964
+ The code to replicate the experiments in Section 5 can be found at
965
+ https://github.com/sinanyildirim/Bayesian_DP_dist_LR.git.
966
+ References
967
+ Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L.
968
+ (2016). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
969
+ Conference on Computer and Communications Security, CCS ’16, pages 308–318, New York,
970
+ NY, USA. ACM. 1
971
+ Alabi, D., McMillan, A., Sarathy, J., Smith, A., and Vadhan, S. (2022). Differentially private
972
+ simple linear regression. Proceedings on Privacy Enhancing Technologies, 2022:184–204. 1
973
+ Alparslan, B. and Yıldırım, S. (2022). Statistic selection and mcmc for differentially private
974
+ bayesian estimation. Statistics and Computing, 32(5):66. 1, 1, 4.3
975
+ Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo
976
+ computations. Annals of Statistics, 37(2):569–1078. 6
977
+ Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive mcmc. Statistics and Computing,
978
+ 18(4):343–373. 4.1
979
+ Balle, B. and Wang, Y.-X. (2018). Improving the Gaussian mechanism for differential privacy:
980
+ Analytical calibration and optimal denoising. In Dy, J. and Krause, A., editors, Proceedings of
981
+ the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
982
+ Learning Research, pages 394–403. PMLR. 2, 3.1
983
+ Bassily, R., Smith, A., and Thakurta, A. (2014). Private empirical risk minimization: Efficient
984
+ algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of
985
+ Computer Science, pages 464–473. 1
986
+ Bernstein, G. and Sheldon, D. R. (2019). Differentially private bayesian linear regression. In
987
+ Wallach, H., Larochelle, H., Beygelzimer, A., d'Alch´e-Buc, F., Fox, E., and Garnett, R., editors,
988
+ Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc. 1, 3.1,
989
+ 4.3, 5, C.1, C.1
990
+ Bun, M. and Steinke, T. (2016). Concentrated differential privacy: Simplifications, extensions,
991
+ and lower bounds. In Proceedings, Part I, of the 14th International Conference on Theory of
992
+ Cryptography - Volume 9985, pages 635–658, New York, NY, USA. Springer-Verlag New York,
993
+ Inc. 2
994
+ 14
995
+
996
+ Cai, T. T., Wang, Y., and Zhang, L. (2021). The cost of privacy: Optimal rates of convergence for
997
+ parameter estimation with differential privacy. The Annals of Statistics, 49(5):2825 – 2850. 1
998
+ Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2009). Differentially private empirical risk
999
+ minimization. 1
1000
+ Dankar, F. K. and El Emam, K. (2013). Practicing differential privacy in health care: A review.
1001
+ Trans. Data Priv., 6(1):35–67. 1
1002
+ Dimitrakakis, C., Nelson, B., Zhang, Z., Mitrokotsa, A., and Rubinstein, B. I. (2017). Differential
1003
+ privacy for bayesian inference through posterior sampling. Journal of machine learning research,
1004
+ 18(11):1–39. 1
1005
+ Dong, J., Roth, A., and Su, W. J. (2022). Gaussian differential privacy. Journal of the Royal
1006
+ Statistical Society Series B, 84(1):3–37. 2
1007
+ Dwork, C. (2006). Differential privacy. In Bugliesi, M., Preneel, B., Sassone, V., and Wegener,
1008
+ I., editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg. Springer
1009
+ Berlin Heidelberg. 1, 2
1010
+ Dwork, C. (2008). Differential privacy: A survey of results. In Agrawal, M., Du, D., Duan, Z.,
1011
+ and Li, A., editors, Theory and Applications of Models of Computation, pages 1–19, Berlin,
1012
+ Heidelberg. Springer Berlin Heidelberg. 2
1013
+ Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in
1014
+ private data analysis. In Theory of Cyrptography, pages 265–284. Springer. 2
1015
+ Dwork, C., Naor, M., Pitassi, T., Rothblum, G. N., and Yekhanin, S. (2010). Pan-private streaming
1016
+ algorithms. In ICS, pages 66–80. 3.2
1017
+ Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends
1018
+ Theor. Comput. Sci., 9(3–4):211–407. 2
1019
+ Dwork, C., Roth, A., et al. (2014a). The algorithmic foundations of differential privacy. Foundations
1020
+ and Trends® in Theoretical Computer Science, 9(3–4):211–407. 1
1021
+ Dwork, C., Talwar, K., Thakurta, A., and Zhang, L. (2014b). Analyze gauss: Optimal bounds for
1022
+ privacy-preserving principal component analysis. In Proceedings of the Forty-Sixth Annual ACM
1023
+ Symposium on Theory of Computing, STOC ’14, page 11–20, New York, NY, USA. Association
1024
+ for Computing Machinery. 1, 3.1
1025
+ Ferrando, C., Wang, S., and Sheldon, D. (2022). Parametric bootstrap for differentially private
1026
+ confidence intervals. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings
1027
+ of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of
1028
+ Proceedings of Machine Learning Research, pages 1598–1618. PMLR. 1
1029
+ Foulds, J., Geumlek, J., and an Kamalika Chaudhuri, M. W. (2016). On the theory and practice
1030
+ of privacy-preserving Bayesian data analysis. Technical report, arxiv:1603.07294. 1
1031
+ Gong, R. (2022). Exact inference with approximate computation for differentially private data
1032
+ via perturbations. Journal of Privacy and Confidentiality, 12(2). 1
1033
+ 15
1034
+
1035
+ Heikkil¨a, M., Lagerspetz, E., Kaski, S., Shimizu, K., Tarkoma, S., and Honkela, A. (2017).
1036
+ Differentially private bayesian learning on distributed data. In Guyon, I., Luxburg, U. V.,
1037
+ Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
1038
+ Neural Information Processing Systems, volume 30. Curran Associates, Inc. 1
1039
+ Heikkil¨a, M. A., J¨alk¨o, J., Dikmen, O., and Honkela, A. (2019). Differentially private Markov
1040
+ chain Monte Carlo. In NeurIPS. 1
1041
+ Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear
1042
+ Algebra and its Applications, 103:103–118. 4.2
1043
+ Ju, N., Awan, J., Gong, R., and Rao, V. (2022). Data augmentation MCMC for bayesian inference
1044
+ from privatized data. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances
1045
+ in Neural Information Processing Systems. 1, 1, 4.3
1046
+ Kuru, N., Birbil, S. I., G¨urb¨uzbalaban, M., and Yıldırım, S. (2022).
1047
+ Differentially private
1048
+ accelerated optimization algorithms. SIAM Journal on Optimization, 32(2):795–821. 1
1049
+ Neal, R. (2001). Annealed importance sampling. Statistics and Computing, 11:125–139. 6
1050
+ Wang, Y.-X. (2018). Revisiting differentially private linear regression: optimal and adaptive
1051
+ prediction & estimation in unbounded domain. In UAI. 1, 5, C.2, C.2
1052
+ Wang, Y.-X., Fienberg, S., and Smola, A. (2015). Privacy for free: Posterior sampling and
1053
+ stochastic gradient monte carlo. In Bach, F. and Blei, D., editors, Proceedings of the 32nd
1054
+ International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
1055
+ Research, pages 2493–2502, Lille, France. PMLR. 1
1056
+ Williams, O. and Mcsherry, F. (2010). Probabilistic inference and differential privacy. In Lafferty,
1057
+ J., Williams, C., Shawe-Taylor, J., Zemel, R., and Culotta, A., editors, Advances in Neural
1058
+ Information Processing Systems, volume 23. Curran Associates, Inc. 1
1059
+ Wilson, A. G. and Ghahramani, Z. (2011). Generalised wishart processes. In Proceedings of the
1060
+ Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11, page 736–744,
1061
+ Arlington, Virginia, USA. AUAI Press. 2
1062
+ Yıldırım, S. and Ermi¸s, B. (2019). Exact MCMC with differentially private moves. Statistics and
1063
+ Computing, 29(5):947–963. 1
1064
+ Zhang, J., Zhang, Z., Xiao, X., Yang, Y., and Winslett, M. (2012). Functional mechanism:
1065
+ Regression analysis under differential privacy. Proc. VLDB Endow., 5(11):1364–1375. 1
1066
+ Zhang, Z., Rubinstein, B., and Dimitrakakis, C. (2016). On the differential privacy of bayesian
1067
+ inference. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). 1
1068
+ 16
1069
+
1070
+ A
1071
+ Derivations for MCMC-normalX
1072
+ We reserve this section for the derivations required for our algorithm MCMC-normalX.
1073
+ Full Conditional Distribution of Σx:
1074
+ We note that
1075
+ p(Σx|S1:J, ˆS1:J, ˆz1:J) ∝ p(Σx)
1076
+ J
1077
+
1078
+ j=1
1079
+ p(Sj|Σx)
1080
+ =
1081
+ |Λ|dκ/2
1082
+ 2dk/2Γd( κ
1083
+ 2)|Σx|−(d+κ+1)/2e− 1
1084
+ 2 tr(ΛΣ−1
1085
+ x )
1086
+ J
1087
+
1088
+ j=1
1089
+ |Sj|(nj−d−1)/2e− 1
1090
+ 2 tr(Σ−1
1091
+ x Sj)
1092
+ 2njd/2|Σx|nj/2Γd(nj/2)
1093
+ ∝ |Σx|− n
1094
+ 2 − (d+κ+1)
1095
+ 2
1096
+ e− 1
1097
+ 2 (� tr(Σ−1
1098
+ x Sj)+tr(ΛΣ−1
1099
+ x ))
1100
+ ∝ |Σx|− (d+κ+n+1)
1101
+ 2
1102
+ e− 1
1103
+ 2 tr((� Sj+Λ)Σ−1
1104
+ x ).
1105
+ Therefore, we have
1106
+ Σx|S1:J, ˆS1:J, ˆz1:J ∼ IW
1107
+
1108
+ �Λ +
1109
+ J
1110
+
1111
+ j=1
1112
+ Sj, κ + n
1113
+
1114
+ � .
1115
+ Full Conditional Distribution of θ:
1116
+ The posterior of θ is proportional to
1117
+ p(θ|S1:J, σ2
1118
+ y, ˆz1:J) ∝ N(θ; m, C)p(ˆz1:J|S1:J, θ, σ2
1119
+ y).
1120
+ For the second factor, we have
1121
+ p(ˆz1:J|S1:J, θ, σ2
1122
+ y) ∝
1123
+ J
1124
+
1125
+ i=1
1126
+ p(ˆzj|Sj, θ, σ2
1127
+ y) =
1128
+ J
1129
+
1130
+ i=1
1131
+ N
1132
+ � ˆzj; Sjθ, σ2
1133
+ ySj + σ2
1134
+ zI
1135
+
1136
+
1137
+ J
1138
+
1139
+ i=1
1140
+ exp
1141
+
1142
+ −1
1143
+ 2(ˆzj − Sjθ)T (σ2
1144
+ ySj + σ2
1145
+ zI)−1(ˆzj − Sjθ)
1146
+
1147
+ ∝ exp
1148
+
1149
+
1150
+ �−1
1151
+ 2
1152
+
1153
+ �θT
1154
+
1155
+ ��
1156
+ j
1157
+ Sj(σ2
1158
+ ySj + σ2
1159
+ zI)−1Sj
1160
+
1161
+ � θ − 2θT
1162
+
1163
+ ��
1164
+ j
1165
+ Sj(σ2
1166
+ ySj + σ2
1167
+ zI)−1
1168
+
1169
+ � ˆzj
1170
+
1171
+
1172
+
1173
+
1174
+ � .
1175
+ Reorganising the terms, we end up with
1176
+ p(θ|S1:J, σ2
1177
+ y, ˆz1:J) ∝ exp
1178
+
1179
+ −1
1180
+ 2
1181
+
1182
+ θT Σ−1
1183
+ postθ − 2θT Σ−1
1184
+ postmpost
1185
+ ��
1186
+ ,
1187
+ where Σ−1
1188
+ post = �
1189
+ j Sj(σ2
1190
+ ySj + σ2
1191
+ ZI)−1Sj + C−1 and mpost = Σpost[�
1192
+ j Sj(σ2
1193
+ ySj + σ2
1194
+ zI)−1)ˆzj +
1195
+ C−1m]. Therefore, θ|S1:J, σ2
1196
+ y, ˆz1:J ∼ N(mpost, Σpost).
1197
+ Acceptance Ratio for the MH Update of Sj:
1198
+ We drop the index j from Sj for simplicity.
1199
+ When S′ ∼ W(S/α, α), the proposal density is
1200
+ q(S′|S) = |S′|(α−d−1)/2e−tr[αS−1S′]/2
1201
+ |S/α|α/22αd/2Γd( α
1202
+ 2 )
1203
+ = |S′|(α−d−1)/2e−tr[αS−1S′]/2
1204
+ |S|α/22αd/2Γd( α
1205
+ 2 )
1206
+ αα/2.
1207
+ 17
1208
+
1209
+ Therefore, the acceptance ratio corresponding to this proposal is
1210
+ min
1211
+
1212
+ 1, q(S|S′)
1213
+ q(S′|S)
1214
+ W(S′; njΣx, κ)p( ˆS| ˆS′)N(ˆz; S′θ, σ2
1215
+ ySθ + σ2
1216
+ zId)
1217
+ W(S; njΣx, κ)p( ˆS| ˆS)N(ˆz; Sθ, σ2ySθ + σ2zId)
1218
+
1219
+ ,
1220
+ where the ratio of proposals becomes
1221
+ q(S|S′)
1222
+ q(S′|S) = |S|(α−d−1)/2|S|α/2e−tr[aS′−1S]/2
1223
+ |S′|(α−d−1)/2|S′|α/2e−tr[αS−1S′]/2 =
1224
+ � |S|
1225
+ |S′|
1226
+ �α−(d+1)/2
1227
+ eα(tr[S−1S′]−tr[S′−1S])/2.
1228
+ Acceptance Ratio for the MH Update of σ2
1229
+ y:
1230
+ To update σ2
1231
+ y, we use a random walk proposal
1232
+ σ2′
1233
+ y ∼ N(σ2
1234
+ y, σ2
1235
+ q). The resulting acceptance ratio is
1236
+ min
1237
+
1238
+ 1,
1239
+ IG(σ2′
1240
+ y ; a, b) �J
1241
+ j=1 N(ˆzj; Sjθ, σ2′
1242
+ y Sjθ + σ2
1243
+ zId)
1244
+ IG(σ2y; a, b) �J
1245
+ j=1 N(ˆzj; Sjθ, σ2ySjθ + σ2zId)
1246
+
1247
+ B
1248
+ Other Variants
1249
+ This appendix is reserved for the details of the other variants mentioned in Section 4.4. For
1250
+ simplicity, we will assume a single data holder, i.e., J = 1; the extension to J > 1 should be
1251
+ straightforward.
1252
+ B.1
1253
+ Approximating Normality by Averaging
1254
+ When xi, i = 1, . . . , n are not normal, another approach that we propose is based on modifying
1255
+ the data to such that the rows of the modified feature matrix, called Xav, are averages of k > 1
1256
+ original features in X, and thus approximately normal, by the CLT. Specifically, let n be divisible
1257
+ by k so that m = n/k is an integer. Consider the m × n matrix
1258
+ A =
1259
+ 1
1260
+
1261
+ k
1262
+
1263
+ ����
1264
+ 11×k
1265
+ 01×k
1266
+ . . .
1267
+ 01×k
1268
+ 01×k
1269
+ 11×k
1270
+ . . .
1271
+ 01×k
1272
+ ...
1273
+ ...
1274
+ ...
1275
+ ...
1276
+ 01×k
1277
+ 01×k
1278
+ . . .
1279
+ 11×k
1280
+
1281
+ ����
1282
+ m×n
1283
+ ,
1284
+ Then the matrix Xav = AX corresponds to constructing a shorter m × d matrix whose i’th
1285
+ column is the average of the rows (i − 1)k + 1, . . . , ik of X (scaled by 1/
1286
+
1287
+ k the preserve the
1288
+ norm). When k is large enough, we can make normality assumptions for the rows of Xav. Further,
1289
+ we consider
1290
+ yav := Ay = Xavθ + Ae,
1291
+ whose mean is Xavθ and covariance AAT σ2
1292
+ y. But, we have AAT = Im, so the covariance is σ2
1293
+ yIm.
1294
+ Therefore, the same hierarchical model in Figure 1 can be used for X′, y′ with their respective
1295
+ summary statistics
1296
+ zav = (Xav)T yav,
1297
+ Sav = (Xav)T Xav,
1298
+ as well as the noisy versions of those summary statistics to provide a given level of privacy. Note
1299
+ that Sav and zav have the same sensitivities as S and z, hence the same noise variances are
1300
+ needed for privacy. However, there is less information in Sav and zav due to averaging.
1301
+ 18
1302
+
1303
+ B.2
1304
+ Including the Intercept
1305
+ If we include the intercept parameter, which corresponds to appending xi with a 1 from the left,
1306
+ the design matrix will be changed from S to S0 =
1307
+ � n
1308
+ n¯xT
1309
+ n¯x
1310
+ S
1311
+
1312
+ , where ¯x = 1
1313
+ n
1314
+ �n
1315
+ i=1 xi. Also, note
1316
+ that S = (n − 1)�Σx + n¯x¯xT where �Σx is the sample covariance. Under the normality assumption
1317
+ for xi’s, ¯x ∼ N(m, Σx/n) and (n − 1)�Σx ∼ W(n − 1, Σx) are independent and have known
1318
+ distributions. Therefore, we can write a model that includes b = ¯x, ˆ
1319
+ Σx, and S0 where S0 replaces
1320
+ S in the standard model. More specifically, we have the following hierarchical model:
1321
+ θ ∼ N(m, C),
1322
+ Σx ∼ IW(Λ, κ),
1323
+ ˆ
1324
+ Σx|Σx ∼ W(n − 1, Σx),
1325
+ b|Σx ∼ N(µ, Σx/n),
1326
+ z|θ, Σ2
1327
+ y, ˆΣ, b ∼ N(S0θ, S0σ2
1328
+ y),
1329
+ ˆS| ˆΣ, b = N(S0, σ2
1330
+ sI),
1331
+ ˆz|z = N(z, σ2
1332
+ zI)
1333
+ with S0 =
1334
+ � n
1335
+ nbT
1336
+ nb
1337
+ (n − 1) ˆΣ + nbbT
1338
+
1339
+ .
1340
+ C
1341
+ Compared Methods
1342
+ Here, we provide the details of the methods which we compare with the proposed methods in
1343
+ this paper. Those methods are originally proposed for J = 1. However, for comparison, we
1344
+ implemented their natural extensions to the general (distributed) case J ≥ 1. The implementations
1345
+ of those methods can also be found in the code package provided for this paper.
1346
+ C.1
1347
+ MCMC-B&S Adapted to the Distributed Setting
1348
+ In Bernstein and Sheldon (2019), only J = 1 is considered, and the vector ss = [vec(S), z =
1349
+ XT y, u = yT y] is perturbed with privacy-preserving noise to generate the observations of
1350
+ the model. For J ≥ 1, we consider the following natural extension for generating perturbed
1351
+ observations ˆss = [vec( ˆSj), ˆzj, ˆuj] along with
1352
+ ˆSj = Sj + σdpMj,
1353
+ ˆzj = zj + vj,
1354
+ vj ∼ N(0, σ2
1355
+ dpId),
1356
+ ˆuj = uj + wj,
1357
+ wj ∼ N(0, σ2
1358
+ dp), (13)
1359
+ where σdp = σ(ϵ, δ)∆ss with ∆ss =
1360
+
1361
+ ∥X∥4 + ∥X∥2∥Y∥2 + ∥Y∥4.
1362
+ For completeness, we provide the further specifics of the model: We take (θ, σ2
1363
+ y) ∼ NIG(a0, b0, m, Λ0)
1364
+ where Λ0 = C−1 and Px = N(0, Σx) with Σx ∼ IW(Λ, κ).
1365
+ During the comparisons, we set a0, b0, m, C, Λ, κ to the same values for both this model and our
1366
+ proposed model that assumes normally distributed features, i.e., Px = N(0, Σx). Then, we apply
1367
+ an extension of Bernstein and Sheldon (2019, Algorithm 1) suited to those observations. One
1368
+ iteration of that algorithm includes the following steps in order:
1369
+ • Calculate the D × 1 mean vector and D × D covariance matrix
1370
+ µss = E[ss],
1371
+ Σss = Cov[ss].
1372
+ This step requires the fourth moments N(0, Σx).
1373
+ • Sample ssj ∼ N(µ(j)
1374
+ post,ss, Σ(j)
1375
+ post,ss) with
1376
+ Σ(j)
1377
+ post,ss = (njΣss(θ)−1 + (1/σ2
1378
+ dp)I)−1,
1379
+ and
1380
+ µ(j)
1381
+ post,ss = Σ(j)
1382
+ post,ss(Σss(θ)−1µss + ˆssj/σ2
1383
+ dp).
1384
+ 19
1385
+
1386
+ • Sample Σx ∼ IW
1387
+
1388
+ Λ + �J
1389
+ j=1 Sj, n + κ
1390
+
1391
+ .
1392
+ • Sample (θ, σ2
1393
+ y) ∼ NIG(an, bn, mn, Λn) by sampling σ2
1394
+ y ∼ IG(an, bn), followed by sampling
1395
+ θ ∼ N(µn, σ2
1396
+ yΛ−1
1397
+ n ) with an = a0 + n/2, bn = 0.5u + mT C−1m − mT
1398
+ nΛnmn, and
1399
+ Λn = Λ0 +
1400
+ J
1401
+
1402
+ j=1
1403
+ Sj,
1404
+ mn = Λ−1
1405
+ n
1406
+
1407
+
1408
+ J
1409
+
1410
+ j=1
1411
+ zj + Λ0m
1412
+
1413
+ � ,
1414
+ .
1415
+ C.2
1416
+ A Variant of adaSSP for the Distributed Setting
1417
+ The adaSSP algorithm of (Wang, 2018) is originally designed for a single data holder, i.e., J = 1.
1418
+ In adaSSP, a differentially private estimate of θ is released as
1419
+ ˆθ = ( ˆS + λI)−1 ˆz.
1420
+ (14)
1421
+ Here, ˆS and ˆz are the privatised versions of S and z as in (2) and (3), except that ϵ and δ must be
1422
+ changed to 2ϵ/3 and 2δ/3 in those equations to provide (ϵ, δ) differential privacy. This is because
1423
+ adaSSP uses another parameter λ, which is also calculated from the sensitive data and a third of
1424
+ the privacy budget is spent for privatising that calculation. With v ∼ N(0, 1), λ is specifically
1425
+ calculated as
1426
+ λ = max{0, σ
1427
+
1428
+ d ln(6/δ) ln(2d2/ρ) − ˜λmin}
1429
+ with σ = ∥X∥2/(ϵ/3), λmin = min(eig(S)), and
1430
+ ˜λmin = max{λmin +
1431
+
1432
+ ln(6/δ)σv − ln(6/δ)σv, 0}.
1433
+ We consider an extension of (Wang, 2018) for J ≥ 1. To perform the extension, we reflect on its
1434
+ tendency to approximate a (regularised) least square solution and consider the following estimate
1435
+ ˆθ =
1436
+
1437
+
1438
+ J
1439
+
1440
+ j=1
1441
+ ˆSj + I
1442
+ J
1443
+
1444
+ j=1
1445
+ λj
1446
+
1447
+
1448
+ −1 �
1449
+
1450
+ J
1451
+
1452
+ j=1
1453
+ ˆzj
1454
+
1455
+ � .
1456
+ (15)
1457
+ Here, ˆSj, ˆzj and λj are calculated in data node j separately from the other nodes. The estimation
1458
+ procedure in (15) does not properly account for the Bayesian paradigm but aggregates the shared
1459
+ ˆSj’s and ˆzj’s to approximate the (regularised) least squares solution.
1460
+ 20
1461
+
0tFST4oBgHgl3EQfVziF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
19E4T4oBgHgl3EQfaQyU/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61fcedc61d4aa61c63504211ab74ee1f708274ddb8910e1388afcad1fd467fd8
3
+ size 2883629
1tE4T4oBgHgl3EQfzg0x/content/tmp_files/2301.05274v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tE4T4oBgHgl3EQfzg0x/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29E1T4oBgHgl3EQfSAP8/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86972a6df02c07bbb45187646c7e1f11bdcb107eb4624f311a9df8373dacc7b3
3
+ size 172606
2dAyT4oBgHgl3EQfbvf7/content/2301.00271v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:901ef71c199885f409519f409a64fb38232015d39f5772ea75602b94d8ce3d93
3
+ size 850815
2dAyT4oBgHgl3EQfbvf7/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ee4371f18a30079bc997dcf6a1145f459c51ec5bf7b8480fab95aa25c6419f
3
+ size 562930
3NAyT4oBgHgl3EQf1vm8/content/2301.00741v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dac01ffb683820418c7367618397d39c518a433ab5da8f808662712cdde7098
3
+ size 811268
3NAyT4oBgHgl3EQf1vm8/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8e3182e884b2a8802e32ddd79db0d27b8b0dbf35699b3d4581112e07d9f4aa3
3
+ size 77647
3dAzT4oBgHgl3EQfuf2L/content/tmp_files/2301.01692v1.pdf.txt ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01692v1 [gr-qc] 3 Jan 2023
2
+ Another Friedman-type solution that eliminates the problem of the divergent
3
+ cosmological constant, implemented in the framework of the lattice regularization of
4
+ the theory of gravity
5
+ S.N. Vergeles∗
6
+ Landau Institute for Theoretical Physics,
7
+ Russian Academy of Sciences, Chernogolovka,
8
+ Moscow region, 142432 Russia
9
+ and
10
+ Moscow Institute of Physics and Technology,
11
+ Department of Theoretical Physics,
12
+ Dolgoprudnyj, Moskow region, 141707 Russia
13
+ Lattice regularization of the theory of gravity provides a new possibility for solving the problem
14
+ of the divergent cosmological constant. The solution of the Einstein equation within the framework
15
+ of the Friedmann paradigm with a finite bare cosmological constant is mathematically correct, since
16
+ all local physical quantities (energy density including vacuum energy, etc.) on the lattice are finite.
17
+ As a result, a solution is obtained that demonstrates an exponential growth of the cosmological scale
18
+ factor a(t) in the initial period of evolution (inflation phase of the Universe) and then passes into a
19
+ power law (a(t) ∝
20
+
21
+ t).
22
+ PACS numbers: 04.60.Bc
23
+ 1.
24
+ Introduction.
25
+ In the fundamental review [1]
26
+ the following facts were stated regarding the problem
27
+ of divergent energy (divergent cosmological constant)
28
+ of the ground state in quantum field theory:
29
+ (i) In
30
+ flat Minkowski space-time, these divergences, generally
31
+ speaking, take place, but in the case of supersymmetric
32
+ theories, the energies of the ground states strictly vanish.
33
+ (ii) In curved space-time, even in the case of supergravity,
34
+ the cosmological constant diverges. (iii) The superstring
35
+ theory does not save the situation either.
36
+ Since then, many papers have been published on this
37
+ problem. Here we note only a few approaches to solving
38
+ the problem, which seem to us very promising.
39
+ The first approach is represented by works [2–7]. In
40
+ these papers, efforts were made to solve the problem of
41
+ the cosmological constant in detail, that is, through mi-
42
+ croscopic analysis. In particular, the probability of the
43
+ following process was calculated. Let there be a massive
44
+ particle in the de Sitter space. This particle gives rise to
45
+ a pair of the same particles for a sufficiently long period
46
+ of time. This problem has been studied for both free and
47
+ interacting fields.
48
+ A similar statement of the problem
49
+ for massive charged particles in the case of a flat space-
50
+ time in the presence of a constant electric field leads to
51
+ the creation of particle-antiparticle pair that weaken the
52
+ initial electric field. In the case of de Sitter space, pair
53
+ production also leads to a decrease in the cosmological
54
+ constant with time. Unfortunately, in these works there
55
+ is no study of the reverse influence of quantized mate-
56
+ rial fields on the space-time geometry. It is possible that
57
+ continued efforts in this direction will lead to a solution
58
+ ∗e-mail:[email protected]
59
+ to the problem of the cosmological constant.
60
+ In the paper [8] the mean of the energy-momentum
61
+ tensor of a quantized scalar field is calculated in the case
62
+ of an anisotropic metric, which is considered to be clas-
63
+ sical and variable in time. Regularization is carried out
64
+ in the usual way: the vacuum expectation value of the
65
+ energy-momentum tensor, calculated in the case of a sta-
66
+ tionary vacuum, is subtracted from the obtained value.
67
+ The authors of the paper [9] study such models of
68
+ field theory which, although not supersymmetric, have
69
+ the same number of boson and fermion degrees of free-
70
+ dom. In this case, the divergences of the highest, fourth
71
+ degree are eliminated in the quantum mean of the energy-
72
+ momentum tensor. It is shown what conditions the al-
73
+ ready renormalized field masses must satisfy in order to
74
+ reduce all other divergences.
75
+ The work [10] seems to us to be interesting and com-
76
+ plementary to the present work, since a bare cosmological
77
+ constant is also introduced in [10], and the reduction of
78
+ the huge vacuum energy is a dynamic effect, not a fine-
79
+ tuning effect.
80
+ Another interesting approach to solving the problem,
81
+ using the macroscopic thermodynamic ideology, is pre-
82
+ sented in [11] (see there also references for the articles
83
+ of F.R. Klinkhamer and G.E. Volovik). The main idea
84
+ of this approach is as follows. A bare cosmological con-
85
+ stant is introduced into the system describing gravity and
86
+ matter. The bare cosmological constant plays the role of
87
+ the chemical potential µ. If the system comes to a state
88
+ of thermodynamic equilibrium, then a large thermody-
89
+ namic potential is of interest. Let Ω be a large thermo-
90
+ dynamic potential for the spatial volume V . It is known
91
+ that
92
+ Ω(β, µ, V ) = −P(β, µ)V.
93
+ (1)
94
+
95
+ 2
96
+ Here, β stands for inverse temperature.
97
+ In our case,
98
+ β should be understood as the (imaginary) time dur-
99
+ ing which the transition quantum amplitude (or partition
100
+ function) is calculated. We have an obvious limitation for
101
+ β values: |βH| ≪ 1, where H = ˙a/a is Hubble constant
102
+ and a(t) is the cosmic scale factor. Otherwise, there can
103
+ be no thermodynamic equilibrium.
104
+ The standard spa-
105
+ tially flat Robertson-Walker metric
106
+ d s2 = (d x0)2 − a2(t)(d xα)2,
107
+ α = 1, 2, 3
108
+ (2)
109
+ is used in [11]. Since the gravitational degrees of free-
110
+ dom are exhausted by only one global parameter a(t),
111
+ then the potential (1) is saturated with the degrees of
112
+ freedom of matter. The main idea of the authors of the
113
+ paper [11] is that in the case of thermal equilibrium (if it
114
+ exists), the pressure on the right side of the equality (1)
115
+ tends to zero, since there is no external pressure at all.
116
+ Further, the effective energy-momentum tensor of matter
117
+ is formed by the potential (1). Therefore, the effective
118
+ energy density of matter, including the vacuum energy,
119
+ under the condition of thermal equilibrium is estimated
120
+ as ε ∼ Ω/V −→ 0. Thus the problem of the divergent
121
+ cosmological constant is removed.
122
+ The fundamental defect of all the papers cited here
123
+ is the fact that the vacuum energy (in particular, the
124
+ energy of zero-point oscillations) is not limited.
125
+ Figu-
126
+ ratively speaking, the Dirac sea has no bottom.
127
+ And
128
+ although the divergences in physical quantities are elim-
129
+ inated by subtracting vacuum values from them, there
130
+ remains a feeling of unsteadiness of the ground under
131
+ the feet of the researcher. The reason for this is that in
132
+ this case the characteristic divergences are power-law of
133
+ the fourth degree.
134
+ On the other hand, if the hypothesis is accepted that on
135
+ ultra-small scales, space-time has the property of gran-
136
+ ularity (this property is modeled by a lattice), then the
137
+ formulation and solution of at least some problems turn
138
+ out to be mathematically correct (see below).
139
+ This work is an ideological continuation of the work
140
+ [11]. The essential difference between the present paper
141
+ and the paper [11] is that we assume a lattice regular-
142
+ ization of the theory of gravity (see [12] and references
143
+ there). Lattice regularization provides a new possibility
144
+ for solving the problem of the divergent cosmological
145
+ constant. The solution of the Einstein equation within
146
+ the framework of the Friedmann paradigm with a finite
147
+ bare cosmological constant is mathematically correct,
148
+ since all local physical quantities (energy density in-
149
+ cluding vacuum energy, etc.)
150
+ on the lattice are finite.
151
+ Our approach assumes that all physical quantities are
152
+ determined by taking into account quantum zero point
153
+ fluctuations.
154
+ In particular, the energy density and
155
+ pressure are mainly determined by quantum fluctua-
156
+ tions. Since the equations considered here describe such
157
+ large energy densities that, on the characteristic time
158
+ intervals, have actions exceeding the Planck constant
159
+ by a huge number of times, we assume the considered
160
+ physical quantities to be classical and use the classical
161
+ equations [13]. As a result, a solution is obtained that
162
+ demonstrates an exponential growth of the scale factor
163
+ in the initial period of evolution and then passes into a
164
+ power law.
165
+ 2. Einstein equation and solution. We use the energy-
166
+ momentum tensor of matter in the form of the energy-
167
+ momentum tensor of an ideal relativistic fluid:
168
+ T a
169
+ b = (ε + p)U aUb − pδa
170
+ b .
171
+ (3)
172
+ We work in an orthonormal basis in which the metric ten-
173
+ sor ηab = diag(1, −1, −1, −1). On the right side of (3),
174
+ the symbols ε and p denote the energy density and pres-
175
+ sure, respectively, and these quantities also include vac-
176
+ uum energy and pressure. Since fermionic fields, in con-
177
+ trast to bosonic ones, make a negative contribution to the
178
+ vacuum energy, but there are significantly more fermionic
179
+ degrees of freedom than bosonic ones, we have ε < 0.
180
+ Moreover, lattice regularization means that |ε|, |p| < ∞.
181
+ Note that in (3) the pressure p is different from the pres-
182
+ sure P(β, µ) in (1). A comparison of these values is given
183
+ below. U a is the averaged 4-velocity of the macroscopic
184
+ regions of the lattice. In our case U a = (1, 0, 0, 0). To
185
+ compensate for the vacuum energy, a bare finite positive
186
+ cosmological constant Λ0 is introduced into the Einstein
187
+ equation[14]:
188
+ Ra
189
+ b −1
190
+ 2δa
191
+ b R = 8πG
192
+ c4 T a
193
+ b + Λ0δa
194
+ b .
195
+ (4)
196
+ We assume that the cosmological constant
197
+ Λ0 = const ∼ l−2
198
+ P ,
199
+ lP ∼
200
+
201
+ 8πGℏ
202
+ c3
203
+ ∼ 10−32cm.
204
+ (5)
205
+ For the metric, we use ansatz (2). In order not to clutter
206
+ up the formulas, we introduce the notation
207
+ 8πG
208
+ c4 ε = ˜ε,
209
+ 8πG
210
+ c4 p = ˜p.
211
+ (6)
212
+ All components of the Einstein equation are reduced to
213
+ two equations:
214
+ 3 ˙a2
215
+ a2 = Λ0 + ˜ε,
216
+ 2¨a
217
+ a + ˙a2
218
+ a2 = Λ0 − ˜p.
219
+ (7)
220
+ Here ˙a ≡ d a/ d x0.
221
+ Another equation ∇aT a
222
+ b = 0 is a
223
+ consequence of equations (7), and therefore it does not
224
+ need to be considered. Let us introduce the Hubble con-
225
+ stant ˜H(t) ≡ ˙a/a, with the help of which Eqs. (7) are
226
+ rewritten as follows:
227
+ 2 ˙˜H + (˜ε + ˜p) = 0,
228
+ 3 ˜H2 − (Λ0 + ˜ε) = 0.
229
+ (8)
230
+ So we have 3 unknown functions {˜ε(t), ˜p(t), ˜H(t)} and 2
231
+ equations (8). The missing equation is the equation of
232
+ state relating energy density and pressure. Regarding the
233
+ equation of state, the following facts are reliably known:
234
+ (i) in the case of real dusty matter, we have ˜p = 0; (ii) in
235
+
236
+ 3
237
+ the case of real ultrarelativistic matter we have ˜p = ˜ε/3;
238
+ in the case of vacuum energy and pressure, we have ˜p =
239
+ −˜ε. In all three cases, the energy density and pressure
240
+ are linearly related. Therefore, we propose to accept the
241
+ following hypothesis:
242
+ ˜p = κΛ0 + (κ − 1)˜ε ←→ ˜ε + ˜p = κ(˜ε + Λ0).
243
+ (9)
244
+ This equation is linear and inhomogeneous with an un-
245
+ known function κ(t), the asymptotics of which are fur-
246
+ ther determined based on the known dynamics. The set
247
+ of equations (8) and (9) has a solution:
248
+ ˙˜H = −3
249
+ 2κ ˜H2 → ˜H(t) = ˜H0
250
+
251
+ 1 + 3
252
+ 2H0
253
+ � t
254
+ 0
255
+ κ(t′) d t′
256
+ �−1
257
+ ,
258
+ (10)
259
+ ˜ε(t) = −Λ0 + 3 ˜H2
260
+ 0
261
+
262
+ 1 + 3
263
+ 2H0
264
+ � t
265
+ 0
266
+ κ(t′) d t′
267
+ �−2
268
+ ,
269
+ (11)
270
+ ˜p(t) = Λ0 + 3
271
+
272
+ κ(t) − 1
273
+ � ˜H2
274
+ 0
275
+
276
+ 1 + 3
277
+ 2H0
278
+ � t
279
+ 0
280
+ κ(t′) d t′
281
+ �−2
282
+ .
283
+ (12)
284
+ Here ˜H0 ≡ H0/c is the integration constant, ˜H(t) ≡
285
+ H(t)/c, and H0 is the Hubble constant at the beginning
286
+ of the inflation phase, [H(t)] = [H0] = s−1.
287
+ We indicate some of the most obvious properties of the
288
+ solution (10), (11), (12). The estimates given below are
289
+ very rough. Let us accept the following estimates for the
290
+ duration of the inflation time tinf, and for the constant
291
+ Λ0:
292
+ tinf ∼= 10−37s,
293
+ H0 ∼= 1039s−1,
294
+ ˜H0 ∼= 1029cm−1. (13)
295
+ Then H0tinf ∼= 100. Let’s take κ0 ≡ κ(t = 0) ∼= 1/150.
296
+ Assume that during the time tinf the function κ changes
297
+ insignificantly. Then for t < tinf the solutions (10), (11),
298
+ (12) take the form
299
+ ˜H(t) ∼= ˜H0,
300
+ ˜ε(t) ∼= −˜p ∼= −Λ0 + 3 ˜H2
301
+ 0.
302
+ (14)
303
+ Thus, during inflation, the scale factor a(t) increased by
304
+ (exp H0tinf) ≈ (exp 100) ≈ 1043 times.
305
+ Assume that when t > tinf, the function κ(t) becomes
306
+ equal to κ = 4/3. In this case, the solutions (10), (11),
307
+ (12) give a power-law expansion:
308
+ H(t) ∼= 1
309
+ 2t,
310
+ ˜ε(t) ∼= −Λ0 + 3
311
+ 4t2 ,
312
+ ˜p ∼= Λ0 + 1
313
+ 4t2 .
314
+ (15)
315
+ Solution (15) shows that the scale factor and the density
316
+ of real matter change according to the well-known law,
317
+ as well as the correct equation of state in the case of
318
+ ultrarelativistic matter:
319
+ a(t) ∝
320
+
321
+ t,
322
+ ρreal =
323
+ 3
324
+ 32πGt2 ,
325
+ preal = 1
326
+ 3εreal.
327
+ (16)
328
+ 3. Thermodynamic considerations. Here, the possibil-
329
+ ity of using a thermodynamic approach to this problem
330
+ is briefly discussed, and some thermodynamic relations
331
+ are also given. The purpose of this consideration is to
332
+ (at least superficially) explain the state equation (9).
333
+ The estimation (13) means that
334
+ ˜H2
335
+ 0 ≪ Λ0.
336
+ (17)
337
+ It can be seen from Eq. (11) that the maximum frequen-
338
+ cies of the degrees of freedom of matter in the modern
339
+ era are of the order of
340
+ |ωmax| ∼ c
341
+
342
+ Λ0.
343
+ (18)
344
+ We are interested in small times when H ∼ H0 (see Eq.
345
+ (10).
346
+ Since at these times the space was many orders
347
+ of magnitude more compact, then for small times the
348
+ estimate |ωmax| ≫ c√Λ0 was valid. Consider the time
349
+ interval ∆t ≲ H−1, for which we have
350
+ ∆a/a ∼ H∆t ≲ 1,
351
+ ∆t|ωmax| ≫ 1.
352
+ (19)
353
+ Taking into account Eq. (19), we can assume that for a
354
+ time interval ∆t the thermodynamic equilibrium of the
355
+ vacuum degrees of freedom is realized. This assumption
356
+ cannot be extended to those degrees of freedom whose
357
+ frequencies ∆t|ω| ≲ 1. But such degrees of freedom make
358
+ a small contribution to the total energy-momentum ten-
359
+ sor.
360
+ When passing to the Euclidean signature by Wick’s
361
+ rotation ∆t = −i∆τ [15], the parameter
362
+ T ≡ β−1 = ℏ(∆τ)−1 ∼ ℏH
363
+ (20)
364
+ acquires the meaning of temperature. Let us determine
365
+ the temperature value in Kelvin degrees at the begin-
366
+ ning of the inflation process, when, according to some
367
+ estimates H0 ∼ 1039s−1. Then
368
+ T0 ∼ ℏH0
369
+ k
370
+
371
+
372
+ 1028�◦ K.
373
+ (21)
374
+ Here k is the Boltzmann constant. The temperature es-
375
+ timate (21) is within the known temperature estimates
376
+ in the initial phase of inflation.
377
+ Once again, we note that thermodynamic considera-
378
+ tions do not apply to low-frequency degrees of freedom.
379
+ In particular, ordinary real matter may, generally speak-
380
+ ing, not be in a state of thermal equilibrium.
381
+ According to Eqs. (10) and (20) we have:
382
+ ℏ d β ∼ d(1/H) = 3/2κ d t.
383
+ But in the inflation phase a(t) = a0eHt, and so d t =
384
+ H−1 d a/a. Thus we have:
385
+ d β/β ∼ (3/2)κ d a/a.
386
+ (22)
387
+ Since the temperature decreases in the inflation phase, it
388
+ can be seen from (22) that κ(t = 0) > 0.
389
+
390
+ 4
391
+ It can be seen from the first Eq. (7) that the constant
392
+ Λ0 cancels out the huge negative energy of the vacuum,
393
+ so that in the era of power-law expansion only the rel-
394
+ atively extremely small positive energy density of real
395
+ matter affects the dynamics. From the given solution of
396
+ Einstein’s equations, it can be seen that the huge value
397
+ of pressure is also mainly reduced by the constant Λ0.
398
+ In the presented solution we have ˜p ∼ −˜ε ∼ Λ0. Such a
399
+ ratio of pressure and energy density of matter is dictated
400
+ by the relativistic invariance of quantum states.
401
+ We will show that the contraction of the enormous vac-
402
+ uum pressure ˜p can be interpreted as a thermodynamic
403
+ effect. Indeed, the contribution of the cosmological con-
404
+ stant to the action for volume V =
405
+ � �
406
+ |g| d3 x and time
407
+ interval ∆t is equal to
408
+ i AΛ0 /ℏ = − ic4
409
+ 8πGℏΛ0V ∆t.
410
+ (23)
411
+ As a result of the Wick rotation according to the formula
412
+ ∆t = −i∆τ and due to (20) the action (23) is trans-
413
+ formed to the form
414
+ i AΛ0 /ℏ −→ −
415
+ c4
416
+ 8πGℏΛ0V ∆τ = − c4
417
+ 8πGΛ0V β.
418
+ (24)
419
+ Adding (24) to the Euclidean action has the same effect
420
+ as adding µNβ.
421
+ Here N is the number of degrees of
422
+ freedom on the part of the lattice contained in the volume
423
+ V , and µ is the total chemical potential of the lattice.
424
+ Equating the value (µNβ) to the value on the right side
425
+ of the Eq. (24), we find:
426
+ µ = − c4
427
+ 8πGΛ0
428
+ V
429
+ N .
430
+ (25)
431
+ Usually the chemical potential is the independent vari-
432
+ able. But here it is a function of volume. Therefore, the
433
+ total pressure is determined by a more complex formula:
434
+ P(β, µ) = −
435
+ � ∂Ω
436
+ ∂V
437
+
438
+ β,µ
439
+
440
+ �∂Ω
441
+ ∂µ
442
+
443
+ β,V
444
+ ∂µ
445
+ ∂V = p −
446
+ c4
447
+ 8πGΛ0.
448
+ (26)
449
+ Here we have taken into account the equality N
450
+ =
451
+ −(∂Ω/∂µ)β,V and Eq. (25). On the left hand side of
452
+ Eq. (26) the pressure P(β, µ) is the same as the pressure
453
+ in Eq. (1). The above solution of the Einstein equations
454
+ shows that P(β, µ) is negligible compared to the total
455
+ pressure p of matter. This fact was pointed out and used
456
+ in the work [11]
457
+ The estimate ˜p ∼= Λ0 together with the vacuum energy
458
+ hypothesis ˜ε ∼= −Λ0 justifies the equation of state (9). In
459
+ both parts of equality (˜ε + ˜p) = κ(˜ε + Λ0), the diverging
460
+ values of the quantities cancel each other out. This fact
461
+ is the result of solving dynamic equations.
462
+ A more accurate equation of state should be obtained
463
+ by microscopic analysis in the spirit of the works [2–7].
464
+ Acknowledgments
465
+ I thank Prof. G.E. Volovik for awakening my interest
466
+ in the thermodynamic study of the problem. I am grate-
467
+ ful to Prof.
468
+ E.T. Akhmedov for numerous discussions
469
+ and advice in the course of work. This work was carried
470
+ out as a part of the State Program 0033-2019-0005.
471
+ [1] S. Weinberg, Reviews of modern physics 61, 1 (1989).
472
+ [2] D. Krotov and A. M. Polyakov, Nuclear Physics B 849,
473
+ 410 (2011).
474
+ [3] A. Polyakov, arXiv preprint arXiv:1209.4135 (2012).
475
+ [4] E. Akhmedov, International Journal of Modern Physics
476
+ D 23, 1430001 (2014).
477
+ [5] E. Akhmedov, U. Moschella, and F. Popov, Physical Re-
478
+ view D 99, 086009 (2019).
479
+ [6] E. Akhmedov, Modern Physics Letters A 36, 2130020
480
+ (2021).
481
+ [7] A. Y. Kamenshchik, A. A. Starobinsky, and T. Var-
482
+ danyan, The European Physical Journal C 82, 1 (2022).
483
+ [8] Y. B. Zel’Dovich and A. Starobinskiˇı, Soviet Journal of
484
+ Experimental and Theoretical Physics 34, 1159 (1972).
485
+ [9] A. Y. Kamenshchik, A. A. Starobinsky, A. Tronconi,
486
+ T. Vardanyan, and G. Venturi, The European Physical
487
+ Journal C 78, 1 (2018).
488
+ [10] S. Appleby and E. V. Linder, Journal of Cosmology and
489
+ Astroparticle Physics 2020, 037 (2020).
490
+ [11] F. Klinkhamer and G. Volovik, Physical Review D 105,
491
+ 084066 (2022).
492
+ [12] S. Vergeles, Classical and Quantum Gravity 38, 085022
493
+ (2021).
494
+ [13] We mean the fact that according to (5), (6) and (11)
495
+ we have the estimate (l3
496
+ P tP ε)/ℏ ∼ 1. Here tP ∼ lP /c ∼
497
+ 10−43s is the Planck time. However, the inflation time
498
+ tinf is several orders of magnitude longer than the Planck
499
+ time (see (13)), and therefore (l3
500
+ P tinfε)/ℏ ≫ 1. This
501
+ means that in the Planck volume, on a time interval much
502
+ greater than the Planckian but much less than the infla-
503
+ tion time, the action of the system is much greater than
504
+ the Planck constant, and therefore a classical description
505
+ is possible.
506
+ [14] In lattice theory [12], the cosmological constant is intro-
507
+ duced in a natural way.
508
+ [15] The correctness of the sign during Wick rotation is es-
509
+ tablished by the example of the action of a scalar field.
510
+
3dAzT4oBgHgl3EQfuf2L/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf,len=221
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
3
+ page_content='01692v1 [gr-qc] 3 Jan 2023 Another Friedman-type solution that eliminates the problem of the divergent cosmological constant, implemented in the framework of the lattice regularization of the theory of gravity S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
4
+ page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
5
+ page_content=' Vergeles∗ Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia and Moscow Institute of Physics and Technology, Department of Theoretical Physics, Dolgoprudnyj, Moskow region, 141707 Russia Lattice regularization of the theory of gravity provides a new possibility for solving the problem of the divergent cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
6
+ page_content=' The solution of the Einstein equation within the framework of the Friedmann paradigm with a finite bare cosmological constant is mathematically correct, since all local physical quantities (energy density including vacuum energy, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
7
+ page_content=') on the lattice are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
8
+ page_content=' As a result, a solution is obtained that demonstrates an exponential growth of the cosmological scale factor a(t) in the initial period of evolution (inflation phase of the Universe) and then passes into a power law (a(t) ∝ √ t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
9
+ page_content=' PACS numbers: 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
10
+ page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
11
+ page_content='Bc 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
12
+ page_content=' Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
13
+ page_content=' In the fundamental review [1] the following facts were stated regarding the problem of divergent energy (divergent cosmological constant) of the ground state in quantum field theory: (i) In flat Minkowski space-time, these divergences, generally speaking, take place, but in the case of supersymmetric theories, the energies of the ground states strictly vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
14
+ page_content=' (ii) In curved space-time, even in the case of supergravity, the cosmological constant diverges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
15
+ page_content=' (iii) The superstring theory does not save the situation either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
16
+ page_content=' Since then, many papers have been published on this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
17
+ page_content=' Here we note only a few approaches to solving the problem, which seem to us very promising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
18
+ page_content=' The first approach is represented by works [2–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
19
+ page_content=' In these papers, efforts were made to solve the problem of the cosmological constant in detail, that is, through mi- croscopic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
20
+ page_content=' In particular, the probability of the following process was calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
21
+ page_content=' Let there be a massive particle in the de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
22
+ page_content=' This particle gives rise to a pair of the same particles for a sufficiently long period of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
23
+ page_content=' This problem has been studied for both free and interacting fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
24
+ page_content=' A similar statement of the problem for massive charged particles in the case of a flat space- time in the presence of a constant electric field leads to the creation of particle-antiparticle pair that weaken the initial electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
25
+ page_content=' In the case of de Sitter space, pair production also leads to a decrease in the cosmological constant with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
26
+ page_content=' Unfortunately, in these works there is no study of the reverse influence of quantized mate- rial fields on the space-time geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
27
+ page_content=' It is possible that continued efforts in this direction will lead to a solution ∗e-mail:vergeles@itp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
28
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
29
+ page_content='ru to the problem of the cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
30
+ page_content=' In the paper [8] the mean of the energy-momentum tensor of a quantized scalar field is calculated in the case of an anisotropic metric, which is considered to be clas- sical and variable in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
31
+ page_content=' Regularization is carried out in the usual way: the vacuum expectation value of the energy-momentum tensor, calculated in the case of a sta- tionary vacuum, is subtracted from the obtained value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
32
+ page_content=' The authors of the paper [9] study such models of field theory which, although not supersymmetric, have the same number of boson and fermion degrees of free- dom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
33
+ page_content=' In this case, the divergences of the highest, fourth degree are eliminated in the quantum mean of the energy- momentum tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
34
+ page_content=' It is shown what conditions the al- ready renormalized field masses must satisfy in order to reduce all other divergences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
35
+ page_content=' The work [10] seems to us to be interesting and com- plementary to the present work, since a bare cosmological constant is also introduced in [10], and the reduction of the huge vacuum energy is a dynamic effect, not a fine- tuning effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
36
+ page_content=' Another interesting approach to solving the problem, using the macroscopic thermodynamic ideology, is pre- sented in [11] (see there also references for the articles of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
37
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
38
+ page_content=' Klinkhamer and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
39
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
40
+ page_content=' Volovik).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
41
+ page_content=' The main idea of this approach is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
42
+ page_content=' A bare cosmological con- stant is introduced into the system describing gravity and matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
43
+ page_content=' The bare cosmological constant plays the role of the chemical potential µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
44
+ page_content=' If the system comes to a state of thermodynamic equilibrium, then a large thermody- namic potential is of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
45
+ page_content=' Let Ω be a large thermo- dynamic potential for the spatial volume V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
46
+ page_content=' It is known that Ω(β, µ, V ) = −P(β, µ)V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
47
+ page_content=' (1) 2 Here, β stands for inverse temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
48
+ page_content=' In our case, β should be understood as the (imaginary) time dur- ing which the transition quantum amplitude (or partition function) is calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
49
+ page_content=' We have an obvious limitation for β values: |βH| ≪ 1, where H = ˙a/a is Hubble constant and a(t) is the cosmic scale factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
50
+ page_content=' Otherwise, there can be no thermodynamic equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
51
+ page_content=' The standard spa- tially flat Robertson-Walker metric d s2 = (d x0)2 − a2(t)(d xα)2, α = 1, 2, 3 (2) is used in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
52
+ page_content=' Since the gravitational degrees of free- dom are exhausted by only one global parameter a(t), then the potential (1) is saturated with the degrees of freedom of matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
53
+ page_content=' The main idea of the authors of the paper [11] is that in the case of thermal equilibrium (if it exists), the pressure on the right side of the equality (1) tends to zero, since there is no external pressure at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
54
+ page_content=' Further, the effective energy-momentum tensor of matter is formed by the potential (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
55
+ page_content=' Therefore, the effective energy density of matter, including the vacuum energy, under the condition of thermal equilibrium is estimated as ε ∼ Ω/V −→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
56
+ page_content=' Thus the problem of the divergent cosmological constant is removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
57
+ page_content=' The fundamental defect of all the papers cited here is the fact that the vacuum energy (in particular, the energy of zero-point oscillations) is not limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
58
+ page_content=' Figu- ratively speaking, the Dirac sea has no bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
59
+ page_content=' And although the divergences in physical quantities are elim- inated by subtracting vacuum values from them, there remains a feeling of unsteadiness of the ground under the feet of the researcher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
60
+ page_content=' The reason for this is that in this case the characteristic divergences are power-law of the fourth degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
61
+ page_content=' On the other hand, if the hypothesis is accepted that on ultra-small scales, space-time has the property of gran- ularity (this property is modeled by a lattice), then the formulation and solution of at least some problems turn out to be mathematically correct (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
62
+ page_content=' This work is an ideological continuation of the work [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
63
+ page_content=' The essential difference between the present paper and the paper [11] is that we assume a lattice regular- ization of the theory of gravity (see [12] and references there).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
64
+ page_content=' Lattice regularization provides a new possibility for solving the problem of the divergent cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
65
+ page_content=' The solution of the Einstein equation within the framework of the Friedmann paradigm with a finite bare cosmological constant is mathematically correct, since all local physical quantities (energy density in- cluding vacuum energy, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
66
+ page_content=') on the lattice are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
67
+ page_content=' Our approach assumes that all physical quantities are determined by taking into account quantum zero point fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
68
+ page_content=' In particular, the energy density and pressure are mainly determined by quantum fluctua- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
69
+ page_content=' Since the equations considered here describe such large energy densities that, on the characteristic time intervals, have actions exceeding the Planck constant by a huge number of times, we assume the considered physical quantities to be classical and use the classical equations [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
70
+ page_content=' As a result, a solution is obtained that demonstrates an exponential growth of the scale factor in the initial period of evolution and then passes into a power law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
71
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
72
+ page_content=' Einstein equation and solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
73
+ page_content=' We use the energy- momentum tensor of matter in the form of the energy- momentum tensor of an ideal relativistic fluid: T a b = (ε + p)U aUb − pδa b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
74
+ page_content=' (3) We work in an orthonormal basis in which the metric ten- sor ηab = diag(1, −1, −1, −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
75
+ page_content=' On the right side of (3), the symbols ε and p denote the energy density and pres- sure, respectively, and these quantities also include vac- uum energy and pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
76
+ page_content=' Since fermionic fields, in con- trast to bosonic ones, make a negative contribution to the vacuum energy, but there are significantly more fermionic degrees of freedom than bosonic ones, we have ε < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
77
+ page_content=' Moreover, lattice regularization means that |ε|, |p| < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
78
+ page_content=' Note that in (3) the pressure p is different from the pres- sure P(β, µ) in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
79
+ page_content=' A comparison of these values is given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
80
+ page_content=' U a is the averaged 4-velocity of the macroscopic regions of the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
81
+ page_content=' In our case U a = (1, 0, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
82
+ page_content=' To compensate for the vacuum energy, a bare finite positive cosmological constant Λ0 is introduced into the Einstein equation[14]: Ra b −1 2δa b R = 8πG c4 T a b + Λ0δa b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
83
+ page_content=' (4) We assume that the cosmological constant Λ0 = const ∼ l−2 P , lP ∼ � 8πGℏ c3 ∼ 10−32cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
84
+ page_content=' (5) For the metric, we use ansatz (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
85
+ page_content=' In order not to clutter up the formulas, we introduce the notation 8πG c4 ε = ˜ε, 8πG c4 p = ˜p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
86
+ page_content=' (6) All components of the Einstein equation are reduced to two equations: 3 ˙a2 a2 = Λ0 + ˜ε, 2¨a a + ˙a2 a2 = Λ0 − ˜p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
87
+ page_content=' (7) Here ˙a ≡ d a/ d x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
88
+ page_content=' Another equation ∇aT a b = 0 is a consequence of equations (7), and therefore it does not need to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
89
+ page_content=' Let us introduce the Hubble con- stant ˜H(t) ≡ ˙a/a, with the help of which Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
90
+ page_content=' (7) are rewritten as follows: 2 ˙˜H + (˜ε + ˜p) = 0, 3 ˜H2 − (Λ0 + ˜ε) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
91
+ page_content=' (8) So we have 3 unknown functions {˜ε(t), ˜p(t), ˜H(t)} and 2 equations (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
92
+ page_content=' The missing equation is the equation of state relating energy density and pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
93
+ page_content=' Regarding the equation of state, the following facts are reliably known: (i) in the case of real dusty matter, we have ˜p = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
94
+ page_content=' (ii) in 3 the case of real ultrarelativistic matter we have ˜p = ˜ε/3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
95
+ page_content=' in the case of vacuum energy and pressure, we have ˜p = −˜ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
96
+ page_content=' In all three cases, the energy density and pressure are linearly related.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
97
+ page_content=' Therefore, we propose to accept the following hypothesis: ˜p = κΛ0 + (κ − 1)˜ε ←→ ˜ε + ˜p = κ(˜ε + Λ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
98
+ page_content=' (9) This equation is linear and inhomogeneous with an un- known function κ(t), the asymptotics of which are fur- ther determined based on the known dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
99
+ page_content=' The set of equations (8) and (9) has a solution: ˙˜H = −3 2κ ˜H2 → ˜H(t) = ˜H0 � 1 + 3 2H0 � t 0 κ(t′) d t′ �−1 , (10) ˜ε(t) = −Λ0 + 3 ˜H2 0 � 1 + 3 2H0 � t 0 κ(t′) d t′ �−2 , (11) ˜p(t) = Λ0 + 3 � κ(t) − 1 � ˜H2 0 � 1 + 3 2H0 � t 0 κ(t′) d t′ �−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
100
+ page_content=' (12) Here ˜H0 ≡ H0/c is the integration constant, ˜H(t) ≡ H(t)/c, and H0 is the Hubble constant at the beginning of the inflation phase, [H(t)] = [H0] = s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
101
+ page_content=' We indicate some of the most obvious properties of the solution (10), (11), (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
102
+ page_content=' The estimates given below are very rough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
103
+ page_content=' Let us accept the following estimates for the duration of the inflation time tinf, and for the constant Λ0: tinf ∼= 10−37s, H0 ∼= 1039s−1, ˜H0 ∼= 1029cm−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
104
+ page_content=' (13) Then H0tinf ∼= 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
105
+ page_content=' Let’s take κ0 ≡ κ(t = 0) ∼= 1/150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
106
+ page_content=' Assume that during the time tinf the function κ changes insignificantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
107
+ page_content=' Then for t < tinf the solutions (10), (11), (12) take the form ˜H(t) ∼= ˜H0, ˜ε(t) ∼= −˜p ∼= −Λ0 + 3 ˜H2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
108
+ page_content=' (14) Thus, during inflation, the scale factor a(t) increased by (exp H0tinf) ≈ (exp 100) ≈ 1043 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
109
+ page_content=' Assume that when t > tinf, the function κ(t) becomes equal to κ = 4/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
110
+ page_content=' In this case, the solutions (10), (11), (12) give a power-law expansion: H(t) ∼= 1 2t, ˜ε(t) ∼= −Λ0 + 3 4t2 , ˜p ∼= Λ0 + 1 4t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
111
+ page_content=' (15) Solution (15) shows that the scale factor and the density of real matter change according to the well-known law, as well as the correct equation of state in the case of ultrarelativistic matter: a(t) ∝ √ t, ρreal = 3 32πGt2 , preal = 1 3εreal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
112
+ page_content=' (16) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
113
+ page_content=' Thermodynamic considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
114
+ page_content=' Here, the possibil- ity of using a thermodynamic approach to this problem is briefly discussed, and some thermodynamic relations are also given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
115
+ page_content=' The purpose of this consideration is to (at least superficially) explain the state equation (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
116
+ page_content=' The estimation (13) means that ˜H2 0 ≪ Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
117
+ page_content=' (17) It can be seen from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
118
+ page_content=' (11) that the maximum frequen- cies of the degrees of freedom of matter in the modern era are of the order of |ωmax| ∼ c � Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
119
+ page_content=' (18) We are interested in small times when H ∼ H0 (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
120
+ page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
121
+ page_content=' Since at these times the space was many orders of magnitude more compact, then for small times the estimate |ωmax| ≫ c√Λ0 was valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
122
+ page_content=' Consider the time interval ∆t ≲ H−1, for which we have ∆a/a ∼ H∆t ≲ 1, ∆t|ωmax| ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
123
+ page_content=' (19) Taking into account Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
124
+ page_content=' (19), we can assume that for a time interval ∆t the thermodynamic equilibrium of the vacuum degrees of freedom is realized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
125
+ page_content=' This assumption cannot be extended to those degrees of freedom whose frequencies ∆t|ω| ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
126
+ page_content=' But such degrees of freedom make a small contribution to the total energy-momentum ten- sor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
127
+ page_content=' When passing to the Euclidean signature by Wick’s rotation ∆t = −i∆τ [15], the parameter T ≡ β−1 = ��(∆τ)−1 ∼ ℏH (20) acquires the meaning of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
128
+ page_content=' Let us determine the temperature value in Kelvin degrees at the begin- ning of the inflation process, when, according to some estimates H0 ∼ 1039s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
129
+ page_content=' Then T0 ∼ ℏH0 k ∼ � 1028�◦ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
130
+ page_content=' (21) Here k is the Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
131
+ page_content=' The temperature es- timate (21) is within the known temperature estimates in the initial phase of inflation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
132
+ page_content=' Once again, we note that thermodynamic considera- tions do not apply to low-frequency degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
133
+ page_content=' In particular, ordinary real matter may, generally speak- ing, not be in a state of thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
134
+ page_content=' According to Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
135
+ page_content=' (10) and (20) we have: ℏ d β ∼ d(1/H) = 3/2κ d t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
136
+ page_content=' But in the inflation phase a(t) = a0eHt, and so d t = H−1 d a/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
137
+ page_content=' Thus we have: d β/β ∼ (3/2)κ d a/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
138
+ page_content=' (22) Since the temperature decreases in the inflation phase, it can be seen from (22) that κ(t = 0) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
139
+ page_content=' 4 It can be seen from the first Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
140
+ page_content=' (7) that the constant Λ0 cancels out the huge negative energy of the vacuum, so that in the era of power-law expansion only the rel- atively extremely small positive energy density of real matter affects the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
141
+ page_content=' From the given solution of Einstein’s equations, it can be seen that the huge value of pressure is also mainly reduced by the constant Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
142
+ page_content=' In the presented solution we have ˜p ∼ −˜ε ∼ Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
143
+ page_content=' Such a ratio of pressure and energy density of matter is dictated by the relativistic invariance of quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
144
+ page_content=' We will show that the contraction of the enormous vac- uum pressure ˜p can be interpreted as a thermodynamic effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
145
+ page_content=' Indeed, the contribution of the cosmological con- stant to the action for volume V = � � |g| d3 x and time interval ∆t is equal to i AΛ0 /ℏ = − ic4 8πGℏΛ0V ∆t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
146
+ page_content=' (23) As a result of the Wick rotation according to the formula ∆t = −i∆τ and due to (20) the action (23) is trans- formed to the form i AΛ0 /ℏ −→ − c4 8πGℏΛ0V ∆τ = − c4 8πGΛ0V β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
147
+ page_content=' (24) Adding (24) to the Euclidean action has the same effect as adding µNβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
148
+ page_content=' Here N is the number of degrees of freedom on the part of the lattice contained in the volume V , and µ is the total chemical potential of the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
149
+ page_content=' Equating the value (µNβ) to the value on the right side of the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
150
+ page_content=' (24), we find: µ = − c4 8πGΛ0 V N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
151
+ page_content=' (25) Usually the chemical potential is the independent vari- able.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
152
+ page_content=' But here it is a function of volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
153
+ page_content=' Therefore, the total pressure is determined by a more complex formula: P(β, µ) = − � ∂Ω ∂V � β,µ − �∂Ω ∂µ � β,V ∂µ ∂V = p − c4 8πGΛ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
154
+ page_content=' (26) Here we have taken into account the equality N = −(∂Ω/∂µ)β,V and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
155
+ page_content=' (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
156
+ page_content=' On the left hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
157
+ page_content=' (26) the pressure P(β, µ) is the same as the pressure in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
158
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
159
+ page_content=' The above solution of the Einstein equations shows that P(β, µ) is negligible compared to the total pressure p of matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
160
+ page_content=' This fact was pointed out and used in the work [11] The estimate ˜p ∼= Λ0 together with the vacuum energy hypothesis ˜ε ∼= −Λ0 justifies the equation of state (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
161
+ page_content=' In both parts of equality (˜ε + ˜p) = κ(˜ε + Λ0), the diverging values of the quantities cancel each other out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
162
+ page_content=' This fact is the result of solving dynamic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
163
+ page_content=' A more accurate equation of state should be obtained by microscopic analysis in the spirit of the works [2–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
164
+ page_content=' Acknowledgments I thank Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
165
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
166
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
167
+ page_content=' Volovik for awakening my interest in the thermodynamic study of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
168
+ page_content=' I am grate- ful to Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
169
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
170
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
171
+ page_content=' Akhmedov for numerous discussions and advice in the course of work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
172
+ page_content=' This work was carried out as a part of the State Program 0033-2019-0005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
173
+ page_content=' [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
174
+ page_content=' Weinberg, Reviews of modern physics 61, 1 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
175
+ page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
176
+ page_content=' Krotov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
177
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
178
+ page_content=' Polyakov, Nuclear Physics B 849, 410 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
179
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
180
+ page_content=' Polyakov, arXiv preprint arXiv:1209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
181
+ page_content='4135 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
182
+ page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
183
+ page_content=' Akhmedov, International Journal of Modern Physics D 23, 1430001 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
184
+ page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
185
+ page_content=' Akhmedov, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
186
+ page_content=' Moschella, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
187
+ page_content=' Popov, Physical Re- view D 99, 086009 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
188
+ page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
189
+ page_content=' Akhmedov, Modern Physics Letters A 36, 2130020 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
190
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
191
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
192
+ page_content=' Kamenshchik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
193
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
194
+ page_content=' Starobinsky, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
195
+ page_content=' Var- danyan, The European Physical Journal C 82, 1 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
196
+ page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
197
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
198
+ page_content=' Zel’Dovich and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
199
+ page_content=' Starobinskiˇı, Soviet Journal of Experimental and Theoretical Physics 34, 1159 (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
200
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
201
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
202
+ page_content=' Kamenshchik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
203
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
204
+ page_content=' Starobinsky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
205
+ page_content=' Tronconi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
206
+ page_content=' Vardanyan, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
207
+ page_content=' Venturi, The European Physical Journal C 78, 1 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
208
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
209
+ page_content=' Appleby and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
210
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
211
+ page_content=' Linder, Journal of Cosmology and Astroparticle Physics 2020, 037 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
212
+ page_content=' [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
213
+ page_content=' Klinkhamer and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
214
+ page_content=' Volovik, Physical Review D 105, 084066 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
215
+ page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
216
+ page_content=' Vergeles, Classical and Quantum Gravity 38, 085022 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
217
+ page_content=' [13] We mean the fact that according to (5), (6) and (11) we have the estimate (l3 P tP ε)/ℏ ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
218
+ page_content=' Here tP ∼ lP /c ∼ 10−43s is the Planck time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
219
+ page_content=' However, the inflation time tinf is several orders of magnitude longer than the Planck time (see (13)), and therefore (l3 P tinfε)/ℏ ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
220
+ page_content=' This means that in the Planck volume, on a time interval much greater than the Planckian but much less than the infla- tion time, the action of the system is much greater than the Planck constant, and therefore a classical description is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
221
+ page_content=' [14] In lattice theory [12], the cosmological constant is intro- duced in a natural way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
222
+ page_content=' [15] The correctness of the sign during Wick rotation is es- tablished by the example of the action of a scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'}
3tE1T4oBgHgl3EQfSQPo/content/2301.03065v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27de6f0a7b39010959ef80fcde14e60e12a48e30f6dc4323951c4d9ef3f25217
3
+ size 271532
3tE1T4oBgHgl3EQfSQPo/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36a439462d8596160d8ff28e81bc27a7ef00550aecbb1954872c042f31136d19
3
+ size 3604525
3tE1T4oBgHgl3EQfSQPo/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dae12c78700371ca0922c4c9577eb46609d8737a48b1c598717ab92d57227c29
3
+ size 123703
4dAyT4oBgHgl3EQfP_bc/content/2301.00038v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2812f9bd2cf0c562afaedb8590c06d2d4fe1fd58682559956cad953e0f653b97
3
+ size 995706
4dAyT4oBgHgl3EQfP_bc/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c61ee272022cdce9ee4a456a91fa31a246571b2fbd1139ecdd4525a73a1f6ac
3
+ size 9699373
4dAyT4oBgHgl3EQfP_bc/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:208e93d8bb6cb079acb6807f6bd024b9bc666b6f92fa92b9c405e867454e8da4
3
+ size 335746
4dE0T4oBgHgl3EQfeQDL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b30453450cb467b17c88e8e62733e7ca09506128e978c1b929bdc9f010d52f75
3
+ size 3342381
69E0T4oBgHgl3EQffAC0/content/tmp_files/2301.02399v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
69E0T4oBgHgl3EQffAC0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69E1T4oBgHgl3EQfBgJT/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c2659485322d20e86c65b07e2654d3caa534312fca25da689510cdc03a000c2
3
+ size 3407917
79FLT4oBgHgl3EQfsi_P/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4229dda66407e2fd5aff0533465eab62aee1b67af5d69a4c831da4e29c750bbc
3
+ size 7864365
8NE4T4oBgHgl3EQfCwsd/content/tmp_files/2301.04862v1.pdf.txt ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04862v1 [cs.PL] 12 Jan 2023
2
+ Naturalistic Static Program Analysis
3
+ Mohammad Mehdi Pourhashem Kallehbasti
4
+ Department of Electrical and Computer Engineering
5
+ University of Science and Technology of Mazandaran
6
+ P.O. Box 48518-78195, Behshahr, Iran
7
8
+ Mohammad Ghafari
9
+ TU Clausthal, Germany
10
11
+ Abstract—Static program analysis development is a non-trivial
12
+ and time-consuming task. We present a framework through
13
+ which developers can define static program analyses in natural
14
+ language. We show the application of this framework to identify
15
+ cryptography misuses in Java programs, and we discuss how it
16
+ facilitates static program analysis development for developers.
17
+ Index Terms—Static program analysis, cryptography, natural
18
+ language programming
19
+ I. INTRODUCTION
20
+ Static program analysis is the art of examining programs
21
+ without requiring to execute the code. However, static analysis
22
+ tools generate false positives and tuning them requires exper-
23
+ tise. Likewise, program analysis development requires a deep
24
+ knowledge of compiler or mastering an analysis framework.
25
+ End-user programming is a set of techniques that enable
26
+ end users to write programs at a level of complexity that is
27
+ adequate to their practices, background, and skills. For in-
28
+ stance, it includes visual languages to program robots through
29
+ visual blocks [1], and simplified programming languages to
30
+ translate English sentences to Bash commands [2]. We believe
31
+ that end-user programming techniques can also help to hide the
32
+ complexity of writing a static program analysis task for non-
33
+ professional programmers and empower them in this domain.
34
+ We introduce NASRA (NAturalistic Static pRogram Analy-
35
+ sis), a framework that enables developers to define a program
36
+ analysis task in natural language (NL), and it generates the
37
+ corresponding Query Language (QL) query that underlies
38
+ CodeQL program analysis engine.1 We illustrate the appli-
39
+ cation of this framework to find cryptography misuses in Java
40
+ programs. NASRA is open source and publicly available.2
41
+ The ultimate goal of NASRA is to enable “naturalistic”
42
+ static program analysis development in a way that developers
43
+ can specify what they need without deep knowledge of static
44
+ program analysis and how a specific framework works. Its
45
+ higher level of abstraction than existing static analysis frame-
46
+ works may facilitate a more intuitive formulation of program
47
+ analysis tasks. Similarly, its agnostic nature to programming
48
+ languages can provide a cross-language interface for program
49
+ analysis, which obviates the need to learn the specifics of a
50
+ program analysis framework. This paper presents a prelimi-
51
+ nary step to realize the above goal.
52
+ 1https://codeql.github.com
53
+ 2https://doi.org/10.5281/zenodo.7495044
54
+ II. THE NASRA FRAMEWORK
55
+ Cryptography is an essential component to security, but it is
56
+ one of the notorious topics where developers struggle a lot [3],
57
+ [4]. Locating the init method invoked on a Cipher object
58
+ is often deemed to be the first step to analyze cryptography
59
+ code in Java programs. For instance, in CodeQL, one should
60
+ write the following query to implement this task.
61
+ from
62
+ MethodAccess init
63
+ where init.getMethod().getName() = "init" and
64
+ init.getReceiverType().getName() = "Cipher"
65
+ select init
66
+ We have developed a framework, called NASRA, that
67
+ enables a more intuitive formulation of the above task in the
68
+ form below:
69
+ An object of Cipher invokes init.
70
+ NASRA is a rule-driven synthesizer. We rely on predefined
71
+ rules due to a lack of trustworthy labeled examples required
72
+ for a data-driven approach in this domain. NASRA receives a
73
+ program analysis inquiry in natural language, applies semantic
74
+ parsing, and generates CodeQL commands. The input inquiry
75
+ should comply with a subset of the syntax of Attempto
76
+ Controlled English (ACE) controlled natural language. We
77
+ use Attempto Parsing Engine (APE), a tool that receives a
78
+ series of ACE statements and produces the corresponding
79
+ Discourse Representation Structures (DRS) that is a semantic
80
+ representation of the input text. NASRA applies the translation
81
+ rules, explained later in this section, on the given DRS and
82
+ produces the corresponding CodeQL statements. Thanks to
83
+ APE, the way one can formulate NASRA statements is very
84
+ flexible and there is no need for absolute correspondence with
85
+ the NASRA syntax. We chose CodeQL as our code analysis
86
+ engine because it is an industry-leading and community-
87
+ powered tool, and its publicly available to all GitHub users
88
+ without any installation hassle. To employ NASRA for a new
89
+ static analysis framework, only the transformation rules have
90
+ to be adapted. To support a new application domain, we should
91
+ identify the types of queries that the current syntax does not
92
+ support, add the corresponding production rules to the syntax,
93
+ and develop translations for them. NASRA is open source,
94
+ and currently, supports program analysis tasks that concern
95
+ cryptography misuses in Java programs.
96
+
97
+ A. Syntax and Semantics
98
+ Each NASRA query comprises one or more Statement. The
99
+ syntax is shown below (terminals have different color).
100
+ Query ::= Statement Query | Statement
101
+ Statement ::= BasicStatement | LogicalStatement
102
+ | Extension
103
+ BasicStatement ::= Exp is (Exp | in List)
104
+ Exp ::= Prefix Exp | type | ID | Literal
105
+ Prefix ::= ((adjective|ε) attribute of)
106
+ LogicalStatement ::= Statement and Statement |
107
+ Statement or Statement | It is false that Statement
108
+ | If Statement then Statement
109
+ a) Expression: The smallest building block is Exp. It
110
+ includes a Literal (String or int) or an ID (user defined
111
+ identifier) that are directly mapped to CodeQL expressions.
112
+ An Exp can also be a CodeQL type such as class, variable,
113
+ and method access that are mapped to Class, Variable,
114
+ and MethodAccess, respectively.
115
+ b) Prefix: Each Exp can have an optional Prefix in
116
+ the form of “attribute of” that indicates an attribute of
117
+ the expression. For instance, name, type, argument, and
118
+ method are attributes of an entity (i.e., Exp), and they cor-
119
+ respond to getName(), getType(), getArgument(),
120
+ and getMethod() methods in CodeQL, respectively.
121
+ For example, “name of method1” is an Exp, where “name”
122
+ is an attribute and method1 is an ID, and the whole expres-
123
+ sion is translated to method1.getName() in CodeQL.
124
+ Additionally, the attribute itself can have an optional
125
+ ordinal
126
+ number
127
+ as
128
+ an
129
+ adjective,
130
+ like
131
+ second
132
+ in
133
+ the
134
+ Exp “second argument of init” that is translated to
135
+ “init.getArgument(1)”, where second is translated to
136
+ 1 as an argument according to zero-based numbering.
137
+ Note that “attribute of” can be repeated several times, where
138
+ each attribute may have an adjective. For example, the Exp
139
+ “The type of the second argument of init” has one ID
140
+ (i.e.,init) and two attributes (i.e., type and argument).
141
+ c) Basic Statement: Each BasicStatement is a statement
142
+ that can serve as a Boolean condition as well as an assumption.
143
+ As a Boolean condition, BasicStatement produces equiva-
144
+ lence of two Exps, as well as membership of an Exp in a list.
145
+ In “Exp is Exp” structure, both sides of equivalence are Exps
146
+ and they need to be equal, while in “Exp is in List” structure,
147
+ the Exp needs to be equal to an item in a list. Accordingly, a
148
+ statement like “arg1 is in ["RSA", "AES"].” is a disjunctive
149
+ expression and can be rephrased to “arg1 is "RSA" or arg1
150
+ is "AES".”, that is ultimately translated to “arg1 = "RSA"
151
+ or arg1 = "AES"”.
152
+ The syntax structure Exp is Exp can also produce as-
153
+ sumptions when the second Exp is a CodeQL type. The
154
+ assumptions are mapped to the from part of a CodeQL query.
155
+ For instance, the statement “var1 is a variable.” translates to
156
+ “Variable var1” and belongs to the from part.
157
+ d) Logical Statement: A LogicalStatement can be a
158
+ negation, conjunction, disjunction, or implication. For exam-
159
+ ple, “If arg1 is "RSA" then arg2 is "AES".” is translated to
160
+ “not (arg1 = "RSA") or arg2 = "AES"” in Cod-
161
+ eQL, since p ⇒ q is equivalent to ¬p ∨ q.
162
+ B. Extensibility
163
+ One can extend NASRA to cover auxiliary statements and
164
+ statement patterns. Their corresponding production rules are
165
+ as follows.
166
+ Extension ::= Pattern | AuxiliaryStatement
167
+ We introduce these features through three statement pat-
168
+ terns and one auxiliary statement that are helpful to cover
169
+ constraints on using Java cryptography objects.
170
+ 1) Patterns: We present three patterns that extend Pattern
171
+ nonterminal in the syntax. We discuss each in the following.
172
+ a) Invocation: We use this pattern to state that a method
173
+ is invoked by an instance of a specific class. It can also be
174
+ used to make sure that there is no invocation of a method by
175
+ any instance of a specific class.
176
+ Pattern1 ::= An object of ID (invokes|does not invoke) ID.
177
+ The NASRA query shown in Section II is an example of this
178
+ pattern. The transformation follows a number of steps. First, a
179
+ MethodAccess is declared with the same name used in the
180
+ NASRA statement (i.e.,init). Then the conditions need to be
181
+ added to the where part. Specifically, the name of the method
182
+ of the MethodAccess init should be "init" that is
183
+ stated in the second line. Finally, a MethodAccess has a
184
+ receiver, that is the object invoking its method. In this case,
185
+ the name of the type of the receiver should be "Cipher",
186
+ that is expressed in CodeQL in the third line.
187
+ If one needs to make sure that no invocation occurs, an
188
+ existential quantifier must be used, as shown in the following.
189
+ from
190
+ where not
191
+ (exists
192
+ (MethodAccess
193
+ init
194
+ |
195
+ init.getMethod().getName() = "init" and
196
+ init.getReceiverType().getName() = "Cipher"))
197
+ It means that there is no such MethodAccess init that
198
+ has these conditions. We can state this in NASRA in the form
199
+ below.
200
+ An object of Cipher doesn’t invoke init.
201
+ b) Partial order constraints: This pattern enables one to
202
+ put partial order constraints on method invocations. In other
203
+ words, one can enforce a method invocation to be preceded
204
+ (or followed) by another method invocation.
205
+ Pattern2::=MethodName (precedes|follows) MethodName.
206
+ For example, there are two steps in CodeQL for stating that
207
+ “invocation of getInstance is earlier than invocation of
208
+ init”. First, one should specify that both methods are in the
209
+ same scope. Next, the line number of the preceding method
210
+ invocation has to be smaller than the line number of the other
211
+ method invocation. This is shown below.
212
+
213
+ getInstance.getEnclosingCallable()
214
+ =
215
+ init.getEnclosingCallable() and
216
+ getInstance.getLocation().getEndLine()
217
+ <
218
+ init.getLocation().getEndLine()
219
+ We can express this query in NASRA as follows.
220
+ getInstance precedes init.
221
+ c) Method signature constraint: It is possible to express
222
+ signature of a method using Pattern3.
223
+ Pattern3 ::= MethodName’s signature is List.
224
+ A method signature can be seen as an ordered list of data
225
+ types. This list contains names of data types as strings, such
226
+ that the first string is the name of the first argument’s data
227
+ type and so on. For example, the following NASRA query
228
+ states that getInstance method has two arguments and
229
+ the names of their types are "int" and "Certificate",
230
+ respectively.
231
+ getInstance’s signature is ["int", "Certificate"].
232
+ This query is translated to the following CodeQL query.
233
+ (count (getInstance.getAnArgument()) = 2) and
234
+ getInstance.getArgument(0).getType().
235
+ toString()="int" and getInstance.
236
+ getArgument(1).getType().toString()=
237
+ "Certificate"
238
+ First, the number of arguments is set to the size of the user
239
+ defined list, then the type of arguments are constrained one
240
+ by one. count (method.getAnArgument()) returns
241
+ the number of arguments of the method. getArgument(i)
242
+ returns
243
+ the
244
+ argument number i
245
+ in
246
+ the
247
+ given
248
+ method,
249
+ getType() returns the type of the given argument, and
250
+ finally toString() converts the given data type to a String.
251
+ 2) AuxiliaryStatement: We aim to find misuses in code
252
+ that violate one or more mandatory constraints. For instance,
253
+ suppose that if the second argument of init method is
254
+ "private key" then it is mandatory that the encryption al-
255
+ gorithm, i.e., the second argument of getInstance method
256
+ is "RSA", and also if the encryption algorithm is "AES"
257
+ then it is mandatory that the mode of encryption, i.e., the
258
+ first argument of the getInstance method, is "CBC". The
259
+ following NASRA query will find such violations.
260
+ It is false that if the type of the second argument of init
261
+ is "PrivateKey", then the algorithm of getInstance’s
262
+ first argument is "RSA" or it is false that if the algorithm of
263
+ getInstance’s first argument is "AES" then the mode of
264
+ getInstance’s first argument is "CBC".
265
+ In order to find any violation of these constraints, dis-
266
+ junction of their negation has to be stated in the query.3
267
+ 3For example, in “X is driving in an urban area(Cond1). It is necessary that
268
+ X is driving slower than 60 km/h (Cons1). It is necessary that X fastens the
269
+ seat belt (Cons2).”, the query needs to find an X that is driving in an urban
270
+ area and is driving faster than 60 km/h or is not using the seat belt. If we
271
+ assign a Boolean variable to each statement as mentioned in the statements, it
272
+ should aim Cond1 ∧(¬Cons1 ∨¬Cons2) whose necessity part is translated
273
+ to the disjunction of negation of two constraints.
274
+ Nevertheless, the above statement becomes much longer and
275
+ harder to comprehend as the number of constraints increases.
276
+ We define auxiliary statements to ease the formulation as
277
+ well as the comprehension of complex queries for developers.
278
+ Particularly, NecessityStatements are auxiliary statements that
279
+ enable developers to enforce mandatory constraints in short
280
+ and independent statements. It starts with “It is necessary that”
281
+ and follows the syntax below.
282
+ NecessityStatement
283
+ ::=
284
+ It is necessary that Statement.
285
+ Therefore, instead of writing disjunction of negation of all
286
+ constraints in one single statement, developers can benefit
287
+ this construct (i.e., NecessiyStatement) to define all such
288
+ constraints in several statements within a query. Accordingly,
289
+ the single but long previous statement can be stated as two
290
+ separate statements shown below.
291
+ It is necessary that if the type of the second argument of init is
292
+ "PrivateKey", then the algorithm of getInstance’s first
293
+ argument is "RSA".
294
+ It is necessary that if the algorithm of getInstance’s first
295
+ argument is "AES" then the mode of getInstance’s first
296
+ argument is "CBC".
297
+ Necessity statements are treated differently from other state-
298
+ ments. If there is only one NecessityStatement, its enclosing
299
+ statement is negated and added to the where part of the
300
+ CodeQL query. If there are more than one, e.g., n constraints
301
+ Cons1, Cons2, ..., Consn, then the “(not T Cons1 or
302
+ not T Cons2 or ... or not T Consn)” will be added
303
+ to the where part, where T Consi is the translation of Consi.
304
+ III. WORKING EXAMPLES
305
+ Cipher is one of the most misused APIs in Java cryp-
306
+ tography [4]. Listing 1 shows how to create a Cipher
307
+ object in Java. We should call the Cipher’s getInstance
308
+ method. This method receives a number of arguments. The
309
+ first one is transformation that is a string containing
310
+ three parts separated by “/”. These parts are algorithm,
311
+ mode, and padding, respectively. Next, we should call the
312
+ init method on the cipher object with two arguments to
313
+ indicate the operation mode of the cipher, and to initialize
314
+ this object with a Key or Certificate.
315
+ Cipher cipher = Cipher.getInstance("AES/ECB/
316
+ PKCS5Padding");
317
+ cipher.init(Cipher.ENCRYPT_MODE,new SecretKeySpec(
318
+ keyBytes, "AES"));
319
+ Listing 1. Setting up the Cipher object in Java
320
+ In the rest of this section, we present three different program
321
+ analysis tasks to ensure secure use of Java Cipher.
322
+ A. Key vs. Algorithm
323
+ Task 1: If the key has a type of PublicKey, PrivateKey,
324
+ or Certificate, or encryption mode is WRAP MODE or UN-
325
+ WRAP MODE, then algorithm of transformation must be
326
+ “RSA”.
327
+
328
+ Listing 2 shows how to check this constraint in CodeQL.
329
+ from MethodAccess getInstance, MethodAccess init
330
+ where init.getMethod().getName() = "init" and init.
331
+ getReceiverType().getName() = "Cipher" and
332
+ getInstance.getMethod().getName() = "getInstance
333
+ " and getInstance.getReceiverType().getName() =
334
+ "Cipher" and (((init.getArgument(0).toString() =
335
+ "Cipher.WRAP MODE" or init.getArgument(0).
336
+ toString() = "Cipher.UNWRAP MODE") or (init.
337
+ getArgument(1).getType().toString() = "java.
338
+ security.PublicKey" or init.getArgument(1).
339
+ getType().toString() = "java.security.PrivateKey
340
+ " or init.getArgument(1).toString() = "java.
341
+ security.cert.Certificate")) and not(getInstance
342
+ .getArgument(0).toString().replaceAll("\","").
343
+ splitAt("/",0) = "RSA"))
344
+ select getInstance, init
345
+ Listing 2. Key vs. Algorithm constraint in CodeQL
346
+ This constraint can be expressed in NASRA as follows.
347
+ An
348
+ object
349
+ of
350
+ Cipher
351
+ invokes
352
+ init.
353
+ An
354
+ object
355
+ of
356
+ Cipher invokes getInstance. It is necessary that if
357
+ init’s
358
+ first
359
+ argument
360
+ is
361
+ in
362
+ ["Cipher.WRAP_MODE",
363
+ "Cipher.UNWRAP_MODE"]
364
+ or
365
+ the
366
+ type
367
+ of
368
+ the
369
+ second
370
+ argument of init is in ["PublicKey", "PrivateKey",
371
+ "Certificate"] then the algorithm of getInstance’s
372
+ first argument is "RSA".
373
+ B. Algorithm vs. Transformation Mode
374
+ Task 2: If the algorithm of transformation is “RSA” then
375
+ the mode of transformation must be either “” or “ECB”.
376
+ Listing 3 shows the corresponding query to check this
377
+ constraint in CodeQL. We should look for code in which the
378
+ algorithm is “RSA”, but neither “ECB” nor “” is set for the
379
+ mode.
380
+ from MethodAccess getInstance
381
+ where getInstance.getMethod().getName() = "
382
+ getInstance" and getInstance.getReceiverType().
383
+ getName() = "Cipher" and (getInstance.
384
+ getArgument(0).toString().replaceAll("\"","").
385
+ splitAt("/", 0) = "RSA") and not (getInstance.
386
+ getArgument(0).toString().replaceAll("\"","").
387
+ splitAt("/", 1) = "" or getInstance.getArgument
388
+ (0).toString().replaceAll("\"","").splitAt("/",
389
+ 1) = "ECB")
390
+ select getInstance
391
+ Listing 3. Algorithm vs. Transformation Mode constraint in CodeQL
392
+ This constraint can be expressed in NASRA as follows.
393
+ An object of Cipher invokes getInstance. It is necessary
394
+ that if the algorithm of getInstance’s first argument is
395
+ "RSA" then the mode of getInstance’s first argument is in
396
+ ["", "ECB"].
397
+ Thanks to Attempto Parsing Engine (APE), NASRA state-
398
+ ments do not need to exactly follow the syntax rules meaning
399
+ that a degree of freedom in paraphrasing is possible. For
400
+ instance, the part “the algorithm of getInstance’s first
401
+ argument is "RSA"” can also be written in two other forms:
402
+ (i) the algorithm of the first argument of getInstance is
403
+ "RSA".
404
+ (ii) "RSA" is the algorithm of getInstance’s first argument.
405
+ C. Transformation and Encryption Mode vs. Signature
406
+ Task 3: If the transformation mode is either of “CBC”,
407
+ “PCBC”, “CTR”, “CTS”, “CFB”, or “OFB”, and the en-
408
+ cryption mode is not “Cipher.ENCRYPT MODE”, then the
409
+ invoked init method should not have any of the following
410
+ signature: init(encmode, cert), init(encmode, cert, ranGen),
411
+ init(encmode, key), init(encmode, key, ranGen).
412
+ Listing 4 presents how to enforce this constraint in CodeQL.
413
+ from MethodAccess getInstance, MethodAccess init
414
+ where init.getMethod().getName() = "init" and init.
415
+ getReceiverType().getName() = "Cipher" and
416
+ getInstance.getMethod().getName() = "getInstance
417
+ " and getInstance.getReceiverType().getName() =
418
+ "Cipher" and ((getInstance.getArgument(0).
419
+ toString().replaceAll("\"","").splitAt("/", 1) =
420
+ "CBC" or getInstance.getArgument(0).toString().
421
+ replaceAll("\"","").splitAt("/", 1) = "PCBC" or
422
+ getInstance.getArgument(0).toString().replaceAll
423
+ ("\"","").splitAt("/", 1) = "CTR" and
424
+ getInstance.getArgument(0).toString().replaceAll
425
+ ("\"","").splitAt("/", 1) = "CTS" or getInstance
426
+ .getArgument(0).toString().replaceAll("\"","").
427
+ splitAt("/", 1) = "CFB" or getInstance.
428
+ getArgument(0).toString().replaceAll("\"","").
429
+ splitAt("/", 1) = "OFB") and not (init.
430
+ getArgument(0).toString() = "Cipher.ENCRYPT_MODE
431
+ ")) and ((count (getInstance.getAnArgument()) =
432
+ 2 and getInstance.getArgument(0).getType().
433
+ toString() = "int" and getInstance.getArgument
434
+ (1).getType().toString() = "Certificate") or (
435
+ count (getInstance.getAnArgument()) = 3 and
436
+ getInstance.getArgument(0).getType().toString()
437
+ = "int" and getInstance.getArgument(1).getType()
438
+ .toString() = "Certificate" and getInstance.
439
+ getArgument(2).getType().toString() = "
440
+ SecureRandom") or (count (getInstance.
441
+ getAnArgument()) = 2 and getInstance.getArgument
442
+ (0).getType().toString() = "int" and getInstance
443
+ .getArgument(1).getType().toString() = "Key") or
444
+ (count (getInstance.getAnArgument()) = 3 and
445
+ getInstance.getArgument(0).getType().toString()
446
+ = "int" and getInstance.getArgument(1).getType()
447
+ .toString() = "Key" and getInstance.getArgument
448
+ (2).getType().toString() = "SecureRandom"))
449
+ select init, getInstance
450
+ Listing 4. Transformation and Encryption mode vs. Signature constraint in
451
+ CodeQL
452
+ The implementation of this task in NASRA is shown below.
453
+ An
454
+ object
455
+ of
456
+ Cipher
457
+ invokes
458
+ getInstance.
459
+ An
460
+ object
461
+ of
462
+ Cipher
463
+ invokes
464
+ init.
465
+ It
466
+ is
467
+ necessary
468
+ that
469
+ if
470
+ the
471
+ mode
472
+ of
473
+ getInstance’s
474
+ first
475
+ argument
476
+ is
477
+ in
478
+ ["CBC","PCBC","CTR","CTS","CFB","OFB"]
479
+ and
480
+ init’s first argument is not "Cipher.ENCRYPT_MODE"
481
+ then
482
+ getInstance’s
483
+ signature
484
+ is
485
+ not
486
+ ["int","Certificate"]
487
+ and
488
+ is
489
+ not
490
+ ["int","Certificate","SecureRandom"]
491
+ and
492
+ is
493
+ not
494
+ ["int","Key"]
495
+ and
496
+ is
497
+ not
498
+ ["int","Key","SecureRandom"].
499
+ D. Discussion
500
+ Table I presents the number of distinct operators and
501
+ operands (i.e., vocabulary), and the total number of operators
502
+ and operands (i.e., length) needed for each analysis task.4
503
+ 4In NASRA, we consider user defined terminals such as init, “RSA”, and
504
+ getInstance as operands and count the rest of language constructs as operators.
505
+
506
+ TABLE I
507
+ CODEQL VS. NASRA
508
+ Analysis Task
509
+ Vocabulary
510
+ Length
511
+ CodeQL
512
+ NASRA
513
+ CodeQL
514
+ NASRA
515
+ Key vs. Algorithm (III-A)
516
+ 32
517
+ 19
518
+ 179
519
+ 39
520
+ Algorithm vs. Mode (III-B)
521
+ 27
522
+ 18
523
+ 107
524
+ 24
525
+ Mode vs. Signature (III-C)
526
+ 42
527
+ 26
528
+ 434
529
+ 56
530
+ Evidently, queries in NASRA are significantly shorter than
531
+ queries in CodeQL (i.e., up to 87% reduction in length), and
532
+ they consume a lot fewer programming constructs (i.e., up to
533
+ 38% fewer vocabularies). We computed Halstead complexity
534
+ measures to estimate the coding time and the difficulty to
535
+ write or understand these queries [5]. The results showed that
536
+ developers require a lot less effort and time to develop these
537
+ tasks in NASRA than in CodeQL.
538
+ We also asked ten developers to share their opinion about
539
+ queries in NASRA. They unanimously stated that they are
540
+ succinct and easy to understand, and one commented that
541
+ “these queries read like API documentation”.
542
+ It is noteworthy that NASRA’s performance, i.e., how well
543
+ it can detect API misuses, depends on its underlying analy-
544
+ sis framework which is currently CodeQL. In other words,
545
+ NASRA obviates the low-level details needed to define static
546
+ program analyses, but the issues with false positives remain
547
+ to be relevant. Moreover, despite being natural, the use of
548
+ NASRA still requires knowledge of its syntax.
549
+ IV. RELATED WORK
550
+ Mapping a natural language statement into a formal repre-
551
+ sentation has received great attention in the community but
552
+ not much in the program analysis development domain.
553
+ Schlegel
554
+ et
555
+ al.
556
+ developed
557
+ an
558
+ end-user
559
+ programming
560
+ paradigm for Python, that maps natural language commands
561
+ into Python code [6]. Landhauber et al. proposed a domain
562
+ agnostic command interpreter that receives natural language
563
+ commands in English and uses ontology to produce relevant
564
+ API calls [7]. Yaghmazadeh et al. developed SQLIZER, a
565
+ system to automatically synthesize SQL queries from a natural
566
+ language [8]. Luo et al. investigated the translation from
567
+ a natural language query to visualization with the goal of
568
+ simplifying the creation of data visualizations [9].
569
+ Heyman et al. developed a Python code completion tool
570
+ that enriches developers’ code with the natural language de-
571
+ scription of the intended data science task [10]. Nguyen et al.
572
+ presented an approach that takes as input an English descrip-
573
+ tion of a programming task and synthesizes the corresponding
574
+ API code template for the task [11]. Desai et al. built a general
575
+ framework for constructing program synthesizers that take
576
+ natural language inputs and produce expressions in a target
577
+ Domain Specific Language [12]. Zhai et al. proposed a search-
578
+ based technique to automatically translate NL comments to
579
+ formal program specifications that specify the expected pre
580
+ and post conditions [13].
581
+ The work presented in this paper is also related to cryp-
582
+ tography domain. There exist tools that find cryptography
583
+ misuses [14] and libraries that facilitate the adoption of
584
+ cryptography for developers [15]. Nevertheless, none of them
585
+ employed a natural language approach.
586
+ V. CONCLUSION
587
+ We introduced NASRA, an open-source framework to de-
588
+ fine static program analyses in natural language. We demon-
589
+ strated the application of this framework to find misuses in
590
+ Java cryptography. The ultimate goal of NASRA is to enable
591
+ a naturalistic way to develop static program analyses, which is
592
+ usable for mainstream developers. To realize this goal, further
593
+ studies are needed to determine NASRA’s effectiveness in
594
+ real-world settings. The expressiveness of its queries and the
595
+ effort required to extend it to other problem domains have to
596
+ be investigated as well. Finally, automatic translation without
597
+ pre-defined rules is also an exciting future research direction.
598
+ REFERENCES
599
+ [1] E. Barakova, J. Gillesen, B. Huskens, and T. Lourens, “End-user
600
+ programming architecture facilitates the uptake of robots in social
601
+ therapies,” Robotics and Autonomous Systems, vol. 61, no. 7, 2013.
602
+ [2] X. V. Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, “NL2Bash:
603
+ A corpus and semantic parser for natural language interface to the
604
+ linux operating system,” in Proceedings of the Eleventh International
605
+ Conference on Language Resources and Evaluation (LREC 2018), 2018.
606
+ [3] M. Hazhirpasand, O. Nierstrasz, M. Shabani, and M. Ghafari, “Hurdles
607
+ for developers in cryptography,” in 2021 IEEE International Conference
608
+ on Software Maintenance and Evolution (ICSME), 2021, pp. 659–663.
609
+ [4] M. Hazhirpasand, M. Ghafari, and O. Nierstrasz, “Java cryptography
610
+ uses in the wild,” in Proceedings of the 14th ACM / IEEE International
611
+ Symposium on Empirical Software Engineering and Measurement, 2020.
612
+ [5] M. H. Halstead, Elements of Software Science (Operating and program-
613
+ ming systems series).
614
+ Elsevier Science Inc., 1977.
615
+ [6] V. Schlegel, B. Lang, S. Handschuh, and A. Freitas, “Vajra: Step-by-
616
+ step programming with natural language,” in Proceedings of the 24th
617
+ International Conference on Intelligent User Interfaces, 2019.
618
+ [7] M. Landh¨auber, S. Weigelt, and W. F. Tichy, “Nlci: A natural language
619
+ command interpreter,” Automated Software Engg., vol. 24, no. 4, p.
620
+ 839–861, dec 2017.
621
+ [8] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, “Sqlizer: Query
622
+ synthesis from natural language,” Proc. ACM Program. Lang., vol. 1,
623
+ no. OOPSLA, oct 2017.
624
+ [9] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin, “Natural language
625
+ to visualization by neural machine translation,” IEEE Transactions on
626
+ Visualization and Computer Graphics, vol. 28, no. 1, pp. 217–226, 2022.
627
+ [10] G. Heyman, R. Huysegems, P. Justen, and T. Van Cutsem, “Natural
628
+ language-guided programming,” ser. Onward!, 2021, p. 39–55.
629
+ [11] A. T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and T. N.
630
+ Nguyen, “Statistical translation of english texts to api code templates,”
631
+ in 2018 IEEE International Conference on Software Maintenance and
632
+ Evolution (ICSME), 2018, pp. 194–205.
633
+ [12] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,
634
+ S. R, and S. Roy, “Program synthesis using natural language,” in Pro-
635
+ ceedings of the 38th International Conference on Software Engineering,
636
+ ser. ICSE ’16, 2016.
637
+ [13] J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan,
638
+ and X. Zhang, “C2s: Translating natural language comments to formal
639
+ program specifications,” in Proceedings of the 28th ACM Joint Meeting
640
+ on European Software Engineering Conference and Symposium on the
641
+ Foundations of Software Engineering, ser. ESEC/FSE 2020, 2020.
642
+ [14] Y. Zhang, M. M. A. Kabir, Y. Xiao, D. D. Yao, and N. Meng, “Automatic
643
+ detection of java cryptographic api misuses: Are we there yet,” IEEE
644
+ Transactions on Software Engineering, 2022.
645
+ [15] S. Kafader and M. Ghafari, “Fluentcrypto: Cryptography in easy mode,”
646
+ in 2021 IEEE International Conference on Software Maintenance and
647
+ Evolution (ICSME), 2021, pp. 402–412.
648
+
8NE4T4oBgHgl3EQfCwsd/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf,len=510
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
3
+ page_content='04862v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
4
+ page_content='PL] 12 Jan 2023 Naturalistic Static Program Analysis Mohammad Mehdi Pourhashem Kallehbasti Department of Electrical and Computer Engineering University of Science and Technology of Mazandaran P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
5
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
6
+ page_content=' Box 48518-78195, Behshahr, Iran pourhashem@mazust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
7
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
8
+ page_content='ir Mohammad Ghafari TU Clausthal, Germany mohammad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
9
+ page_content='ghafari@tu-clausthal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
10
+ page_content='de Abstract—Static program analysis development is a non-trivial and time-consuming task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
11
+ page_content=' We present a framework through which developers can define static program analyses in natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
12
+ page_content=' We show the application of this framework to identify cryptography misuses in Java programs, and we discuss how it facilitates static program analysis development for developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
13
+ page_content=' Index Terms—Static program analysis, cryptography, natural language programming I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
14
+ page_content=' INTRODUCTION Static program analysis is the art of examining programs without requiring to execute the code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
15
+ page_content=' However, static analysis tools generate false positives and tuning them requires exper- tise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
16
+ page_content=' Likewise, program analysis development requires a deep knowledge of compiler or mastering an analysis framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
17
+ page_content=' End-user programming is a set of techniques that enable end users to write programs at a level of complexity that is adequate to their practices, background, and skills.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
18
+ page_content=' For in- stance, it includes visual languages to program robots through visual blocks [1], and simplified programming languages to translate English sentences to Bash commands [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
19
+ page_content=' We believe that end-user programming techniques can also help to hide the complexity of writing a static program analysis task for non- professional programmers and empower them in this domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
20
+ page_content=' We introduce NASRA (NAturalistic Static pRogram Analy- sis), a framework that enables developers to define a program analysis task in natural language (NL), and it generates the corresponding Query Language (QL) query that underlies CodeQL program analysis engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
21
+ page_content='1 We illustrate the appli- cation of this framework to find cryptography misuses in Java programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
22
+ page_content=' NASRA is open source and publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
23
+ page_content='2 The ultimate goal of NASRA is to enable ���naturalistic” static program analysis development in a way that developers can specify what they need without deep knowledge of static program analysis and how a specific framework works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
24
+ page_content=' Its higher level of abstraction than existing static analysis frame- works may facilitate a more intuitive formulation of program analysis tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
25
+ page_content=' Similarly, its agnostic nature to programming languages can provide a cross-language interface for program analysis, which obviates the need to learn the specifics of a program analysis framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
26
+ page_content=' This paper presents a prelimi- nary step to realize the above goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
27
+ page_content=' 1https://codeql.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
28
+ page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
29
+ page_content='com 2https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
30
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
31
+ page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
32
+ page_content='7495044 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
33
+ page_content=' THE NASRA FRAMEWORK Cryptography is an essential component to security, but it is one of the notorious topics where developers struggle a lot [3], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
34
+ page_content=' Locating the init method invoked on a Cipher object is often deemed to be the first step to analyze cryptography code in Java programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
35
+ page_content=' For instance, in CodeQL, one should write the following query to implement this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
36
+ page_content=' from MethodAccess init where init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
37
+ page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
38
+ page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
39
+ page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
40
+ page_content='getName() = "Cipher" select init We have developed a framework, called NASRA, that enables a more intuitive formulation of the above task in the form below: An object of Cipher invokes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
41
+ page_content=' NASRA is a rule-driven synthesizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
42
+ page_content=' We rely on predefined rules due to a lack of trustworthy labeled examples required for a data-driven approach in this domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
43
+ page_content=' NASRA receives a program analysis inquiry in natural language, applies semantic parsing, and generates CodeQL commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
44
+ page_content=' The input inquiry should comply with a subset of the syntax of Attempto Controlled English (ACE) controlled natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
45
+ page_content=' We use Attempto Parsing Engine (APE), a tool that receives a series of ACE statements and produces the corresponding Discourse Representation Structures (DRS) that is a semantic representation of the input text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
46
+ page_content=' NASRA applies the translation rules, explained later in this section, on the given DRS and produces the corresponding CodeQL statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
47
+ page_content=' Thanks to APE, the way one can formulate NASRA statements is very flexible and there is no need for absolute correspondence with the NASRA syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
48
+ page_content=' We chose CodeQL as our code analysis engine because it is an industry-leading and community- powered tool, and its publicly available to all GitHub users without any installation hassle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
49
+ page_content=' To employ NASRA for a new static analysis framework, only the transformation rules have to be adapted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
50
+ page_content=' To support a new application domain, we should identify the types of queries that the current syntax does not support, add the corresponding production rules to the syntax, and develop translations for them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
51
+ page_content=' NASRA is open source, and currently, supports program analysis tasks that concern cryptography misuses in Java programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
52
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
53
+ page_content=' Syntax and Semantics Each NASRA query comprises one or more Statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
54
+ page_content=' The syntax is shown below (terminals have different color).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
55
+ page_content=' Query ::= Statement Query | Statement Statement ::= BasicStatement | LogicalStatement | Extension BasicStatement ::= Exp is (Exp | in List) Exp ::= Prefix Exp | type | ID | Literal Prefix ::= ((adjective|ε) attribute of) LogicalStatement ::= Statement and Statement | Statement or Statement | It is false that Statement | If Statement then Statement a) Expression: The smallest building block is Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
56
+ page_content=' It includes a Literal (String or int) or an ID (user defined identifier) that are directly mapped to CodeQL expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
57
+ page_content=' An Exp can also be a CodeQL type such as class, variable, and method access that are mapped to Class, Variable, and MethodAccess, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
58
+ page_content=' b) Prefix: Each Exp can have an optional Prefix in the form of “attribute of” that indicates an attribute of the expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
59
+ page_content=' For instance, name, type, argument, and method are attributes of an entity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
60
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
61
+ page_content=', Exp), and they cor- respond to getName(), getType(), getArgument(), and getMethod() methods in CodeQL, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
62
+ page_content=' For example, “name of method1” is an Exp, where “name” is an attribute and method1 is an ID, and the whole expres- sion is translated to method1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
63
+ page_content='getName() in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
64
+ page_content=' Additionally, the attribute itself can have an optional ordinal number as an adjective, like second in the Exp “second argument of init” that is translated to “init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
65
+ page_content='getArgument(1)”, where second is translated to 1 as an argument according to zero-based numbering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
66
+ page_content=' Note that “attribute of” can be repeated several times, where each attribute may have an adjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
67
+ page_content=' For example, the Exp “The type of the second argument of init” has one ID (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
68
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
69
+ page_content=',init) and two attributes (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
70
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
71
+ page_content=', type and argument).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
72
+ page_content=' c) Basic Statement: Each BasicStatement is a statement that can serve as a Boolean condition as well as an assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
73
+ page_content=' As a Boolean condition, BasicStatement produces equiva- lence of two Exps, as well as membership of an Exp in a list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
74
+ page_content=' In “Exp is Exp” structure, both sides of equivalence are Exps and they need to be equal, while in “Exp is in List” structure, the Exp needs to be equal to an item in a list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
75
+ page_content=' Accordingly, a statement like “arg1 is in ["RSA", "AES"].” is a disjunctive expression and can be rephrased to “arg1 is "RSA" or arg1 is "AES".”, that is ultimately translated to “arg1 = "RSA" or arg1 = "AES"”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
76
+ page_content=' The syntax structure Exp is Exp can also produce as- sumptions when the second Exp is a CodeQL type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
77
+ page_content=' The assumptions are mapped to the from part of a CodeQL query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
78
+ page_content=' For instance, the statement “var1 is a variable.” translates to “Variable var1” and belongs to the from part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
79
+ page_content=' d) Logical Statement: A LogicalStatement can be a negation, conjunction, disjunction, or implication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
80
+ page_content=' For exam- ple, “If arg1 is "RSA" then arg2 is "AES".” is translated to “not (arg1 = "RSA") or arg2 = "AES"” in Cod- eQL, since p ⇒ q is equivalent to ¬p ∨ q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
81
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
82
+ page_content=' Extensibility One can extend NASRA to cover auxiliary statements and statement patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
83
+ page_content=' Their corresponding production rules are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
84
+ page_content=' Extension ::= Pattern | AuxiliaryStatement We introduce these features through three statement pat- terns and one auxiliary statement that are helpful to cover constraints on using Java cryptography objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
85
+ page_content=' 1) Patterns: We present three patterns that extend Pattern nonterminal in the syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
86
+ page_content=' We discuss each in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
87
+ page_content=' a) Invocation: We use this pattern to state that a method is invoked by an instance of a specific class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
88
+ page_content=' It can also be used to make sure that there is no invocation of a method by any instance of a specific class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
89
+ page_content=' Pattern1 ::= An object of ID (invokes|does not invoke) ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
90
+ page_content=' The NASRA query shown in Section II is an example of this pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
91
+ page_content=' The transformation follows a number of steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
92
+ page_content=' First, a MethodAccess is declared with the same name used in the NASRA statement (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
93
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
94
+ page_content=',init).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
95
+ page_content=' Then the conditions need to be added to the where part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
96
+ page_content=' Specifically, the name of the method of the MethodAccess init should be "init" that is stated in the second line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
97
+ page_content=' Finally, a MethodAccess has a receiver, that is the object invoking its method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
98
+ page_content=' In this case, the name of the type of the receiver should be "Cipher", that is expressed in CodeQL in the third line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
99
+ page_content=' If one needs to make sure that no invocation occurs, an existential quantifier must be used, as shown in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
100
+ page_content=' from where not (exists (MethodAccess init | init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
101
+ page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
102
+ page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
103
+ page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
104
+ page_content='getName() = "Cipher")) It means that there is no such MethodAccess init that has these conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
105
+ page_content=' We can state this in NASRA in the form below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
106
+ page_content=' An object of Cipher doesn’t invoke init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
107
+ page_content=' b) Partial order constraints: This pattern enables one to put partial order constraints on method invocations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
108
+ page_content=' In other words, one can enforce a method invocation to be preceded (or followed) by another method invocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
109
+ page_content=' Pattern2::=MethodName (precedes|follows) MethodName.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
110
+ page_content=' For example, there are two steps in CodeQL for stating that “invocation of getInstance is earlier than invocation of init”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
111
+ page_content=' First, one should specify that both methods are in the same scope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
112
+ page_content=' Next, the line number of the preceding method invocation has to be smaller than the line number of the other method invocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
113
+ page_content=' This is shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
114
+ page_content=' getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
115
+ page_content='getEnclosingCallable() = init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
116
+ page_content='getEnclosingCallable() and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
117
+ page_content='getLocation().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
118
+ page_content='getEndLine() < init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
119
+ page_content='getLocation().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
120
+ page_content='getEndLine() We can express this query in NASRA as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
121
+ page_content=' getInstance precedes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
122
+ page_content=' c) Method signature constraint: It is possible to express signature of a method using Pattern3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
123
+ page_content=' Pattern3 ::= MethodName’s signature is List.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
124
+ page_content=' A method signature can be seen as an ordered list of data types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
125
+ page_content=' This list contains names of data types as strings, such that the first string is the name of the first argument’s data type and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
126
+ page_content=' For example, the following NASRA query states that getInstance method has two arguments and the names of their types are "int" and "Certificate", respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
127
+ page_content=' getInstance’s signature is ["int", "Certificate"].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
128
+ page_content=' This query is translated to the following CodeQL query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
129
+ page_content=' (count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
130
+ page_content='getAnArgument()) = 2) and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
131
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
132
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
133
+ page_content=' toString()="int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
134
+ page_content=' getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
135
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
136
+ page_content='toString()= "Certificate" First, the number of arguments is set to the size of the user defined list, then the type of arguments are constrained one by one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
137
+ page_content=' count (method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
138
+ page_content='getAnArgument()) returns the number of arguments of the method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
139
+ page_content=' getArgument(i) returns the argument number i in the given method, getType() returns the type of the given argument, and finally toString() converts the given data type to a String.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
140
+ page_content=' 2) AuxiliaryStatement: We aim to find misuses in code that violate one or more mandatory constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
141
+ page_content=' For instance, suppose that if the second argument of init method is "private key" then it is mandatory that the encryption al- gorithm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
142
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
143
+ page_content=', the second argument of getInstance method is "RSA", and also if the encryption algorithm is "AES" then it is mandatory that the mode of encryption, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
144
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
145
+ page_content=', the first argument of the getInstance method, is "CBC".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
146
+ page_content=' The following NASRA query will find such violations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
147
+ page_content=' It is false that if the type of the second argument of init is "PrivateKey", then the algorithm of getInstance’s first argument is "RSA" or it is false that if the algorithm of getInstance’s first argument is "AES" then the mode of getInstance’s first argument is "CBC".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
148
+ page_content=' In order to find any violation of these constraints, dis- junction of their negation has to be stated in the query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
149
+ page_content='3 3For example, in “X is driving in an urban area(Cond1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
150
+ page_content=' It is necessary that X is driving slower than 60 km/h (Cons1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
151
+ page_content=' It is necessary that X fastens the seat belt (Cons2).”, the query needs to find an X that is driving in an urban area and is driving faster than 60 km/h or is not using the seat belt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
152
+ page_content=' If we assign a Boolean variable to each statement as mentioned in the statements, it should aim Cond1 ∧(¬Cons1 ∨¬Cons2) whose necessity part is translated to the disjunction of negation of two constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
153
+ page_content=' Nevertheless, the above statement becomes much longer and harder to comprehend as the number of constraints increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
154
+ page_content=' We define auxiliary statements to ease the formulation as well as the comprehension of complex queries for developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
155
+ page_content=' Particularly, NecessityStatements are auxiliary statements that enable developers to enforce mandatory constraints in short and independent statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
156
+ page_content=' It starts with “It is necessary that” and follows the syntax below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
157
+ page_content=' NecessityStatement ::= It is necessary that Statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
158
+ page_content=' Therefore, instead of writing disjunction of negation of all constraints in one single statement, developers can benefit this construct (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
159
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
160
+ page_content=', NecessiyStatement) to define all such constraints in several statements within a query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
161
+ page_content=' Accordingly, the single but long previous statement can be stated as two separate statements shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
162
+ page_content=' It is necessary that if the type of the second argument of init is "PrivateKey", then the algorithm of getInstance’s first argument is "RSA".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
163
+ page_content=' It is necessary that if the algorithm of getInstance’s first argument is "AES" then the mode of getInstance’s first argument is "CBC".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
164
+ page_content=' Necessity statements are treated differently from other state- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
165
+ page_content=' If there is only one NecessityStatement, its enclosing statement is negated and added to the where part of the CodeQL query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
166
+ page_content=' If there are more than one, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
167
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
168
+ page_content=', n constraints Cons1, Cons2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
169
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
170
+ page_content=', Consn, then the “(not T Cons1 or not T Cons2 or .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
171
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
172
+ page_content=' or not T Consn)” will be added to the where part, where T Consi is the translation of Consi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
173
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
174
+ page_content=' WORKING EXAMPLES Cipher is one of the most misused APIs in Java cryp- tography [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
175
+ page_content=' Listing 1 shows how to create a Cipher object in Java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
176
+ page_content=' We should call the Cipher’s getInstance method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
177
+ page_content=' This method receives a number of arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
178
+ page_content=' The first one is transformation that is a string containing three parts separated by “/”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
179
+ page_content=' These parts are algorithm, mode, and padding, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
180
+ page_content=' Next, we should call the init method on the cipher object with two arguments to indicate the operation mode of the cipher, and to initialize this object with a Key or Certificate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
181
+ page_content=' Cipher cipher = Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
182
+ page_content='getInstance("AES/ECB/ PKCS5Padding");' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
183
+ page_content=' cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
184
+ page_content='init(Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
185
+ page_content='ENCRYPT_MODE,new SecretKeySpec( keyBytes, "AES"));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
186
+ page_content=' Listing 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
187
+ page_content=' Setting up the Cipher object in Java In the rest of this section, we present three different program analysis tasks to ensure secure use of Java Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
188
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
189
+ page_content=' Key vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
190
+ page_content=' Algorithm Task 1: If the key has a type of PublicKey, PrivateKey, or Certificate, or encryption mode is WRAP MODE or UN- WRAP MODE, then algorithm of transformation must be “RSA”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
191
+ page_content=' Listing 2 shows how to check this constraint in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
192
+ page_content=' from MethodAccess getInstance, MethodAccess init where init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
193
+ page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
194
+ page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
195
+ page_content=' getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
196
+ page_content='getName() = "Cipher" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
197
+ page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
198
+ page_content='getName() = "getInstance " and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
199
+ page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
200
+ page_content='getName() = "Cipher" and (((init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
201
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
202
+ page_content='toString() = "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
203
+ page_content='WRAP MODE" or init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
204
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
205
+ page_content=' toString() = "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
206
+ page_content='UNWRAP MODE") or (init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
207
+ page_content=' getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
208
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
209
+ page_content='toString() = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
210
+ page_content=' security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
211
+ page_content='PublicKey" or init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
212
+ page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
213
+ page_content=' getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
214
+ page_content='toString() = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
215
+ page_content='security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
216
+ page_content='PrivateKey " or init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
217
+ page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
218
+ page_content='toString() = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
219
+ page_content=' security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
220
+ page_content='cert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
221
+ page_content='Certificate")) and not(getInstance .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
222
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
223
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
224
+ page_content='replaceAll("\\","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
225
+ page_content=' splitAt("/",0) = "RSA")) select getInstance, init Listing 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
226
+ page_content=' Key vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
227
+ page_content=' Algorithm constraint in CodeQL This constraint can be expressed in NASRA as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
228
+ page_content=' An object of Cipher invokes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
229
+ page_content=' An object of Cipher invokes getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
230
+ page_content=' It is necessary that if init’s first argument is in ["Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
231
+ page_content='WRAP_MODE", "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
232
+ page_content='UNWRAP_MODE"] or the type of the second argument of init is in ["PublicKey", "PrivateKey", "Certificate"] then the algorithm of getInstance’s first argument is "RSA".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
233
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
234
+ page_content=' Algorithm vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
235
+ page_content=' Transformation Mode Task 2: If the algorithm of transformation is “RSA” then the mode of transformation must be either “” or “ECB”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
236
+ page_content=' Listing 3 shows the corresponding query to check this constraint in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
237
+ page_content=' We should look for code in which the algorithm is “RSA”, but neither “ECB” nor “” is set for the mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
238
+ page_content=' from MethodAccess getInstance where getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
239
+ page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
240
+ page_content='getName() = " getInstance" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
241
+ page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
242
+ page_content=' getName() = "Cipher" and (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
243
+ page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
244
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
245
+ page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
246
+ page_content=' splitAt("/", 0) = "RSA") and not (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
247
+ page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
248
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
249
+ page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
250
+ page_content=' splitAt("/", 1) = "" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
251
+ page_content='getArgument (0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
252
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
253
+ page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
254
+ page_content='splitAt("/", 1) = "ECB") select getInstance Listing 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
255
+ page_content=' Algorithm vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
256
+ page_content=' Transformation Mode constraint in CodeQL This constraint can be expressed in NASRA as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
257
+ page_content=' An object of Cipher invokes getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
258
+ page_content=' It is necessary that if the algorithm of getInstance’s first argument is "RSA" then the mode of getInstance’s first argument is in ["", "ECB"].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
259
+ page_content=' Thanks to Attempto Parsing Engine (APE), NASRA state- ments do not need to exactly follow the syntax rules meaning that a degree of freedom in paraphrasing is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
260
+ page_content=' For instance, the part “the algorithm of getInstance’s first argument is "RSA"” can also be written in two other forms: (i) the algorithm of the first argument of getInstance is "RSA".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
261
+ page_content=' (ii) "RSA" is the algorithm of getInstance’s first argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
262
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
263
+ page_content=' Transformation and Encryption Mode vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
264
+ page_content=' Signature Task 3: If the transformation mode is either of “CBC”, “PCBC”, “CTR”, “CTS”, “CFB”, or “OFB”, and the en- cryption mode is not “Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
265
+ page_content='ENCRYPT MODE”, then the invoked init method should not have any of the following signature: init(encmode, cert), init(encmode, cert, ranGen), init(encmode, key), init(encmode, key, ranGen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
266
+ page_content=' Listing 4 presents how to enforce this constraint in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
267
+ page_content=' from MethodAccess getInstance, MethodAccess init where init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
268
+ page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
269
+ page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
270
+ page_content=' getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
271
+ page_content='getName() = "Cipher" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
272
+ page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
273
+ page_content='getName() = "getInstance " and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
274
+ page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
275
+ page_content='getName() = "Cipher" and ((getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
276
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
277
+ page_content=' toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
278
+ page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
279
+ page_content='splitAt("/", 1) = "CBC" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
280
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
281
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
282
+ page_content=' replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
283
+ page_content='splitAt("/", 1) = "PCBC" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
284
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
285
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
286
+ page_content='replaceAll ("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
287
+ page_content='splitAt("/", 1) = "CTR" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
288
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
289
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
290
+ page_content='replaceAll ("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
291
+ page_content='splitAt("/", 1) = "CTS" or getInstance .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
292
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
293
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
294
+ page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
295
+ page_content=' splitAt("/", 1) = "CFB" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
296
+ page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
297
+ page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
298
+ page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
299
+ page_content=' splitAt("/", 1) = "OFB") and not (init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
300
+ page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
301
+ page_content='toString() = "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
302
+ page_content='ENCRYPT_MODE ")) and ((count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
303
+ page_content='getAnArgument()) = 2 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
304
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
305
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
306
+ page_content=' toString() = "int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
307
+ page_content='getArgument (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
308
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
309
+ page_content='toString() = "Certificate") or ( count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
310
+ page_content='getAnArgument()) = 3 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
311
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
312
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
313
+ page_content='toString() = "int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
314
+ page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
315
+ page_content='getType() .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
316
+ page_content='toString() = "Certificate" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
317
+ page_content=' getArgument(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
318
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
319
+ page_content='toString() = " SecureRandom") or (count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
320
+ page_content=' getAnArgument()) = 2 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
321
+ page_content='getArgument (0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
322
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
323
+ page_content='toString() = "int" and getInstance .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
324
+ page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
325
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
326
+ page_content='toString() = "Key") or (count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
327
+ page_content='getAnArgument()) = 3 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
328
+ page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
329
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
330
+ page_content='toString() = "int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
331
+ page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
332
+ page_content='getType() .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
333
+ page_content='toString() = "Key" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
334
+ page_content='getArgument (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
335
+ page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
336
+ page_content='toString() = "SecureRandom")) select init, getInstance Listing 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
337
+ page_content=' Transformation and Encryption mode vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
338
+ page_content=' Signature constraint in CodeQL The implementation of this task in NASRA is shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
339
+ page_content=' An object of Cipher invokes getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
340
+ page_content=' An object of Cipher invokes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
341
+ page_content=' It is necessary that if the mode of getInstance’s first argument is in ["CBC","PCBC","CTR","CTS","CFB","OFB"] and init’s first argument is not "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
342
+ page_content='ENCRYPT_MODE" then getInstance’s signature is not ["int","Certificate"] and is not ["int","Certificate","SecureRandom"] and is not ["int","Key"] and is not ["int","Key","SecureRandom"].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
343
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
344
+ page_content=' Discussion Table I presents the number of distinct operators and operands (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
345
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
346
+ page_content=', vocabulary), and the total number of operators and operands (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
347
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
348
+ page_content=', length) needed for each analysis task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
349
+ page_content='4 4In NASRA, we consider user defined terminals such as init, “RSA”, and getInstance as operands and count the rest of language constructs as operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
350
+ page_content=' TABLE I CODEQL VS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
351
+ page_content=' NASRA Analysis Task Vocabulary Length CodeQL NASRA CodeQL NASRA Key vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
352
+ page_content=' Algorithm (III-A) 32 19 179 39 Algorithm vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
353
+ page_content=' Mode (III-B) 27 18 107 24 Mode vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
354
+ page_content=' Signature (III-C) 42 26 434 56 Evidently, queries in NASRA are significantly shorter than queries in CodeQL (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
355
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
356
+ page_content=', up to 87% reduction in length), and they consume a lot fewer programming constructs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
357
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
358
+ page_content=', up to 38% fewer vocabularies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
359
+ page_content=' We computed Halstead complexity measures to estimate the coding time and the difficulty to write or understand these queries [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
360
+ page_content=' The results showed that developers require a lot less effort and time to develop these tasks in NASRA than in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
361
+ page_content=' We also asked ten developers to share their opinion about queries in NASRA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
362
+ page_content=' They unanimously stated that they are succinct and easy to understand, and one commented that “these queries read like API documentation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
363
+ page_content=' It is noteworthy that NASRA’s performance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
364
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
365
+ page_content=', how well it can detect API misuses, depends on its underlying analy- sis framework which is currently CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
366
+ page_content=' In other words, NASRA obviates the low-level details needed to define static program analyses, but the issues with false positives remain to be relevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
367
+ page_content=' Moreover, despite being natural, the use of NASRA still requires knowledge of its syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
368
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
369
+ page_content=' RELATED WORK Mapping a natural language statement into a formal repre- sentation has received great attention in the community but not much in the program analysis development domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
370
+ page_content=' Schlegel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
371
+ page_content=' developed an end-user programming paradigm for Python, that maps natural language commands into Python code [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
372
+ page_content=' Landhauber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
373
+ page_content=' proposed a domain agnostic command interpreter that receives natural language commands in English and uses ontology to produce relevant API calls [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
374
+ page_content=' Yaghmazadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
375
+ page_content=' developed SQLIZER, a system to automatically synthesize SQL queries from a natural language [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
376
+ page_content=' Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
377
+ page_content=' investigated the translation from a natural language query to visualization with the goal of simplifying the creation of data visualizations [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
378
+ page_content=' Heyman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
379
+ page_content=' developed a Python code completion tool that enriches developers’ code with the natural language de- scription of the intended data science task [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
380
+ page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
381
+ page_content=' presented an approach that takes as input an English descrip- tion of a programming task and synthesizes the corresponding API code template for the task [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
382
+ page_content=' Desai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
383
+ page_content=' built a general framework for constructing program synthesizers that take natural language inputs and produce expressions in a target Domain Specific Language [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
384
+ page_content=' Zhai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
385
+ page_content=' proposed a search- based technique to automatically translate NL comments to formal program specifications that specify the expected pre and post conditions [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
386
+ page_content=' The work presented in this paper is also related to cryp- tography domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
387
+ page_content=' There exist tools that find cryptography misuses [14] and libraries that facilitate the adoption of cryptography for developers [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
388
+ page_content=' Nevertheless, none of them employed a natural language approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
389
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
390
+ page_content=' CONCLUSION We introduced NASRA, an open-source framework to de- fine static program analyses in natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
391
+ page_content=' We demon- strated the application of this framework to find misuses in Java cryptography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
392
+ page_content=' The ultimate goal of NASRA is to enable a naturalistic way to develop static program analyses, which is usable for mainstream developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
393
+ page_content=' To realize this goal, further studies are needed to determine NASRA’s effectiveness in real-world settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
394
+ page_content=' The expressiveness of its queries and the effort required to extend it to other problem domains have to be investigated as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
395
+ page_content=' Finally, automatic translation without pre-defined rules is also an exciting future research direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
396
+ page_content=' REFERENCES [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
397
+ page_content=' Barakova, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
398
+ page_content=' Gillesen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
399
+ page_content=' Huskens, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
400
+ page_content=' Lourens, “End-user programming architecture facilitates the uptake of robots in social therapies,” Robotics and Autonomous Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
401
+ page_content=' 61, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
402
+ page_content=' 7, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
403
+ page_content=' [2] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
404
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
405
+ page_content=' Lin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
406
+ page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
407
+ page_content=' Zettlemoyer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
408
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
409
+ page_content=' Ernst, “NL2Bash: A corpus and semantic parser for natural language interface to the linux operating system,” in Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
410
+ page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
411
+ page_content=' Hazhirpasand, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
412
+ page_content=' Nierstrasz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
413
+ page_content=' Shabani, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
414
+ page_content=' Ghafari, “Hurdles for developers in cryptography,” in 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
415
+ page_content=' 659–663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
416
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
417
+ page_content=' Hazhirpasand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
418
+ page_content=' Ghafari, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
419
+ page_content=' Nierstrasz, “Java cryptography uses in the wild,” in Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
420
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
421
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
422
+ page_content=' Halstead, Elements of Software Science (Operating and program- ming systems series).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
423
+ page_content=' Elsevier Science Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
424
+ page_content=', 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
425
+ page_content=' [6] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
426
+ page_content=' Schlegel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
427
+ page_content=' Lang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
428
+ page_content=' Handschuh, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
429
+ page_content=' Freitas, “Vajra: Step-by- step programming with natural language,” in Proceedings of the 24th International Conference on Intelligent User Interfaces, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
430
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
431
+ page_content=' Landh¨auber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
432
+ page_content=' Weigelt, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
433
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
434
+ page_content=' Tichy, “Nlci: A natural language command interpreter,” Automated Software Engg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
435
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
436
+ page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
437
+ page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
438
+ page_content=' 839–861, dec 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
439
+ page_content=' [8] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
440
+ page_content=' Yaghmazadeh, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
441
+ page_content=' Wang, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
442
+ page_content=' Dillig, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
443
+ page_content=' Dillig, “Sqlizer: Query synthesis from natural language,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
444
+ page_content=' ACM Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
445
+ page_content=' Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
446
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
447
+ page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
448
+ page_content=' OOPSLA, oct 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
449
+ page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
450
+ page_content=' Luo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
451
+ page_content=' Tang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
452
+ page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
453
+ page_content=' Tang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
454
+ page_content=' Chai, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
455
+ page_content=' Qin, “Natural language to visualization by neural machine translation,” IEEE Transactions on Visualization and Computer Graphics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
456
+ page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
457
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
458
+ page_content=' 217–226, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
459
+ page_content=' [10] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
460
+ page_content=' Heyman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
461
+ page_content=' Huysegems, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
462
+ page_content=' Justen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
463
+ page_content=' Van Cutsem, “Natural language-guided programming,” ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
464
+ page_content=' Onward!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
465
+ page_content=', 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
466
+ page_content=' 39–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
467
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
468
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
469
+ page_content=' Nguyen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
470
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
471
+ page_content=' Rigby, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
472
+ page_content=' Nguyen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
473
+ page_content=' Palani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
474
+ page_content=' Karanfil, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
475
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
476
+ page_content=' Nguyen, “Statistical translation of english texts to api code templates,” in 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
477
+ page_content=' 194–205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
478
+ page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
479
+ page_content=' Desai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
480
+ page_content=' Gulwani, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
481
+ page_content=' Hingorani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
482
+ page_content=' Jain, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
483
+ page_content=' Karkare, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
484
+ page_content=' Marron, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
485
+ page_content=' R, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
486
+ page_content=' Roy, “Program synthesis using natural language,” in Pro- ceedings of the 38th International Conference on Software Engineering, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
487
+ page_content=' ICSE ’16, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
488
+ page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
489
+ page_content=' Zhai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
490
+ page_content=' Shi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
491
+ page_content=' Pan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
492
+ page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
493
+ page_content=' Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
494
+ page_content=' Fang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
495
+ page_content=' Ma, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
496
+ page_content=' Tan, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
497
+ page_content=' Zhang, “C2s: Translating natural language comments to formal program specifications,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
498
+ page_content=' ESEC/FSE 2020, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
499
+ page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
500
+ page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
501
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
502
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
503
+ page_content=' Kabir, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
504
+ page_content=' Xiao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
505
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
506
+ page_content=' Yao, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
507
+ page_content=' Meng, “Automatic detection of java cryptographic api misuses: Are we there yet,” IEEE Transactions on Software Engineering, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
508
+ page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
509
+ page_content=' Kafader and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
510
+ page_content=' Ghafari, “Fluentcrypto: Cryptography in easy mode,” in 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
511
+ page_content=' 402–412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'}
9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf ADDED
Binary file (74.4 kB). View file
 
9tFPT4oBgHgl3EQfYzRy/content/tmp_files/2301.13075v1.pdf.txt ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13075v1 [quant-ph] 30 Jan 2023
2
+ Threshold theorem in quantum annealing with deterministic analog control errors
3
+ Manaka Okuyama1 and Masayuki Ohzeki1,2,3
4
+ 1Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
5
+ 2Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo,152-8551, Japan and
6
+ 3Sigma-i Co., Ltd., Tokyo 108-0075, Japan
7
+ (Dated: January 31, 2023)
8
+ We investigate the effect of deterministic analog control errors in the time-dependent Hamiltonian on iso-
9
+ lated quantum dynamics. Deterministic analog control errors are formulated as time-dependent operators in the
10
+ Schr¨odinger equation. We give an upper bound on the distance between two states in time evolution with and
11
+ without deterministic analog control errors. As a result, we prove that, if the strength of deterministic analog
12
+ control errors is less than the inverse of computational time, the final state in quantum dynamics without deter-
13
+ ministic analog control errors can be obtained through a constant-order number of measurements in quantum
14
+ dynamics with deterministic analog control errors.
15
+ I.
16
+ INTRODUCTION
17
+ Quantum annealing [1–8] is an analog quantum computa-
18
+ tion that utilizes continuous time evolution of quantum sys-
19
+ tems, and, thereby, analog control errors of the parameters
20
+ are inevitable in experimental systems. Because the theory
21
+ of quantum error correction and suppression is incomplete
22
+ in quantum annealing [9–13], estimating the effect of analog
23
+ control errors is one of the most critical problems.
24
+ There are two main types of analog control errors in quan-
25
+ tum annealing.
26
+ One is a stochastic control error [14–17],
27
+ which represents an instantaneous parameter fluctuation. For
28
+ this type of control error, recent studies [18, 19] proved that,
29
+ if the strength of the stochastic control errors is less than the
30
+ inverse of the computation time, information about the final
31
+ state in quantum dynamics without analog control errors can
32
+ be recovered from quantum dynamics with stochastic control
33
+ errors. The other is deterministic control error, which is, for
34
+ example, a bias acting on the magnetic field or a deviation in
35
+ the value of the interaction. Deterministic control errors have
36
+ been discussed so far in many literatures [20–26], but they are
37
+ limited to specific problems.
38
+ The present study investigates in general whether it is pos-
39
+ sible to recover information about the target state, which is
40
+ the final state in ideal time evolution, from quantum dynam-
41
+ ics with deterministic analog control errors. We give an upper
42
+ bound on the distance between two states in quantum dynam-
43
+ ics with and without deterministic control errors using only in-
44
+ formation about the deterministic control errors. Furthermore,
45
+ using this bound, we prove that, if the strength of the deter-
46
+ ministic control errors is less than the inverse of the computa-
47
+ tion time, information about the target state can be recovered
48
+ through a constant-order number of measurements in quan-
49
+ tum dynamics with deterministic analog control errors. This
50
+ result is intuitively obvious but it is important from the per-
51
+ spective of experimental systems to give mathematical proof.
52
+ The proof is based on the method proposed by Kieu to derive
53
+ a quantum speed limit [27, 28].
54
+ The organization of this paper is as follows. In Sec. II,
55
+ we define the model and obtain the main result. Finally, our
56
+ conclusion is presented in Sec. III.
57
+ II.
58
+ RESULT
59
+ We consider the following isolated quantum dynamics:
60
+ i d
61
+ dt|ψ(t)⟩ = ˆH(t)|ψ(t)⟩,
62
+ (1)
63
+ where 0 ≤ t ≤ T and ℏ = 1. In general, it is difficult to com-
64
+ pletely control the time-dependent Hamiltonian ˆH(t) without
65
+ control errors in experimental systems. Deterministic ana-
66
+ log control errors can take any form physically permissible
67
+ but should also be described as a Hermitian operator since
68
+ we consider isolated quantum dynamics. Thus, we incorpo-
69
+ rate the deterministic analog control errors of ˆH(t) into the
70
+ Schr¨odinger equation as a Hermitian operator ˆV(t). We ex-
71
+ press the Schr¨odinger equation with deterministic analog con-
72
+ trol errors as follows:
73
+ i d
74
+ dt|φ(t)⟩ = ( ˆH(t) + ˆV(t))|φ(t)⟩.
75
+ (2)
76
+ Then, we obtain the following result.
77
+ Theorem 1. The distance between two final states |ψ(T)⟩ and
78
+ |φ(T)⟩ is bounded from above by
79
+ ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v,
80
+ (3)
81
+ where ∥ |a⟩ ∥ ≡ √⟨a|a⟩, v ≡
82
+ � T
83
+ 0 dt
84
+ ��� ˆV(t)
85
+ ���, and
86
+ ��� ˆA
87
+ ��� is the eigen-
88
+ value of ˆA with the largest absolute value.
89
+ Proof of Theorem 1. From Eqs. (1) and (2), we obtain
90
+ d
91
+ dt(|ψ(t)⟩ − |φ(t)⟩) = −i ˆH(t)(|ψ(t)⟩ − |φ(t)⟩) + i ˆV(t) |φ(t)⟩ ,(4)
92
+ and
93
+ d
94
+ dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2 Re
95
+
96
+ (⟨ψ(t)| − ⟨φ(t)|) d
97
+ dt(|ψ(t)⟩ − |φ(t)⟩)
98
+
99
+ = 2 Re
100
+
101
+ (⟨ψ(t)| − ⟨φ(t)|)i ˆV(t) |φ(t)⟩
102
+
103
+ ≤ 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · ∥ ˆV(t) |φ(t)⟩ ∥,
104
+ (5)
105
+ where we used the Cauchy-Schwartz inequality. On the other
106
+ hand, we find
107
+ d
108
+ dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · d
109
+ dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥.
110
+ (6)
111
+
112
+ 2
113
+ Thus, we obtain
114
+ d
115
+ dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥ ≤ ∥ ˆV(t) |φ(t)⟩ ∥ ≤ ∥ ˆV(t)∥.
116
+ (7)
117
+ Finally, by integrating both sides from 0 to T, we arrive at Eq.
118
+ (3).
119
+
120
+ It is worth mentioning that the right hand side of Eq. (3)
121
+ contains only information about the control errors ˆV and not
122
+ about ˆH(t).
123
+ The inequality (3) makes sense only if v < 2 is satisfied
124
+ because
125
+ ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ =
126
+
127
+ 2 − 2 Re ⟨ψ(t)|φ(t)⟩ ≤ 2.
128
+ (8)
129
+ In particular, when the strength of deterministic control errors
130
+ is less than the inverse of the computation time,
131
+ ��� ˆV(t)
132
+ ��� <
133
+
134
+ 2
135
+ T ,
136
+ (9)
137
+ we have
138
+ ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v <
139
+
140
+ 2.
141
+ (10)
142
+ This means that the two final states have non-zero overlap
143
+ Re ⟨ψ(T)|φ(T)⟩ ≥ 1 − v2
144
+ 2 > 0.
145
+ (11)
146
+ Then, it is possible to recover the information about |ψ(T)⟩
147
+ from |φ(T)⟩.
148
+ For example, we expand the two final states |ψ(T)⟩ and
149
+ |φ(T)⟩ as
150
+ |ψ(T)⟩ =
151
+
152
+ n
153
+ Cn |n⟩ ,
154
+ (12)
155
+ |φ(T)⟩ =
156
+
157
+ n
158
+ Dn |n⟩ ,
159
+ (13)
160
+ where |n⟩ is the measurement basis. We are interested in the
161
+ mth eigenstate of the measurement basis and its probability
162
+ amplitude Cm is given by
163
+ |Cm|2 = 1 − ǫ2,
164
+ (14)
165
+ with 0 ≤ ǫ < 1. Then, we arrive at:
166
+ Corollary 2. If
167
+ 1 − v2/2 > ǫ ≥ 0,
168
+ (15)
169
+ then the probability amplitude of the mth eigenstate in the
170
+ Schr¨odinger equation with deterministic analog control errors
171
+ (2) takes a non-zero value,
172
+ |Dm| ≥ 1 − v2
173
+ 2 − ǫ
174
+
175
+ 1 − ǫ2 > 0.
176
+ (16)
177
+ Corollary 2 states that the number of measurements re-
178
+ quired to obtain |m⟩ is independent of the computation time
179
+ T in quantum dynamics with deterministic analog control er-
180
+ rors (2). Thus, under the condition (15), deterministic control
181
+ errors do not seriously affect the efficiency of quantum anneal-
182
+ ing.
183
+ The condition (15) can be rewritten as
184
+ � T
185
+ 0
186
+ dt
187
+ ��� ˆV(t)
188
+ ��� <
189
+
190
+ 2(1 − ǫ).
191
+ (17)
192
+ It may seem difficult to satisfy this condition for large T.
193
+ However, when T is large, the parameters should change
194
+ slowly and the strength of the analog control errors is expected
195
+ to be smaller. Thus, the condition (15) is not far from experi-
196
+ mental systems and may be acceptable.
197
+ Proof of Corollary 2. From Eq. (11), we obtain
198
+ 0 < 1 − v2
199
+ 2 ≤ Re ⟨ψ(T)|φ(T)⟩ ≤ | ⟨ψ(T)|φ(T)⟩ |
200
+
201
+
202
+ n
203
+ |CnDn| =
204
+
205
+ 1 − ǫ2|Dm| +
206
+
207
+ n(�m)
208
+ |CnDn|
209
+
210
+
211
+ 1 − ǫ2|Dm| + ǫ
212
+
213
+ 1 − |Dm|2|
214
+
215
+
216
+ 1 − ǫ2|Dm| + ǫ,
217
+ (18)
218
+ where we used the Cauchy-Schwartz inequality. Thus, using
219
+ Eq. (15), we obtain
220
+ |Dm| ≥
221
+ 1 − v2
222
+ 2 − ǫ
223
+
224
+ 1 − ǫ2 > 0.
225
+ (19)
226
+
227
+ III.
228
+ CONCLUSIONS
229
+ We have established a threshold theorem that provides a
230
+ sufficient condition for obtaining the target state in isolated
231
+ quantum dynamics with any deterministic analog control er-
232
+ ror.
233
+ We have considered only deterministic analog control er-
234
+ rors. A similar threshold theorem for stochastic analog control
235
+ errors has already been obtained in Ref. [18]. For both types
236
+ of analog control error, the same point is that, if the strength
237
+ of the control errors is less than the inverse of the computation
238
+ time, the target state can be obtained through a constant-order
239
+ number of measurements in quantum dynamics with analog
240
+ control errors. It is an interesting future problem to combine
241
+ these results.
242
+ Finally, we emphasize that we do not impose any assump-
243
+ tions on time evolution. Considering a specific schedule for
244
+ each problem, such as adiabatic time evolution, might im-
245
+ prove the present results.
246
+ The present work was financially supported by JSPS KAK-
247
+ ENHI Grant No. 19H01095, 20H02168 and 21K13848.
248
+
249
+ 3
250
+ [1] T. Kadowaki and H. Nishimori, Quantum annealing in the trans-
251
+ verse Ising model, Phys. Rev. E 58, 5355 (1998).
252
+ [2] P. Ray, B. K. Chakrabarti, and A. Chakrabarti, Sherrington-
253
+ Kirkpatrick model in a transverse field: Absence of replica
254
+ symmetry breaking due to quantum fluctuations, Phys. Rev. B
255
+ 39, 11828 (1989).
256
+ [3] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum
257
+ Annealing of a Disordered Magnet, Science 284, 779 (1999).
258
+ [4] J. Brooke, T. F. Rosenbaum, and G. Aeppli, Tunable Quantum
259
+ Tunneling of Magnetic Domain Walls, Nature (London) 413,
260
+ 610 (2001).
261
+ [5] G. E. Santoro, R. Martoˇn´ak, E. Tosatti, and R. Car, Theory of
262
+ Quantum Annealing of an Ising Spin Glass, Science 295, 2427
263
+ (2002).
264
+ [6] E.
265
+ Farhi,
266
+ J.
267
+ Goldstone,
268
+ S.
269
+ Gutmann,
270
+ and
271
+ M.
272
+ Sipser,
273
+ Quantum
274
+ Computation
275
+ by
276
+ Adiabatic
277
+ Evolution,
278
+ arXiv:
279
+ quant-ph/0001106.
280
+ [7] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd,
281
+ and O. Regev, Adiabatic Quantum Computation is Equivalent
282
+ to Standard Quantum Computation, SIAM J. Comput. 37, 166
283
+ (2007).
284
+ [8] A. Mizel, D. A. Lidar, and M. Mitchell, Simple Proof of Equiv-
285
+ alence between Adiabatic Quantum Computation and the Cir-
286
+ cuit Model, Phys. Rev. Lett. 99, 070502 (2007).
287
+ [9] S. P. Jordan, E. Farhi, and P. W. Shor, Error-correcting codes
288
+ for adiabatic quantum computation, Phys. Rev. A 74, 052322
289
+ (2006).
290
+ [10] D. A. Lidar, Towards Fault Tolerant Adiabatic Quantum Com-
291
+ putation, Phys. Rev. Lett. 100, 160506 (2008).
292
+ [11] G. Quiroz and D. A. Lidar, High-fidelity adiabatic quan-
293
+ tum computation via dynamical decoupling, Phys. Rev. A 86,
294
+ 042333 (2012).
295
+ [12] K. L. Pudenz, T. Albash, and D. A. Lidar, Error-corrected quan-
296
+ tum annealing with hundreds of qubits, Nat. Commun. 5, 3243
297
+ (2014).
298
+ [13] D. Venturelli, S. Mandr´a, S. Knysh, B. O’Gorman, R. Biswas,
299
+ and V. Smelyanskiy, Quantum Optimization of Fully Connected
300
+ Spin Glasses, Phys. Rev. X 5, 031040 (2015)
301
+ [14] E. Wong and M. Zakai, On the Convergence of Ordinary Inte-
302
+ grals to Stochastic Integrals, Ann. Math. Stat. 36, 1560 (1965).
303
+ [15] C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag,
304
+ Berlin, 1999).
305
+ [16] A. Dutta, A. Rahmani, and A. del Campo, Anti-Kibble-Zurek
306
+ Behavior in Crossing the Quantum Critical Point of a Thermally
307
+ Isolated System Driven by a Noisy Control Field, Phys. Rev.
308
+ Lett. 117, 080402 (2016).
309
+ [17] M.-Z. Ai, J.-M. Cui, R. He, Z.-H. Qian, X.-X. Gao, Y.-F.
310
+ Huang, C.-F. Li and G.-C. Guo, Experimental verification of
311
+ anti-Kibble-Zurek behavior in a quantum system under a noisy
312
+ control field, Phys. Rev. A 103, 012608 (2021).
313
+ [18] M. Okuyama, K. Ohki, and M. Ohzeki, Threshold theorem in
314
+ isolated quantum dynamics with stochastic control errors, Phil.
315
+ Trans. R. Soc. A. 381, 20210412 (2023).
316
+ [19] K. Kobayashi, Bound on the closed quantum dynamics under
317
+ stochastic noise, arXiv:2211.14862.
318
+ [20] A. M. Childs, E. Farhi, and J. Preskill, Robustness of adiabatic
319
+ quantum computation, Phys.Rev. A 65, 012322 (2002).
320
+ [21] J. Roland and N. J. Cerf, Noise resistance of adiabatic quan-
321
+ tum computation using random matrix theory, Phys. Rev. A 71,
322
+ 032330 (2005).
323
+ [22] K. C. Young, R. B-Kohout, D. A. Lidar, Adiabatic quantum
324
+ optimization with the wrong Hamiltonian, Phys. Rev. A 88,
325
+ 062314 (2013).
326
+ [23] S. Mandr`a, G. G. Guerreschi, and A. Aspuru-Guzik, Adiabatic
327
+ quantum optimization in the presence of discrete noise: Re-
328
+ ducing the problem dimensionality, Phys. Rev. A 92, 062320
329
+ (2015).
330
+ [24] S. Muthukrishnan, T. Albash, and D. A. Lidar, Sensitivity of
331
+ quantum speedup by quantum annealing to a noisy oracle, Phys.
332
+ Rev. A 99, 032324 (2019).
333
+ [25] A. Pearson, M. A., I. Hen, and D. A. Lidar, Analog errors in
334
+ quantum annealing: doom and hope, npj Quantum Inf. 5, 107
335
+ (2019).
336
+ [26] T. Albash, V. Martin-Mayor, and I. Hen, Analog errors in Ising
337
+ machines, Quantum Sci. Technol. 4, 02LT03 (2019).
338
+ [27] T. D. Kieu, A Class of Time-Energy Uncertainty Relations for
339
+ Time-dependent Hamiltonians, Proc. R. Soc. A 475, 20190148
340
+ (2019).
341
+ [28] M.
342
+ Okuyama
343
+ and
344
+ M.
345
+ Ohzeki,
346
+ A
347
+ useful
348
+ fundamental
349
+ speed limit for the imaginary-time Schrodinger equation,
350
+ arXiv:1806.09040.
351
+
9tFPT4oBgHgl3EQfYzRy/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf,len=266
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
3
+ page_content='13075v1 [quant-ph] 30 Jan 2023 Threshold theorem in quantum annealing with deterministic analog control errors Manaka Okuyama1 and Masayuki Ohzeki1,2,3 1Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan 2Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo,152-8551, Japan and 3Sigma-i Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
4
+ page_content=', Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
5
+ page_content=', Tokyo 108-0075, Japan (Dated: January 31, 2023) We investigate the effect of deterministic analog control errors in the time-dependent Hamiltonian on iso- lated quantum dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
6
+ page_content=' Deterministic analog control errors are formulated as time-dependent operators in the Schr¨odinger equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
7
+ page_content=' We give an upper bound on the distance between two states in time evolution with and without deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
8
+ page_content=' As a result, we prove that, if the strength of deterministic analog control errors is less than the inverse of computational time, the final state in quantum dynamics without deter- ministic analog control errors can be obtained through a constant-order number of measurements in quantum dynamics with deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
9
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
10
+ page_content=' INTRODUCTION Quantum annealing [1–8] is an analog quantum computa- tion that utilizes continuous time evolution of quantum sys- tems, and, thereby, analog control errors of the parameters are inevitable in experimental systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
11
+ page_content=' Because the theory of quantum error correction and suppression is incomplete in quantum annealing [9–13], estimating the effect of analog control errors is one of the most critical problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
12
+ page_content=' There are two main types of analog control errors in quan- tum annealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
13
+ page_content=' One is a stochastic control error [14–17], which represents an instantaneous parameter fluctuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
14
+ page_content=' For this type of control error, recent studies [18, 19] proved that, if the strength of the stochastic control errors is less than the inverse of the computation time, information about the final state in quantum dynamics without analog control errors can be recovered from quantum dynamics with stochastic control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
15
+ page_content=' The other is deterministic control error, which is, for example, a bias acting on the magnetic field or a deviation in the value of the interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
16
+ page_content=' Deterministic control errors have been discussed so far in many literatures [20–26], but they are limited to specific problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
17
+ page_content=' The present study investigates in general whether it is pos- sible to recover information about the target state, which is the final state in ideal time evolution, from quantum dynam- ics with deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
18
+ page_content=' We give an upper bound on the distance between two states in quantum dynam- ics with and without deterministic control errors using only in- formation about the deterministic control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
19
+ page_content=' Furthermore, using this bound, we prove that, if the strength of the deter- ministic control errors is less than the inverse of the computa- tion time, information about the target state can be recovered through a constant-order number of measurements in quan- tum dynamics with deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
20
+ page_content=' This result is intuitively obvious but it is important from the per- spective of experimental systems to give mathematical proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
21
+ page_content=' The proof is based on the method proposed by Kieu to derive a quantum speed limit [27, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
22
+ page_content=' The organization of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
23
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
24
+ page_content=' II, we define the model and obtain the main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
25
+ page_content=' Finally, our conclusion is presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
26
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
27
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
28
+ page_content=' RESULT We consider the following isolated quantum dynamics: i d dt|ψ(t)⟩ = ˆH(t)|ψ(t)⟩, (1) where 0 ≤ t ≤ T and ℏ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
29
+ page_content=' In general, it is difficult to com- pletely control the time-dependent Hamiltonian ˆH(t) without control errors in experimental systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
30
+ page_content=' Deterministic ana- log control errors can take any form physically permissible but should also be described as a Hermitian operator since we consider isolated quantum dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
31
+ page_content=' Thus, we incorpo- rate the deterministic analog control errors of ˆH(t) into the Schr¨odinger equation as a Hermitian operator ˆV(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
32
+ page_content=' We ex- press the Schr¨odinger equation with deterministic analog con- trol errors as follows: i d dt|φ(t)⟩ = ( ˆH(t) + ˆV(t))|φ(t)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
33
+ page_content=' (2) Then, we obtain the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
34
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
35
+ page_content=' The distance between two final states |ψ(T)⟩ and |φ(T)⟩ is bounded from above by ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v, (3) where ∥ |a⟩ ∥ ≡ √⟨a|a⟩, v ≡ � T 0 dt ��� ˆV(t) ���, and ��� ˆA ��� is the eigen- value of ˆA with the largest absolute value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
36
+ page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
37
+ page_content=' From Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
38
+ page_content=' (1) and (2), we obtain d dt(|ψ(t)⟩ − |φ(t)⟩) = −i ˆH(t)(|ψ(t)⟩ − |φ(t)⟩) + i ˆV(t) |φ(t)⟩ ,(4) and d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2 Re � (⟨ψ(t)| − ⟨φ(t)|) d dt(|ψ(t)⟩ − |φ(t)⟩) � = 2 Re � (⟨ψ(t)| − ⟨φ(t)|)i ˆV(t) |φ(t)⟩ � ≤ 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · ∥ ˆV(t) |φ(t)⟩ ∥, (5) where we used the Cauchy-Schwartz inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
39
+ page_content=' On the other hand, we find d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
40
+ page_content=' (6) 2 Thus, we obtain d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥ ≤ ∥ ˆV(t) |φ(t)⟩ ∥ ≤ ∥ ˆV(t)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
41
+ page_content=' (7) Finally, by integrating both sides from 0 to T, we arrive at Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
42
+ page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
43
+ page_content=' □ It is worth mentioning that the right hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
44
+ page_content=' (3) contains only information about the control errors ˆV and not about ˆH(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
45
+ page_content=' The inequality (3) makes sense only if v < 2 is satisfied because ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ = � 2 − 2 Re ⟨ψ(t)|φ(t)⟩ ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
46
+ page_content=' (8) In particular, when the strength of deterministic control errors is less than the inverse of the computation time, ��� ˆV(t) ��� < √ 2 T , (9) we have ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v < √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
47
+ page_content=' (10) This means that the two final states have non-zero overlap Re ⟨ψ(T)|φ(T)⟩ ≥ 1 − v2 2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
48
+ page_content=' (11) Then, it is possible to recover the information about |ψ(T)⟩ from |φ(T)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
49
+ page_content=' For example, we expand the two final states |ψ(T)⟩ and |φ(T)⟩ as |ψ(T)⟩ = � n Cn |n⟩ , (12) |φ(T)⟩ = � n Dn |n⟩ , (13) where |n⟩ is the measurement basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
50
+ page_content=' We are interested in the mth eigenstate of the measurement basis and its probability amplitude Cm is given by |Cm|2 = 1 − ǫ2, (14) with 0 ≤ ǫ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
51
+ page_content=' Then, we arrive at: Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
52
+ page_content=' If 1 − v2/2 > ǫ ≥ 0, (15) then the probability amplitude of the mth eigenstate in the Schr¨odinger equation with deterministic analog control errors (2) takes a non-zero value, |Dm| ≥ 1 − v2 2 − ǫ √ 1 − ǫ2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
53
+ page_content=' (16) Corollary 2 states that the number of measurements re- quired to obtain |m⟩ is independent of the computation time T in quantum dynamics with deterministic analog control er- rors (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
54
+ page_content=' Thus, under the condition (15), deterministic control errors do not seriously affect the efficiency of quantum anneal- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
55
+ page_content=' The condition (15) can be rewritten as � T 0 dt ��� ˆV(t) ��� < � 2(1 − ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
56
+ page_content=' (17) It may seem difficult to satisfy this condition for large T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
57
+ page_content=' However, when T is large, the parameters should change slowly and the strength of the analog control errors is expected to be smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
58
+ page_content=' Thus, the condition (15) is not far from experi- mental systems and may be acceptable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
59
+ page_content=' Proof of Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
60
+ page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
61
+ page_content=' (11), we obtain 0 < 1 − v2 2 ≤ Re ⟨ψ(T)|φ(T)⟩ ≤ | ⟨ψ(T)|φ(T)⟩ | ≤ � n |CnDn| = √ 1 − ǫ2|Dm| + � n(�m) |CnDn| ≤ √ 1 − ǫ2|Dm| + ǫ � 1 − |Dm|2| ≤ √ 1 − ǫ2|Dm| + ǫ, (18) where we used the Cauchy-Schwartz inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
62
+ page_content=' Thus, using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
63
+ page_content=' (15), we obtain |Dm| ≥ 1 − v2 2 − ǫ √ 1 − ǫ2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
64
+ page_content=' (19) □ III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
65
+ page_content=' CONCLUSIONS We have established a threshold theorem that provides a sufficient condition for obtaining the target state in isolated quantum dynamics with any deterministic analog control er- ror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
66
+ page_content=' We have considered only deterministic analog control er- rors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
67
+ page_content=' A similar threshold theorem for stochastic analog control errors has already been obtained in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
68
+ page_content=' [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
69
+ page_content=' For both types of analog control error, the same point is that, if the strength of the control errors is less than the inverse of the computation time, the target state can be obtained through a constant-order number of measurements in quantum dynamics with analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
70
+ page_content=' It is an interesting future problem to combine these results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
71
+ page_content=' Finally, we emphasize that we do not impose any assump- tions on time evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
72
+ page_content=' Considering a specific schedule for each problem, such as adiabatic time evolution, might im- prove the present results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
73
+ page_content=' The present work was financially supported by JSPS KAK- ENHI Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
74
+ page_content=' 19H01095, 20H02168 and 21K13848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
75
+ page_content=' 3 [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
76
+ page_content=' Kadowaki and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
77
+ page_content=' Nishimori, Quantum annealing in the trans- verse Ising model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
78
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
79
+ page_content=' E 58, 5355 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
80
+ page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
81
+ page_content=' Ray, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
82
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
83
+ page_content=' Chakrabarti, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
84
+ page_content=' Chakrabarti, Sherrington- Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
85
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
86
+ page_content=' B 39, 11828 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
87
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
88
+ page_content=' Brooke, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
89
+ page_content=' Bitko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
90
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
91
+ page_content=' Rosenbaum, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
92
+ page_content=' Aeppli, Quantum Annealing of a Disordered Magnet, Science 284, 779 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
93
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
94
+ page_content=' Brooke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
95
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
96
+ page_content=' Rosenbaum, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
97
+ page_content=' Aeppli, Tunable Quantum Tunneling of Magnetic Domain Walls, Nature (London) 413, 610 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
98
+ page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
99
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
100
+ page_content=' Santoro, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
101
+ page_content=' Martoˇn´ak, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
102
+ page_content=' Tosatti, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
103
+ page_content=' Car, Theory of Quantum Annealing of an Ising Spin Glass, Science 295, 2427 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
104
+ page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
105
+ page_content=' Farhi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
106
+ page_content=' Goldstone, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
107
+ page_content=' Gutmann, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
108
+ page_content=' Sipser, Quantum Computation by Adiabatic Evolution, arXiv: quant-ph/0001106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
109
+ page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
110
+ page_content=' Aharonov, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
111
+ page_content=' van Dam, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
112
+ page_content=' Kempe, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
113
+ page_content=' Landau, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
114
+ page_content=' Lloyd, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
115
+ page_content=' Regev, Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
116
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
117
+ page_content=' 37, 166 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
118
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
119
+ page_content=' Mizel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
120
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
121
+ page_content=' Lidar, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
122
+ page_content=' Mitchell, Simple Proof of Equiv- alence between Adiabatic Quantum Computation and the Cir- cuit Model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
123
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
124
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
125
+ page_content=' 99, 070502 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
126
+ page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
127
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
128
+ page_content=' Jordan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
129
+ page_content=' Farhi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
130
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
131
+ page_content=' Shor, Error-correcting codes for adiabatic quantum computation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
132
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
133
+ page_content=' A 74, 052322 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
134
+ page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
135
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
136
+ page_content=' Lidar, Towards Fault Tolerant Adiabatic Quantum Com- putation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
137
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
138
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
139
+ page_content=' 100, 160506 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
140
+ page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
141
+ page_content=' Quiroz and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
142
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
143
+ page_content=' Lidar, High-fidelity adiabatic quan- tum computation via dynamical decoupling, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
144
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
145
+ page_content=' A 86, 042333 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
146
+ page_content=' [12] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
147
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
148
+ page_content=' Pudenz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
149
+ page_content=' Albash, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
150
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
151
+ page_content=' Lidar, Error-corrected quan- tum annealing with hundreds of qubits, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
152
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
153
+ page_content=' 5, 3243 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
154
+ page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
155
+ page_content=' Venturelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
156
+ page_content=' Mandr´a, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
157
+ page_content=' Knysh, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
158
+ page_content=' O’Gorman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
159
+ page_content=' Biswas, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
160
+ page_content=' Smelyanskiy, Quantum Optimization of Fully Connected Spin Glasses, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
161
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
162
+ page_content=' X 5, 031040 (2015) [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
163
+ page_content=' Wong and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
164
+ page_content=' Zakai, On the Convergence of Ordinary Inte- grals to Stochastic Integrals, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
165
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
166
+ page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
167
+ page_content=' 36, 1560 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
168
+ page_content=' [15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
169
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
170
+ page_content=' Gardiner and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
171
+ page_content=' Zoller, Quantum Noise (Springer-Verlag, Berlin, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
172
+ page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
173
+ page_content=' Dutta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
174
+ page_content=' Rahmani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
175
+ page_content=' del Campo, Anti-Kibble-Zurek Behavior in Crossing the Quantum Critical Point of a Thermally Isolated System Driven by a Noisy Control Field, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
176
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
177
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
178
+ page_content=' 117, 080402 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
179
+ page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
180
+ page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
181
+ page_content=' Ai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
182
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
183
+ page_content=' Cui, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
184
+ page_content=' He, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
185
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
186
+ page_content=' Qian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
187
+ page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
188
+ page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
189
+ page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
190
+ page_content=' Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
191
+ page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
192
+ page_content=' Li and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
193
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
194
+ page_content=' Guo, Experimental verification of anti-Kibble-Zurek behavior in a quantum system under a noisy control field, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
195
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
196
+ page_content=' A 103, 012608 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
197
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
198
+ page_content=' Okuyama, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
199
+ page_content=' Ohki, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
200
+ page_content=' Ohzeki, Threshold theorem in isolated quantum dynamics with stochastic control errors, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
201
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
202
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
203
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
204
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
205
+ page_content=' 381, 20210412 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
206
+ page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
207
+ page_content=' Kobayashi, Bound on the closed quantum dynamics under stochastic noise, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
208
+ page_content='14862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
209
+ page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
210
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
211
+ page_content=' Childs, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
212
+ page_content=' Farhi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
213
+ page_content=' Preskill, Robustness of adiabatic quantum computation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
214
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
215
+ page_content=' A 65, 012322 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
216
+ page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
217
+ page_content=' Roland and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
218
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
219
+ page_content=' Cerf, Noise resistance of adiabatic quan- tum computation using random matrix theory, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
220
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
221
+ page_content=' A 71, 032330 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
222
+ page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
223
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
224
+ page_content=' Young, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
225
+ page_content=' B-Kohout, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
226
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
227
+ page_content=' Lidar, Adiabatic quantum optimization with the wrong Hamiltonian, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
228
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
229
+ page_content=' A 88, 062314 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
230
+ page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
231
+ page_content=' Mandr`a, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
232
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
233
+ page_content=' Guerreschi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
234
+ page_content=' Aspuru-Guzik, Adiabatic quantum optimization in the presence of discrete noise: Re- ducing the problem dimensionality, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
235
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
236
+ page_content=' A 92, 062320 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
237
+ page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
238
+ page_content=' Muthukrishnan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
239
+ page_content=' Albash, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
240
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
241
+ page_content=' Lidar, Sensitivity of quantum speedup by quantum annealing to a noisy oracle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
242
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
243
+ page_content=' A 99, 032324 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
244
+ page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
245
+ page_content=' Pearson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
246
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
247
+ page_content=', I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
248
+ page_content=' Hen, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
249
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
250
+ page_content=' Lidar, Analog errors in quantum annealing: doom and hope, npj Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
251
+ page_content=' 5, 107 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
252
+ page_content=' [26] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
253
+ page_content=' Albash, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
254
+ page_content=' Martin-Mayor, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
255
+ page_content=' Hen, Analog errors in Ising machines, Quantum Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
256
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
257
+ page_content=' 4, 02LT03 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
258
+ page_content=' [27] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
259
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
260
+ page_content=' Kieu, A Class of Time-Energy Uncertainty Relations for Time-dependent Hamiltonians, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
261
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
262
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
263
+ page_content=' A 475, 20190148 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
264
+ page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
265
+ page_content=' Okuyama and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
266
+ page_content=' Ohzeki, A useful fundamental speed limit for the imaginary-time Schrodinger equation, arXiv:1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
267
+ page_content='09040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'}
ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c8c0a40d5d68f61df519d4293281f7eddc82487fe787ebe45a6c942622d6dff
3
+ size 772870
ANFRT4oBgHgl3EQftjjG/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33aba8dbb7ccc9c4622122fdeef7e145b4a89aa4392e2672f8206fef45f7ab10
3
+ size 2031661
ANFRT4oBgHgl3EQftjjG/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:632e38f7e75d7528cbc3e915a6884e8cf4c365b9deac4c2b365a623e42761157
3
+ size 76987
BNE3T4oBgHgl3EQfswvl/content/2301.04671v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e08d96ce05f4fc50eeb040b5a316dd84e4117eadb24a5654f48a77dbc72a6c
3
+ size 819918
BNFQT4oBgHgl3EQfNDZv/content/tmp_files/2301.13270v1.pdf.txt ADDED
@@ -0,0 +1,910 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Revealing Rheological Parameters of Cotton-stitch-modified Cotton Fabrics by
2
+ Three-Network Modeling (TNM) of Materials
3
+ Harmony Werth1, #, Kazi Zihan Hossain1, #, M. Rashed Khan1,*
4
+ 1Department of Chemical and Materials Engineering, University of Nevada, Reno
5
+ #contributed equally
6
+ *Corresponding author: [email protected]
7
+ Abstract
8
+ Cotton threads and fabrics are the most used textile materials and have garnered
9
+ widespread interest for smart textiles to capture human-centered cyber-physical and
10
+ human-health-related bioanalytical data. Cotton threads are sewn (manually or digitally)
11
+ into fabrics to achieve functional and fashion stitches that soften or stiffen the base fabric.
12
+ There has been limited investigation into the influence of a single stitch on the mechanical
13
+ properties of knitted cotton fabric. Such understanding may become critical to producing
14
+ optimized textile-based composites/smart materials involving sewing operations. While
15
+ stitching operations are investigated in numerous ways to produce a range of smart
16
+ wearables, herein, we demonstrate the rheological modification of base cotton fabric
17
+ induced by two types of singular stitches (straight and zigzag). We have sewn simple
18
+ straight and zigzag cotton stitches to investigate the rheological modification of the base
19
+ cotton fabrics. Uniaxial stress-strain experimental data, combined with constitutive
20
+ modeling (i.e., three-network model, TNM) obtained from the calibration software
21
+ (MCalibration), revealed the feasibility of a data-driven approach to investigate the
22
+ rheological parameters. Our experimental analyses, combined with the calibrated data,
23
+ suggest a 99.99% confidence in assessing the influence of a single stitch on knitted cotton
24
+ fabrics. We have also used distributed strain energy to analyze the mechanics and failure
25
+ of the base and stitched fabrics. Our study may enable the design and study of integrating
26
+ smart threads in cotton fabrics to produce smart wearables, e-textile, biomedical and e-
27
+ fashion textiles.
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+ Introduction
36
+ Knitted cotton fabrics have been utilized in everyday garment materials and
37
+ emerged as one of the popular base materials to generate smart wearables. In this article,
38
+ we reveal rheological parameters- also known as phenomenological parameters, of
39
+ cotton-stitch-modified cotton fabrics, harnessing Three Network Models (TNM).1,2 We
40
+ produce two types of stitches for demonstrations to modify the mechanical behavior of
41
+ knitted cotton fabrics. While the utility of cotton fabrics is ubiquitous, and numerous
42
+ demonstrations are currently published in the literature, our study focuses on
43
+ understanding the tuned mechanics of cotton fabrics by sewn stitches and unravels data
44
+ that we often overlook through stress-strain analyses. Anisotropy of knitted cotton fabric
45
+ and its modified structural properties exhibited deformations during mechanical
46
+ performance analyses.3 Several studies focused on understanding knit fabrics, fabric
47
+ elongation, deformation, and failures at critical applied stress.4–10 Advanced applications
48
+ on knitted fabrics are approached mainly by trial and error methods where in-plane
49
+ stitches are randomly generated, leaving a knowledge gap in understanding the impact
50
+ of final sewn stitches on fabrics. Sewing- one of the ancient fabric manufacturing
51
+ techniques, loops a thread into fabrics, leveraging an analog or computerized sewing
52
+ machine. Different sewing stages,11 sewing parameters,12, and sewing machines13,14
53
+ have also been reported to alter the properties of the sewing thread. The looping process
54
+ integrates different threads and produces entanglements with aesthetic colors, body
55
+ shapes, and on-demand geometries. Different stitch patterns have also been reported to
56
+ change the rheological behavior of the sewing thread.15,16 However, the rheological
57
+ impact on the fabric due to stitching has not been adequately investigated. While the
58
+ original purpose of sewing has been joining two pieces of fabric together, the most
59
+ advanced applications integrate smart threads so that biomedical, biochemical, and
60
+ biological analyses can be performed in situ.17,18 From the design of fashion to human-
61
+ centered smart wearables, state-of-sewing leverages many stitch patterns; however, a
62
+ data-informed approach to dissect the role of sewn stitches in manipulating the final
63
+ fabrics' properties is currently lacking in the literature.
64
+ Using a sewing machine, sewn stitches create entanglements between two
65
+ threads- an upper and a bobbin thread, the bottom thread. During the entanglement, the
66
+ sewing needle loops the upper thread between the bottom thread through the fabric, and
67
+ the threads entangle. When the tension of both threads matches, the entanglement lays
68
+ in-plane of the fabric on both sides with minimal damage.19 The resulting stitch can be
69
+ varied in numerous ways to create functional and non-functional patterns based on the
70
+ types of sewing threads, fabric types, or choice of materials for the final composite
71
+ structures.20 Concurrently, stitches are used to bind two or more layers of fabric together,
72
+ which is known as a seam. To determine the impact of stitches on the mechanical
73
+ behavior of fabrics, a few research groups have tested seams in woven cotton fabric.21–
74
+ 23 A few investigations on the mechanical behavior of seams in knitted fabrics are also
75
+ available in the literature.24,25 However, studies involving a single stitch thread to modify
76
+ the mechanical behavior of cotton fabric are currently lacking for a single layer of fabric.
77
+ Such studies, we believe, will become significantly crucial for future applications, i.e.,
78
+ electronic textiles- because reducing materials consumption at an optimum number of
79
+
80
+ trials and errors seems crucial to pursue robust design configurations during the
81
+ development of smart threads and electronic fabrics.
82
+ The base fabric and thread used in this work are made from cotton. We assume
83
+ both as an elastomeric network for modeling. Elastomers having 3,000 to 10,000
84
+ repeating
85
+ units
86
+ exhibit
87
+ structural
88
+ flexibility
89
+ and
90
+ experience
91
+ stretch-induced
92
+ softening/hardening (also known as Mullins damage) under applied loads.26 For data
93
+ calibration, we use TNM in MCalibration software which maps the entire stress-strain
94
+ spectra from the uniaxial test. The TNM is also knowns as a phenomenological model to
95
+ describe deformation-induced structural evolution (i.e., the transition between soft to stiff
96
+ network) and how strain-energy density becomes redistributed (i.e., hysteresis)
97
+ throughout the experiments. Different hyperelastic models have been utilized in the
98
+ literature to represent the rheological behavior of fabrics.27–31 However, according to our
99
+ knowledge, this work presents the constitutive modeling of stitched fabrics with TNM for
100
+ the first time. The data-calibration process in MCalibration can start using default or user-
101
+ induced settings. For this study, we have chosen to start calibration using default settings
102
+ in MCalibration. The kinematics of the TNM consists of three parallel molecular networks.
103
+ We have assumed spring-dashpot domains connected in parallel for the first two, and the
104
+ third one is only a spring depicting the hyperelasticity of the first two networks. The semi-
105
+ crystalline domains are captured through the spring dashpots. While a single network can
106
+ be used to evaluate the property of the entire composite structure, we have chosen TNM
107
+ to capture effective viscoplasticity.1
108
+
109
+ Here, we have chosen two types of sewing stitches: straight and zigzag, to
110
+ establish and reveal rheological parameters of cotton-stitch modified cotton fabrics,
111
+ harnessing TNM. These stitches are common in sewn garments and are pre-programmed
112
+ into the default settings of modern sewing machines. Also, we investigate several
113
+ variations of the zigzag stitch that has varying stitch length and width. A commercial
114
+ sewing machine creates stitches with 100% cotton materials (i.e., threads and fabrics).
115
+ For our analyses, we investigate the surface topography of the fabric and samples with
116
+ sewn stitches using optical and scanning electron microscope (SEM) images. We perform
117
+ (a) uniaxial stress-strain and (b) repeated cyclic tests in an Instron to dissect the
118
+ mechanical behaviors of the (a) base fabric, (b) base threads, and (c) threads-laid-fabric
119
+ structures. The uniaxial stress-strain analyses have revealed three regions of interest
120
+ (i.e., elastic, yield, and viscoplastic). Also, we have investigated the permanent failure of
121
+ the entire composite (fracture) to find the extremities of experimental analyses. The cyclic
122
+ tests provide information about hysteresis, which we leverage to understand distributed
123
+ strain-energy density and the loss due to hysteresis. We outline calibration using TNM in
124
+ MCalibration to provide a simple route to test the impact of specific sewing patterns on
125
+ the mechanical behavior of the final fabric. We hypothesize that the thread, which has
126
+ significantly denser strain energy, shifts the fabric's macroscale stress-strain behavior
127
+ after stitching. We proved our hypothesis through the uniaxial test and then altered the
128
+ stitch length to investigate the factors that cause specific changes in the stress-strain
129
+ behavior. The understanding developed by investigating the changes in mechanical
130
+ behavior can be used to optimize the mechanical properties of a composite made with
131
+ cotton thread and fabric.
132
+
133
+ Materials and Methods
134
+ Our experiments were performed to determine a constitutive equation to represent the
135
+ behavior of cotton fabric with different types of stitches. This was accomplished by
136
+ analyzing uniaxial stress-strain curves for each component (cotton fabric and cotton
137
+ thread) and different variations of the overall composite (straight stitched fabric, zigzag
138
+ stitch, and fabric with stitching holes but no thread).
139
+ Materials
140
+ The fabric used in this experiment was 100% cotton jersey knit with a unit weight of 427
141
+ g/m2 obtained from Hobby Lobby Stores, Inc. The measured thickness of the fabric was
142
+ 0.45 mm. Similarly, the thread used in this experiment was a 50-weight, 4-ply, 100%
143
+ cotton thread of Sew-Ology Brand from Hobby Lobby Stores, Inc., produced for machine
144
+ quilting. The measured outer diameter of the thread was 0.30 mm. The same thread was
145
+ used for the top and bobbin threads for all samples prepared and presented in this work.
146
+ Sample Preparation
147
+ We used a Brother SE600 sewing machine from Amazon to create stitches of manually
148
+ adjustable length and width. The tension was selected so that the tension on the bobbin
149
+ thread and the upper thread were equal, preventing the bottom thread from showing on
150
+ the top or vice-versa, as is common sewing practice. A swatch of fabric approximately 20
151
+ cm in length was cut with scissors and then sewn wale-wise with the appropriate type of
152
+ stitch for the sample. Two samples were prepared with stitching: straight stitched and
153
+ zigzag stitched. The straight stitch was 2 mm in length. The zigzag stitches were (listed
154
+ as stitch length x stitch width): 2x5 mm, 1x5 mm, 3x5 mm, 2x3 mm, and 2x4 mm. Several
155
+ samples without any sewn stitches were also prepared for comparison. The fabric
156
+ samples were then cut to the same size with a Cricut Maker fabric cutter bought from
157
+ Amazon, allowing for accurate and reproducible sample cutting. For every sample, the
158
+ fabric was cut to the dimensions of 6 cm in length by 2 cm in width. Sample cutting was
159
+ done carefully to keep the stitching in the center of the sample. Damaged or samples with
160
+ uncentered stitches were discarded without any analysis.
161
+ Image Acquisition
162
+ Olympus SZ61 Stereo-microscope loaded with an Amscope MU1000-HS camera was
163
+ used to capture the optical microscopic images. Secondary electron images of the
164
+ samples were captured using a Thermo Scientific Scios 2 SEM. For SEM imaging, small
165
+ representative samples were cut and loaded on the sample holder with double-sided
166
+ carbon tape. Attention was given to keeping the stitch undamaged while loading on the
167
+ holder. Since the samples were nonconductive, samples were sputter-coated with Gold
168
+ (Au) to create a ~10 nm layer on the surface of the sample before imaging. Further optical
169
+ images were captured with the camera on an iPhone 13 mini.
170
+ Experimental Methods
171
+
172
+ The data was collected using an Instron 5982 test machine for uniaxial tensile testing.
173
+ The tested area was 4 cm by 2 cm. The extra centimeter on each side allowed the grip to
174
+ hold the sample during testing. Each sample type was examined with tensile testing to
175
+ determine the stress and strain until failure at a 40 mm/min strain rate. Cyclic testing of
176
+ four cycles was then conducted for specific samples up to a sustainable strain level for
177
+ that sample type. Samples with straight stitches could only withstand slightly more than
178
+ 10% strain. Therefore, cyclic tests with straight stitches were conducted up to 10% strain.
179
+ For comparison, cyclic testing up to 10% strain was also conducted for unaltered fabric
180
+ samples and the 2x5 mm zigzag stitch.
181
+ Strain-energy Density Calculation
182
+ Using the trapezoidal rule, we calculated strain-energy density from the time-dependent
183
+ force and stress data at varying strain rates. The area under the stress-strain or force-
184
+ strain curve is divided into equal-time steps. Each small area under the curve is added
185
+ until we reach the last data point to get the total area under the curve. The reported energy
186
+ density from different observations is the total after each experimental stress-strain
187
+ observation.
188
+ Constitutive Modeling of Different Fabrics
189
+ An initial prediction of the strain energy density of the straight stitched sample was
190
+ obtained based on the data collected from the unaltered fabric and thread samples. In
191
+ order to obtain the prediction, the strain energy density of the straight stitch sample and
192
+ the unaltered fabric was obtained by finding the area under the stress-strain curve of the
193
+ sample with the trapezoidal rule. The strain energy density was calculated up to 4.5%
194
+ strain because the thread samples failed around 5% strain. The strain energy of the
195
+ samples was calculated by multiplying the strain energy density by the volume of the
196
+ sample. The volume of the fabric was calculated using the sample's length, width, and
197
+ thickness. The thread volume was calculated from the measured diameter and length of
198
+ the thread sample. The straight stitch sample can be approximated by one sample of
199
+ fabric and two samples of thread, so the volume of the straight stitch sample was
200
+ calculated by adding the volume of the unaltered fabric and two threads. Similarly, the
201
+ predicted strain energy of the straight stitch sample was calculated by adding the strain
202
+ energy of the unaltered fabric and two threads. The prediction for the strain energy density
203
+ of the straight stitched sample could then be obtained by dividing the predicted stored
204
+ energy by the calculated volume.
205
+ MCalibration, from PolymerFEM,32 was used to obtain parameters for a material model
206
+ capable of representing the mechanical behavior of the fabric samples prepared in this
207
+ work. MCalibration fits the experimentally collected uniaxial stress-strain data to the
208
+ PolyUMod Three Network model.2 An average of the stress-strain behavior of each
209
+ sample type was obtained first. This set of averaged data was then processed using the
210
+ MCalibration software tools to prepare the data for calibration. The default settings were
211
+ used for the calibration. The calibrated parameters were exported and analyzed after the
212
+ automatic convergence of the calibration process.
213
+
214
+ Results and Discussion
215
+ Surface Topography
216
+ We formed two different types of stitches on the base fabric. Figures 1a and 1b are top-
217
+ down optical microscope images of the base and sewn fabrics for visual inspection.
218
+ Figure 1b is a zoomed-in visual inspection of Figure 1a to identify differences between a
219
+ straight stitch and a zigzag stitch on the in-laid fabric. These images show that the straight
220
+ and zigzag stitches went through the fabric without significant internal damage. The
221
+ straight stitch shown in Figures 1a(ii) and 1b(ii) do not have significant bunching due to
222
+ the stitch compared with the only fabric shown in Figures 1a(i) and 1b(i); However, a
223
+ meandering network of the zigzag stitches caused the fabric within the stitch to
224
+ significantly bunch together, as shown in Figures 1 a(iii) and 1b(iii). The fabric is unable
225
+ to maintain its shape during sewing and is pulled into the stitch instead. The structural
226
+ stiffness and flexibility of the fabric may have contributed to the bunching, as observed
227
+ within the stitch dimensions. Figure 1c is the sewn fabric's SEM images to investigate the
228
+ surface topography of the stitches and fabric. SEM images in Figure 1c(i) and Figure 1c(ii)
229
+ reveal the undamaged fabric by fibers. From these visual inspections, we assume the
230
+ fabric remains structurally robust during the sewing and stitches only alter the mechanical
231
+ behavior.
232
+
233
+ Figure 1: (a) Images were taken of samples under normal lighting conditions for visual inspection.
234
+ (b) A stereoscope was used to examine the samples. (c) Secondary electron SEM images were
235
+ taken of the fabric and sewn stitches.
236
+ Uniaxial Tensile Behavior
237
+ We investigated plain thread, plain fabric, and stitched fabrics using Instron for
238
+ mechanical behavior analyses. The uniaxial tensile test behavior of plain thread is shown
239
+
240
+ a(i)
241
+ b(i)
242
+ c(i)
243
+ Cotton
244
+ Fabric
245
+ a(ii)
246
+ b(i)
247
+ 500μm
248
+ Straight
249
+ Fabric<
250
+ Stich
251
+ Stitch
252
+ c(ii)
253
+ b(ili)
254
+ Zigzag
255
+ Stitch
256
+ 5 mm
257
+ 2 mm
258
+ 500 μmin Figure 2a, and the plain fabric is shown in Figure 2b. For comparison, Figure 2b also
259
+ shows the behaviors of straight and zigzag (2x5mm) stitched fabrics. Four other zigzag
260
+ stitched fabrics' behavior is shown in Figure 2c. Figures 2d and 2e show the side view of
261
+ a zigzag stitched fabric loaded into Intron during tensile testing and at the end of failure
262
+ analyses.
263
+ We tested two samples of the plain threads, and both samples' behavior is shown
264
+ in Figure 2a. The plain thread failed at 5% strain but exhibited the highest strain energy
265
+ density compared to other samples tested. In contrast to the plain thread, the cotton fabric
266
+ in Figure 2b exhibited reproducible stretchability of up to 70% strain in two samples. The
267
+ inclusion of straight stitches into the plain fabric induced failure at ~12% strain, and the
268
+ zigzag stitched sample failed at ~32% strain.
269
+ The unaltered fabric had the highest stain at the point of failure, shown in Figure
270
+ 2b, between 60-80%, with a strain energy density of around 1.0 MJ/m3 at failure. In
271
+ comparison, the thread samples had a strain energy density of approximately 5.0 MJ/m3
272
+ at failure, which occurred at around 5% strain. The strain energy density of the unaltered
273
+ fabric and thread at 4.5% were 4.19x10-4 MJ/m3 and 4.64 MJ/m3, respectively. Examining
274
+ the stress-strain data for the cotton fabric and the cotton thread individually, we conclude
275
+ that combining these materials would result in a sample with a strain energy density that
276
+ falls between the different materials at a given strain. The samples with sewn straight
277
+ stitches of 2mm length failed between 10-15% strain. At a strain of 4.5%, the straight
278
+ stitched samples exhibited an average strain energy density of 1.88x10-3 MJ/m3. A
279
+ prediction of the strain energy density of the straight stitched samples at 4.5% was
280
+ obtained using the experimental values of the thread and fabric alone. The predicted
281
+ value was 7.2x10-2 MJ/m3, more significant than the measured strain energy density. This
282
+ discrepancy is expected as the sewing process exposes the thread to dynamic loads and
283
+ friction known to reduce the strength of the thread.33 Overall, the sample with sewn
284
+ straight stitches failed at all fabric samples' lowest stress and strain. The cause of the low
285
+ stress and strain at failure is suspected to be the structure of the stitches, which cannot
286
+ withstand as much strain as the fabric. The fabric, with a higher elongation at failure than
287
+ the thread, can deform under the load. Therefore, the thread in the straight stitch
288
+ withstands the load for the entire sample until the thread breaks, equivalent to sample
289
+ failure. It was observed that the thread failed before the fabric in all samples with straight
290
+ stitches.
291
+ Samples with zigzag stitches of 2mm length and 5mm width also failed at stress
292
+ and strain lower than the unaltered fabric but higher strain than the straight stitched
293
+ sample. An analysis of the strain energy density of the 2x5mm zigzag sample reveals
294
+ aspects of the mechanical behavior. At strains below 20%, the strain energy density of
295
+ the 2x5mm zigzag sample is indistinguishable from the strain energy density of the fabric;
296
+ Therefore, the fabric's mechanical properties dominate the thread's properties in the
297
+ 2x5mm zigzag sample at strains under 20%. At 30% strain, the strain energy density of
298
+ the zigzag sample is nearly double that of the fabric sample. The departure of the 2x5mm
299
+ zigzag sample from the mechanical behavior of the fabric indicates that at strains above
300
+ 20%, the thread is the dominant influence on the mechanical behavior. This behavior is
301
+
302
+ investigated further in zigzag samples with varying stitch lengths and widths, as indicated
303
+ in Figure 2c.
304
+
305
+ Figure 2: (a) The graph of the stress-strain curve for the samples of the cotton thread indicates
306
+ maximum stress of approximately 100MPa at a strain of approximately 4.5% before failure. (b)
307
+ The graph shows the stress-strain curves of the unaltered fabric, fabric with straight stitches of
308
+ 2mm length, and fabric with zigzag stitches of a length of 2mm and a width of 5mm. (c) The stress-
309
+ strain graph shows the impact of varying the properties of zigzag stitches. (d) An image of a
310
+ sample with 1x5mm zigzag stitches shows the condition of the sample before uniaxial tensile
311
+ loading. (e) An image of a sample with 1x5mm zigzag stitches shows the condition of the sample
312
+ after uniaxial tensile loading. Notably, the fabric has failed while the sewn thread is intact.
313
+ During uniaxial tensile testing, it was revealed that stitch length and width are both critical
314
+ factors that influence the tensile behavior of the samples with zigzag stitches. Figure 2
315
+ (c) shows stress-strain curves for samples with zigzag stitches of varying length and
316
+ width. The fabric samples with 2x5mm, 2x4mm, and 3x5mm zigzag stitches failed at a
317
+ higher strain than those with straight stitches but at a similar stress. As with the 2x5mm
318
+ sample, the 2x4mm and 3x5mm had similar strain energy densities at low strain until the
319
+ thread became a dominant influence. The 1x5mm zigzag sample exhibited drastically
320
+
321
+ (a)
322
+ 25
323
+ Thread Sample 1
324
+ b
325
+ FabricOnly 1
326
+ -ThreadSample2
327
+ ★—FabricOnly2
328
+ - Straight Stitch 1
329
+ 100
330
+ 8 -
331
+ - Straight Stitch 2
332
+ —2x5mm Zigzag Stitch 1
333
+ Stress (MPa)
334
+ Stress (MPa)
335
+ 75
336
+ 2x5mm Zigzag Stitch 2
337
+ 6.
338
+ 50-
339
+ 4
340
+ 25
341
+ 2.
342
+ 0
343
+ 0.
344
+ 0
345
+ 2
346
+ 6
347
+ 8
348
+ 10
349
+ 0
350
+ 20
351
+ 40
352
+ 60
353
+ 80
354
+ 100
355
+ Strain (%)
356
+ Strain (%)
357
+ (c)
358
+ 10
359
+ (d)
360
+ 2x4mm
361
+ e
362
+ 一1x5mm
363
+ 2x3mm
364
+ 8-
365
+ ★一3x5mm
366
+ FabricStress (Mpa)
367
+ 6
368
+ Zigzag
369
+ Stitch
370
+ Failure
371
+ 4
372
+ Point
373
+ 2-
374
+ Sample
375
+ Grip
376
+ 0:
377
+ 0
378
+ 20
379
+ 40
380
+ 60
381
+ 80
382
+ 100
383
+ Strain (%)different behavior from the other samples with zigzag stitches. The strain energy density
384
+ of the 1x5mm zigzag samples matched that of the unaltered fabric sample up to
385
+ approximately 60% strain, indicating that the stitches had little impact on the tensile
386
+ behavior of the sample overall. The 1x5mm samples also had more extended elongation
387
+ at failure than the unaltered fabric sample. The structure of the zigzag stitch contributes
388
+ to the behavior of all the zigzag samples. Since zigzag stitches have both a stitch length
389
+ and a stitch width, the stitch could change shape as the fabric elongates.
390
+ Figures 2(d) and (e) show a 1x5mm zigzag sample before and after uniaxial tensile
391
+ testing. After testing, the stitches are longer in the direction parallel to loading and shorter
392
+ in the direction perpendicular to loading compared to before tensile testing. In other
393
+ words, the stitch could shrink in the direction perpendicular to loading while elongating in
394
+ the direction of loading. A shorter stitch length results in more threads in the sample,
395
+ which allows the stitches to deform enough to match the elongation of the fabric. The
396
+ consequence of the stitch deformation is that the fabric withstands the load while the stitch
397
+ can deform, but the stitch bears the load when it is no longer able to match the elongation
398
+ of the fabric. Eventually, the load exhausts the ability of the stitch to deform, which is
399
+ when the strain energy density of the zigzag sample deviates from that of the unaltered
400
+ fabric. It was observed that the sewn thread had snapped in all samples after the sample
401
+ had failed during tensile testing, except for the 1x5mm zigzag sample. The 1x5mm zigzag
402
+ sample in Figure 2(c) had a shorter stitch length. Another point of interest is shown in
403
+ Figure 2(e), which shows that the thread was intact after the fabric failed, which is the
404
+ opposite of all other samples that contained sewn stitches. Therefore, it is possible to
405
+ alter stitch properties to alter the fabric's tensile behavior, and the properties determine
406
+ the extent of the influence from the thread and the fabric at particular strains.
407
+ Repeated Cycling Behavior
408
+ The unaltered fabric sample, straight stitch sample, and 2x5mm zigzag stitch sample
409
+ were examined under cyclic loading to analyze stress softening and hysteresis. Any
410
+ fabrics are subjected to cyclic loading during use from body movements such as the
411
+ expansion of the chest during breathing or the movement of joints. An analysis of the
412
+ behavior of the fabric samples during cyclic loading provides information that can inform
413
+ design decisions. All samples were strained up to 10% because the straight stitch
414
+ samples failed at approximately 12% strain. Hysteresis, the change in behavior from the
415
+ loading to the unloading cycle, was observed in all samples, as shown in Figure 3. Across
416
+ all samples, the most extensive hysteresis occurred during the first cycle. Additionally, all
417
+ samples had the highest strain energy density during the loading of the first cycle. The
418
+ hysteresis between the loading and unloading cycle of the overall sample is impacted by
419
+ the relationship between the yarns' properties and the fabric's structure. The plastic
420
+ deformation of the yarns, which relates to the slippage and viscoelasticity of the fibers
421
+ within the yarn, influences hysteresis.10 The structure dictates the number and nature of
422
+ the contact points between loops of thread, which impacts the friction during loading.
423
+ Friction is the main factor determining the amount of hysteresis that will occur.5 In the
424
+ samples with stitches, the causes of tensile hysteresis are further complicated by the
425
+ presence the stitched threads, which impact the overall properties and structure of the
426
+
427
+ sample. In Figure 3b, the straight stitch sample showed more hysteresis than the zigzag
428
+ stitched sample shown in Figure 3c, indicating that the straight stitched threads
429
+ experienced more plastic deformation than the zigzag stitched threads. The difference in
430
+ the plastic deformation experienced in the threads relates to the behavior observed in the
431
+ uniaxial tensile testing. The straight-stitched thread sustains more of the load for the entire
432
+ sample than the zigzag stitch; the thread in the straight-stitched sample experiences more
433
+ plastic deformation. Repeated cycles allow for an investigation of the hysteresis in
434
+ additional cycles and an analysis of the stress-softening behavior of the samples. The
435
+ second cycle revealed that stress softening occurred in all samples between the first and
436
+ second cycles, which can be observed in whole Figure 3 as a reduction in the strain
437
+ energy density of the loading curve between the first and second cycles. The unaltered
438
+ fabric sample in Figure 3a showed a minor stress softening, which can be attributed to
439
+ the significant difference between the maximum strain during cyclic loading and the strain
440
+ required to cause failure. Since the unaltered fabric sample has minor unrecoverable
441
+ deformation at the 10% strain tested in this experiment, minimal stress softening
442
+ occurred. In additional cycles after the second cycle, hysteresis in the fabric sample and
443
+ the zigzag sample remained the same; however, hysteresis decreased slightly in the
444
+ straight stitched sample from the second to the third cycle. The decrease in hysteresis is
445
+ attributable to the stress softening in the straight stitch sample between the second and
446
+ the third cycles, which indicates that further unrecoverable deformation occurred during
447
+ each cycle. In comparison, the fabric and the zigzag stitch samples do not experience
448
+ significant unrecoverable deformation in cycles after the second cycle.
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+ Figure 2: (a) The unaltered fabric sample showed less stress softening than the 2x5mm zigzag
472
+ stitch sample but still showed hysteresis. (b) The straight stitch sample had the most stress
473
+ softening and also showed hysteresis. (c) The cyclic loading of the 2x5mm zigzag stitch sample
474
+ showed stress softening after the first cycle and hysteresis.
475
+
476
+
477
+
478
+ (a)
479
+ 0.06
480
+ -OnlyFabricCycle1
481
+ -OnlyFabricCycle2
482
+ OnlyFabric Cycle3
483
+ ★一
484
+ Only Fabric Cycle 4
485
+ Stress (Mpa)
486
+ 0.04 -
487
+ 0.02
488
+ 0.00+
489
+ 0
490
+ 10
491
+ 5
492
+ Strain (%)
493
+ (b)
494
+ 1.0
495
+ StraightStitchCycle1
496
+ -Straight StitchCycle2
497
+ Straight Stitch Cycle3
498
+ 0.8 -
499
+ ★一
500
+ Straight Stitch Cycle 4
501
+ 0.2 -
502
+ 0.0 +
503
+ 5
504
+ 10
505
+ Strain (%)
506
+ (c)
507
+ 0.06
508
+ 2x5mmZigzagCycle1
509
+ —2x5mmZigzagCycle2
510
+ 2x5mmZigzagCycle3
511
+ ★一
512
+ 2x5mmZigzagCycle4
513
+ Stress (Mpa)
514
+ 0.04
515
+ 0.02
516
+ 0.00
517
+ 0
518
+ 5
519
+ 10
520
+ Strain (%)Revealing rheological parameters of Fabric and Composite Systems
521
+ The TNM is a powerful constitutive model capturing the flow and deformation (rheology)
522
+ behaviors of materials. Bergstrom and Bischoff explained the mathematical details of the
523
+ TNM in their work.1 While the stress-strain analysis directly measures the mechanical
524
+ behavior, the rheological parameters we often overlook in stress-strain analyses can be
525
+ revealed through constitutive models. Studies on such parameters also enable data-
526
+ informed design decisions.
527
+ We used MCalibration software to perform rheological analyses using TNM and calibrate
528
+ the TNM parameters to assess unaltered and altered fabrics. MCalibration software
529
+ begins calibration with a set of initially estimated parameter values by observing the
530
+ experimental data. It tries to reduce the deviation between the predicted and the
531
+ experimental behavior by continuously updating the parameters. This process is also
532
+ known as data calibration and rheological parameter identification. When the coefficient
533
+ of determination or the R2 value stops changing significantly by reaching convergence,
534
+ the software reveals the rheological parameters in its user interface. The experimental
535
+ data and MCalibration predicted data with their respective R2 fitness are shown in Figure
536
+ 4, indicating that the TNM model effectively captures the uniaxial tensile behavior of
537
+ unaltered, straight- and zigzag-stitched fabrics. The predicted data fits closely with the
538
+ experimental data for all investigated samples with this method. The prediction of the
539
+ 2x5mm zigzag sample in Figure 4a matched with an R2 fitness of 0.999, which was a
540
+ closer fit than the unaltered fabric sample or the straight stitch sample. The reason for the
541
+ closer match indicates that the 2x5mm zigzag sample had behavior closest to that of a
542
+ thermoplastic polymer, which is the material on which the TNM is based. Furthermore,
543
+ the calibration calculates the material model parameters, revealing information about the
544
+ behavior of the samples that cannot be determined from an analysis of the experimental
545
+ data alone. Table 1 shows several such parameters.
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+ Figure 3: The material calibration with the PolyUMod TNM resulted in a good prediction for (a)
577
+ the unaltered fabric sample, (b) the 2mm straight stitch sample, and (c) the 2x5mm zigzag sample.
578
+
579
+
580
+ (a)
581
+ 3
582
+ ExperimentalFabricData
583
+ Predicted Fabric Data
584
+ 2.5
585
+ Stress
586
+ 1.5
587
+ 1
588
+ 0.5
589
+ R2Fitness=0.997
590
+ 0
591
+ 0
592
+ 10
593
+ 20
594
+ 3040
595
+ 50
596
+ 6070
597
+ Strain (%)
598
+ (b)
599
+ 1.5
600
+ ExperimentalStraightStitchData
601
+ -Predicted Straight StitchData
602
+ 1.25
603
+ (MPa)
604
+ 1
605
+ stress
606
+ 0.75
607
+ 0.5
608
+ 0.25
609
+ R2Fitness=0.99
610
+ 0
611
+ 0
612
+ 2.5
613
+ 5
614
+ 7.5
615
+ 10
616
+ 12.5
617
+ Strain (%)
618
+ (c)
619
+ 0.7
620
+ Experimental2x5mmZigzagData
621
+ -Predicted2x5mmZigzagData
622
+ 0.6
623
+ 0.5
624
+ (edw) :
625
+ 0.4
626
+ 0.3
627
+ 0.2
628
+ 0.1
629
+ R2Fitness=0.999
630
+ 0
631
+ 0
632
+ 5
633
+ 10
634
+ 15
635
+ 520
636
+ 25
637
+ 30
638
+ Strain (%)Table 1: The Three-Network Model (TNM) parameters of unaltered fabric, straight
639
+ stitch, and the 2x5 mm Zigzag stitch
640
+ Description
641
+ Symbol
642
+ Unit
643
+ Unaltered
644
+ Fabric
645
+ Straight Stitch
646
+ 2x5 mm Zigzag
647
+ Shear modulus of network
648
+ A
649
+ 𝜇�
650
+ KPa
651
+ 11.40
652
+ 77.95
653
+ 0.65
654
+ Locking stretch
655
+ 𝜆�
656
+ -
657
+ 1.08
658
+ 1.02
659
+ 1.04
660
+ Bulk modulus
661
+ 𝜅
662
+ KPa
663
+ 656.37
664
+ 1369.34
665
+ 1194.72
666
+ Flow resistance of network
667
+ A
668
+ 𝜏̂�
669
+ KPa
670
+ 127.80
671
+ 901.91
672
+ 352.31
673
+ Stress exponential of
674
+ network A
675
+ 𝑚�
676
+ -
677
+ 3.83
678
+ 11.11
679
+ 9.59
680
+ Initial shear modulus of
681
+ network B
682
+ 𝜇��
683
+ KPa
684
+ 96.46
685
+ 15.05
686
+ 40.75
687
+ Final shear modulus of
688
+ network B
689
+ 𝜇��
690
+ KPa
691
+ 96.46
692
+ 9.31
693
+ 58.99
694
+ Evolution rate of 𝜇�
695
+ 𝛽
696
+ -
697
+ 9.69
698
+ 10.20
699
+ 10.50
700
+ Flow resistance of network
701
+ B
702
+ 𝜏̂�
703
+ KPa
704
+ 348.78
705
+ 1226.80
706
+ 636.76
707
+ Stress exponential of
708
+ network B
709
+ 𝑚�
710
+ -
711
+ 7.89
712
+ 9.65
713
+ 10.85
714
+ Shear modulus of network
715
+ C
716
+ 𝜇�
717
+ KPa
718
+ 398.95
719
+ 1180.98
720
+ 207.47
721
+ Earlier investigation27 on assessing the hyperelastic material model calibrated
722
+ parameters, leveraging Mooney-Rivlin, Ogden, neo-Hookean, Arruda Boyce, Gent, Yeoh,
723
+ and Blatz-Ko constitutive models. The higher-order Mooney-Rivlin and Yeoh models fitted
724
+ the experimental data properly. The Arruda-Boyce model also showed good relation with
725
+ the experimental data. Also, we noticed a similarity in the stress-strain behavior from that
726
+ investigation that is close to our unaltered fabric behavior shown in Figure 2(b). We want
727
+ to compare the parameters we obtained with that literature27. We noted a shear modulus
728
+ of 3.8913 KPa, and a limiting locking stretch (𝜆�,���� of 0.65907 from that investigation.
729
+ The Cauchy stress acting on any networks in the TNM model is based on the Arruda-
730
+ Boyce or eight-chain model.1 The reported shear modulus and the shear modulus of the
731
+ Network A of the unaltered fabric are also not significantly different here. As the shear
732
+ modulus of the Arruda-Boyce model gets distributed in three networks, we should only
733
+ compare the locking stretch directly. The locking stretch is defined as the ratio of the
734
+ current chain length and the initial chain length. From the literature, the relation between
735
+ the locking stretch (𝜆�� and limited locking stretch can be found,34,35, which is
736
+ 𝜆� � �1
737
+ 3 �𝜆�,���
738
+
739
+
740
+ 2
741
+ 𝜆�,���
742
+
743
+
744
+ The reported limiting locking stretch converted to 𝜆� will be 1.0753, which is very close to
745
+ our reported locking stretch value of the unaltered fabric, 1.08. Additionally, for all the
746
+ samples, the locking stretch was close to 1, indicating that the sample did not go through
747
+ a significant strain level. The locking stretch values of the straight stitch and the zigzag
748
+ stitch are also smaller than the unaltered fabric, indicating less deformation observed in
749
+ Figure 2(b). The final calibrated parameters depend significantly on the initially guessed
750
+ parameters. It would be easier to compare the parameters between three samples if an
751
+ identical set of initial values was used. As we are using the uniaxial tensile testing here,
752
+ bulk modulus should not impact the predicted behavior significantly. 36 In the TNM,
753
+ network A and B utilize separate energy activation mechanisms to represent the
754
+ amorphous and semi-crystalline domains. Network C represents the large strain response
755
+ controlled by entropic resistance. The shear modulus and the flow resistance of network
756
+ A in the straight stitch are significantly higher than the other two samples indicating higher
757
+ resistance by the spring represented in the network. Figure 4(b) also indicates that up to
758
+ 10% strain straight-stitched fabric is stiffer than the other two matching the observation in
759
+ the parameters. Comparatively close initial and final shear modulus of network B and
760
+ almost similar evolution rates indicate a similar effective shear modulus for all the
761
+ samples. The flow resistance of network B and the shear modulus of network C of the
762
+ straight-stitched sample are also higher, indicating higher stiffness of the materials.
763
+ Conclusion
764
+ This work determined that altering the parameters of the stitching when sewing
765
+ with cotton thread into a single layer of jersey-knit cotton fabric impacts the strain-energy
766
+ density, hysteresis, and stress softening of the sample. When examined with optical and
767
+ scanning electron microscopes, the stitched samples did not show damage to the fabric
768
+ from the sewing process. The stitch type and parameters of a zigzag stitch were shown
769
+ to directly impact the sample's behavior under uniaxial tensile loading. Depending on the
770
+ stitch type, the fabric can be altered to have a higher or lower strain energy density at
771
+ certain strains. We also note that stitches capable of less elongation than the fabric will
772
+ increase the strain energy density at lower strains and result in failure at a lower strain.
773
+ Stitches that can match or exceed the elongation may have minimal impact on the strain
774
+ energy density of the sample at the same strains as a sample without stitches but will fail
775
+ at higher strains, resulting in a higher strain energy density at failure. Stitches will also
776
+ impact the hysteresis and stress softening of the sample. Also, stitches capable of less
777
+ elongation than the fabric will be subjected to higher stress during loading, resulting in
778
+ plastic deformation and more significant hysteresis and stress softening during cyclic
779
+ loading. The tensile and cyclic tests reveal that the mechanical behavior of samples
780
+ composed of fabric with stitches varies greatly depending on the relationships between
781
+ the property of the materials and their structure. When data from tensile tests were
782
+ calibrated with the PolyUMod TNM, the materials presented in this work matched well
783
+ with the calibrated model; therefore, materials calibration provides an opportunity to aid
784
+ the selection of materials and structure by offering insight into hidden parameters that
785
+ allow for a data-driven approach to design.
786
+
787
+ Limitations of this work include the number of materials and structures investigated, as
788
+ the behavior observed may differ from samples with different compositions and
789
+ structures. Furthermore, many other properties may be impacted by the presence of
790
+ sewing stitches that were not investigated in this paper, such as abrasive strength,
791
+ bursting strength, torsional properties, ability to withstand washing and drying, and many
792
+ other characteristics. Future works may investigate the impact of additional types of
793
+ stitches on fabrics of different materials and structures and analyze additional properties
794
+ of the samples.
795
+ Acknowledgments
796
+ MRK acknowledges the funding support from VPRI's startup account. HW
797
+ acknowledges the Nevada undergraduate research award (NURA) fund from the
798
+ Undergraduate Research Office, and KZH acknowledges funding from the College of
799
+ Engineering Dean's Office at the University of Nevada, Reno. HW acknowledges
800
+ contributions from Sydney Fields, Jake Kattelman, Thomas Kaps, and Braden Norris for
801
+ the MSE 470 (Polymer Engineering instructed by MRK) in-class project. KZH
802
+ acknowledges the opportunity to train and mentor all the groups in CHE/MSE 470 and
803
+ Brian Perdue in CHE 495 using the concepts from this article. MRK acknowledges the
804
+ support received from Dean's Office to purchase Instron 5982 with Dr. Jefferey Lacombe,
805
+ Dr. Bin Li, and Zachary Karmiol.
806
+
807
+
808
+ References
809
+ 1. Bergstrom JS, Bischoff JE. An Advanced Thermomechanical Constitutive Model for
810
+ UHMWPE. Int J Struct Chang Solids 2010; 2: 31–39.
811
+ 2. PolyUMod
812
+ Three
813
+ Network
814
+ (TN)
815
+ Model.
816
+ PolymerFEM.com,
817
+ https://polymerfem.com/three-network-model/ (2020, accessed 21 February 2022).
818
+ 3. Penava Ž, Penava DŠ, Miloš L. Experimental and analytical analyses of the knitted
819
+ fabric off-axes tensile test. Text Res J 2021; 91: 62–72.
820
+ 4. Mohamed A, Messiry ME. Analysis Of The Effect Of Cyclic Loading On Cotton-
821
+ Spandex Knitted Fabric. pp. 1–6.
822
+ 5. Dusserre G. Modelling the hysteretic wale-wise stretching behaviour of technical
823
+ plain knits. Eur J Mech - ASolids 2015; 51: 160–171.
824
+ 6. Li Q, Wang Y, Jiang S, et al. Investigation into tensile hysteresis of polyurethane-
825
+ containing textile substrates for coated strain sensors. Mater Des 2020; 188: 108451.
826
+
827
+ 7. Andrews BAK, McSherry WF, Frick JG, et al. Recovery from Tensile Strain in Knitted
828
+ Cotton Fabric after Cross-Linking. Text Res J 1971; 41: 387–391.
829
+ 8. Choi M-S, Ashdown SP. Effect of Changes in Knit Structure and Density on the
830
+ Mechanical and Hand Properties of Weft-Knitted Fabrics for Outerwear. Text Res J
831
+ 2000; 70: 1033–1045.
832
+ 9. Liu R, Lao TT, Wang SX. Impact of Weft Laid-in Structural Knitting Design on Fabric
833
+ Tension Behavior and Interfacial Pressure Performance of Circular Knits. J Eng
834
+ Fibers Fabr 2013; 8: 155892501300800420.
835
+ 10. Abdessalem SB, Abdelkader YB, Mokhtar S, et al. Influence of Elastane
836
+ Consumption on Plated Plain Knitted Fabric Characteristics. J Eng Fibers Fabr 2009;
837
+ 4: 155892500900400420.
838
+ 11. Midha VK, Mukhopadhyay A, Chatopadhyay R, et al. Studies on the Changes in
839
+ Tensile Properties of Sewing Thread at Different Sewing Stages. Text Res J 2009;
840
+ 79: 1155–1167.
841
+ 12. Midha VK, Mukhopadhyay A, Chattopadhyay R, et al. Effect of Process and Machine
842
+ Parameters on Changes in Tensile Properties of Threads during High-speed
843
+ Industrial Sewing. Text Res J 2010; 80: 491–507.
844
+ 13. Sundaresan G, Salhotra KR, Hari PK. Strength reduction in sewing threads during
845
+ high speed sewing in industrial lockstitch machine: Part II: Effect of thread and fabric
846
+ properties. Int J Cloth Sci Technol 1998; 10: 64–79.
847
+ 14. Sundaresan G, Hari PK, Salhotra KR. Strength reduction of sewing threads during
848
+ high speed sewing in an industrial lockstitch machine: Part I - mechanism of thread
849
+ strength reduction. Int J Cloth Sci Technol 1997; 9: 334–345.
850
+ 15. Rengasamy RS, Wesley S. Tensile Behavior of Different Types of Sewing Threads
851
+ Observed under Simple-Tensile, Loop and Knot Tests. J Text Appar Technol Manag;
852
+ 7, https://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/1390 (2011, accessed 9
853
+ September 2022).
854
+ 16. Abrishami S, Ezazshahabi N, Mousazadegan F. Analysis of the stress relaxation
855
+ behaviour of sewing threads in the straight and loop form. J Text Inst 2021; 112:
856
+ 596–609.
857
+ 17. Villanueva R, Ganta D, Guzman C. Mechanical, in-situ electrical and thermal
858
+ properties of wearable conductive textile yarn coated with polypyrrole/carbon black
859
+ composite. Mater Res Express 2018; 6: 016307.
860
+ 18. Ardalan S, Hosseinifard M, Vosough M, et al. Towards smart personalized
861
+ perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch
862
+
863
+ for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens Bioelectron
864
+ 2020; 168: 112450.
865
+ 19. Ukponmwan JO, Mukhopadhyay A, Chatterjee KN. Sewing Threads. Text Prog
866
+ 2000; 30: 1–91.
867
+ 20. Yıldız EZ, Pamuk O. The parameters affecting seam quality: a comprehensive
868
+ review. Res J Text Appar 2021; 25: 309–329.
869
+ 21. Sülar V, Meşegül C, Kefsiz H, et al. A comparative study on seam performance of
870
+ cotton and polyester woven fabrics. J Text Inst 2015; 106: 19–30.
871
+ 22. Rogina-Car B, Schwarz I, Kovačević S. Analysis of Woven Fabric at the Place of the
872
+ Sewn Seam. AUTEX Res J 2018; 18: 216–220.
873
+ 23. Akter M, Khan MR. The effect of stitch types and sewing thread types on seam
874
+ strength for cotton apparel. Int J Sci Eng Res; 6.
875
+ 24. Wang L, Chan LK, Hu X. INFLUENCE OF STITCH DENSITY TO STITCHES
876
+ PROPERTIES OF KNITTED PRODUCTS. Res J Text Appar 2001; 5: 46–53.
877
+ 25. Admassu Y, Edae A, Getahun G, et al. Experimental analysis on the effect of fabric
878
+ structures and seam performance characteristics of weft knitted cotton apparels. J
879
+ Eng Fibers Fabr 2022; 17: 15589250221113480.
880
+ 26. Qi HJ, Boyce MC. Constitutive model for stretch-induced softening of the stress–
881
+ stretch behavior of elastomeric materials. J Mech Phys Solids 2004; 52: 2187–2205.
882
+ 27. Julio García Ruíz M, Yarime Suárez González L. Comparison of hyperelastic
883
+ material models in the analysis of fabrics. Int J Cloth Sci Technol 2006; 18: 314–325.
884
+ 28. Khiêm VN, Krieger H, Itskov M, et al. An averaging based hyperelastic modeling and
885
+ experimental analysis of non-crimp fabrics. Int J Solids Struct 2018; 154: 43–54.
886
+ 29. Gong Y, Peng X, Yao Y, et al. An anisotropic hyperelastic constitutive model for
887
+ thermoplastic woven composite prepregs. Compos Sci Technol 2016; 128: 17–24.
888
+ 30. Peng X, Guo Z, Du T, et al. A simple anisotropic hyperelastic constitutive model for
889
+ textile fabrics with application to forming simulation. Compos Part B Eng 2013; 52:
890
+ 275–281.
891
+ 31. Peng XQ, Guo ZY, Zia-Ur-Rehman, et al. A Simple Anisotropic Fiber Reinforced
892
+ Hyperelastic Constitutive Model for Woven Composite Fabrics. Int J Mater Form
893
+ 2010; 3: 723–726.
894
+
895
+ 32. MCalibration. PolymerFEM.com, https://polymerfem.com/mcalibration/ (accessed
896
+ 21 February 2022).
897
+ 33. Geršak J, Knez B. REDUCTION IN THREAD STRENGTH AS A CAUSE OF
898
+ LOADING IN THE SEWING PROCESS. Int J Cloth Sci Technol 1991; 3: 6–12.
899
+ 34. Bergstrom JS. Mechanics of Solid Polymers: Theory and Computational Modeling.
900
+ William Andrew, 2015.
901
+ 35. Nguyen H-D, Huang S-C. The Uniaxial Stress–Strain Relationship of Hyperelastic
902
+ Material Models of Rubber Cracks in the Platens of Papermaking Machines Based
903
+ on Nonlinear Strain and Stress Measurements with the Finite Element Method.
904
+ Materials 2021; 14: 7534.
905
+ 36. Jorgen. How Important is the Bulk Modulus in FEA? PolymerFEM.com,
906
+ https://polymerfem.com/how-important-is-the-bulk-modulus/ (2021, accessed 17
907
+ November 2022).
908
+
909
+
910
+
BNFQT4oBgHgl3EQfNDZv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdAyT4oBgHgl3EQfePjS/content/tmp_files/2301.00319v1.pdf.txt ADDED
@@ -0,0 +1,938 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantum Hairy Black Hole Formation and Horizon Quantum Mechanics
2
+ R. T. Cavalcanti∗ and J. M. Hoff da Silva†
3
+ Departamento de F´ısica, Universidade Estadual Paulista (Unesp), Guaratinguet´a 12516-410, Brazil
4
+ After introducing the gravitational decoupling method and the hairy black hole recently derived
5
+ from it, we investigate the formation of quantum hairy black holes by applying the horizon quan-
6
+ tum mechanics formalism. It enables us to determine how external fields, characterized by hairy
7
+ parameters, affect the probability of spherically symmetric black hole formation and the generalized
8
+ uncertainty principle.
9
+ I.
10
+ INTRODUCTION
11
+ Given their intrinsic connection with intense gravitational fields, solid theoretical basis [1–3], and several observa-
12
+ tional results corroborating their existences, black holes play a central role in contemporary high-energy physics and
13
+ astrophysics [4–7]. Despite the characterization of the horizon of stationary black hole solutions being well-known
14
+ within general relativity [3, 8], the nature of the horizons of non-stationary or stationary solutions beyond general
15
+ relativity is still a source of extensive research [9–12]. The investigation of black holes is not restricted to astrophysical
16
+ objects; they are also expected to be formed whenever a high concentration of energy is confined to a small region of
17
+ spacetime, producing so-called quantum black holes [7, 13–17]. However, the precise formation mechanism of classical
18
+ and quantum black holes is still unknown. Although we do not have a theory of quantum gravity, phenomenology
19
+ suggests that some features of quantum black holes are expected to be model-independent [7]. From a certain scale,
20
+ candidate theories should modify the results of general relativity, giving birth to some alternatives to Einsteins’s
21
+ theory of gravity [18, 19]. Examples could allow for the presence of non-minimal coupled fundamental fields or higher
22
+ derivative terms during the action, which directly affects the uniqueness theorems of black holes in general relativity.
23
+ The famous no-hair theorem is not preserved outside the general relativity realm. These solutions lead to effects that
24
+ are potentially detectable near the horizon of astrophysical black holes [20–22], or in quantum black holes’ formation
25
+ [23, 24], and may provide hints for the quantum path.
26
+ One of the major challenges in general relativity is finding physically relevant solutions to Einstein’s field equations.
27
+ On the other hand, deriving new solutions from other previously known ones is a widespread technique. This approach
28
+ is precisely what the so-called gravitational decoupling (GD) method intends to achieve. It has recently commanded
29
+ the community’s attention due to its simplicity and effectiveness [25–27] in generating new, exact analytical solutions
30
+ by considering additional sources to the stress-energy tensor. The recent description of anisotropic stellar distribu-
31
+ tions [28, 29], whose predictions might be tested in astrophysical observations [30–33], as well as the hairy black hole
32
+ solutions by gravitational decoupling, are particularly interesting. The latter describes a black hole with hair sourced
33
+ by generic fields, possibly of quantum nature, surrounding the vacuum Schwarzschild solution [27]. Exciting results
34
+ have been found during investigation of this solution [34–36].
35
+ From the quantum side, one of the key features of quantum gravity phenomenology is the generalized uncertainty
36
+ principle (GUP), which modifies the Heisenberg uncertainty principle accordingly
37
+ ∆x∆p ≳ ℏ
38
+
39
+ 1 + ϵ(∆p)2�
40
+ .
41
+ (1)
42
+ This expression of the GUP, which stems from different approaches to quantum gravity [37–46], characterizes a
43
+ minimum scale length ∆x. This feature emerges quite naturally in the horizon quantum mechanics formalism (HQM)
44
+ [16, 47]. In addition to the GUP, HQM also provides an estimation of the probability of quantum black hole formation.
45
+ In a scenario of extra-dimensional spacetimes, the HQM gave an explanation for the null results of quantum black
46
+ hole formation in current colliders [23, 24]. Could it also tell us something about a mechanism for decreasing the
47
+ fundamental scale to something near the scale of current colliders? Our aim is to investigate the quantitative and
48
+ qualitative effects of black hole hair, regarding the probability of black hole formation and the GUP by applying the
49
+ horizon quantum mechanics formalism.
50
+ This paper is organized as follows: Section II is dedicated to reviewing the gravitational decoupling procedure, the
51
+ metric for GD hairy black holes, and an approximation for the horizon radius. In Section III, we apply the horizon
52
+ ∗Electronic address: [email protected]
53
+ †Electronic address: julio.hoff@unesp.br
54
+ arXiv:2301.00319v1 [gr-qc] 1 Jan 2023
55
+
56
+ 2
57
+ quantum mechanics formalism to the hairy black hole solution of the previous section. We compare the probability of
58
+ quantum black hole formation and the GUPs of hairy black holes for a range of hair parameters, unveiling the effects
59
+ of the hair fields. Finally, Section IV is dedicated to conclusions and discussion.
60
+ II.
61
+ HAIRY BLACK HOLES AND HORIZON RADIUS
62
+ Starting from Einstein’s field equations
63
+ Gµν = 8π ˇTµν,
64
+ (2)
65
+ where Gµν = Rµν − 1
66
+ 2Rgµν denotes the Einstein tensor, the gravitational decoupling (GD) [25] method takes the
67
+ energy–momentum tensor decomposed as
68
+ ˇTµν = Tµν + Θµν.
69
+ (3)
70
+ Here, Tµν is the source of a known solution to general relativity, while Θµν introduces a new field or extension of the
71
+ gravitational sector. From ∇µ Gµν = 0, we also have ∇µ ˇT µν = 0. The effective density and the tangential and radial
72
+ pressures can be determined by examining the field equations
73
+ ˇρ = ρ + Θ 0
74
+ 0 ,
75
+ (4a)
76
+ ˇpt = p − Θ 2
77
+ 2 ,
78
+ (4b)
79
+ ˇpr = p − Θ 1
80
+ 1 .
81
+ (4c)
82
+ The idea is to deform a known solution to split the field equations in a sector containing the known solution with
83
+ source Tµν and a decoupled one governing the deformation, encompassing Θµν. In fact, assuming a known spherically
84
+ symmetric metric,
85
+ ds2 = −eκ(r)dt2 + eζ(r)dr2 + r2dΩ2,
86
+ (5)
87
+ and deforming κ(r) and ζ(r) as
88
+ κ(r) �→ κ(r) + αf2(r),
89
+ (6a)
90
+ e−ζ(r) �→ e−ζ(r) + αf1(r),
91
+ (6b)
92
+ the resulting decoupled field equations read
93
+ 8π Θ 0
94
+ 0
95
+ = α
96
+ �f1
97
+ r2 + f ′
98
+ 1
99
+ r
100
+
101
+ ,
102
+ (7a)
103
+ 8π Θ 1
104
+ 1 − α e−ζ f ′
105
+ 2
106
+ r
107
+ = α f1
108
+ � 1
109
+ r2 + κ′(r) + αf ′
110
+ 2(r)
111
+ r
112
+
113
+ ,
114
+ (7b)
115
+ 8πΘ 2
116
+ 2 −αf1Z1(r) =αf ′
117
+ 1
118
+ 4
119
+
120
+ κ′(r) + αf ′
121
+ 2(r)+ 2
122
+ r
123
+
124
+ +αZ2(r),
125
+ (7c)
126
+ where [25]
127
+ Z1(r) = α2f ′
128
+ 2 (r)2 + 2 α
129
+
130
+ f ′
131
+ 2 (r) κ′ (r) + f ′
132
+ 2 (r)
133
+ r
134
+ + f ′′
135
+ 2 (r)
136
+
137
+ + κ′ (r)2 + 2 κ′ (r)
138
+ r
139
+ + 2 κ′′ (r) ,
140
+ (8a)
141
+ Z2(r) = αe−ζ
142
+
143
+ 2f ′′
144
+ 2 + f 2′
145
+ 2 + 2f ′
146
+ 2
147
+ r
148
+ + 2κ′f ′
149
+ 2 − ζ′f ′
150
+ 2
151
+
152
+ .
153
+ (8b)
154
+ The above equations state that if the deformation parameter α goes to zero, then Θµν must go to zero. It is worth
155
+ mentioning that for extended geometric deformation, that is, for f2 ̸= 0, the sources are not individually conserved
156
+ in general. However, as discussed in [26], in this case, the decoupling of the field equations without an exchange of
157
+ energy is allowed in two scenarios: (a) when Tµν is a barotropic fluid whose equation of state is T00 = T11 or (b) for
158
+ vacuum regions of the first system Tµν = 0. When minimal geometric deformation is applied, on the other hand, the
159
+ sources are shown to be individually conserved [25, 26].
160
+ Assuming the Schwarzschild solution to be the known one and requiring a well-defined horizon structure [27], from
161
+ grr = − 1
162
+ gtt follows
163
+
164
+ 1 − 2M
165
+ r
166
+ � �
167
+ eαf2(r) − 1
168
+
169
+ = αf1(r).
170
+ (9)
171
+
172
+ 3
173
+ Therefore, one is able to write
174
+ ds2 = −
175
+
176
+ 1 − 2M
177
+ r
178
+
179
+ eαf2(r)dt2+
180
+
181
+ 1 − 2M
182
+ r
183
+ �−1
184
+ e−α f2(r)dr2 + r2 dΩ2.
185
+ (10)
186
+ Further, assuming strong energy conditions,
187
+ ˇρ + ˇpr + 2 ˇpt ≥ 0,
188
+ (11a)
189
+ ˇρ + ˇpr ≥ 0,
190
+ (11b)
191
+ ˇρ + ˇpt ≥ 0,
192
+ (11c)
193
+ and managing the field equations, a new hairy black hole solution was found [27]
194
+ ds2 = −f(r)dt2 +
195
+ 1
196
+ f(r)dr2 + r2dΩ2,
197
+ (12)
198
+ where
199
+ f(r) = 1 − 2GM + αℓ
200
+ r
201
+ + αe−
202
+ r
203
+ GM .
204
+ (13)
205
+ The dimensionless parameter 0 ≤ α ≤ 1 tracks the deformation of the Schwarzschild black hole, e is the Euler constant,
206
+ and ℓ is the direct effect of the nonvanishing additional font Θµν. Notice that by taking α = 0, the Schwarzschild
207
+ solution is restored. Further, the ℓ parameter is limited to 2GM/e2 ≤ ℓ ≤ 1 due to the assumption of a strong energy
208
+ condition. In extreme cases, ℓ = 2GM/e2 and
209
+ fe(r) = 1 − 2GM
210
+ r
211
+ + α
212
+
213
+ e−
214
+ r
215
+ GM − 2GM
216
+ e2 r
217
+
218
+ .
219
+ (14)
220
+ The hairy black hole has a single horizon, located at r = rH, such that
221
+
222
+ 1 + αe− rH
223
+ GM
224
+
225
+ rH = 2GM + αℓ.
226
+ (15)
227
+ Such an equation has no analytical solution. Nevertheless, a very accurate analytical approximation is found by Taylor
228
+ expanding it around the Schwarzschild horizon radius rS = 2GM,
229
+ rH
230
+ GM ≈ 4
231
+
232
+ αℓe2/GM − 3 α + e2�
233
+ αℓe2/GM − 4 α + 2 e2 .
234
+ (16)
235
+ Figure 1 shows a comparison between the exact and approximated horizon radii for different values of the hairy
236
+ parameters. In the following section, we are going to use Equation (16) for the analytical expression of the hairy black
237
+ hole’s horizon radius.
238
+ 0.3
239
+ 0.4
240
+ 0.5
241
+ 0.6
242
+ 0.7
243
+ 0.8
244
+ 0.9
245
+ 1.0
246
+
247
+ GM
248
+ 2.0
249
+ 2.1
250
+ 2.2
251
+ 2.3
252
+ 2.4
253
+ 2.5
254
+ 2.6
255
+ 2.7
256
+ 2.8
257
+ rH
258
+ GM
259
+ α = 0.00
260
+ α = 0.20
261
+ α = 0.40
262
+ α = 0.60
263
+ α = 0.80
264
+ α = 1.0
265
+ Exact
266
+ FIG. 1: The radius of the hairy black hole horizon rH as a function of ℓ for different values of the parameter α. The colored
267
+ dashed lines represent the approximated radius, and the gray lines are the exact ones. It shows how the hairy horizon deviates
268
+ from the Schwarzschild horizon for an increasing α and ℓ. The ranges for α and ℓ were fixed due to the assumption of a strong
269
+ energy condition [27].
270
+
271
+ 4
272
+ III.
273
+ THE HORIZON QUANTUM MECHANICS FORMALISM
274
+ Horizon quantum mechanics (also known as horizon wave function formalism) is an effective approach capable of
275
+ providing the signatures of black hole physics to the Planck scale [48–51] (see [47] for a comprehensive review). The
276
+ main idea is to extend quantum mechanics and gravity further than the current experimental limits. In such an
277
+ approach, we face the conceptual challenge of consistently describing classical and quantum mechanical objects, such
278
+ as horizons and particles. This is achieved by assigning wave functions to the quantum black hole horizon. This
279
+ association allows the use of quantum mechanical machinery to distinguish between particles and quantum black
280
+ holes and to estimate the GUPs. Nevertheless, first, we must choose a model describing the particle wave function to
281
+ derive the results. Due to the previous results’ simplicity and efficiency, we shall use the Gaussian model.
282
+ From classical general relativity, we know that the horizons of black holes are described by trapping surfaces, whose
283
+ locations are determined by
284
+ gij∇ir∇jr = 0 ,
285
+ (17)
286
+ where ∇ir is orthogonal to the surfaces of the constant area A = 4πr2. A trapping surface then exists if there are
287
+ values of r and t such that the gravitational radius RH satisfies
288
+ RH(r, t) ≥ r .
289
+ (18)
290
+ Considering a spinless point-particle of mass m, an uncertainty in the spatial particle localization of the same order
291
+ of the Compton scale λm ≃ ℏ/m = lp mp/m follows from the uncertainty principle, where lp and mp are the Planck
292
+ length and mass, respectively. Arguing that quantum mechanics gives a more precise description of physics, RH makes
293
+ sense only if it is larger than the Compton wavelength associated with the same mass, namely RH ≳ λm. Thus, for
294
+ the Schwarzschild radius RS = 2Gm = 2 lp
295
+ mp m,
296
+ lp m/mp ≳ lp mp/m
297
+ =⇒
298
+ m ≳ mp .
299
+ (19)
300
+ This suggests that the Planck mass is the minimum mass such that the Schwarzchild radius can be defined.
301
+ From quantum mechanics, the spectral decomposition of a spherically symmetric matter distribution is given by
302
+ the expression
303
+ |ψS⟩ =
304
+
305
+ E
306
+ C(E) |ψE⟩ ,
307
+ (20)
308
+ with the usual eigenfunction equation
309
+ ˆH |ψE⟩ = E |ψE⟩ ,
310
+ (21)
311
+ regardless of the specific form of the actual Hamiltonian operator ˆH. Using the energy spectrum and inverting the
312
+ expression of the Schwarzschild radius, we have
313
+ E = mp
314
+ rH
315
+ 2lp
316
+ .
317
+ (22)
318
+ Putting it back into the wave function, one can define the (unnormalized) horizon wave function as
319
+ ψH(rH) = C
320
+
321
+ mp
322
+ rH
323
+ 2lp
324
+
325
+ (23)
326
+ whose normalization is fixed, as usual, by the inner product
327
+ ⟨ψH | φH⟩ = 4π
328
+ � ∞
329
+ 0
330
+ ψ∗
331
+ H(rH)φH(rH)r2
332
+ HdrH.
333
+ (24)
334
+ However, the classical radius RH is thus replaced by the expected value of the operator ˆRH. From the uncertainty
335
+ of the expectation value, it follows that the radius will necessarily be “fuzzy”, similar to the position of the source
336
+ itself. The next aspect one has to approach to establish a criterion for deciding if a mass distribution does or does
337
+ not form a black hole is if it lies inside its horizon of radius r = rH. From quantum mechanics, one finds that it is
338
+ given by the product
339
+ P<(r < rH) = PS(r < rH)PH(rH),
340
+ (25)
341
+
342
+ 5
343
+ where the first term,
344
+ PS(r < rH) = 4π
345
+ � rH
346
+ 0
347
+ |ψS(r)|2r2dr,
348
+ (26)
349
+ is the probability that the particle resides inside the sphere of radius r = rH, while the second term,
350
+ PH(rH) = 4πr2
351
+ H|ψH(rH)|2
352
+ (27)
353
+ is the probability density that the value of the gravitational radius is rH. Finally, the probability that the particle
354
+ described by the wave function ψS is a BH will be given by the integral of (25) over all possible values of the horizon
355
+ radius rH. Namely,
356
+ PBH =
357
+ � ∞
358
+ 0
359
+ P<(r < rH)drH,
360
+ (28)
361
+ which is one of the main outcomes of the formalism.
362
+ A.
363
+ Gaussian Sources
364
+ The previous construction can be made explicit by applying the Gaussian model for the wave function. To implement
365
+ this idea, let us recall that spectral decomposition is also assumed to be valid for momentum. Therefore, from (20),
366
+ ⟨p |ψS⟩ = C(p) ≡ ψH(p). The Gaussian wave function for ψS scales as r2 in the position space and leads to a Gaussian
367
+ wave function in the momentum space, scaling as p2, naturally. Finally, since the dispersion relation relates p2 with
368
+ energy, we are able to have ⟨p |ψS⟩ = ψH(rH) via (22). Hence, starting with a Gaussian wave function, we can describe
369
+ a spherically symmetric massive particle at rest, such as
370
+ ψS(r) =
371
+ e− r2
372
+ 2 l2
373
+ (l √π)3/2 .
374
+ (29)
375
+ The corresponding function in momentum space is thus given by
376
+ ˜ψS(p) = 4π
377
+ � ∞
378
+ 0
379
+ sin(rp)
380
+
381
+ 8π3rp
382
+ e− r2
383
+ 2 l2
384
+ (l √π)3/2 r2dr
385
+ =
386
+ e−
387
+ p2
388
+ 2 ∆2
389
+ (∆ √π)3/2 ,
390
+ (30)
391
+ where ∆ = mp lp/l is the spread of the wave packet in momentum space, whose width l the Compton length of the
392
+ particle should diminish,
393
+ l ≥ λm ∼ mp lp
394
+ m
395
+ .
396
+ (31)
397
+ In addition to the straightforward handling of a Gaussian wave packet, it is also relevant to recall that the Gaussian
398
+ wave function leads to a minimal uncertainty for the expected values computed with it. Had we used another wave
399
+ function, it would certainly imply a worsening uncertainty, eventually leading to unnecessary extra difficulties relating
400
+ to the HQM and GUP (see next section). Back to our problem, assuming the relativistic mass-shell relation in flat
401
+ space [48]
402
+ p2 = E2 − m2 ,
403
+ (32)
404
+ the energy E of the particle is expressed in terms of the related horizon radius rH = RH(E), following from Equation
405
+ (16),
406
+ E = αmpℓe2 +
407
+
408
+ α − e2�
409
+ mprH
410
+ 2 (2 α − e2)lp
411
+ .
412
+ (33)
413
+
414
+ 6
415
+ Thus, from Equations (30) and (33), one finds the the horizon wave function of the hairy black hole
416
+ ψH(rH) = NHΘ(rH − RH) e(C2r2
417
+ H+C1rH+C0),
418
+ where
419
+ C0 = − α2l2m2
420
+ pℓ2e4
421
+ 8 (2 α − e2)2l2p
422
+ ,
423
+ C1 = −
424
+
425
+ α − e2�
426
+ αl2m2
427
+ pℓe2
428
+ 4 (2 α − e2)2l2p
429
+ ,
430
+ C2 = −
431
+
432
+ α − e2�2l2m2
433
+ p
434
+ 8 (2 α − e2)2l2p
435
+ .
436
+ (34)
437
+ The Heaviside step function Θ appears above due to the imposition E ≥ m. The normalisation factor NH is fixed
438
+ according to
439
+ N −2
440
+ H
441
+ = 4π
442
+ � ∞
443
+ 0
444
+ |ψH(rH)|2 r2
445
+ H drH.
446
+ The normalized horizon wave function is thus given as follows
447
+ ψH(rH) = −
448
+ 2 C
449
+ 3
450
+ 2
451
+ 2 e
452
+ A(rH )
453
+ 2
454
+ √π
455
+
456
+ 4 C1C2eA(RH) −
457
+
458
+ 2
459
+
460
+ 2C2Γ
461
+ � 3
462
+ 2 , −A(RH)
463
+
464
+ +
465
+
466
+ 2πC2
467
+ 1
468
+
469
+ erf
470
+ � √
471
+ 2(2 C2RH+C1)
472
+ 2 √−C2
473
+
474
+ − 1
475
+ ��√−C2
476
+ ,
477
+ (35)
478
+ A(x) = 4 C2
479
+ 2x2 + 4 C1C2x + C2
480
+ 1
481
+ 2 C2
482
+ .
483
+ Here, Γ(s, x) denotes the upper incomplete Euler–Gamma function and erf(x) the error function. The expression above
484
+ has two classes of parameters. Two of these, α and ℓ, are related to the hairy black hole, and two are non-fixed a priori:
485
+ the particle mass m, encoded in RH, and the Gaussian width l. The resulting probability PBH = PBH(l, m, ℓ, α) will
486
+ also depend on the same parameters.
487
+ According to the previous discussion, before finding the probability distribution, we have first to find the probability
488
+ that the particle resides inside a sphere with the radius r = rH. From Equations (26) and (29), one obtains
489
+ PS(r < rH) = 4π
490
+ � rH
491
+ 0
492
+ |ψS(r)|2r2dr =
493
+ 2
494
+ √π γ
495
+ �3
496
+ 2, r2
497
+ H
498
+ l2
499
+
500
+ ,
501
+ with γ(s, x) = Γ(s) − Γ(s, x), the lower incomplete Gamma function.
502
+ Equations (27) and (35) yield PH(rH), as
503
+ depicted in Figure 2.
504
+ 0
505
+ 1
506
+ 2
507
+ 3
508
+ 4
509
+ 5
510
+ mprH
511
+ lpm
512
+ 0
513
+ 1
514
+ PH(rH)
515
+ l = 0.50
516
+ l = 1.0
517
+ l = 1.5
518
+ l = 2.0
519
+ FIG. 2: The probability density for the value of the gravitational radius is rH for α = ℓ/(GM) = 0.5 and different values of
520
+ the Gaussian width.
521
+ Combining the previous results, one finds that the probability density for the particle resides within its own
522
+ gravitational radius
523
+ P<(r < rH) = 8√πγ
524
+ �3
525
+ 2, r2
526
+ H
527
+ l2
528
+
529
+ r2
530
+ H|ψH(rH)|2.
531
+
532
+ 7
533
+ The probability of the particle described by the Gaussian to be a black hole is finally given by
534
+ PBH(l, m, ℓ, α) = 8√π
535
+ � ∞
536
+ RH
537
+ γ
538
+ �3
539
+ 2, r2
540
+ H
541
+ l2
542
+
543
+ r2
544
+ H|ψH(rH)|2,
545
+ (36)
546
+ which has to be calculated numerically. Assuming the Gaussian width has the same order as the particle Compton
547
+ length, we could set l ∼ m−1 on Equation (36) and find the probability depending on either l or m. On the other
548
+ hand, by departing again from Equation (31), we may set values for m in terms of the Planck mass and find the
549
+ probability in this scenario. Applying l ∼ m−1 yields
550
+ PBH(l, ℓ, α) = 8√π
551
+ � ∞
552
+ RH
553
+ γ
554
+ �3
555
+ 2, r2
556
+ H
557
+ l2
558
+
559
+ r2
560
+ H|ψH(rH)|2,
561
+ (37)
562
+ or
563
+ PBH(m, ℓ, α) = 8√π
564
+ � ∞
565
+ RH
566
+ γ
567
+ �3
568
+ 2, r2
569
+ Hm2
570
+
571
+ r2
572
+ H|ψH(rH)|2.
573
+ (38)
574
+ The resulting probabilities are shown in Figure 3 below. Figure 4 displays the probability for m given as a fraction of
575
+ the Planck mass.
576
+ 0
577
+ 1
578
+ 2
579
+ 3
580
+ 4
581
+ 5
582
+ l
583
+ lp
584
+ 0
585
+ 1
586
+ PBH
587
+ ℓmp
588
+ lpm = α = 0.00
589
+ ℓmp
590
+ lpm = α = 0.30
591
+ ℓmp
592
+ lpm = α = 0.60
593
+ ℓmp
594
+ lpm = α = 0.90
595
+ 1
596
+ 2
597
+ m
598
+ mp
599
+ 0
600
+ 1
601
+ PBH
602
+ ℓmp
603
+ lpm = α = 0.00
604
+ ℓmp
605
+ lpm = α = 0.30
606
+ ℓmp
607
+ lpm = α = 0.60
608
+ ℓmp
609
+ lpm = α = 0.90
610
+ FIG. 3: The probability of a ”particle” being a black hole depending on the Gaussian width or mass, assuming l ∼ m−1.
611
+ 1
612
+ 2
613
+ 3
614
+ 4
615
+ 5
616
+ l
617
+ lp
618
+ 0
619
+ 1
620
+ PBH
621
+ ℓmp
622
+ lpm = α = 0.00
623
+ ℓmp
624
+ lpm = α = 0.30
625
+ ℓmp
626
+ lpm = α = 0.60
627
+ ℓmp
628
+ lpm = α = 0.90
629
+ FIG. 4: The probability of a ”particle” being a black hole depending on the Gaussian width and mass m given as a fraction of
630
+ the Planck mass, with m = mp (solid), m = 3mp/4 (dashed), and m = mp/2 (dotted).
631
+
632
+ 8
633
+ B.
634
+ HQM and GUP
635
+ Since the horizon quantum mechanics formalism applies the standard wave function description for particles, a
636
+ natural question is whether it affects the Heisenberg uncertainty principle. As mentioned, it produces a GUP similar
637
+ to that produced by Equation (1). In quantum mechanics, the uncertainty principle may be derived by calculating
638
+ the uncertainty associated with the wave function. Here, we start from the same point. From the Gaussian wave
639
+ function (29), the particle size uncertainty is given by
640
+ ∆r2
641
+ 0 = ⟨r2⟩ − ⟨r⟩2
642
+ = 4π
643
+ � ∞
644
+ 0
645
+ |ψS(r)|2r4dr −
646
+
647
+
648
+ � ∞
649
+ 0
650
+ |ψS(r)|2r3dr
651
+ �2
652
+ = 3π − 8
653
+
654
+ l2.
655
+ (39)
656
+ One might find the uncertainty of the horizon radius in an analogous way,1
657
+ ∆r2
658
+ H = ⟨r2
659
+ H⟩ − ⟨rH⟩2.
660
+ (40)
661
+ The total radial uncertainty can now be taken as a linear combination of the quantities calculated above, ∆r =
662
+ ∆r0 + ϵ∆rH. For the uncertainty in momentum, we have
663
+ ∆p2 = ⟨p2⟩ − ⟨p⟩2 = 3π − 8
664
+
665
+ m2
666
+ pl2
667
+ p
668
+ l2
669
+ .
670
+ Note that the momentum uncertainty and the width l are related such that ∆p ∼ 1/l. Using this fact in ∆r =
671
+ ∆r0 + ϵ∆rH, one is able to find
672
+ ∆r
673
+ lp
674
+ = 3π − 8
675
+
676
+ mp
677
+ ∆p + ϵ∆H
678
+ �∆p
679
+ mp
680
+
681
+ ,
682
+ (41)
683
+ which is similar to the GUP discussed previously. The function ∆H also depends on the wave function and hairy black
684
+ hole parameters. Figure 5 shows the behavior of the GUP as a function of the momentum uncertainty, taking ϵ = 1.
685
+ There, we can see a minimum ∆r placed around the Planck scale. From the GUP expression, it is straightforward
686
+ to see that a larger ϵ means significant correction to the quantum mechanics’ uncertainty. The hairy parameters,
687
+ however, have a small qualitative effect on fixing the minimum scale. As shown in Figure 5, their effects become
688
+ prominent for a large ∆p.
689
+ 1
690
+ 2
691
+ ∆p
692
+ mp
693
+ 1
694
+ 2
695
+ ∆r
696
+ lp
697
+ ℓmp
698
+ lpm = α = 0.00
699
+ ℓmp
700
+ lpm = α = 0.30
701
+ ℓmp
702
+ lpm = α = 0.60
703
+ ℓmp
704
+ lpm = α = 0.90
705
+ FIG. 5: GUP profile emerged from the horizon wave function formalism for ϵ = 1. The dotted line represents the particle size
706
+ uncertainty ∆r0, the dashed line represents the uncertainty of the horizon radius ∆rH, and the solid lines describe the GUP.
707
+ 1 The analytical expression of ∆r2
708
+ H is huge and little enlightening.
709
+
710
+ 9
711
+ IV.
712
+ DISCUSSION
713
+ A few years ago, effective theories suggested lowering the scale of quantum black hole formation to TeV. Thus, in
714
+ principle, it became experimentally accessible. In spite of no quantum black holes being detected, solid theoretical
715
+ results point out that such objects should exist in nature [7, 14]. They could give us valuable hints about quantum
716
+ gravity features [7, 13, 14]. One of this paper’s motivating questions was whether a generic black hole hair could
717
+ significantly change the scale of quantum black hole formation. However, regarding the analysis carried out here, the
718
+ hairy black holes look qualitatively similar to the Schwarzschild one, with a probability PBH of a similar shape and a
719
+ related GUP, leading to the existence of a minimum length scale. Nevertheless, one of the main results of the present
720
+ paper is that the existence of hair increases the probability PBH. This is indeed a point to be stressed. Its explanation
721
+ rests upon the fact that the hairy black hole radius is slightly larger than the one for Schwarzschild. This implies
722
+ that, although the scale of quantum black hole formation is still beyond the current experimental scale, additional
723
+ fields may lower such scale. Those results might impact future colliders’ estimations of quantum black holes coming
724
+ from alternative theories of gravity and potentially stimulate investigations of specific models of quantum hairy black
725
+ holes [17].
726
+ Acknowledgements
727
+ R.T.C. thanks Unesp—AGRUP for the financial support. J.M.H.d.S. thanks CNPq (grant No. 303561/2018-1) for
728
+ the financial support.
729
+ [1] Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics,
730
+ Cambridge University Press: Cambridge, UK, 2011. https://doi.org/10.1017/CBO9780511524646.
731
+ [2] Chandrasekhar,
732
+ S.
733
+ The
734
+ Mathematical
735
+ Theory
736
+ of
737
+ Black
738
+ Holes.
739
+ Fundam.
740
+ Theor.
741
+ Phys.
742
+ 1984,
743
+ 9,
744
+ 5–26.
745
+ https://doi.org/10.1007/978-94-009-6469-3 2.
746
+ [3] Frolov, V.P.; Novikov, I.D., Eds. Black Hole Physics: Basic Concepts and New Developments; Kluwer Academic Publishers:
747
+ Dordrecht, The Netherlands, 1998. https://doi.org/10.1007/978-94-011-5139-9.
748
+ [4] Abbott, B.P.; et al.
749
+ Observation of Gravitational Waves from a Binary Black Hole Merger.
750
+ Phys. Rev. Lett. 2016,
751
+ 116, 061102, https://doi.org/10.1103/PhysRevLett.116.061102.
752
+ [5] Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. Living Rev. Relativ. 2019, 22, 4,
753
+ https://doi.org/10.1007/s41114-019-0020-4.
754
+ [6] Barack, L.; et al. Black holes, gravitational waves and fundamental physics: A roadmap. Class. Quant. Grav. 2019,
755
+ 36, 143001, https://doi.org/10.1088/1361-6382/ab0587.
756
+ [7] Calmet,
757
+ X.,
758
+ Ed.
759
+ Quantum
760
+ Aspects
761
+ of
762
+ Black
763
+ Holes;
764
+ Springer:
765
+ Berlin/Heidelberg,
766
+ Germany,
767
+ 2015.
768
+ https://doi.org/10.1007/978-3-319-10852-0.
769
+ [8] Wald,
770
+ R.M.
771
+ General
772
+ Relativity;
773
+ Chicago
774
+ Univ.
775
+ Pr.:
776
+ Chicago,
777
+ IL,
778
+ USA,
779
+ 1984.
780
+ https://doi.org/10.7208/chicago/9780226870373.001.0001.
781
+ [9] Faraoni, V. Cosmological and Black Hole Apparent Horizons; Springer: Berlin/Heidelberg, Germany, 2015; Volume 907.
782
+ https://doi.org/10.1007/978-3-319-19240-6.
783
+ [10] Ashtekar,
784
+ A.;
785
+ Krishnan,
786
+ B.
787
+ Dynamical
788
+ horizons
789
+ and
790
+ their
791
+ properties.
792
+ Phys. Rev. D
793
+ 2003,
794
+ 68,
795
+ 104030,
796
+ https://doi.org/10.1103/ PhysRevD.68.104030.
797
+ [11] Ashtekar, A.; Galloway, G.J. Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 2005, 9, 1–30,
798
+ https://doi.org/10.4310/ATMP.2005.v9.n1.a1.
799
+ [12] Gourgoulhon, E.; Jaramillo, J.L.
800
+ New theoretical approaches to black holes.
801
+ New Astron. Rev. 2008, 51, 791–798,
802
+ https://doi.org/10.1016/j.newar.2008.03.026.
803
+ [13] Calmet, X.; Casadio, R.
804
+ What is the final state of a black hole merger?
805
+ Mod. Phys. Lett. A 2018, 33, 1850124,
806
+ https://doi.org/10.1142/S0217732318501249.
807
+ [14] Calmet, X.; Kuipers, F. Black holes in quantum gravity. Nuovo Cim. C 2022, 45, 37, https://doi.org/10.1393/ncc/i2022-
808
+ 22037-4.
809
+ [15] Casadio,
810
+ R.;
811
+ Orlandi,
812
+ A.
813
+ Quantum
814
+ Harmonic
815
+ Black
816
+ Holes.
817
+ JHEP
818
+ 2013,
819
+ 08,
820
+ 025,
821
+ https://doi.org/10.1007/JHEP08(2013)025.
822
+ [16] Casadio, R.; Giugno, A.; Micu, O.; Orlandi, A. Black holes as self-sustained quantum states, and Hawking radiation.
823
+ Phys. Rev. D 2014, 90, 084040, https://doi.org/10.1103/PhysRevD.90.084040.
824
+ [17] Calmet, X.; Casadio, R.; Hsu, S.D.H.; Kuipers, F. Quantum Hair from Gravity. Phys. Rev. Lett. 2022, 128, 111301,
825
+ https://doi.org/10.1103/PhysRevLett.128.111301.
826
+ [18] Will, C.M.
827
+ The Confrontation between General Relativity and Experiment.
828
+ Living Rev. Relativ. 2014, 17, 4,
829
+ https://doi.org/ 10.12942/lrr-2014-4.
830
+
831
+ 10
832
+ [19] Berti, E.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav.
833
+ 2015, 32, 243001, https://doi.org/10.1088/0264-9381/32/24/243001.
834
+ [20] Kanti, P.; Bakopoulos, A.; Pappas, N. Scalar-Gauss-Bonnet Theories: Evasion of No-Hair Theorems and novel black-hole
835
+ solutions. PoS 2019, CORFU2018, 091. https://doi.org/10.22323/1.347.0091.
836
+ [21] Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity: An explicit example. Phys. Rev. D 2014,
837
+ 90, 124063, https://doi.org/10.1103/PhysRevD.90.124063.
838
+ [22] Cavalcanti, R.T.; Alves, K.d.S.; Hoff da Silva, J.M. Near-Horizon Thermodynamics of Hairy Black Holes from Gravitational
839
+ Decoupling. Universe 2022, 8, 363, https://doi.org/10.3390/universe8070363.
840
+ [23] Casadio, R.; Cavalcanti, R.T.; Giugno, A.; Mureika, J. Horizon of quantum black holes in various dimensions. Phys. Lett.
841
+ B 2016, 760, 36–44, https://doi.org/10.1016/j.physletb.2016.06.042.
842
+ [24] Arsene, N.; Casadio, R.; Micu, O.
843
+ Quantum production of black holes at colliders.
844
+ Eur. Phys. J. C 2016, 76, 384,
845
+ https://doi.org/10.1140/epjc/s10052-016-4228-0.
846
+ [25] Ovalle, J. Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids. Phys. Rev. D 2017,
847
+ 95, 104019, https://doi.org/10.1103/PhysRevD.95.104019.
848
+ [26] Ovalle, J. Decoupling gravitational sources in general relativity: The extended case. Phys. Lett. B 2019, 788, 213–218,
849
+ https://doi.org/10.1016/j.physletb.2018.11.029.
850
+ [27] Ovalle, J.; Casadio, R.; Contreras, E.; Sotomayor, A. Hairy black holes by gravitational decoupling. Phys. Dark Univ.
851
+ 2021, 31, 100744, https://doi.org/10.1016/j.dark.2020.100744.
852
+ [28] da Rocha, R.a. MGD Dirac stars. Symmetry 2020, 12, 508, https://doi.org/10.3390/sym12040508.
853
+ [29] Tello-Ortiz, F.; Malaver, M.; Rinc´on, A.; Gomez-Leyton, Y. Relativistic anisotropic fluid spheres satisfying a non-linear
854
+ equation of state. Eur. Phys. J. C 2020, 80, 371, https://doi.org/10.1140/epjc/s10052-020-7956-0.
855
+ [30] da Rocha, R. Minimal geometric deformation of Yang-Mills-Dirac stellar configurations. Phys. Rev. D 2020, 102, 024011,
856
+ https://doi.org/10.1103/PhysRevD.102.024011.
857
+ [31] Fernandes-Silva, A.; Ferreira-Martins, A.J.; da Rocha, R. Extended quantum portrait of MGD black holes and information
858
+ entropy. Phys. Lett. B 2019, 791, 323–330, https://doi.org/10.1016/j.physletb.2019.03.010.
859
+ [32] da
860
+ Rocha,
861
+ R.
862
+ Dark
863
+ SU(N)
864
+ glueball
865
+ stars
866
+ on
867
+ fluid
868
+ branes.
869
+ Phys.
870
+ Rev.
871
+ D
872
+ 2017,
873
+ 95,
874
+ 124017,
875
+ https://doi.org/10.1103/PhysRevD.95.124017.
876
+ [33] Da Rocha, R.; Tomaz, A.A. Holographic entanglement entropy under the minimal geometric deformation and extensions.
877
+ Eur. Phys. J. C 2019, 79, 1035, https://doi.org/10.1140/epjc/s10052-019-7558-x.
878
+ [34] Ovalle, J.; Contreras, E.; Stuchlik, Z.
879
+ Kerr–de Sitter black hole revisited.
880
+ Phys. Rev. D 2021, 103, 084016,
881
+ https://doi.org/10.1103/ PhysRevD.103.084016.
882
+ [35] Meert, P.; da Rocha, R. Gravitational decoupling, hairy black holes and conformal anomalies. Eur. Phys. J. C 2022,
883
+ 82, 175, https://doi.org/10.1140/epjc/s10052-022-10121-6.
884
+ [36] Cavalcanti, R.T.; de Paiva, R.C.; da Rocha, R. Echoes of the gravitational decoupling: Scalar perturbations and quasinor-
885
+ mal modes of hairy black holes. Eur. Phys. J. Plus 2022, 137, 1185, https://doi.org/10.1140/epjp/s13360-022-03407-x.
886
+ [37] Gross,
887
+ D.J.;
888
+ Mende,
889
+ P.F.
890
+ String Theory Beyond the Planck Scale.
891
+ Nucl. Phys. B 1988,
892
+ 303, 407–454.
893
+ https://doi.org/10.1016/0550-3213(88)90390-2.
894
+ [38] Konishi, K.; Paffuti, G.; Provero, P.
895
+ Minimum Physical Length and the Generalized Uncertainty Principle in String
896
+ Theory. Phys. Lett. B 1990, 234, 276–284. https://doi.org/10.1016/0370-2693(90)91927-4.
897
+ [39] Amati, D.; Ciafaloni, M.; Veneziano, G. Can Space-Time Be Probed Below the String Size? Phys. Lett. B 1989, 216, 41–47.
898
+ https://doi.org/10.1016/0370-2693(89)91366-X.
899
+ [40] Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, 442, 593–622; Erratum
900
+ in Nucl. Phys. B 1995, 456, 753–754, https://doi.org/10.1016/0550-3213(95)00150-Q.
901
+ [41] Scardigli, F. Generalized uncertainty principle in quantum gravity from micro - black hole Gedanken experiment. Phys.
902
+ Lett. B 1999, 452, 39–44, https://doi.org/10.1016/S0370-2693(99)00167-7.
903
+ [42] Maggiore,
904
+ M.
905
+ A Generalized uncertainty principle in quantum gravity.
906
+ Phys. Lett. B 1993,
907
+ 304, 65–69,
908
+ https://doi.org/10.1016/0370-2693(93)91401-8.
909
+ [43] Hossenfelder,
910
+ S.
911
+ Minimal Length Scale Scenarios for Quantum Gravity.
912
+ Living Rev. Relativ. 2013,
913
+ 16, 2,
914
+ https://doi.org/10.12942/lrr-2013-2.
915
+ [44] Casadio, R.; Micu, O.; Nicolini, P. Minimum length effects in black hole physics. Fundam. Theor. Phys. 2015, 178, 293–322,
916
+ https://doi.org/10.1007/978-3-319-10852-0 10.
917
+ [45] Sprenger, M.; Nicolini, P.; Bleicher, M. Physics on Smallest Scales—An Introduction to Minimal Length Phenomenology.
918
+ Eur. J. Phys. 2012, 33, 853–862, https://doi.org/10.1088/0143-0807/33/4/853.
919
+ [46] Tawfik, A.N.; Diab, A.M.
920
+ Review on Generalized Uncertainty Principle.
921
+ Rept. Prog. Phys. 2015, 78, 126001,
922
+ https://doi.org/ 10.1088/0034-4885/78/12/126001.
923
+ [47] Casadio, R.; Giugno, A.; Micu, O. Horizon quantum mechanics: A hitchhiker’s guide to quantum black holes. Int. J. Mod.
924
+ Phys. D 2016, 25, 1630006, https://doi.org/10.1142/S0218271816300068.
925
+ [48] Casadio, R. Localised particles and fuzzy horizons: A tool for probing Quantum Black Holes. arXiv 2013, arXiv:1305.3195.
926
+ [49] Casadio, R.; Giugno, A.; Giusti, A.; Lenzi, M. Quantum Formation of Primordial Black holes. Gen. Relativ. Grav. 2019,
927
+ 51, 103, https://doi.org/10.1007/s10714-019-2587-1.
928
+ [50] Casadio,
929
+ R.;
930
+ Micu,
931
+ O.
932
+ Horizon Quantum Mechanics of collapsing shells.
933
+ Eur. Phys. J. C 2018,
934
+ 78, 852,
935
+ https://doi.org/10.1140/ epjc/s10052-018-6326-7.
936
+ [51] Casadio, R.; Giugno, A.; Giusti, A. Global and Local Horizon Quantum Mechanics. Gen. Relativ. Grav. 2017, 49, 32,
937
+ https://doi.org/10.1007/s10714-017-2198-7.
938
+
CdAyT4oBgHgl3EQfePjS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNE1T4oBgHgl3EQfWQQt/content/tmp_files/2301.03111v1.pdf.txt ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03111v1 [math.PR] 8 Jan 2023
2
+ Stochastic Reservoir Calculations
3
+ Steven Finch
4
+ January 8, 2023
5
+ Abstract.
6
+ Prabhu (1958) obtained the stationary distribution of storage
7
+ level Zt in a reservoir of finite volume v, given an inflow Xt and an outflow
8
+ Yt.
9
+ Time t is assumed to be discrete, Xt ∼ Gamma(p, µ) are independent
10
+ and p is a positive integer.
11
+ The mean inflow is p/µ; the target outflow is
12
+ m (constant).
13
+ We attempt to clarify intricate details, often omitted in the
14
+ literature, by working through several examples.
15
+ Of special interest are the
16
+ probabilities of depletion (Zt = 0) and spillage (Zt = v).
17
+ For prescribed
18
+ {v, p, µ}, what value of m minimizes both of these?
19
+ Let v > 0, p be a positive integer, µ > 0 and m > 0. At each time t = 1, 2, 3, . . .,
20
+ a reservoir of volume v absorbs an inflow Xt ∼ Gamma(p, µ) and simultaneously
21
+ releases an outflow 0 ≤ Yt ≤ m, depending on availablity. More precisely,
22
+ Yt = min {Xt + Zt, m}
23
+ where 0 ≤ Zt ≤ v is the storage level.
24
+ Independence across time is assumed.
25
+ Our
26
+ interest is in the probability density function of Zt in the limit as t → ∞. We need
27
+ not explicitly refer to Yt again, as Zt+1 can be defined recursively without it:
28
+ Zt+1 = max {0, min {Xt + Zt − m, v}} ,
29
+ Z1 = v/2.
30
+ Let n = ⌊v/m⌋ and δ = v − m n.
31
+ In words, δ is 0 if and only if v is an integer
32
+ multiple of m, and δ is otherwise > 0. Let
33
+ λ = (−1)p−1µp exp(−µ m).
34
+ The graph of the PDF for Zt is piecewise smooth and contains at most n + 1 arcs, as
35
+ well as point masses at z = 0 and z = v. The arcs are identified by j = 0, 1, 2, . . ., n
36
+ from left to right, and correspond to open subintervals
37
+ max {(j − 1)m + δ, 0} < z < min {j m + δ, v}
38
+ of 0 < z < v. Prabhu [1] impressively obtained the cumulative distribution function
39
+ F(z) = 1 − exp [µ(v − z)]
40
+ p−1
41
+
42
+ r=0
43
+ αr
44
+ n−j
45
+
46
+ q=0
47
+ (−λ)q (v − q m − z)q p+r
48
+ (q p + r)!
49
+ 0Copyright © 2023 by Steven R. Finch. All rights reserved.
50
+ 1
51
+
52
+ Stochastic Reservoir Calculations
53
+ 2
54
+ that shall occupy us for the remainder of this paper.
55
+ The αr coefficients are found
56
+ by solving a system of p linear equations with coefficients drs for r, s = 0, 1, . . . , p−1.
57
+ These will be defined shortly.
58
+ Special considerations apply to endpoints.
59
+ Let κ = n − 1 if δ = 0 and κ = n
60
+ otherwise. The depletion probability, i.e., odds for the reservoir to be dry, is
61
+ F(0) = 1 − exp(µ v)
62
+ p−1
63
+
64
+ r=0
65
+ αr
66
+ κ
67
+
68
+ q=0
69
+ (−λ)q (v − q m)q p+r
70
+ (q p + r)!
71
+ .
72
+ In contrast, the spillage probability, i.e., odds for the reservoir to be full, is just
73
+ 1 − F(v) = α0.
74
+ Minimizing the chance of both zero supply (harmful) and oversupply (wasteful) is
75
+ clearly important. Other quantities of interest include the total deficit, i.e., unsatis-
76
+ fied demand, over a specified time duration; and total surplus, i.e., unwanted supply
77
+ (because v < ∞) that necessarily leaks into the environment.
78
+ For r = 0, 1, . . . , p − 1, the linear system
79
+ αr − λ
80
+ p−1
81
+
82
+ s=0
83
+ drs αs = (−µ)r exp [−µ(v + m)]
84
+ p−r−1
85
+
86
+ s=0
87
+ [µ(v + m)]s
88
+ s!
89
+ requires solution, where
90
+ drs = (−1)p+r−1
91
+ n
92
+
93
+ q=0
94
+ (−λ)q
95
+ v
96
+
97
+ q m
98
+ (t − q m)q p+s(t + m)p−r−1
99
+ (q p + s)!(p − r − 1)!
100
+ dt.
101
+ The integral can be easily expressed in closed-form.
102
+ Prabhu’s CDF formula, given gamma-distributed inflow, extends a PDF formula
103
+ discovered earlier by Moran [2], given exponentially distributed inflow (p = 1).
104
+ We
105
+ have not studied [2] in depth.
106
+ More discussion of [1] appears in [3, 4, 5, 6].
107
+ The
108
+ treatment in [7, 8] is, however, most pragmatic and useful for our purposes.
109
+ Henceforth we fix v = 1 and explore results for selected {p, µ, m}. It is surprising,
110
+ more than fifty years after the publication of Prabhu’s work, that greater attention
111
+ has not been paid to this research [7].
112
+ We can only imagine that intricate details,
113
+ often lost in theoretical summaries, have conspired to prevent greater understanding
114
+ and widespread recognition.
115
+ Our hope is that working through a few examples will
116
+ help to improve matters.
117
+
118
+ Stochastic Reservoir Calculations
119
+ 3
120
+ 1.
121
+ {p, µ, m} =
122
+
123
+ 1, 2, 1
124
+ 2
125
+
126
+ The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2.
127
+ Clearly n =
128
+ ⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.e., there is no offset.
129
+ The arcs j = 0, 1, 2
130
+ correspond to intervals
131
+ 0 < z < 0,
132
+ 0 < z < 1/2,
133
+ 1/2 < z < 1
134
+ and thus j = 0 can be ignored (being empty). Prabhu’s formula gives F(z) as
135
+ 1 − 1
136
+ 2 exp [µ(1 − z)] [2 − (1 − 2z) λ] α0
137
+ for j = 1 and
138
+ 1 − exp [µ(1 − z)] α0
139
+ for j = 2. The linear equation
140
+ (1 − λ d00)α0 = exp
141
+
142
+ −3
143
+
144
+
145
+ coupled with
146
+ d00 = 1 − 1
147
+
148
+ and λ = 2e−1 give
149
+ α0 =
150
+ 8
151
+ 8 − 8λ + λ2 exp
152
+
153
+ −3
154
+
155
+
156
+ = 0.15000227...
157
+ as the spillage probability. Because κ = n − 1 = 1,
158
+ F(0) = 1 − 1
159
+ 2 exp(µ) (2 − λ) α0 = 0.29937324...
160
+ is the depletion probability.
161
+ One may have expected these two probabilities to be
162
+ almost equal (since 1/µ = 1/2 = m and by a certain symmetry), but this is not true.
163
+ The derivative f(z) of F(z) is plotted in Figure 1.
164
+ 2.
165
+ {p, µ, m} =
166
+
167
+ 1, 2, 1
168
+ 3
169
+
170
+ The mean inflow is p/µ = 1/2 and the target outflow is m = 1/3.
171
+ Clearly n =
172
+ ⌊1/m⌋ = 3 and δ = 1 − m n = 0, i.e., there is no offset.
173
+ The arcs j = 0, 1, 2, 3
174
+ correspond to intervals
175
+ 0 < z < 0,
176
+ 0 < z < 1/3,
177
+ 1/3 < z < 2/3,
178
+ 2/3 < z < 1
179
+
180
+ Stochastic Reservoir Calculations
181
+ 4
182
+ and thus j = 0 can be ignored (being empty). Prabhu’s formula gives F(z) as
183
+ 1 − 1
184
+ 18 exp [µ(1 − z)]
185
+
186
+ 18 − 6 (2 − 3z) λ + (1 − 3z)2λ2�
187
+ α0
188
+ for j = 1,
189
+ 1 − 1
190
+ 3 exp [µ(1 − z)] [3 − (2 − 3z) λ] α0
191
+ for j = 2 and
192
+ 1 − exp [µ(1 − z)] α0
193
+ for j = 3. The linear equation
194
+ (1 − λ d00)α0 = exp
195
+
196
+ −4
197
+
198
+
199
+ coupled with
200
+ d00 = 1 − 2
201
+ 9λ +
202
+ 1
203
+ 162λ2
204
+ and λ = 2e−2/3 give
205
+ α0 =
206
+ 162
207
+ 162 − 162λ + 36λ2 − λ3 exp
208
+
209
+ −4
210
+
211
+
212
+ = 0.34604845...
213
+ as the spillage probability. Because κ = n − 1 = 1,
214
+ F(0) = 1 − 1
215
+ 18 exp(µ)
216
+
217
+ 18 − 12λ + λ2�
218
+ α0 = 0.04363903...
219
+ is the depletion probability. While α0 < F(0) in Section 1, we have α0 > F(0) here.
220
+ This outcome suggests examining a value of m between 1/3 and 1/2. The derivative
221
+ f(z) of F(z) is plotted in Figure 2.
222
+ 3.
223
+ {p, µ, m} =
224
+
225
+ 1, 2, 2
226
+ 5
227
+
228
+ The mean inflow is p/µ = 1/2 and the target outflow is m = 2/5.
229
+ Clearly n =
230
+ ⌊1/m⌋ = 2 and δ = 1 − m n = 1/5, i.e., the offset is nonzero.
231
+ The arcs j = 0, 1, 2
232
+ correspond to intervals
233
+ 0 < z < 1/5,
234
+ 1/5 < z < 3/5,
235
+ 3/5 < z < 1;
236
+ note that j = 0 has length only 1/5. Prabhu’s formula gives F(z) as
237
+ 1 − 1
238
+ 50 exp [µ(1 − z)]
239
+
240
+ 50 − 10 (3 − 5z) λ + (1 − 5z)2λ2�
241
+ α0
242
+
243
+ Stochastic Reservoir Calculations
244
+ 5
245
+ for j = 0,
246
+ 1 − 1
247
+ 5 exp [µ(1 − z)] [5 − (3 − 5z) λ] α0
248
+ for j = 1 and
249
+ 1 − exp [µ(1 − z)] α0
250
+ for j = 2. The linear equation
251
+ (1 − λ d00)α0 = exp
252
+
253
+ −7
254
+
255
+
256
+ coupled with
257
+ d00 = 1 − 9
258
+ 50λ +
259
+ 1
260
+ 750λ2
261
+ and λ = 2e−4/5 give
262
+ α0 =
263
+ 750
264
+ 750 − 750λ + 135λ2 − λ3 exp
265
+
266
+ −7
267
+
268
+
269
+ = 0.24745701...
270
+ as the spillage probability. Because κ = n = 2,
271
+ F(0) = 1 − 1
272
+ 50 exp(µ)
273
+
274
+ 50 − 30λ + λ2�
275
+ α0 = 0.12789671...
276
+ is the depletion probability. The values α0 and F(0) are closer than in the previous
277
+ two sections; a choice of m that is intermediate to 2/5 and 1/2 should make these
278
+ coincident.
279
+ We estimate that m = 0.44276 meets this objective (with 0.199 as the
280
+ common probability). On the other hand, if our goal is to minimize the unweighted
281
+ combination α0 + F(0), then m = 0.38 achieves the goal (with sum 0.372).
282
+ The
283
+ derivative f(z) of F(z) is plotted in Figure 3.
284
+ 4.
285
+ {p, µ, m} =
286
+
287
+ 2, 4, 1
288
+ 2
289
+
290
+ The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2.
291
+ Clearly n =
292
+ ⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.e., there is no offset.
293
+ The arcs j = 0, 1, 2
294
+ correspond to intervals
295
+ 0 < z < 0,
296
+ 0 < z < 1/2,
297
+ 1/2 < z < 1
298
+ and thus j = 0 can be ignored (being empty). Prabhu’s formula gives F(z) as
299
+ 1 − 1
300
+ 48 exp [µ(1 − z)]
301
+ ��
302
+ 48 − 6 (1 − 2z)2 λ
303
+
304
+ α0 +
305
+
306
+ 48 − 48z − (1 − 2z)3 λ
307
+
308
+ α1
309
+
310
+ for j = 1 and
311
+ 1 − exp [µ(1 − z)] {α0 + (1 − z)α1}
312
+
313
+ Stochastic Reservoir Calculations
314
+ 6
315
+ for j = 2. The linear equations
316
+ (1 − λ d00)α0 − λ d01α1 = exp
317
+
318
+ −3
319
+
320
+ � �
321
+ 1 + 3
322
+
323
+
324
+ ,
325
+ λ d10α0 − (1 − λ d11)α1 = exp
326
+
327
+ −3
328
+
329
+
330
+ µ
331
+ coupled with
332
+ d00 = −1 + 11
333
+ 384λ,
334
+ d01 = − 7
335
+ 12 +
336
+ 7
337
+ 1920λ,
338
+ d10 = 1 − 1
339
+ 48λ,
340
+ d11 = 1
341
+ 2 −
342
+ 1
343
+ 384λ
344
+ and λ = −16e−2 give
345
+ α0 = 1
346
+ 2
347
+ 2 + 3µ − 2λ µ d01 − λ (2 + 3µ) d11
348
+ 1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp
349
+
350
+ −3
351
+
352
+
353
+ ,
354
+ α1 = 1
355
+ 2
356
+ −2µ + 2λ µ d00 + λ (2 + 3µ) d10
357
+ 1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp
358
+
359
+ −3
360
+
361
+
362
+ ;
363
+ the spillage probability is hence α0 = 0.13554701.... Because κ = n − 1 = 1,
364
+ F(0) = 1 − 1
365
+ 48 exp(µ) [(48 − 6λ) α0 + (48 − λ)α1] = 0.22163253...
366
+ is the depletion probability. The mode of Gamma(2, µ) is 1/µ > 0 whereas the mode
367
+ of Gamma(1, µ) is 0; a small inflow is less likely for p = 2 than for p = 1, thus F(0)
368
+ is noticeably smaller than in Section 1.
369
+ The tail of Gamma(2, µ) is fatter than the
370
+ tail of Gamma(1, µ); a large inflow is more likely for p = 2 than for p = 1, however
371
+ α0 is paradoxically smaller than in Section 1 (but only slightly). The derivative f(z)
372
+ of F(z) is plotted in Figure 4.
373
+ 5.
374
+ Invariance
375
+ One verification of Prabhu’s formula is based on simulation (easily programmed, since
376
+ the recurrence for Zt is straightforward).
377
+ Another verification is more esoteric: to
378
+ confirm that the formula is invariant under the transformation
379
+
380
+ v, p
381
+ µ, m
382
+
383
+ �−→
384
+
385
+ ˜v, p
386
+ ˜µ, ˜m
387
+
388
+ =
389
+ � v
390
+ m,
391
+ p
392
+ m µ, 1
393
+
394
+ in the sense that spillage & depletion probabilities should remain constant and storage
395
+ level CDF arguments should simply scale by m. First,
396
+ ˜n =
397
+ � ˜v
398
+ ˜m
399
+
400
+ =
401
+ � v
402
+ m
403
+
404
+ = n,
405
+
406
+ Stochastic Reservoir Calculations
407
+ 7
408
+ ˜λ = (−1)p−1˜µp exp[−˜µ ˜m] = (−1)p−1(m µ)p exp[−m µ · 1] = mpλ
409
+ and
410
+ ˜drs = (−1)p+r−1
411
+ n
412
+
413
+ q=0
414
+ (−˜λ)q
415
+ ˜v
416
+
417
+ q ˜m
418
+ (t − q ˜m)q p+s(t + ˜m)p−r−1
419
+ (q p + s)!(p − r − 1)!
420
+ dt
421
+ = (−1)p+r−1
422
+ n
423
+
424
+ q=0
425
+ mp q(−λ)q
426
+ v/m
427
+
428
+ q
429
+ (t − q)q p+s(t + 1)p−r−1
430
+ (q p + s)!(p − r − 1)! dt
431
+ = (−1)p+r−1
432
+ n
433
+
434
+ q=0
435
+ mp q(−λ)q
436
+ v
437
+
438
+ q m
439
+ ( u
440
+ m − q)q p+s( u
441
+ m + 1)p−r−1
442
+ (q p + s)!(p − r − 1)!
443
+ du
444
+ m
445
+ upon setting u = m t, du = m dt; thus
446
+ ˜drs = (−1)p+r−1
447
+ n
448
+
449
+ q=0
450
+ mp q(−λ)q
451
+ mp q+s+p−r−1+1
452
+ v
453
+
454
+ q m
455
+ (u − q m)q p+s(u + m)p−r−1
456
+ (q p + s)!(p − r − 1)!
457
+ du
458
+ = m−(p−r+s)drs.
459
+ Second,
460
+ ˜αr − ˜λ
461
+ p−1
462
+
463
+ s=0
464
+ ˜drs ˜αs = (−˜µ)r exp [−˜µ(˜v + ˜m)]
465
+ p−r−1
466
+
467
+ s=0
468
+ [˜µ(˜v + ˜m)]s
469
+ s!
470
+ implies
471
+ ˜αr − mpλ
472
+ p−1
473
+
474
+ s=0
475
+ m−(p−r+s)drs ˜αs = mr(−µ)r exp [−µ(v + m)]
476
+ p−r−1
477
+
478
+ s=0
479
+ [µ(v + m)]s
480
+ s!
481
+ because ˜µ(˜v + ˜m) = m µ
482
+ � v
483
+ m + 1
484
+
485
+ = µ(v + m); therefore
486
+ m−r ˜αr − λ
487
+ p−1
488
+
489
+ s=0
490
+ m−sdrs ˜αs = (−µ)r exp [−µ(v + m)]
491
+ p−r−1
492
+
493
+ s=0
494
+ [µ(v + m)]s
495
+ s!
496
+ which is immediately satisfied by ˜αr = mrαr. In particular, ˜α0 = α0. Third,
497
+ ˜δ = ˜v − ˜m n = v − m n
498
+ m
499
+ = δ
500
+ m.
501
+
502
+ Stochastic Reservoir Calculations
503
+ 8
504
+ Figure 1: Plot of storage level density w = f(z) for {p, µ, m} =
505
+
506
+ 1, 2, 1
507
+ 2
508
+
509
+ .
510
+ Finally, given j,
511
+ ˜F(z) = 1 − exp [˜µ(˜v − z)]
512
+ p−1
513
+
514
+ r=0
515
+ ˜αr
516
+ n−j
517
+
518
+ q=0
519
+ (−˜λ)q (˜v − q ˜m − z)q p+r
520
+ (q p + r)!
521
+ = 1 − exp
522
+
523
+ (m µ)
524
+ � v
525
+ m − z
526
+ �� p−1
527
+
528
+ r=0
529
+ mrαr
530
+ n−j
531
+
532
+ q=0
533
+ mp q(−λ)q ( v
534
+ m − q − z)q p+r
535
+ (q p + r)!
536
+ = 1 − exp [µ(v − m z)]
537
+ p−1
538
+
539
+ r=0
540
+ mrαr
541
+ n−j
542
+
543
+ q=0
544
+ mp q(−λ)q
545
+ mp q+r
546
+ (v − q m − m z)q p+r
547
+ (q p + r)!
548
+ = F(m z)
549
+ for (j − 1) ˜m + ˜δ < z < j ˜m + ˜δ, i.e., (j − 1)m + δ < m z < j m + δ. In the same way,
550
+ ˜F(0) = F(0), with the upper summation limit n − j replaced by ˜κ = κ.
551
+ 6.
552
+ Inquiry
553
+ Moran [9, 10] introduced a different model – in continuous time – for an infinite
554
+ volume reservoir. Let X(t) ∼ Gamma(t, 1/ρ) denote the total inflow over the interval
555
+ (0, t], assumed to be a nonnegative stochastic process with stationary independent
556
+ increments, where 0 < ρ < 1 is constant.
557
+ In particular, E(X(T)) = ρ t.
558
+ Let the
559
+
560
+ M
561
+ 8'0
562
+ 0.6
563
+ 0.4
564
+ 0.2
565
+ 0.0
566
+ 0.2
567
+ 0.4
568
+ 0.6
569
+ 8:0
570
+ 1.0Stochastic Reservoir Calculations
571
+ 9
572
+ Figure 2: Plot of storage level density w = f(z) for {p, µ, m} =
573
+
574
+ 1, 2, 1
575
+ 3
576
+
577
+ .
578
+ Figure 3: Plot of storage level density w = f(z) for {p, µ, m} =
579
+
580
+ 1, 2, 2
581
+ 5
582
+
583
+ .
584
+
585
+ w
586
+ 1.2
587
+ 1.0
588
+ 0.8
589
+ 0.6
590
+ 0.4
591
+ 0.2
592
+ 0.0
593
+ 0.2
594
+ 0.4
595
+ 0.6
596
+ 0.8
597
+ 1.0M
598
+ 1.2
599
+ 1.0
600
+ 0.8
601
+ 0.6
602
+ 0.4
603
+ 0.2
604
+ 0.0
605
+ 0.2
606
+ 0.4
607
+ 0.6
608
+ 0.8
609
+ 1.0Stochastic Reservoir Calculations
610
+ 10
611
+ Figure 4: Plot of storage level density w = f(z) for {p, µ, m} =
612
+
613
+ 2, 4, 1
614
+ 2
615
+
616
+ .
617
+ outflow be continuous and at unit rate except when the reservoir is empty. We have
618
+ Z(t) = Z(0) + X(t) − t +
619
+ t
620
+
621
+ 0
622
+ 1{Z(τ)=0} dτ
623
+ where 1Ω is the indicator function of Ω ⊆ R. By a limiting argument (from discrete
624
+ to continuous), the PDF of Z(t) as t → ∞ has Laplace transform [11]
625
+ (1 − ρ)θ
626
+ θ − ln (1 + ρ θ),
627
+ Re(θ) > 0
628
+ which Daniels [12] inverted to yield
629
+ f(z) = −(1 − ρ)
630
+
631
+
632
+ 0
633
+ d
634
+ dz
635
+ (z + w)w−1 exp [−(z + w)/ρ]
636
+ ρwΓ(w)
637
+ dw,
638
+ z > 0
639
+ with a point mass 1 − ρ at z = 0.
640
+ We seek an experimental approach to verify
641
+ this PDF.
642
+ How might one efficiently simulate Z(t) for suitably large t?
643
+ Offers of
644
+ assistance would be most appreciated.
645
+ We wonder too if Prabhu’s formula could
646
+ possibly be reconfigured to play a role in this inquiry.
647
+ The fact that v < ∞ earlier
648
+ but v = ∞ here is an issue; the fact that Xt was the precise inflow at time t whereas
649
+ X(t) is an accumulated inflow over (0, t] is another issue.
650
+
651
+ 0.8
652
+ 0.6
653
+ 0.4
654
+ 0.0
655
+ 0.2
656
+ 0.4
657
+ 0.6
658
+ 0.8
659
+ 1.0Stochastic Reservoir Calculations
660
+ 11
661
+ 7.
662
+ Acknowledgements
663
+ Khaled Hamed was so kind to answer several questions of mine; this paper would not
664
+ have been possible without his very helpful articles [7, 8]. In particular, he appears
665
+ to be the first author to specify the role of the offset δ when v is not an integer
666
+ multiple of m.
667
+ I am grateful to innumerable software developers.
668
+ The symbolic
669
+ manipulations described here are tailor-made for Mathematica, and the simulations
670
+ employed here to check predictions are ideal for R.
671
+ References
672
+ [1] N. U. Prabhu, On the integral equation for the finite dam, Quart. J. Math. 9
673
+ (1958) 183–188; MR0099726.
674
+ [2] P. A. P. Moran, A probability theory of dams and storage systems: modifications
675
+ of the release rules, Austral. J. Appl. Sci. 6 (1955) 117–130; MR0077807.
676
+ [3] P. A. P. Moran, The Theory of Storage, Wiley, 1959, pp. 39–51; MR0114254.
677
+ [4] N. U. Prabhu, Queues and Inventories, Wiley, 1965, pp. 209–213; MR0211494.
678
+ [5] P. Lochert and R. M. Phatarfod, On the problem of discretization in dam theory,
679
+ Water Resources Research 15 (1979) 1593-1597.
680
+ [6] E. H. Lloyd, The stochastic reservoir: exact and approximate evaluations of
681
+ storage distribution, J. Hydrology 151 (1993) 65–107.
682
+ [7] K. H. Hamed, On the implementation of Prabhu’s exact solution of the stochastic
683
+ reservoir equation, Adv. in Water Resources 32 (2009) 594–606.
684
+ [8] K. H. Hamed, Stochastic reservoir analysis, from Handbook of Engineering Hy-
685
+ drology, ed. S. Eslamian, CRC Press, 2014, pp. 531–548.
686
+ [9] P. A. P. Moran, A probability theory of a dam with a continuous release, Quart.
687
+ J. Math. 7 (1956) 130–137; MR0101573.
688
+ [10] J. Gani, Problems in the probability theory of storage systems, J. Royal Statist.
689
+ Soc. Ser. B 19 (1957) 181–206; MR0092289.
690
+ [11] D. G. Kendall, Some problems in the theory of dams, J. Royal Statist. Soc. Ser.
691
+ B 19 (1957) 207–212.
692
+ [12] H. E. Daniels, Discussion on the papers by Dr. Gani and Mr. Kendall, J. Royal
693
+ Statist. Soc. Ser. B 19 (1957) 224–225.
694
+
695
+ Stochastic Reservoir Calculations
696
+ 12
697
+ Steven Finch
698
+ MIT Sloan School of Management
699
+ Cambridge, MA, USA
700
+ steven fi[email protected]
701
+
DNE1T4oBgHgl3EQfWQQt/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf,len=318
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
3
+ page_content='03111v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
4
+ page_content='PR] 8 Jan 2023 Stochastic Reservoir Calculations Steven Finch January 8, 2023 Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
5
+ page_content=' Prabhu (1958) obtained the stationary distribution of storage level Zt in a reservoir of finite volume v, given an inflow Xt and an outflow Yt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
6
+ page_content=' Time t is assumed to be discrete, Xt ∼ Gamma(p, µ) are independent and p is a positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
7
+ page_content=' The mean inflow is p/µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
8
+ page_content=' the target outflow is m (constant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
9
+ page_content=' We attempt to clarify intricate details, often omitted in the literature, by working through several examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
10
+ page_content=' Of special interest are the probabilities of depletion (Zt = 0) and spillage (Zt = v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
11
+ page_content=' For prescribed {v, p, µ}, what value of m minimizes both of these?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
12
+ page_content=' Let v > 0, p be a positive integer, µ > 0 and m > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
13
+ page_content=' At each time t = 1, 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
14
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
15
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
16
+ page_content=', a reservoir of volume v absorbs an inflow Xt ∼ Gamma(p, µ) and simultaneously releases an outflow 0 ≤ Yt ≤ m, depending on availablity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
17
+ page_content=' More precisely, Yt = min {Xt + Zt, m} where 0 ≤ Zt ≤ v is the storage level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
18
+ page_content=' Independence across time is assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
19
+ page_content=' Our interest is in the probability density function of Zt in the limit as t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
20
+ page_content=' We need not explicitly refer to Yt again, as Zt+1 can be defined recursively without it: Zt+1 = max {0, min {Xt + Zt − m, v}} , Z1 = v/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
21
+ page_content=' Let n = ⌊v/m⌋ and δ = v − m n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
22
+ page_content=' In words, δ is 0 if and only if v is an integer multiple of m, and δ is otherwise > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
23
+ page_content=' Let λ = (−1)p−1µp exp(−µ m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
24
+ page_content=' The graph of the PDF for Zt is piecewise smooth and contains at most n + 1 arcs, as well as point masses at z = 0 and z = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
25
+ page_content=' The arcs are identified by j = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
26
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
27
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
28
+ page_content=', n from left to right, and correspond to open subintervals max {(j − 1)m + δ, 0} < z < min {j m + δ, v} of 0 < z < v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
29
+ page_content=' Prabhu [1] impressively obtained the cumulative distribution function F(z) = 1 − exp [µ(v − z)] p−1 � r=0 αr n−j � q=0 (−λ)q (v − q m − z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
30
+ page_content=' 0Copyright © 2023 by Steven R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
31
+ page_content=' Finch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
32
+ page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
33
+ page_content=' 1 Stochastic Reservoir Calculations 2 that shall occupy us for the remainder of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
34
+ page_content=' The αr coefficients are found by solving a system of p linear equations with coefficients drs for r, s = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
35
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
36
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
37
+ page_content=' , p−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
38
+ page_content=' These will be defined shortly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
39
+ page_content=' Special considerations apply to endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
40
+ page_content=' Let κ = n − 1 if δ = 0 and κ = n otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
41
+ page_content=' The depletion probability, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
42
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
43
+ page_content=', odds for the reservoir to be dry, is F(0) = 1 − exp(µ v) p−1 � r=0 αr κ � q=0 (−λ)q (v − q m)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
44
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
45
+ page_content=' In contrast, the spillage probability, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
46
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
47
+ page_content=', odds for the reservoir to be full, is just 1 − F(v) = α0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
48
+ page_content=' Minimizing the chance of both zero supply (harmful) and oversupply (wasteful) is clearly important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
49
+ page_content=' Other quantities of interest include the total deficit, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
50
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
51
+ page_content=', unsatis- fied demand, over a specified time duration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
52
+ page_content=' and total surplus, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
53
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
54
+ page_content=', unwanted supply (because v < ∞) that necessarily leaks into the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
55
+ page_content=' For r = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
56
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
57
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
58
+ page_content=' , p − 1, the linear system αr − λ p−1 � s=0 drs αs = (−µ)r exp [−µ(v + m)] p−r−1 � s=0 [µ(v + m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
59
+ page_content=' requires solution, where drs = (−1)p+r−1 n � q=0 (−λ)q v � q m (t − q m)q p+s(t + m)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
60
+ page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
61
+ page_content=' dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
62
+ page_content=' The integral can be easily expressed in closed-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
63
+ page_content=' Prabhu’s CDF formula, given gamma-distributed inflow, extends a PDF formula discovered earlier by Moran [2], given exponentially distributed inflow (p = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
64
+ page_content=' We have not studied [2] in depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
65
+ page_content=' More discussion of [1] appears in [3, 4, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
66
+ page_content=' The treatment in [7, 8] is, however, most pragmatic and useful for our purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
67
+ page_content=' Henceforth we fix v = 1 and explore results for selected {p, µ, m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
68
+ page_content=' It is surprising, more than fifty years after the publication of Prabhu’s work, that greater attention has not been paid to this research [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
69
+ page_content=' We can only imagine that intricate details, often lost in theoretical summaries, have conspired to prevent greater understanding and widespread recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
70
+ page_content=' Our hope is that working through a few examples will help to improve matters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
71
+ page_content=' Stochastic Reservoir Calculations 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
72
+ page_content=' {p, µ, m} = � 1, 2, 1 2 � The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
73
+ page_content=' Clearly n = ⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
74
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
75
+ page_content=', there is no offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
76
+ page_content=' The arcs j = 0, 1, 2 correspond to intervals 0 < z < 0, 0 < z < 1/2, 1/2 < z < 1 and thus j = 0 can be ignored (being empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
77
+ page_content=' Prabhu’s formula gives F(z) as 1 − 1 2 exp [µ(1 − z)] [2 − (1 − 2z) λ] α0 for j = 1 and 1 − exp [µ(1 − z)] α0 for j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
78
+ page_content=' The linear equation (1 − λ d00)α0 = exp � −3 2µ � coupled with d00 = 1 − 1 8λ and λ = 2e−1 give α0 = 8 8 − 8λ + λ2 exp � −3 2µ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
79
+ page_content='15000227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
80
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
81
+ page_content=' as the spillage probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
82
+ page_content=' Because κ = n − 1 = 1, F(0) = 1 − 1 2 exp(µ) (2 − λ) α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
83
+ page_content='29937324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
84
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
85
+ page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
86
+ page_content=' One may have expected these two probabilities to be almost equal (since 1/µ = 1/2 = m and by a certain symmetry), but this is not true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
87
+ page_content=' The derivative f(z) of F(z) is plotted in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
88
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
89
+ page_content=' {p, µ, m} = � 1, 2, 1 3 � The mean inflow is p/µ = 1/2 and the target outflow is m = 1/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
90
+ page_content=' Clearly n = ⌊1/m⌋ = 3 and δ = 1 − m n = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
91
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
92
+ page_content=', there is no offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
93
+ page_content=' The arcs j = 0, 1, 2, 3 correspond to intervals 0 < z < 0, 0 < z < 1/3, 1/3 < z < 2/3, 2/3 < z < 1 Stochastic Reservoir Calculations 4 and thus j = 0 can be ignored (being empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
94
+ page_content=' Prabhu’s formula gives F(z) as 1 − 1 18 exp [µ(1 − z)] � 18 − 6 (2 − 3z) λ + (1 − 3z)2λ2� α0 for j = 1, 1 − 1 3 exp [µ(1 − z)] [3 − (2 − 3z) λ] α0 for j = 2 and 1 − exp [µ(1 − z)] α0 for j = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
95
+ page_content=' The linear equation (1 − λ d00)α0 = exp � −4 3µ � coupled with d00 = 1 − 2 9λ + 1 162λ2 and λ = 2e−2/3 give α0 = 162 162 − 162λ + 36λ2 − λ3 exp � −4 3µ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
96
+ page_content='34604845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
97
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
98
+ page_content=' as the spillage probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
99
+ page_content=' Because κ = n − 1 = 1, F(0) = 1 − 1 18 exp(µ) � 18 − 12λ + λ2� α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
100
+ page_content='04363903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
101
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
102
+ page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
103
+ page_content=' While α0 < F(0) in Section 1, we have α0 > F(0) here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
104
+ page_content=' This outcome suggests examining a value of m between 1/3 and 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
105
+ page_content=' The derivative f(z) of F(z) is plotted in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
106
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
107
+ page_content=' {p, µ, m} = � 1, 2, 2 5 � The mean inflow is p/µ = 1/2 and the target outflow is m = 2/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
108
+ page_content=' Clearly n = ⌊1/m⌋ = 2 and δ = 1 − m n = 1/5, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
109
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
110
+ page_content=', the offset is nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
111
+ page_content=' The arcs j = 0, 1, 2 correspond to intervals 0 < z < 1/5, 1/5 < z < 3/5, 3/5 < z < 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
112
+ page_content=' note that j = 0 has length only 1/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
113
+ page_content=' Prabhu’s formula gives F(z) as 1 − 1 50 exp [µ(1 − z)] � 50 − 10 (3 − 5z) λ + (1 − 5z)2λ2� α0 Stochastic Reservoir Calculations 5 for j = 0, 1 − 1 5 exp [µ(1 − z)] [5 − (3 − 5z) λ] α0 for j = 1 and 1 − exp [µ(1 − z)] α0 for j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
114
+ page_content=' The linear equation (1 − λ d00)α0 = exp � −7 5µ � coupled with d00 = 1 − 9 50λ + 1 750λ2 and λ = 2e−4/5 give α0 = 750 750 − 750λ + 135λ2 − λ3 exp � −7 5µ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
115
+ page_content='24745701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
116
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
117
+ page_content=' as the spillage probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
118
+ page_content=' Because κ = n = 2, F(0) = 1 − 1 50 exp(µ) � 50 − 30λ + λ2� α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
119
+ page_content='12789671.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
120
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
121
+ page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
122
+ page_content=' The values α0 and F(0) are closer than in the previous two sections;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
123
+ page_content=' a choice of m that is intermediate to 2/5 and 1/2 should make these coincident.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
124
+ page_content=' We estimate that m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
125
+ page_content='44276 meets this objective (with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
126
+ page_content='199 as the common probability).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
127
+ page_content=' On the other hand, if our goal is to minimize the unweighted combination α0 + F(0), then m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
128
+ page_content='38 achieves the goal (with sum 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
129
+ page_content='372).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
130
+ page_content=' The derivative f(z) of F(z) is plotted in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
131
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
132
+ page_content=' {p, µ, m} = � 2, 4, 1 2 � The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
133
+ page_content=' Clearly n = ⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
134
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
135
+ page_content=', there is no offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
136
+ page_content=' The arcs j = 0, 1, 2 correspond to intervals 0 < z < 0, 0 < z < 1/2, 1/2 < z < 1 and thus j = 0 can be ignored (being empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
137
+ page_content=' Prabhu’s formula gives F(z) as 1 − 1 48 exp [µ(1 − z)] �� 48 − 6 (1 − 2z)2 λ � α0 + � 48 − 48z − (1 − 2z)3 λ � α1 � for j = 1 and 1 − exp [µ(1 − z)] {α0 + (1 − z)α1} Stochastic Reservoir Calculations 6 for j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
138
+ page_content=' The linear equations (1 − λ d00)α0 − λ d01α1 = exp � −3 2µ � � 1 + 3 2µ � , λ d10α0 − (1 − λ d11)α1 = exp � −3 2µ � µ coupled with d00 = −1 + 11 384λ, d01 = − 7 12 + 7 1920λ, d10 = 1 − 1 48λ, d11 = 1 2 − 1 384λ and λ = −16e−2 give α0 = 1 2 2 + 3µ − 2λ µ d01 − λ (2 + 3µ) d11 1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp � −3 2µ � , α1 = 1 2 −2µ + 2λ µ d00 + λ (2 + 3µ) d10 1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp � −3 2µ � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
139
+ page_content=' the spillage probability is hence α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
140
+ page_content='13554701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
141
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
142
+ page_content='. Because κ = n − 1 = 1, F(0) = 1 − 1 48 exp(µ) [(48 − 6λ) α0 + (48 − λ)α1] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
143
+ page_content='22163253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
144
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
145
+ page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
146
+ page_content=' The mode of Gamma(2, µ) is 1/µ > 0 whereas the mode of Gamma(1, µ) is 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
147
+ page_content=' a small inflow is less likely for p = 2 than for p = 1, thus F(0) is noticeably smaller than in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
148
+ page_content=' The tail of Gamma(2, µ) is fatter than the tail of Gamma(1, µ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
149
+ page_content=' a large inflow is more likely for p = 2 than for p = 1, however α0 is paradoxically smaller than in Section 1 (but only slightly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
150
+ page_content=' The derivative f(z) of F(z) is plotted in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
151
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
152
+ page_content=' Invariance One verification of Prabhu’s formula is based on simulation (easily programmed, since the recurrence for Zt is straightforward).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
153
+ page_content=' Another verification is more esoteric: to confirm that the formula is invariant under the transformation � v, p µ, m � �−→ � ˜v, p ˜µ, ˜m � = � v m, p m µ, 1 � in the sense that spillage & depletion probabilities should remain constant and storage level CDF arguments should simply scale by m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
154
+ page_content=' First, ˜n = � ˜v ˜m � = � v m � = n, Stochastic Reservoir Calculations 7 ˜λ = (−1)p−1˜µp exp[−˜µ ˜m] = (−1)p−1(m µ)p exp[−m µ · 1] = mpλ and ˜drs = (−1)p+r−1 n � q=0 (−˜λ)q ˜v � q ˜m (t − q ˜m)q p+s(t + ˜m)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
155
+ page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
156
+ page_content=' dt = (−1)p+r−1 n � q=0 mp q(−λ)q v/m � q (t − q)q p+s(t + 1)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
157
+ page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
158
+ page_content=' dt = (−1)p+r−1 n � q=0 mp q(−λ)q v � q m ( u m − q)q p+s( u m + 1)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
159
+ page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
160
+ page_content=' du m upon setting u = m t, du = m dt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
161
+ page_content=' thus ˜drs = (−1)p+r−1 n � q=0 mp q(−λ)q mp q+s+p−r−1+1 v � q m (u − q m)q p+s(u + m)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
162
+ page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
163
+ page_content=' du = m−(p−r+s)drs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
164
+ page_content=' Second, ˜αr − ˜λ p−1 � s=0 ˜drs ˜αs = (−˜µ)r exp [−˜µ(˜v + ˜m)] p−r−1 � s=0 [˜µ(˜v + ˜m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
165
+ page_content=' implies ˜αr − mpλ p−1 � s=0 m−(p−r+s)drs ˜αs = mr(−µ)r exp [−µ(v + m)] p−r−1 � s=0 [µ(v + m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
166
+ page_content=' because ˜µ(˜v + ˜m) = m µ � v m + 1 � = µ(v + m);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
167
+ page_content=' therefore m−r ˜αr − λ p−1 � s=0 m−sdrs ˜αs = (−µ)r exp [−µ(v + m)] p−r−1 � s=0 [µ(v + m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
168
+ page_content=' which is immediately satisfied by ˜αr = mrαr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
169
+ page_content=' In particular, ˜α0 = α0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
170
+ page_content=' Third, ˜δ = ˜v − ˜m n = v − m n m = δ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
171
+ page_content=' Stochastic Reservoir Calculations 8 Figure 1: Plot of storage level density w = f(z) for {p, µ, m} = � 1, 2, 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
172
+ page_content=' Finally, given j, ˜F(z) = 1 − exp [˜µ(˜v − z)] p−1 � r=0 ˜αr n−j � q=0 (−˜λ)q (˜v − q ˜m − z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
173
+ page_content=' = 1 − exp � (m µ) � v m − z �� p−1 � r=0 mrαr n−j � q=0 mp q(−λ)q ( v m − q − z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
174
+ page_content=' = 1 − exp [µ(v − m z)] p−1 � r=0 mrαr n−j � q=0 mp q(−λ)q mp q+r (v − q m − m z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
175
+ page_content=' = F(m z) for (j − 1) ˜m + ˜δ < z < j ˜m + ˜δ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
176
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
177
+ page_content=', (j − 1)m + δ < m z < j m + δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
178
+ page_content=' In the same way, ˜F(0) = F(0), with the upper summation limit n − j replaced by ˜κ = κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
179
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
180
+ page_content=' Inquiry Moran [9, 10] introduced a different model – in continuous time – for an infinite volume reservoir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
181
+ page_content=' Let X(t) ∼ Gamma(t, 1/ρ) denote the total inflow over the interval (0, t], assumed to be a nonnegative stochastic process with stationary independent increments, where 0 < ρ < 1 is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
182
+ page_content=' In particular, E(X(T)) = ρ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
183
+ page_content=" Let the M 8'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
184
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
185
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
186
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
187
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
188
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
189
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
190
+ page_content='6 8:0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
191
+ page_content='0Stochastic Reservoir Calculations 9 Figure 2: Plot of storage level density w = f(z) for {p, µ, m} = � 1, 2, 1 3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
192
+ page_content=' Figure 3: Plot of storage level density w = f(z) for {p, µ, m} = � 1, 2, 2 5 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
193
+ page_content=' w 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
194
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
195
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
196
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
197
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
198
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
199
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
200
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
201
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
202
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
203
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
204
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
205
+ page_content='0M 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
206
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
207
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
208
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
209
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
210
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
211
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
212
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
213
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
214
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
215
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
216
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
217
+ page_content='0Stochastic Reservoir Calculations 10 Figure 4: Plot of storage level density w = f(z) for {p, µ, m} = � 2, 4, 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
218
+ page_content=' outflow be continuous and at unit rate except when the reservoir is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
219
+ page_content=' We have Z(t) = Z(0) + X(t) − t + t � 0 1{Z(τ)=0} dτ where 1Ω is the indicator function of Ω ⊆ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
220
+ page_content=' By a limiting argument (from discrete to continuous), the PDF of Z(t) as t → ∞ has Laplace transform [11] (1 − ρ)θ θ − ln (1 + ρ θ), Re(θ) > 0 which Daniels [12] inverted to yield f(z) = −(1 − ρ) ∞ � 0 d dz (z + w)w−1 exp [−(z + w)/ρ] ρwΓ(w) dw, z > 0 with a point mass 1 − ρ at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
221
+ page_content=' We seek an experimental approach to verify this PDF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
222
+ page_content=' How might one efficiently simulate Z(t) for suitably large t?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
223
+ page_content=' Offers of assistance would be most appreciated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
224
+ page_content=' We wonder too if Prabhu’s formula could possibly be reconfigured to play a role in this inquiry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
225
+ page_content=' The fact that v < ∞ earlier but v = ∞ here is an issue;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
226
+ page_content=' the fact that Xt was the precise inflow at time t whereas X(t) is an accumulated inflow over (0, t] is another issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
227
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
228
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
229
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
230
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
231
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
232
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
233
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
234
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
235
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
236
+ page_content='0Stochastic Reservoir Calculations 11 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
237
+ page_content=' Acknowledgements Khaled Hamed was so kind to answer several questions of mine;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
238
+ page_content=' this paper would not have been possible without his very helpful articles [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
239
+ page_content=' In particular, he appears to be the first author to specify the role of the offset δ when v is not an integer multiple of m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
240
+ page_content=' I am grateful to innumerable software developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
241
+ page_content=' The symbolic manipulations described here are tailor-made for Mathematica, and the simulations employed here to check predictions are ideal for R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
242
+ page_content=' References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
243
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
244
+ page_content=' Prabhu, On the integral equation for the finite dam, Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
245
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
246
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
247
+ page_content=' 9 (1958) 183–188;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
248
+ page_content=' MR0099726.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
249
+ page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
250
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
251
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
252
+ page_content=' Moran, A probability theory of dams and storage systems: modifications of the release rules, Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
253
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
254
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
255
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
256
+ page_content=' 6 (1955) 117–130;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
257
+ page_content=' MR0077807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
258
+ page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
259
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
260
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
261
+ page_content=' Moran, The Theory of Storage, Wiley, 1959, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
262
+ page_content=' 39–51;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
263
+ page_content=' MR0114254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
264
+ page_content=' [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
265
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
266
+ page_content=' Prabhu, Queues and Inventories, Wiley, 1965, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
267
+ page_content=' 209–213;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
268
+ page_content=' MR0211494.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
269
+ page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
270
+ page_content=' Lochert and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
271
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
272
+ page_content=' Phatarfod, On the problem of discretization in dam theory, Water Resources Research 15 (1979) 1593-1597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
273
+ page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
274
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
275
+ page_content=' Lloyd, The stochastic reservoir: exact and approximate evaluations of storage distribution, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
276
+ page_content=' Hydrology 151 (1993) 65–107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
277
+ page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
278
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
279
+ page_content=' Hamed, On the implementation of Prabhu’s exact solution of the stochastic reservoir equation, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
280
+ page_content=' in Water Resources 32 (2009) 594–606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
281
+ page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
282
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
283
+ page_content=' Hamed, Stochastic reservoir analysis, from Handbook of Engineering Hy- drology, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
284
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
285
+ page_content=' Eslamian, CRC Press, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
286
+ page_content=' 531–548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
287
+ page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
288
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
289
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
290
+ page_content=' Moran, A probability theory of a dam with a continuous release, Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
291
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
292
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
293
+ page_content=' 7 (1956) 130–137;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
294
+ page_content=' MR0101573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
295
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
296
+ page_content=' Gani, Problems in the probability theory of storage systems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
297
+ page_content=' Royal Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
298
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
299
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
300
+ page_content=' B 19 (1957) 181–206;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
301
+ page_content=' MR0092289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
302
+ page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
303
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
304
+ page_content=' Kendall, Some problems in the theory of dams, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
305
+ page_content=' Royal Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
306
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
307
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
308
+ page_content=' B 19 (1957) 207–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
309
+ page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
310
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
311
+ page_content=' Daniels, Discussion on the papers by Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
312
+ page_content=' Gani and Mr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
313
+ page_content=' Kendall, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
314
+ page_content=' Royal Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
315
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
316
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
317
+ page_content=' B 19 (1957) 224–225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
318
+ page_content=' Stochastic Reservoir Calculations 12 Steven Finch MIT Sloan School of Management Cambridge, MA, USA steven finch@harvard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
319
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'}
DtFJT4oBgHgl3EQfBiw4/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a886ceb0ed3995abdd7e7f542bf601e8c5762152e54542b903e63735d16a73b
3
+ size 79177
H9AzT4oBgHgl3EQfHvt9/content/tmp_files/2301.01050v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9AzT4oBgHgl3EQfHvt9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9FIT4oBgHgl3EQfYCsV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8a2d5fd7e22fb321d84e2c412ef6a3669adc5fe0716c8a4d1205de73a7ab7d9
3
+ size 126131
HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8160236313c68fa95eef4354a409dbdba66680734591936ae5ed78e0490e8fd2
3
+ size 326943