diff --git a/-9AyT4oBgHgl3EQfRPbk/vector_store/index.faiss b/-9AyT4oBgHgl3EQfRPbk/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..eaf48cdf6a6d37eb1b7d8ce9df5e303e0ed559ec --- /dev/null +++ b/-9AyT4oBgHgl3EQfRPbk/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:84dfbbaa02a3ce1acab301654ec3d6adb46d457ffc0c02caf08417b6102f270d +size 4653101 diff --git a/-NE3T4oBgHgl3EQfSglq/content/tmp_files/2301.04433v1.pdf.txt b/-NE3T4oBgHgl3EQfSglq/content/tmp_files/2301.04433v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..5d294cefe503243e827928bba72e55d184bce2d3 --- /dev/null +++ b/-NE3T4oBgHgl3EQfSglq/content/tmp_files/2301.04433v1.pdf.txt @@ -0,0 +1,3242 @@ +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A +BANACH SPACE +MIGUEL MART´IN, YO¨EL PERREAU, AND ABRAHAM RUEDA ZOCA +Abstract. We introduce extensions of ∆-points and Daugavet points in which slices are replaced by +relative weakly open subsets (super ∆-points and super Daugavet points) or by convex combinations of +slices (ccs ∆-points and ccs Daugavet points). These notions represent the extreme opposite to denting +points, points of continuity, and strongly regular points. We first give a general overview on these +new concepts and provide some isometric consequences on the spaces. As examples: if a Banach space +contains a super ∆-point, then it does not admit an unconditional FDD (in particular, unconditional +basis) with suppression constant smaller than two; if a real Banach space contains a ccs ∆-point, then +it does not admit a one-unconditional basis; if a Banach space contains a ccs Daugavet point, then +every convex combination of slices of its unit ball has diameter two. We next characterize the notions in +some classes of Banach spaces showing, for instance, that all the notions coincide in L1-predual spaces +and that all the notions but ccs Daugavet points coincide in L1-spaces. We next remark on some +examples which have previously appeared in the literature and provide some new intriguing examples: +examples of super ∆-points which are as closed as desired to strongly exposed points (hence failing +to be Daugavet points in an extreme way); an example of a super ∆-point which is strongly regular +(hence failing to be a ccs ∆-point in the strongest way); a super Daugavet point which fails to be a ccs +∆-point. The extensions of the diametral notions to point in the open unit ball and the consequences +on the spaces are also studied. Last, we investigate the Kuratowski measure of relative weakly open +subsets and of convex combinations of slices in the presence of super ∆-points or ccs ∆-points, as well +as for spaces enjoying diameter 2 properties. We conclude the paper with a section on open problems. +Contents +1. +Introduction +2 +2. +Notation and preliminary results +5 +3. +Characterisations of diametral-notions and implications on the geometry of the ambient +space +9 +3.1. +Spaces with a one-unconditional basis and beyond +12 +3.2. +Absolute sums +16 +4. +Examples and counterexamples of diametral elements +19 +4.1. +Characterization in C(K)-spaces, L1-preduals, and M¨untz spaces +19 +4.2. +Characterization in L1-spaces +22 +4.3. +Remarks on some examples from the literature +24 +4.4. +A super ∆-point which fails to be a Daugavet point in an extreme way +26 +4.5. +A super ∆-point which is a strongly regular point +27 +4.6. +A super Daugavet point which is not ccs ∆-point +28 +Date: January 11th, 2023. +The first and third named authors were supported by grant PID2021-122126NB-C31 funded by MCIN/AEI/ +10.13039/501100011033 and “ERDF A way of making Europe”, by Junta de Andaluc´ıa I+D+i grants P20 00255 +and FQM-185, +and by “Maria de Maeztu” Excellence Unit IMAG, reference CEX2020-001105-M funded by +MCIN/AEI/10.13039/501100011033. The second named author was supported by the Estonian Research Council grant +SJD58. +1 +arXiv:2301.04433v1 [math.FA] 11 Jan 2023 + +2 +MART´IN, PERREAU, AND RUEDA ZOCA +4.7. +A summary of relations between the properties +35 +5. +Diametral-properties for elements of the open unit ball +35 +6. +Kuratowski measure and large diameters +38 +6.1. +Kuratowski measure and diameter two properties. +39 +6.2. +Kuratowski measure and ∆-notions +41 +7. +Commented open questions +42 +Acknowledgments +45 +References +45 +1. Introduction +It is fair to say that one of the most studied properties of Banach spaces is the Radon-Nikod´ym +property (RNP) because it has shown to be very useful; due to the large amount of its geometric, +analytic, and measure theoretic characterisations; in several fields of Banach space theory such as +representation of bounded linear operators, representation of dual spaces or representation of certain +tensor product spaces (see [18, 21]). +A famous geometric characterization of the Radon-Nikod´ym property is related to the size of slices. +Recall that a slice of a bounded non-empty subset C of a Banach space X is simply the (nonempty) +intersection of C with a half-space. A Banach space X has the RNP if and only if every non-empty +closed and bounded subset of X admits slices of arbitrarily small diameter (see e.g. [18]). +A closely related and equally important geometric property of Banach spaces is the point of con- +tinuity property. Recall that a Banach space X has the point of continuity property (PCP) if every +non-empty closed and bounded subset of X admits non-empty relatively weakly open subsets of ar- +bitrarily small diameter. Let us emphasize here as an example the striking equivalence between the +Radon-Nikod´ym property and the weak∗ version of the point of continuity property for dual spaces, +and the related characterization of Asplund spaces as preduals of RNP spaces (see e.g. [19]). In his +proof of the determination of the Radon-Nikod´ym property by subspaces with a finite dimensional +decomposition (FDD) in [17], Bourgain also introduced an important weakening of the point of conti- +nuity property, that he called property “(∗)”, and that is nowadays referred to as the convex point of +continuity property. Recall that a Banach space X has the convex point of continuity property (CPCP) +if every non-empty closed, convex and bounded subset of X admits non-empty relatively weakly open +subsets of arbitrarily small diameter. +In fact, Bourgain implicitly used in his work the notion of strong regularity which, as he showed, +is implied by the CPCP. Recall that a Banach space X is strongly regular (SR) if every non-empty +closed, convex and bounded subset of X contains convex combinations of slices of arbitrarily small +diameter. Observe that the convexity of the subset is required in this definition in order to guarantee +that it contains all the convex combinations of its slices. It later turned out that strong regularity +had important applications to the famous (still open) question of the equivalence between the Radon- +Nikod´ym property and the Krein-Milman property. Recall that a Banach space X has the Krein- +Milman property (KMP) if every non-empty closed, convex and bounded subset C of X admits an +extreme point. The RNP implies the KMP (see e.g. [18, Theorem 3.3.6]), and it follows from [48] that +every strongly regular space with the KMP has the RNP. Also recall that it was proved in [29] the +RNP and the KMP are equivalent in dual spaces. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +3 +From the definitions it follows that RNP⇒PCP⇒CPCP and it is also known that CPCP⇒SR. +None of the above implications reverse (see e.g [49] and references therein). In order to show that +strong regularity is implied by the CPCP, Bourgain made an important geometric observation, namely +that in every non-empty bounded and convex subset of a Banach space X, every non-empty relatively +weakly open subset contains a convex combination of slices. We will discuss this “Bougain Lemma” +and its applications to the subject of the present paper in more details in Section 2. +Another classical refinement of the above characterization of the Radon-Nikod´ym property is related +to the notion of denting points. Recall that a point x0 of a bounded subset C of X is a denting point +of C if there are slices of C containing x0 of arbitrarily small diameter. A Banach space X has the +RNP if and only if every closed, convex and bounded subset contains a denting point. Actually, every +nonempty closed, convex and bounded subset C of a Banach space X with the RNP is equal to the +closure of the convex hull of the set of its denting points (see e.g. [18, Corollary 3.5.7]). +For the PCP and the CPCP, a similar role is played by points of weak-to-norm continuity. Given +a bounded subset C of X, we say that a point x0 ∈ C is a point of weak-to-norm continuity (point +of continuity in short) if the identity mapping i: (C, w) −→ (C, τ) is continuous at the point x0 or, +equivalently, if x0 belongs to relatively weakly open subsets of C of arbitrarily small diameter. Note +that a classical result by Lin-Lin-Troyanski [39] establishes that a point x0 ∈ C is a denting point if, +and only if, x0 is simultaneously a point of continuity and a extreme point of C. In a space with the +PCP every non-empty closed and bounded subset contains a point of continuity; and the set of all +points of continuity of a given closed, convex and bounded subset C of a Banach space X with the +CPCP is weakly dense in C (see e.g. [22, Theorem 1.13]). +In relation to strong regularity, a point x0 of a bounded, convex subset C of X is a point of strong +regularity if there are convex combinations of slices of C containing x0 of arbitrarily small diameter. +Then the set of all points of strong regularity of a given closed, convex and bounded subset C of a +strongly regular Banach space X is norm dense in C (see [25, Theorem 3.6]). Let us observe that +points of strong regularity may be in the interior of a set, while denting points (and points of continuity +in the infinite-dimensional case) belong always to the border of the set. +In [3] the extreme opposite notion to denting point of the unit ball was introduced in the following +sense: an element x in the unit sphere of a Banach space X is a ∆-point if we can find in every slice +of BX containing x points which are at distance from x as close as we wish to the maximal possible +distance in the ball (distance 2). A similar yet stronger notion appeared simultaneously in relation to +another quite famous property of Banach spaces, the Daugavet property. Recall that a Banach space +X has the Daugavet property (DPr) if the Daugavet equation +(DE) +∥Id + T∥ = 1 + ∥T∥ +holds for every rank-one operator T : X −→ X, where Id denotes the identity operator. +In this +case, all weakly compact operators also satisfy (DE). We refer the reader to the seminal paper [35] +for background. Recent results can be found in [42] and references therein. The Daugavet property +admits a beautiful geometric characterization involving slices related to the notion of Daugavet points: +an element x on the unit sphere of a Banach space X is a Daugavet point if in every slice of BX (not +necessarily containing the point x) there are points which are at distance from x as close as we wish to +2. With this definition in mind, [35, Lemma 2.1] states that X has the DPr if and only if all elements +in SX are Daugavet points. Let us comment that the Daugavet property imposes severe restriction +on the Banach space: if X is a Banach space with the DPr, then it fails the RNP and it has no +unconditional basis (actually, it cannot be embedded into a Banach space with unconditional basis). + +4 +MART´IN, PERREAU, AND RUEDA ZOCA +On the other hand, ∆- and Daugavet points have proved to be far more flexible than the global +properties that they define. For example, there exists a Banach space with the RNP and a Daugavet +point [51] (see paragraph 4.3.1), there exists a Banach space with a one-unconditional basis and a large +subset of Daugavet points [6] (see paragraph 4.3.3), and there is an MLUR Banach space for which all +elements in its unit sphere are ∆-points, which contains convex combinations of slices of arbitrarily +small diameter, but satisfying that every convex combination of slices intersecting its unit sphere has +diameter two [2] (see paragraph 4.3.2). Nonetheless, it has been recently proved that ∆-points have +some influence on the isometric structure of the space. For example, it is shown in [5] that uniformly +non-square spaces do not contain ∆-points; actually, it has been very recently proved in [37] that +a ∆-point cannot be a locally uniformly non-square point. Also, combining the results from [5] and +[52], asymptotic uniformly smooth spaces and their duals do not contain ∆-points. However, it is still +an important open problem to understand whether ∆- or Daugavet point have any influence on the +isomorphic structure of the space. +In this paper, our main aim is to study natural strengthening of the notions of Daugavet- and +∆-points obtained by replacing slices by non-empty relatively weakly open subsets (“super points”) +or convex combination of slices (“ccs points”) in order to provide new diametral notions which are +extreme opposites to points of continuity and to strongly regular points, respectively. See Definitions +2.5 and 2.4 for details. Our main goal will be to understand the influence, for a given Banach space, +of the existence of such points on its geometry, and to study the different diametral notions in several +families of Banach spaces. A particular emphasis will be put on trying to distinguish between all the +various formally different notions. +Let us end this section by giving a brief description about the organization of the paper and the +main results obtained. Section 2 contains the necessary notation (which is standard, anyway), needed +definitions, and some preliminary results. We include in Section 3 some characterizations of the newer +diametral point notions and some necessary conditions on the existence of such points. In particular, +we study the existence of super ∆-points and ccs ∆-points in spaces with a one-unconditional basis. +We first give an analogue for ccs ∆-points to a result from [6] which implicitly states that such spaces +contain no super ∆-points. Second, we provide sharper and improved versions of this super ∆ result +in the context of unconditional FDDs with a small unconditional constant, and more generally in the +context of spaces in which special families of operators are available. The section finishes with the +study of the behaviour of super ∆-points and super Daugavet points with respect to absolute sums +somehow analogous to the known one for ∆-points and Daugavet points; however, not all the results +extend to ccs ∆-points and ccs Daugavet points, but we also give some partial results. Section 4 is +devoted to examples and counterexamples. We first characterize the diametral notions in some families +of classical Banach spaces: we show that all notions are equivalent in L1-preduals and M¨untz spaces +(Subsection 4.1); all notions but ccs Daugavet points also coincide in L1-spaces (Subsection 4.2). +We next give in Subsection 4.3 some remarks on examples which have previously appeared in the +journal literature, discussing the new diametral notions on them, and showing that they may help to +distinguish between the diametral notions. The most complicated and tricky examples are produced +in the last three subsection of this section: super ∆-points which are as closed as desired to strongly +exposed points (hence failing to be Daugavet points in an extreme way) in Subsection 4.4; a super ∆- +point which is strongly regular (hence failing to be ccs ∆-point in an extreme way) in Subsection 4.5; +super Daugavet points which belong to convex combinations of slices of diameter as small as desired +(hence failing to be ccs ∆-points in an extreme way). We finish this subsection with a summary of +relations between all the diametral notions. The idea in Section 5 is to generalize the diametral notions +to elements of the open unit ball, and use these notions to characterize some geometric properties. In + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +5 +particular, we properly localize the result by Kadets that the DSD2P is equivalent to the Daugavet +property. Section 6 deals with Kuratowki index of non-compactness of slices, relative weakly open +subsets, and convex combinations of slices. We get that every relative weakly open subset (respectively, +every convex combination of slices) in a space with the diameter 2 property (respectively, with the +strong diameter 2 property) has Kuratowski measure 2; these results extends the analogous result for +slices and the the local diameter 2 property proved in [20, Proposition 3.1]. Also, we show that every +relative weakly open subset that contains a super ∆-point has Kuratowski measure 2, and a similar +result is obtained with convex combinations of relative weakly open subsets containing a ccw ∆-point; +these results extend [52, Corollary 2.2]. Finally, Section 7 is devoted to collect some interesting open +questions and some remarks on them. +2. Notation and preliminary results +We will use standard notation as in the books [8], [23], and [24], for instance. Given a Banach +space X, BX (respectively, SX) stands for the closed unit ball (respectively, the unit sphere) of +X. +We denote by X∗ the topological dual of X and we write JX : X −→ X∗∗ for the canonical +injection. +We denote by dent (BX) and ext (BX) the sets of all denting points of BX and of all +extreme points of BX, respectively. The set of preserved extreme points of BX (i.e. those x ∈ BX such +that JX(x) ∈ ext (BX∗∗)) is denoted by pre-ext (BX). For Banach spaces X and Y , L(X, Y ), F(X, Y ), +K(X, Y ) denote, respectively, the set of all (bounded linear) operator, the finite-rank operators, and +the compact operators. The properties in which we are interested only deal with the real structure of +the involved Banach spaces, but we do not restrict the study to real spaces in order to consider real or +complex examples. We will use the notation K to denote either R or C, Re(z) to denote the real part +of z (which is just the identity when dealing with a real space), and T to represent the set of scalars +of modulus one. +Given a non-empty subset C of X, we will denote by co(C) the convex hull of C and by span(C) +the linear hull of C. Also we denote by co(C) (respectively, span(C)) the norm closure of the convex +hull (respectively, of the linear hull) of C. By a slice of C we will mean any subset of C of the form +S(x∗, δ; C) := {x ∈ C : Re x∗(x) > M − δ} +where x∗ ∈ X∗ is a continuous linear functional on X, δ > 0 is a positive real number, and M := +supx∈C Re x∗(x). +For slices of the unit ball we will simply write S(x∗, δ) := S(x∗, δ; BX). +By a +relatively weakly open subset of C we mean as usual any subset of C obtained as the (non-empty) +intersection of C with an open set of X in the weak topology. +If C is assumed to be convex we will mean by a convex combination of slices of C (ccs of C in +short) any subset of C of the form +�n +i=1 λiSi, +where λ1, . . . , λn ∈ (0, 1] are such that �n +i=1 λi = 1 and Si is a slice of C for every i ∈ {1, . . . , n}. +Observe that convex combinations of slices are convex sets. We define in the same way convex com- +binations of relatively weakly open subsets of C (ccw of C in short). +The following lemma from [30] is a very useful tool when working with ∆-points. +Lemma 2.1 ([30, Lemma 2.1]). Let X be a Banach space, and let x∗ ∈ SX∗ and α > 0. For every +x ∈ S(x∗, α) and every 0 < β < α there exists y∗ ∈ SX∗ such that +x ∈ S(y∗, β) ⊆ S(x∗, α). + +6 +MART´IN, PERREAU, AND RUEDA ZOCA +We also often rely on the following result, due to Bourgain, and that we already mentioned in the +introduction. We provide a proof below, following the one from [25, Lemma II.1], for the sake of +completeness and for further discussions. +Lemma 2.2 (Bourgain). Let X be a Banach space and let C be a bounded convex closed subset of X. +Then, every non-empty relatively weakly open subset W of C contains a convex combination of slices +of C. +Proof. Assume with no loss of generality that W := +m� +i=1 +S(fi, αi, C), write �C = JX(C) +w∗ +⊂ X∗∗, and +W ∗∗ := +m +� +i=1 +S +� +JX∗(fi), αi; �C +� +, +which is a non-empty relatively weak∗ open subset of �C. By the Krein-Milman theorem (see e.g. [24, +Theorem 3.37]), it follows that �C = co(ext (BX∗∗)) +w∗ +, so co(ext (BX∗∗)) ∩ W ∗∗ ̸= ∅. Pick a convex +combination of extreme points �n +i=1 λie∗∗ +i +contained in W ∗∗. By the continuity of the sum we can find, +for every 1 ⩽ i ⩽ n, a weak-star open subset W ∗∗ +i +with e∗∗ +i +∈ W ∗∗ +i +and such that �n +i=1 λiW ∗∗ +i +⊂ W ∗∗. +Now, since each e∗∗ +i +is an extreme point of �C, we have by Choquet’s lemma (see [24, Lemma 3.40], +for instance) that there are weak-star slices S +� +JX∗(gi), βi; �C +� +with e∗∗ +i +∈ S +� +JX∗(gi), βi; �C +� +⊆ W ∗∗ +i +for +every i ∈ {1, . . . , n}. Henceforth, �n +i=1 λiS +� +JX∗(gi), βi; �C +� +⊆ �n +i=1 λiW ∗∗ +i +⊆ W ∗∗. Now, if we take +U := +n +� +i=1 +λiS(gi, βi, C) +it is not difficult to prove that U ⊆ W, as desired. +□ +Remark 2.3. Observe that, in general, it is unclear from the above proof whether or not, if we fix +x ∈ W, we can guarantee that there exists a convex combination of slices U of C such that x ∈ U ⊆ W. +On the other hand, the result holds true if x ∈ W ∩ co(pre-ext (C)) in view of the above proof. +Indeed, if such situation, if we write x = �n +i=1 λixi ∈ W satisfying that x1, . . . , xn ∈ pre-ext (C) +and λ1, . . . , λn ∈ (0, 1] with �n +i=1 λi = 1, by the weak continuity of the sum, we can find, for every +1 ⩽ i ⩽ n, a non-empty relatively weakly open subset Vi with xi ∈ Vi for every i and such that +x = �n +i=1 λixi ∈ �n +i=1 λiVi ⊆ W. Now, observe that, since each xi is a preserved extreme point of C, +slices of C containing xi are a neighbourhood basis for xi in the weak topology. Hence, we can find, +for 1 ⩽ i ⩽ n, a slice Si of C with xi ∈ Si ⊆ Vi, and so x = �n +i=1 λixi ∈ �n +i=1 λiSi ⊆ �n +i=1 λiVi ⊆ W, +so U := �n +i=1 λiSi is the desired convex combination of slices. +Throughout the text, we will often be discussing various “diameter 2 properties”. +We use the +notation introduced in [7]. A Banach space X has the local or slice diameter 2 property (LD2P) if +every slice of BX has diameter 2; X has the diameter two property (D2P) if every non-empty relatively +weakly open subset of BX has diameter 2; finally, X has the strong diameter 2 property (SD2P) +whenever every ccs of BX has diameter 2 (and then, every ccw has diameter 2 due to Lemma 2.2). +For definitions and for examples concerning those properties, we refer to [2, 14, 15, 45]. In particular, +let us comment that the three properties are different, a result which was not easy to show, see [14]. +Our paper is closely related to the diametral versions of those properties which have been implicitly +studied for a long time in the literature, but whose formal definitions and names where fixed in [13]. +A Banach space X has the diametral local diameter 2 property (DLD2P) if for every slice S of BX +and every x ∈ S ∩ SX, supy∈S ∥x − y∥ = 2; if slices are replaced by non-empty relatively weakly + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +7 +open subsets of BX, we obtain the diametral diameter 2 property (DD2P). It is immediate that these +properties are not satisfied by any finite-dimensional space. Clearly, DLD2P implies LD2P, DD2P +implies D2P (and none of these implications reverses, e.g. X = c0), and DD2P implies DLD2P. It is +unknown whether the DLD2P and the DD2P are equivalent; in fact it is even unknown whether the +DLD2P implies the D2P. For the analogous definition using ccs, we have to discuss a little bit. Even +for an infinite-dimensional space X, it is not true that every ccs of BX intersects SX; actually, this +happens if and only if X has a property stronger than the SD2P (see [41, Theorem 3.4]). Thus, the +definition of the diametral strong diameter 2 property (DSD2P) given in [13] deals with all points in +BX as follows: for every ccs C and every x ∈ C, supy∈C ∥x − y∥ = ∥x∥ + 1. This definition allows to +show that DSD2P implies the SD2P. But, actually, it has been recently shown by V. Kadets [34] that +the DSD2P is equivalent to the Daugavet property. We will discuss this in detail in Section 5. On the +other hand, we will use the following property which is weaker than the DSD2P: a Banach space X +has the restricted DSD2P if for every ccs C and every x ∈ C ∩ SX, supy∈C ∥x − y∥ = 2. This property +is strictly weaker than the DSD2P, see Paragraph 4.3.2. +Let us now introduce all the notions of diametral points that we will consider in the text. Let us +start with the more closely related ones to the definitions above. +Definition 2.4. Let X be a Banach space and let x ∈ SX. We say that +(1) [3] x is a ∆-point if supy∈S ∥x − y∥ = 2 for every slice S of BX containing x, +(2) x is a super ∆-point if supy∈V ∥x − y∥ = 2 for every non-empty relatively weakly open subset +V of BX containing x, +(3) x is a ccs ∆-point if supy∈C ∥x − y∥ = 2 for every slice ccs C of BX containing x. +∆-points were introduced in [3] as a natural localization of the DLD2P (i.e. X has the DLD2P if +and only if every element of SX is a ∆-point). The other two definitions are new. Clearly, super +∆-points are the natural localization of the DD2P: X has the DD2P if and only if every element of +SX is a super ∆-point. Besides, ccs ∆-points are the localization of the restricted DSD2P: X has the +restricted DSD2P if and only if every element of SX is a ccs ∆-point. +In relation with the Daugavet property, we have the following notions for points. +Definition 2.5. Let X be a Banach space and let x ∈ SX. We say that +(1) [3] x is a Daugavet point if supy∈S ∥x − y∥ = 2 for every slice S of BX, +(2) x is a super Daugavet point if supy∈V ∥x − y∥ = 2 for every non-empty relatively weakly open +subset V of BX, +(3) x is a ccs Daugavet point if supy∈C ∥x − y∥ = 2 for every ccs C of BX. +Let us recall that Daugavet points were introduced in [3] as a natural localization of the Daugavet +property in the sense that a Banach space X has the Daugavet property if and only if every point in SX +is a Daugavet point ([35, Lemma 2.1]). From the geometric characterization given in [50, Lemma 3] +and the implicit result contained in its proof, it follows that super Daugavet points as well as ccs +Daugavet points are also natural localizations of the Daugavet property. +Since every slice of BX is relatively weakly open, and since by Bourgain’s lemma (see Lemma 2.2) +every non-empty relatively weakly open subset of BX contains a ccs of BX, we clearly have the diagram +of Figure 1. +We will show throughout the text that none of the above implications reverses, see Subsection 4.7 +for a description of all the relations and the counterexamples. However, let us point out right away + +8 +MART´IN, PERREAU, AND RUEDA ZOCA +ccs Daugavet +ccs ∆ +super Daugavet +super ∆ +∆ +Daugavet +Figure 1. Relations between the diametral notions +that we do not know whether there exists ccs ∆-points which are not super ∆. In view of Remark 2.3 +such examples may exist since Bourgain’s lemma is not localizable. Also let us point out that it follows +again from Bourgain’s lemma that a ccs Daugavet point x ∈ SX also satisfies supy∈D ∥x − y∥ = 2 for +every ccw D of BX. Again this is not clear for ccs ∆-points and we could thus naturally distinguish +between ccs ∆-points and “ccw ∆-points”. Since we do not have concrete examples at hand, we will +focus on convex combination of slices and specifically point out any available ccw behavior throughout +the text. +Let us also comment that it is clear that if every ccs of the unit ball of a given Banach space is weakly +open (respectively, has non-empty relative weak interior), then every super ∆-point (respectively, every +super Daugavet point) in this space is a ccs ∆-point (respectively, a ccs Daugavet point). Several +properties of this kind where introduced and studied in [1], [4], and [41]. We refer to those papers for +some background and for examples. +Remark 2.6. There are natural weak∗ versions in dual spaces of all the notions of diametral-points +introduced in the present section where slices and relatively weakly open subsets are respectively +replaced with weak∗ slices (i.e. slices defined by elements of the predual) and relatively weak∗ open +subsets. With obvious terminology, it then follows from [35, Lemma 2.1] and from [50, Lemma 3] that +a Banach space X has the Daugavet property if and only if every element in SX∗ is a weak∗ Daugavet +point if and only if every element in SX∗ is a weak∗ ccs Daugavet point. It also follows from [2, +Theorem 3.6] that X has the DLD2P if and only if every point in SX∗ is a weak∗ ∆-point. However, +the relationship between the DD2P in X and weak∗ super ∆-points in SX∗ is currently unknown. +Observe that a direct consequence of those results is that weak∗ diametral points and their weak +counterparts might differ in a very strong way since, for instance, the unit ball of the space C[0, 1]∗ +admits denting points. Yet clearly all the results from the following sections concerning the different +notions of diametral-points admit obvious analogues for their weak∗ counterparts. We leave the details +to the reader to avoid unnecessary repetitions, but let us still point out that it follows from Goldstine’s +theorem and from the lower weak∗ semicontinuity of the norm in dual spaces that there is a natural +correspondence between diametral-properties of points in SX and weak∗ properties of their image in +the bidual under the canonical embedding JX. Namely: +(1) x ∈ SX is a Daugavet point (respectively, a ccs Daugavet point) if and only if JX(x) is a weak∗ +Daugavet point (respectively, a weak∗ ccs Daugavet point). + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +9 +(2) x ∈ SX is a super Daugavet point if and only if JX(x) is a weak∗ super Daugavet point if +and only if for every y ∈ BX there exists a net (y∗∗ +s ) in BX∗∗ which converges to JX(y) in the +weak∗ topology and such that ∥πX(x) − y∗∗ +s ∥ −→ 2 (see Section 3). +(3) x ∈ SX is a ∆-point (respectively, a super ∆-point) if and only if JX(x) is a ∆-point (respec- +tively, a super ∆-point). +(4) x ∈ SX is a ccs ∆-point if and only if JX(x) is a weak∗ ccs ∆-point. +Let us point out that (3) essentially follows from the obvious fact that ∆-points and super ∆-points +naturally pass to superspaces, that is if Y is a subspace of X and if x ∈ SY if a ∆-point (respectively, +a super ∆-point) in Y , then x is a ∆-point (respectively, a super ∆-point) in X . This property is +unclear for ccs ∆-points, so the assertion (4) is not analogous to assertion (3). +3. Characterisations of diametral-notions and implications on the geometry of the +ambient space +In view of the definitions of diametral-points, it is natural to expect that the presence of any kind +of Daugavet- or ∆-element in a given Banach space will affect, by the severe restrictions it inflicts +on the nature of the considered point, its global isometric geometry or even its topological structure. +However, previous studies in the context have shown that the situation is much more complicated +than one could expect at first sight. +For example, let us comment that a Banach space X with +the RNP and admitting a Daugavet point, and a Banach space with a one-unconditional basis and +admitting a weakly dense subset of Daugavet points, were respectively constructed in [51] and in [6]. +In this section, we provide useful characterizations of the new diametral notions, and investigate the +immediate effect of the presence of such points on the geometry of the considered space. +We start by an intuitive but not completely trivial observation. +Observation 3.1. By definition, it is clear that super ∆-points do not exist in finite dimensional +spaces because the weak and norm topology coincide in this context. +Also, it was proved in [5, +Theorem 4.4] that finite dimensional spaces do also fail to contain ∆-points (hence ccs ∆-points). +In fact they fail to contain them in a stronger way, see [5, Corollary 6.10]. Consequently, the study +of diametral-notions only makes sense in infinite dimension, and from now on we will assume unless +otherwise stated that all the Banach spaces we consider are infinite dimensional. +Let us next prove a bunch of characterisations for super Daugavet- and super ∆-points. +Let X be a Banach space. For every x ∈ SX and for every ε > 0, let us define +∆ε(x) := {y ∈ BX : ∥x − y∥ > 2 − ε}. +We recall the following characterization of Daugavet- and ∆-points from [3]. +Lemma 3.2 ([3, Lemma 2.1 and 2.2]). Let X be a Banach space. +(1) An element x ∈ SX is a Daugavet point if and only if BX = co ∆ε(x) for every ε > 0. +(2) An element x ∈ SX is a ∆-point if and only if x ∈ co ∆ε(x) for every ε > 0. +We have similar characterisations for super points. +Lemma 3.3. Let X be a Banach space. +(1) An element x ∈ SX is a super Daugavet point if and only if BX = ∆ε(x) +w for every ε > 0. +(2) An element x ∈ SX is a super ∆-point if and only if x ∈ ∆ε(x) +w for every ε > 0. + +10 +MART´IN, PERREAU, AND RUEDA ZOCA +Proof. Observe that for given x ∈ SX, y ∈ BX, and ε > 0, we have that y belongs to the weak +closure of the set ∆ε(x) if and only if ∆ε(x) has non-empty intersection with any neighborhood of +y in the relative weak topology of BX. Thus y belongs to ∆ε(x) +w for every ε > 0 if and only if +supz∈V ∥x − z∥ = 2 for every relatively weakly open subset V of BX containing y. The conclusion +easily follows. +□ +For any given x ∈ BX, we denote by V(x) the set of all neighborhoods of x for the relative weak +topology of BX. We can provide characterizations of super points using nets which is just a localization +of [13, Proposition 2.5]. +Proposition 3.4. Let X be an infinite-dimensional Banach space. +(1) An element x ∈ SX is a super Daugavet point if and only if for every y ∈ BX there exists a +net (ys) in BX which converges weakly to y and such that ∥x − ys∥ −→ 2. +(2) An element x ∈ SX is a super ∆-point if and only if there exists a net (xs) in BX which +converges weakly to x and such that ∥x − xs∥ −→ 2. +In both cases we can moreover force the nets to be in SX. +Proof. Let us fix x ∈ SX. Given any y ∈ BX, it is clear that if there exists a net (ys) in BX which +converges weakly to y and such that ∥x − ys∥ −→ 2, then y belongs to the weak closure of ∆ε(x) for +every ε > 0. Conversely let us pick y ∈ BX satisfying this property. We turn S := V(y) × (0, ∞) into +a directed set by (V, ε) ⩽ (V ′, ε′) if and only if V ′ ⊂ V and ε′ ⩽ ε. By the assumptions we have that +V ∩ ∆ε(x) is a non-empty subset of BX for every couple s := (V, ε) in S. Picking any ys in this set +will then provide the desired net. +Finally observe that for x ∈ BX and ε > 0, we have that BX\∆ε(x) = {y ∈ BX : ∥x − y∥ ⩽ 2 − ε} +is weakly closed by the lower semi-continuity of the norm, so that ∆ε(x) is a relatively weakly open +subset of BX. Thus we have that V ∩ ∆ε(x) is a non-empty relatively weakly open subset of BX for +every couple s := (V, ε) in S. Since X is infinite dimensional, this set has to intersect SX, and we can +actually pick ys in V ∩ ∆ε(x) ∩ SX. +□ +Remark 3.5. In [36] an example of a Banach space satisfying simultaneously the Daugavet property +and the Schur property was provided. Such example shows that there is no hope to get a version of +the above result involving sequences. +Observe that the following result, similar to [32, Lemma 2.1 and 2.2], is included in the preceding +proof. +Proposition 3.6. Let X be a Banach space and let x ∈ SX. +(1) If x is a super Daugavet point, then for every ε > 0 and every non-empty relatively weakly +open subset V of BX we can find a non-empty relatively weakly open subset U of BX which is +contained in V and such that ∥x − y∥ > 2 − ε for every y ∈ U. +(2) If x is a super ∆-point, then for every ε > 0 and every non-empty relatively weakly open subset +V of BX containing x we can find a non-empty relatively weakly open subset U of BX which +is contained in V and such that ∥x − y∥ > 2 − ε for every y ∈ U. +Proof. Fix any x ∈ SX and any y ∈ BX which belongs to the weak closure of ∆ε(x) for every ε > 0. +Then, for every V ∈ V(y) and every ε > 0, we have that U := V ∩ ∆ε(x) is a non-empty relatively +weakly open subset of BX. +□ + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +11 +It is clear from the definition that denting points of BX cannot be ∆-points. Also it was first +observed in [32, Proposition 3.1] that every Daugavet point in a Banach space X has to be at distance +2 from every denting point of the unit ball of X. This elementary observation turned out to play +an important role in the study of Daugavet points in Lipschitz-free spaces in [32] and [51]. We have +similar observations for super points. +Lemma 3.7. Let X be a Banach space and let x ∈ SX. If x is a super ∆-point, then x cannot be +a point of continuity. If, moreover, x is a super Daugavet point, then x has to be at distance 2 from +every point of continuity of BX. +Proof. If and element y of BX is a point of continuity, then it is contained in relatively weakly open +subsets of BX of arbitrarily small diameter. Clearly no super ∆-point can have this property, and any +super Daugavet point has to be at distance 2 from any such points. +□ +This lemma provides quite a few examples of Banach spaces which fail to contain super points. +Following [26] let us recall that X has the Kadets property if the norm topology and the weak topology +coincide on SX, and that X has the Kadets-Klee property if weakly convergent sequences in SX are +norm convergent. Let us also recall that any LUR space has the Kadets-Klee property, and that any +space with the Kadets-Klee property which fails to contain ℓ1 has the Kadets property. By proposition +3.4 we clearly have the following result. +Proposition 3.8. If X has the Kadets property, then X fails to contain super ∆-points. +As a corollary we obtain the following. Recall that a Banach space is asymptotic uniformly convex +(AUC in short) [31] if its modulus of asymptotic uniform convexity +δX(t) := inf +x∈SX +sup +dim X/Y <∞ +inf +y∈SY ∥x + ty∥ − 1 +is strictly positive for every t > 0. +Corollary 3.9. Let X be AUC. Then, X fails to contain super ∆-points. +Proof. In an AUC space, every element of the unit sphere is a point of continuity of BX, see [31, +Proposition 2.6]. +□ +Remark 3.10. It was proved in [5, Theorem 3.4] that any reflexive AUC space fails to contain ∆- +points. Also, combining the observations from [5, End of Section 4] about weak∗ quasi-denting points +in the unit ball of AUC∗ duals and [52, Corollary 2.4] about the maximality of the Kuratowski index +of weak∗ slices containing weak∗ ∆-points, we have that every AUC∗ dual space fails to contain weak∗ +∆-points. However, note that it is currently unknown whether non-reflexive AUC spaces (and, in +particular, whether the dual of the James tree spaces JT∗) may contain Daugavet- or ∆-points. +It turns out that Daugavet points are characterized by this distance to denting points in RNP +spaces (because the unit ball of an RNP space X can be written as the closed convex hull of the set +of its denting points) as well as in Lipschitz-free spaces ([32, Theorem 3.2] for compact metric spaces +and [51, Theorem 2.1] for a general statement). In the same way we can characterize super Daugavet +points in terms of this distance to points of continuity of BX is spaces with the CPCP. +Proposition 3.11. If a Banach space X has the CPCP, then a point x ∈ SX is a super Daugavet +point if and only if it is at distance 2 from any point of continuity of BX. + +12 +MART´IN, PERREAU, AND RUEDA ZOCA +Proof. If X has the CPCP, then the set of all points of continuity of BX is weakly dense in BX (see for +example [22, Proposition 3.9]), that is, every non-empty relatively weakly open subset of BX contains +a point of continuity. The conclusion follows easily. +□ +For ccs points, the situation is quite different. Indeed, although ccs ∆-points can clearly not be +points of strong regularity, we have by [41, Theorem 3.1] that X has the SD2P if and only if every +convex combination of slices of BX contains elements of norm arbitrarily close to 1. It readily follows +that any space X which contains a ccs Daugavet point satisfies the SD2P, so it is very far from being +strongly regular. We will provide more details on this topic in Section 5, but for later reference let us +state the following. +Proposition 3.12. Let X be a Banach space. If X contains a ccs Daugavet point, then it has the +SD2P (it fails to be strongly regular). +Next, we show that extreme points have a nice behaviour with respect to diametral notions. +Proposition 3.13. Let X be a Banach space and let x ∈ SX. +(1) If x ∈ pre-ext (BX) and it is a ∆-point, then x is a super ∆-point. +(2) If x ∈ ext (BX) and it is a super ∆-point, then x is a ccs ∆-point. +(3) In particular, if x ∈ pre-ext (BX) is a ∆-point, then x is a super ∆-point as well as a ccs +∆-point. +Proof. It follows from Choquet’s lemma (see for example [23, Lemma 3.69]) that slices form neighbor- +hood bases in the relative weak topology of the unit ball of a Banach space for its preserved extreme +points, so (1) immediately follows. For (2), if x is extreme and belongs to a ccs C := �n +i=1 λiSi of BX +then x ∈ �n +i=1 Si, which is a relatively weakly open subset of BX. +□ +Remark 3.14. Observe that, in fact, any extreme super ∆-point is “ccw ∆-point” as we discussed in +Section 2. Also, Choquet’s lemma implies that every extreme weak∗ ∆-point in a dual space is weak∗ +ccw ∆-point. +3.1. Spaces with a one-unconditional basis and beyond. In [6], it was proved that no real +Banach space with a subsymmetric basis contains a ∆-point. On the other hand, an example of a +Banach space with a one-unconditional basis that contains a ∆-point was provided, and a more involved +example of a Banach space with a one-unconditional basis that contains many Daugavet-points was +constructed. We will discuss this second example in detail in Subsection 4.3.3. +In the process, it was also implicitly shown that real Banach spaces with a one-unconditional basis +cannot contain super ∆-points. In the present subsection, we prove that the same goes for ccs ∆- +points. Also, we provide sharper and more general versions of [6, Proposition 2.12]. In the first part +of this section, we follow [6] and restrict ourselves to real Banach spaces. +Let X be a real Banach space with a Schauder basis (ei)i⩾1. We denote by (e∗ +i )i⩾1 the corresponding +sequence of biorthogonal functionals. +Recall that (ei)i⩾1 is said to be unconditional if the series +� +i⩾1 e∗ +i (x)ei converges unconditionally for every x ∈ X. +Also, recall that an unconditional basis +(ei)i⩾1 is said to be one-unconditional if +����� +� +i⩾1 +θie∗ +i (x)ei +����� = +����� +� +i⩾1 +e∗ +i (x)ei +����� + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +13 +for every (θi)i⩾1 ∈ {−1, 1}N and for every x ∈ X. Moreover, if +����� +� +i⩾1 +θie∗ +i (x)eni +����� = +����� +� +i⩾1 +e∗ +i (x)ei +����� +for every (θi)i⩾1 ∈ {−1, 1}N, for every x ∈ X, and for every strictly increasing sequence (ni)i⩾1 in N, +then the basis is called subsymmetric. +Observe that for spaces with a one-unconditional basis, it is enough, in order to study the various +Daugavet- and ∆-notions, to work in the positive sphere +S+ +X := {x ∈ SX : e∗ +i (x) ⩾ 0 ∀i} +of the space X. Also, the following result is well known. +Lemma 3.15. Let X be a real Banach space with a one-unconditional basis (ei)i⩾1, and let (ai)i⩾1 +and (bi)i⩾1 be sequences of real numbers. If the series � +i⩾1 biei converges, and if |ai| ⩽ |bi| for every +i, then � +i⩾1 aiei converges as well, and we have +����� +� +i⩾1 +aiei +����� ⩽ +����� +� +i⩾1 +biei +����� . +Let us now recall a few notation and preliminary results from [6]. Let X be a real Banach space +with a normalized one-unconditional basis (ei)i⩾1. For every subset A of N, we denote by PA the +projection on span{ei, i ∈ A}. Then for every x ∈ X, we define +M(x) := {A ⊂ N: ∥PA(x)∥ = ∥x∥ , and +��PA(x) − e∗ +j(x)ej +�� < ∥x∥ ∀j ∈ A}. +The set M(x) can be seen as the set of all minimal norm-giving subsets of the support of x. We denote +respectively by MF(x) and M∞(x) the subsets of all finite and infinite elements of M(x). It follows +from [6, Lemma 2.7] that the set M(x) is never empty, and from [6, Proposition 2.15] that no element +x ∈ SX satisfying M∞(x) = ∅ can be a ∆-point. +For every non-empty ordered subset A := {a1 < a2 < . . . } of N, and for every n ∈ N smaller than +or equal to |A|, we denote by A(n) := {a1, . . . , an} the subset consisting of the n first elements of A. +We will implicitly assume in the following that the elements of M(x) are ordered subsets of N. The +next two results were proved in [6, Lemma 2.8 and Lemma 2.11]. +Lemma 3.16. Let X be a real Banach space with a normalized one-unconditional basis (ei)i⩾1 and +let x ∈ SX. For every n ∈ N, the sets +� +A ∈ M(x): |A| ⩽ n +� +and +� +A(n): A ∈ M(x), and |A| > n +� +are both finite. +Lemma 3.17. Let X be a real Banach space with a normalized one-unconditional basis and let x ∈ SX. +For every subset E of N such that E ∩ A ̸= ∅ for every A ∈ M(x), we have ∥x − PE(x)∥ < 1. +With those tools at hand, we can now prove an analogue to [6, Proposition 2.13] for convex combi- +nation of slices. +Proposition 3.18. Let X be a Banach space with a normalized one-unconditional basis and x ∈ S+ +X. +Then, there exists δ > 0 and a ccs C of BX containing x such that supy∈C ∥x − y∥ ⩽ 2 − δ. + +14 +MART´IN, PERREAU, AND RUEDA ZOCA +Proof. Let x ∈ S+ +X, and define E = � +A∈M(x) A(1). From Lemma 3.16 and Lemma 3.17, we have +that E is a finite subset of N and that ∥x − PE(x)∥ < 1. In particular, there exists γ > 0 such that +∥x − PE(x)∥ ⩽ 1 − γ. For every i ∈ E, we define +Si := S +� +e∗ +i , 1 − e∗ +i (x) +2 +� +. +Then we consider the ccs +C := +1 +|E| +� +i∈E +Si. +Since x ∈ S+ +X, we clearly have that x ∈ � +i∈E Si and, in particular, that x ∈ C. +So let us pick y := +1 +|E| +� +i∈E yi in C. +Then we have e∗ +i (yi) > +e∗ +i (x) +2 +for every i. +In particular, +e∗ +i (yi) ⩾ 0, and +��e∗ +i (yi) − e∗ +i (x) +�� ⩽ e∗ +i (yi). Indeed, for any given non-negative real numbers α and β +with β ⩾ α +2 , we have +|β − α| = β − α ⩽ β +if β ⩾ α, and +|β − α| = α − β ⩽ α − α +2 = α +2 ⩽ β +if β ⩽ α. So in either case, |β − α| ⩽ β as desired. +It then follows from Lemma 3.15 that +��yi − e∗ +i (x)ei +�� ⩽ +��yi�� ⩽ 1 and, finally, +∥x − y∥ ⩽ +����x − x +|E| +���� + +���� +x +|E| − PE(x) +|E| +���� + +���� +PE(x) +|E| +− y +���� +⩽ 1 − 1 +|E| + 1 − γ +|E| ++ 1 +|E| +� +i∈E +��e∗ +i (x)ei − yi�� ⩽ 2 − γ +|E|. +The conclusion follows with δ := +γ +|E|. In particular, note that since x belongs to the relative weakly +open set � +i∈E Si ⊂ C, we also get that x is not super ∆, recovering the result from [6]. +□ +So combining [6, Proposition 2.13] and Proposition 3.18, we immediately get that spaces with a +normalized one-unconditional basis fail to contain super ∆-points and ccs ∆-points. So let us state +the following here for future reference. +Theorem 3.19. Let X be a real Banach space with a normalized one-unconditional basis. Then X +does not contain super ∆-points, and X does not contain ccs ∆-points. +In the rest of the subsection, we aim at providing sharper and improved versions of [6, Proposi- +tion 2.13]. In particular we will go back to working with either real or complex Banach spaces. The +main result of this study is the following proposition. +Proposition 3.20. Let X be a Banach space, and let us assume that there exists a subset A ⊆ F(X, X) +satisfying that sup +� +∥Id − T∥ : T ∈ A +� +< 2 and that for every ε > 0 and every x ∈ X, there exists +T ∈ A such that ∥x − Tx∥ < ε. Then, X contains no super ∆-point. +Let us provide a lemma which is a localization of the above result from which its proof is immediate. +Lemma 3.21. Let X be a Banach space, and let x ∈ SX. If there exists a finite-rank operator T on +X such that ∥x − Tx∥ + ∥Id − T∥ < 2, then x is not a super ∆-point. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +15 +Proof. Consider ε > 0 such that K := ∥x − Tx∥ + ∥Id − T∥ + ε < 2. Since T has finite rank, we can +find N ⩾ 1, w1, . . . , wN ∈ SX and f1, . . . , fN ∈ X∗ such that T(z) = �N +n=1 fn(z)wn for every z ∈ X. +Let us consider +W := +� +y ∈ BX : |fn(x − y)| < +ε +2n+1 ∀n ∈ {1, . . . , N} +� +. +W is a neighborhood of x in the relative weak topology of BX, and for every y ∈ W, we have +∥x − y∥ ⩽ ∥x − Tx∥ + ∥Tx − Ty∥ + ∥y − Ty∥ +⩽ ∥x − Tx∥ + ∥Id − T∥ + +N +� +n=1 +|fn(x − y)| ∥wn∥ +⩽ ∥x − Tx∥ + ∥Id − T∥ + ε +N +� +n=1 +1 +2n+1 ⩽ K < 2. +□ +N.B. It is unclear whether an analogue to Lemma 3.21 can be given for ccs ∆-points. So we do not +know whether Proposition 3.20 extends to this notion. +As particular cases of Proposition 3.20, we have the following ones. Recall that a sequence (En)n⩾1 +of finite dimensional subspaces of a given Banach space X is called a finite dimensional decomposition +(FDD) for X if every element x ∈ X can be represented in a unique way as a series x := � +n⩾1 xn +with xn ∈ En for every n ⩾ 1. Such an FDD is said to be unconditional if the above series converges +unconditionally for every x ∈ X. In this case, it is well known that the family (PA)A⊂N, where PA is the +projection given by PA(x) := � +n∈A xn, is uniformly bounded, and the constant KS := supA⊂N ∥PA∥ is +called the suppression-unconditional constant of the FDD. We refer to [40, Section 1.g] for the details +and to [8, Section 3.1] for the particular case of unconditional bases. +Corollary 3.22. A Banach space X fails to have super ∆-points provided one of the following condi- +tions is satisfied. +(1) There exists a family A ⊆ F(X, X) satisfying that sup +� +∥Id − T∥ : T ∈ A +� +< 2 and that the +identity mapping belongs to its strong operator topology (SOT) closure. +(2) There exists a family {Pλ}λ∈Λ of finite rank projections on X such that X = � +λ∈Λ Pλ(X), +and such that supλ∈Λ ∥Id − Pλ∥ < 2. +(3) The space X admits a FDD with suppression-unconditional constant less than 2. In particular, +if X admits an unconditional basis with suppression-unconditional constant less than 2. +Let us observe that the value 2 in the above results is sharp in several ways. +Remark 3.23. +(1) The space C[0, 1] admits a monotone Schauder basis, so there exists a sequence +{Pn}n⩾1 of norm one finite rank projections on this space which converges to Id in SOT +topology. As C[0, 1] has the Daugavet property, all elements in SX are super Daugavet points. +Observe that ∥Id − Pn∥ = 2 for every n ⩾ 1 by the DPr. +(2) Let X be an arbitrary Banach space. For every x ∈ SX choose fx ∈ SX∗ such that fx(x) = 1, +and define Px(z) = fx(z)x for every z ∈ X. Then {Px : x ∈ SX} is a family of norm one +rank-one projections on X, X = � +x∈SX Px(X), and ∥Id − Px∥ ⩽ 2 for every x ∈ SX. +(3) The space c admits ccs Daugavet points (hence super Daugavet points), see Theorem 4.2, but +it is easy to check that its usual basis is 3-unconditional and 2-suppression unconditional. +(4) It is shown in [30] that a Banach space has the DLD2P if and only if ∥Id − P∥ ⩾ 2 for every +rank-one projection P. It follows that the suppression constant of an unconditional basis on +a Banach space with the DLD2P has to be greater than or equal to 2. Let us mention here + +16 +MART´IN, PERREAU, AND RUEDA ZOCA +that there is no local version of this result, as there are Banach spaces with one-unconditional +basis and containing many Daugavet points [6] (see Paragraph 4.3.3). +3.2. Absolute sums. In this subsection we look at the transfer of the diametral points through +absolute sums of Banach spaces. Let us first recall the following definition. +Definition 3.24. A norm N on R2 is absolute if N(a, b) = N(|a| , |b|) for every (a, b) ∈ R2 and +normalized if N(0, 1) = N(1, 0) = 1. +If X and Y are Banach spaces, and if N is an absolute normalized norm on R2, we denote by +X ⊕N Y the product space X × Y endowed with the norm ∥(x, y)∥ = N(∥x∥ , ∥y∥). It is easy to check +that X ⊕N Y is a Banach space, and that its dual can be expressed as (X ⊕N Y )∗ ≡ X∗ ⊕N∗ Y ∗ where +N∗ is the absolute norm given by the formula N∗(c, d) = maxN(a,b)=1 |ac|+|bd|. Classical examples of +absolute normalized norms on R2 are the ℓp norms for p ∈ [1, ∞]. Information on absolute norms can +be found in [16, §21] and [43] and references therein, for instance. Let us recall that for every absolute +normalized sum N, given non-negative a, b, c, d in R with a ⩽ b and c ⩽ d we have N(a, b) ⩽ N(c, d). +In particular, ∥·∥∞ ⩽ N ⩽ ∥·∥1. +Similar to the DD2P (see [13, Theorem 2.11]) and to ∆-points [28], super ∆-points transfer very +well through absolute sums. +Proposition 3.25. Let X and Y be Banach spaces, and let N be an absolute normalized norm. +(1) If x ∈ SX and y ∈ SY are super ∆-points, then (ax, by) is a super ∆-point in X ⊕N Y for +every (a, b) ∈ R2 with N(a, b) = 1. +(2) If x ∈ SX is a super ∆-point, then (x, 0) is a super ∆-point in X ⊕N Y . If y ∈ SY is a super +∆-point, then (0, y) is a super ∆-point in X ⊕N Y . +Proof. (1). We can find two nets (xs)s∈S and (yt)t∈T respectively in SX and SY such that xs +w +−→ x, +yt +w +−→ y, and ∥x − xs∥ , ∥y − yt∥ −→ 2. Now, if we take (a, b) ∈ R2 with N(a, b) = 1 we clearly have +(axs, byt) +w +−→ +(s,t)∈S×T (ax, by) and ∥(ax, by) − (axs, byt)∥ = N (a ∥x − xs∥ , b ∥y − yt∥) −→ 2N(a, b) = 2, +so (ax, by) is a super ∆-point in X ⊕N Y . For (2), we just repeat the previous proof with a = 1 and +b = 0 or with a = 0 and b = 1 and so we only need one of the points to be super ∆-point. +□ +For super Daugavet points the situation is more complicated and we need to distinguish between +different kinds of absolute norms. The following definitions can be found, for instance, in [28]. +Definition 3.26. Let N be an absolute normalized norm on R2. +(1) N has property (α) if for every a, b ∈ R+ with N(a, b) = 1 we can find a neighborhood W of +(a, b) in R2 with sup(c,d)∈W c < 1 or sup(c,d)∈W d < 1 and such that any couple (c, d) ∈ R2 ++ +satisfying N(c, d) = 1 and N ((a, b) + (c, d)) = 2 belongs to W. +(2) N is A-octahedral if there exists a, b ∈ R+ such that N(a, b) = 1 and N ((a, b) + (c, d)) = 2 for +c = max{e ∈ R+ : N(e, 1) = 1} +and +d = max{f ∈ R+ : N(1, f) = 1}. +(3) N is positively octahedral if there exists a, b ∈ R+ such that N(a, b) = 1 and +N ((a, b) + (0, 1)) = N ((a, b) + (1, 0)) = 2. +Positively octahedral norms where introduced in [27] in order to characterize the absolute norms for +which the corresponding absolute sum is octahedral. It is clear that property (α) and A-octhaedrality + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +17 +exclude each other and that every positively octahedral absolute normalized norm is A-octahedral +(while there clearly exists absolute A-octahedral norms which are not positively octahedral). Moreover +it was proved in [28, Proposition 2.5] that every absolute normalized norm on R2 must either satisfy +property (α) or be A-octahedral. +For ℓp-norms, we have that ∥·∥1 and ∥·∥∞ are both positively +octahedral, and that ∥·∥p satisfies property (α) for every p ∈ (1, ∞). +Observe that if an absolute normalized norm N on R2 is positively octahedral, and if (a, b) is as in +the above definition, then the intersection of the unit sphere of N with the positive quadrant of R2 is +equal to the union of the segments [(1, 0), (a, b)] and [(0, 1), (a, b)] (see [45, Section 3.3.1] for pictures). +In particular, it follows that N((a, b)+(c, d)) = 2 for every non-negative c, d with N(c, d) = 1. Similar +to the results from [3, Section 4] concerning Daugavet points, we have the following. +Proposition 3.27. Let X and Y be Banach spaces, and let N be an absolute normalized norm. +(1) [3, Proposition 4.6] If N has property (α), then X ⊕N Y has no Daugavet point (hence, in +particular, no super Daugavet points). +(2) If N is positively octahedral and if x ∈ SX and y ∈ SY are super Daugavet points, then (ax, by) +is a super Daugavet point in X ⊕N Y for every (a, b) ∈ R2 ++ as in the above definition. +Proof. (2). Assume that N is positively octahedral, take (a, b) ∈ R2 ++ as in the definition, and let +x ∈ SX and y ∈ SY be super Daugavet points. For any given (u, v) ∈ X ⊕N Y of norm ∥(u, v)∥ = 1 we +can find two nets (us)s∈S and (vt)t∈T respectively in SX and SY such that ∥u∥us +w +−→ u, ∥v∥vt +w +−→ v, +and ∥x − us∥ , ∥y − vt∥ −→ 2. Then (∥u∥ us, ∥v∥ vt) +w +−→ +(s,t)∈S×T (u, v). Since +∥ax − ∥u∥ us∥ = ∥(x − us) − [(1 − a)x − (1 − ∥u∥)us]∥ +⩾ ∥x − us∥ − (1 − a + 1 − ∥u∥), += a + ∥u∥ − (2 − ∥x − us∥), +and, in the same way, +∥by − ∥v∥ vt∥ ⩾ b + ∥v∥ − (2 − ∥y − vt∥), +we have +∥(ax − ∥u∥ us, by − ∥v∥ vt)∥ = N (∥ax − ∥u∥ us∥ , ∥by − ∥v∥ vt∥) +⩾ N (a + ∥u∥ − (2 − ∥x − us∥), b + ∥v∥ − (2 − ∥y − vt∥)) +−→ N ((a + ∥u∥ , b + ∥v∥) = 2. +This shows that (ax, by) is a super Daugavet point in X ⊕N Y . +□ +Remark 3.28. Note that if (a, b) = (1, 0) (respectively, (a, b) = (0, 1)) in the previous statement (for +example, when N = ∥·∥1), then we only need to assume that x (respectively, y) is super Daugavet +in order to get that (x, 0) (respectively, (0, y)) is super Daugavet in X ⊕N Y . Also, if N = ∥·∥∞, +then we only need to assume that x (respectively, y) is super Daugavet in order to obtain that (x, βy) +(respectively, (αx, y)) is super Daugavet in X ⊕N Y for every β ∈ [0, 1] (respectively, α ∈ [0, 1]). +In [28, Theorem 2.2] it is proved that regular Daugavet points do also transfer through A-octahedral +sums. We do not know if a similar result can be obtained for super Daugavet points. Indeed, observe +that if N is an A-octahedral norm, and if c, d, and (a, b) are as in the above definition, then the +intersection of the unit sphere of N with the positive quadrant of R2 is equal to the union of the +segments [(1, 0), (1, d)], [(1, d), (a, b)], [(0, 1), (c, 1)] and [(c, 1), (a, b)]. In particular, N((a, b)+(e, f)) = +2 for every couple (e, f) on the segments [(1, d), (a, b)] and [(c, 1), (a, b)], but this is no longer true + +18 +MART´IN, PERREAU, AND RUEDA ZOCA +on the segments [(1, 0), (1, d)] and [(0, 1), (c, 1)] and the argument in the above proof does not work +anymore. +The situation for ccs ∆-points and ccs Daugavet point is not clear and the proofs of the above results +do not seem to admit easy extensions. For instance, it follows from the next result that Remark 3.28 +is not valid for ccs Daugavet points. +Proposition 3.29. Let X be an arbitrary Banach space, let Y be a Banach space containing an +strongly exposed point y0 ∈ SY , and let E := X ⊕1 Y . Then, there are convex combinations of slices of +BE around 0 of arbitrarily small diameter. In particular, E fails to contain ccs Daugavet points and +also fails to have the SD2P. +Proof. Let y∗ +0 ∈ SY ∗ strongly exposes y0. Given ε > 0, there is 0 < δ < ε such that ∥y − y0∥ < ε +whenever y ∈ BY satisfies Re y∗ +0(y) > 1 − δ. Consider f = (0, y∗ +0) ∈ SE∗ and write +C := 1 +2 (S(f, δ; BE) + S(−f, δ, BE)) +Take u := 1 +2(u1 + u2) ∈ C with u1 ∈ S(f, δ; BE) and u2 ∈ S(−f, δ; BE). So if write u1 := (x1, y1) and +u2 := (x2, y2), we have +Re y∗ +0(y1) = Re f(x1, y1) > 1 − δ and +Re y∗ +0(y2) = Re f(x2, y2) < −1 + δ. +On the one hand, it follows that ∥y1−y0∥ < ε and ∥y2+y0∥ < ε. On the other hand, ∥y1∥, ∥y2∥ > 1−δ, +hence ∥x1∥ < δ < ε and ∥x2∥ < δ < ε. Summarizing, we have +∥u∥ = 1 +2 +� +∥x1 + x2∥ + ∥y1 + y2∥ +� +⩽ 1 +2(2ε + 2ε) = 2ε. +□ +Remark 3.30. It is straightforward to adapt the previous proof to ℓp-sums for 1 < p < ∞. +However, note that the situation is very different for ℓ∞-sums. +Theorem 3.31. Let X and Y be Banach spaces, and let E := X ⊕∞ Y . If x ∈ SX is a ccs Daugavet +point, then (x, y) ∈ SE is a ccs Daugavet point for every y ∈ BY . +Proof. Let C := �n +i=1 λiSi be a ccs of BE. For every i ∈ {1, . . . , n}, we can write Si := S(fi, δi) with +fi := (x∗ +i , y∗ +i ) ∈ SE∗ satisfying 1 = ∥fi∥ = ∥x∗ +i ∥ + ∥y∗ +i ∥. Consider on the one side +˜Si := +� +s ∈ BX : Re x∗ +i (s) > ∥x∗ +i ∥ − δi +2 +� +, +and pick on the other side any ti ∈ BY such that Re y∗ +i (ti) > ∥y∗ +i ∥ − δi +2 . Since ˜C := �n +i=1 λi ˜Si is a ccs +of BX, we can find for every ε > 0 an element s := �n +i=1 λisi in ˜C such that ∥x − s∥ > 2 − ε. Then, +if we let t := �n +i=1 λiti, we get (si, ti) ∈ BE and +Re fi(si, ti) = Re x∗ +i (si) + y∗ +i (ti) > ∥x∗ +i ∥ + ∥y∗ +i ∥ − δi = 1 − δi +for every i, so that (si, ti) ∈ Si, and (s, t) = �n +i=1 λi(si, ti) ∈ C. Finally, +∥(x, y) − (s, t)∥ ⩾ ∥x − s∥ > 2 − ε, +so (x, y) is a ccs Daugavet point as stated. +□ + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +19 +4. Examples and counterexamples of diametral elements +In this section we aim to include a number of examples and counterexamples of diametral elements +on the unit sphere of Banach spaces. We first characterize the notion in some spaces which have +natural relations with the Daugavet property, such as L1-preduals spaces, M¨untz spaces, and L1- +spaces. +Next, we will remark on some examples which have previously appear in the literature, +including some improvements in some cases (as for Lipschitz free spaces). Finally, we will include +some complicated examples which will be needed to see that no implication in Figure 1 in page 8 +reverses and also to negate some other possible implications between the notions. A summary of all +the relations between properties will be included in Subsection 4.7. +4.1. Characterization in C(K)-spaces, L1-preduals, and M¨untz spaces. It was shown in +[3, Theorems 3.4 and 3.7] that the notions of ∆-point and Daugavet point coincide for L1-preduals. +The authors first characterize the ∆-points in C(K) spaces and then get the result for L1-preduals by +using the principle of local reflexivity. Later on, a characterization of ∆-points (equivalently, Daugavet +points) of L1-preduals was provided in [42, Theorem 3.2] which implicitly prove that actually ∆-points, +and super Daugavet points coincides in this setting. Let us state this result here for further reference. +Let us observe that the authors of [3] works with real Banach spaces, but it is immediate that the +proof of [3, Theorems 3.4] works in the complex case as well; the paper [42] works in both the real +and the complex case. +Proposition 4.1 ([3, Theorems 3.4 and 3.7], [42, Theorem 3.2]). Let X be an L1-predual and let x ∈ +SX. The following assertions are equivalent. +(1) x is a Daugavet point. +(2) x is a ∆-point +(3) For every δ > 0, the weak∗ slice S(JX(x), δ; BX∗) contain infinitely many pairwise linearly +independent extreme points of BX∗. +(4) For every element y ∈ BX, there exists a sequence (x∗∗ +n ) in BX∗∗ such that ∥x − x∗∗ +n ∥ −→ 2 +and +����� +� +n⩾1 +an(y − x∗∗ +n ) +����� ⩽ 2 ∥a∥∞ +for every a := (an) ∈ c00. +(5) For every element y ∈ BX, there exists a sequence (x∗∗ +n ) in BX∗∗ which converges weak∗ to y +and such that ∥x − x∗∗ +n ∥ −→ 2. +In the case that X = C(K) for a Hausdorff topological space K, the above is also equivalent to: +(6) x attains its norm at an accumulation point of K. +We will show that, in fact, ∆-points also coincide with the ccs versions for L1 preduals. +Our +approach will be analogous to the one used in [3] for ∆-points and Daugavet points: we first prove the +result for C(K) spaces and then deduce it for all L1-preduals using that the bidual of an L1-predual +is a C(K)-space. In the case of C(K) spaces, we first prove a sufficient condition for ccs Daugavet +points which, for the same price, can be proved for vector-valued spaces. Recall that given a compact +Hausdorff topological space K and a Banach space X, C(K, X) denotes the Banach space of those +continuous functions from K to X endowed with the supremum norm. + +20 +MART´IN, PERREAU, AND RUEDA ZOCA +Theorem 4.2. Let K be a compact Hausdorff topological space, X a Banach space, and let t0 be an +accumulation point of K. If a function f ∈ SC(K,X) satisfies ∥f(t0)∥ = 1, then f is a ccs Daugavet +point. +Proof. Pick x∗ ∈ SX∗ such that Re x∗(f(t0)) = ∥f(t0)∥ = 1. +Let C := �L +i=1 λiSi be a convex +combination of slices of BC(K). For every i ∈ {1, . . . , L}, pick a function gi ∈ Si. Since K is compact +and t0 is an accumulation point of K we have the following. +Claim. There exists a sequence (Un)n⩾0 of open neighborhoods of t0 such that: +(1) U0 = K, +(2) Un+1 is a proper subset of Un for every n ⩾ 0, +(3) Re(x∗ ◦ f)|Un ⩾ 1 − 1 +n and +���gi|Un − gi(t0) +��� ⩽ 1 +n for every i ∈ {1, . . . , L} and every n ⩾ 1. +Indeed, we construct the sequence inductively. Let U0 := K and assume that U0, . . . , Un are con- +structed for some n ⩾ 0. +Since K is normal, we can find an open subset U of Un such that +t0 ∈ U ⊂ U ⊂ Un. +Also since t0 is an accumulation point of K and since K is Hausdorff, we +can find an open subset V of U such that V is a proper subset of U (pick any point in U distinct from +t0 and separate the two points with open sets). By continuity of f and of the finitely many g′ +is, we +can then find an open subset W of V such that +Re(x∗ ◦ f)|W > 1 − +1 +n + 1 +and +���gi|W − gi(t0) +��� < +1 +n + 1 +for every i ∈ {1, . . . , L}. The set Un+1 := W does the job. +Now, let us pick (Un)n⩾0 as in the claim and let us define Fn := Un\Un+1 for every n ⩾ 0. By +construction, the F ′ +ns are closed non-empty subsets of K and cover K\ +�� +n⩾0 Un +� +, and each Fn may +only intersects its neighbors Fn−1 and Fn+1. By Urysohn’s lemma, for every n ⩾ 1 we can find a +function pn ∈ C(K) satisfying: +(1) 0 ⩽ pn ⩽ 1, +(2) pn|Fn+1 = 1, +(3) pn|F0∪···∪Fn−1∪Un+3 = 0. +The sequence (pn) is normalized and converges pointwise to 0, so it converges weakly to 0. Moreover, +observe that +∥gi − (1 + gi(t0))pn∥∞ ⩽ 1 + 1 +n +for every i ∈ {1, . . . , L} since +���gi|Un − gi(t0) +��� ⩽ +1 +n and pn|(K\Un) = 0 by construction. So all the +functions +gi,n := +n +n + 1 (gi − (1 + gi(t0))pn) +belong to BC(K) and the sequences (gi,n)n∈N converges weakly to gi for every i ∈ {1, . . . , L}. Since +the finitely many S′ +is are all weakly open, we may thus find some N ⩾ 1 such that gi,n ∈ Si for every +i and every n ⩾ N. In particular, the function +gn := +L +� +i=1 +λigi,n + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +21 +belongs to C for every n ⩾ N. To conclude, fix t ∈ Fn+1 ⊂ Un+1 ⊂ Un and observe that +Re x∗f(t) ⩾ 1 − 1 +n +and that +Re x∗gi,n(t) = +n +n + 1 Re x∗ (gi(t) − (1 + gi(t0)) +⩽ +n +n + 1 Re x∗ +� +gi(t0) + 1 +n − (1 + gi(t0)) +� += −1 + +2 +n + 1 +for every i ∈ {1, . . . L}. Hence, +∥f − gn∥∞ ⩾ Re x∗ +� +f(t) − +L +� +i=1 +λi Re(gi,n(t)) +� +⩾ 2 − 1 +n − +2 +n + 1. +□ +Combining the previous result with Proposition 4.1, we get the promised characterization of diame- +tral points in C(K) spaces. +Corollary 4.3. Let K be a Hausdorff topological compact space. Then the six concepts of diametral +points are equivalent in C(K). +For vector-valued spaces, the situation is not that easy, but we may provide with some results. +Observe that, clearly, if t0 is an isolated point of a compact Hausdorff topological space K and X is +a Banach space, then C(K, X) = C(K \ {t0}, X) ⊕∞ X. +Remark 4.4. Let K be a Hausdorff topological compact space, let X be a Banach space. and let +f ∈ C(K, X) be a function with ∥f∥ = 1. +(1) If f ∈ C(K, X) with ∥f∥ = 1 attains its norm at an accumulation point of K, then f is a ccs +Daugavet point (by Theorem 4.2) and hence, f satisfies the six diametral notions. +(2) If f ∈ C(K, X) with ∥f∥ = 1 attains its norm at an isolated point t0 and f(t0) is a Dau- +gavet (respectively, super Daugavet, ccs Daugavet) point, then f is a Daugavet (respectively, +super Daugavet, ccs Daugavet) point (by [3, Section 4], Remark 3.28, and Theorem 3.31, +respectively). +(3) Suppose that K contains an isolated point t0, let x0 ∈ SX, and let f ∈ C(K, X) be given by +f(t0) = x0 and f(t) = 0 for every t ∈ K \ {t0}. Then: +(3.1) If x0 is a ∆- (respectively, super ∆-) point of X, then f is a ∆- (respectively, super ∆-) +point of C(K, X) (by [3, Section 4] and Proposition 3.25, respectively). +(3.2) If x0 is a Daugavet (respectively, super Daugavet, ccs Daugavet) point of X, then f +is a Daugavet (respectively, super Daugavet, ccs Daugavet) point of C(K, X) (by [45, +Proposition 3.3.11], Remark 3.28 Theorem 3.31, respectively). +(3.3) If f is a ∆- (respectively, Daugavet) point of C(K, X), then x0 is a ∆- (respectively, +Daugavet) point of X (by [45, Theorem 3.4.4], [45, Theorem 3.3.13], respectively). +(4) It is now easy to show that the six diametral notions do not coincide in C(K, X) spaces. +Indeed, let K be a compact Hausdorff topological space containing an isolated point t0, let X +a Banach space containing a ∆-point x0 which is not a Daugavet point (e.g. any x0 in the unit +sphere of X = C[0, 1] ⊕2 C[0, 1]), see Propositions 3.25 and 3.27), and consider the function +f ∈ C(K, X) given by f(t0) = x0 and f(t) = 0 for every t ∈ K \ {t0}. Then, f is a ∆-point by +(3.1) but it is not a Daugavet point by (3.3). +We are now ready to extend Corollary 4.3 to general L1-predual spaces. + +22 +MART´IN, PERREAU, AND RUEDA ZOCA +Corollary 4.5. Let X be an L1-predual and let x ∈ SX be a ∆-point. Then, x is a ccs Daugavet +point. Hence the six diametral notions are equivalent for L1-preduals. +Proof. If x is a ∆-point in X, then as mentioned in item (3) of Remark 2.6, we have that JX(x) is +a ∆-point in X∗∗. Now, X∗∗ is isometric to a C(K) space so Theorem 4.2 gives that JX(x) is a ccs +Daugavet point in X∗∗. Then, using now item (4) of Remark 2.6 (or using a straightforward argument +based on the principle of local reflexivity as in [3, Theorem 3.7]), we get that x is a ccs Daugavet point +in X. +□ +Let us observe that the proof of Theorem 4.2 also works for M¨untz spaces (by using [3, Lemma 3.10] +to provide suitable replacements for the functions pn). We recall that given an an increasing sequence +Λ = (λn)∞ +n=0 of non-negative real numbers with λ0 = 0 such that �∞ +i=1 +1 +λi < ∞, then the real Banach +space +M(Λ) := span{tλn : n ⩾ 0} ⊆ C[0, 1] +is called the M¨untz space associated with Λ. Excluding the constant functions form M(Λ), we have +the subspace M0(Λ) := span{tλn : n ⩾ 1} of M(Λ). +So, adapting the proof of Theorem 4.2 to M¨untz spaces (for real scalar-valued functions attaining +its norm at 1 ∈ [0, 1]) and also using [3, Proposition 3.12], we get the following result analogous to +Corollaries 4.3 and 4.5. +Corollary 4.6. Let X = M(Λ) or X = M0(Λ) for an increasing sequence Λ of non-negative real +numbers with λ0 = 0 such that �∞ +i=1 +1 +λi < ∞. Then, every ∆-point of X is a ccs Daugavet point (and +hence the six diametral notions are equivalent). +4.2. Characterization in L1-spaces. In [3, Theorem 3.1] the equivalence between the notions of +Daugavet point and ∆-point was obtained for elements of σ-finite L1-spaces in the real case. Actually, +it is not complicated to extend the results to arbitrary measures and also to the complex case. +Proposition 4.7 ([3, Theorem 3.1] for the σ-finite real case). Let (Ω, Σ, µ) be a measure space, and +let f be a norm one element in L1(µ). Then, the following assertions are equivalent. +(1) f is a Daugavet point. +(2) f is a ∆-point. +(3) The support of the function f contains no atom. +Observe that (1) implies (2) is immediate. For (2) implies (3), suppose that f is a ∆-point and let +A be an atom of finite measure (the only ones that can be contained in the support of an integrable +function). Then, we clearly have that L1(µ) = L1(µ|Ω\A) ⊕1 K (as integrable functions are constant +on atoms), and we may write f = (f1, c) for suitable f1 ∈ L1(µ|Ω\A) and c = f(A) ∈ K. If c ̸= 0, then +∥f1∥ ̸= 1 and it follows from [45, Theorem 3.4.4] that 1 ∈ K is a ∆-point, a contradiction. This shows +that the support of f does not contain any atom. +To get that (3) implies (1), we actually prove the following more general result. Recall that given a +measured space (Ω, Σ, µ) and a Banach space X, L1(µ, X) denotes the Banach space of all B¨ochner- +integrable functions from Ω to X. +Theorem 4.8. Let (Ω, Σ, µ) be a measured space, let X be a Banach space, and let f be a norm one +element in L1(µ, X). If the support of the function f contains no atom, then f is a super Daugavet +point. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +23 +Proof. Let us write S := supp f which contains no atom by hypothesis. Let us first prove that f is +a super Daugavet point. Since S contains no atoms, we have that L1(µ|S, X) satisfies the Daugavet +property (see e.g. [54, Example in p. 81]). In particular, f is a super Daugavet point in this space. +Since L1(µ, X) = L1(µ|S, X) ⊕1 L1(µ|Σ\S, X), we get that f is a super Daugavet point in L1(µ, X) by +the transfer results from Subsection 3.2 (see Remark 3.28). +□ +Our next goal is to discuss the relationship with the ccs diametral notions. For real L1(µ)-spaces, +and using a result from [1], we may actually get that real-valued integrable functions with atomless +support are ccs ∆-points. +Proposition 4.9. Let (Ω, Σ, µ) be a measured space and let f be a norm one element in the real space +L1(µ). If the support of the function f contains no atom, then f is a ccs ∆-point. +Proof. Take ε > 0 and D := �n +i=1 λiSi a ccs of BL1(µ) containing f. Write f := �n +i=1 λigi with gi ∈ Si +for every i. Consider the measurable subset ˜S := supp f ∪ �n +i=1 supp gi of Ω and let ˜µ be the σ-finite +measure ˜µ := µ| ˜S on ( ˜S, Σ| ˜S). Then D induces a ccs ˜D of BL1(˜µ) by restriction of the support which +contains the function ˜f which is just f viewed as an element of L1(˜µ) and hence, the support of ˜f +does not contains atoms. Since ˜f belongs to the unit sphere of the real space L1(˜µ), we have by [1, +Theorem 5.5] that ˜f is an interior point of ˜D for the relative weak topology of BL1(˜µ). As we have +already shown that ˜f is a super Daugavet point in Theorem 4.8 (and hence a super ∆-point), we can +find ˜g ∈ ˜D such that +�� ˜f − ˜g +�� > 2 − ε. By just considering the extension g of ˜g to the whole Ω by 0, +we get that g ∈ D and that ∥f − g∥ = +�� ˜f − ˜g +�� > 2 − ε. +□ +Let us comment that it is not clear whether ccs ∆-points transfer through absolute sums, but we +have used specific geometric properties of L1-spaces in the previous proof. +Remark 4.10. Observe that since [1, Theorem 5.5] is also valid for convex combination of relative +weakly open subsets of BL1(µ), we in fact have that every ∆-point in a real L1(µ) space is actually a +ccw ∆-point. +Putting together Proposition 4.7, Theorem 4.8, and Proposition 4.9, we get the following corollary. +Corollary 4.11. Let (Ω, Σ, µ) be a measured space and let f be a norm one element in L1(µ). Then, +the following notions are equivalent for f: ∆-points, Daugavet point, super ∆-point, and super Dau- +gavet point. Moreover, in the real case, the previous four notions are also equivalent to being ccs +∆-point. +We now deal with ccs Daugavet points in L1(µ)-spaces. Observe that if Ω admits an atom A of +finite measure, then we have L1(µ) ≡ L1(µ|Ω\A) ⊕1 K. In particular, in this case L1(µ) fails to have +ccs Daugavet points by Proposition 3.29. We then have the following characterization of the presence +of a ccs Daugavet point in an L1-space. +Proposition 4.12. Let (Ω, Σ, µ) be a measure space. Then, the following assertions are equivalent. +(1) L1(µ) has the Daugavet property. +(2) L1(µ) contains a ccs Daugavet point. +(3) L1(µ) has the SD2P. +(4) µ admits no atom of finite measure. + +24 +MART´IN, PERREAU, AND RUEDA ZOCA +Proof. (1)⇔(4) is well known (see [54, Section 2, Example (b)]); (1)⇒(2) is also known; (2)⇒(3) is +contained in Proposition 3.12. Finally, (3)⇒(4) follows from Proposition 3.29 and the comment before +the statement of this proposition. +□ +4.3. Remarks on some examples from the literature. +4.3.1. Two examples in Lipschitz-free spaces. In [51], Veeorg constructed a surprising example of a +space satisfying the Radon-Nikod´ym property and containing a Daugavet point. We slightly improve +this result by showing that this point is also a ccs ∆-point by proving a general fact about extreme +∆-molecules in Lipschitz-free spaces. For the necessary definitions we refer to the cited paper [51] and +to [9, 10, 32]; for further background on Lipschitz-free spaces, we refer to the book [53]. +For this purpose, we start by recalling the following characterization of molecules which are ∆-points +on Lipschitz-free spaces from [32]. +Proposition 4.13 ([32, Theorem 4.7]). Let M be a pointed metric space and let x ̸= y ∈ M. The +molecule mx,y is a ∆-point if and only if every slice S of BF(M) containing mx,y also contains for +every ε > 0 a molecule mu,v with u ̸= v ∈ M satisfying d(u, v) < ε. +In the case in which the molecule is an extreme point, we have the following improved result. +Theorem 4.14. Let M be a pointed metric space, and let x ̸= y ∈ M. If the molecule mx,y is an +extreme point and a ∆-point, then mx,y is a ccs ∆-point. +Observe that this result cannot be obtained from Proposition 3.13: molecules of Lipschitz-free +spaces which are preserved extreme points are denting points, hence very far from being ∆-points. +To give the proof of the theorem, we need a result which is just an equivalent reformulation of a +result in [32]. +Lemma 4.15 ([32, Theorem 2.6]). Let M be a pointed metric space, and let µ ∈ SF(M). For every +ε > 0, there exists δ > 0 such that given u ̸= v ∈ M with d(u, v) < δ we have ∥µ ± mu,v∥ > 2 − ε. +Using this result and a homogeneity argument similar to the one from [15, Lemma 2.3], we can +provide the pending proof. +Proof of Theorem 4.14. Let C := �n +i=1 λiSi be a ccs of BF(M) containing mx,y and let ε > 0. Since +mx,y is extreme, we have that mx,y ∈ �n +i=1 Si, and by Proposition 4.13 every Si contains molecules +of F(M) supported at arbitrarily close points. Using Lemma 4.15, we construct inductively for every +η > 0 a finite sequence (mui,vi)n +i=1 of molecules in F(M) such that +(1) mui,vi ∈ Si for every i. +(2) +���mx,y − �k +i=1 λimui,vi +��� > 1 + �k +i=1 λi − kε +n for every k ⩽ n. +Indeed, since S1 contains molecules of F(M) supported at arbitrarily close points, we can find by +Lemma 4.15 u1 ̸= v1 ∈ M such that mu1,v1 ∈ S1 and ∥mx,y − mu1,v1∥ > 2 − ε +n. +It follows that +∥mx,y − λ1mu1,v1∥ ⩾ ∥mx,y − mu1,v1∥−(1−λ1) > 1+λ1− ε +n. Let us assume that mu1,v1, . . . , muk,vk are +constructed as desired for a given k ∈ {1, . . . , n−1}. Since Sk+1 contains molecules of F(M) supported +at arbitrarily close points, we can find by Lemma 4.15 uk+1 ̸= vk+1 ∈ M such that muk+1,vk+1 ∈ Sk+1 + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +25 +and +������ +mx,y − �k +i=1 λimui,vi +���mx,y − �k +i=1 λimui,vi +��� +− muk+1,vk+1 +������ +> 2 − +ε +n +���mx,y − �k +i=1 λimui,vi +��� +. +Then, +������ +mx,y − �k+1 +i=1 λimui,vi +���mx,y − �k +i=1 λimui,vi +��� +������ +⩾ +������ +mx,y − �k +i=1 λimui,vi +���mx,y − �k +i=1 λimui,vi +��� +− muk+1,vk+1 +������ +− +� +�1 − +λk+1 +���mx,y − �k +i=1 λimui,vi +��� +� +� +> 1 + +λk+1 +���mx,y − �k +i=1 λimui,vi +��� +− +ε +n +���mx,y − �k +i=1 λimui,vi +��� +. +By the assumption, +�����mx,y − +k+1 +� +i=1 +λimui,vi +����� > +�����mx,y − +k +� +i=1 +λimui,vi +����� + λk+1 − ε +n > 1 + +k+1 +� +i=1 +λi − (k + 1)ε +n +. +As a consequence, µ := �n +i=1 λimui,vi belongs to C and satisfies ∥mx,y − µ∥ > 2 − ε. +□ +In particular, we have, as announced, that the molecule mx,y in the example from [51] is a ccs +∆-point. Note that it cannot be a ccs Daugavet point by Proposition 3.12 since the space has the +RNP, but we do not know whether it is a super ∆-point or even a super Daugavet point. Let us state +the result for further reference. +Example 4.16. Let M be the metric space constructed in [51, Example 3.1] and let x, y be the points +described there. Then, F(M) has the RNP, the molecule mx,y is an extreme point of the unit ball of +F(M) which is a Daugavet point. Hence, by our Theorem 4.14, mx,y is a ccs-∆-point. +Another interesting example in the Lipschitz-free space setting is the following one which uses a +metric space constructed by Aliaga, Noˆus, Petitjean, and Proch´azka [10]. +Example 4.17. Let M be the metric space from [10, Examples 4.2]. Then one can check that the +molecule m0,q is an extreme point of BF(M) and, since the points 0 and q are discretely connectable, it +follows from an easy adjustment of [32, Proposition 4.2] that this molecule is a ∆-point. In particular, +it follows from Theorem 4.14 that this molecule is also a ccs ∆-point. However, it is not difficult to +show that there exists denting points in BF(M) that are at distance strictly less than 2 to m0,q (take +any among the molecules mxn +i ,xn +i+1), so this molecule is not a Daugavet point. Also observe that this +space has the RNP since the metric space M is countable and complete [9, Theorem 4.6]. +Let us finally remark that the spaces F(M) of Examples 4.16 and 4.17 have the RNP, so they +are strongly regular and hence strongly regular points are norm dense, but both examples have ccs +∆-points. They cannot contain ccs Daugavet points by Proposition 3.12. +Let us also comment that the use of Theorem 4.14 above cannot be omitted, as the molecule m0,q +is not a preserved extreme point, hence Proposition 3.13 is again not applicable. + +26 +MART´IN, PERREAU, AND RUEDA ZOCA +4.3.2. An example of a Banach space with the DD2P, the restricted DSD2P, but containing ccs of +arbitrarily small diameter. In [2, Theorem 2.12], Abrahamsen, H´ajek, Nygaard, Talponen, and Troy- +anski constructed a space X which has the DLD2P, which is midpoint locally uniformly rotund (in +particular, satisfying that pre-ext (BX) = SX), and such that BX contains convex combinations of +slices of arbitrarily small diameter. It then follows from Proposition 3.13 that every element of SX is +actually a super ∆-point and a ccs ∆-point (that is, X has the DD2P and the restricted DSD2P). But +containing ccs of arbitrarily small diameter, X fails the SD2P. The obvious explanation for the failure +of the SD2P and the fact that every element in the unit sphere is a ccs ∆-point is that none of the +convex combinations of slices of diameter strictly smaller than 2 intersects the unit sphere. On the +other hand, the space X is constructed as the ℓ2-sum of spaces, and so X does not contain Daugavet +points by [3, Proposition 4.6] (see Proposition 3.27). +Observe further that X has the restricted DSD2P and the DD2P, but fails the DSD2P (which is +equivalent to the Daugavet property by [34]). +4.3.3. An example in a space with one-unconditional basis. Abrahamsen, Lima, Martiny, and Troy- +anski constructed in [6, Section 4] a Banach space XM with one-unconditional basis which contains a +subset DB ⊆ SXM satisfying: +• Every element in DB is both a Daugavet point and a point of continuity; +• BXM = co(DB); +• DB is weakly dense in the unit ball. +Observe that no element of DB is a super ∆-point (it is exactly the opposite!). By Theorem 3.19, no +element of DB is a ccs ∆-point. +4.4. A super ∆-point which fails to be a Daugavet point in an extreme way. In order to +put into a context the following result, let us recall that Daugavet points are at distance 2 from any +denting point (see [32, Proposition 3.1]). With this in mind, the following result can be interpreted as +the existence of super ∆-points which fail to be Daugavet points in an extreme way. +Theorem 4.18. Let X be a Banach space with the Daugavet property. Then, for every ε > 0, there +exists an equivalent norm | · | and two points x, y ∈ B(X,|·|) such that +(1) y is a super ∆-point. +(2) x is strongly exposed. +(3) |x − y| < ε. +Proof. Take a subspace Y ⊆ X with dim(X/Y ) = 1. Observe that Y has the Daugavet property (see +e.g. [50, Theorem 6 (a)]). Take x ∈ SX with 0 < d(x, Y ) < ε (this can be settled taking a non-zero +element v ∈ X/Y with quotient norm smaller than ε). Now, we can find an element y ∈ SY such that +∥x − y∥ < ε. By the Hahn-Banach theorem, we can take f ∈ SX∗ with Re f(x) > 0 and f = 0 on Y . +This means that x belongs to the slice T := {z ∈ BX : Re f(z) > α} for some α > 0. Take δ > 0 such +that ∥x−y∥ +1−δ +< ε. By Lemma 2.1 we can find x∗ ∈ SX∗ such that x ∈ S(x∗, δ; BX) ⊆ T. By the above +inclusion we conclude that S(x∗, δ; BX) ∩ BY = ∅ or, in other words, that Re x∗(z) ⩽ 1 − δ for every +z ∈ BY . Set +B := co(BY ∪ (1 − δ)BX ∪ {±x}). + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +27 +B is the unit ball of an equivalent norm |·| which satisfies, in view of the inclusions (1−δ)BX ⊆ B ⊆ BX, +that +∥x∥ ⩽ |x| ⩽ +1 +1 − δ∥x∥ +for every x ∈ X. Let us prove that | · |, x and y satisfies our requirements. First, observe that +|x − y| ⩽ ∥x − y∥ +1 − δ +< ε. +Next, we claim that y is a super ∆ point. Indeed, since Y has the Daugavet property we can find a net +{ys} ⊆ BY with {ys} −→ y weakly and ∥y − ys∥ −→ 2. Notice that the weak convergence {ys} −→ y +is still guaranteed on X because i: (Y, ∥ · ∥) −→ (X, | · |) is weak to weak continuous as ∥ · ∥ and | · | +are equivalent. Moreover, notice that ys ∈ BY ⊆ B for every s, so |ys| ⩽ 1 for every s. Finally, +|ys − y| ⩾ ∥ys − y∥ −→ 2, +and since y ∈ BY ⊆ B, we conclude |ys − y| −→ 2. From there, y is clearly a super ∆-point for the +norm | · |. +It remains to prove that x is strongly exposed. Indeed, we will prove that Re x∗ strongly exposes +B at x, for which it is enough to prove that Re x∗ strongly exposes co(BY ∪ (1 − δ)BX ∪ {±x}) at +x. Take z := αu + β(1 − δ)v + (γ − ω)x ∈ co(BY ∪ (1 − δ)BX ∪ {±x}) with α + β + γ + ω = 1. +Observe that 1 − δ < Re x∗(x) ⩽ |x∗| ⩽ ∥x∗∥ due to the inclusion B ⊆ BX. Taking into account that +Re x∗(u) ⩽ 1 − δ since u ∈ BY as BY ∩ S(x∗, δ; BX) = ∅, we conclude +Re x∗(z) ⩽ (1 − δ)(α + β) + (γ − ω) Re x∗(x). +Since Re x∗(x) > 1 − δ, we get that sup +� +Re x∗(z): z ∈ co(BY ∪ (1 − δ)BX ∪ {±x}) +� += Re x∗(x). If we +take a sequence +zn := αnun + βn(1 − δ)vn + (γn − ωn)x ∈ co(BY ∪ (1 − δ)BX ∪ {±x}) +with αn + βn + γn + ωn = 1 such that Re x∗(zn) −→ Re x∗(x), it follows from the previous argument +that αn → 0, βn → 0, ωn → 0 and γn → 1, which means zn → x in norm. +□ +Remark 4.19. Using the previous theorem and Proposition 3.25 it is easy to construct (considering +ℓ2-sums, for instance) a Banach space X containing a sequence of super ∆-points (yn) such that the +distance from yn to the set of strongly exposed points is going to zero. +4.5. A super ∆-point which is a strongly regular point. In the present subsection, as well +as in the next, we aim to distinguish the super and ccs notions of ∆- and Daugavet points. The +following result shows that there are plenty of examples of spaces containing super ∆-points which are +strongly regular points (hence far from being ccs ∆-points). We do the construction in for real spaces +for simplicity. +Theorem 4.20. Every real Banach space with the Daugavet property can be equivalently renormed +so that the new unit ball has a point which is simultaneously super-∆ and a point of strong regularity +(hence, far away of being ccs ∆-point). +We will use the following immediate result which follows from the fact that a convex combination +of ccs is again a ccs. +Lemma 4.21. Let X be a Banach space and let C be a closed, convex, bounded subset of X. Then +the set of strongly regular points of C is a convex set. + +28 +MART´IN, PERREAU, AND RUEDA ZOCA +Proof of Theorem 4.20. Let X be a Banach space with the Daugavet property. Take a 1-codimensional +subspace Y of X. Since Y is complemented in X then X = Y ⊕ R, so we will see X in such way. Take +r > 0, y0 ∈ SY and f ∈ SX∗ such that f(y0) = 1, and consider on X = Y ⊕ R the equivalent norm +| · | whose unit ball is B := co +� +BY × {0} ∪ {±(y0, r)} ∪ {±(y0, −r)} +� +. It readily follows that | · | agrees +with the original norm ∥ · ∥ on the elements of the form (y, 0). +We claim that (y0, 0) satisfies our requirements. First of all, let us prove that (y0, 0) is a super-∆ +point. Since Y is one-codimensional, it has the Daugavet property (see e.g. [50, Theorem 6 (a)]). +Consequently, there exists a net (ys) −→ y0 weakly in BY such that ∥y0 −ys∥ −→ 2. Then, (ys, 0) −→ +(y0, 0) weakly in (X, | · |). Moreover, it is clear that (ys, 0) ∈ B for every s. Finally, +|(ys, 0) − (y0, 0)| = |(ys − y0, 0)| = ∥ys − y0∥ −→ 2. +Let us now prove that (y0, 0) is a point of strong regularity. +To do so, it is enough, in view of +Lemma 4.21, to show that (y0, ±r) is a strongly exposed point (we will prove that for (y0, r), being +the other case completely analogous). Let us prove that Re(f, 1) strongly exposes (y0, r) in the set +BY × {0} ∪ {±(y0, r)} ∪ {±(y0, −r)}. On the one hand, we have +Re(f, 1)(y0, r) = Re f(y0) + r = 1 + r. +On the other hand, given (y, 0) ∈ BY × 0 we have Re(f, 1)(y, 0) = f(y) ⩽ 1 < 1 + r. Moreover, +Re(f, 1)(y0, −r) = 1 − r and Re(f, 1)(−y0, ±r) = −1 ± r < 1 + r. Consequently, +sup{Re(f, 1)(a, b): (a, b) ∈ BY × {0} ∪ {±(y0, r)} ∪ {±(y0, −r)}, (a, b) ̸= (y0, r)} +⩽ 1 < 1 + r = Re(f, 1)(y0, r). +This is enough to guarantee that Re(f, 1) strongly exposes (y0, r) in B, so we are done. +□ +4.6. A super Daugavet point which is not ccs ∆-point. The previous example shows that we +can distinguish the notion of super ∆-point and the one of ccs ∆-point. It seems natural then that +we should be able to distinguish the notions of super Daugavet point and the one of ccs ∆-point. In +order to do so, we need to consider an involved construction but, as a consequence, we will prove +that there are super Daugavet points which are contained in convex combinations of slices of small +diameter. The construction will be very similar to that of [14, Theorem 2.4], with a slight variation +which makes the resulting norm with a stronger Daugavet flavour. As in the previous subsection, we +will only work with real spaces here. +In order to do so, let us recall a construction from Argyros, Odell, and Rosenthal [11]. Pick a +nonincreasing null sequence {εn} in R+. We construct an increasing sequence of closed, bounded and +convex subsets {Kn} in the real space c0 and a sequence {gn} in c0 as follows: First define K1 = {e1}, +g1 = e1 and K2 = co(e1, e1 + e2). Choose l2 > 1 and g2, . . . , gl2 ∈ K2 an ε2-net in K2. Assume that +n ⩾ 2 and that mn, ln, Kn, and {g1, . . . , gln} have been constructed, with Kn ⊆ Bspan{e1,...,emn} and +gi ∈ Kn for every 1 ⩽ i ⩽ ln. Define Kn+1 as +Kn+1 = co(Kn ∪ {gi + emn+i : 1 ⩽ i ⩽ ln}). +Consider mn+1 = mn + ln and choose {gln+1, . . . , gln+1} ∈ Kn+1 so that {g1, . . . , gln+1} is an εn+1-net +in Kn+1. Finally, we define K0 = ∪nKn. Then it follows that K0 is a non-empty closed, bounded +and convex subset of c0 such that x(n) ⩾ 0 for every n ∈ N and ∥x∥∞ ⩽ 1 for every x ∈ K0 and so +diam (K0) ⩽ 1. +Now, for a fixed i, we have from the construction that {gi + emn+i}n is a sequence in K0 (for n +large enough) which is weakly convergent to gi, and ∥(gi − emn+i) − gi∥ = ∥emn+i∥ = 1 holds for every + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +29 +n. Then diam (K0) = 1. We will freely use the set K0 and the above construction throughout the +subsection. Observe that, from the above construction, it follows that +K0 = {gi : i ∈ N} +w = {gi : i ∈ N}. +Observe finally that, by the inductive construction, gi has finite support for every i ∈ N. +By [11, Theorem 1.2] we have that K0 contains convex combinations of slices of arbitrarily small +diameter. However, all the points in K0 are “super Daugavet points” in the following sense. +Proposition 4.22. For every x0 ∈ K0, every ε > 0, and every non-empty weakly open subset W of +K0, there exists y ∈ W satisfying that ∥x0 − y∥ > 1 − ε = diam (K0) − ε. +Proof. Take ε > 0 and a non-empty relatively weakly open subset of K0. By a density argument, we +can find i ∈ N satisfying that ∥x0 − gi∥ < ε. Again by a density argument there exists gk ∈ W for +certain k ∈ N. +As we explained above, by the definition of K0 we have that the sequence gk +emn+k ∈ K0 for every +n ∈ N. Since +� +gk + emn+k +� +n∈N −→ gk weakly, we can find n ∈ N large enough so that gk + emn+k ∈ W +and mn + k /∈ supp(gi) ∪ supp(gk) (this is possible because the previous set is finite). +So taking +y = gk + emn+k, we get y(mm + k) = 1 and so +∥gi − y∥ ⩾ y(mn + k) − gi(mn + k) = 1 − 0 = 1. +As a consequence, ∥x0 − y∥ ⩾ ∥gi − y∥ − ∥gi − x0∥ > 1 − ε, and the proof is finished. +□ +It is time to construct the announced renorming of C[0, 1]. Take a sequence of non-empty pairwise +disjoint open subsets Vn of [0, 1] satisfying that 0 /∈ � +n∈N +Vn. By Urysohn lemma, we can find, for +every n ∈ N, a function hn ∈ SC[0,1] with 0 ⩽ hn ⩽ 1 and such that supp(hn) ⊆ Vn. If we consider +Z := span{hn : n ∈ N}, we get that Z is lattice isometrically isomorphic to c0 (indeed, the mapping +en �−→ hn is an isometric Banach lattice isomorphism). Consequently, we can consider the set K0 +constructed in Z, obtaining that K0 ⊆ BC[0,1] is a set of positive functions (because the latter linear +isometry preserves the lattice structure) which contains convex combination of slices of arbitrarily small +diameter but enjoying the property exhibited in Proposition 4.22. Moreover, by the construction of +the functions hn, f(0) = 0 for every f ∈ Z so, in particular, f(0) = 0 for every f ∈ K0. +Now, take 0 < ε < 1 and write +Bε := co +� +2 +� +K0 − 1 +2 +� +∪ 2 +� +−K0 + 1 +2 +� +∪ ((1 − ε)BC[0,1] + εBker(δ0)) +� +, +where 1 stands for the constant function 1 in C[0, 1]. +Consider ∥·∥ε the norm on (the real version of) C[0, 1] whose unit ball is Bε. As we have indicated, +the renorming technique follows the scheme of the renorming given in [14, Theorem 2.4] with the +difference that we use Bker(δ0) instead of Bc0 in the last term because ker(δ0) is a Banach space with +the Daugavet property. +We have the following result. +Theorem 4.23. The space (X, ∥ · ∥ε) satisfies that: +(1) Every element of 2(K0 − 1 +2 ) is a super Daugavet point. +(2) For every η > 0 there exists a convex combination of slices D of Bε with D ∩ 2(K0 − 1 +2 ) ̸= ∅ +and such that diam (D) < η. + +30 +MART´IN, PERREAU, AND RUEDA ZOCA +In particular, there are super Daugavet points which are not ccs−∆ points. +Proof. (1). Take a ∈ K0, and let us prove that 2a − 1 is a super Daugavet point. In order to do so, +pick a non-empty relatively weakly open subset W of Bε. Write +A := 2(K0 − 1 +2 ) and B := (1 − ε)BC[0,1] + εBker(δ0). +Since Bε = co(A ∪ −A ∪ B) we have that W has non-empty intersection with co(A ∪ −A ∪ B). Now +observe that A−A +2 += K0 −K0 ⊆ Bker(δ0) ⊆ B so that co(A∪−A∪B) = co(A∪B)∪co(−A∪B) by [14, +Lemma 2.4]. Consequently, either W ∩ co(A ∪ B) or W ∩ co(−A ∪ B) is non-empty. Let us distinguish +by cases. +Assume first that W ∩ co(A ∪ B) is non-empty, so find a′ ∈ K0, f ∈ BC[0,1], g ∈ Bker(δ0), and +α, β ∈ [0, 1] with α + β = 1 satisfying that +α(2a′ − 1) + β((1 − ε)f + εg) ∈ W. +Take η > 0. By Proposition 4.22, there exists a net (as) −→ a′ weakly with as ∈ K0 for every s and +satisfying that ∥a − as∥ −→ 1. Since (2as − 1) −→ 2a′ − 1 weakly, we can find s large enough so that +α(2as − 1) + β((1 − ε)f + εg) ∈ W +and +∥(2a − 1) − (2as − 1)∥ = 2∥a − as∥ > 2 − η. +Observe that 2a − 1 and 2as − 1 are functions in BC[0,1] since a, as are positive functions of norm at +most one. Since ∥(2a − 1) − (2as − 1)∥ > 2 − η, there exists t0 ∈ [0, 1] and θ ∈ {−1, 1} such that +θ(2a − 1)(t0) > 1 − η and θ(2as − 1)(t0) < −1 + η (observe that t0 ̸= 0 since a(t0) = as(t0) = 0 by +construction). Consequently, the set +U := {t ∈ [0, 1]: θ(2a − 1)(t) > 1 − η and θ(2as − 1)(t) < −1 + η} +is a non-empty open subset of [0, 1], and we can construct a sequence of non-empty pairwise disjoint +open sets Wn ⊆ U. Observe that 0 /∈ � +n∈N Wn since 0 /∈ U. Take pn ∈ Wn for every n ∈ N. We +can construct, for every n ∈ N, two functions fn and gn in the unit ball of C[0, 1] satisfying fn = f +and gn = g in [0, 1] \ Wn and fn(pn) = gn(pn) = −θ. Observe that the sequence of functions (f − fn) +have pairwise disjoint supports, so (f − fn) −→ 0 weakly or, in other words, (fn) −→ f weakly. A +similar argument shows that (gn) −→ g weakly. Notice also that, given n ∈ N, since 0 /∈ Wn then +gn(0) = g(0) = 0, so (gn) ⊆ ker(δ0). Henceforth α(2as − 1) + β((1 − ε)fn + εgn) is a sequence in Bε +which converges in n weakly to α(2as − 1) + β((1 − ε)f + εg) ∈ W. Consequently, we can find n large +enough such that α(2as −1)+β((1−ε)fn +εgn) ∈ W. Finally, observe that the inclusion Bε ⊆ BC[0,1] +implies that ∥z∥ ⩽ ∥z∥ε, so +��(2a − 1) − α(2as − 1) − β((1 − ε)fn + εgn) +�� +ε ⩾ +��(2a − 1) − α(2as − 1) − β((1 − ε)fn + εgn) +�� +⩾ θ((2a − 1) − α(2as − 1) − β((1 − ε)fn)(pn) += θ(2a − 1)(pn) − θα(2as − 1)(pn) +− θβ((1 − ε)fn(pn) + θεgn(pn)) +> 1 − η − α(−1 + η) − β(−1) += 1 + α + β − (1 + α)η = 2 − 2η. +Since η > 0 was arbitrary this finishes the case W ∩ co(A ∪ B) ̸= ∅. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +31 +For the case W ∩ co(−A ∪ B) ̸= ∅, find a′ ∈ K0, f ∈ BC[0,1], g ∈ Bker(δ0), and α, β ∈ [0, 1] with +α + β = 1 satisfying that +α(−2a′ + 1) + β((1 − ε)f + εg) ∈ W. +This case is simpler because ∥(2a − 1) − (−2a′ + 1)∥ ⩾ (2a − 1) − (−2a′ + 1)(0) = 2. Now, an +approximation argument for fn and gn similar to that of the above case (working on a non-empty +open subset of (0, 1) in order to get gn(0) = 0) finishes this case and, consequently, the proof of (1). +(2). The first part of the proof will be a repetition of the argument of [14, Theorem 2.4]. Fix γ > 0. +From [11, Theorem 1.2] there exist slices S1, · · · , Sn of K0 such that +diam +� +1 +n +n +� +i=1 +Si +� +< 1 +4(1 − ε)γ. +We can assume that Si = {x ∈ K0 : x∗ +i (x) > 1 − �δ} where 0 < �δ < 1, x∗ +i ∈ C[0, 1]∗ and sup x∗ +i (K0) = 1 +holds for every i = 1, . . . , n. It is clear that +sup x∗ +i +� +2(K0 − 1 +2 ) +� += 2(1 − x∗ +i (1 +2 )), +for all i = 1, · · · , n. We put ρ, δ > 0 such that 1 +2ρ∥x∗ +i ∥ + δ < �δ, 2ρ < ε, ρ∥x∗ +i ∥ < 4δ, and (7−2ε)ρ +(1−ε) +< γ, +for all i = 1, . . . , n. We consider the relatively weakly open set of Bε given by +Ui := +� +x ∈ Bε : x∗ +i (x) > 2 +� +1 − δ − x∗ +i +�1 +2 +�� ++ 1 +2ρ∥x∗ +i ∥, x(0) = δ0(x) < −1 + ρ2 +� +for every i = 1, . . . , n. It is clear that ∥x∗ +i ∥ε ⩽ ∥x∗ +i ∥ for every i = 1, . . . , n and ∥δ0∥ε = ∥δ0∥ = 1. +Since ρ∥x∗ +i ∥ < 4δ, we have that 2(1 − x∗ +i ( 1 +2 )) > 2(1 − δ − x∗ +i ( 1 +2)) + 1 +2ρ∥x∗ +i ∥. Now, we have that +sup x∗ +i (2(K0 − 1 +2 )) = 2(1 − x∗ +i ( 1 +2)), then there exists x ∈ K0 such that +x∗ +i (2(x − 1 +2 )) > 2(1 − δ − x∗ +i (1 +2)) + 1 +2ρ∥x∗ +i ∥ and δ0(2(x − 1 +2)) = −1 < −1 + ρ2. +This implies that Ui ̸= ∅ for every i = 1, . . . , n. In order to estimate the diameter of 1 +n +�n +i=1 Ui, it is +enough to compute the diameter of +1 +n +n +� +i=1 +Ui ∩ co +� +2 +� +K0 − 1 +2 +� +∪ −2 +� +K0 − 1 +2 +� +∪ [(1 − ε)BX + εBker(δ0)] +� +. +Since 2(K0 − 1 +2 ) and (1 − ε)BC[0,1] + εBker(δ0) are convex subsets of Bε, given x ∈ Bε, we can assume +that x = λ12(a − 1 +2 ) + λ22(−b + 1 +2 ) + λ3[(1 − ε)x0 + εy0], where λi ∈ [0, 1] with �3 +i=1 λi = 1 and +a, b ∈ K0, x0 ∈ BC[0,1], and y0 ∈ Bker(δ0). +So given x, y ∈ 1 +n +�n +i=1 Ui, for i = 1, · · · , n, there exist ai, a′ +i, bi, b′ +i ∈ K0, λ(i,j), λ′ +(i,j) ∈ [0, 1] with +j = 1, 2, 3 and, xi, x′ +i ∈ BC[0,1], and yi, y′ +i ∈ BKer(δ0), such that +ui := 2λ(i,1) +� +ai − 1 +2 +� ++ 2λ(i,2) +� +−bi + 1 +2 +� ++ λ(i,3)[(1 − ε)xi + εyi] +u′ +i := 2λ′ +(i,1) +� +a′ +i − 1 +2 +� ++ 2λ′ +(i,2) +� +−b′ +i + 1 +2 +� ++ λ′ +(i,3)[(1 − ε)x′ +i + εy′ +i] +belong to Ui for every i ∈ {1, . . . , n}, and such that +x = 1 +n +n +� +i=1 +ui and y = 1 +n +n +� +i=1 +u′ +i. + +32 +MART´IN, PERREAU, AND RUEDA ZOCA +For i ∈ {1, . . . , n} we have that ui ∈ Ui so +δ0(ui) = δ0 +� +2λ(i,1) +� +ai − 1 +2 +� ++ 2λ(i,2) +� +−bi + 1 +2 +� ++ λ(i,3)[(1 − ε)xi + εyi] +� +< −1 + ρ2. +Observe that, by construction, +δ0 +� +ai − 1 +2 +� += −1 +2, δ0 +� +−bi + 1 +2 +� += 1 +2 and δ0((1 − ε)xi + εyi) = δ0((1 − ε)xi) ⩾ −(1 − ε). +This implies that +2λ(i,2) + λ(i,3)ε − 1 = −λ(i,1) + λ(i,2) − λ(i,3)(1 − ε) < −1 + ρ2. +Since 2ρ < ε, we deduce that λ(i,2) + λ(i,3) < 1 +2ρ. As a consequence we get that +(4.1) +λ(i,1) > 1 − 1 +2ρ, +and, similarly, we get that +(4.2) +λ′ +(i,1) > 1 − 1 +2ρ, +for every i = 1, . . . , n. Now, the previous inequalities imply that +∥x − y∥ε ⩽ 1 +n +����� +n +� +i=1 +2λ(i,1) +� +ai − 1 +2 +� +− 2λ′ +(i,1) +� +a′ +i − 1 +2 +������ +ε ++ 1 +n +n +� +i=1 +����2λ(i,2) +� +−bi + 1 +2 +����� +ε ++ 1 +n +n +� +i=1 +����2λ′ +(i,2) +� +−b′ +i + 1 +2 +����� +ε ++ 1 +n +n +� +i=1 +∥λ(i,3)[(1 − ε)xi + εyi]∥ε + 1 +n +n +� +i=1 +∥λ′ +(i,3)[(1 − ε)x′ +i + εy′ +i]∥ε +⩽ 1 +n +����� +n +� +i=1 +2λ(i,1) +� +ai − 1 +2 +� +− 2λ′ +(i,1) +� +a′ +i − 1 +2 +������ +ε ++ 1 +n +n +� +i=1 +� +λ(i,2) + λ(i,3) +� ++ 1 +n +n +� +i=1 +� +λ′ +(i,2) + λ′ +(i,3) +� +and, by using (4.1),(4.2), +⩽ 1 +n +����� +n +� +i=1 +2λ(i,1) +� +ai − 1 +2 +� +− 2λ′ +(i,1) +� +a′ +i − 1 +2 +������ +ε ++ ρ +⩽ 2 +n +����� +n +� +i=1 +λ(i,1)ai − λ′ +(i,1)a′ +i +����� +ε ++ 1 +n +n +� +i=1 +|λ(i,1) − λ′ +(i,1)|∥1∥ε + ρ +⩽ 2 +n +����� +n +� +i=1 +λ(i,1)ai − λ′ +(i,1)a′ +i +����� +ε ++ (3 − 2ε) +2(1 − ε)ρ. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +33 +Now, +����� +n +� +i=1 +λ(i,1)ai − λ′ +(i,1)a′ +i +����� +ε +⩽ +����� +n +� +i=1 +(λ(i,1) − 1)ai +����� +ε ++ +����� +n +� +i=1 +ai − a′ +i +����� +ε ++ +����� +n +� +i=1 +(λ′ +(i,1) − 1)a′ +i +����� +ε +⩽ +1 +1 − ε +����� +n +� +i=1 +ai − a′ +i +����� + +n +� +i=1 +1 +1 − ε|λ(i,1) − 1|∥ai∥ + +n +� +i=1 +1 +1 − ε|λ′ +(i,1) − 1|∥a′ +i∥ +⩽ +1 +1 − ε +����� +n +� +i=1 +ai − a′ +i +����� + +1 +1 − εnρ. +(In the previous estimate observe that ∥ai∥ ⩽ 1 and ∥a′ +i∥ ⩽ 1 since ai, a′ +i ∈ K0 ⊆ Bker(δ0) ⊆ Bε). +Hence, +(4.3) +∥x − y∥ε ⩽ +2 +1 − ε +����� +1 +n +n +� +i=1 +ai − a′ +i +����� + (7 − 2ε) +2(1 − ε)ρ. +Now, in order to prove that the previous norm is small we will prove that both elements 1 +n +�n +i=1 ai, 1 +n +�n +i=1 a′ +i +are elements of 1 +n +�n +i=1 Si, which has small diameter. To this end, note that +x∗ +i +� +2λ(i,1) +� +ai − 1 +2 +� ++ 2λ(i,2) +� +−bi + 1 +2 +� ++ λ(i,3)[(1 − ε)xi + εyi] +� +> 2 +� +1 − δ − x∗ +i +�1 +2 +�� ++ ρ +2∥x∗ +i ∥, +for every i ∈ {1, . . . , n}. Then, +x∗ +i +� +2λ(i,1) +� +ai − 1 +2 +�� ++ 1 +2ρ∥x∗ +i ∥ ⩾ x∗ +i +� +2λ(i,1) +� +ai − 1 +2 +�� ++ λ(i,2)∥x∗ +i ∥ + λ(i,3)∥x∗ +i ∥ +⩾ x∗ +i +� +2λ(i,1) +� +ai − 1 +2 +�� ++ λ(i,2)∥x∗ +i ∥ε + λ(i,3)∥x∗ +i ∥ε +⩾ x∗ +i +� +2λ(i,1) +� +ai − 1 +2 +� ++ 2λ(i,2) +� +−bi + 1 +2 +� ++ λ(i,3)[(1 − ε)xi + εyi] +� +. +We have that +x∗ +i +� +2λ(i,1) +� +ai − 1 +2 +�� +> 2 +� +1 − δ − x∗ +i +�1 +2 +�� +, +and hence +x∗ +i (λ(i,1)ai) > 1 − δ − (1 − λ(i,1))x∗ +i +�1 +2 +� +⩾ 1 − δ − 1 +2ρ∥x∗ +i ∥. +We recall that δ+ 1 +2ρ∥x∗ +i ∥ < �δ, so x∗ +i (λ(i,1)ai) > 1−�δ. It follows that x∗ +i (ai) > 1−�δ. Then, ai ∈ K0∩Si +and, similarly, we get that a′ +i ∈ K0 ∩ Si, for every i = 1, . . . , n. Therefore, +1 +n +n +� +i=1 +ai, 1 +n +n +� +i=1 +a′ +i ∈ 1 +n +n +� +i=1 +Si. + +34 +MART´IN, PERREAU, AND RUEDA ZOCA +Since the diameter of 1 +n +�n +i=1 Si is less than 1 +4(1 − ε)γ, we deduce that 1 +n∥ �n +i=1 ai − a′ +i∥ < 1 +4(1 − ε)γ. +Finally, we conclude from (4.3) and the above estimate that ∥x − y∥ε ⩽ γ. Hence, the set C := +1 +n +�n +i=1 Ui has diameter at most γ for the norm ∥ · ∥ε. +Now, Bourgain’s lemma (see Lemma 2.2) ensures the existence of a convex combination of slices +�pi +j=1 αijTij ⊆ Ui for every 1 ⩽ i ⩽ n. Using this fact, we will find a convex combination of slices of +B of diameter smaller than γ + +4ρ2 +(1− ρ2 +ε )ε and such that every slice contains points of 2(K0 − 1 +2 ). Since +ρ and γ can be taken as small as we wish, we will be done. In order to do so, fix 1 ⩽ i ⩽ n and define +Ai := +� +j ∈ {1, . . . , pi}: Tij ∩ +� +2K0 − 1 +2 +� += ∅ +� +; +Bi := {1, . . . , pi} \ Ai. +Given xij ∈ Tij we have that, for j ∈ Ai, that δ0(xij) ⩾ −1 + ε by the definition of the unit ball Bε. +Since �pi +j=1 αijxij ∈ �pi +j=1 αijTij ⊆ Ui we derive −1 + ρ2 > δ0 +��pi +j=1 αijxij +� +. Hence +−1 + ρ2 > +� +j∈Ai +αijδ0(xij) + +� +i∈Bi +αijδ0(xij) ⩾ (−1 + ε) +� +j∈Ai +αij − +� +j∈Bi +αij = −1 + ε +� +j∈Ai +αij. +From the above inequality we infer that � +j∈Ai αij < ρ2 +ε holds for every 1 ⩽ i ⩽ n. Now, we set +Λi := � +j∈Bi λij, which belongs to the interval [1 − ρ2 +ε , 1] for 1 ⩽ i ⩽ n and set +D := 1 +n +n +� +i=1 +� +j∈Bi +αij +ΛI +Tij. +Observe that D is a convex combination of slices of Bε since every Tij is a slice of Bε and since +1 +n +n +� +i=1 +� +j∈BI +αij +Λi +αij = 1. +We claim that D ⊆ C + +2 +1− ρ2 +ε +ρ2 +ε Bε. This is enough to finish the proof because the above condition +implies that +diam (D) ⩽ diam (C) + +4 +1 − ρ2 +ε +ρ2 +ε ⩽ γ + +4 +1 − ρ2 +ε +ρ2 +ε . +So let us prove the above inclusion. Take z := 1 +n +�n +i=1 +� +j∈Bi +αij +Λi xij ∈ D for certain xij ∈ Tij. Write +z′ := 1 +n +�n +i=1 +� +j∈Bi αijxij. Then +|z − z′| ⩽ 1 +n +n +� +i=1 +� +j∈Bij +����1 − 1 +Λi +���� αij|xij| < +1 +1 − ρ2 +ε +ρ2 +ε . +On the other hand, for 1 ⩽ i ⩽ n and j ∈ Ai take xij ∈ Tij. Define +z′′ := 1 +n +n +� +i=1 +pi +� +j=1 +αijxij ∈ 1 +n +n +� +i=1 +pi +� +j=1 +αijTij ⊆ 1 +n +n +� +i=1 +Ui = C. +Moreover, we have +|z′ − z′′| ⩽ 1 +n +n +� +i=1 +� +j∈Ai +αij < ρ2 +ε . + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +35 +Consequently z = z′′ + (z − z′′) ∈ C + +2 +1− ρ2 +ε +ρ2 +ε Bε since +|z − z′′| ⩽ |z − z′| + |z′ − z′′| < +1 +1 − ρ2 +ε +ρ2 +ε + ρ2 +ε < +2 +1 − ρ2 +ε +ρ2 +ε . +□ +4.7. A summary of relations between the properties. Figure 2 below is an scheme which +complements Figure 1 with the counterexamples following from known results and from the results in +this section. +ccs Daugavet +ccs ∆ +super Daugavet +super ∆ +∆ +Daugavet +? +/ +(d) +/ +(a) +/ +(b) +/ +(e) +/ +(c) +/ +(f) +Figure 2. Scheme of all relations between the diametral notions +Let us list the corresponding counterexamples. +(a) The example in Subsection 4.6. +(b) The example in Subsection 4.5 negates this implication in the strongest possible way. +(c) Any of the elements in DB in Paragraph 4.3.3. They also show directly that ∆-points are not +necessarily ccs ∆-points. +(d) Every element of the unit sphere of the space X given in Paragraph 4.3.2 is ccs ∆-point but +not Daugavet point. Another example is the molecule m0,q of Example 4.17. +(e) In X = C[0, 1]⊕2 C[0, 1], every element in the unit sphere is super ∆-point (Proposition 3.25); +but X contains no Daugavet point (Proposition 3.27). Also, every element of the unit sphere +of the space X given in Paragraph 4.3.2 is super ∆-point but not Daugavet point. +(f) Any of the elements in DB in Paragraph 4.3.3. +5. Diametral-properties for elements of the open unit ball +As mentioned in Section 2, the DSD2P is equivalent to the Daugavet property by [34], but the +ccs ∆-points on the unit sphere of a Banach space do not characterize the DSD2P, but the restricted +DSD2P, which is not equivalent to the Daugavet property (see Paragraph 4.3.2). Actually, the elements +in the open unit ball play a decisive role in the proof in [34] of the equivalence between the DSD2P +and the Daugavet property. Our objective here is to introduce and study the diametral notions for +interior points, providing interesting applications, and to investigate the behavior of Daugavet- and +∆-elements on rays in the unit ball of a given Banach space. +The definition of the Daugavet notions for elements in the open unit ball is the natural extension +of the definitions for elements of norm one given in Definition 2.5. + +36 +MART´IN, PERREAU, AND RUEDA ZOCA +Definition 5.1. Let X be a Banach space and let x ∈ BX. We say that +(1) x is a Daugavet point if supy∈S ∥x − y∥ = ∥x∥ + 1 for every slice S of BX, +(2) x is a super Daugavet point if supy∈V ∥x − y∥ = ∥x∥ + 1 for every non-empty relatively weakly +open subset V of BX, +(3) x is a ccs Daugavet point if supy∈C ∥x − y∥ = ∥x∥ + 1 for every ccs C of BX. +It turns out that the existence of a non-zero Daugavet kind element actually forces the whole ray +to which it belongs to be composed of similar elements. +Proposition 5.2. Let X be a Banach space, and let x ∈ SX. The following assertions are equivalent. +(1) x is a Daugavet- (resp. super Daugavet-, resp. ccs Daugavet-) point. +(2) rx is a Daugavet- (resp. super Daugavet-, resp. ccs Daugavet-) point for every r ∈ [0, 1]. +(3) rx is a Daugavet- (resp. super Daugavet- , resp. ccs Daugavet-) point for some r ∈ (0, 1). +Let us recall the following elementary but very useful result from [34] due to Kadets. +Lemma 5.3 ([34, Lemma 2.2]). Let X be a normed space. If x, y ∈ X and ε > 0 satisfies that +∥x + y∥ > ∥x∥ + ∥y∥ − ε, +then for every a, b > 0, it is satisfied that +∥ax + by∥ > a ∥x∥ + b ∥y∥ − max{a, b}ε. +Proof of Proposition 5.2. We will only do the proof for Daugavet points, being the other cases com- +pletely analogous. So let us first assume that x is a Daugavet point. Take r ∈ [0, 1], ε > 0, and S +a slice of BX. Then, there exists y ∈ S such that ∥x − y∥ > 2 − ε. In particular, ∥y∥ > 1 − ε. As +∥y∥ ⩽ 1, +∥x − y∥ > 2 − ε ⩾ ∥x∥ + ∥y∥ − ε. +It follows from Lemma 5.3 that +∥rx − y∥ > ∥rx∥ + ∥y∥ − ε > ∥rx∥ + 1 − 2ε. +Hence, rx is also a Daugavet point. +Now, let us assume that rx is a Daugavet point for some r ∈ (0, 1). Again take ε > 0 and S slice +of BX, and pick y ∈ S such that ∥rx − y∥ > ∥rx∥ + 1 − rε. In particular, ∥y∥ > 1 − rε. As ∥y∥ ⩽ 1, +we have +∥rx − y∥ > ∥rx∥ + ∥y∥ − rε. +Hence, by Lemma 5.3, we get that +∥x − y∥ > ∥x∥ + ∥y∥ − ε > 2 − (1 + r)ε +and so x is a Daugavet point. +□ +As mentioned in the discussion preceding Proposition 3.12, the presence of a ccs Daugavet point in +a given Banach space forces the space to satisfy the SD2P. This can now be viewed as a consequence +of the previous proposition and the following immediate reformulation of [41, Theorem 3.1]. +Proposition 5.4 ([41, Theorem 3.1]). Let X be a Banach space. Then, X has the SD2P if and only +if 0 is a ccs Daugavet point. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +37 +Note that c0 has the SD2P but has no non-zero Daugavet points (use Proposition 4.1, for instance). +Compare Proposition 5.4 with the following obvious remark. +Remark 5.5. A Banach space X is infinite-dimensional if and only if 0 is a super Daugavet point. +We also mention that 0 is always a Daugavet point (in finite or infinite dimension), as every slice +of the unit ball has to intersect the unit sphere. +Let us also point out that [41, Theorem 3.1] admits the following scaled version. +Proposition 5.6. Let X be a Banach space, and let r ∈ (0, 1]. Then, the following assertions are +equivalent. +(1) Every ccs of BX has diameter greater than or equal to 2r. +(2) sup{∥x∥: x ∈ C} ⩾ r for every ccs C of BX. +(3) sup{∥x∥: x ∈ D} ⩾ r for every symmetric ccs D of BX (so containing 0). +Proof. Suppose (1) holds. Then, for any given ccs C of BX, and for any fixed ε > 0, there exists +x, y ∈ C such that ∥x − y∥ > 2r − 2ε. In particular, it follows that ∥x∥ > r − ε or ∥y∥ > r − ε, giving +(2). (2)⇒(3) is immediate. Suppose that (1) fails, that is, that there exists a ccs C of BX and ε > 0 +such that diam (C) ⩽ 2r − 2ε. We consider the ccs D of BX given by D := 1 +2(C − C). Then D is +symmetric, and for every u := x−y +2 +and u′ := x′−y′ +2 +in D we have ∥u − u′∥ = +��� x+y′ +2 +− x′+y +2 +���. Now, +x, x′, y, y′ belong to C, and C is convex, so x+y′ +2 +and x′+y +2 +do also belong to C, so ∥u − u′∥ ⩽ 2r − 2ε. +Being D symmetric, it implies that D ⊂ (r − ε)BX, hence (3) fails. +□ +The following is a nice consequence of the proposition above outside the diametral notions. +Corollary 5.7. Let X be a Banach space. Then, BX contains ccs of arbitrarily small diameter if and +only if 0 is a strongly regular point of BX. +Now let us consider the ∆ notions for points of the open unit ball which are just the adaptation of +the notions given in Definition 2.4. +Definition 5.8. Let X be a Banach space and let x ∈ BX. We say that +(1) x is a ∆-point if supy∈S ∥x − y∥ = ∥x∥ + 1 for every slice S of BX containing x, +(2) x is a super ∆-point if supy∈V ∥x − y∥ = ∥x∥ + 1 for every non-empty relatively weakly open +subset V of BX containing x, +(3) x is a ccs ∆-point if supy∈C ∥x − y∥ = ∥x∥ + 1 for every slice ccs C of BX containing x. +With this definitions in hands, we may get an improvement of Proposition 5.4 from Proposition 5.6. +Corollary 5.9. Let X be a Banach space. Then, X has the SD2P if and only if 0 is ccs ∆-point. +Compare the previous corollary with the following obvious remark which is analogous to Remark 5.5. +Remark 5.10. A Banach space X is infinite-dimensional if and only if 0 is a super ∆-point. +Observe that the definition of ccs ∆-points for elements in BX gives a localization of the DSD2P, +that is, X has the DSD2P (and hence the Daugavet property [34]) if and only if all the elements of +BX are ccs ∆-points. Recall that the DSD2P is not equivalent to the restricted DSD2P (meaning that +all points in SX are ccs ∆-points), see Paragraph 4.3.2. + +38 +MART´IN, PERREAU, AND RUEDA ZOCA +The following result is a localization of Kadets’ theorem [34] on the equivalence of the DSD2P and +the DPr. +Theorem 5.11. Let X be a Banach space and let x ∈ SX. If rx is a ccs ∆-point for every r ∈ (0, 1), +then x is a ccs Daugavet point. Moreover, it is enough that inf{r ∈ (0, 1): rx is a ccs ∆-point} = 0. +Proof. Fix a ccs C of BX and ε > 0. Since ˜C := 1 +2(C − C) is also a ccs of BX and since 0 ∈ ˜C is a +norm interior point of ˜C by [41, Proposition 2.1], we have that rx belongs to ˜C for every r ∈ (0, δ) +for some δ > 0. By hypothesis, there is r > 0 such that rx is a ccs ∆-point and rx ∈ ˜C. So there +exists y ∈ ˜C such that ∥rx − y∥ > r + 1 − rε. Then if we write y := y1 − y2 with y1, y2 ∈ C, we have +∥rx − y1∥ > r +1−rε or ∥rx − y2∥ > r +1−rε by the triangle inequality; in particular, ∥y1∥ > 1−rε +and ∥y2∥ > 1 − rε. In both cases, we have that there is y ∈ C such that ∥rx − y∥ > r∥x∥ + ∥y∥ − rε +and it follows from Lemma 5.3 that +∥x − y∥ > ∥x∥ + ∥y∥ − ε > 2 − (1 + r)ε > 2 − 2ε. +□ +At this point, it is natural to ask whether an equivalent formulation of Proposition 5.2 is valid for +some of the various ∆-notions. For ccs ∆-points, the answer is negative as follows from Theorem 5.11 +and, for instance, the example in Paragraph 4.3.2. Another, maybe simpler, example showing that is +the following one. +Example 5.12. Let us assume that a positive measure µ admits an atom of finite measure and also +has a non-empty non-atomic part. Then, the real space L1(µ) contains no ccs Daugavet point by +Proposition 4.12. However, it contains elements in the unit sphere which are ccs ∆-points and super +Daugavet points by Theorem 4.8 and Proposition 4.9. In particular, as a consequence of Theorem 5.11 +and of Proposition 5.2, there must exist f in the unit sphere which is a ccs ∆-point and t ∈ (0, 1) such +that tf is not a ccs ∆-point but it is a super ∆-point. +For ∆-points, we have the following result. +Proposition 5.13. Let X be a Banach space, and let x ∈ SX. If x is a ∆-point, then rx is a ∆-point +for every r ∈ (0, 1). +Proof. Let us assume that x is a ∆-point and let us fix r ∈ (0, 1). +Take ε > 0 and a slice S of +BX containing rx. Now, either x belongs to S or −x belongs to S. In the first case, we can find +y ∈ S such that ∥x − y∥ ⩾ 2 − ε, and using Lemma 5.3, we get ∥rx − y∥ ⩾ ∥rx∥ + 1 − 2ε. Else, +∥rx − (−x)∥ = r + 1 = ∥rx∥ + 1 and we are done. +□ +For super ∆-points, it is currently quite obscure whether they behave like ∆-points up on rays. +6. Kuratowski measure and large diameters +Let M be a metric space. +The Kuratowski measure of non-compactness α(A) of a non-empty +bounded subset A of M is defined as the infimum of all real numbers ε > 0 such that A can be covered +by a finite number of subsets of M of diameter smaller than or equal to ε. +From the definition, we clearly have α(A) = 0 if and only if A is totally bounded (a.k.a. precompact). +It follows that every complete subset A of M with α-measure 0 is compact, and in particular, if M is +a complete metric space, that α(A) = 0 if and only if A is compact, where A stands for the closure of +the set A. The α-measure can be thus seen as a way to measure how far a given (non-empty) bounded +and closed subset of M is from being a compact space. It was introduced by C. Kuratowski in [38] in + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +39 +order to provide a generalization of the famous intersection theorem from Cantor. A general theory +on measures of non-compactness was later developed, and it turned out to provide important results +in metric fixed point theory, and in particular to have applications in functional equations or optimal +control. We refer e.g. to [12] for an introduction to the topic and for more precise applications. +Observe that A ⊆ B implies α(A) ⩽ α(B), and that α(A) = α(A). Also note that α(A ∪ B) = +max{α(A), α(B)} for every non-empty bounded subsets A, B of M. Furthermore, if M = X is a +normed space, then α is known to enjoy additional useful properties: it is symmetric, translation +invariant, positively homogeneous, sub-additive, and satisfies α(co A) = α(A). The α-measure has +proved to be a powerful tool for the study of the geometry of Banach spaces and we refer e.g. to the +works [46], [47] and [44] in connection with property (α), with drop property, and with an isomorphic +characterization of reflexive Banach spaces. +From the definition it is clear that the Kuratowski measure of A is smaller than or equal to its +diameter. Obviously, equality does not always hold, but a fruitful relationship between the notion +of ∆-points and the Kuratowski measure of slices was discovered in [5] and completed in [52]. In +particular, the following result was obtained (see [52, Corollary 2.2]). +Theorem 6.1. Let X be a Banach space and let x ∈ SX. If x is a ∆-point, then α(S) = 2 for every +slice S of BX containing x. Besides, α(S(x, δ; BX∗)) = 2 in BX∗ for every δ > 0. +Observe that the converse does not hold in general, as the following example shows. +Example 6.2. Consider X := L1([0, 1]) ⊕∞ ℓ1. It follows that both X and X∗ enjoy the SD2P [15, +Remark 2.6], so Theorem 6.3 below implies that given any slice S = S(x∗, δ; BX) we have α(S) = 2 +and the same holds for the slices in the dual. However, there are points which are not ∆-points because +X fails the DLD2P [30, Theorem 3.2] since ℓ1 fails it, so it remains to take any point x ∈ SX which +is not a ∆-point to get the desired counterexample. +Observe that the connection between having big slices in diameter and having big slices in Kura- +towski index goes beyond Theorem 6.1. The following result was first pointed out in [20]. +Theorem 6.3 ([20, Proposition 3.1]). Let X be a Banach space and let β ∈ (0, 2]. The following +assertions are equivalent. +(1) Every slice of BX has diameter greater than or equal to β. +(2) Every slice of BX has Kuratowski measure greater than or equal to β. +In this section, we aim to prove analogues to this result for relative weakly open subsets, as well +as for convex combinations of slices or of weakly open sets, and to extend Veeorg’s result to super +∆-points and ccw ∆-points. +6.1. Kuratowski measure and diameter two properties. The analogue to Theorem 6.3 for +non-empty weakly open subsets is the following. +Theorem 6.4. Let X be a Banach space and let β ∈ (0, 2]. The following assertions are equivalent. +(1) Every non-empty relatively weakly open subset of BX has diameter greater than or equal to β. +(2) Every non-empty relatively weakly open subset of BX has Kuratowski measure greater than or +equal to β. +Proof. (2)⇒(1) is immediate, so let us prove (1)⇒(2). To this end, fix β ∈ (0, 2] and assume that +every non-empty relatively weakly open subset of BX has diameter greater than or equal to β. Then + +40 +MART´IN, PERREAU, AND RUEDA ZOCA +pick ε > 0, and let us prove by induction on n that for every non-empty relatively weakly open subset +W of BX and for every finite collection C1, . . . , Cn of subsets of X with diam (Ci) ⩽ β − ε for every +i, we have that W ̸⊂ +n� +i=1 +Ci. +For n = 1, it is clear since by assumption diam (W) ⩾ β > β − ε for every non-empty relatively +weakly open subset W of BX. +So assume that the result is true for every non-empty relatively weakly open subset W of BX +and for every collection of n sets, and let us prove the result for collections of n + 1 sets. To this +end, consider C1, . . . , Cn, Cn+1 be subsets of X with diam (Ci) ⩽ β − ε for every i. Observe that +diam (Ci) = diam (Ci +w) ⩽ β − ε by w-lower semicontinuity of the norm of X, so that we may and do +assume that Ci is weakly closed for every i. +Observe that by the case n = 1 we have that W ̸⊂ Cn+1, which means that W \ Cn+1 is non- +empty. Moreover, it is a weakly open subset of BX since Cn+1 is assumed to be weakly closed, and by +induction hypothesis we conclude that W\Cn+1 ̸⊂ +n� +i=1 +Ci. In particular W ̸⊂ +n+1 +� +i=1 +Ci and the theorem +is proved. +□ +Next, let us establish the analogue Theorem 6.3 for convex combinations of slices. To this end, +observe that by Bourgain lemma (see Lemma 2.2) every convex combination of non-empty relatively +weakly open subsets of BX contains a convex combination of slices of BX. This assertion makes valid +the following lemma which allows us to focus our attention in convex combination of weakly open +subsets. +Lemma 6.5. Let X be a Banach space and r > 0. +(1) The following are equivalent: +(a) Every convex combination of slices of BX has diameter greater than or equal to r. +(b) Every convex combination of non-empty relatively weakly open subsets of BX has diameter +greater than or equal to r. +(2) The following are equivalent: +(a) α(C) ⩾ r holds for every convex combination C of slices of BX. +(b) α(D) ⩾ r holds for every convex combination D of non-empty relatively weakly open +subsets of BX. +Now we are able to give the following result. +Theorem 6.6. Let X be a Banach space and let β ∈ (0, 2]. The following assertions are equivalent. +(1) Every convex combination of slices of BX has diameter greater than or equal to β. +(2) Every convex combination of slices of BX has Kuratowski measure greater than or equal to β. +Proof. (2)⇒(1) is immediate, so let us prove (1)⇒(2). To this end, fix β ∈ (0, 2] and assume that every +convex combination of non-empty relatively weakly open subsets of BX has diameter greater than or +equal to β. Then pick ε > 0, and let us prove by induction on n that for every D convex combination +of non-empty relatively weakly open subsets of BX and for every finite collection C1, . . . , Cn of subsets +of X with diam (Ci) ⩽ β − ε for every i, we have that D ̸⊂ +n� +i=1 +Ci. +For n = 1 it is clear since by assumption diam (D) ⩾ β > β − ε for every convex combination of +non-empty relatively weakly open subsets of D of BX. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +41 +Assume by inductive step that the result stands for n. +Now pick D convex combination of non-empty relatively weakly open subsets of BX and a finite +collection C1, . . . , Cn+1 of subsets of X with diam (Ci) ⩽ β − ε for every i. We can assume as in the +proof of Theorem 6.4 that every Ci is weakly closed. Write D = �k +i=1 λiWi. Observe that by the case +n = 1 we have that D ̸⊆ Cn+1, so there exists z ∈ D \ Cn+1. Since z ∈ D we can write z = �k +i=1 λixi +where xi ∈ Wi holds for every 1 ⩽ i ⩽ k. Moreover, since z = �k +i=1 λixi /∈ Cn+1, this means that +z = �k +i=1 λixi ∈ X \ Cn+1, and the latter is a weakly open set. By a weak-continuity argument of +the sum we can find weakly open subsets Vi of BX, with xi ∈ Vi for every 1 ⩽ i ⩽ k, satisfying that +z = �k +i=1 λixi ∈ �n +i=1 λiVi ⊆ X \ Cn+1. Up to taking smaller Vi, we can assume Vi ⊆ Wi for every +i. Now call ˜D := �k +i=1 λiVi, which is a convex combination of weakly open subsets of BX. By the +inductive step we get that ˜D ̸⊆ +n� +j=1 +Cj, so there exists y ∈ ˜D with y /∈ Cj for 1 ⩽ j ⩽ n. Observe that +the condition Vi ⊆ Wi implies ˜D ⊆ D, so y ∈ D indeed. Moreover, ˜D ⊆ X \Cn+1 implies in particular +y /∈ Cn+1. This implies that y ∈ D \ +n+1 +� +i=1 +Ci, which is precisely what we wanted to prove. +□ +6.2. Kuratowski measure and ∆-notions. We now prove an analogue to Theorem 6.1 for super +∆-points. +Theorem 6.7. Let X be a Banach space and let x ∈ SX be a super ∆-point. Then every non-empty +relatively weakly open subset W of BX containing x satisfies that α(W) = 2. +The proof will be an obvious consequence of the following result. +Proposition 6.8. Let X be a Banach space, x ∈ SX be a super ∆ point, and W be a weakly open +subset of BX such that x ∈ W. Then, for every ε > 0, there exists a sequence {xn} ⊆ W such that +∥xi − xj∥ > 2 − ε holds for every i ̸= j. +Proof. Set ε > 0. Let us construct by induction a sequence {xn} satisfying that ∥x − xi∥ > 2 − ε +2 and +such that ∥xi − xj∥ > 2 − ε for i ̸= j. +Using that x is a super ∆ point select, by the definition of super ∆, a point x1 ∈ W with ∥x−x1∥ > +2 − ε +2. +Now, assume that x1, . . . , xn have been constructed and let us construct xn+1. By the properties +defining the sequence observe that, given 1 ⩽ i ⩽ n, we have ∥x−xi∥ > 2− ε +2, so we can find gi ∈ SX∗ +with Re gi(x − xi) > 2 − ε +2, which implies Re gi(x) > 1 − ε +2 and Re gi(xi) < −1 + ε +2. Consequently +x ∈ V := W ∩ +n� +i=1 +S +� +gi, ε +2 +� +, +which is a weakly open set. Since x is super ∆ we can find xn+1 ∈ V such that ∥x−xn+1∥ > 2− ε +2. In +order to finish the construction we only must to prove that ∥xi−xn+1∥ > 2−ε holds for every 1 ⩽ i ⩽ n. +But this is clear because, given 1 ⩽ i ⩽ n, the condition xn+1 ∈ V implies that Re gi(xn+1) > 1 − ε +2, +so +∥xn+1 − xi∥ ⩾ Re gi(xn+1 − xi) > 1 − ε +2 + 1 − ε +2 = 2 − ε, +and the proof is finished. +□ +Note that a similar statement than Theorem 6.7 can be established for ccw ∆ points. + +42 +MART´IN, PERREAU, AND RUEDA ZOCA +Theorem 6.9. Let X be a Banach space and let x ∈ SX be a ccw ∆-point. Then every non-empty +convex combination D of relatively weakly open subsets of BX containing x satisfies that α(D) = 2. +As in the previous case, the proof follows directly from the next result. +Proposition 6.10. Let X be a Banach space, x ∈ SX be a ccw ∆ point, and D a ccw of BX such +that x ∈ D. Then, for every ε > 0, there exists a sequence {xn} ⊆ D such that ∥xi − xj∥ > 2 − ε holds +for every i ̸= j. +Proof. Set ε > 0. Write D := �k +i=1 λiWi with λi ̸= 0 for every i. Set δ := +ε +2 min1⩽i⩽k λi . Let us construct +by induction a sequence {xn} ⊆ D satisfying that ∥x − xi∥ > 2 − δ and such that ∥xi − xj∥ > 2 − ε +for i ̸= j. Using that x is a ccw ∆ point select, by the definition of ccw ∆, a point x1 ∈ D with +∥x − x1∥ > 2 − δ. +Now assume that x1, . . . , xn have been constructed and let us construct xn+1. We can write x = +�k +j=1 λjxj and xi := �k +j=1 λjxi +j as being elements of D. +By the properties defining the sequence, observe that, given 1 ⩽ i ⩽ n we have ∥x − xi∥ > 2 − δ, so +we can find gi ∈ SX∗ with +Re gi(x − xi) = +k +� +j=1 +λj Re gi(xj − xi +j) > 2 − δ = 2 − +ε +2 min1⩽j⩽n λj +. +A convexity argument implies that Re gi(xj − xi +j) > 2 − ε +2 holds for every 1 ⩽ j ⩽ k, which implies +that +Re gi(xj) > 1 − ε +2 and +Re gi(xi +j) < −1 + ε +2. +Observe that +xj ∈ Vi := Wi ∩ +n� +i=1 +S +� +gi, ε +2 +� +, +which is a weakly open set. +Since x is a ccw ∆-point and x ∈ �k +j=1 λjVj, we can find a point +xn+1 = �k +j=1 λjzj ∈ �k +j=1 λjVj ⊆ D such that ∥x − xn+1∥ > 2 − δ. In order to finish the construction +we only must to prove that ∥xi − xn+1∥ > 2 − ε holds for every 1 ⩽ i ⩽ n. Given 1 ⩽ j ⩽ k, the +condition zj ∈ Vj implies Re gi(zj) > 1 − ε +2. On the other hand, Re gi(xi +j) < −1 + ε +2, so +∥xn+1 − xi∥ ⩾ Re gi(x − xi) = +k +� +j=1 +λj Re gi(zj − xi +j) > (2 − ε) +k +� +j=1 +λj = 2 − ε, +and the proof is finished. +□ +7. Commented open questions +The only implications between properties which is not known to hold or not is the following one +(see Figure 2 in page 35). +Question 7.1. Let X be a Banach space and let x ∈ SX be a ccs ∆-point. Is x a super ∆-point? +Let us give some comments on this question. On the one hand, it may look that the answer is +positive by Bourgain’s lemma (Lemma 2.2), but this lemma does not say that, in general, given an +element x of a relative weak open subset W of BX, there is a convex combination of slices of BX + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +43 +contained in W and containing x. The later happens when x ∈ co(pre-ext (BX)) (see Remark 2.3) so, +the answer to Question 7.1 is positive in this case. On the other hand, a possible counterexample to +this problem could be the molecules in Examples 4.16 or 4.17, which are known to be ccs ∆-points +and are extreme points but not preserved extreme points (hence they do not belong to the convex hull +of the set of preserved extreme points). A way to show that these molecules are not super ∆-points +would be to investigate whether RNP spaces may contains super ∆-points. +Theorem 3.19 states that real Banach spaces with a one-unconditional basis do neither contain +super ∆-points nor ccs ∆-points. It is likely that such result also holds true in the complex setting +since we do believe that the preliminary results from [6] are also valid for complex scalars, provided +that one works with the suitable notion of one-uncondional bases (for which [6, Proposition 2.3] holds). +Also, we also expect that the results there can be easily extended to one-uncondional FDDs. Yet, +since a sharper version of this result was obtained in Proposition 3.20 for super ∆-points in a very +general setting, it is natural to ask whether improved results could be simultaneously obtained in both +directions for ccs ∆-points by proving an analogue to Proposition 3.20. So let us ask the following. +Question 7.2. Let X be a Banach space, and let us assume that there exists a subset A ⊆ F(X, X) +satisfying that sup +� +∥Id − T∥ : T ∈ A +� +< 2 and that for every ε > 0 and every x ∈ X, there exists +T ∈ A such that ∥x − Tx∥ < ε. Can X contain a ccs ∆-point? +A negative answer to this question would be interesting, since it would provide an example of a ccs +∆-point that is not a super ∆-point, hence a negative answer to Question 7.1. +Another interesting question could be if a point of continuity could be a ccs ∆-point. +Let us +formalize the questions. +Question 7.3. Let X be a Banach space. +(1) Does X fail the RNP (or even the CPCP) if contains a super ∆-point or a super Daugavet +point? +(2) Is it possible for a point of continuity being a ccs ∆-point? +The surprising examples given in Section 4 shows that the mere existence of some diametral notions +(but ccs Daugavet points) on a Banach space does not imply that the whole space has any diameter +two property nor the Daugavet property. Our question here is how many diametral points has to +contain a Banach space to have any diameter two property or the Daugavet property or fails to have +the RNP or one-unconditional basis. +Question 7.4. How big can be the set of Daugavet points, super Daugavet points, ∆-points, super +∆-points, or ccs ∆-points in a Banach space with the Radon-Nikod´ym property, or with the CPCP, +or being strongly regular, or having one-unconditional basis? +Concerning isometric consequences of the existence of diametral points, there are some recent results +showing that a Banach space containing a ∆-point cannot be uniformly non-square [5] or even locally +uniformly non-square [37], or asymptotic uniformly smooth [5, 52]. +Also, a Banach space having +an unconditional basis with suppression-unconditional constant less that 2 cannot contains super ∆- +points and a Banach space containing a ccs Daugavet point has the SD2P. Taking into account that +it is not known if there exists an stictly convex Banach space with the Daugavet property (see [33, +Section 5]), the following question makes sense. Recall that Paragraph 4.3.2 shows an example of an +strictly convex Banach space in which every norm-one element is a ccs ∆-point and a super ∆-point, +but it does not contain any Daugavet point by the way in which it is constructed. + +44 +MART´IN, PERREAU, AND RUEDA ZOCA +Question 7.5. Is there an strictly convex Banach space containing a Daugavet point? +In view of Proposition 3.13 and of Theorem 4.14, the following question makes sense. +Question 7.6. Let X be a Banach space. Suppose that x ∈ ext (BX) is a ∆-point, does this imply +that x is a ccs ∆-point or a super ∆-point? +By now, the only isomorphic restriction which is known for a Banach space to contain ∆-points +or even Daugavet points is that it cannot be finite-dimensional. It would be interesting to find some +more. +Question 7.7. Find isomorphic restrictions for a Banach space to contain ∆-points or any of the +other diametral notions. In particular, is it possible for a reflexive or even super-reflexive Banach +space to contain ∆-, super ∆-, ccs ∆-, Daugavet or super Daugavet points? +The results about absolute sums in Subsection 3.2 are not complete in the case of super Daugavet +points and they are even less clear in the case of ccs notions. Here are two possible questions. +Question 7.8. Let X, Y be Banach spaces and let N be an absolute sum. +(1) If N is A-octahedral, x ∈ SX and y ∈ SY are super Daugavet points, is (ax, by) a super +Daugavet point in X ⊕N Y when a, b satisfy the conditions in the definition of A-octahedrality? +(2) If N is the ℓ∞-sum, x ∈ SX and y ∈ SY are ccs ∆-points, are the elements of the form (ax, by) +ccs ∆-points in X ⊕∞ Y for a, b ∈ [0, 1] with max{a, b} = 1? +It would be also desirable to study the reversed results to those in Subsection 3.2 as it is done in +[45] for ∆-points and Daugavet points (see the tables in pages 86 and 87 of [45]). +Question 7.9. Let X, Y be Banach spaces, let N be an absolute sum, x ∈ SX, y ∈ SY , and a, b ⩾ 0 +such that N(a, b) = 1. Discuss what happens with x and y supposing that (ax, by) satisfies any of the +six diametral notions. +It maybe the case that some of the arguments given in Subsections 4.1 and 4.2 can be adapted to +other classes of Banach spaces. We propose some possibilities. +Question 7.10. Characterize the six diametral notions in uniform algebras, in Lorentz spaces and +their isometric preduals, and in some vector-valued function spaces as C(K, X) or L∞(µ, X) spaces. +The relations between the weak-star versions of the diametral points (see Remark 2.6) are not yet +clear. For instance, the following questions arises. +Question 7.11. Let X be a Banach space and x ∈ SX. +(1) Is JX(x) a ccs ∆-point in X∗∗ if x is a ccs ∆-point? +(2) Is there any relationship between the DD2P in X and the weak-star super ∆-points in SX∗? +As commented in Remark 4.19, a Banach space X containing a sequence (yn) of super ∆-points +such that the distance of yn to the set of strongly exposed points of BX is going to zero. But the +following question remains open. +Question 7.12. Can a super ∆-point (or even a ∆-point) belong to the closure of the set of denting +points? + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +45 +The answer to the next question on the behaviour of ∆- and super ∆-points in rays is still unknown, +as we commented in Section 5. +Question 7.13. Let X be a Banach space and let x ∈ SX. +(1) If rx is a ∆-point for some 0 < r < 1, does this imply that x is a ∆-point? +(2) If rx is a super ∆-point for some 0 < r < 1, does this imply that x is a auper ∆-point? +(3) If x is a super ∆-point, does this imply that rx is a super ∆-point for all 0 < r < 1? +As we proved in Section 6, every relative weakly open subset which contains a super ∆-point +(respectively, a ccw ∆-point) has Kuratowski measure 2. Our proofs do not seem to work for convex +combination of slices, so let us ask the following. +Question 7.14. If a ccs of the unit ball contains a ccs ∆-point, does it necessarily have maximal +Kuratowski measure? +Acknowledgments +Part of this work was done during the visit of the second named author at the University of Granada +in September 2022. He wishes to thank his colleagues for the warm welcome he received, and to thank +all the people that made his visit possible. +The authors thank Gin´es L´opez-P´erez for fruitful conversations on the topic of the paper, specially +for providing enlightening ideas in connection with the example of Subsection 4.6. +The authors also thank Trond A. Abrahamsen, Andr´e Martiny, and Vegard Lima for valuable discus- +sions on the topic of the paper, and in particular for pointing out the ccs version of [6, Proposition 2.12] +that is presented in Subsection 3.1. +References +[1] T. A. Abrahamsen, J. Becerra Guerrero, R. Haller, V. Lima, and M. P¨oldvere, Banach spaces where convex +combinations of relatively weakly open subsets of the unit ball are relatively weakly open, Studia Math. 250 +(2020), 297–320. +[2] T. A. Abrahamsen, P. H´ajek, O. Nygaard, J. Talponen, and S. Troyanski, Diameter 2 properties and convexity. +Studia Math. 232 (2016), 227–242. +[3] T. A. Abrahamsen, R. Haller, V. Lima, and K. Pirk, Delta- and Daugavet points in Banach spaces, Proc. Edinb. +Math. Soc. 63 (2020), 475–496. +[4] T. A. Abrahamsen and V. Lima, Relatively weakly open convex combinations of slices, Proc. Amer. Math. Soc. +146 (2018), 4421–4427. +[5] T. A. Abrahamsen, V. Lima, A. Martiny, and Y. Perreau, Asymptotic geometry and Delta-points, Banach J. +Math. Anal. 16 (2022), article 57. +[6] T. A. Abrahamsen, V. Lima, A. Martiny, and S. Troyanski, Daugavet- and delta-points in Banach spaces with +unconditional bases, Trans. Amer. Math. Soc. Ser B (2021), 379–398. +[7] T. A. Abrahamsen, V. Lima and O. Nygaard, Remarks on diameter two properties, J. Convex Anal. 20, 2 +(2013), 439–452. +[8] F. Albiac and N. J. Kalton, Topics in Banach space theory, Second edition. Graduate Texts in Mathematics, +233. Springer, Cham, 2016. +[9] R. J. Aliaga, C. Gartland, C. Petitjean, and A. Proch´azka, Purely 1-unrectifiable metric spaces and locally flat +Lipschitz functions, Trans. Amer. Math. Soc. 375 (2022), 3529–3567. +[10] R. J. Aliaga, C. Noˆus, C. Petitjean, and A. Proch´azka, Compact reduction in Lipschitz-free spaces, Studia Math. +260 (2021), 341–359. +[11] S. Argyros, E. Odell, and H. Rosenthal, On certain convex subsets of c0, Lecture Notes in Math. 1332, Functional +Analysis, ed. by E. Odell and H. Rosenthal, Berlin (1988), 80–111. + +46 +MART´IN, PERREAU, AND RUEDA ZOCA +[12] J. M. Ayerbe Toledano, T. Dom´ınguez Benavides, and G. L´opez Acedo, Measures of noncompactness in metric +fixed point theory, Birkh¨auser Verlag, 99 (1997). +[13] J. Becerra Guerrero, G. L´opez-P´erez, and A. Rueda Zoca, Diametral diameter two properties in Banach spaces, +J. Conv. Anal. 25, 3 (2018), 817–840. +[14] J. Becerra Guerrero, G. L´opez-P´erez, and A. Rueda Zoca, Extreme differences between weakly open subsets and +convex combinations of slices in Banach spaces, Adv. Math. 269 (2015), 56–70. +[15] J. Becerra Guerrero, G. L´opez-P´erez, and A. Rueda Zoca, Octahedral norms and convex combinations of slices +in Banach spaces, J. Funct. Anal. 266 (2014), 2424–2435. +[16] F. F. Bonsall and J. Duncan, Numerical ranges. II, Cambridge University Press, New York-London (1973). +[17] J. Bourgain, Dentability and finite-dimensional decompositions, Studia Math. 67 (1980), 135–148. +[18] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Springer-Verlag Berlin +Heidelberg (1983). +[19] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and +Surveys in Pure and Applied Mathematics, 64 (1993). +[20] S. J. Dilworth, C. Gartland, D. Kutzarova, and N. L. Randrianarivony, Nondentable sets in Banach spaces, J. +Convex Anal. 28, 1 (2021), 31–40. +[21] J. Distel and J. J. Uhl, Vector measures, American Matematical Society Providence, Rhode Island (1977). +[22] G. A. Edgar and R. F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), 317–350. +[23] M. Fabian, P. Habala, P. H´ajek, V. Montesinos, J. Pelant, and V. Zizler, Functional Analysis and Infinite +dimensional Geometry, CMS Books in Mathematics, Springer-Verlag, New York, 2001. +[24] M. Fabian, P. Habala, P. H´ajek, V. Montesinos, and V. Zizler, Banach space theory, Springer Science+Business +Media, LLC 2011. +[25] N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures +in Banach spaces, Mem. Amer. Math. Soc. 387 (1987), 116 p. +[26] P. H´ajek and J. Talponen, Note on Kadets Klee property and Asplund spaces, Proc. Amer. Math. Soc. 142 +(2014), 3933–3939. +[27] R. Haller, J. Langemets and R. Nadel, Stability of average roughness, octahedrality, and strong diameter 2 +properties of Banach spaces with respect to absolute sums, Banach J. Math. Anal., 1, 12 (2018), 222–239. +[28] R. Haller, K. Pirk, and T. Veeorg, Daugavet- and delta-points in absolute sums of Banach spaces, J. Convex +Anal. 28 (2021), 41–54. +[29] R. E. Huff and P. D. Morris, Dual spaces with the Krein-Milman property have the Radon-Nikod´ym property, +Proc. Amer. Math. Soc., 49 (1975), 104–108. +[30] Y. Ivakhno and V. Kadets, Unconditional sums of spaces with bad projections, Visn. Khark. Univ., Ser. Mat. +Prykl. Mat. Mekh. 645 (2004), 30–35. +[31] W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Almost Fr´echet differentiability of Lipschitz +mappings between infinite dimensional Banach spaces, Proc. London Math. Soc. 84, 3 (2002), 711–746. +[32] M. Jung and A. Rueda Zoca, Daugavet points and ∆-points in Lipschitz-free spaces, Studia Math. 265 (2022), +37–55. +[33] V. Kadets, Some remarks concerning the Daugavet equation, Quaestiones Math. 19 (1996), 225–235. +[34] V. Kadets, The diametral strong diameter 2 property of Banach spaces is the same as the Daugavet property, +Proc. Amer. Math. Soc. 149 (2021), 2579–2582. +[35] V. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces with the Daugavet property, Trans. +Amer. Math. Soc. 352 (2000), 855–873. +[36] V. Kadets and D. Werner, A Banach space with the Schur and the Daugavet property, Proc. Amer. Math. Soc. +132 (2004), 1765–1773. +[37] A. Kaminska, H.-L. Lee, and H.-J. Tag, Daugavet and diameter two properties in Orlicz-Lorentz spaces, preprint. +Arxiv: https://arxiv.org/abs/2212.12149v1 +[38] C. Kuratowski, Sur les espaces complets, Fundamenta Mathematicae, 1, 15 (1930), 301-309. +[39] B. L. Lin, P. K. Lin, and S. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), +526–528. +[40] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I (Sequence spaces), Springer-Verlag (1977). +[41] G. L´opez-P´erez, M. Mart´ın, and A. Rueda Zoca, Strong diameter two property and convex combinations of +slices reaching the unit sphere, Mediterr. J. Math., 16 (2019), article 122. +[42] M. Mart´ın and A. Rueda Zoca, Daugavet property in projective symmetric tensor products of Banach spaces, +Banach J. Math. Anal. 16 (2022), article 35. +[43] J. F. Mena, R. Pay´a, and A. Rodr´ıguez, Absolute subspaces of Banach spaces, Quart. J. Math. 40 (1989), 33–37. + +DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE +47 +[44] V. Montesinos, Drop property equals reflexivity, Studia Math., 1, 87 (1987), 93–100. +[45] K. Pirk, Diametral diameter two properties, Daugavet-, and ∆-points in Banach spaces, Dissertationes Mathe- +maticae Universitatis Tartuensis 133 (2020), https://dspace.ut.ee/handle/10062/68458 +[46] S. Rolewicz, On drop property, Studia Math., 1, 85 (1986), 27–35 (1987). +[47] S. Rolewicz, On ∆-uniform convexity and drop property, Studia Math., 2, 87 (1987), 181–191. +[48] W. Schachermayer, The Radon-Nikod´ym property and the Kre˘ın-Milman property are equivalent for strongly +regular sets, Trans. Amer. Math. Soc. 303 (1987), 673–687. +[49] W. Schachermayer, An example concerning strong regularity and points of continuity in Banach spaces, Lecture +Notes in Math. 1332, Functional Analysis, ed. by E. Odell and H. Rosenthal, Berlin (1988). +[50] R. V. Shvydkoy, Geometric aspects of the Daugavet property, J. Funct. Anal., 176 (2000), 198–212. +[51] T. Veeorg, Characterizations of Daugavet- and delta-points in Lipschitz-free space, Studia Math. 268 (2023), +213–233. +[52] T. Veeorg, Daugavet- and delta-points in spaces of Lipschitz functions, preprint. +Arxiv: https://arxiv.org/abs/2206.03475 +[53] N. Weaver, Lipschitz algebras (Second edition), World Scientific Publishing Co., Inc., River Edge, NJ, 2018. +[54] D. Werner, Recent progress on the Daugavet property, Irish Math. Soc. Bulletin 46 (2001), 77–97. +(Mart´ın) Universidad de Granada, Facultad de Ciencias. Departamento de An´alisis Matem´atico, 18071 +Granada, Spain +ORCID: 0000-0003-4502-798X +Email address: mmartins@ugr.es +URL: https://www.ugr.es/local/mmartins +(Perreau) University of Tartu, Institute of Mathematics and Statistics, Narva mnt 18, 51009 Tartu +linn, Estonia +ORCID: 0000-0002-2609-5509 +Email address: yoel.perreau@ut.ee +(Rueda Zoca) Universidad de Granada, Facultad de Ciencias. Departamento de An´alisis Matem´atico, +18071 Granada, Spain +ORCID: 0000-0003-0718-1353 +Email address: abrahamrueda@ugr.es +URL: https://arzenglish.wordpress.com + diff --git a/-NE3T4oBgHgl3EQfSglq/content/tmp_files/load_file.txt b/-NE3T4oBgHgl3EQfSglq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9a205083a29c55d8152c73da8a165899b8531354 --- /dev/null +++ b/-NE3T4oBgHgl3EQfSglq/content/tmp_files/load_file.txt @@ -0,0 +1,2213 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf,len=2212 +page_content='DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE MIGUEL MART´IN, YO¨EL PERREAU, AND ABRAHAM RUEDA ZOCA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We introduce extensions of ∆-points and Daugavet points in which slices are replaced by relative weakly open subsets (super ∆-points and super Daugavet points) or by convex combinations of slices (ccs ∆-points and ccs Daugavet points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' These notions represent the extreme opposite to denting points, points of continuity, and strongly regular points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We first give a general overview on these new concepts and provide some isometric consequences on the spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As examples: if a Banach space contains a super ∆-point, then it does not admit an unconditional FDD (in particular, unconditional basis) with suppression constant smaller than two;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' if a real Banach space contains a ccs ∆-point, then it does not admit a one-unconditional basis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' if a Banach space contains a ccs Daugavet point, then every convex combination of slices of its unit ball has diameter two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We next characterize the notions in some classes of Banach spaces showing, for instance, that all the notions coincide in L1-predual spaces and that all the notions but ccs Daugavet points coincide in L1-spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We next remark on some examples which have previously appeared in the literature and provide some new intriguing examples: examples of super ∆-points which are as closed as desired to strongly exposed points (hence failing to be Daugavet points in an extreme way);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' an example of a super ∆-point which is strongly regular (hence failing to be a ccs ∆-point in the strongest way);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' a super Daugavet point which fails to be a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The extensions of the diametral notions to point in the open unit ball and the consequences on the spaces are also studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Last, we investigate the Kuratowski measure of relative weakly open subsets and of convex combinations of slices in the presence of super ∆-points or ccs ∆-points, as well as for spaces enjoying diameter 2 properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We conclude the paper with a section on open problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Introduction 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Notation and preliminary results 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Characterisations of diametral-notions and implications on the geometry of the ambient space 9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Spaces with a one-unconditional basis and beyond 12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Absolute sums 16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Examples and counterexamples of diametral elements 19 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Characterization in C(K)-spaces, L1-preduals, and M¨untz spaces 19 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Characterization in L1-spaces 22 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remarks on some examples from the literature 24 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A super ∆-point which fails to be a Daugavet point in an extreme way 26 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A super ∆-point which is a strongly regular point 27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A super Daugavet point which is not ccs ∆-point 28 Date: January 11th, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The first and third named authors were supported by grant PID2021-122126NB-C31 funded by MCIN/AEI/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13039/501100011033 and “ERDF A way of making Europe”, by Junta de Andaluc´ıa I+D+i grants P20 00255 and FQM-185, and by “Maria de Maeztu” Excellence Unit IMAG, reference CEX2020-001105-M funded by MCIN/AEI/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13039/501100011033.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The second named author was supported by the Estonian Research Council grant SJD58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='04433v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='FA] 11 Jan 2023 2 MART´IN, PERREAU, AND RUEDA ZOCA 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A summary of relations between the properties 35 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Diametral-properties for elements of the open unit ball 35 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski measure and large diameters 38 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski measure and diameter two properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 39 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski measure and ∆-notions 41 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Commented open questions 42 Acknowledgments 45 References 45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Introduction It is fair to say that one of the most studied properties of Banach spaces is the Radon-Nikod´ym property (RNP) because it has shown to be very useful;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' due to the large amount of its geometric, analytic, and measure theoretic characterisations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' in several fields of Banach space theory such as representation of bounded linear operators, representation of dual spaces or representation of certain tensor product spaces (see [18, 21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A famous geometric characterization of the Radon-Nikod´ym property is related to the size of slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a slice of a bounded non-empty subset C of a Banach space X is simply the (nonempty) intersection of C with a half-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A Banach space X has the RNP if and only if every non-empty closed and bounded subset of X admits slices of arbitrarily small diameter (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A closely related and equally important geometric property of Banach spaces is the point of con- tinuity property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a Banach space X has the point of continuity property (PCP) if every non-empty closed and bounded subset of X admits non-empty relatively weakly open subsets of ar- bitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us emphasize here as an example the striking equivalence between the Radon-Nikod´ym property and the weak∗ version of the point of continuity property for dual spaces, and the related characterization of Asplund spaces as preduals of RNP spaces (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In his proof of the determination of the Radon-Nikod´ym property by subspaces with a finite dimensional decomposition (FDD) in [17], Bourgain also introduced an important weakening of the point of conti- nuity property, that he called property “(∗)”, and that is nowadays referred to as the convex point of continuity property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a Banach space X has the convex point of continuity property (CPCP) if every non-empty closed, convex and bounded subset of X admits non-empty relatively weakly open subsets of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In fact, Bourgain implicitly used in his work the notion of strong regularity which, as he showed, is implied by the CPCP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a Banach space X is strongly regular (SR) if every non-empty closed, convex and bounded subset of X contains convex combinations of slices of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that the convexity of the subset is required in this definition in order to guarantee that it contains all the convex combinations of its slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It later turned out that strong regularity had important applications to the famous (still open) question of the equivalence between the Radon- Nikod´ym property and the Krein-Milman property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a Banach space X has the Krein- Milman property (KMP) if every non-empty closed, convex and bounded subset C of X admits an extreme point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The RNP implies the KMP (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [18, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6]), and it follows from [48] that every strongly regular space with the KMP has the RNP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also recall that it was proved in [29] the RNP and the KMP are equivalent in dual spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 3 From the definitions it follows that RNP⇒PCP⇒CPCP and it is also known that CPCP⇒SR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' None of the above implications reverse (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g [49] and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to show that strong regularity is implied by the CPCP, Bourgain made an important geometric observation, namely that in every non-empty bounded and convex subset of a Banach space X, every non-empty relatively weakly open subset contains a convex combination of slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will discuss this “Bougain Lemma” and its applications to the subject of the present paper in more details in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Another classical refinement of the above characterization of the Radon-Nikod´ym property is related to the notion of denting points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a point x0 of a bounded subset C of X is a denting point of C if there are slices of C containing x0 of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A Banach space X has the RNP if and only if every closed, convex and bounded subset contains a denting point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Actually, every nonempty closed, convex and bounded subset C of a Banach space X with the RNP is equal to the closure of the convex hull of the set of its denting points (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [18, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For the PCP and the CPCP, a similar role is played by points of weak-to-norm continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Given a bounded subset C of X, we say that a point x0 ∈ C is a point of weak-to-norm continuity (point of continuity in short) if the identity mapping i: (C, w) −→ (C, τ) is continuous at the point x0 or, equivalently, if x0 belongs to relatively weakly open subsets of C of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Note that a classical result by Lin-Lin-Troyanski [39] establishes that a point x0 ∈ C is a denting point if, and only if, x0 is simultaneously a point of continuity and a extreme point of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In a space with the PCP every non-empty closed and bounded subset contains a point of continuity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' and the set of all points of continuity of a given closed, convex and bounded subset C of a Banach space X with the CPCP is weakly dense in C (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [22, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In relation to strong regularity, a point x0 of a bounded, convex subset C of X is a point of strong regularity if there are convex combinations of slices of C containing x0 of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then the set of all points of strong regularity of a given closed, convex and bounded subset C of a strongly regular Banach space X is norm dense in C (see [25, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us observe that points of strong regularity may be in the interior of a set, while denting points (and points of continuity in the infinite-dimensional case) belong always to the border of the set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In [3] the extreme opposite notion to denting point of the unit ball was introduced in the following sense: an element x in the unit sphere of a Banach space X is a ∆-point if we can find in every slice of BX containing x points which are at distance from x as close as we wish to the maximal possible distance in the ball (distance 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A similar yet stronger notion appeared simultaneously in relation to another quite famous property of Banach spaces, the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a Banach space X has the Daugavet property (DPr) if the Daugavet equation (DE) ∥Id + T∥ = 1 + ∥T∥ holds for every rank-one operator T : X −→ X, where Id denotes the identity operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In this case, all weakly compact operators also satisfy (DE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We refer the reader to the seminal paper [35] for background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recent results can be found in [42] and references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The Daugavet property admits a beautiful geometric characterization involving slices related to the notion of Daugavet points: an element x on the unit sphere of a Banach space X is a Daugavet point if in every slice of BX (not necessarily containing the point x) there are points which are at distance from x as close as we wish to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' With this definition in mind, [35, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] states that X has the DPr if and only if all elements in SX are Daugavet points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us comment that the Daugavet property imposes severe restriction on the Banach space: if X is a Banach space with the DPr, then it fails the RNP and it has no unconditional basis (actually, it cannot be embedded into a Banach space with unconditional basis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 4 MART´IN, PERREAU, AND RUEDA ZOCA On the other hand, ∆- and Daugavet points have proved to be far more flexible than the global properties that they define.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For example, there exists a Banach space with the RNP and a Daugavet point [51] (see paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1), there exists a Banach space with a one-unconditional basis and a large subset of Daugavet points [6] (see paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3), and there is an MLUR Banach space for which all elements in its unit sphere are ∆-points, which contains convex combinations of slices of arbitrarily small diameter, but satisfying that every convex combination of slices intersecting its unit sphere has diameter two [2] (see paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Nonetheless, it has been recently proved that ∆-points have some influence on the isometric structure of the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For example, it is shown in [5] that uniformly non-square spaces do not contain ∆-points;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' actually, it has been very recently proved in [37] that a ∆-point cannot be a locally uniformly non-square point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, combining the results from [5] and [52], asymptotic uniformly smooth spaces and their duals do not contain ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, it is still an important open problem to understand whether ∆- or Daugavet point have any influence on the isomorphic structure of the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In this paper, our main aim is to study natural strengthening of the notions of Daugavet- and ∆-points obtained by replacing slices by non-empty relatively weakly open subsets (“super points”) or convex combination of slices (“ccs points”) in order to provide new diametral notions which are extreme opposites to points of continuity and to strongly regular points, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' See Definitions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Our main goal will be to understand the influence, for a given Banach space, of the existence of such points on its geometry, and to study the different diametral notions in several families of Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A particular emphasis will be put on trying to distinguish between all the various formally different notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us end this section by giving a brief description about the organization of the paper and the main results obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Section 2 contains the necessary notation (which is standard, anyway), needed definitions, and some preliminary results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We include in Section 3 some characterizations of the newer diametral point notions and some necessary conditions on the existence of such points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, we study the existence of super ∆-points and ccs ∆-points in spaces with a one-unconditional basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We first give an analogue for ccs ∆-points to a result from [6] which implicitly states that such spaces contain no super ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Second, we provide sharper and improved versions of this super ∆ result in the context of unconditional FDDs with a small unconditional constant, and more generally in the context of spaces in which special families of operators are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The section finishes with the study of the behaviour of super ∆-points and super Daugavet points with respect to absolute sums somehow analogous to the known one for ∆-points and Daugavet points;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' however, not all the results extend to ccs ∆-points and ccs Daugavet points, but we also give some partial results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Section 4 is devoted to examples and counterexamples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We first characterize the diametral notions in some families of classical Banach spaces: we show that all notions are equivalent in L1-preduals and M¨untz spaces (Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' all notions but ccs Daugavet points also coincide in L1-spaces (Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We next give in Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 some remarks on examples which have previously appeared in the journal literature, discussing the new diametral notions on them, and showing that they may help to distinguish between the diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The most complicated and tricky examples are produced in the last three subsection of this section: super ∆-points which are as closed as desired to strongly exposed points (hence failing to be Daugavet points in an extreme way) in Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' a super ∆- point which is strongly regular (hence failing to be ccs ∆-point in an extreme way) in Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' super Daugavet points which belong to convex combinations of slices of diameter as small as desired (hence failing to be ccs ∆-points in an extreme way).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We finish this subsection with a summary of relations between all the diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The idea in Section 5 is to generalize the diametral notions to elements of the open unit ball, and use these notions to characterize some geometric properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 5 particular, we properly localize the result by Kadets that the DSD2P is equivalent to the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Section 6 deals with Kuratowki index of non-compactness of slices, relative weakly open subsets, and convex combinations of slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We get that every relative weakly open subset (respectively, every convex combination of slices) in a space with the diameter 2 property (respectively, with the strong diameter 2 property) has Kuratowski measure 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' these results extends the analogous result for slices and the the local diameter 2 property proved in [20, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, we show that every relative weakly open subset that contains a super ∆-point has Kuratowski measure 2, and a similar result is obtained with convex combinations of relative weakly open subsets containing a ccw ∆-point;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' these results extend [52, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, Section 7 is devoted to collect some interesting open questions and some remarks on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Notation and preliminary results We will use standard notation as in the books [8], [23], and [24], for instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Given a Banach space X, BX (respectively, SX) stands for the closed unit ball (respectively, the unit sphere) of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We denote by X∗ the topological dual of X and we write JX : X −→ X∗∗ for the canonical injection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We denote by dent (BX) and ext (BX) the sets of all denting points of BX and of all extreme points of BX, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The set of preserved extreme points of BX (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' those x ∈ BX such that JX(x) ∈ ext (BX∗∗)) is denoted by pre-ext (BX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For Banach spaces X and Y , L(X, Y ), F(X, Y ), K(X, Y ) denote, respectively, the set of all (bounded linear) operator, the finite-rank operators, and the compact operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The properties in which we are interested only deal with the real structure of the involved Banach spaces, but we do not restrict the study to real spaces in order to consider real or complex examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will use the notation K to denote either R or C, Re(z) to denote the real part of z (which is just the identity when dealing with a real space), and T to represent the set of scalars of modulus one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Given a non-empty subset C of X, we will denote by co(C) the convex hull of C and by span(C) the linear hull of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also we denote by co(C) (respectively, span(C)) the norm closure of the convex hull (respectively, of the linear hull) of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By a slice of C we will mean any subset of C of the form S(x∗, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' C) := {x ∈ C : Re x∗(x) > M − δ} where x∗ ∈ X∗ is a continuous linear functional on X, δ > 0 is a positive real number, and M := supx∈C Re x∗(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For slices of the unit ball we will simply write S(x∗, δ) := S(x∗, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By a relatively weakly open subset of C we mean as usual any subset of C obtained as the (non-empty) intersection of C with an open set of X in the weak topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If C is assumed to be convex we will mean by a convex combination of slices of C (ccs of C in short) any subset of C of the form �n i=1 λiSi, where λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , λn ∈ (0, 1] are such that �n i=1 λi = 1 and Si is a slice of C for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that convex combinations of slices are convex sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We define in the same way convex com- binations of relatively weakly open subsets of C (ccw of C in short).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following lemma from [30] is a very useful tool when working with ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 ([30, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, and let x∗ ∈ SX∗ and α > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every x ∈ S(x∗, α) and every 0 < β < α there exists y∗ ∈ SX∗ such that x ∈ S(y∗, β) ⊆ S(x∗, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 6 MART´IN, PERREAU, AND RUEDA ZOCA We also often rely on the following result, due to Bourgain, and that we already mentioned in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We provide a proof below, following the one from [25, Lemma II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1], for the sake of completeness and for further discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 (Bourgain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let C be a bounded convex closed subset of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, every non-empty relatively weakly open subset W of C contains a convex combination of slices of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Assume with no loss of generality that W := m� i=1 S(fi, αi, C), write �C = JX(C) w∗ ⊂ X∗∗, and W ∗∗ := m � i=1 S � JX∗(fi), αi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' �C � , which is a non-empty relatively weak∗ open subset of �C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the Krein-Milman theorem (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [24, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='37]), it follows that �C = co(ext (BX∗∗)) w∗ , so co(ext (BX∗∗)) ∩ W ∗∗ ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pick a convex combination of extreme points �n i=1 λie∗∗ i contained in W ∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the continuity of the sum we can find, for every 1 ⩽ i ⩽ n, a weak-star open subset W ∗∗ i with e∗∗ i ∈ W ∗∗ i and such that �n i=1 λiW ∗∗ i ⊂ W ∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, since each e∗∗ i is an extreme point of �C, we have by Choquet’s lemma (see [24, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='40], for instance) that there are weak-star slices S � JX∗(gi), βi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' �C � with e∗∗ i ∈ S � JX∗(gi), βi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' �C � ⊆ W ∗∗ i for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Henceforth, �n i=1 λiS � JX∗(gi), βi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' �C � ⊆ �n i=1 λiW ∗∗ i ⊆ W ∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, if we take U := n � i=1 λiS(gi, βi, C) it is not difficult to prove that U ⊆ W, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that, in general, it is unclear from the above proof whether or not, if we fix x ∈ W, we can guarantee that there exists a convex combination of slices U of C such that x ∈ U ⊆ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, the result holds true if x ∈ W ∩ co(pre-ext (C)) in view of the above proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, if such situation, if we write x = �n i=1 λixi ∈ W satisfying that x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , xn ∈ pre-ext (C) and λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , λn ∈ (0, 1] with �n i=1 λi = 1, by the weak continuity of the sum, we can find, for every 1 ⩽ i ⩽ n, a non-empty relatively weakly open subset Vi with xi ∈ Vi for every i and such that x = �n i=1 λixi ∈ �n i=1 λiVi ⊆ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, observe that, since each xi is a preserved extreme point of C, slices of C containing xi are a neighbourhood basis for xi in the weak topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence, we can find, for 1 ⩽ i ⩽ n, a slice Si of C with xi ∈ Si ⊆ Vi, and so x = �n i=1 λixi ∈ �n i=1 λiSi ⊆ �n i=1 λiVi ⊆ W, so U := �n i=1 λiSi is the desired convex combination of slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Throughout the text, we will often be discussing various “diameter 2 properties”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We use the notation introduced in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A Banach space X has the local or slice diameter 2 property (LD2P) if every slice of BX has diameter 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' X has the diameter two property (D2P) if every non-empty relatively weakly open subset of BX has diameter 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' finally, X has the strong diameter 2 property (SD2P) whenever every ccs of BX has diameter 2 (and then, every ccw has diameter 2 due to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For definitions and for examples concerning those properties, we refer to [2, 14, 15, 45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, let us comment that the three properties are different, a result which was not easy to show, see [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Our paper is closely related to the diametral versions of those properties which have been implicitly studied for a long time in the literature, but whose formal definitions and names where fixed in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A Banach space X has the diametral local diameter 2 property (DLD2P) if for every slice S of BX and every x ∈ S ∩ SX, supy∈S ∥x − y∥ = 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' if slices are replaced by non-empty relatively weakly DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 7 open subsets of BX, we obtain the diametral diameter 2 property (DD2P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is immediate that these properties are not satisfied by any finite-dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Clearly, DLD2P implies LD2P, DD2P implies D2P (and none of these implications reverses, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' X = c0), and DD2P implies DLD2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is unknown whether the DLD2P and the DD2P are equivalent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' in fact it is even unknown whether the DLD2P implies the D2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For the analogous definition using ccs, we have to discuss a little bit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Even for an infinite-dimensional space X, it is not true that every ccs of BX intersects SX;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' actually, this happens if and only if X has a property stronger than the SD2P (see [41, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Thus, the definition of the diametral strong diameter 2 property (DSD2P) given in [13] deals with all points in BX as follows: for every ccs C and every x ∈ C, supy∈C ∥x − y∥ = ∥x∥ + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This definition allows to show that DSD2P implies the SD2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' But, actually, it has been recently shown by V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kadets [34] that the DSD2P is equivalent to the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will discuss this in detail in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, we will use the following property which is weaker than the DSD2P: a Banach space X has the restricted DSD2P if for every ccs C and every x ∈ C ∩ SX, supy∈C ∥x − y∥ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This property is strictly weaker than the DSD2P, see Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us now introduce all the notions of diametral points that we will consider in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us start with the more closely related ones to the definitions above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We say that (1) [3] x is a ∆-point if supy∈S ∥x − y∥ = 2 for every slice S of BX containing x, (2) x is a super ∆-point if supy∈V ∥x − y∥ = 2 for every non-empty relatively weakly open subset V of BX containing x, (3) x is a ccs ∆-point if supy∈C ∥x − y∥ = 2 for every slice ccs C of BX containing x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' ∆-points were introduced in [3] as a natural localization of the DLD2P (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' X has the DLD2P if and only if every element of SX is a ∆-point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The other two definitions are new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Clearly, super ∆-points are the natural localization of the DD2P: X has the DD2P if and only if every element of SX is a super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Besides, ccs ∆-points are the localization of the restricted DSD2P: X has the restricted DSD2P if and only if every element of SX is a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In relation with the Daugavet property, we have the following notions for points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We say that (1) [3] x is a Daugavet point if supy∈S ∥x − y∥ = 2 for every slice S of BX, (2) x is a super Daugavet point if supy∈V ∥x − y∥ = 2 for every non-empty relatively weakly open subset V of BX, (3) x is a ccs Daugavet point if supy∈C ∥x − y∥ = 2 for every ccs C of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us recall that Daugavet points were introduced in [3] as a natural localization of the Daugavet property in the sense that a Banach space X has the Daugavet property if and only if every point in SX is a Daugavet point ([35, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' From the geometric characterization given in [50, Lemma 3] and the implicit result contained in its proof, it follows that super Daugavet points as well as ccs Daugavet points are also natural localizations of the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since every slice of BX is relatively weakly open, and since by Bourgain’s lemma (see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) every non-empty relatively weakly open subset of BX contains a ccs of BX, we clearly have the diagram of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will show throughout the text that none of the above implications reverses, see Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7 for a description of all the relations and the counterexamples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, let us point out right away 8 MART´IN, PERREAU, AND RUEDA ZOCA ccs Daugavet ccs ∆ super Daugavet super ∆ ∆ Daugavet Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Relations between the diametral notions that we do not know whether there exists ccs ∆-points which are not super ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In view of Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 such examples may exist since Bourgain’s lemma is not localizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also let us point out that it follows again from Bourgain’s lemma that a ccs Daugavet point x ∈ SX also satisfies supy∈D ∥x − y∥ = 2 for every ccw D of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Again this is not clear for ccs ∆-points and we could thus naturally distinguish between ccs ∆-points and “ccw ∆-points”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since we do not have concrete examples at hand, we will focus on convex combination of slices and specifically point out any available ccw behavior throughout the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us also comment that it is clear that if every ccs of the unit ball of a given Banach space is weakly open (respectively, has non-empty relative weak interior), then every super ∆-point (respectively, every super Daugavet point) in this space is a ccs ∆-point (respectively, a ccs Daugavet point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Several properties of this kind where introduced and studied in [1], [4], and [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We refer to those papers for some background and for examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' There are natural weak∗ versions in dual spaces of all the notions of diametral-points introduced in the present section where slices and relatively weakly open subsets are respectively replaced with weak∗ slices (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' slices defined by elements of the predual) and relatively weak∗ open subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' With obvious terminology, it then follows from [35, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] and from [50, Lemma 3] that a Banach space X has the Daugavet property if and only if every element in SX∗ is a weak∗ Daugavet point if and only if every element in SX∗ is a weak∗ ccs Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It also follows from [2, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6] that X has the DLD2P if and only if every point in SX∗ is a weak∗ ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, the relationship between the DD2P in X and weak∗ super ∆-points in SX∗ is currently unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that a direct consequence of those results is that weak∗ diametral points and their weak counterparts might differ in a very strong way since, for instance, the unit ball of the space C[0, 1]∗ admits denting points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Yet clearly all the results from the following sections concerning the different notions of diametral-points admit obvious analogues for their weak∗ counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We leave the details to the reader to avoid unnecessary repetitions, but let us still point out that it follows from Goldstine’s theorem and from the lower weak∗ semicontinuity of the norm in dual spaces that there is a natural correspondence between diametral-properties of points in SX and weak∗ properties of their image in the bidual under the canonical embedding JX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Namely: (1) x ∈ SX is a Daugavet point (respectively, a ccs Daugavet point) if and only if JX(x) is a weak∗ Daugavet point (respectively, a weak∗ ccs Daugavet point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 9 (2) x ∈ SX is a super Daugavet point if and only if JX(x) is a weak∗ super Daugavet point if and only if for every y ∈ BX there exists a net (y∗∗ s ) in BX∗∗ which converges to JX(y) in the weak∗ topology and such that ∥πX(x) − y∗∗ s ∥ −→ 2 (see Section 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) x ∈ SX is a ∆-point (respectively, a super ∆-point) if and only if JX(x) is a ∆-point (respec- tively, a super ∆-point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (4) x ∈ SX is a ccs ∆-point if and only if JX(x) is a weak∗ ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us point out that (3) essentially follows from the obvious fact that ∆-points and super ∆-points naturally pass to superspaces, that is if Y is a subspace of X and if x ∈ SY if a ∆-point (respectively, a super ∆-point) in Y , then x is a ∆-point (respectively, a super ∆-point) in X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This property is unclear for ccs ∆-points, so the assertion (4) is not analogous to assertion (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Characterisations of diametral-notions and implications on the geometry of the ambient space In view of the definitions of diametral-points, it is natural to expect that the presence of any kind of Daugavet- or ∆-element in a given Banach space will affect, by the severe restrictions it inflicts on the nature of the considered point, its global isometric geometry or even its topological structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, previous studies in the context have shown that the situation is much more complicated than one could expect at first sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For example, let us comment that a Banach space X with the RNP and admitting a Daugavet point, and a Banach space with a one-unconditional basis and admitting a weakly dense subset of Daugavet points, were respectively constructed in [51] and in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In this section, we provide useful characterizations of the new diametral notions, and investigate the immediate effect of the presence of such points on the geometry of the considered space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We start by an intuitive but not completely trivial observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By definition, it is clear that super ∆-points do not exist in finite dimensional spaces because the weak and norm topology coincide in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, it was proved in [5, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4] that finite dimensional spaces do also fail to contain ∆-points (hence ccs ∆-points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In fact they fail to contain them in a stronger way, see [5, Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently, the study of diametral-notions only makes sense in infinite dimension, and from now on we will assume unless otherwise stated that all the Banach spaces we consider are infinite dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us next prove a bunch of characterisations for super Daugavet- and super ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every x ∈ SX and for every ε > 0, let us define ∆ε(x) := {y ∈ BX : ∥x − y∥ > 2 − ε}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We recall the following characterization of Daugavet- and ∆-points from [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 ([3, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) An element x ∈ SX is a Daugavet point if and only if BX = co ∆ε(x) for every ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) An element x ∈ SX is a ∆-point if and only if x ∈ co ∆ε(x) for every ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We have similar characterisations for super points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) An element x ∈ SX is a super Daugavet point if and only if BX = ∆ε(x) w for every ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) An element x ∈ SX is a super ∆-point if and only if x ∈ ∆ε(x) w for every ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 10 MART´IN, PERREAU, AND RUEDA ZOCA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that for given x ∈ SX, y ∈ BX, and ε > 0, we have that y belongs to the weak closure of the set ∆ε(x) if and only if ∆ε(x) has non-empty intersection with any neighborhood of y in the relative weak topology of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Thus y belongs to ∆ε(x) w for every ε > 0 if and only if supz∈V ∥x − z∥ = 2 for every relatively weakly open subset V of BX containing y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The conclusion easily follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ For any given x ∈ BX, we denote by V(x) the set of all neighborhoods of x for the relative weak topology of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We can provide characterizations of super points using nets which is just a localization of [13, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be an infinite-dimensional Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) An element x ∈ SX is a super Daugavet point if and only if for every y ∈ BX there exists a net (ys) in BX which converges weakly to y and such that ∥x − ys∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) An element x ∈ SX is a super ∆-point if and only if there exists a net (xs) in BX which converges weakly to x and such that ∥x − xs∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In both cases we can moreover force the nets to be in SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us fix x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Given any y ∈ BX, it is clear that if there exists a net (ys) in BX which converges weakly to y and such that ∥x − ys∥ −→ 2, then y belongs to the weak closure of ∆ε(x) for every ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Conversely let us pick y ∈ BX satisfying this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We turn S := V(y) × (0, ∞) into a directed set by (V, ε) ⩽ (V ′, ε′) if and only if V ′ ⊂ V and ε′ ⩽ ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the assumptions we have that V ∩ ∆ε(x) is a non-empty subset of BX for every couple s := (V, ε) in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Picking any ys in this set will then provide the desired net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally observe that for x ∈ BX and ε > 0, we have that BX\\∆ε(x) = {y ∈ BX : ∥x − y∥ ⩽ 2 − ε} is weakly closed by the lower semi-continuity of the norm, so that ∆ε(x) is a relatively weakly open subset of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Thus we have that V ∩ ∆ε(x) is a non-empty relatively weakly open subset of BX for every couple s := (V, ε) in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since X is infinite dimensional, this set has to intersect SX, and we can actually pick ys in V ∩ ∆ε(x) ∩ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In [36] an example of a Banach space satisfying simultaneously the Daugavet property and the Schur property was provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Such example shows that there is no hope to get a version of the above result involving sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that the following result, similar to [32, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2], is included in the preceding proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) If x is a super Daugavet point, then for every ε > 0 and every non-empty relatively weakly open subset V of BX we can find a non-empty relatively weakly open subset U of BX which is contained in V and such that ∥x − y∥ > 2 − ε for every y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) If x is a super ∆-point, then for every ε > 0 and every non-empty relatively weakly open subset V of BX containing x we can find a non-empty relatively weakly open subset U of BX which is contained in V and such that ∥x − y∥ > 2 − ε for every y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Fix any x ∈ SX and any y ∈ BX which belongs to the weak closure of ∆ε(x) for every ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, for every V ∈ V(y) and every ε > 0, we have that U := V ∩ ∆ε(x) is a non-empty relatively weakly open subset of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 11 It is clear from the definition that denting points of BX cannot be ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also it was first observed in [32, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] that every Daugavet point in a Banach space X has to be at distance 2 from every denting point of the unit ball of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This elementary observation turned out to play an important role in the study of Daugavet points in Lipschitz-free spaces in [32] and [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We have similar observations for super points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If x is a super ∆-point, then x cannot be a point of continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If, moreover, x is a super Daugavet point, then x has to be at distance 2 from every point of continuity of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If and element y of BX is a point of continuity, then it is contained in relatively weakly open subsets of BX of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Clearly no super ∆-point can have this property, and any super Daugavet point has to be at distance 2 from any such points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ This lemma provides quite a few examples of Banach spaces which fail to contain super points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Following [26] let us recall that X has the Kadets property if the norm topology and the weak topology coincide on SX, and that X has the Kadets-Klee property if weakly convergent sequences in SX are norm convergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us also recall that any LUR space has the Kadets-Klee property, and that any space with the Kadets-Klee property which fails to contain ℓ1 has the Kadets property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 we clearly have the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If X has the Kadets property, then X fails to contain super ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As a corollary we obtain the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a Banach space is asymptotic uniformly convex (AUC in short) [31] if its modulus of asymptotic uniform convexity δX(t) := inf x∈SX sup dim X/Y <∞ inf y∈SY ∥x + ty∥ − 1 is strictly positive for every t > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be AUC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, X fails to contain super ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In an AUC space, every element of the unit sphere is a point of continuity of BX, see [31, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It was proved in [5, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4] that any reflexive AUC space fails to contain ∆- points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, combining the observations from [5, End of Section 4] about weak∗ quasi-denting points in the unit ball of AUC∗ duals and [52, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4] about the maximality of the Kuratowski index of weak∗ slices containing weak∗ ∆-points, we have that every AUC∗ dual space fails to contain weak∗ ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, note that it is currently unknown whether non-reflexive AUC spaces (and, in particular, whether the dual of the James tree spaces JT∗) may contain Daugavet- or ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It turns out that Daugavet points are characterized by this distance to denting points in RNP spaces (because the unit ball of an RNP space X can be written as the closed convex hull of the set of its denting points) as well as in Lipschitz-free spaces ([32, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2] for compact metric spaces and [51, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] for a general statement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the same way we can characterize super Daugavet points in terms of this distance to points of continuity of BX is spaces with the CPCP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If a Banach space X has the CPCP, then a point x ∈ SX is a super Daugavet point if and only if it is at distance 2 from any point of continuity of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 12 MART´IN, PERREAU, AND RUEDA ZOCA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If X has the CPCP, then the set of all points of continuity of BX is weakly dense in BX (see for example [22, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9]), that is, every non-empty relatively weakly open subset of BX contains a point of continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The conclusion follows easily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ For ccs points, the situation is quite different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, although ccs ∆-points can clearly not be points of strong regularity, we have by [41, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] that X has the SD2P if and only if every convex combination of slices of BX contains elements of norm arbitrarily close to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It readily follows that any space X which contains a ccs Daugavet point satisfies the SD2P, so it is very far from being strongly regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will provide more details on this topic in Section 5, but for later reference let us state the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If X contains a ccs Daugavet point, then it has the SD2P (it fails to be strongly regular).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Next, we show that extreme points have a nice behaviour with respect to diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) If x ∈ pre-ext (BX) and it is a ∆-point, then x is a super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) If x ∈ ext (BX) and it is a super ∆-point, then x is a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) In particular, if x ∈ pre-ext (BX) is a ∆-point, then x is a super ∆-point as well as a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows from Choquet’s lemma (see for example [23, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='69]) that slices form neighbor- hood bases in the relative weak topology of the unit ball of a Banach space for its preserved extreme points, so (1) immediately follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For (2), if x is extreme and belongs to a ccs C := �n i=1 λiSi of BX then x ∈ �n i=1 Si, which is a relatively weakly open subset of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that, in fact, any extreme super ∆-point is “ccw ∆-point” as we discussed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, Choquet’s lemma implies that every extreme weak∗ ∆-point in a dual space is weak∗ ccw ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Spaces with a one-unconditional basis and beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In [6], it was proved that no real Banach space with a subsymmetric basis contains a ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, an example of a Banach space with a one-unconditional basis that contains a ∆-point was provided, and a more involved example of a Banach space with a one-unconditional basis that contains many Daugavet-points was constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will discuss this second example in detail in Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the process, it was also implicitly shown that real Banach spaces with a one-unconditional basis cannot contain super ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the present subsection, we prove that the same goes for ccs ∆- points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, we provide sharper and more general versions of [6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the first part of this section, we follow [6] and restrict ourselves to real Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a real Banach space with a Schauder basis (ei)i⩾1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We denote by (e∗ i )i⩾1 the corresponding sequence of biorthogonal functionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that (ei)i⩾1 is said to be unconditional if the series � i⩾1 e∗ i (x)ei converges unconditionally for every x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, recall that an unconditional basis (ei)i⩾1 is said to be one-unconditional if ����� � i⩾1 θie∗ i (x)ei ����� = ����� � i⩾1 e∗ i (x)ei ����� DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 13 for every (θi)i⩾1 ∈ {−1, 1}N and for every x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, if ����� � i⩾1 θie∗ i (x)eni ����� = ����� � i⩾1 e∗ i (x)ei ����� for every (θi)i⩾1 ∈ {−1, 1}N, for every x ∈ X, and for every strictly increasing sequence (ni)i⩾1 in N, then the basis is called subsymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that for spaces with a one-unconditional basis, it is enough, in order to study the various Daugavet- and ∆-notions, to work in the positive sphere S+ X := {x ∈ SX : e∗ i (x) ⩾ 0 ∀i} of the space X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, the following result is well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a real Banach space with a one-unconditional basis (ei)i⩾1, and let (ai)i⩾1 and (bi)i⩾1 be sequences of real numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If the series � i⩾1 biei converges, and if |ai| ⩽ |bi| for every i, then � i⩾1 aiei converges as well, and we have ����� � i⩾1 aiei ����� ⩽ ����� � i⩾1 biei ����� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us now recall a few notation and preliminary results from [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a real Banach space with a normalized one-unconditional basis (ei)i⩾1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every subset A of N, we denote by PA the projection on span{ei, i ∈ A}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then for every x ∈ X, we define M(x) := {A ⊂ N: ∥PA(x)∥ = ∥x∥ , and ��PA(x) − e∗ j(x)ej �� < ∥x∥ ∀j ∈ A}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The set M(x) can be seen as the set of all minimal norm-giving subsets of the support of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We denote respectively by MF(x) and M∞(x) the subsets of all finite and infinite elements of M(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows from [6, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7] that the set M(x) is never empty, and from [6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='15] that no element x ∈ SX satisfying M∞(x) = ∅ can be a ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every non-empty ordered subset A := {a1 < a2 < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' } of N, and for every n ∈ N smaller than or equal to |A|, we denote by A(n) := {a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , an} the subset consisting of the n first elements of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will implicitly assume in the following that the elements of M(x) are ordered subsets of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The next two results were proved in [6, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8 and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a real Banach space with a normalized one-unconditional basis (ei)i⩾1 and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every n ∈ N, the sets � A ∈ M(x): |A| ⩽ n � and � A(n): A ∈ M(x), and |A| > n � are both finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a real Banach space with a normalized one-unconditional basis and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every subset E of N such that E ∩ A ̸= ∅ for every A ∈ M(x), we have ∥x − PE(x)∥ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' With those tools at hand, we can now prove an analogue to [6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13] for convex combi- nation of slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space with a normalized one-unconditional basis and x ∈ S+ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, there exists δ > 0 and a ccs C of BX containing x such that supy∈C ∥x − y∥ ⩽ 2 − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 14 MART´IN, PERREAU, AND RUEDA ZOCA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let x ∈ S+ X, and define E = � A∈M(x) A(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='16 and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='17, we have that E is a finite subset of N and that ∥x − PE(x)∥ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, there exists γ > 0 such that ∥x − PE(x)∥ ⩽ 1 − γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every i ∈ E, we define Si := S � e∗ i , 1 − e∗ i (x) 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then we consider the ccs C := 1 |E| � i∈E Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since x ∈ S+ X, we clearly have that x ∈ � i∈E Si and, in particular, that x ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So let us pick y := 1 |E| � i∈E yi in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then we have e∗ i (yi) > e∗ i (x) 2 for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, e∗ i (yi) ⩾ 0, and ��e∗ i (yi) − e∗ i (x) �� ⩽ e∗ i (yi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, for any given non-negative real numbers α and β with β ⩾ α 2 , we have |β − α| = β − α ⩽ β if β ⩾ α, and |β − α| = α − β ⩽ α − α 2 = α 2 ⩽ β if β ⩽ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So in either case, |β − α| ⩽ β as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It then follows from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='15 that ��yi − e∗ i (x)ei �� ⩽ ��yi�� ⩽ 1 and, finally, ∥x − y∥ ⩽ ����x − x |E| ���� + ���� x |E| − PE(x) |E| ���� + ���� PE(x) |E| − y ���� ⩽ 1 − 1 |E| + 1 − γ |E| + 1 |E| � i∈E ��e∗ i (x)ei − yi�� ⩽ 2 − γ |E|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The conclusion follows with δ := γ |E|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, note that since x belongs to the relative weakly open set � i∈E Si ⊂ C, we also get that x is not super ∆, recovering the result from [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ So combining [6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13] and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='18, we immediately get that spaces with a normalized one-unconditional basis fail to contain super ∆-points and ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So let us state the following here for future reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a real Banach space with a normalized one-unconditional basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then X does not contain super ∆-points, and X does not contain ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the rest of the subsection, we aim at providing sharper and improved versions of [6, Proposi- tion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular we will go back to working with either real or complex Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The main result of this study is the following proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, and let us assume that there exists a subset A ⊆ F(X, X) satisfying that sup � ∥Id − T∥ : T ∈ A � < 2 and that for every ε > 0 and every x ∈ X, there exists T ∈ A such that ∥x − Tx∥ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, X contains no super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us provide a lemma which is a localization of the above result from which its proof is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If there exists a finite-rank operator T on X such that ∥x − Tx∥ + ∥Id − T∥ < 2, then x is not a super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 15 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consider ε > 0 such that K := ∥x − Tx∥ + ∥Id − T∥ + ε < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since T has finite rank, we can find N ⩾ 1, w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , wN ∈ SX and f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , fN ∈ X∗ such that T(z) = �N n=1 fn(z)wn for every z ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us consider W := � y ∈ BX : |fn(x − y)| < ε 2n+1 ∀n ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , N} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' W is a neighborhood of x in the relative weak topology of BX, and for every y ∈ W, we have ∥x − y∥ ⩽ ∥x − Tx∥ + ∥Tx − Ty∥ + ∥y − Ty∥ ⩽ ∥x − Tx∥ + ∥Id − T∥ + N � n=1 |fn(x − y)| ∥wn∥ ⩽ ∥x − Tx∥ + ∥Id − T∥ + ε N � n=1 1 2n+1 ⩽ K < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is unclear whether an analogue to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='21 can be given for ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So we do not know whether Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='20 extends to this notion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As particular cases of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='20, we have the following ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that a sequence (En)n⩾1 of finite dimensional subspaces of a given Banach space X is called a finite dimensional decomposition (FDD) for X if every element x ∈ X can be represented in a unique way as a series x := � n⩾1 xn with xn ∈ En for every n ⩾ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Such an FDD is said to be unconditional if the above series converges unconditionally for every x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In this case, it is well known that the family (PA)A⊂N, where PA is the projection given by PA(x) := � n∈A xn, is uniformly bounded, and the constant KS := supA⊂N ∥PA∥ is called the suppression-unconditional constant of the FDD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We refer to [40, Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g] for the details and to [8, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] for the particular case of unconditional bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A Banach space X fails to have super ∆-points provided one of the following condi- tions is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) There exists a family A ⊆ F(X, X) satisfying that sup � ∥Id − T∥ : T ∈ A � < 2 and that the identity mapping belongs to its strong operator topology (SOT) closure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) There exists a family {Pλ}λ∈Λ of finite rank projections on X such that X = � λ∈Λ Pλ(X), and such that supλ∈Λ ∥Id − Pλ∥ < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) The space X admits a FDD with suppression-unconditional constant less than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, if X admits an unconditional basis with suppression-unconditional constant less than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us observe that the value 2 in the above results is sharp in several ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) The space C[0, 1] admits a monotone Schauder basis, so there exists a sequence {Pn}n⩾1 of norm one finite rank projections on this space which converges to Id in SOT topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As C[0, 1] has the Daugavet property, all elements in SX are super Daugavet points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that ∥Id − Pn∥ = 2 for every n ⩾ 1 by the DPr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) Let X be an arbitrary Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every x ∈ SX choose fx ∈ SX∗ such that fx(x) = 1, and define Px(z) = fx(z)x for every z ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then {Px : x ∈ SX} is a family of norm one rank-one projections on X, X = � x∈SX Px(X), and ∥Id − Px∥ ⩽ 2 for every x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) The space c admits ccs Daugavet points (hence super Daugavet points), see Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2, but it is easy to check that its usual basis is 3-unconditional and 2-suppression unconditional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (4) It is shown in [30] that a Banach space has the DLD2P if and only if ∥Id − P∥ ⩾ 2 for every rank-one projection P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows that the suppression constant of an unconditional basis on a Banach space with the DLD2P has to be greater than or equal to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us mention here 16 MART´IN, PERREAU, AND RUEDA ZOCA that there is no local version of this result, as there are Banach spaces with one-unconditional basis and containing many Daugavet points [6] (see Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Absolute sums.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In this subsection we look at the transfer of the diametral points through absolute sums of Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us first recall the following definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A norm N on R2 is absolute if N(a, b) = N(|a| , |b|) for every (a, b) ∈ R2 and normalized if N(0, 1) = N(1, 0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If X and Y are Banach spaces, and if N is an absolute normalized norm on R2, we denote by X ⊕N Y the product space X × Y endowed with the norm ∥(x, y)∥ = N(∥x∥ , ∥y∥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is easy to check that X ⊕N Y is a Banach space, and that its dual can be expressed as (X ⊕N Y )∗ ≡ X∗ ⊕N∗ Y ∗ where N∗ is the absolute norm given by the formula N∗(c, d) = maxN(a,b)=1 |ac|+|bd|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Classical examples of absolute normalized norms on R2 are the ℓp norms for p ∈ [1, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Information on absolute norms can be found in [16, §21] and [43] and references therein, for instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us recall that for every absolute normalized sum N, given non-negative a, b, c, d in R with a ⩽ b and c ⩽ d we have N(a, b) ⩽ N(c, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, ∥·∥∞ ⩽ N ⩽ ∥·∥1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Similar to the DD2P (see [13, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11]) and to ∆-points [28], super ∆-points transfer very well through absolute sums.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X and Y be Banach spaces, and let N be an absolute normalized norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) If x ∈ SX and y ∈ SY are super ∆-points, then (ax, by) is a super ∆-point in X ⊕N Y for every (a, b) ∈ R2 with N(a, b) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) If x ∈ SX is a super ∆-point, then (x, 0) is a super ∆-point in X ⊕N Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If y ∈ SY is a super ∆-point, then (0, y) is a super ∆-point in X ⊕N Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We can find two nets (xs)s∈S and (yt)t∈T respectively in SX and SY such that xs w −→ x, yt w −→ y, and ∥x − xs∥ , ∥y − yt∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, if we take (a, b) ∈ R2 with N(a, b) = 1 we clearly have (axs, byt) w −→ (s,t)∈S×T (ax, by) and ∥(ax, by) − (axs, byt)∥ = N (a ∥x − xs∥ , b ∥y − yt∥) −→ 2N(a, b) = 2, so (ax, by) is a super ∆-point in X ⊕N Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For (2), we just repeat the previous proof with a = 1 and b = 0 or with a = 0 and b = 1 and so we only need one of the points to be super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ For super Daugavet points the situation is more complicated and we need to distinguish between different kinds of absolute norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following definitions can be found, for instance, in [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let N be an absolute normalized norm on R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) N has property (α) if for every a, b ∈ R+ with N(a, b) = 1 we can find a neighborhood W of (a, b) in R2 with sup(c,d)∈W c < 1 or sup(c,d)∈W d < 1 and such that any couple (c, d) ∈ R2 + satisfying N(c, d) = 1 and N ((a, b) + (c, d)) = 2 belongs to W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) N is A-octahedral if there exists a, b ∈ R+ such that N(a, b) = 1 and N ((a, b) + (c, d)) = 2 for c = max{e ∈ R+ : N(e, 1) = 1} and d = max{f ∈ R+ : N(1, f) = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) N is positively octahedral if there exists a, b ∈ R+ such that N(a, b) = 1 and N ((a, b) + (0, 1)) = N ((a, b) + (1, 0)) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Positively octahedral norms where introduced in [27] in order to characterize the absolute norms for which the corresponding absolute sum is octahedral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is clear that property (α) and A-octhaedrality DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 17 exclude each other and that every positively octahedral absolute normalized norm is A-octahedral (while there clearly exists absolute A-octahedral norms which are not positively octahedral).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover it was proved in [28, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5] that every absolute normalized norm on R2 must either satisfy property (α) or be A-octahedral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For ℓp-norms, we have that ∥·∥1 and ∥·∥∞ are both positively octahedral, and that ∥·∥p satisfies property (α) for every p ∈ (1, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that if an absolute normalized norm N on R2 is positively octahedral, and if (a, b) is as in the above definition, then the intersection of the unit sphere of N with the positive quadrant of R2 is equal to the union of the segments [(1, 0), (a, b)] and [(0, 1), (a, b)] (see [45, Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] for pictures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, it follows that N((a, b)+(c, d)) = 2 for every non-negative c, d with N(c, d) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Similar to the results from [3, Section 4] concerning Daugavet points, we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X and Y be Banach spaces, and let N be an absolute normalized norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) [3, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6] If N has property (α), then X ⊕N Y has no Daugavet point (hence, in particular, no super Daugavet points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) If N is positively octahedral and if x ∈ SX and y ∈ SY are super Daugavet points, then (ax, by) is a super Daugavet point in X ⊕N Y for every (a, b) ∈ R2 + as in the above definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Assume that N is positively octahedral, take (a, b) ∈ R2 + as in the definition, and let x ∈ SX and y ∈ SY be super Daugavet points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For any given (u, v) ∈ X ⊕N Y of norm ∥(u, v)∥ = 1 we can find two nets (us)s∈S and (vt)t∈T respectively in SX and SY such that ∥u∥us w −→ u, ∥v∥vt w −→ v, and ∥x − us∥ , ∥y − vt∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then (∥u∥ us, ∥v∥ vt) w −→ (s,t)∈S×T (u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since ∥ax − ∥u∥ us∥ = ∥(x − us) − [(1 − a)x − (1 − ∥u∥)us]∥ ⩾ ∥x − us∥ − (1 − a + 1 − ∥u∥), = a + ∥u∥ − (2 − ∥x − us∥), and, in the same way, ∥by − ∥v∥ vt∥ ⩾ b + ∥v∥ − (2 − ∥y − vt∥), we have ∥(ax − ∥u∥ us, by − ∥v∥ vt)∥ = N (∥ax − ∥u∥ us∥ , ∥by − ∥v∥ vt∥) ⩾ N (a + ∥u∥ − (2 − ∥x − us∥), b + ∥v∥ − (2 − ∥y − vt∥)) −→ N ((a + ∥u∥ , b + ∥v∥) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This shows that (ax, by) is a super Daugavet point in X ⊕N Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Note that if (a, b) = (1, 0) (respectively, (a, b) = (0, 1)) in the previous statement (for example, when N = ∥·∥1), then we only need to assume that x (respectively, y) is super Daugavet in order to get that (x, 0) (respectively, (0, y)) is super Daugavet in X ⊕N Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, if N = ∥·∥∞, then we only need to assume that x (respectively, y) is super Daugavet in order to obtain that (x, βy) (respectively, (αx, y)) is super Daugavet in X ⊕N Y for every β ∈ [0, 1] (respectively, α ∈ [0, 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In [28, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2] it is proved that regular Daugavet points do also transfer through A-octahedral sums.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We do not know if a similar result can be obtained for super Daugavet points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, observe that if N is an A-octahedral norm, and if c, d, and (a, b) are as in the above definition, then the intersection of the unit sphere of N with the positive quadrant of R2 is equal to the union of the segments [(1, 0), (1, d)], [(1, d), (a, b)], [(0, 1), (c, 1)] and [(c, 1), (a, b)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, N((a, b)+(e, f)) = 2 for every couple (e, f) on the segments [(1, d), (a, b)] and [(c, 1), (a, b)], but this is no longer true 18 MART´IN, PERREAU, AND RUEDA ZOCA on the segments [(1, 0), (1, d)] and [(0, 1), (c, 1)] and the argument in the above proof does not work anymore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The situation for ccs ∆-points and ccs Daugavet point is not clear and the proofs of the above results do not seem to admit easy extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For instance, it follows from the next result that Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='28 is not valid for ccs Daugavet points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be an arbitrary Banach space, let Y be a Banach space containing an strongly exposed point y0 ∈ SY , and let E := X ⊕1 Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, there are convex combinations of slices of BE around 0 of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, E fails to contain ccs Daugavet points and also fails to have the SD2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let y∗ 0 ∈ SY ∗ strongly exposes y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Given ε > 0, there is 0 < δ < ε such that ∥y − y0∥ < ε whenever y ∈ BY satisfies Re y∗ 0(y) > 1 − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consider f = (0, y∗ 0) ∈ SE∗ and write C := 1 2 (S(f, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BE) + S(−f, δ, BE)) Take u := 1 2(u1 + u2) ∈ C with u1 ∈ S(f, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BE) and u2 ∈ S(−f, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So if write u1 := (x1, y1) and u2 := (x2, y2), we have Re y∗ 0(y1) = Re f(x1, y1) > 1 − δ and Re y∗ 0(y2) = Re f(x2, y2) < −1 + δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the one hand, it follows that ∥y1−y0∥ < ε and ∥y2+y0∥ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, ∥y1∥, ∥y2∥ > 1−δ, hence ∥x1∥ < δ < ε and ∥x2∥ < δ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Summarizing, we have ∥u∥ = 1 2 � ∥x1 + x2∥ + ∥y1 + y2∥ � ⩽ 1 2(2ε + 2ε) = 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is straightforward to adapt the previous proof to ℓp-sums for 1 < p < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, note that the situation is very different for ℓ∞-sums.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X and Y be Banach spaces, and let E := X ⊕∞ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If x ∈ SX is a ccs Daugavet point, then (x, y) ∈ SE is a ccs Daugavet point for every y ∈ BY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let C := �n i=1 λiSi be a ccs of BE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n}, we can write Si := S(fi, δi) with fi := (x∗ i , y∗ i ) ∈ SE∗ satisfying 1 = ∥fi∥ = ∥x∗ i ∥ + ∥y∗ i ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consider on the one side ˜Si := � s ∈ BX : Re x∗ i (s) > ∥x∗ i ∥ − δi 2 � , and pick on the other side any ti ∈ BY such that Re y∗ i (ti) > ∥y∗ i ∥ − δi 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since ˜C := �n i=1 λi ˜Si is a ccs of BX, we can find for every ε > 0 an element s := �n i=1 λisi in ˜C such that ∥x − s∥ > 2 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, if we let t := �n i=1 λiti, we get (si, ti) ∈ BE and Re fi(si, ti) = Re x∗ i (si) + y∗ i (ti) > ∥x∗ i ∥ + ∥y∗ i ∥ − δi = 1 − δi for every i, so that (si, ti) ∈ Si, and (s, t) = �n i=1 λi(si, ti) ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, ∥(x, y) − (s, t)∥ ⩾ ∥x − s∥ > 2 − ε, so (x, y) is a ccs Daugavet point as stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 19 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Examples and counterexamples of diametral elements In this section we aim to include a number of examples and counterexamples of diametral elements on the unit sphere of Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We first characterize the notion in some spaces which have natural relations with the Daugavet property, such as L1-preduals spaces, M¨untz spaces, and L1- spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Next, we will remark on some examples which have previously appear in the literature, including some improvements in some cases (as for Lipschitz free spaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, we will include some complicated examples which will be needed to see that no implication in Figure 1 in page 8 reverses and also to negate some other possible implications between the notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A summary of all the relations between properties will be included in Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Characterization in C(K)-spaces, L1-preduals, and M¨untz spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It was shown in [3, Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7] that the notions of ∆-point and Daugavet point coincide for L1-preduals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The authors first characterize the ∆-points in C(K) spaces and then get the result for L1-preduals by using the principle of local reflexivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Later on, a characterization of ∆-points (equivalently, Daugavet points) of L1-preduals was provided in [42, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2] which implicitly prove that actually ∆-points, and super Daugavet points coincides in this setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us state this result here for further reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us observe that the authors of [3] works with real Banach spaces, but it is immediate that the proof of [3, Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4] works in the complex case as well;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' the paper [42] works in both the real and the complex case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 ([3, Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7], [42, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be an L1-predual and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) x is a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) x is a ∆-point (3) For every δ > 0, the weak∗ slice S(JX(x), δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BX∗) contain infinitely many pairwise linearly independent extreme points of BX∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (4) For every element y ∈ BX, there exists a sequence (x∗∗ n ) in BX∗∗ such that ∥x − x∗∗ n ∥ −→ 2 and ����� � n⩾1 an(y − x∗∗ n ) ����� ⩽ 2 ∥a∥∞ for every a := (an) ∈ c00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (5) For every element y ∈ BX, there exists a sequence (x∗∗ n ) in BX∗∗ which converges weak∗ to y and such that ∥x − x∗∗ n ∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the case that X = C(K) for a Hausdorff topological space K, the above is also equivalent to: (6) x attains its norm at an accumulation point of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will show that, in fact, ∆-points also coincide with the ccs versions for L1 preduals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Our approach will be analogous to the one used in [3] for ∆-points and Daugavet points: we first prove the result for C(K) spaces and then deduce it for all L1-preduals using that the bidual of an L1-predual is a C(K)-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the case of C(K) spaces, we first prove a sufficient condition for ccs Daugavet points which, for the same price, can be proved for vector-valued spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that given a compact Hausdorff topological space K and a Banach space X, C(K, X) denotes the Banach space of those continuous functions from K to X endowed with the supremum norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 20 MART´IN, PERREAU, AND RUEDA ZOCA Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let K be a compact Hausdorff topological space, X a Banach space, and let t0 be an accumulation point of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If a function f ∈ SC(K,X) satisfies ∥f(t0)∥ = 1, then f is a ccs Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pick x∗ ∈ SX∗ such that Re x∗(f(t0)) = ∥f(t0)∥ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let C := �L i=1 λiSi be a convex combination of slices of BC(K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , L}, pick a function gi ∈ Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since K is compact and t0 is an accumulation point of K we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' There exists a sequence (Un)n⩾0 of open neighborhoods of t0 such that: (1) U0 = K, (2) Un+1 is a proper subset of Un for every n ⩾ 0, (3) Re(x∗ ◦ f)|Un ⩾ 1 − 1 n and ���gi|Un − gi(t0) ��� ⩽ 1 n for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , L} and every n ⩾ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, we construct the sequence inductively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let U0 := K and assume that U0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , Un are con- structed for some n ⩾ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since K is normal, we can find an open subset U of Un such that t0 ∈ U ⊂ U ⊂ Un.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also since t0 is an accumulation point of K and since K is Hausdorff, we can find an open subset V of U such that V is a proper subset of U (pick any point in U distinct from t0 and separate the two points with open sets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By continuity of f and of the finitely many g′ is, we can then find an open subset W of V such that Re(x∗ ◦ f)|W > 1 − 1 n + 1 and ���gi|W − gi(t0) ��� < 1 n + 1 for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The set Un+1 := W does the job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, let us pick (Un)n⩾0 as in the claim and let us define Fn := Un\\Un+1 for every n ⩾ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By construction, the F ′ ns are closed non-empty subsets of K and cover K\\ �� n⩾0 Un � , and each Fn may only intersects its neighbors Fn−1 and Fn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By Urysohn’s lemma, for every n ⩾ 1 we can find a function pn ∈ C(K) satisfying: (1) 0 ⩽ pn ⩽ 1, (2) pn|Fn+1 = 1, (3) pn|F0∪···∪Fn−1∪Un+3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The sequence (pn) is normalized and converges pointwise to 0, so it converges weakly to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, observe that ∥gi − (1 + gi(t0))pn∥∞ ⩽ 1 + 1 n for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , L} since ���gi|Un − gi(t0) ��� ⩽ 1 n and pn|(K\\Un) = 0 by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So all the functions gi,n := n n + 1 (gi − (1 + gi(t0))pn) belong to BC(K) and the sequences (gi,n)n∈N converges weakly to gi for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since the finitely many S′ is are all weakly open, we may thus find some N ⩾ 1 such that gi,n ∈ Si for every i and every n ⩾ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, the function gn := L � i=1 λigi,n DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 21 belongs to C for every n ⩾ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To conclude, fix t ∈ Fn+1 ⊂ Un+1 ⊂ Un and observe that Re x∗f(t) ⩾ 1 − 1 n and that Re x∗gi,n(t) = n n + 1 Re x∗ (gi(t) − (1 + gi(t0)) ⩽ n n + 1 Re x∗ � gi(t0) + 1 n − (1 + gi(t0)) � = −1 + 2 n + 1 for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence, ∥f − gn∥∞ ⩾ Re x∗ � f(t) − L � i=1 λi Re(gi,n(t)) � ⩾ 2 − 1 n − 2 n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Combining the previous result with Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1, we get the promised characterization of diame- tral points in C(K) spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let K be a Hausdorff topological compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then the six concepts of diametral points are equivalent in C(K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For vector-valued spaces, the situation is not that easy, but we may provide with some results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that, clearly, if t0 is an isolated point of a compact Hausdorff topological space K and X is a Banach space, then C(K, X) = C(K \\ {t0}, X) ⊕∞ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let K be a Hausdorff topological compact space, let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' and let f ∈ C(K, X) be a function with ∥f∥ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) If f ∈ C(K, X) with ∥f∥ = 1 attains its norm at an accumulation point of K, then f is a ccs Daugavet point (by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) and hence, f satisfies the six diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) If f ∈ C(K, X) with ∥f∥ = 1 attains its norm at an isolated point t0 and f(t0) is a Dau- gavet (respectively, super Daugavet, ccs Daugavet) point, then f is a Daugavet (respectively, super Daugavet, ccs Daugavet) point (by [3, Section 4], Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='28, and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='31, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) Suppose that K contains an isolated point t0, let x0 ∈ SX, and let f ∈ C(K, X) be given by f(t0) = x0 and f(t) = 0 for every t ∈ K \\ {t0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1) If x0 is a ∆- (respectively, super ∆-) point of X, then f is a ∆- (respectively, super ∆-) point of C(K, X) (by [3, Section 4] and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='25, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) If x0 is a Daugavet (respectively, super Daugavet, ccs Daugavet) point of X, then f is a Daugavet (respectively, super Daugavet, ccs Daugavet) point of C(K, X) (by [45, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11], Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='28 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='31, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3) If f is a ∆- (respectively, Daugavet) point of C(K, X), then x0 is a ∆- (respectively, Daugavet) point of X (by [45, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4], [45, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13], respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (4) It is now easy to show that the six diametral notions do not coincide in C(K, X) spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, let K be a compact Hausdorff topological space containing an isolated point t0, let X a Banach space containing a ∆-point x0 which is not a Daugavet point (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' any x0 in the unit sphere of X = C[0, 1] ⊕2 C[0, 1]), see Propositions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='25 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='27), and consider the function f ∈ C(K, X) given by f(t0) = x0 and f(t) = 0 for every t ∈ K \\ {t0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, f is a ∆-point by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1) but it is not a Daugavet point by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We are now ready to extend Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 to general L1-predual spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 22 MART´IN, PERREAU, AND RUEDA ZOCA Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be an L1-predual and let x ∈ SX be a ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, x is a ccs Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence the six diametral notions are equivalent for L1-preduals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If x is a ∆-point in X, then as mentioned in item (3) of Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6, we have that JX(x) is a ∆-point in X∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, X∗∗ is isometric to a C(K) space so Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 gives that JX(x) is a ccs Daugavet point in X∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, using now item (4) of Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6 (or using a straightforward argument based on the principle of local reflexivity as in [3, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7]), we get that x is a ccs Daugavet point in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Let us observe that the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 also works for M¨untz spaces (by using [3, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='10] to provide suitable replacements for the functions pn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We recall that given an an increasing sequence Λ = (λn)∞ n=0 of non-negative real numbers with λ0 = 0 such that �∞ i=1 1 λi < ∞, then the real Banach space M(Λ) := span{tλn : n ⩾ 0} ⊆ C[0, 1] is called the M¨untz space associated with Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Excluding the constant functions form M(Λ), we have the subspace M0(Λ) := span{tλn : n ⩾ 1} of M(Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So, adapting the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 to M¨untz spaces (for real scalar-valued functions attaining its norm at 1 ∈ [0, 1]) and also using [3, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12], we get the following result analogous to Corollaries 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X = M(Λ) or X = M0(Λ) for an increasing sequence Λ of non-negative real numbers with λ0 = 0 such that �∞ i=1 1 λi < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, every ∆-point of X is a ccs Daugavet point (and hence the six diametral notions are equivalent).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Characterization in L1-spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In [3, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] the equivalence between the notions of Daugavet point and ∆-point was obtained for elements of σ-finite L1-spaces in the real case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Actually, it is not complicated to extend the results to arbitrary measures and also to the complex case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7 ([3, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] for the σ-finite real case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let (Ω, Σ, µ) be a measure space, and let f be a norm one element in L1(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, the following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) f is a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) f is a ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) The support of the function f contains no atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that (1) implies (2) is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For (2) implies (3), suppose that f is a ∆-point and let A be an atom of finite measure (the only ones that can be contained in the support of an integrable function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, we clearly have that L1(µ) = L1(µ|Ω\\A) ⊕1 K (as integrable functions are constant on atoms), and we may write f = (f1, c) for suitable f1 ∈ L1(µ|Ω\\A) and c = f(A) ∈ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If c ̸= 0, then ∥f1∥ ̸= 1 and it follows from [45, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4] that 1 ∈ K is a ∆-point, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This shows that the support of f does not contain any atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To get that (3) implies (1), we actually prove the following more general result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that given a measured space (Ω, Σ, µ) and a Banach space X, L1(µ, X) denotes the Banach space of all B¨ochner- integrable functions from Ω to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let (Ω, Σ, µ) be a measured space, let X be a Banach space, and let f be a norm one element in L1(µ, X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If the support of the function f contains no atom, then f is a super Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 23 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us write S := supp f which contains no atom by hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us first prove that f is a super Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since S contains no atoms, we have that L1(µ|S, X) satisfies the Daugavet property (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [54, Example in p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 81]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, f is a super Daugavet point in this space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since L1(µ, X) = L1(µ|S, X) ⊕1 L1(µ|Σ\\S, X), we get that f is a super Daugavet point in L1(µ, X) by the transfer results from Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 (see Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Our next goal is to discuss the relationship with the ccs diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For real L1(µ)-spaces, and using a result from [1], we may actually get that real-valued integrable functions with atomless support are ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let (Ω, Σ, µ) be a measured space and let f be a norm one element in the real space L1(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If the support of the function f contains no atom, then f is a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take ε > 0 and D := �n i=1 λiSi a ccs of BL1(µ) containing f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Write f := �n i=1 λigi with gi ∈ Si for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consider the measurable subset ˜S := supp f ∪ �n i=1 supp gi of Ω and let ˜µ be the σ-finite measure ˜µ := µ| ˜S on ( ˜S, Σ| ˜S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then D induces a ccs ˜D of BL1(˜µ) by restriction of the support which contains the function ˜f which is just f viewed as an element of L1(˜µ) and hence, the support of ˜f does not contains atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since ˜f belongs to the unit sphere of the real space L1(˜µ), we have by [1, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5] that ˜f is an interior point of ˜D for the relative weak topology of BL1(˜µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As we have already shown that ˜f is a super Daugavet point in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8 (and hence a super ∆-point), we can find ˜g ∈ ˜D such that �� ˜f − ˜g �� > 2 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By just considering the extension g of ˜g to the whole Ω by 0, we get that g ∈ D and that ∥f − g∥ = �� ˜f − ˜g �� > 2 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Let us comment that it is not clear whether ccs ∆-points transfer through absolute sums, but we have used specific geometric properties of L1-spaces in the previous proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that since [1, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5] is also valid for convex combination of relative weakly open subsets of BL1(µ), we in fact have that every ∆-point in a real L1(µ) space is actually a ccw ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Putting together Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8, and Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9, we get the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let (Ω, Σ, µ) be a measured space and let f be a norm one element in L1(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, the following notions are equivalent for f: ∆-points, Daugavet point, super ∆-point, and super Dau- gavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, in the real case, the previous four notions are also equivalent to being ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We now deal with ccs Daugavet points in L1(µ)-spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that if Ω admits an atom A of finite measure, then we have L1(µ) ≡ L1(µ|Ω\\A) ⊕1 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, in this case L1(µ) fails to have ccs Daugavet points by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We then have the following characterization of the presence of a ccs Daugavet point in an L1-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let (Ω, Σ, µ) be a measure space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, the following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) L1(µ) has the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) L1(µ) contains a ccs Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) L1(µ) has the SD2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (4) µ admits no atom of finite measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 24 MART´IN, PERREAU, AND RUEDA ZOCA Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1)⇔(4) is well known (see [54, Section 2, Example (b)]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1)⇒(2) is also known;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2)⇒(3) is contained in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, (3)⇒(4) follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='29 and the comment before the statement of this proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remarks on some examples from the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Two examples in Lipschitz-free spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In [51], Veeorg constructed a surprising example of a space satisfying the Radon-Nikod´ym property and containing a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We slightly improve this result by showing that this point is also a ccs ∆-point by proving a general fact about extreme ∆-molecules in Lipschitz-free spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For the necessary definitions we refer to the cited paper [51] and to [9, 10, 32];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' for further background on Lipschitz-free spaces, we refer to the book [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For this purpose, we start by recalling the following characterization of molecules which are ∆-points on Lipschitz-free spaces from [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13 ([32, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let M be a pointed metric space and let x ̸= y ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The molecule mx,y is a ∆-point if and only if every slice S of BF(M) containing mx,y also contains for every ε > 0 a molecule mu,v with u ̸= v ∈ M satisfying d(u, v) < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the case in which the molecule is an extreme point, we have the following improved result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let M be a pointed metric space, and let x ̸= y ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If the molecule mx,y is an extreme point and a ∆-point, then mx,y is a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that this result cannot be obtained from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13: molecules of Lipschitz-free spaces which are preserved extreme points are denting points, hence very far from being ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To give the proof of the theorem, we need a result which is just an equivalent reformulation of a result in [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='15 ([32, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let M be a pointed metric space, and let µ ∈ SF(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every ε > 0, there exists δ > 0 such that given u ̸= v ∈ M with d(u, v) < δ we have ∥µ ± mu,v∥ > 2 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Using this result and a homogeneity argument similar to the one from [15, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3], we can provide the pending proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let C := �n i=1 λiSi be a ccs of BF(M) containing mx,y and let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since mx,y is extreme, we have that mx,y ∈ �n i=1 Si, and by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13 every Si contains molecules of F(M) supported at arbitrarily close points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Using Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='15, we construct inductively for every η > 0 a finite sequence (mui,vi)n i=1 of molecules in F(M) such that (1) mui,vi ∈ Si for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) ���mx,y − �k i=1 λimui,vi ��� > 1 + �k i=1 λi − kε n for every k ⩽ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, since S1 contains molecules of F(M) supported at arbitrarily close points, we can find by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='15 u1 ̸= v1 ∈ M such that mu1,v1 ∈ S1 and ∥mx,y − mu1,v1∥ > 2 − ε n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows that ∥mx,y − λ1mu1,v1∥ ⩾ ∥mx,y − mu1,v1∥−(1−λ1) > 1+λ1− ε n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us assume that mu1,v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , muk,vk are constructed as desired for a given k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n−1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since Sk+1 contains molecules of F(M) supported at arbitrarily close points, we can find by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='15 uk+1 ̸= vk+1 ∈ M such that muk+1,vk+1 ∈ Sk+1 DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 25 and ������ mx,y − �k i=1 λimui,vi ���mx,y − �k i=1 λimui,vi ��� − muk+1,vk+1 ������ > 2 − ε n ���mx,y − �k i=1 λimui,vi ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, ������ mx,y − �k+1 i=1 λimui,vi ���mx,y − �k i=1 λimui,vi ��� ������ ⩾ ������ mx,y − �k i=1 λimui,vi ���mx,y − �k i=1 λimui,vi ��� − muk+1,vk+1 ������ − � �1 − λk+1 ���mx,y − �k i=1 λimui,vi ��� � � > 1 + λk+1 ���mx,y − �k i=1 λimui,vi ��� − ε n ���mx,y − �k i=1 λimui,vi ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the assumption, �����mx,y − k+1 � i=1 λimui,vi ����� > �����mx,y − k � i=1 λimui,vi ����� + λk+1 − ε n > 1 + k+1 � i=1 λi − (k + 1)ε n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As a consequence, µ := �n i=1 λimui,vi belongs to C and satisfies ∥mx,y − µ∥ > 2 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ In particular, we have, as announced, that the molecule mx,y in the example from [51] is a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Note that it cannot be a ccs Daugavet point by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12 since the space has the RNP, but we do not know whether it is a super ∆-point or even a super Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us state the result for further reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let M be the metric space constructed in [51, Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] and let x, y be the points described there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, F(M) has the RNP, the molecule mx,y is an extreme point of the unit ball of F(M) which is a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence, by our Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14, mx,y is a ccs-∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Another interesting example in the Lipschitz-free space setting is the following one which uses a metric space constructed by Aliaga, Noˆus, Petitjean, and Proch´azka [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let M be the metric space from [10, Examples 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then one can check that the molecule m0,q is an extreme point of BF(M) and, since the points 0 and q are discretely connectable, it follows from an easy adjustment of [32, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2] that this molecule is a ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, it follows from Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14 that this molecule is also a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, it is not difficult to show that there exists denting points in BF(M) that are at distance strictly less than 2 to m0,q (take any among the molecules mxn i ,xn i+1), so this molecule is not a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also observe that this space has the RNP since the metric space M is countable and complete [9, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us finally remark that the spaces F(M) of Examples 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='16 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='17 have the RNP, so they are strongly regular and hence strongly regular points are norm dense, but both examples have ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' They cannot contain ccs Daugavet points by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us also comment that the use of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14 above cannot be omitted, as the molecule m0,q is not a preserved extreme point, hence Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13 is again not applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 26 MART´IN, PERREAU, AND RUEDA ZOCA 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' An example of a Banach space with the DD2P, the restricted DSD2P, but containing ccs of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In [2, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12], Abrahamsen, H´ajek, Nygaard, Talponen, and Troy- anski constructed a space X which has the DLD2P, which is midpoint locally uniformly rotund (in particular, satisfying that pre-ext (BX) = SX), and such that BX contains convex combinations of slices of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It then follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13 that every element of SX is actually a super ∆-point and a ccs ∆-point (that is, X has the DD2P and the restricted DSD2P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' But containing ccs of arbitrarily small diameter, X fails the SD2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The obvious explanation for the failure of the SD2P and the fact that every element in the unit sphere is a ccs ∆-point is that none of the convex combinations of slices of diameter strictly smaller than 2 intersects the unit sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, the space X is constructed as the ℓ2-sum of spaces, and so X does not contain Daugavet points by [3, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6] (see Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe further that X has the restricted DSD2P and the DD2P, but fails the DSD2P (which is equivalent to the Daugavet property by [34]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' An example in a space with one-unconditional basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, Lima, Martiny, and Troy- anski constructed in [6, Section 4] a Banach space XM with one-unconditional basis which contains a subset DB ⊆ SXM satisfying: Every element in DB is both a Daugavet point and a point of continuity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BXM = co(DB);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DB is weakly dense in the unit ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that no element of DB is a super ∆-point (it is exactly the opposite!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='19, no element of DB is a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A super ∆-point which fails to be a Daugavet point in an extreme way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to put into a context the following result, let us recall that Daugavet points are at distance 2 from any denting point (see [32, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' With this in mind, the following result can be interpreted as the existence of super ∆-points which fail to be Daugavet points in an extreme way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space with the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, for every ε > 0, there exists an equivalent norm | · | and two points x, y ∈ B(X,|·|) such that (1) y is a super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) x is strongly exposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) |x − y| < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take a subspace Y ⊆ X with dim(X/Y ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that Y has the Daugavet property (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [50, Theorem 6 (a)]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take x ∈ SX with 0 < d(x, Y ) < ε (this can be settled taking a non-zero element v ∈ X/Y with quotient norm smaller than ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, we can find an element y ∈ SY such that ∥x − y∥ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the Hahn-Banach theorem, we can take f ∈ SX∗ with Re f(x) > 0 and f = 0 on Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This means that x belongs to the slice T := {z ∈ BX : Re f(z) > α} for some α > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take δ > 0 such that ∥x−y∥ 1−δ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 we can find x∗ ∈ SX∗ such that x ∈ S(x∗, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BX) ⊆ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the above inclusion we conclude that S(x∗, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BX) ∩ BY = ∅ or, in other words, that Re x∗(z) ⩽ 1 − δ for every z ∈ BY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Set B := co(BY ∪ (1 − δ)BX ∪ {±x}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 27 B is the unit ball of an equivalent norm |·| which satisfies, in view of the inclusions (1−δ)BX ⊆ B ⊆ BX, that ∥x∥ ⩽ |x| ⩽ 1 1 − δ∥x∥ for every x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us prove that | · |, x and y satisfies our requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' First, observe that |x − y| ⩽ ∥x − y∥ 1 − δ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Next, we claim that y is a super ∆ point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, since Y has the Daugavet property we can find a net {ys} ⊆ BY with {ys} −→ y weakly and ∥y − ys∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Notice that the weak convergence {ys} −→ y is still guaranteed on X because i: (Y, ∥ · ∥) −→ (X, | · |) is weak to weak continuous as ∥ · ∥ and | · | are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, notice that ys ∈ BY ⊆ B for every s, so |ys| ⩽ 1 for every s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, |ys − y| ⩾ ∥ys − y∥ −→ 2, and since y ∈ BY ⊆ B, we conclude |ys − y| −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' From there, y is clearly a super ∆-point for the norm | · |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It remains to prove that x is strongly exposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Indeed, we will prove that Re x∗ strongly exposes B at x, for which it is enough to prove that Re x∗ strongly exposes co(BY ∪ (1 − δ)BX ∪ {±x}) at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take z := αu + β(1 − δ)v + (γ − ω)x ∈ co(BY ∪ (1 − δ)BX ∪ {±x}) with α + β + γ + ω = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that 1 − δ < Re x∗(x) ⩽ |x∗| ⩽ ∥x∗∥ due to the inclusion B ⊆ BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Taking into account that Re x∗(u) ⩽ 1 − δ since u ∈ BY as BY ∩ S(x∗, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BX) = ∅, we conclude Re x∗(z) ⩽ (1 − δ)(α + β) + (γ − ω) Re x∗(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since Re x∗(x) > 1 − δ, we get that sup � Re x∗(z): z ∈ co(BY ∪ (1 − δ)BX ∪ {±x}) � = Re x∗(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If we take a sequence zn := αnun + βn(1 − δ)vn + (γn − ωn)x ∈ co(BY ∪ (1 − δ)BX ∪ {±x}) with αn + βn + γn + ωn = 1 such that Re x∗(zn) −→ Re x∗(x), it follows from the previous argument that αn → 0, βn → 0, ωn → 0 and γn → 1, which means zn → x in norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Using the previous theorem and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='25 it is easy to construct (considering ℓ2-sums, for instance) a Banach space X containing a sequence of super ∆-points (yn) such that the distance from yn to the set of strongly exposed points is going to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A super ∆-point which is a strongly regular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the present subsection, as well as in the next, we aim to distinguish the super and ccs notions of ∆- and Daugavet points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following result shows that there are plenty of examples of spaces containing super ∆-points which are strongly regular points (hence far from being ccs ∆-points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We do the construction in for real spaces for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Every real Banach space with the Daugavet property can be equivalently renormed so that the new unit ball has a point which is simultaneously super-∆ and a point of strong regularity (hence, far away of being ccs ∆-point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will use the following immediate result which follows from the fact that a convex combination of ccs is again a ccs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let C be a closed, convex, bounded subset of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then the set of strongly regular points of C is a convex set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 28 MART´IN, PERREAU, AND RUEDA ZOCA Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space with the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take a 1-codimensional subspace Y of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since Y is complemented in X then X = Y ⊕ R, so we will see X in such way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take r > 0, y0 ∈ SY and f ∈ SX∗ such that f(y0) = 1, and consider on X = Y ⊕ R the equivalent norm | · | whose unit ball is B := co � BY × {0} ∪ {±(y0, r)} ∪ {±(y0, −r)} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It readily follows that | · | agrees with the original norm ∥ · ∥ on the elements of the form (y, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We claim that (y0, 0) satisfies our requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' First of all, let us prove that (y0, 0) is a super-∆ point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since Y is one-codimensional, it has the Daugavet property (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [50, Theorem 6 (a)]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently, there exists a net (ys) −→ y0 weakly in BY such that ∥y0 −ys∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, (ys, 0) −→ (y0, 0) weakly in (X, | · |).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, it is clear that (ys, 0) ∈ B for every s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, |(ys, 0) − (y0, 0)| = |(ys − y0, 0)| = ∥ys − y0∥ −→ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us now prove that (y0, 0) is a point of strong regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To do so, it is enough, in view of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='21, to show that (y0, ±r) is a strongly exposed point (we will prove that for (y0, r), being the other case completely analogous).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us prove that Re(f, 1) strongly exposes (y0, r) in the set BY × {0} ∪ {±(y0, r)} ∪ {±(y0, −r)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the one hand, we have Re(f, 1)(y0, r) = Re f(y0) + r = 1 + r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, given (y, 0) ∈ BY × 0 we have Re(f, 1)(y, 0) = f(y) ⩽ 1 < 1 + r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, Re(f, 1)(y0, −r) = 1 − r and Re(f, 1)(−y0, ±r) = −1 ± r < 1 + r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently, sup{Re(f, 1)(a, b): (a, b) ∈ BY × {0} ∪ {±(y0, r)} ∪ {±(y0, −r)}, (a, b) ̸= (y0, r)} ⩽ 1 < 1 + r = Re(f, 1)(y0, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This is enough to guarantee that Re(f, 1) strongly exposes (y0, r) in B, so we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A super Daugavet point which is not ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The previous example shows that we can distinguish the notion of super ∆-point and the one of ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It seems natural then that we should be able to distinguish the notions of super Daugavet point and the one of ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to do so, we need to consider an involved construction but, as a consequence, we will prove that there are super Daugavet points which are contained in convex combinations of slices of small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The construction will be very similar to that of [14, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4], with a slight variation which makes the resulting norm with a stronger Daugavet flavour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As in the previous subsection, we will only work with real spaces here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to do so, let us recall a construction from Argyros, Odell, and Rosenthal [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pick a nonincreasing null sequence {εn} in R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We construct an increasing sequence of closed, bounded and convex subsets {Kn} in the real space c0 and a sequence {gn} in c0 as follows: First define K1 = {e1}, g1 = e1 and K2 = co(e1, e1 + e2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Choose l2 > 1 and g2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , gl2 ∈ K2 an ε2-net in K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Assume that n ⩾ 2 and that mn, ln, Kn, and {g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , gln} have been constructed, with Kn ⊆ Bspan{e1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=',emn} and gi ∈ Kn for every 1 ⩽ i ⩽ ln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Define Kn+1 as Kn+1 = co(Kn ∪ {gi + emn+i : 1 ⩽ i ⩽ ln}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consider mn+1 = mn + ln and choose {gln+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , gln+1} ∈ Kn+1 so that {g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , gln+1} is an εn+1-net in Kn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, we define K0 = ∪nKn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then it follows that K0 is a non-empty closed, bounded and convex subset of c0 such that x(n) ⩾ 0 for every n ∈ N and ∥x∥∞ ⩽ 1 for every x ∈ K0 and so diam (K0) ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, for a fixed i, we have from the construction that {gi + emn+i}n is a sequence in K0 (for n large enough) which is weakly convergent to gi, and ∥(gi − emn+i) − gi∥ = ∥emn+i∥ = 1 holds for every DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 29 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then diam (K0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will freely use the set K0 and the above construction throughout the subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that, from the above construction, it follows that K0 = {gi : i ∈ N} w = {gi : i ∈ N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe finally that, by the inductive construction, gi has finite support for every i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By [11, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2] we have that K0 contains convex combinations of slices of arbitrarily small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, all the points in K0 are “super Daugavet points” in the following sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For every x0 ∈ K0, every ε > 0, and every non-empty weakly open subset W of K0, there exists y ∈ W satisfying that ∥x0 − y∥ > 1 − ε = diam (K0) − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take ε > 0 and a non-empty relatively weakly open subset of K0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By a density argument, we can find i ∈ N satisfying that ∥x0 − gi∥ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Again by a density argument there exists gk ∈ W for certain k ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As we explained above, by the definition of K0 we have that the sequence gk +emn+k ∈ K0 for every n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since � gk + emn+k � n∈N −→ gk weakly, we can find n ∈ N large enough so that gk + emn+k ∈ W and mn + k /∈ supp(gi) ∪ supp(gk) (this is possible because the previous set is finite).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So taking y = gk + emn+k, we get y(mm + k) = 1 and so ∥gi − y∥ ⩾ y(mn + k) − gi(mn + k) = 1 − 0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As a consequence, ∥x0 − y∥ ⩾ ∥gi − y∥ − ∥gi − x0∥ > 1 − ε, and the proof is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ It is time to construct the announced renorming of C[0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take a sequence of non-empty pairwise disjoint open subsets Vn of [0, 1] satisfying that 0 /∈ � n∈N Vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By Urysohn lemma, we can find, for every n ∈ N, a function hn ∈ SC[0,1] with 0 ⩽ hn ⩽ 1 and such that supp(hn) ⊆ Vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If we consider Z := span{hn : n ∈ N}, we get that Z is lattice isometrically isomorphic to c0 (indeed, the mapping en �−→ hn is an isometric Banach lattice isomorphism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently, we can consider the set K0 constructed in Z, obtaining that K0 ⊆ BC[0,1] is a set of positive functions (because the latter linear isometry preserves the lattice structure) which contains convex combination of slices of arbitrarily small diameter but enjoying the property exhibited in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, by the construction of the functions hn, f(0) = 0 for every f ∈ Z so, in particular, f(0) = 0 for every f ∈ K0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, take 0 < ε < 1 and write Bε := co � 2 � K0 − 1 2 � ∪ 2 � −K0 + 1 2 � ∪ ((1 − ε)BC[0,1] + εBker(δ0)) � , where 1 stands for the constant function 1 in C[0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consider ∥·∥ε the norm on (the real version of) C[0, 1] whose unit ball is Bε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As we have indicated, the renorming technique follows the scheme of the renorming given in [14, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4] with the difference that we use Bker(δ0) instead of Bc0 in the last term because ker(δ0) is a Banach space with the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We have the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The space (X, ∥ · ∥ε) satisfies that: (1) Every element of 2(K0 − 1 2 ) is a super Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) For every η > 0 there exists a convex combination of slices D of Bε with D ∩ 2(K0 − 1 2 ) ̸= ∅ and such that diam (D) < η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 30 MART´IN, PERREAU, AND RUEDA ZOCA In particular, there are super Daugavet points which are not ccs−∆ points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take a ∈ K0, and let us prove that 2a − 1 is a super Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to do so, pick a non-empty relatively weakly open subset W of Bε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Write A := 2(K0 − 1 2 ) and B := (1 − ε)BC[0,1] + εBker(δ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since Bε = co(A ∪ −A ∪ B) we have that W has non-empty intersection with co(A ∪ −A ∪ B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now observe that A−A 2 = K0 −K0 ⊆ Bker(δ0) ⊆ B so that co(A∪−A∪B) = co(A∪B)∪co(−A∪B) by [14, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently, either W ∩ co(A ∪ B) or W ∩ co(−A ∪ B) is non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us distinguish by cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Assume first that W ∩ co(A ∪ B) is non-empty, so find a′ ∈ K0, f ∈ BC[0,1], g ∈ Bker(δ0), and α, β ∈ [0, 1] with α + β = 1 satisfying that α(2a′ − 1) + β((1 − ε)f + εg) ∈ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take η > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='22, there exists a net (as) −→ a′ weakly with as ∈ K0 for every s and satisfying that ∥a − as∥ −→ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since (2as − 1) −→ 2a′ − 1 weakly, we can find s large enough so that α(2as − 1) + β((1 − ε)f + εg) ∈ W and ∥(2a − 1) − (2as − 1)∥ = 2∥a − as∥ > 2 − η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that 2a − 1 and 2as − 1 are functions in BC[0,1] since a, as are positive functions of norm at most one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since ∥(2a − 1) − (2as − 1)∥ > 2 − η, there exists t0 ∈ [0, 1] and θ ∈ {−1, 1} such that θ(2a − 1)(t0) > 1 − η and θ(2as − 1)(t0) < −1 + η (observe that t0 ̸= 0 since a(t0) = as(t0) = 0 by construction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently, the set U := {t ∈ [0, 1]: θ(2a − 1)(t) > 1 − η and θ(2as − 1)(t) < −1 + η} is a non-empty open subset of [0, 1], and we can construct a sequence of non-empty pairwise disjoint open sets Wn ⊆ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that 0 /∈ � n∈N Wn since 0 /∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take pn ∈ Wn for every n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We can construct, for every n ∈ N, two functions fn and gn in the unit ball of C[0, 1] satisfying fn = f and gn = g in [0, 1] \\ Wn and fn(pn) = gn(pn) = −θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that the sequence of functions (f − fn) have pairwise disjoint supports, so (f − fn) −→ 0 weakly or, in other words, (fn) −→ f weakly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A similar argument shows that (gn) −→ g weakly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Notice also that, given n ∈ N, since 0 /∈ Wn then gn(0) = g(0) = 0, so (gn) ⊆ ker(δ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Henceforth α(2as − 1) + β((1 − ε)fn + εgn) is a sequence in Bε which converges in n weakly to α(2as − 1) + β((1 − ε)f + εg) ∈ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently, we can find n large enough such that α(2as −1)+β((1−ε)fn +εgn) ∈ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, observe that the inclusion Bε ⊆ BC[0,1] implies that ∥z∥ ⩽ ∥z∥ε, so ��(2a − 1) − α(2as − 1) − β((1 − ε)fn + εgn) �� ε ⩾ ��(2a − 1) − α(2as − 1) − β((1 − ε)fn + εgn) �� ⩾ θ((2a − 1) − α(2as − 1) − β((1 − ε)fn)(pn) = θ(2a − 1)(pn) − θα(2as − 1)(pn) − θβ((1 − ε)fn(pn) + θεgn(pn)) > 1 − η − α(−1 + η) − β(−1) = 1 + α + β − (1 + α)η = 2 − 2η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since η > 0 was arbitrary this finishes the case W ∩ co(A ∪ B) ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 31 For the case W ∩ co(−A ∪ B) ̸= ∅, find a′ ∈ K0, f ∈ BC[0,1], g ∈ Bker(δ0), and α, β ∈ [0, 1] with α + β = 1 satisfying that α(−2a′ + 1) + β((1 − ε)f + εg) ∈ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This case is simpler because ∥(2a − 1) − (−2a′ + 1)∥ ⩾ (2a − 1) − (−2a′ + 1)(0) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, an approximation argument for fn and gn similar to that of the above case (working on a non-empty open subset of (0, 1) in order to get gn(0) = 0) finishes this case and, consequently, the proof of (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The first part of the proof will be a repetition of the argument of [14, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Fix γ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' From [11, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2] there exist slices S1, · · · , Sn of K0 such that diam � 1 n n � i=1 Si � < 1 4(1 − ε)γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We can assume that Si = {x ∈ K0 : x∗ i (x) > 1 − �δ} where 0 < �δ < 1, x∗ i ∈ C[0, 1]∗ and sup x∗ i (K0) = 1 holds for every i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is clear that sup x∗ i � 2(K0 − 1 2 ) � = 2(1 − x∗ i (1 2 )), for all i = 1, · · · , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We put ρ, δ > 0 such that 1 2ρ∥x∗ i ∥ + δ < �δ, 2ρ < ε, ρ∥x∗ i ∥ < 4δ, and (7−2ε)ρ (1−ε) < γ, for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We consider the relatively weakly open set of Bε given by Ui := � x ∈ Bε : x∗ i (x) > 2 � 1 − δ − x∗ i �1 2 �� + 1 2ρ∥x∗ i ∥, x(0) = δ0(x) < −1 + ρ2 � for every i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is clear that ∥x∗ i ∥ε ⩽ ∥x∗ i ∥ for every i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n and ∥δ0∥ε = ∥δ0∥ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since ρ∥x∗ i ∥ < 4δ, we have that 2(1 − x∗ i ( 1 2 )) > 2(1 − δ − x∗ i ( 1 2)) + 1 2ρ∥x∗ i ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, we have that sup x∗ i (2(K0 − 1 2 )) = 2(1 − x∗ i ( 1 2)), then there exists x ∈ K0 such that x∗ i (2(x − 1 2 )) > 2(1 − δ − x∗ i (1 2)) + 1 2ρ∥x∗ i ∥ and δ0(2(x − 1 2)) = −1 < −1 + ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This implies that Ui ̸= ∅ for every i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to estimate the diameter of 1 n �n i=1 Ui, it is enough to compute the diameter of 1 n n � i=1 Ui ∩ co � 2 � K0 − 1 2 � ∪ −2 � K0 − 1 2 � ∪ [(1 − ε)BX + εBker(δ0)] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since 2(K0 − 1 2 ) and (1 − ε)BC[0,1] + εBker(δ0) are convex subsets of Bε, given x ∈ Bε, we can assume that x = λ12(a − 1 2 ) + λ22(−b + 1 2 ) + λ3[(1 − ε)x0 + εy0], where λi ∈ [0, 1] with �3 i=1 λi = 1 and a, b ∈ K0, x0 ∈ BC[0,1], and y0 ∈ Bker(δ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So given x, y ∈ 1 n �n i=1 Ui, for i = 1, · · · , n, there exist ai, a′ i, bi, b′ i ∈ K0, λ(i,j), λ′ (i,j) ∈ [0, 1] with j = 1, 2, 3 and, xi, x′ i ∈ BC[0,1], and yi, y′ i ∈ BKer(δ0), such that ui := 2λ(i,1) � ai − 1 2 � + 2λ(i,2) � −bi + 1 2 � + λ(i,3)[(1 − ε)xi + εyi] u′ i := 2λ′ (i,1) � a′ i − 1 2 � + 2λ′ (i,2) � −b′ i + 1 2 � + λ′ (i,3)[(1 − ε)x′ i + εy′ i] belong to Ui for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n}, and such that x = 1 n n � i=1 ui and y = 1 n n � i=1 u′ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 32 MART´IN, PERREAU, AND RUEDA ZOCA For i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n} we have that ui ∈ Ui so δ0(ui) = δ0 � 2λ(i,1) � ai − 1 2 � + 2λ(i,2) � −bi + 1 2 � + λ(i,3)[(1 − ε)xi + εyi] � < −1 + ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that, by construction, δ0 � ai − 1 2 � = −1 2, δ0 � −bi + 1 2 � = 1 2 and δ0((1 − ε)xi + εyi) = δ0((1 − ε)xi) ⩾ −(1 − ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This implies that 2λ(i,2) + λ(i,3)ε − 1 = −λ(i,1) + λ(i,2) − λ(i,3)(1 − ε) < −1 + ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since 2ρ < ε, we deduce that λ(i,2) + λ(i,3) < 1 2ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As a consequence we get that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1) λ(i,1) > 1 − 1 2ρ, and, similarly, we get that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) λ′ (i,1) > 1 − 1 2ρ, for every i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' the previous inequalities imply that ∥x − y∥ε ⩽ 1 n ����� n � i=1 2λ(i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1) � ai − 1 2 � − 2λ′ (i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1) � a′ i − 1 2 ������ ε + 1 n n � i=1 ����2λ(i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) � −bi + 1 2 ����� ε + 1 n n � i=1 ����2λ′ (i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) � −b′ i + 1 2 ����� ε + 1 n n � i=1 ∥λ(i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3)[(1 − ε)xi + εyi]∥ε + 1 n n � i=1 ∥λ′ (i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3)[(1 − ε)x′ i + εy′ i]∥ε ⩽ 1 n ����� n � i=1 2λ(i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1) � ai − 1 2 � − 2λ′ (i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1) � a′ i − 1 2 ������ ε + 1 n n � i=1 � λ(i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) + λ(i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3) � + 1 n n � i=1 � λ′ (i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) + λ′ (i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3) � and,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' by using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1),(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2), ⩽ 1 n ����� n � i=1 2λ(i,1) � ai − 1 2 � − 2λ′ (i,1) � a′ i − 1 2 ������ ε + ρ ⩽ 2 n ����� n � i=1 λ(i,1)ai − λ′ (i,1)a′ i ����� ε + 1 n n � i=1 |λ(i,1) − λ′ (i,1)|∥1∥ε + ρ ⩽ 2 n ����� n � i=1 λ(i,1)ai − λ′ (i,1)a′ i ����� ε + (3 − 2ε) 2(1 − ε)ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 33 Now, ����� n � i=1 λ(i,1)ai − λ′ (i,1)a′ i ����� ε ⩽ ����� n � i=1 (λ(i,1) − 1)ai ����� ε + ����� n � i=1 ai − a′ i ����� ε + ����� n � i=1 (λ′ (i,1) − 1)a′ i ����� ε ⩽ 1 1 − ε ����� n � i=1 ai − a′ i ����� + n � i=1 1 1 − ε|λ(i,1) − 1|∥ai∥ + n � i=1 1 1 − ε|λ′ (i,1) − 1|∥a′ i∥ ⩽ 1 1 − ε ����� n � i=1 ai − a′ i ����� + 1 1 − εnρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (In the previous estimate observe that ∥ai∥ ⩽ 1 and ∥a′ i∥ ⩽ 1 since ai, a′ i ∈ K0 ⊆ Bker(δ0) ⊆ Bε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3) ∥x − y∥ε ⩽ 2 1 − ε ����� 1 n n � i=1 ai − a′ i ����� + (7 − 2ε) 2(1 − ε)ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, in order to prove that the previous norm is small we will prove that both elements 1 n �n i=1 ai, 1 n �n i=1 a′ i are elements of 1 n �n i=1 Si, which has small diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To this end, note that x∗ i � 2λ(i,1) � ai − 1 2 � + 2λ(i,2) � −bi + 1 2 � + λ(i,3)[(1 − ε)xi + εyi] � > 2 � 1 − δ − x∗ i �1 2 �� + ρ 2∥x∗ i ∥, for every i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, x∗ i � 2λ(i,1) � ai − 1 2 �� + 1 2ρ∥x∗ i ∥ ⩾ x∗ i � 2λ(i,1) � ai − 1 2 �� + λ(i,2)∥x∗ i ∥ + λ(i,3)∥x∗ i ∥ ⩾ x∗ i � 2λ(i,1) � ai − 1 2 �� + λ(i,2)∥x∗ i ∥ε + λ(i,3)∥x∗ i ∥ε ⩾ x∗ i � 2λ(i,1) � ai − 1 2 � + 2λ(i,2) � −bi + 1 2 � + λ(i,3)[(1 − ε)xi + εyi] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We have that x∗ i � 2λ(i,1) � ai − 1 2 �� > 2 � 1 − δ − x∗ i �1 2 �� , and hence x∗ i (λ(i,1)ai) > 1 − δ − (1 − λ(i,1))x∗ i �1 2 � ⩾ 1 − δ − 1 2ρ∥x∗ i ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We recall that δ+ 1 2ρ∥x∗ i ∥ < �δ, so x∗ i (λ(i,1)ai) > 1−�δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows that x∗ i (ai) > 1−�δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, ai ∈ K0∩Si and, similarly, we get that a′ i ∈ K0 ∩ Si, for every i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Therefore, 1 n n � i=1 ai, 1 n n � i=1 a′ i ∈ 1 n n � i=1 Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 34 MART´IN, PERREAU, AND RUEDA ZOCA Since the diameter of 1 n �n i=1 Si is less than 1 4(1 − ε)γ, we deduce that 1 n∥ �n i=1 ai − a′ i∥ < 1 4(1 − ε)γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Finally, we conclude from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3) and the above estimate that ∥x − y∥ε ⩽ γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence, the set C := 1 n �n i=1 Ui has diameter at most γ for the norm ∥ · ∥ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, Bourgain’s lemma (see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) ensures the existence of a convex combination of slices �pi j=1 αijTij ⊆ Ui for every 1 ⩽ i ⩽ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Using this fact, we will find a convex combination of slices of B of diameter smaller than γ + 4ρ2 (1− ρ2 ε )ε and such that every slice contains points of 2(K0 − 1 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since ρ and γ can be taken as small as we wish, we will be done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to do so, fix 1 ⩽ i ⩽ n and define Ai := � j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , pi}: Tij ∩ � 2K0 − 1 2 � = ∅ � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Bi := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , pi} \\ Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Given xij ∈ Tij we have that, for j ∈ Ai, that δ0(xij) ⩾ −1 + ε by the definition of the unit ball Bε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since �pi j=1 αijxij ∈ �pi j=1 αijTij ⊆ Ui we derive −1 + ρ2 > δ0 ��pi j=1 αijxij � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence −1 + ρ2 > � j∈Ai αijδ0(xij) + � i∈Bi αijδ0(xij) ⩾ (−1 + ε) � j∈Ai αij − � j∈Bi αij = −1 + ε � j∈Ai αij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' From the above inequality we infer that � j∈Ai αij < ρ2 ε holds for every 1 ⩽ i ⩽ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, we set Λi := � j∈Bi λij, which belongs to the interval [1 − ρ2 ε , 1] for 1 ⩽ i ⩽ n and set D := 1 n n � i=1 � j∈Bi αij ΛI Tij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that D is a convex combination of slices of Bε since every Tij is a slice of Bε and since 1 n n � i=1 � j∈BI αij Λi αij = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We claim that D ⊆ C + 2 1− ρ2 ε ρ2 ε Bε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This is enough to finish the proof because the above condition implies that diam (D) ⩽ diam (C) + 4 1 − ρ2 ε ρ2 ε ⩽ γ + 4 1 − ρ2 ε ρ2 ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So let us prove the above inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take z := 1 n �n i=1 � j∈Bi αij Λi xij ∈ D for certain xij ∈ Tij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Write z′ := 1 n �n i=1 � j∈Bi αijxij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then |z − z′| ⩽ 1 n n � i=1 � j∈Bij ����1 − 1 Λi ���� αij|xij| < 1 1 − ρ2 ε ρ2 ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, for 1 ⩽ i ⩽ n and j ∈ Ai take xij ∈ Tij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Define z′′ := 1 n n � i=1 pi � j=1 αijxij ∈ 1 n n � i=1 pi � j=1 αijTij ⊆ 1 n n � i=1 Ui = C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, we have |z′ − z′′| ⩽ 1 n n � i=1 � j∈Ai αij < ρ2 ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 35 Consequently z = z′′ + (z − z′′) ∈ C + 2 1− ρ2 ε ρ2 ε Bε since |z − z′′| ⩽ |z − z′| + |z′ − z′′| < 1 1 − ρ2 ε ρ2 ε + ρ2 ε < 2 1 − ρ2 ε ρ2 ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A summary of relations between the properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Figure 2 below is an scheme which complements Figure 1 with the counterexamples following from known results and from the results in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' ccs Daugavet ccs ∆ super Daugavet super ∆ ∆ Daugavet ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' / (d) / (a) / (b) / (e) / (c) / (f) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Scheme of all relations between the diametral notions Let us list the corresponding counterexamples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (a) The example in Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (b) The example in Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5 negates this implication in the strongest possible way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (c) Any of the elements in DB in Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' They also show directly that ∆-points are not necessarily ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (d) Every element of the unit sphere of the space X given in Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 is ccs ∆-point but not Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Another example is the molecule m0,q of Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (e) In X = C[0, 1]⊕2 C[0, 1], every element in the unit sphere is super ∆-point (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='25);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' but X contains no Daugavet point (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, every element of the unit sphere of the space X given in Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 is super ∆-point but not Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (f) Any of the elements in DB in Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Diametral-properties for elements of the open unit ball As mentioned in Section 2, the DSD2P is equivalent to the Daugavet property by [34], but the ccs ∆-points on the unit sphere of a Banach space do not characterize the DSD2P, but the restricted DSD2P, which is not equivalent to the Daugavet property (see Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Actually, the elements in the open unit ball play a decisive role in the proof in [34] of the equivalence between the DSD2P and the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Our objective here is to introduce and study the diametral notions for interior points, providing interesting applications, and to investigate the behavior of Daugavet- and ∆-elements on rays in the unit ball of a given Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The definition of the Daugavet notions for elements in the open unit ball is the natural extension of the definitions for elements of norm one given in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 36 MART´IN, PERREAU, AND RUEDA ZOCA Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We say that (1) x is a Daugavet point if supy∈S ∥x − y∥ = ∥x∥ + 1 for every slice S of BX, (2) x is a super Daugavet point if supy∈V ∥x − y∥ = ∥x∥ + 1 for every non-empty relatively weakly open subset V of BX, (3) x is a ccs Daugavet point if supy∈C ∥x − y∥ = ∥x∥ + 1 for every ccs C of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It turns out that the existence of a non-zero Daugavet kind element actually forces the whole ray to which it belongs to be composed of similar elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) x is a Daugavet- (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' super Daugavet-, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' ccs Daugavet-) point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) rx is a Daugavet- (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' super Daugavet-, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' ccs Daugavet-) point for every r ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) rx is a Daugavet- (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' super Daugavet- , resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' ccs Daugavet-) point for some r ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us recall the following elementary but very useful result from [34] due to Kadets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 ([34, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a normed space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If x, y ∈ X and ε > 0 satisfies that ∥x + y∥ > ∥x∥ + ∥y∥ − ε, then for every a, b > 0, it is satisfied that ∥ax + by∥ > a ∥x∥ + b ∥y∥ − max{a, b}ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We will only do the proof for Daugavet points, being the other cases com- pletely analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So let us first assume that x is a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take r ∈ [0, 1], ε > 0, and S a slice of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, there exists y ∈ S such that ∥x − y∥ > 2 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, ∥y∥ > 1 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As ∥y∥ ⩽ 1, ∥x − y∥ > 2 − ε ⩾ ∥x∥ + ∥y∥ − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows from Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 that ∥rx − y∥ > ∥rx∥ + ∥y∥ − ε > ∥rx∥ + 1 − 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence, rx is also a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, let us assume that rx is a Daugavet point for some r ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Again take ε > 0 and S slice of BX, and pick y ∈ S such that ∥rx − y∥ > ∥rx∥ + 1 − rε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, ∥y∥ > 1 − rε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As ∥y∥ ⩽ 1, we have ∥rx − y∥ > ∥rx∥ + ∥y∥ − rε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Hence, by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3, we get that ∥x − y∥ > ∥x∥ + ∥y∥ − ε > 2 − (1 + r)ε and so x is a Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ As mentioned in the discussion preceding Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12, the presence of a ccs Daugavet point in a given Banach space forces the space to satisfy the SD2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This can now be viewed as a consequence of the previous proposition and the following immediate reformulation of [41, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 ([41, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, X has the SD2P if and only if 0 is a ccs Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 37 Note that c0 has the SD2P but has no non-zero Daugavet points (use Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1, for instance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Compare Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 with the following obvious remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A Banach space X is infinite-dimensional if and only if 0 is a super Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We also mention that 0 is always a Daugavet point (in finite or infinite dimension), as every slice of the unit ball has to intersect the unit sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us also point out that [41, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1] admits the following scaled version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, and let r ∈ (0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, the following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) Every ccs of BX has diameter greater than or equal to 2r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) sup{∥x∥: x ∈ C} ⩾ r for every ccs C of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) sup{∥x∥: x ∈ D} ⩾ r for every symmetric ccs D of BX (so containing 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Suppose (1) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, for any given ccs C of BX, and for any fixed ε > 0, there exists x, y ∈ C such that ∥x − y∥ > 2r − 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, it follows that ∥x∥ > r − ε or ∥y∥ > r − ε, giving (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2)⇒(3) is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Suppose that (1) fails, that is, that there exists a ccs C of BX and ε > 0 such that diam (C) ⩽ 2r − 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We consider the ccs D of BX given by D := 1 2(C − C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then D is symmetric, and for every u := x−y 2 and u′ := x′−y′ 2 in D we have ∥u − u′∥ = ��� x+y′ 2 − x′+y 2 ���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, x, x′, y, y′ belong to C, and C is convex, so x+y′ 2 and x′+y 2 do also belong to C, so ∥u − u′∥ ⩽ 2r − 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Being D symmetric, it implies that D ⊂ (r − ε)BX, hence (3) fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ The following is a nice consequence of the proposition above outside the diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, BX contains ccs of arbitrarily small diameter if and only if 0 is a strongly regular point of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now let us consider the ∆ notions for points of the open unit ball which are just the adaptation of the notions given in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We say that (1) x is a ∆-point if supy∈S ∥x − y∥ = ∥x∥ + 1 for every slice S of BX containing x, (2) x is a super ∆-point if supy∈V ∥x − y∥ = ∥x∥ + 1 for every non-empty relatively weakly open subset V of BX containing x, (3) x is a ccs ∆-point if supy∈C ∥x − y∥ = ∥x∥ + 1 for every slice ccs C of BX containing x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' With this definitions in hands, we may get an improvement of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 from Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, X has the SD2P if and only if 0 is ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Compare the previous corollary with the following obvious remark which is analogous to Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A Banach space X is infinite-dimensional if and only if 0 is a super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that the definition of ccs ∆-points for elements in BX gives a localization of the DSD2P, that is, X has the DSD2P (and hence the Daugavet property [34]) if and only if all the elements of BX are ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that the DSD2P is not equivalent to the restricted DSD2P (meaning that all points in SX are ccs ∆-points), see Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 38 MART´IN, PERREAU, AND RUEDA ZOCA The following result is a localization of Kadets’ theorem [34] on the equivalence of the DSD2P and the DPr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If rx is a ccs ∆-point for every r ∈ (0, 1), then x is a ccs Daugavet point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, it is enough that inf{r ∈ (0, 1): rx is a ccs ∆-point} = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Fix a ccs C of BX and ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since ˜C := 1 2(C − C) is also a ccs of BX and since 0 ∈ ˜C is a norm interior point of ˜C by [41, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1], we have that rx belongs to ˜C for every r ∈ (0, δ) for some δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By hypothesis, there is r > 0 such that rx is a ccs ∆-point and rx ∈ ˜C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So there exists y ∈ ˜C such that ∥rx − y∥ > r + 1 − rε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then if we write y := y1 − y2 with y1, y2 ∈ C, we have ∥rx − y1∥ > r +1−rε or ∥rx − y2∥ > r +1−rε by the triangle inequality;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' in particular, ∥y1∥ > 1−rε and ∥y2∥ > 1 − rε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In both cases, we have that there is y ∈ C such that ∥rx − y∥ > r∥x∥ + ∥y∥ − rε and it follows from Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 that ∥x − y∥ > ∥x∥ + ∥y∥ − ε > 2 − (1 + r)ε > 2 − 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ At this point, it is natural to ask whether an equivalent formulation of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 is valid for some of the various ∆-notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For ccs ∆-points, the answer is negative as follows from Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11 and, for instance, the example in Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Another, maybe simpler, example showing that is the following one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us assume that a positive measure µ admits an atom of finite measure and also has a non-empty non-atomic part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, the real space L1(µ) contains no ccs Daugavet point by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, it contains elements in the unit sphere which are ccs ∆-points and super Daugavet points by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8 and Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, as a consequence of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11 and of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2, there must exist f in the unit sphere which is a ccs ∆-point and t ∈ (0, 1) such that tf is not a ccs ∆-point but it is a super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For ∆-points, we have the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If x is a ∆-point, then rx is a ∆-point for every r ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us assume that x is a ∆-point and let us fix r ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Take ε > 0 and a slice S of BX containing rx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, either x belongs to S or −x belongs to S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In the first case, we can find y ∈ S such that ∥x − y∥ ⩾ 2 − ε, and using Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3, we get ∥rx − y∥ ⩾ ∥rx∥ + 1 − 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Else, ∥rx − (−x)∥ = r + 1 = ∥rx∥ + 1 and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ For super ∆-points, it is currently quite obscure whether they behave like ∆-points up on rays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski measure and large diameters Let M be a metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The Kuratowski measure of non-compactness α(A) of a non-empty bounded subset A of M is defined as the infimum of all real numbers ε > 0 such that A can be covered by a finite number of subsets of M of diameter smaller than or equal to ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' From the definition, we clearly have α(A) = 0 if and only if A is totally bounded (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' precompact).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows that every complete subset A of M with α-measure 0 is compact, and in particular, if M is a complete metric space, that α(A) = 0 if and only if A is compact, where A stands for the closure of the set A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The α-measure can be thus seen as a way to measure how far a given (non-empty) bounded and closed subset of M is from being a compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It was introduced by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski in [38] in DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 39 order to provide a generalization of the famous intersection theorem from Cantor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A general theory on measures of non-compactness was later developed, and it turned out to provide important results in metric fixed point theory, and in particular to have applications in functional equations or optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We refer e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' to [12] for an introduction to the topic and for more precise applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that A ⊆ B implies α(A) ⩽ α(B), and that α(A) = α(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also note that α(A ∪ B) = max{α(A), α(B)} for every non-empty bounded subsets A, B of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Furthermore, if M = X is a normed space, then α is known to enjoy additional useful properties: it is symmetric, translation invariant, positively homogeneous, sub-additive, and satisfies α(co A) = α(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The α-measure has proved to be a powerful tool for the study of the geometry of Banach spaces and we refer e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' to the works [46], [47] and [44] in connection with property (α), with drop property, and with an isomorphic characterization of reflexive Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' From the definition it is clear that the Kuratowski measure of A is smaller than or equal to its diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Obviously, equality does not always hold, but a fruitful relationship between the notion of ∆-points and the Kuratowski measure of slices was discovered in [5] and completed in [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, the following result was obtained (see [52, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If x is a ∆-point, then α(S) = 2 for every slice S of BX containing x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Besides, α(S(x, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BX∗)) = 2 in BX∗ for every δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that the converse does not hold in general, as the following example shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consider X := L1([0, 1]) ⊕∞ ℓ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It follows that both X and X∗ enjoy the SD2P [15, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6], so Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 below implies that given any slice S = S(x∗, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' BX) we have α(S) = 2 and the same holds for the slices in the dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' However, there are points which are not ∆-points because X fails the DLD2P [30, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2] since ℓ1 fails it, so it remains to take any point x ∈ SX which is not a ∆-point to get the desired counterexample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that the connection between having big slices in diameter and having big slices in Kura- towski index goes beyond Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following result was first pointed out in [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 ([20, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let β ∈ (0, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) Every slice of BX has diameter greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) Every slice of BX has Kuratowski measure greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In this section, we aim to prove analogues to this result for relative weakly open subsets, as well as for convex combinations of slices or of weakly open sets, and to extend Veeorg’s result to super ∆-points and ccw ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski measure and diameter two properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The analogue to Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 for non-empty weakly open subsets is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let β ∈ (0, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) Every non-empty relatively weakly open subset of BX has diameter greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) Every non-empty relatively weakly open subset of BX has Kuratowski measure greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2)⇒(1) is immediate, so let us prove (1)⇒(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To this end, fix β ∈ (0, 2] and assume that every non-empty relatively weakly open subset of BX has diameter greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then 40 MART´IN, PERREAU, AND RUEDA ZOCA pick ε > 0, and let us prove by induction on n that for every non-empty relatively weakly open subset W of BX and for every finite collection C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , Cn of subsets of X with diam (Ci) ⩽ β − ε for every i, we have that W ̸⊂ n� i=1 Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For n = 1, it is clear since by assumption diam (W) ⩾ β > β − ε for every non-empty relatively weakly open subset W of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So assume that the result is true for every non-empty relatively weakly open subset W of BX and for every collection of n sets, and let us prove the result for collections of n + 1 sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To this end, consider C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , Cn, Cn+1 be subsets of X with diam (Ci) ⩽ β − ε for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that diam (Ci) = diam (Ci w) ⩽ β − ε by w-lower semicontinuity of the norm of X, so that we may and do assume that Ci is weakly closed for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that by the case n = 1 we have that W ̸⊂ Cn+1, which means that W \\ Cn+1 is non- empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, it is a weakly open subset of BX since Cn+1 is assumed to be weakly closed, and by induction hypothesis we conclude that W\\Cn+1 ̸⊂ n� i=1 Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular W ̸⊂ n+1 � i=1 Ci and the theorem is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Next, let us establish the analogue Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3 for convex combinations of slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To this end, observe that by Bourgain lemma (see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2) every convex combination of non-empty relatively weakly open subsets of BX contains a convex combination of slices of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This assertion makes valid the following lemma which allows us to focus our attention in convex combination of weakly open subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) The following are equivalent: (a) Every convex combination of slices of BX has diameter greater than or equal to r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (b) Every convex combination of non-empty relatively weakly open subsets of BX has diameter greater than or equal to r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) The following are equivalent: (a) α(C) ⩾ r holds for every convex combination C of slices of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (b) α(D) ⩾ r holds for every convex combination D of non-empty relatively weakly open subsets of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now we are able to give the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let β ∈ (0, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The following assertions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) Every convex combination of slices of BX has diameter greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) Every convex combination of slices of BX has Kuratowski measure greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2)⇒(1) is immediate, so let us prove (1)⇒(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' To this end, fix β ∈ (0, 2] and assume that every convex combination of non-empty relatively weakly open subsets of BX has diameter greater than or equal to β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then pick ε > 0, and let us prove by induction on n that for every D convex combination of non-empty relatively weakly open subsets of BX and for every finite collection C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , Cn of subsets of X with diam (Ci) ⩽ β − ε for every i, we have that D ̸⊂ n� i=1 Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For n = 1 it is clear since by assumption diam (D) ⩾ β > β − ε for every convex combination of non-empty relatively weakly open subsets of D of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 41 Assume by inductive step that the result stands for n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now pick D convex combination of non-empty relatively weakly open subsets of BX and a finite collection C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , Cn+1 of subsets of X with diam (Ci) ⩽ β − ε for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We can assume as in the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4 that every Ci is weakly closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Write D = �k i=1 λiWi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that by the case n = 1 we have that D ̸⊆ Cn+1, so there exists z ∈ D \\ Cn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since z ∈ D we can write z = �k i=1 λixi where xi ∈ Wi holds for every 1 ⩽ i ⩽ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, since z = �k i=1 λixi /∈ Cn+1, this means that z = �k i=1 λixi ∈ X \\ Cn+1, and the latter is a weakly open set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By a weak-continuity argument of the sum we can find weakly open subsets Vi of BX, with xi ∈ Vi for every 1 ⩽ i ⩽ k, satisfying that z = �k i=1 λixi ∈ �n i=1 λiVi ⊆ X \\ Cn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Up to taking smaller Vi, we can assume Vi ⊆ Wi for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now call ˜D := �k i=1 λiVi, which is a convex combination of weakly open subsets of BX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the inductive step we get that ˜D ̸⊆ n� j=1 Cj, so there exists y ∈ ˜D with y /∈ Cj for 1 ⩽ j ⩽ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that the condition Vi ⊆ Wi implies ˜D ⊆ D, so y ∈ D indeed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Moreover, ˜D ⊆ X \\Cn+1 implies in particular y /∈ Cn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' This implies that y ∈ D \\ n+1 � i=1 Ci, which is precisely what we wanted to prove.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski measure and ∆-notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We now prove an analogue to Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 for super ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX be a super ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then every non-empty relatively weakly open subset W of BX containing x satisfies that α(W) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The proof will be an obvious consequence of the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, x ∈ SX be a super ∆ point, and W be a weakly open subset of BX such that x ∈ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, for every ε > 0, there exists a sequence {xn} ⊆ W such that ∥xi − xj∥ > 2 − ε holds for every i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Set ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us construct by induction a sequence {xn} satisfying that ∥x − xi∥ > 2 − ε 2 and such that ∥xi − xj∥ > 2 − ε for i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Using that x is a super ∆ point select, by the definition of super ∆, a point x1 ∈ W with ∥x−x1∥ > 2 − ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now, assume that x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , xn have been constructed and let us construct xn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the properties defining the sequence observe that, given 1 ⩽ i ⩽ n, we have ∥x−xi∥ > 2− ε 2, so we can find gi ∈ SX∗ with Re gi(x − xi) > 2 − ε 2, which implies Re gi(x) > 1 − ε 2 and Re gi(xi) < −1 + ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Consequently x ∈ V := W ∩ n� i=1 S � gi, ε 2 � , which is a weakly open set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since x is super ∆ we can find xn+1 ∈ V such that ∥x−xn+1∥ > 2− ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to finish the construction we only must to prove that ∥xi−xn+1∥ > 2−ε holds for every 1 ⩽ i ⩽ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' But this is clear because, given 1 ⩽ i ⩽ n, the condition xn+1 ∈ V implies that Re gi(xn+1) > 1 − ε 2, so ∥xn+1 − xi∥ ⩾ Re gi(xn+1 − xi) > 1 − ε 2 + 1 − ε 2 = 2 − ε, and the proof is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ Note that a similar statement than Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7 can be established for ccw ∆ points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 42 MART´IN, PERREAU, AND RUEDA ZOCA Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX be a ccw ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then every non-empty convex combination D of relatively weakly open subsets of BX containing x satisfies that α(D) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As in the previous case, the proof follows directly from the next result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, x ∈ SX be a ccw ∆ point, and D a ccw of BX such that x ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Then, for every ε > 0, there exists a sequence {xn} ⊆ D such that ∥xi − xj∥ > 2 − ε holds for every i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Set ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Write D := �k i=1 λiWi with λi ̸= 0 for every i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Set δ := ε 2 min1⩽i⩽k λi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us construct by induction a sequence {xn} ⊆ D satisfying that ∥x − xi∥ > 2 − δ and such that ∥xi − xj∥ > 2 − ε for i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Using that x is a ccw ∆ point select, by the definition of ccw ∆, a point x1 ∈ D with ∥x − x1∥ > 2 − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Now assume that x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' , xn have been constructed and let us construct xn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We can write x = �k j=1 λjxj and xi := �k j=1 λjxi j as being elements of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By the properties defining the sequence, observe that, given 1 ⩽ i ⩽ n we have ∥x − xi∥ > 2 − δ, so we can find gi ∈ SX∗ with Re gi(x − xi) = k � j=1 λj Re gi(xj − xi j) > 2 − δ = 2 − ε 2 min1⩽j⩽n λj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A convexity argument implies that Re gi(xj − xi j) > 2 − ε 2 holds for every 1 ⩽ j ⩽ k, which implies that Re gi(xj) > 1 − ε 2 and Re gi(xi j) < −1 + ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Observe that xj ∈ Vi := Wi ∩ n� i=1 S � gi, ε 2 � , which is a weakly open set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Since x is a ccw ∆-point and x ∈ �k j=1 λjVj, we can find a point xn+1 = �k j=1 λjzj ∈ �k j=1 λjVj ⊆ D such that ∥x − xn+1∥ > 2 − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In order to finish the construction we only must to prove that ∥xi − xn+1∥ > 2 − ε holds for every 1 ⩽ i ⩽ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Given 1 ⩽ j ⩽ k, the condition zj ∈ Vj implies Re gi(zj) > 1 − ε 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, Re gi(xi j) < −1 + ε 2, so ∥xn+1 − xi∥ ⩾ Re gi(x − xi) = k � j=1 λj Re gi(zj − xi j) > (2 − ε) k � j=1 λj = 2 − ε, and the proof is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' □ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Commented open questions The only implications between properties which is not known to hold or not is the following one (see Figure 2 in page 35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX be a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Is x a super ∆-point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us give some comments on this question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the one hand, it may look that the answer is positive by Bourgain’s lemma (Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2), but this lemma does not say that, in general, given an element x of a relative weak open subset W of BX, there is a convex combination of slices of BX DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 43 contained in W and containing x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The later happens when x ∈ co(pre-ext (BX)) (see Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3) so, the answer to Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 is positive in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' On the other hand, a possible counterexample to this problem could be the molecules in Examples 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='16 or 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='17, which are known to be ccs ∆-points and are extreme points but not preserved extreme points (hence they do not belong to the convex hull of the set of preserved extreme points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A way to show that these molecules are not super ∆-points would be to investigate whether RNP spaces may contains super ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='19 states that real Banach spaces with a one-unconditional basis do neither contain super ∆-points nor ccs ∆-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It is likely that such result also holds true in the complex setting since we do believe that the preliminary results from [6] are also valid for complex scalars, provided that one works with the suitable notion of one-uncondional bases (for which [6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3] holds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, we also expect that the results there can be easily extended to one-uncondional FDDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Yet, since a sharper version of this result was obtained in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='20 for super ∆-points in a very general setting, it is natural to ask whether improved results could be simultaneously obtained in both directions for ccs ∆-points by proving an analogue to Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' So let us ask the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space, and let us assume that there exists a subset A ⊆ F(X, X) satisfying that sup � ∥Id − T∥ : T ∈ A � < 2 and that for every ε > 0 and every x ∈ X, there exists T ∈ A such that ∥x − Tx∥ < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Can X contain a ccs ∆-point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A negative answer to this question would be interesting, since it would provide an example of a ccs ∆-point that is not a super ∆-point, hence a negative answer to Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Another interesting question could be if a point of continuity could be a ccs ∆-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let us formalize the questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) Does X fail the RNP (or even the CPCP) if contains a super ∆-point or a super Daugavet point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) Is it possible for a point of continuity being a ccs ∆-point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The surprising examples given in Section 4 shows that the mere existence of some diametral notions (but ccs Daugavet points) on a Banach space does not imply that the whole space has any diameter two property nor the Daugavet property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Our question here is how many diametral points has to contain a Banach space to have any diameter two property or the Daugavet property or fails to have the RNP or one-unconditional basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' How big can be the set of Daugavet points, super Daugavet points, ∆-points, super ∆-points, or ccs ∆-points in a Banach space with the Radon-Nikod´ym property, or with the CPCP, or being strongly regular, or having one-unconditional basis?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Concerning isometric consequences of the existence of diametral points, there are some recent results showing that a Banach space containing a ∆-point cannot be uniformly non-square [5] or even locally uniformly non-square [37], or asymptotic uniformly smooth [5, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Also, a Banach space having an unconditional basis with suppression-unconditional constant less that 2 cannot contains super ∆- points and a Banach space containing a ccs Daugavet point has the SD2P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Taking into account that it is not known if there exists an stictly convex Banach space with the Daugavet property (see [33, Section 5]), the following question makes sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Recall that Paragraph 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 shows an example of an strictly convex Banach space in which every norm-one element is a ccs ∆-point and a super ∆-point, but it does not contain any Daugavet point by the way in which it is constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 44 MART´IN, PERREAU, AND RUEDA ZOCA Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Is there an strictly convex Banach space containing a Daugavet point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In view of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13 and of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14, the following question makes sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Suppose that x ∈ ext (BX) is a ∆-point, does this imply that x is a ccs ∆-point or a super ∆-point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' By now, the only isomorphic restriction which is known for a Banach space to contain ∆-points or even Daugavet points is that it cannot be finite-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It would be interesting to find some more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Find isomorphic restrictions for a Banach space to contain ∆-points or any of the other diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' In particular, is it possible for a reflexive or even super-reflexive Banach space to contain ∆-, super ∆-, ccs ∆-, Daugavet or super Daugavet points?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The results about absolute sums in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 are not complete in the case of super Daugavet points and they are even less clear in the case of ccs notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Here are two possible questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X, Y be Banach spaces and let N be an absolute sum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) If N is A-octahedral, x ∈ SX and y ∈ SY are super Daugavet points, is (ax, by) a super Daugavet point in X ⊕N Y when a, b satisfy the conditions in the definition of A-octahedrality?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) If N is the ℓ∞-sum, x ∈ SX and y ∈ SY are ccs ∆-points, are the elements of the form (ax, by) ccs ∆-points in X ⊕∞ Y for a, b ∈ [0, 1] with max{a, b} = 1?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It would be also desirable to study the reversed results to those in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 as it is done in [45] for ∆-points and Daugavet points (see the tables in pages 86 and 87 of [45]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X, Y be Banach spaces, let N be an absolute sum, x ∈ SX, y ∈ SY , and a, b ⩾ 0 such that N(a, b) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Discuss what happens with x and y supposing that (ax, by) satisfies any of the six diametral notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' It maybe the case that some of the arguments given in Subsections 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='2 can be adapted to other classes of Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' We propose some possibilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Characterize the six diametral notions in uniform algebras, in Lorentz spaces and their isometric preduals, and in some vector-valued function spaces as C(K, X) or L∞(µ, X) spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The relations between the weak-star versions of the diametral points (see Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6) are not yet clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' For instance, the following questions arises.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) Is JX(x) a ccs ∆-point in X∗∗ if x is a ccs ∆-point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) Is there any relationship between the DD2P in X and the weak-star super ∆-points in SX∗?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As commented in Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='19, a Banach space X containing a sequence (yn) of super ∆-points such that the distance of yn to the set of strongly exposed points of BX is going to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' But the following question remains open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Can a super ∆-point (or even a ∆-point) belong to the closure of the set of denting points?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 45 The answer to the next question on the behaviour of ∆- and super ∆-points in rays is still unknown, as we commented in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Let X be a Banach space and let x ∈ SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (1) If rx is a ∆-point for some 0 < r < 1, does this imply that x is a ∆-point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (2) If rx is a super ∆-point for some 0 < r < 1, does this imply that x is a auper ∆-point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (3) If x is a super ∆-point, does this imply that rx is a super ∆-point for all 0 < r < 1?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' As we proved in Section 6, every relative weakly open subset which contains a super ∆-point (respectively, a ccw ∆-point) has Kuratowski measure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Our proofs do not seem to work for convex combination of slices, so let us ask the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Question 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' If a ccs of the unit ball contains a ccs ∆-point, does it necessarily have maximal Kuratowski measure?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Acknowledgments Part of this work was done during the visit of the second named author at the University of Granada in September 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' He wishes to thank his colleagues for the warm welcome he received, and to thank all the people that made his visit possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The authors thank Gin´es L´opez-P´erez for fruitful conversations on the topic of the paper, specially for providing enlightening ideas in connection with the example of Subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' The authors also thank Trond A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, Andr´e Martiny, and Vegard Lima for valuable discus- sions on the topic of the paper, and in particular for pointing out the ccs version of [6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12] that is presented in Subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' References [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Becerra Guerrero, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Haller, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lima, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' P¨oldvere, Banach spaces where convex combinations of relatively weakly open subsets of the unit ball are relatively weakly open, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 250 (2020), 297–320.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' H´ajek, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Nygaard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Talponen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Troyanski, Diameter 2 properties and convexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 232 (2016), 227–242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [3] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Haller, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lima, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pirk, Delta- and Daugavet points in Banach spaces, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Edinb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 63 (2020), 475–496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lima, Relatively weakly open convex combinations of slices, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 146 (2018), 4421–4427.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lima, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Martiny, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Perreau, Asymptotic geometry and Delta-points, Banach J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 16 (2022), article 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lima, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Martiny, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Troyanski, Daugavet- and delta-points in Banach spaces with unconditional bases, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Ser B (2021), 379–398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Abrahamsen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lima and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Nygaard, Remarks on diameter two properties, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Convex Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 20, 2 (2013), 439–452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [8] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Albiac and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kalton, Topics in Banach space theory, Second edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Graduate Texts in Mathematics, 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Springer, Cham, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Aliaga, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Gartland, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Petitjean, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proch´azka, Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 375 (2022), 3529–3567.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Aliaga, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Noˆus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Petitjean, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Proch´azka, Compact reduction in Lipschitz-free spaces, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 260 (2021), 341–359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Argyros, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Odell, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rosenthal, On certain convex subsets of c0, Lecture Notes in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 1332, Functional Analysis, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' by E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Odell and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rosenthal, Berlin (1988), 80–111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 46 MART´IN, PERREAU, AND RUEDA ZOCA [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Ayerbe Toledano, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Dom´ınguez Benavides, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L´opez Acedo, Measures of noncompactness in metric fixed point theory, Birkh¨auser Verlag, 99 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Becerra Guerrero, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L´opez-P´erez, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rueda Zoca, Diametral diameter two properties in Banach spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 25, 3 (2018), 817–840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Becerra Guerrero, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L´opez-P´erez, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rueda Zoca, Extreme differences between weakly open subsets and convex combinations of slices in Banach spaces, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 269 (2015), 56–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Becerra Guerrero, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L´opez-P´erez, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rueda Zoca, Octahedral norms and convex combinations of slices in Banach spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 266 (2014), 2424–2435.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [16] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Bonsall and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Duncan, Numerical ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' II, Cambridge University Press, New York-London (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Bourgain, Dentability and finite-dimensional decompositions, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 67 (1980), 135–148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Springer-Verlag Berlin Heidelberg (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [19] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Deville, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Godefroy, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Dilworth, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Gartland, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kutzarova, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Randrianarivony, Nondentable sets in Banach spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Convex Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 28, 1 (2021), 31–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Distel and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Uhl, Vector measures, American Matematical Society Providence, Rhode Island (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [22] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Edgar and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Wheeler, Topological properties of Banach spaces, Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 115 (1984), 317–350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Fabian, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Habala, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' H´ajek, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Montesinos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pelant, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Zizler, Functional Analysis and Infinite dimensional Geometry, CMS Books in Mathematics, Springer-Verlag, New York, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Fabian, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Habala, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' H´ajek, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Montesinos, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Zizler, Banach space theory, Springer Science+Business Media, LLC 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [25] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Ghoussoub, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Godefroy, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Maurey, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Schachermayer, Some topological and geometrical structures in Banach spaces, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 387 (1987), 116 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [26] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' H´ajek and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Talponen, Note on Kadets Klee property and Asplund spaces, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 142 (2014), 3933–3939.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [27] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Haller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Langemets and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Nadel, Stability of average roughness, octahedrality, and strong diameter 2 properties of Banach spaces with respect to absolute sums, Banach J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', 1, 12 (2018), 222–239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Haller, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pirk, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Veeorg, Daugavet- and delta-points in absolute sums of Banach spaces, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Convex Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 28 (2021), 41–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [29] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Huff and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Morris, Dual spaces with the Krein-Milman property have the Radon-Nikod´ym property, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', 49 (1975), 104–108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Ivakhno and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kadets, Unconditional sums of spaces with bad projections, Visn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Khark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Prykl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Mekh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 645 (2004), 30–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [31] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lindenstrauss, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Preiss, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Schechtman, Almost Fr´echet differentiability of Lipschitz mappings between infinite dimensional Banach spaces, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 84, 3 (2002), 711–746.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Jung and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rueda Zoca, Daugavet points and ∆-points in Lipschitz-free spaces, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 265 (2022), 37–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [33] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kadets, Some remarks concerning the Daugavet equation, Quaestiones Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 19 (1996), 225–235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [34] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kadets, The diametral strong diameter 2 property of Banach spaces is the same as the Daugavet property, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 149 (2021), 2579–2582.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [35] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kadets, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Shvidkoy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Sirotkin, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Werner, Banach spaces with the Daugavet property, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 352 (2000), 855–873.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [36] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kadets and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Werner, A Banach space with the Schur and the Daugavet property, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 132 (2004), 1765–1773.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kaminska, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lee, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Tag, Daugavet and diameter two properties in Orlicz-Lorentz spaces, preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Arxiv: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='org/abs/2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='12149v1 [38] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Kuratowski, Sur les espaces complets, Fundamenta Mathematicae, 1, 15 (1930), 301-309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [39] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lin, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Troyanski, Characterizations of denting points, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 102 (1988), 526–528.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Lindenstrauss and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Tzafriri, Classical Banach spaces I (Sequence spaces), Springer-Verlag (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [41] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' L´opez-P´erez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Mart´ın, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rueda Zoca, Strong diameter two property and convex combinations of slices reaching the unit sphere, Mediterr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', 16 (2019), article 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [42] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Mart´ın and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rueda Zoca, Daugavet property in projective symmetric tensor products of Banach spaces, Banach J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 16 (2022), article 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [43] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Mena, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pay´a, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rodr´ıguez, Absolute subspaces of Banach spaces, Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 40 (1989), 33–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' DIAMETRAL NOTIONS FOR ELEMENTS OF THE UNIT BALL OF A BANACH SPACE 47 [44] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Montesinos, Drop property equals reflexivity, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', 1, 87 (1987), 93–100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [45] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Pirk, Diametral diameter two properties, Daugavet-, and ∆-points in Banach spaces, Dissertationes Mathe- maticae Universitatis Tartuensis 133 (2020), https://dspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='ut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='ee/handle/10062/68458 [46] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rolewicz, On drop property, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', 1, 85 (1986), 27–35 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [47] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rolewicz, On ∆-uniform convexity and drop property, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', 2, 87 (1987), 181–191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [48] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Schachermayer, The Radon-Nikod´ym property and the Kre˘ın-Milman property are equivalent for strongly regular sets, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 303 (1987), 673–687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [49] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Schachermayer, An example concerning strong regularity and points of continuity in Banach spaces, Lecture Notes in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 1332, Functional Analysis, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' by E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Odell and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Rosenthal, Berlin (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [50] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Shvydkoy, Geometric aspects of the Daugavet property, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', 176 (2000), 198–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [51] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Veeorg, Characterizations of Daugavet- and delta-points in Lipschitz-free space, Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' 268 (2023), 213–233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [52] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Veeorg, Daugavet- and delta-points in spaces of Lipschitz functions, preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Arxiv: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='org/abs/2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='03475 [53] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Weaver, Lipschitz algebras (Second edition), World Scientific Publishing Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=', River Edge, NJ, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' [54] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Werner, Recent progress on the Daugavet property, Irish Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Bulletin 46 (2001), 77–97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' (Mart´ın) Universidad de Granada, Facultad de Ciencias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Departamento de An´alisis Matem´atico, 18071 Granada, Spain ORCID: 0000-0003-4502-798X Email address: mmartins@ugr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='es URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='ugr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='es/local/mmartins (Perreau) University of Tartu, Institute of Mathematics and Statistics, Narva mnt 18, 51009 Tartu linn, Estonia ORCID: 0000-0002-2609-5509 Email address: yoel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='perreau@ut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='ee (Rueda Zoca) Universidad de Granada, Facultad de Ciencias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content=' Departamento de An´alisis Matem´atico, 18071 Granada, Spain ORCID: 0000-0003-0718-1353 Email address: abrahamrueda@ugr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='es URL: https://arzenglish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='wordpress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} +page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-NE3T4oBgHgl3EQfSglq/content/2301.04433v1.pdf'} diff --git a/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/2301.04434v1.pdf.txt b/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/2301.04434v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..eb4a07353e688126651492e67ff72ded001a7be1 --- /dev/null +++ b/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/2301.04434v1.pdf.txt @@ -0,0 +1,2137 @@ +Springer Nature 2021 LATEX template +Multilingual Entity and Relation Extraction +from Unified to Language-specific Training +Zixiang Wang1, Jian Yang1, Tongliang Li1, Jiaheng +Liu1, Ying Mo1, Jiaqi Bai1, Longtao He2 and Zhoujun Li1* +1State Key Lab of Software Development Environment, Beihang +University, Beijing, Beijing, China. +2National Computer Network Emergency Response Technical +Team/Coordination Center of China, Beijing, Beijing, China. +*Corresponding author(s). E-mail(s): lizj@buaa.edu.cn; +Contributing authors: wangzixiang@buaa.edu.cn; +jiaya@buaa.edu.cn; tonyliangli@buaa.edu.cn; +liujiaheng@buaa.edu.cn; moying@buaa.edu.cn; bjq@buaa.edu.cn; +hlt@cert.org.cn; +Abstract +Entity and relation extraction is a key task in information extraction, +where the output can be used for downstream NLP tasks. Existing +approaches for entity and relation extraction tasks mainly focus on +the English corpora and ignore other languages. Thus, it is critical to +improving performance in a multilingual setting. Meanwhile, multilingual +training is usually used to boost cross-lingual performance by trans- +ferring knowledge from languages (e.g., high-resource) to other (e.g., +low-resource) languages. However, language interference usually exists +in multilingual tasks as the model parameters are shared among all +languages. In this paper, we propose a two-stage multilingual train- +ing method and a joint model called Multilingual Entity and Relation +Extraction framework (mERE) to mitigate language interference across +languages. Specifically, we randomly concatenate sentences in differ- +ent languages to train a Language-universal Aggregator (LA), which +narrows the distance of embedding representations by obtaining the +unified language representation. Then, we separate parameters to mit- +igate interference via tuning a Language-specific Switcher (LS), which +includes several independent sub-modules to refine the language-specific +1 +arXiv:2301.04434v1 [cs.CL] 11 Jan 2023 + +Springer Nature 2021 LATEX template +2 +Article Title +feature representation. After that, to enhance the relational triple extrac- +tion, the sentence representations concatenated with the relation feature +are used to recognize the entities. Extensive experimental results show +that our method outperforms both the monolingual and multilingual +baseline methods. Besides, we also perform detailed analysis to show +that mERE is lightweight but effective on relational triple extraction +and mERE is easy to transfer to other backbone models of multi-field +tasks, which further demonstrates the effectiveness of our method. +Keywords: Joint extraction, Information extraction, Multilingual entity and +relation extraction, Relational triple +1 Introduction +Entity and relation extraction (ERE) contains two sub-tasks called named +entity recognition (NER) [1–4] and relation classification (RC) [5, 6], which is +the fundamental step of automatic knowledge graphs (KGs) [7] construction, +knowledge discovery and intelligent question answering system. The results of +ERE are typically described as a relational triple (h, r, t), where h and t are +the head entity and the tail entity, respectively, and r denotes the relation +between them. For example, for the sentence “Big Ben is in UK.” with a +predefined relation called “Locate in”, an ideal relational triple of this sentence +is expressed as (Big Ben, Locate in, UK). +As a large amount of data is available from different languages on the +Internet, it is important to utilize such valuable resources and develop multilin- +gual entity and relation extraction models, which can operate across language +barriers. However, most existing methods propose to solve ERE on English +corpora, which can only deal with the monolingual extraction task. The main +reason is that many languages suffer from the scarcity of corpora in ERE. +Thus, multilingual training is proposed to help each other in a shared model, +where the well-trained knowledge of high-resource languages can be trans- +ferred to low-resource languages with a small amount of data. Recently, [8] +propose a multilingual dataset called SMiLER, which is the first work to apply +both monolingual and multilingual training. The authors in [8] introduce the +multilingual entity and relation extraction model (i.e., HERBERTa) without +considering interference across languages. However, such language interfer- +ence is prevalent in multilingual tasks because of parameter sharing [9–11]. +As shown in Figure 1, to mitigate interference among languages, we propose +to extract the feature representation of the corresponding language sentence. +First, to facilitate the cross-lingual transfer among different languages, mul- +tilingual representations are supposed to be closed under similar semantics +using cross-lingual sentence-level concatenation. Then, based on the shared +multilingual parameters, the language-specific representations derived from +the independent modules can mitigate interference among multiple languages. + +Springer Nature 2021 LATEX template +Article Title +3 +Specifically, we propose a two-stage multilingual training method and an +我爱吃苹果。 +amo le mele. +I love apples. +J'adore les pommes. +… +Unified +Feature +Chinese +Feature +Italian +Feature +English +Feature +French +Feature +Fig. 1 This example includes 4 sentences from different languages, which express the same +meaning. The four arrows represent four independent sentence representations extracted +from different languages. +effective model called multilingual Entity and Relation Extraction framework +(mERE) to address the multilingual ERE task. In the first stage, we utilize a +cross-lingual encoder to encode different language sentences and extract rela- +tions directly. Then, we train the joint model with our Language-universal +Aggregator (LA) to generate the unified language feature, which narrows the +distance of similar semantic representation across languages. LA consists of +a self-attention layer and is trained by random multi-sentences concatena- +tion, which is used to learn semantic similarities in multilingual training. In +the second stage, to alleviate the interference among languages, we freeze the +parameters of LA and cross-lingual encoder in the first stage and optimize the +independent parameters via fine-tuning the model with a Language-specific +Switcher (LS), which consists of several independent sub-modules to produce +the specific language features. Meanwhile, a selection mechanism is applied +to choose the optimal group of sub-modules from LS, which enables the sub- +module to share the same parameters with a certain group of languages. Such +an automatic sub-module selection mechanism saves many model parameters +when the number of languages is large. After that, each token representation +is concatenated with the relation representation to enhance the recognition +of the positions of entities in a sentence. Finally, in mERE, we adopt joint +training to mitigate the error propagation problem. +We conduct extensive experiments on the SMiLER benchmark of 14 lan- +guages with 36 relations (including no relation) in total. The experimental +results demonstrate that our method outperforms previous monolingual and +multilingual ERE baseline methods by a large margin across languages, which +demonstrates that our method can effectively mitigate language interference +by improving representation quality among languages. Besides, we conduct +detailed experiments to analyze how our method affects relational triple extrac- +tion. Moreover, our method is simple but effective, and it is also easy to transfer +to different backbone models of multi-field tasks with lightweight modules. + +Springer Nature 2021 LATEX template +4 +Article Title +2 Related Work +Information Extraction Information extraction mainly focuses on extract- +ing knowledge from unstructured text. A well-known system called Never- +Ending Language Learner was reading the Web for almost 10 years to collect +new instances of pre-defined relations and entity types [12]. Instead of the pre- +defined entity and relation types, Open Information Extraction (OpenIE) has +also attracted much attention during the past decade. A notable example is +TextRunner [13], which utilizes a syntactic parser to extract triples from the +Internet automatically. Many systems have been proposed subsequently, such +as rule-based systems [14–16] and clause based systems [17, 18]. Recent super- +vised methods are divided into three categories based on different architectures: +(1) Generation-based models are typically sequence-to-sequence structure [19– +21]. (2) Sequence labeling-based models using Begin Inside Outside (BIO) +or Subject Relation Object None (SRON) to label every word in a sentence +[22, 23]. (3) Span-based model takes advantage of span level feature which can +be sufficiently exploited [24]. +Entity and Relation Extraction Early entity and relation extraction tasks +use a pipeline approach, which are two separate subtasks including named +entity recognition and relation classification. [25] first works on Recurrent Neu- +ral Network (RNN) based model for extraction, capturing the semantics of the +entity and its adjacent phrases through parsing trees. While [26] uses a syntac- +tic tree-based RNN model to add weights to the important phrases. [27] first +used a Convolutional Neural Network (CNN) structure to fuse the extracted +word and sentence level features for extraction work. [28] uses a CNN structure +based on a dependency tree to improve the performance. However, the pipeline +approach has inevitable deficiencies: (1) The architecture ignores the interac- +tions between entities and relations, causing the error propagation problem. (2) +Some of the extracted entities are redundant in the named entity recognition +phase, resulting in a degradation of performance in the relation classification +phase. +Most studies focus on the joint approach, which models entity recognition +and relation classification in the same network and naturally relieves error +propagation problem. The initial joint models are feature-based methods that +heavily rely on NLP tools and manual efforts [29–32]. Recent joint models are +typically neural network-based methods, which benefit from their excellent fea- +ture learning capability. SPTree [33] is the first joint model based on the neural +network method. Due to the two subtasks decoding with independent decoders +but sharing parameters of the same encoding layers, this architecture also is +known as parameters sharing. Following such kind of structure, [34] proposed +an LSTM-based network that decodes entities and a CNN network to classify +relations. [35, 36] employ CRF to improve performance of entity recognition. +[37–40] use a pre-trained model called bidirectional encoder representation +from transformers (BERT) to improve the accuracy of entity recognition. [41] +proposes a multi-feature fusion sentence representation and decoder sequence +annotation to handle the overlapping triples which are overlapped with one + +Springer Nature 2021 LATEX template +Article Title +5 +or two entities. Another architecture is joint decoding, which extracts entity +pairs and corresponding relations simultaneously in one stage. NovelTagging +[42] first proposes a tagging scheme to implement a joint decoding manner. +But it cannot figure out the overlapping problem. The sequence-to-sequence +scheme [43–46] models relational triples as a sequence, which can naturally +deal with the nested entity and overlapping problem. +Multilingual Models Multilingual models are a type of model that per- +forms cross-lingual transfer among different languages, such as multilingual +pre-training [47–51] and machine translation [11, 52–54]. Specifically, mBERT +pre-trained on 104 languages in Wikipedia has a strong ability for cross- +lingual transfer. Multilingual neural machine translation (MNMT) trains a +single NMT model in multiple language pairs supporting translation direc- +tions between multiple languages by sharing parameters [55–58]. Early studies +mainly utilize high-resource languages to help low-resource languages and +even perform zero-shot transfer translation [59, 60]. Recent studies focus on +designing language-specific components to mitigate the language interference +in shared parameters, especially on high-resource pairs [11, 61, 62]. Our method +boosts the sentence representation quality from superior unified representation +to further language-specific representation. +Multilingual Entity and Relation Extraction Existing entity and rela- +tion extraction datasets are insufficient in diversity and size. English is always +used to be training corpora. [8] presents a new, large and diversified dataset +Samsung MultiLingual Entity and Relation Extraction (SMiLER) dataset to +entity and relation extraction both for English and multilingual setting. This +is currently the most comprehensive and largest multilingual dataset. +In this paper, we propose a multilingual entity and relation extraction +framework called mERE with two-stage training strategies. In the first stage, +we concatenate random sentences and use the self-attention mechanism [63] +to learn the unified representation across languages. Inspired by MoE [64], +we use several sub-modules with a selection mechanism to learn the specific +representation of each language in the second stage. Such two-stage learning +greatly improves the performance of relational triple extraction. +3 Methodology +In this section, we introduce the details of our training method for the multi- +lingual joint extraction model as shown in Figure 2. We propose a two-stage +training strategy. In the first stage, we train a Language-universal Aggrega- +tor (LA) for learning the unified representations among multiple languages. In +the second stage, we freeze the parameters and fine-tune the Language-specific +Switcher (LS), which is applied to select specific feature representations of +various languages. + +Springer Nature 2021 LATEX template +6 +Article Title +FR: Tour Eiffel à Paris. +EN: Big Ben is in UK. +ES: España en Europa. +IT: Torre pendente di Pisa in Italia. +…. +Cross-lingual Pretrained Encoder +Embeddings +Classifier +Relation +[CLS] +[CLS] +𝜃1 +𝜃2 +𝜃3 +𝜃4 +Language-universal Aggregator +Language-specific +Switcher +Entity1 +Entity2 +Big +Ben +UK +Weighted sum +NER +Concatenate +Encoder +RC +Switcher-based +Tuning +NER +LA +Encoder +RC +NER +LA +LS +Freeze +Multilingual +Training +Selection +Distribution +Fig. 2 The left part shows the two-stage training strategy. The right part is our frame- +work with Language-universal Aggregator (LA) for unified representation generation and +Language-specific Switcher (LS) for language-specific feature extraction. We first train the +LA with a concatenation of 2 random sentence representations, which are denoted as the +green boxes (English) and yellow boxes (Italian) below the figure. Note that each sentence +representation is directly regarded as input of LA during the evaluation stage. Then, we +freeze part of the parameters and fine-tune the LS with all sub-modules during the training +stage. The figure illustrates 4 sub-modules of LS with a top-2 strategy during evaluation. +3.1 Task Formulation +The goal of multilingual joint entity and relation extraction aims to identify all +possible relational triples from sentences in different languages. Formally, given +a sentence X from multilingual corpora D = {Dn}N +n=1, where N represents +the number of the all languages Lall = {Ln}N +n=1. The probability of the target +triple Y = {s, r, o} is defined as below: +P(Y | X) = p(r | X; φ)p(s, o | X, r; ϕ), +(1) +where r denotes relation, s and o are subject (head entity) and object (tail +entity), respectively. p(r | X; φ) means relation is only related to sentence X, +and p(s, o | X, r; ϕ) means the entity pair (s, o) is related to both sentence X +and the relation r that they shared. +3.2 Language-aggregation Training +We train the model with Language-universal Aggregator (LA) to learn the +unified representation, which effectively narrows the distance of semantic +representations across different languages. To obtain context representations +of each token from the multilingual sentences, we utilize the cross-lingual +pre-trained encoder for building a multilingual model. Given the sentence +XLn = {xLn +1 , . . . , xLn +i +, . . . , xLn +m } with m tokens (including [CLS], [SEP] and + +Springer Nature 2021 LATEX template +Article Title +7 +[PAD]), xLn +i +∈ Rd is the i-th token embedding and d is the embedding size. +The whole sentence is encoded by the cross-lingual pre-trained encoder: +hLn = H(XLn; φ), +(2) +where hLn = {hLn +1 , . . . , hLn +i +, . . . , hLn +m } ∈ Rm×d represents the encoded rep- +resentation and d is the hidden size. H denotes the cross-lingual pre-trained +encoder. Meanwhile, a relation classifier W r ∈ Rd×U is used to project pooled +output vector hp (from the [CLS] token) to the relation rc, where U is the +number of relation types. The relation extraction is defined as: +rc = hpW r, +(3) +To better learn the unified semantic representation among multiple lan- +guages, we randomly sample s sentences of different languages from the +training corpora to generate the cross-lingual representations using Equation 2 +and concatenate them to obtain hcat = [h +LX1 +1 +, . . . , h +LXi +i +, . . . , hLXs +s +], where LXi +denotes the language symbol of the i-th sentence. Considering that each token +needs to capture the dependency of inner-sentence and acquire semantic sim- +ilarity representation of inter-sentence among languages, we train LA which +applies the self-attention mechanism for fusing the information of the given +concatenated representation: +ˆhcat = SF(QKT +√ϵ )V +(4) +where Q = hcatWq, K = hcatWk and V = hcatWv. SF represents the softmax +operation. The three-parameter matrices Wq, Wk, and Wv are trainable. The +term 1/√ϵ is the scaling factor. ˆhcat = {ˆh +LX1 +1 +, . . . , ˆh +LXi +i +, . . . , ˆhLXs +s +} and ˆh +LXi +i +is +i-th element. Instead of using language-specific features generated via Equation +8, we directly utilize each element representation in ˆh +LXi +i +to train the model +via Equation 9. +3.3 Language-specific Training +To acquire features of a specific language, we freeze the parameters of language +aggregation and cross-lingual encoder in the first training stage and fine-tune +the model with LS. After obtaining the unified representation via LA, we +extract the language-specific features via the LS with the selection mechanism +from the unified representations. +Given the language symbol Ln ∈ Lall(1 ≤ n ≤ N) and our LS θ = +{θt}T +t=1(1 ≤ t ≤ T , 1 ≤ T ≤ N), our selection mechanism is used to select +corresponding sub-modules θf(Ln), in which f(·) is a function that maps a lan- +guage to corresponding LS modules. To design an appropriate map function for +our selection mechanism, each sentence is prefixed to the corresponding lan- +guage symbol, which enables the model to correctly route sentences. Besides, + +Springer Nature 2021 LATEX template +8 +Article Title +all sub-modules from LS attend to the selection procedure during the training +stage, which solves the undifferentiability problem. Specifically, the function +ft(·) indicates the probability of selection of sub-module θt: +ft (Ln) = +exp +� +eLn +t +� +�T +i=1 exp +� +eLn +i +� +(5) +where eLn +i +is i-th element of the probability vector eLn = El[n]Wf. El ∈ +RN×d denotes the look-up table for all language prefix embeddings. The router +matrix Wf ∈ Rd×T is used to project eLn which are normalized via a softmax +distribution over the total T modules. +For each sub-module θt from θ, we utilize Eθt(·) to transform unified feature +representation ˆhLn into language-specific feature branch ˜hLn +θt : +˜hLn +θt = Eθt(ˆhLn) +(6) +Eθt(ˆhLn) = LN +� +σ(ˆhLnWu)Wd + ˆhLn� +(7) +where ˆhLn ∈ Rm×d is an element of ˆhcat. Wu ∈ Rd×b and Wd ∈ Rb×d are +projection matrices (b > d). σ is the ReLU activation function and LN(·) is +the layer normalization function. The right part of Figure 2 corresponds to +Equation 7. +To ensure gradients are propagated to all sub-modules of LS {θt}T +t=1, we +apply the weighted average for obtaining the language-specific feature: +˜hLn = +T +� +t=1 +ft(Ln)Eθt +� +ˆhLn� +(8) +Note that for the whole process, function ft(Ln) in Equation 8 permits +differentiability of the router. +In the evaluation stage, it is necessary to prune several sub-module branches +with the lowest selection probabilities to obtain the best performance. There- +fore, we use the top-K strategy to select the best k(1 ≤ k ≤ T ) sub-modules +with the highest probabilities to generate the language-specific representation. +When k = T indicates all sub-modules involved in the calculation which means +the selection mechanism is the same as the training stage. The mapping pro- +cess is described as: Ln −→ {πLn +1 , . . . , πLn +i +, . . . , πLn +k } ∈ Π(k), where πLn +i +is +one of the sub-module index that corresponds to language Ln and Π(k) is the +space of all k-length combinations of Ck +T in total. +After obtaining the language-specific representation from LS, we create +four matrices to recognize the head and tail positions of two named entities. To +enhance the accuracy of recognition, we add a relation feature that constrains +the extracted entities that are only related to the relevant relation. Formally, +given a language-specific representation ˜hLn ∈ Rm×d of the m-length sentence + +Springer Nature 2021 LATEX template +Article Title +9 +and the relation vector re retrieved from relation embedding table Er ∈ RI×d, +where I is the number of relations, the two entities are recognized as followed: +entityx = (η((˜hLn ⊕ re)Wy))Uy +(9) +where the symbol collection entity={head, tail}, x={start,end} and y = +{hs, he, ts, te}. We concatenate the relation vector with each token rep- +resentation to enhance the recognition of entities, namely ˜hLn ⊕ re += +{[˜hLn +1 , re], . . . , [˜hLn +i +, re], . . . , [˜hLn +m , re]} ∈ Rm×2d. Wy ∈ R2d×d are four down +projection matrices and Uy ∈ Rd×1 are four index projection matrices. η +denotes tanh activation function. Note that we use ground-truth relation as +input in training entity recognition, which conforms to the joint training +method in our architecture. +3.4 Training Objective +Our model presented in Figure 2 is trained jointly on multilingual ERE cor- +pora. We first train the model only using a multilingual training strategy for +our Language-universal Aggregator. Based on the unified language representa- +tion, we fine-tune the model with Language-specific Switcher for learning the +language-specific feature in the next step. The objective is to minimize the two +training loss functions which are defined below: +LLAT = +M +� +m=1 +E(x,y)∼Dm[Lere(x, y; Θ)] +(10) +LLST = +M +� +m=1 +E(x,y)∼Dm[Lere(x, y; Θ, θ)] +(11) +where D means multilingual entity and relation extraction training corpora +and M denotes the number of the samples. Θ indicates shared parameters and +θ is parameters in LS with selection mechanism. Lere is the loss function for +entity and relation extraction, which is defined as below: +Lere = α +2 (Lstart +h ++ L end +h ++ L start +t ++ L end +t +) + βLrel +(12) +where each L with any superscript is a cross-entropy loss. The subscripts with +h and t indicate the head entity and tail entity respectively. The start and end +of superscripts denote the first token index and last token index of an entity +separately. Lrel is the loss function for relation classification. α and β are two +weights on entity recognition loss and relation classification loss respectively. + +Springer Nature 2021 LATEX template +10 +Article Title +4 Experiments +4.1 Datasets +We evaluate our model on the dataset SMiLER [8], which is the largest +and most diversified multilingual dataset for multilingual entity and relation +extraction tasks with 14 languages from 36 relation types. The SMiLER con- +sists of about 1.1M annotated sentences from Wikipedia and DBpedia, which +includes English (En), Korean (Ko), Italian (It), French (Fr), German (De), +Portuguese (Pt), Nederlands (Nl), Polish (Pl), Spanish (Es), Arabic (Ar), Rus- +sian (Ru), Swedish (Sv), Farsi (Fa), Ukrainian (Uk). The relation types belong +to roughly nine domains: location, organization, person, animal, art, device, +measurement, event, and no relation. The statistics of SMiLER are shown in +Table 1. As the development set in SMiLER is not publicly available, we only +randomly extract the sentences from the training set to create new files with +the same split ratio as the original paper. +Table 1 The statistics of SMiLER dataset. English corpora include full-size, middle-size, +and small-size. The languages are ordered from high-resource languages (left) to +low-resource languages (right). +Languages +EN-full +EN-mid +It +Fr +De +Pt +Nl +En-small +Ko +Pl +Es +Ar +Ru +Sv +Fa +Uk +sentences num. +748k +269k +76k +62k +53k +45k +40k +35k +20k +17k +12k +9k +7k +5k +3k +1k +relation types +36 +36 +22 +22 +22 +22 +22 +32 +28 +22 +22 +9 +8 +22 +8 +7 +4.2 Implementation Details +We conduct experiments on SMiLER, 14 languages in total. EN-small is +treated as our English corpora. We utilize mBERT as our cross-lingual encoder. +We train our model with AdamW, the learning rate is 3e-5 and weight decay +is 0.1. The batch size is set to 16 on Tesla V100 GPU. The hidden size d is 768 +and dimension b of projection matrices Wu and Wd is 1024. The max sequence +length is 256 and we concatenate 2 sentences during the first training stage. For +the second training stage, we freeze most parameters in the first stage except +the relation classifier and 8 matrices used to predict entities from Equation 9. +The sub-module number T of LS is set to 6 (2 layers for 3 sub-modules and 1 +layer for the other). The epoch is set to 5 at the first stage. The max epoch of +the second stage is set to 8 with an early stopping mechanism. The loss weights +are set to 2 in named entity recognition and 1 in relation classification. +In the evaluation stage, we set k = 3 in the top-K strategy to select the +sub-modules in LS. We adopt standard micro-F1 metric to calculate scores on +the models. The extracted entity pair is regarded as correct if the predictions +of the head entity and tail entity are both the same as the ground truth. A +triple is treated as correct if the entity pair and the corresponding relation +type are all correct. no relation type is included in relation prediction. We +also add a mask for the relation that is not absent in a language. + +Springer Nature 2021 LATEX template +Article Title +11 +4.3 Baselines +As far as we know, the SMiLER is a new dataset and thus only an existing +method for multilingual ERE without publishing source code. The relevant +task is cross-lingual relation classification, which is also few in studies. There- +fore, we reproduce the following competitive baselines to compare with our +proposed approach for a fair comparison: +• HEBERTa [8]: A multilingual entity and relation extraction framework +called Hybrid Entity and Relation extraction BERT, which achieves the +state-of-the-art performance on SMiLER. HERBERTa uses a pipeline train- +ing manner that combines two independent BERT models. The first +sub-model classifies the input sequence as one of 36 pre-defined relations +(including no relation). The relation generated from the first sub-model is +then fed to the second BERT and concatenated with the same input sequence +as the input of the second model for entity recognition. +• mBERT [65]: A cross-lingual model first uses the mBERT as a backbone +for RC, which is trained on 104 languages with the corresponding Wikipedia +dumps. We reproduce the results with the code shared at https://github. +com/boun-tabi/RELX +• MTMB [65]: A multilingual pre-training scheme called Matching the Mul- +tilingual Blanks (MTMB). The framework shows several advantages against +the mBERT on monolingual tasks and achieves significant improvements in +cross-lingual transfer. Note that this framework is only designed for RC and +not adapted to entity and relation extraction. Therefore, we simply modified +the output layer of the baseline to conduct the ERE task. +In addition to the above baselines, we also build a simplified multilin- +gual joint entity and relation extraction framework called mERE-LS-LA as a +basic structure which is concatenated relation representation with the sentence +representation to enhance the extraction performance. +Table 2 The F1 scores of different models. * denotes the model is reproduced by us on +our experiment settings. - denotes that the language data is not involved both in the +training and the evaluation stage. MONO, EURO, and SVO mean training data in 3 +different language groups. The languages are ordered from high-resource languages (left) to +low-resource languages (right). The bold font number is the best score in each language. +Test Sets +AVG +It +Fr +De +Pt +Nl +En +Ko +Pl +Es +Ar +Ru +Sv +Fa +Uk +HERBERTa* +75.5 +83.9 +68.7 +71.5 +72.1 +78.5 +60.9 +80.4 +83.1 +60.0 +88.4 +79.4 +84.8 +79.6 +65.0 +mBERT*1 +75.2 +81.5 +68.2 +70.7 +71.0 +77.6 +59.9 +78.5 +81.1 +61.3 +89.5 +81.7 +81.5 +79.6 +70.0 +MTMB*1 +75.6 +80.9 +67.8 +70.9 +70.3 +79.1 +58.3 +79.3 +82.2 +58.2 +91.1 +74.1 +83.7 +77.8 +85.0 +mERE +77.9 +81.7 +70.3 +73.4 +74.3 +81.1 +62.3 +82.7 +81.6 +64.7 +91.6 +83.1 +83.7 +79.6 +80.0 +mERE (EURO) +70.9 +81.4 +70.2 +72.1 +74.2 +- +62.2 +- +- +65.2 +- +- +- +- +- +mERE (SVO) +75.7 +81.3 +70.0 +72.9 +73.3 +80.6 +62.1 +- +81.0 +64.7 +- +83.1 +83.7 +- +80.0 +mERE-LS +77.2 +80.9 +69.7 +72.0 +73.5 +80.4 +62.2 +80.4 +81.6 +62.1 +91.6 +83.1 +84.8 +77.8 +80.0 +mERE-LS-LA (MONO) +70.9 +81.2 +68.3 +67.1 +68.4 +77.9 +58.6 +79.3 +79.0 +48.4 +90.0 +72.5 +80.4 +66.7 +55.0 +mERE-LS-LA +76.5 +81.3 +69.0 +71.9 +71.4 +80.3 +60.3 +76.4 +84.2 +60.7 +90.0 +83.9 +83.7 +77.8 +80.0 +1We modified the output layer to implement the entity recognition to accommodate the +ERE task. We train the model in the joint training method. + +Springer Nature 2021 LATEX template +12 +Article Title +4.4 Models and Languages Comparison +The results presented from the Tables are rounded to one decimal place. From +Table 2, our method improves multilingual baselines by a large margin over pre- +vious baselines. There is a 2.3% improvement on averaged F1 score compared +with the previous strongest baseline MTMB which outperforms HERBERTa +due to its strong multilingual pre-training scheme. Our mERE achieves the +best scores on 8 out of 14 languages, especially on high-resource languages. +The other 5 out of 6 languages achieve the second-best scores. Surprisingly, +even our baseline mERE-LS-LA has 0.9% improvement over the MTMB. It +seems that our basic structure is more effective on multilingual entity and rela- +tion extraction tasks. Compared with mERE-LS that only uses LA, our full +model mERE has nearly 0.7% F1 value improvement on average and yields +similar or higher results on 13 languages except for Sv. The improvement can +be attributed to our switcher-based language-specific training strategy, which +finally extracts accurate information for entity recognition in each language. +Compared with our baseline mERE-LS-LA, our full model mERE has nearly +1.4% F1 value improvement on average which means mERE-LS also has nearly +0.7% F1 value improvement on average. All such impressive results demon- +strate that our full model mERE truly enhances the representation quality +and mitigates language interference to a certain extent. +We set several language groups to analyze the impact of different languages: +(1)MONO: 14 languages in monolingual training. (2)EURO: It, Fr, Pt, De, +Es, En. (3)SVO2: EURO, Ru, Sv, Nl, Pl, Uk. The default is all languages +in multilingual training from Table 2. Compared with mERE-LS-LA training +in multilingual corpora, we can observe that multilingual training achieves +much higher results than mERE-LS-LA (MONO) monolingual training from +Table 2, especially on low-resource languages. Such as improvements of Uk +(25%), Fa (11.1%), and Ru (11.4%). It demonstrates that languages with less +training data can benefit most from high-resource languages in multilingual +training including ERE tasks. The results of the EURO family group are close +to mERE. It is worth noting that Es achieves the best score in the EURO +group. We conclude that Es benefits a lot from similarities of languages that +are in the same language family even with less training data. In the SVO +group, we can also visualize that most languages in EURO decrease slightly +with the interference of other non-EURO languages. The different language +families, or the languages with a big difference in syntactic structures might +be the main interference among languages. However, compared with mERE +(SVO), mERE yields the same results on low-resource languages and somewhat +higher results on high-resource languages even the three non-SVO (Fa, Ar, and +Ko) data involved during the training stage. We suppose that these non-SVO +languages which are big different from others and are all low-resource may +facilitate distinguishing high-resource languages in learning language-specific +2SVO stands for the relative position of the Subject, Verb, and Object in the typical affirmative +sentence. We treat Korean, Farsi, and Arabic as non-SVO languages. Arabic is VSO, while Korean +and Farsi are SOV. + +Springer Nature 2021 LATEX template +Article Title +13 +features due to each sub-module from LS being independent, without sharing +parameters in the same space. Lastly, we also observe some duplicated F1 +scores across low-resource languages. This phenomenon is caused by a small +number of sentences in test sets. +4.5 Entity and Relation Analysis +Figure 3 shows F1 scores of relation and entity pair of mERE and mERE-LS- +LA. We can observe that the relation classification seems to be easier than the +named entity recognition. The correctness of entity pair extraction is the main +bottleneck of the model performance. With the help of our LA and LS, mERE +achieves higher results on entity pair recognition compared with mERE-LS- +LA in general. Surprisingly, we can visualize that the performance of relation +classification also has a slight improvement in mERE. We conclude that the +improvement of the named entity recognition facilitates relation classification. +Since information interaction between two sub-tasks can benefit each other in +the joint training architecture. +50 +55 +60 +65 +70 +75 +80 +85 +90 +95 +100 +Total +It +Fr +De +Pt +Nl +En +Ko +Pl +Es +Ar +Ru +Sv +Fa +Uk +Relation(mERE) +Entity Pair(mERE) +Relation(mERE-LS-LA) +Entity Pair(mERE-LS-LA) +Fig. 3 The F1 scores of relations and entity pairs on all languages. +F1 scores of detailed relation labels are shown in Figure 4. Most of the +relations achieve higher F1 scores across languages, such as “no relation” and +“has-type”. Part of relations differs widely across languages, such as relation +“has-child”(F1 = 100 on Nl, F1 = 33 on De, F1 = 0 on Es). The big difference +is caused by the number of relations of training data in each language. For +some relations that occur F1 = 0 scores, we find out the relations (e.g won- +award on Nl. has-parent on Pl. has-child on Es) are only one test sample. +Such low results for some languages could be explained by a smaller number +of relations in the test set. + +Springer Nature 2021 LATEX template +14 +Article Title +En +It +Fr +Pt +Es +De +Ar +Nl +Ru +Pl +Uk +Sv +Fa +Ko +no_relation +is-where +birth-place +has-type +movie-has-director +has-occupation +from-country +has-genre +has-author +has-population +headquarters +is-member-of +org-has-member +has-parent +org-has-founder +has-spouse +won-award +has-nationality +org-leader +starring +has-edu +has-child +event-year +has-sibling +has-length +invented-when +has-tourist-attraction +has-lifespan +first-product +has-height +has-highest-mountain +invented-by +has-weight +post-code +loc-leader +eats +85 +100 +100 +86 +91 +100 +100 +86 +100 +100 +75 +100 +97 +90 +96 +88 +81 +90 +85 +93 +97 +60 +89 +91 +92 +89 +89 +94 +84 +89 +50 +81 +84 +92 +92 +97 +100 +95 +100 +97 +91 +95 +100 +100 +100 +94 +76 +100 +99 +100 +92 +99 +100 +100 +100 +100 +59 +72 +68 +79 +67 +83 +100 +70 +100 +96 +100 +67 +100 +98 +25 +75 +30 +57 +56 +66 +72 +67 +0 +86 +91 +83 +75 +86 +67 +92 +100 +93 +100 +100 +100 +100 +100 +100 +94 +92 +100 +60 +100 +100 +100 +100 +100 +100 +94 +100 +96 +100 +100 +100 +99 +100 +100 +100 +100 +67 +100 +100 +83 +80 +78 +100 +100 +100 +100 +77 +92 +77 +88 +100 +82 +91 +100 +0 +100 +100 +96 +88 +100 +100 +95 +88 +100 +100 +86 +88 +100 +57 +100 +100 +100 +0 +100 +100 +83 +92 +90 +100 +100 +89 +100 +100 +100 +100 +89 +90 +60 +83 +86 +100 +50 +89 +95 +50 +50 +100 +0 +100 +79 +63 +92 +75 +67 +67 +0 +100 +100 +91 +75 +67 +100 +80 +100 +100 +100 +0 +100 +86 +67 +100 +50 +0 +33 +100 +0 +100 +92 +100 +0 +33 +100 +100 +100 +100 +67 +100 +100 +87 +83 +62 +80 +100 +100 +100 +100 +78 +100 +50 +100 +100 +88 +50 +56 +100 +0 +100 +100 +100 +100 +0 +20 +40 +60 +80 +100 +Fig. 4 The F1 scores of all relation labels on all languages. The darker color means a higher +F1 score, while the lighter color means a lower F1 score. +Figure 5 shows F1 scores of head entities and tail entities. We can observe +that F1 scores of head entities are much higher than tail entities among most +languages. It seems that head entities are easier to be recognized than tail +entities. It is because the head entity always occurs at the beginning position +of the sentence and thus the model probably memorizes the position, while the +tail entity does not have any consistent position which is hard to predict. +4.6 Ablation Study +Sentences Concatenation To validate the effect of the number of sentences +for learning the unified features among different languages, we conduct sev- +eral experiments on the different numbers of sentences in concatenation. We +learn from Figure 6 that there are evident F1 improvements with LA on dif- +ferent concatenation numbers of sentences over only one sentence encoding. +The multilingual model obtains the best performance when concatenating with +the sentence pair. The increasing number of concatenated sentences has a +slight decrease in performance. We conjecture that increasing the number of +sentences may also bring somewhat interference. + +Springer Nature 2021 LATEX template +Article Title +15 +50 +55 +60 +65 +70 +75 +80 +85 +90 +95 +100 +Total It +Fr +De +Pt +Nl +En +Ko +Pl +Es +Ar +Ru +Sv +Fa +Uk +head entity +tail entity +Fig. 5 The performance of head entities (blue bar) and tail entities (orange bar) on different +languages. +1 +2 +3 +4 +Languages +76.6 +76.7 +76.8 +76.9 +77.0 +77.1 +F1 score +mERE-LS +Fig. 6 The performance of sentences concatenation in the first training stage. +Selection Mechanism To observe how the selection mechanism affects our +model performance, we also train one-to-one sub-modules of LS called mERE14 +without using the selection mechanism in the second training stage. Each inde- +pendent sub-module corresponds to a language and each sentence is routed via +a language prefix which represents the number of sub-module. We can visualize +from Figure 7 that increasing the number of parameters also improves obvi- +ously over mERE-LS-LA. Nonetheless, the mERE14 will suffer from the sharp +increasing training time and inference time, and big space consumption when +the number of languages is large enough. Instead of increasing parameters, +our Language-specific Switcher can effectively ameliorate extraction quality +with only slight extra parameters and less time consumption. Since similar +languages tend to select the same sub-modules from our LS. The mERE saves + +Springer Nature 2021 LATEX template +16 +Article Title +nearly 700M model capacity in our statistics and achieves better performance +among most languages compared with mERE14. It is obvious that mERE is +light and easy to transfer to other multi-field tasks. Selection Distribution +It +Fr +De +Pt +Nl +En +Ko +Pl +Es +Ar +Ru +Sv +Fa +Uk +Languages +60 +62 +64 +66 +68 +70 +72 +74 +76 +78 +80 +82 +84 +86 +88 +90 +92 +94 +F1 scores +mERE-LS-LA +mERE14 +mERE +Fig. 7 The performance of three models on 14 languages. mERE14 utilizes 14 one-to-one +sub-modules of LS without the selection mechanism. Each sub-module corresponds to a +language. +Figure 8 illustrates the heatmap of selection probability on 6 sub-modules from +LS for each language. For each sub-module from top to bottom in Figure 8, +we can visualize θ1 pays more attention to low-resource languages while θ4, +θ5, and θ6 pay more attention to languages from the EURO family, which +are mostly high-resource languages. The θ2 and θ3 seem to be more balanced +on parameters sharing of languages except for 2 or 3 prominent languages. +We conclude that some sub-modules are mainly used to extract features from +similar languages and others are used to assist the specific languages. +For each language from left to right, we can visualize that the selected +sub-modules with higher probabilities are easy to distinguish in high-resource +languages. In contrast, the selection probabilities across all sub-modules are +relatively similar on low-resource languages in total. We conclude that train- +ing data is rich enough to determine which way to route on high-resource +languages and a more balanced selection decision is made on less training +data. It is learned from Figure 8 that there are nearly 3 out of 6 prominently +higher selection probabilities on the high-resource languages, and so do the +low-resource languages with careful observation. It proves that only 3 sub- +modules play the dominant role in refining the language-specific feature for +each language. To avoid interference from the other irrelevant sub-modules, +we adopt a top-K strategy to filter out 6 − k sub-modules with lower selec- +tion probabilities in the evaluation stage. The top-6 strategy means selecting +all sub-modules, which is the same as the training stage and the performance +is relatively low (77.74) on average, while our mERE achieves the best perfor- +mance (77.87) when adopting the top-3 strategy. It demonstrates that filtering +out the least important sub-modules is necessary to enhance the prediction +quality, which also reduces the redundant parameters in the evaluation. The + +Springer Nature 2021 LATEX template +Article Title +17 +top-1 achieves the worst performance (77.60), which demonstrates the part of +sub-modules are also helpful for the task. Therefore, the best performance is +obtained when the k value is balanced in all languages. Layer Number of +It +Fr +De +Pt +Nl +En +Ko +Pl +Es +Ar +Ru +Sv +Fa +Uk + +1 + +2 + +3 + +4 + +5 + +6 +Fig. 8 The selection probability distributions of 6 sub-modules from LS on 14 languages. +The sub-modules {θ}6 +1 are numbered from 1 to 6. The languages are ordered from high- +resource languages (left) to low-resource languages (right). The darker color means a higher +selection probability to the corresponding sub-module and a lower probability to select a +certain sub-module when the color is lighter. +Language-specific Switcher Table 3 used to evaluate the effect of the layer +number of LS. We divide the 6 sub-modules into 2 groups (each group has the +same layer number) with different combinations of layer numbers to accommo- +date the scenarios, such as high- and low-resource language feature extraction. +From Table 3, we can observe that the combination 1-2 achieves the best F1 +score on average. The combinations which are set to 1-1 and 4-4 also achieve +better performance. With the increase or decrease of the layer number to a cer- +tain degree, the performances are almost the same, which maintains relatively +low averaged F1 scores. The full layer number combination 4-4 is an exception +in the case, which demonstrates the performance still can be improved when +the model capacity is large enough. According to the outcomes from Table 3, +we conclude that the layer number of LS obviously impacts the results, with +the best results attained when a balance is reached. +5 Conclusion +In this paper, we introduce a two-stage training method and a robust frame- +work called mERE for multilingual entity and relation extraction, which +ameliorates the sentence representation quality and mitigates the language +interference among multiple languages. Specifically, we first learn the gener- +alities across all languages to obtain the unified language representation via +the Language-universal Aggregator and then learn the specialties of each lan- +guage via the Language-specific Switcher. Experimental results demonstrate + +Springer Nature 2021 LATEX template +18 +Article Title +Table 3 The different layer numbers of sub-modules. Every 3 sub-modules in a group has +the same layer numbers. Layer Num.01 and Layer Num.02 denote the layer number of the +first group and second group respectively. +Layer Num.01 +Layer Num.02 +AVG +IT +FR +DE +PT +NL +EN +KO +PL +ES +AR +RU +SV +FA +UK +1 +1 +77.4 +81.3 +69.1 +72.1 +73.4 +80.4 +63.1 +81.9 +81.3 +63.4 +91.1 +85.4 +83.7 +77.8 +80.0 +1 +2 +77.9 +81.7 +70.3 +73.4 +74.3 +81.1 +62.3 +82.7 +81.6 +64.7 +91.6 +83.1 +83.7 +79.6 +80.0 +1 +3 +77.5 +81.5 +69.4 +72.8 +73.8 +81.1 +62.2 +81.9 +81.3 +64.7 +90.5 +83.1 +83.7 +79.6 +80.0 +1 +4 +77.5 +81.0 +70.2 +72.5 +74.1 +80.8 +62.2 +82.2 +81.3 +65.6 +90.5 +83.1 +83.7 +77.8 +80.0 +2 +2 +77.8 +81.7 +70.1 +73.1 +74.1 +81.0 +62.3 +81.9 +81.6 +66.1 +90.5 +83.1 +83.7 +79.6 +80.0 +2 +3 +77.4 +81.1 +70.2 +72.7 +74.1 +80.9 +62.1 +82.5 +81.3 +65.2 +90.5 +81.5 +83.7 +77.8 +80.0 +2 +4 +77.4 +81.3 +70.2 +72.2 +74.2 +81.0 +62.2 +81.4 +81.0 +64.7 +90.5 +81.5 +83.7 +79.6 +80.0 +3 +3 +77.4 +81.6 +70.4 +72.5 +73.3 +81.0 +62.1 +82.7 +81.0 +64.7 +91.1 +81.5 +83.7 +77.8 +80.0 +3 +4 +77.5 +81.5 +70.2 +73.3 +73.9 +81.4 +62.7 +83.0 +81.0 +64.3 +90.5 +82.3 +83.7 +77.8 +80.0 +4 +4 +77.7 +81.1 +70.2 +73.1 +74.2 +80.9 +62.3 +81.9 +81.6 +65.6 +90.5 +83.1 +83.7 +79.6 +80.0 +that our method significantly outperforms both monolingual and multilingual +ERE baselines, which demonstrates that our framework can extract relational +triples among various languages well. Moreover, our framework is also light +and easy to transfer to other backbone models of multi-field tasks. +In the future, we will pay more attention to complex multilingual relational +triple extraction, such as overlapping relational triples or multiple relational +triples. Besides, we will also do further research on a better contextual repre- +sentation among multiple languages. Although there is a long way to experience +in multilingual entity and relation extraction tasks, it is important to inves- +tigate the valuable structured information in many other languages for the +downstream NLP tasks. +Acknowledgments. +This work was supported in part by the National Nat- +ural Science Foundation of China (Grant Nos. 62276017, U1636211, 61672081), +the 2022 Tencent Big Travel Rhino-Bird Special Research Program, and the +Fund of the State Key Laboratory of Software Development Environment +(Grant No. SKLSDE-2021ZX-18). +References +[1] Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence +tagging. CoRR abs/1508.01991 (2015) 1508.01991 +[2] Wang, J., Shou, L., Chen, K., Chen, G.: Pyramid: A layered model for +nested named entity recognition. In: Jurafsky, D., Chai, J., Schluter, +N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meet- +ing of the Association for Computational Linguistics, ACL 2020, +Online, July 5-10, 2020, pp. 5918–5928. Association for Computational +Linguistics, ??? (2020). https://doi.org/10.18653/v1/2020.acl-main.525. +https://doi.org/10.18653/v1/2020.acl-main.525 +[3] Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: +Spanbert: Improving pre-training by representing and predicting spans. +Trans. Assoc. Comput. Linguistics 8, 64–77 (2020). https://doi.org/10. +1162/tacl a 00300 + +Springer Nature 2021 LATEX template +Article Title +19 +[4] Tan, Z., Shen, Y., Zhang, S., Lu, W., Zhuang, Y.: A sequence-to-set net- +work for nested named entity recognition. In: Zhou, Z. (ed.) Proceedings +of the Thirtieth International Joint Conference on Artificial Intelligence, +IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp. +3936–3942. ijcai.org, ??? (2021). https://doi.org/10.24963/ijcai.2021/542. +https://doi.org/10.24963/ijcai.2021/542 +[5] Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction +via reading comprehension. In: Levy, R., Specia, L. (eds.) Proceedings +of the 21st Conference on Computational Natural Language Learning +(CoNLL 2017), Vancouver, Canada, August 3-4, 2017, pp. 333–342. Asso- +ciation for Computational Linguistics, ??? (2017). https://doi.org/10. +18653/v1/K17-1034. https://doi.org/10.18653/v1/K17-1034 +[6] Li, J., Wang, R., Zhang, N., Zhang, W., Yang, F., Chen, H.: Logic-guided +semantic representation learning for zero-shot relation classification. In: +Scott, D., Bel, N., Zong, C. (eds.) Proceedings of the 28th International +Conference on Computational Linguistics, COLING 2020, Barcelona, +Spain (Online), December 8-13, 2020, pp. 2967–2978. International Com- +mittee on Computational Linguistics, ??? (2020). https://doi.org/10. +18653/v1/2020.coling-main.265. https://doi.org/10.18653/v1/2020.coling- +main.265 +[7] Lin, Q., Mao, R., Liu, J., Xu, F., Cambria, E.: Fusing topology contexts +and logical rules in language models for knowledge graph completion. Inf. +Fusion 90, 253–264 (2023). https://doi.org/10.1016/j.inffus.2022.09.020 +[8] Seganti, A., Firlag, K., Skowronska, H., Satlawa, M., Andruszkiewicz, P.: +Multilingual entity and relation extraction dataset and model. In: Merlo, +P., Tiedemann, J., Tsarfaty, R. (eds.) Proceedings of the 16th Conference +of the European Chapter of the Association for Computational Linguis- +tics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, pp. 1946–1955. +Association for Computational Linguistics, ??? (2021). https://doi.org/ +10.18653/v1/2021.eacl-main.166. https://doi.org/10.18653/v1/2021.eacl- +main.166 +[9] Wang, Z., Lipton, Z.C., Tsvetkov, Y.: On negative interference in mul- +tilingual models: Findings and A meta-learning treatment. In: Webber, +B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Confer- +ence on Empirical Methods in Natural Language Processing, EMNLP +2020, Online, November 16-20, 2020, pp. 4438–4450. Association for Com- +putational Linguistics, ??? (2020). https://doi.org/10.18653/v1/2020. +emnlp-main.359. https://doi.org/10.18653/v1/2020.emnlp-main.359 +[10] Gong, H., Li, X., Genzel, D.: Adaptive sparse transformer for multilingual +translation. CoRR abs/2104.07358 (2021) 2104.07358 + +Springer Nature 2021 LATEX template +20 +Article Title +[11] Yang, J., Yin, Y., Ma, S., Zhang, D., Li, Z., Wei, F.: High-resource +language-specific training for multilingual neural machine translation. In: +Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Con- +ference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July +2022, pp. 4461–4467. ijcai.org, ??? (2022). https://doi.org/10.24963/ijcai. +2022/619. https://doi.org/10.24963/ijcai.2022/619 +[12] Mitchell, T.M., Cohen, W.W., Jr., E.R.H., Talukdar, P.P., Yang, B., +Betteridge, J., Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B., Krish- +namurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., +Platanios, E.A., Ritter, A., Samadi, M., Settles, B., Wang, R.C., Wijaya, +D., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never- +ending learning. Commun. ACM 61(5), 103–115 (2018). https://doi.org/ +10.1145/3191513 +[13] Yates, A., Banko, M., Broadhead, M., Cafarella, M.J., Etzioni, O., Soder- +land, S.: Textrunner: Open information extraction on the web. In: Sidner, +C.L., Schultz, T., Stone, M., Zhai, C. (eds.) Human Language Technology +Conference of the North American Chapter of the Association of Com- +putational Linguistics, Proceedings, April 22-27, 2007, Rochester, New +York, USA, pp. 25–26. The Association for Computational Linguistics, +??? (2007). https://aclanthology.org/N07-4013/ +[14] Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open infor- +mation extraction. In: Proceedings of the 2011 Conference on Empirical +Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, +John McIntyre Conference Centre, Edinburgh, UK, A Meeting of SIG- +DAT, a Special Interest Group of The ACL, pp. 1535–1545. ACL, ??? +(2011). https://aclanthology.org/D11-1142/ +[15] de S´a Mesquita, F., Schmidek, J., Barbosa, D.: Effectiveness and efficiency +of open relation extraction. In: Proceedings of the 2013 Conference on +Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 +October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A Meeting +of SIGDAT, a Special Interest Group of The ACL, pp. 447–457. ACL, ??? +(2013). https://aclanthology.org/D13-1043/ +[16] White, A.S., Reisinger, D.A., Sakaguchi, K., Vieira, T., Zhang, S., +Rudinger, R., Rawlins, K., Durme, B.V.: Universal decompositional +semantics on universal dependencies. In: Su, J., Carreras, X., Duh, +K. (eds.) Proceedings of the 2016 Conference on Empirical Meth- +ods in Natural Language Processing, EMNLP 2016, Austin, Texas, +USA, November 1-4, 2016, pp. 1713–1723. The Association for Compu- +tational Linguistics, ??? (2016). https://doi.org/10.18653/v1/d16-1177. +https://doi.org/10.18653/v1/d16-1177 + +Springer Nature 2021 LATEX template +Article Title +21 +[17] Corro, L.D., Gemulla, R.: Clausie: clause-based open information extrac- +tion. In: Schwabe, D., Almeida, V.A.F., Glaser, H., Baeza-Yates, +R., Moon, S.B. (eds.) 22nd International World Wide Web Con- +ference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pp. +355–366. International World Wide Web Conferences Steering Com- +mittee / ACM, ??? (2013). https://doi.org/10.1145/2488388.2488420. +https://doi.org/10.1145/2488388.2488420 +[18] Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic +structure for open domain information extraction. In: Proceedings of the +53rd Annual Meeting of the Association for Computational Linguistics +and the 7th International Joint Conference on Natural Language Pro- +cessing of the Asian Federation of Natural Language Processing, ACL +2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pp. +344–354. The Association for Computer Linguistics, ??? (2015). https: +//doi.org/10.3115/v1/p15-1034. https://doi.org/10.3115/v1/p15-1034 +[19] Cui, L., Wei, F., Zhou, M.: Neural open information extraction. In: +Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting +of the Association for Computational Linguistics, ACL 2018, Melbourne, +Australia, July 15-20, 2018, Volume 2: Short Papers, pp. 407–413. Associa- +tion for Computational Linguistics, ??? (2018). https://doi.org/10.18653/ +v1/P18-2065. https://aclanthology.org/P18-2065/ +[20] Kolluru, K., Aggarwal, S., Rathore, V., Mausam, Chakrabarti, S.: Imojie: +Iterative memory-based joint open information extraction. In: Juraf- +sky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of +the 58th Annual Meeting of the Association for Computational Lin- +guistics, ACL 2020, Online, July 5-10, 2020, pp. 5871–5886. Association +for Computational Linguistics, ??? (2020). https://doi.org/10.18653/v1/ +2020.acl-main.521. https://doi.org/10.18653/v1/2020.acl-main.521 +[21] Li, T., Wang, Z., Li, Z.: Low resource quantitative information extraction +via structure searching and prefix-based text generation. AAAI Press, ??? +(2023) +[22] Stanovsky, G., Michael, J., Zettlemoyer, L., Dagan, I.: Supervised open +information extraction. In: Walker, M.A., Ji, H., Stent, A. (eds.) Pro- +ceedings of the 2018 Conference of the North American Chapter of +the Association for Computational Linguistics: Human Language Tech- +nologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, +2018, Volume 1 (Long Papers), pp. 885–895. Association for Compu- +tational Linguistics, ??? (2018). https://doi.org/10.18653/v1/n18-1081. +https://doi.org/10.18653/v1/n18-1081 +[23] Kolluru, K., Adlakha, V., Aggarwal, S., Mausam, Chakrabarti, S.: + +Springer Nature 2021 LATEX template +22 +Article Title +Openie6: Iterative grid labeling and coordination analysis for open +information +extraction. +In: +Webber, +B., +Cohn, +T., +He, +Y., +Liu, +Y. (eds.) Proceedings of the 2020 Conference on Empirical Meth- +ods in Natural Language Processing, EMNLP 2020, Online, Novem- +ber 16-20, 2020, pp. 3748–3761. Association for Computational Lin- +guistics, ??? (2020). https://doi.org/10.18653/v1/2020.emnlp-main.306. +https://doi.org/10.18653/v1/2020.emnlp-main.306 +[24] Zhan, J., Zhao, H.: Span model for open information extraction on +accurate corpus. In: The Thirty-Fourth AAAI Conference on Artificial +Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of +Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo- +sium on Educational Advances in Artificial Intelligence, EAAI 2020, New +York, NY, USA, February 7-12, 2020, pp. 9523–9530. AAAI Press, ??? +(2020) +[25] Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic composition- +ality through recursive matrix-vector spaces. In: Tsujii, J., Henderson, J., +Pasca, M. (eds.) Proceedings of the 2012 Joint Conference on Empiri- +cal Methods in Natural Language Processing and Computational Natural +Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, +Korea, pp. 1201–1211. ACL, ??? (2012). https://aclanthology.org/D12- +1110/ +[26] Hashimoto, K., Miwa, M., Tsuruoka, Y., Chikayama, T.: Simple cus- +tomization of recursive neural networks for semantic relation classifica- +tion. In: Proceedings of the 2013 Conference on Empirical Methods in +Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand +Hyatt Seattle, Seattle, Washington, USA, A Meeting of SIGDAT, a +Special Interest Group of The ACL, pp. 1372–1376. ACL, ??? (2013). +https://aclanthology.org/D13-1137/ +[27] Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via +convolutional deep neural network. In: Hajic, J., Tsujii, J. (eds.) COLING +2014, 25th International Conference on Computational Linguistics, Pro- +ceedings of the Conference: Technical Papers, August 23-29, 2014, Dublin, +Ireland, pp. 2335–2344. ACL, ??? (2014). https://aclanthology.org/C14- +1220/ +[28] Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classifi- +cation via convolutional neural networks with simple negative sam- +pling. In: M`arquez, L., Callison-Burch, C., Su, J., Pighin, D., Marton, +Y. (eds.) Proceedings of the 2015 Conference on Empirical Meth- +ods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, +September 17-21, 2015, pp. 536–540. The Association for Computa- +tional Linguistics, ??? (2015). https://doi.org/10.18653/v1/d15-1062. + +Springer Nature 2021 LATEX template +Article Title +23 +https://doi.org/10.18653/v1/d15-1062 +[29] Roth, D., Yih, W.: A linear programming formulation for global inference +in natural language tasks. In: Ng, H.T., Riloff, E. (eds.) Proceed- +ings of the Eighth Conference on Computational Natural Language +Learning, CoNLL 2004, Held in Cooperation with HLT-NAACL 2004, +Boston, Massachusetts, USA, May 6-7, 2004, pp. 1–8. ACL, ??? (2004). +https://aclanthology.org/W04-2401/ +[30] Kate, R.J., Mooney, R.J.: Joint entity and relation extraction using card- +pyramid parsing. In: Lapata, M., Sarkar, A. (eds.) Proceedings of the +Fourteenth Conference on Computational Natural Language Learning, +CoNLL 2010, Uppsala, Sweden, July 15-16, 2010, pp. 203–212. ACL, ??? +(2010). https://aclanthology.org/W10-2924/ +[31] Yu, X., Lam, W.: Jointly identifying entities and extracting relations +in encyclopedia text via A graphical model approach. In: Huang, C., +Jurafsky, D. (eds.) COLING 2010, 23rd International Conference on +Computational Linguistics, Posters Volume, 23-27 August 2010, Beijing, +China, pp. 1399–1407. Chinese Information Processing Society of China, +??? (2010). https://aclanthology.org/C10-2160/ +[32] Li, Q., Ji, H.: Incremental joint extraction of entity mentions and rela- +tions. In: Proceedings of the 52nd Annual Meeting of the Association +for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, +MD, USA, Volume 1: Long Papers, pp. 402–412. The Association for +Computer Linguistics, ??? (2014). https://doi.org/10.3115/v1/p14-1038. +https://doi.org/10.3115/v1/p14-1038 +[33] Miwa, M., Bansal, M.: End-to-end relation extraction using lstms on +sequences and tree structures. In: Proceedings of the 54th Annual Meet- +ing of the Association for Computational Linguistics, ACL 2016, August +7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for +Computer Linguistics, ??? (2016). https://doi.org/10.18653/v1/p16-1105. +https://doi.org/10.18653/v1/p16-1105 +[34] Zheng, S., Hao, Y., Lu, D., Bao, H., Xu, J., Hao, H., Xu, B.: Joint +entity and relation extraction based on a hybrid neural network. Neuro- +computing 257, 59–66 (2017). https://doi.org/10.1016/j.neucom.2016.12. +075 +[35] Tan, Z., Zhao, X., Wang, W., Xiao, W.: Jointly extracting multiple triplets +with multilayer translation constraints. In: The Thirty-Third AAAI Con- +ference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative +Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth +AAAI Symposium on Educational Advances in Artificial Intelligence, +EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. + +Springer Nature 2021 LATEX template +24 +Article Title +7080–7087. AAAI Press, ??? (2019). https://doi.org/10.1609/aaai.v33i01. +33017080. https://doi.org/10.1609/aaai.v33i01.33017080 +[36] Liu, J., Chen, S., Wang, B., Zhang, J., Li, N., Xu, T.: Attention +as relation: Learning supervised multi-head self-attention for relation +extraction. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth Inter- +national Joint Conference on Artificial Intelligence, IJCAI 2020, pp. +3787–3793. ijcai.org, ??? (2020). https://doi.org/10.24963/ijcai.2020/524. +https://doi.org/10.24963/ijcai.2020/524 +[37] Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, +and event extraction with contextualized span representations. In: Inui, +K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Confer- +ence on Empirical Methods in Natural Language Processing and the 9th +International Joint Conference on Natural Language Processing, EMNLP- +IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 5783–5788. +Association for Computational Linguistics, ??? (2019). https://doi.org/ +10.18653/v1/D19-1585. https://doi.org/10.18653/v1/D19-1585 +[38] Eberts, M., Ulges, A.: Span-based joint entity and relation extraction +with transformer pre-training. In: Giacomo, G.D., Catal´a, A., Dilkina, +B., Milano, M., Barro, S., Bugar´ın, A., Lang, J. (eds.) ECAI 2020 - 24th +European Conference on Artificial Intelligence, 29 August-8 September +2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - +Including 10th Conference on Prestigious Applications of Artificial Intel- +ligence (PAIS 2020). Frontiers in Artificial Intelligence and Applications, +vol. 325, pp. 2006–2013. IOS Press, ??? (2020). https://doi.org/10.3233/ +FAIA200321. https://doi.org/10.3233/FAIA200321 +[39] Ji, B., Yu, J., Li, S., Ma, J., Wu, Q., Tan, Y., Liu, H.: Span-based +joint entity and relation extraction with attention-based span-specific +and contextual semantic representations. In: Scott, D., Bel, N., Zong, +C. (eds.) Proceedings of the 28th International Conference on Compu- +tational Linguistics, COLING 2020, Barcelona, Spain (Online), Decem- +ber 8-13, 2020, pp. 88–99. International Committee on Computational +Linguistics, ??? (2020). https://doi.org/10.18653/v1/2020.coling-main.8. +https://doi.org/10.18653/v1/2020.coling-main.8 +[40] Qiao, B., Zou, Z., Huang, Y., Fang, K., Zhu, X., Chen, Y.: A joint model +for entity and relation extraction based on BERT. Neural Comput. Appl. +34(5), 3471–3481 (2022). https://doi.org/10.1007/s00521-021-05815-z +[41] Lai, T., Cheng, L., Wang, D., Ye, H., Zhang, W.: RMAN: relational +multi-head attention neural network for joint extraction of entities and +relations. Appl. Intell. 52(3), 3132–3142 (2022). https://doi.org/10.1007/ +s10489-021-02600-2 + +Springer Nature 2021 LATEX template +Article Title +25 +[42] Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction +of entities and relations based on a novel tagging scheme. In: Barzilay, R., +Kan, M. (eds.) Proceedings of the 55th Annual Meeting of the Association +for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - +August 4, Volume 1: Long Papers, pp. 1227–1236. Association for Compu- +tational Linguistics, ??? (2017). https://doi.org/10.18653/v1/P17-1113. +https://doi.org/10.18653/v1/P17-1113 +[43] Zeng, X., Zeng, D., He, S., Liu, K., Zhao, J.: Extracting relational facts +by an end-to-end neural model with copy mechanism. In: Gurevych, I., +Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting of the Associa- +tion for Computational Linguistics, ACL 2018, Melbourne, Australia, July +15-20, 2018, Volume 1: Long Papers, pp. 506–514. Association for Compu- +tational Linguistics, ??? (2018). https://doi.org/10.18653/v1/P18-1047. +https://aclanthology.org/P18-1047/ +[44] Zeng, X., He, S., Zeng, D., Liu, K., Liu, S., Zhao, J.: Learning the extrac- +tion order of multiple relational facts in a sentence with reinforcement +learning. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the +2019 Conference on Empirical Methods in Natural Language Processing +and the 9th International Joint Conference on Natural Language Process- +ing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. +367–377. Association for Computational Linguistics, ??? (2019). https: +//doi.org/10.18653/v1/D19-1035. https://doi.org/10.18653/v1/D19-1035 +[45] Nayak, T., Ng, H.T.: Effective modeling of encoder-decoder archi- +tecture +for +joint +entity +and +relation +extraction. +In: +The +Thirty- +Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The +Thirty-Second Innovative Applications of Artificial Intelligence Con- +ference, IAAI 2020, The Tenth AAAI Symposium on Educational +Advances +in +Artificial +Intelligence, +EAAI +2020, +New +York, +NY, +USA, February 7-12, 2020, pp. 8528–8535. AAAI Press, ??? (2020). +https://ojs.aaai.org/index.php/AAAI/article/view/6374 +[46] Wang, Z., Yang, L., Yang, J., Li, T., He, L., Li, Z.: A triple relation +network for joint entity and relation extraction. Electronics 11(10) (2022). +https://doi.org/10.3390/electronics11101535 +[47] Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of +deep bidirectional transformers for language understanding. In: Burstein, +J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of +the North American Chapter of the Association for Computational Lin- +guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, +MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. +4171–4186. Association for Computational Linguistics, ??? (2019). https: +//doi.org/10.18653/v1/n19-1423. https://doi.org/10.18653/v1/n19-1423 + +Springer Nature 2021 LATEX template +26 +Article Title +[48] Yang, J., Ma, S., Zhang, D., Wu, S., Li, Z., Zhou, M.: Alternating language +modeling for cross-lingual pre-training. In: AAAI 2020, pp. 9386–9393 +(2020) +[49] Conneau, +A., +Khandelwal, +K., +Goyal, +N., +Chaudhary, +V., +Wen- +zek, G., Guzm´an, F., Grave, E., Ott, M., Zettlemoyer, L., Stoy- +anov, V.: Unsupervised cross-lingual representation learning at scale. +In: +Proceedings +of +the +58th +Annual +Meeting +of +the +Association +for Computational Linguistics. Association for Computational Lin- +guistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.747. +https://aclanthology.org/2020.acl-main.747 +[50] Yang, J., Ma, S., Dong, L., Huang, S., Huang, H., Yin, Y., Zhang, D., +Yang, L., Li, Z., Wei, F.: Ganlm: Encoder-decoder pre-training with +an auxiliary discriminator. CoRR abs/2212.10218 (2022) 2212.10218. +https://doi.org/10.48550/arXiv.2212.10218 +[51] Liu, J., Yu, T., Peng, H., Sun, M., Li, P.: Cross-lingual cross-modal con- +solidation for effective multilingual video corpus moment retrieval. In: +NAACL 2022, pp. 1854–1862 (2022) +[52] Yang, J., Yin, Y., Ma, S., Zhang, D., Wu, S., Guo, H., Li, Z., +Wei, F.: UM4: unified multilingual multiple teacher-student model for +zero-resource neural machine translation. In: Raedt, L.D. (ed.) Pro- +ceedings of the Thirty-First International Joint Conference on Artifi- +cial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp. +4454–4460. ijcai.org, ??? (2022). https://doi.org/10.24963/ijcai.2022/618. +https://doi.org/10.24963/ijcai.2022/618 +[53] Yang, J., Ma, S., Huang, H., Zhang, D., Dong, L., Huang, S., Muzio, A., +Singhal, S., Hassan, H., Song, X., Wei, F.: Multilingual machine transla- +tion systems from microsoft for WMT21 shared task. In: WMT@EMNLP +2021, pp. 446–455 (2021) +[54] Guo, H., Liu, J., Huang, H., Yang, J., Li, Z., Zhang, D., Wei, F.: Lvp- +m3: Language-aware visual prompt for multilingual multimodal machine +translation. EMNLP (2022) +[55] Firat, O., Cho, K., Bengio, Y.: Multi-way, multilingual neural machine +translation with a shared attention mechanism. In: Knight, K., Nenkova, +A., Rambow, O. (eds.) NAACL HLT 2016, The 2016 Conference +of the North American Chapter of the Association for Computa- +tional Linguistics: Human Language Technologies, San Diego California, +USA, June 12-17, 2016, pp. 866–875. The Association for Compu- +tational Linguistics, ??? (2016). https://doi.org/10.18653/v1/n16-1101. +https://doi.org/10.18653/v1/n16-1101 + +Springer Nature 2021 LATEX template +Article Title +27 +[56] Johnson, M., Schuster, M., Le, Q.V., Krikun, M., Wu, Y., Chen, Z., Tho- +rat, N., Vi´egas, F.B., Wattenberg, M., Corrado, G., Hughes, M., Dean, J.: +Google’s multilingual neural machine translation system: Enabling zero- +shot translation. Trans. Assoc. Comput. Linguistics 5, 339–351 (2017). +https://doi.org/10.1162/tacl a 00065 +[57] Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., +Baines, M., Celebi, O., Wenzek, G., Chaudhary, V., Goyal, N., Birch, T., +Liptchinsky, V., Edunov, S., Auli, M., Joulin, A.: Beyond english-centric +multilingual machine translation. J. Mach. Learn. Res. 22, 107–110748 +(2021) +[58] Lin, Z., Pan, X., Wang, M., Qiu, X., Feng, J., Zhou, H., Li, L.: Pre-training +multilingual neural machine translation by leveraging alignment informa- +tion. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the +2020 Conference on Empirical Methods in Natural Language Processing, +EMNLP 2020, Online, November 16-20, 2020, pp. 2649–2663. Association +for Computational Linguistics, ??? (2020). https://doi.org/10.18653/v1/ +2020.emnlp-main.210. https://doi.org/10.18653/v1/2020.emnlp-main.210 +[59] Aharoni, R., Johnson, M., Firat, O.: Massively multilingual neural +machine translation. In: Burstein, J., Doran, C., Solorio, T. (eds.) Pro- +ceedings of the 2019 Conference of the North American Chapter of the +Association for Computational Linguistics: Human Language Technolo- +gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume +1 (Long and Short Papers), pp. 3874–3884. Association for Compu- +tational Linguistics, ??? (2019). https://doi.org/10.18653/v1/n19-1388. +https://doi.org/10.18653/v1/n19-1388 +[60] Zhang, B., Williams, P., Titov, I., Sennrich, R.: Improving massively +multilingual neural machine translation and zero-shot translation. In: +Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings +of the 58th Annual Meeting of the Association for Computational Lin- +guistics, ACL 2020, Online, July 5-10, 2020, pp. 1628–1639. Association +for Computational Linguistics, ??? (2020). https://doi.org/10.18653/v1/ +2020.acl-main.148. https://doi.org/10.18653/v1/2020.acl-main.148 +[61] V´azquez, R., Raganato, A., Tiedemann, J., Creutz, M.: Multilingual NMT +with a language-independent attention bridge. In: Augenstein, I., Gella, +S., Ruder, S., Kann, K., Can, B., Welbl, J., Conneau, A., Ren, X., Rei, M. +(eds.) Proceedings of the 4th Workshop on Representation Learning for +NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019, pp. 33–39. +Association for Computational Linguistics, ??? (2019). https://doi.org/ +10.18653/v1/w19-4305. https://doi.org/10.18653/v1/w19-4305 +[62] Philip, J., Berard, A., Gall´e, M., Besacier, L.: Monolingual adapters + +Springer Nature 2021 LATEX template +28 +Article Title +for zero-shot neural machine translation. In: Webber, B., Cohn, T., +He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empir- +ical Methods in Natural Language Processing, EMNLP 2020, Online, +November 16-20, 2020, pp. 4465–4470. Association for Computational Lin- +guistics, ??? (2020). https://doi.org/10.18653/v1/2020.emnlp-main.361. +https://doi.org/10.18653/v1/2020.emnlp-main.361 +[63] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, +A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: +Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vish- +wanathan, S., Garnett, R. (eds.) Advances in Neural Information +Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017). +https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa- +Paper.pdf +[64] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, +G., Dean, J.: Outrageously large neural networks: The sparsely-gated +mixture-of-experts layer. In: International Conference on Learning Rep- +resentations (2017). https://openreview.net/forum?id=B1ckMDqlg +[65] K¨oksal, +A., +¨Ozg¨ur, +A.: +The +RELX +dataset +and +matching +the +multilingual blanks for cross-lingual relation classification. In: Find- +ings +of +the +Association +for +Computational +Linguistics: +EMNLP +2020, +pp. +340–350. +Association +for +Computational +Linguistics, +Online +(2020). +https://doi.org/10.18653/v1/2020.findings-emnlp.32. +https://www.aclweb.org/anthology/2020.findings-emnlp.32 + diff --git a/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt b/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..30dde4fa4464d0488874d8631302ace8e1e48c4f --- /dev/null +++ b/-dE3T4oBgHgl3EQfSgnV/content/tmp_files/load_file.txt @@ -0,0 +1,2206 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf,len=2205 +page_content='Springer Nature 2021 LATEX template Multilingual Entity and Relation Extraction from Unified to Language-specific Training Zixiang Wang1, Jian Yang1, Tongliang Li1, Jiaheng Liu1, Ying Mo1, Jiaqi Bai1, Longtao He2 and Zhoujun Li1* 1State Key Lab of Software Development Environment, Beihang University, Beijing, Beijing, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, Beijing, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Corresponding author(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' E-mail(s): lizj@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Contributing authors: wangzixiang@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' jiaya@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' tonyliangli@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' liujiaheng@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' moying@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' bjq@buaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' hlt@cert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Abstract Entity and relation extraction is a key task in information extraction, where the output can be used for downstream NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Existing approaches for entity and relation extraction tasks mainly focus on the English corpora and ignore other languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Thus, it is critical to improving performance in a multilingual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Meanwhile, multilingual training is usually used to boost cross-lingual performance by trans- ferring knowledge from languages (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', high-resource) to other (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', low-resource) languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, language interference usually exists in multilingual tasks as the model parameters are shared among all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In this paper, we propose a two-stage multilingual train- ing method and a joint model called Multilingual Entity and Relation Extraction framework (mERE) to mitigate language interference across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, we randomly concatenate sentences in differ- ent languages to train a Language-universal Aggregator (LA), which narrows the distance of embedding representations by obtaining the unified language representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, we separate parameters to mit- igate interference via tuning a Language-specific Switcher (LS), which includes several independent sub-modules to refine the language-specific 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='04434v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='CL] 11 Jan 2023 Springer Nature 2021 LATEX template 2 Article Title feature representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After that, to enhance the relational triple extrac- tion, the sentence representations concatenated with the relation feature are used to recognize the entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Extensive experimental results show that our method outperforms both the monolingual and multilingual baseline methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, we also perform detailed analysis to show that mERE is lightweight but effective on relational triple extraction and mERE is easy to transfer to other backbone models of multi-field tasks, which further demonstrates the effectiveness of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Keywords: Joint extraction, Information extraction, Multilingual entity and relation extraction, Relational triple 1 Introduction Entity and relation extraction (ERE) contains two sub-tasks called named entity recognition (NER) [1–4] and relation classification (RC) [5, 6], which is the fundamental step of automatic knowledge graphs (KGs) [7] construction, knowledge discovery and intelligent question answering system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The results of ERE are typically described as a relational triple (h, r, t), where h and t are the head entity and the tail entity, respectively, and r denotes the relation between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For example, for the sentence “Big Ben is in UK.” with a predefined relation called “Locate in”, an ideal relational triple of this sentence is expressed as (Big Ben, Locate in, UK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' As a large amount of data is available from different languages on the Internet, it is important to utilize such valuable resources and develop multilin- gual entity and relation extraction models, which can operate across language barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, most existing methods propose to solve ERE on English corpora, which can only deal with the monolingual extraction task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The main reason is that many languages suffer from the scarcity of corpora in ERE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Thus, multilingual training is proposed to help each other in a shared model, where the well-trained knowledge of high-resource languages can be trans- ferred to low-resource languages with a small amount of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recently, [8] propose a multilingual dataset called SMiLER, which is the first work to apply both monolingual and multilingual training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The authors in [8] introduce the multilingual entity and relation extraction model (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', HERBERTa) without considering interference across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, such language interfer- ence is prevalent in multilingual tasks because of parameter sharing [9–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' As shown in Figure 1, to mitigate interference among languages, we propose to extract the feature representation of the corresponding language sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' First, to facilitate the cross-lingual transfer among different languages, mul- tilingual representations are supposed to be closed under similar semantics using cross-lingual sentence-level concatenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, based on the shared multilingual parameters, the language-specific representations derived from the independent modules can mitigate interference among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 3 Specifically, we propose a two-stage multilingual training method and an 我爱吃苹果。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' amo le mele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' I love apples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=" J'adore les pommes." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' … Unified Feature Chinese Feature Italian Feature English Feature French Feature Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1 This example includes 4 sentences from different languages, which express the same meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The four arrows represent four independent sentence representations extracted from different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' effective model called multilingual Entity and Relation Extraction framework (mERE) to address the multilingual ERE task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the first stage, we utilize a cross-lingual encoder to encode different language sentences and extract rela- tions directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, we train the joint model with our Language-universal Aggregator (LA) to generate the unified language feature, which narrows the distance of similar semantic representation across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' LA consists of a self-attention layer and is trained by random multi-sentences concatena- tion, which is used to learn semantic similarities in multilingual training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the second stage, to alleviate the interference among languages, we freeze the parameters of LA and cross-lingual encoder in the first stage and optimize the independent parameters via fine-tuning the model with a Language-specific Switcher (LS), which consists of several independent sub-modules to produce the specific language features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Meanwhile, a selection mechanism is applied to choose the optimal group of sub-modules from LS, which enables the sub- module to share the same parameters with a certain group of languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such an automatic sub-module selection mechanism saves many model parameters when the number of languages is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After that, each token representation is concatenated with the relation representation to enhance the recognition of the positions of entities in a sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Finally, in mERE, we adopt joint training to mitigate the error propagation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conduct extensive experiments on the SMiLER benchmark of 14 lan- guages with 36 relations (including no relation) in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The experimental results demonstrate that our method outperforms previous monolingual and multilingual ERE baseline methods by a large margin across languages, which demonstrates that our method can effectively mitigate language interference by improving representation quality among languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, we conduct detailed experiments to analyze how our method affects relational triple extrac- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Moreover, our method is simple but effective, and it is also easy to transfer to different backbone models of multi-field tasks with lightweight modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 4 Article Title 2 Related Work Information Extraction Information extraction mainly focuses on extract- ing knowledge from unstructured text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' A well-known system called Never- Ending Language Learner was reading the Web for almost 10 years to collect new instances of pre-defined relations and entity types [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Instead of the pre- defined entity and relation types, Open Information Extraction (OpenIE) has also attracted much attention during the past decade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' A notable example is TextRunner [13], which utilizes a syntactic parser to extract triples from the Internet automatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Many systems have been proposed subsequently, such as rule-based systems [14–16] and clause based systems [17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recent super- vised methods are divided into three categories based on different architectures: (1) Generation-based models are typically sequence-to-sequence structure [19– 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2) Sequence labeling-based models using Begin Inside Outside (BIO) or Subject Relation Object None (SRON) to label every word in a sentence [22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (3) Span-based model takes advantage of span level feature which can be sufficiently exploited [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Entity and Relation Extraction Early entity and relation extraction tasks use a pipeline approach, which are two separate subtasks including named entity recognition and relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [25] first works on Recurrent Neu- ral Network (RNN) based model for extraction, capturing the semantics of the entity and its adjacent phrases through parsing trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' While [26] uses a syntac- tic tree-based RNN model to add weights to the important phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [27] first used a Convolutional Neural Network (CNN) structure to fuse the extracted word and sentence level features for extraction work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [28] uses a CNN structure based on a dependency tree to improve the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, the pipeline approach has inevitable deficiencies: (1) The architecture ignores the interac- tions between entities and relations, causing the error propagation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2) Some of the extracted entities are redundant in the named entity recognition phase, resulting in a degradation of performance in the relation classification phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Most studies focus on the joint approach, which models entity recognition and relation classification in the same network and naturally relieves error propagation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The initial joint models are feature-based methods that heavily rely on NLP tools and manual efforts [29–32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recent joint models are typically neural network-based methods, which benefit from their excellent fea- ture learning capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' SPTree [33] is the first joint model based on the neural network method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Due to the two subtasks decoding with independent decoders but sharing parameters of the same encoding layers, this architecture also is known as parameters sharing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Following such kind of structure, [34] proposed an LSTM-based network that decodes entities and a CNN network to classify relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [35, 36] employ CRF to improve performance of entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [37–40] use a pre-trained model called bidirectional encoder representation from transformers (BERT) to improve the accuracy of entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [41] proposes a multi-feature fusion sentence representation and decoder sequence annotation to handle the overlapping triples which are overlapped with one Springer Nature 2021 LATEX template Article Title 5 or two entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Another architecture is joint decoding, which extracts entity pairs and corresponding relations simultaneously in one stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' NovelTagging [42] first proposes a tagging scheme to implement a joint decoding manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' But it cannot figure out the overlapping problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The sequence-to-sequence scheme [43–46] models relational triples as a sequence, which can naturally deal with the nested entity and overlapping problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Multilingual Models Multilingual models are a type of model that per- forms cross-lingual transfer among different languages, such as multilingual pre-training [47–51] and machine translation [11, 52–54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, mBERT pre-trained on 104 languages in Wikipedia has a strong ability for cross- lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Multilingual neural machine translation (MNMT) trains a single NMT model in multiple language pairs supporting translation direc- tions between multiple languages by sharing parameters [55–58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Early studies mainly utilize high-resource languages to help low-resource languages and even perform zero-shot transfer translation [59, 60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Recent studies focus on designing language-specific components to mitigate the language interference in shared parameters, especially on high-resource pairs [11, 61, 62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Our method boosts the sentence representation quality from superior unified representation to further language-specific representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Multilingual Entity and Relation Extraction Existing entity and rela- tion extraction datasets are insufficient in diversity and size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' English is always used to be training corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' [8] presents a new, large and diversified dataset Samsung MultiLingual Entity and Relation Extraction (SMiLER) dataset to entity and relation extraction both for English and multilingual setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' This is currently the most comprehensive and largest multilingual dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In this paper, we propose a multilingual entity and relation extraction framework called mERE with two-stage training strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the first stage, we concatenate random sentences and use the self-attention mechanism [63] to learn the unified representation across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Inspired by MoE [64], we use several sub-modules with a selection mechanism to learn the specific representation of each language in the second stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such two-stage learning greatly improves the performance of relational triple extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3 Methodology In this section, we introduce the details of our training method for the multi- lingual joint extraction model as shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We propose a two-stage training strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the first stage, we train a Language-universal Aggrega- tor (LA) for learning the unified representations among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the second stage, we freeze the parameters and fine-tune the Language-specific Switcher (LS), which is applied to select specific feature representations of various languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 6 Article Title FR: Tour Eiffel à Paris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' EN: Big Ben is in UK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ES: España en Europa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' IT: Torre pendente di Pisa in Italia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ….' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Cross-lingual Pretrained Encoder Embeddings Classifier Relation [CLS] [CLS] 𝜃1 𝜃2 𝜃3 𝜃4 Language-universal Aggregator Language-specific Switcher Entity1 Entity2 Big Ben UK Weighted sum NER Concatenate Encoder RC Switcher-based Tuning NER LA Encoder RC NER LA LS Freeze Multilingual Training Selection Distribution Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2 The left part shows the two-stage training strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The right part is our frame- work with Language-universal Aggregator (LA) for unified representation generation and Language-specific Switcher (LS) for language-specific feature extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We first train the LA with a concatenation of 2 random sentence representations, which are denoted as the green boxes (English) and yellow boxes (Italian) below the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Note that each sentence representation is directly regarded as input of LA during the evaluation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Then, we freeze part of the parameters and fine-tune the LS with all sub-modules during the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The figure illustrates 4 sub-modules of LS with a top-2 strategy during evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 Task Formulation The goal of multilingual joint entity and relation extraction aims to identify all possible relational triples from sentences in different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Formally, given a sentence X from multilingual corpora D = {Dn}N n=1, where N represents the number of the all languages Lall = {Ln}N n=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The probability of the target triple Y = {s, r, o} is defined as below: P(Y | X) = p(r | X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' φ)p(s, o | X, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ϕ), (1) where r denotes relation, s and o are subject (head entity) and object (tail entity), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' p(r | X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' φ) means relation is only related to sentence X, and p(s, o | X, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ϕ) means the entity pair (s, o) is related to both sentence X and the relation r that they shared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 Language-aggregation Training We train the model with Language-universal Aggregator (LA) to learn the unified representation, which effectively narrows the distance of semantic representations across different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To obtain context representations of each token from the multilingual sentences, we utilize the cross-lingual pre-trained encoder for building a multilingual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Given the sentence XLn = {xLn 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , xLn i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , xLn m } with m tokens (including [CLS], [SEP] and Springer Nature 2021 LATEX template Article Title 7 [PAD]), xLn i ∈ Rd is the i-th token embedding and d is the embedding size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The whole sentence is encoded by the cross-lingual pre-trained encoder: hLn = H(XLn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' φ), (2) where hLn = {hLn 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , hLn i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , hLn m } ∈ Rm×d represents the encoded rep- resentation and d is the hidden size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' H denotes the cross-lingual pre-trained encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Meanwhile, a relation classifier W r ∈ Rd×U is used to project pooled output vector hp (from the [CLS] token) to the relation rc, where U is the number of relation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relation extraction is defined as: rc = hpW r, (3) To better learn the unified semantic representation among multiple lan- guages, we randomly sample s sentences of different languages from the training corpora to generate the cross-lingual representations using Equation 2 and concatenate them to obtain hcat = [h LX1 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , h LXi i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , hLXs s ], where LXi denotes the language symbol of the i-th sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Considering that each token needs to capture the dependency of inner-sentence and acquire semantic sim- ilarity representation of inter-sentence among languages, we train LA which applies the self-attention mechanism for fusing the information of the given concatenated representation: ˆhcat = SF(QKT √ϵ )V (4) where Q = hcatWq, K = hcatWk and V = hcatWv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' SF represents the softmax operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The three-parameter matrices Wq, Wk, and Wv are trainable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The term 1/√ϵ is the scaling factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ˆhcat = {ˆh LX1 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , ˆh LXi i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , ˆhLXs s } and ˆh LXi i is i-th element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Instead of using language-specific features generated via Equation 8, we directly utilize each element representation in ˆh LXi i to train the model via Equation 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 Language-specific Training To acquire features of a specific language, we freeze the parameters of language aggregation and cross-lingual encoder in the first training stage and fine-tune the model with LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After obtaining the unified representation via LA, we extract the language-specific features via the LS with the selection mechanism from the unified representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Given the language symbol Ln ∈ Lall(1 ≤ n ≤ N) and our LS θ = {θt}T t=1(1 ≤ t ≤ T , 1 ≤ T ≤ N), our selection mechanism is used to select corresponding sub-modules θf(Ln), in which f(·) is a function that maps a lan- guage to corresponding LS modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To design an appropriate map function for our selection mechanism, each sentence is prefixed to the corresponding lan- guage symbol, which enables the model to correctly route sentences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, Springer Nature 2021 LATEX template 8 Article Title all sub-modules from LS attend to the selection procedure during the training stage, which solves the undifferentiability problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, the function ft(·) indicates the probability of selection of sub-module θt: ft (Ln) = exp � eLn t � �T i=1 exp � eLn i � (5) where eLn i is i-th element of the probability vector eLn = El[n]Wf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' El ∈ RN×d denotes the look-up table for all language prefix embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The router matrix Wf ∈ Rd×T is used to project eLn which are normalized via a softmax distribution over the total T modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For each sub-module θt from θ, we utilize Eθt(·) to transform unified feature representation ˆhLn into language-specific feature branch ˜hLn θt : ˜hLn θt = Eθt(ˆhLn) (6) Eθt(ˆhLn) = LN � σ(ˆhLnWu)Wd + ˆhLn� (7) where ˆhLn ∈ Rm×d is an element of ˆhcat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Wu ∈ Rd×b and Wd ∈ Rb×d are projection matrices (b > d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' σ is the ReLU activation function and LN(·) is the layer normalization function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The right part of Figure 2 corresponds to Equation 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To ensure gradients are propagated to all sub-modules of LS {θt}T t=1, we apply the weighted average for obtaining the language-specific feature: ˜hLn = T � t=1 ft(Ln)Eθt � ˆhLn� (8) Note that for the whole process, function ft(Ln) in Equation 8 permits differentiability of the router.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the evaluation stage, it is necessary to prune several sub-module branches with the lowest selection probabilities to obtain the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' There- fore, we use the top-K strategy to select the best k(1 ≤ k ≤ T ) sub-modules with the highest probabilities to generate the language-specific representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' When k = T indicates all sub-modules involved in the calculation which means the selection mechanism is the same as the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The mapping pro- cess is described as: Ln −→ {πLn 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , πLn i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , πLn k } ∈ Π(k), where πLn i is one of the sub-module index that corresponds to language Ln and Π(k) is the space of all k-length combinations of Ck T in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' After obtaining the language-specific representation from LS, we create four matrices to recognize the head and tail positions of two named entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To enhance the accuracy of recognition, we add a relation feature that constrains the extracted entities that are only related to the relevant relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Formally, given a language-specific representation ˜hLn ∈ Rm×d of the m-length sentence Springer Nature 2021 LATEX template Article Title 9 and the relation vector re retrieved from relation embedding table Er ∈ RI×d, where I is the number of relations, the two entities are recognized as followed: entityx = (η((˜hLn ⊕ re)Wy))Uy (9) where the symbol collection entity={head, tail}, x={start,end} and y = {hs, he, ts, te}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We concatenate the relation vector with each token rep- resentation to enhance the recognition of entities, namely ˜hLn ⊕ re = {[˜hLn 1 , re], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , [˜hLn i , re], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' , [˜hLn m , re]} ∈ Rm×2d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Wy ∈ R2d×d are four down projection matrices and Uy ∈ Rd×1 are four index projection matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' η denotes tanh activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Note that we use ground-truth relation as input in training entity recognition, which conforms to the joint training method in our architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 Training Objective Our model presented in Figure 2 is trained jointly on multilingual ERE cor- pora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We first train the model only using a multilingual training strategy for our Language-universal Aggregator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Based on the unified language representa- tion, we fine-tune the model with Language-specific Switcher for learning the language-specific feature in the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The objective is to minimize the two training loss functions which are defined below: LLAT = M � m=1 E(x,y)∼Dm[Lere(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Θ)] (10) LLST = M � m=1 E(x,y)∼Dm[Lere(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Θ, θ)] (11) where D means multilingual entity and relation extraction training corpora and M denotes the number of the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Θ indicates shared parameters and θ is parameters in LS with selection mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Lere is the loss function for entity and relation extraction, which is defined as below: Lere = α 2 (Lstart h + L end h + L start t + L end t ) + βLrel (12) where each L with any superscript is a cross-entropy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The subscripts with h and t indicate the head entity and tail entity respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The start and end of superscripts denote the first token index and last token index of an entity separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Lrel is the loss function for relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' α and β are two weights on entity recognition loss and relation classification loss respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 10 Article Title 4 Experiments 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 Datasets We evaluate our model on the dataset SMiLER [8], which is the largest and most diversified multilingual dataset for multilingual entity and relation extraction tasks with 14 languages from 36 relation types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The SMiLER con- sists of about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1M annotated sentences from Wikipedia and DBpedia, which includes English (En), Korean (Ko), Italian (It), French (Fr), German (De), Portuguese (Pt), Nederlands (Nl), Polish (Pl), Spanish (Es), Arabic (Ar), Rus- sian (Ru), Swedish (Sv), Farsi (Fa), Ukrainian (Uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relation types belong to roughly nine domains: location, organization, person, animal, art, device, measurement, event, and no relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The statistics of SMiLER are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' As the development set in SMiLER is not publicly available, we only randomly extract the sentences from the training set to create new files with the same split ratio as the original paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Table 1 The statistics of SMiLER dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' English corpora include full-size, middle-size, and small-size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The languages are ordered from high-resource languages (left) to low-resource languages (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Languages EN-full EN-mid It Fr De Pt Nl En-small Ko Pl Es Ar Ru Sv Fa Uk sentences num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 748k 269k 76k 62k 53k 45k 40k 35k 20k 17k 12k 9k 7k 5k 3k 1k relation types 36 36 22 22 22 22 22 32 28 22 22 9 8 22 8 7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 Implementation Details We conduct experiments on SMiLER, 14 languages in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' EN-small is treated as our English corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We utilize mBERT as our cross-lingual encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We train our model with AdamW, the learning rate is 3e-5 and weight decay is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The batch size is set to 16 on Tesla V100 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The hidden size d is 768 and dimension b of projection matrices Wu and Wd is 1024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The max sequence length is 256 and we concatenate 2 sentences during the first training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For the second training stage, we freeze most parameters in the first stage except the relation classifier and 8 matrices used to predict entities from Equation 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The sub-module number T of LS is set to 6 (2 layers for 3 sub-modules and 1 layer for the other).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The epoch is set to 5 at the first stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The max epoch of the second stage is set to 8 with an early stopping mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The loss weights are set to 2 in named entity recognition and 1 in relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the evaluation stage, we set k = 3 in the top-K strategy to select the sub-modules in LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We adopt standard micro-F1 metric to calculate scores on the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The extracted entity pair is regarded as correct if the predictions of the head entity and tail entity are both the same as the ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' A triple is treated as correct if the entity pair and the corresponding relation type are all correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' no relation type is included in relation prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We also add a mask for the relation that is not absent in a language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 Baselines As far as we know, the SMiLER is a new dataset and thus only an existing method for multilingual ERE without publishing source code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relevant task is cross-lingual relation classification, which is also few in studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' There- fore, we reproduce the following competitive baselines to compare with our proposed approach for a fair comparison: HEBERTa [8]: A multilingual entity and relation extraction framework called Hybrid Entity and Relation extraction BERT, which achieves the state-of-the-art performance on SMiLER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' HERBERTa uses a pipeline train- ing manner that combines two independent BERT models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The first sub-model classifies the input sequence as one of 36 pre-defined relations (including no relation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The relation generated from the first sub-model is then fed to the second BERT and concatenated with the same input sequence as the input of the second model for entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' mBERT [65]: A cross-lingual model first uses the mBERT as a backbone for RC, which is trained on 104 languages with the corresponding Wikipedia dumps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We reproduce the results with the code shared at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' com/boun-tabi/RELX MTMB [65]: A multilingual pre-training scheme called Matching the Mul- tilingual Blanks (MTMB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The framework shows several advantages against the mBERT on monolingual tasks and achieves significant improvements in cross-lingual transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Note that this framework is only designed for RC and not adapted to entity and relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Therefore, we simply modified the output layer of the baseline to conduct the ERE task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In addition to the above baselines, we also build a simplified multilin- gual joint entity and relation extraction framework called mERE-LS-LA as a basic structure which is concatenated relation representation with the sentence representation to enhance the extraction performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Table 2 The F1 scores of different models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' * denotes the model is reproduced by us on our experiment settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' - denotes that the language data is not involved both in the training and the evaluation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' MONO, EURO, and SVO mean training data in 3 different language groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The languages are ordered from high-resource languages (left) to low-resource languages (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The bold font number is the best score in each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Test Sets AVG It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk HERBERTa* 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mBERT*1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 MTMB*1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE (EURO) 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 mERE (SVO) 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE-LS 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE-LS-LA (MONO) 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 mERE-LS-LA 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1We modified the output layer to implement the entity recognition to accommodate the ERE task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We train the model in the joint training method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 12 Article Title 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 Models and Languages Comparison The results presented from the Tables are rounded to one decimal place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' From Table 2, our method improves multilingual baselines by a large margin over pre- vious baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' There is a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3% improvement on averaged F1 score compared with the previous strongest baseline MTMB which outperforms HERBERTa due to its strong multilingual pre-training scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Our mERE achieves the best scores on 8 out of 14 languages, especially on high-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The other 5 out of 6 languages achieve the second-best scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Surprisingly, even our baseline mERE-LS-LA has 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9% improvement over the MTMB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It seems that our basic structure is more effective on multilingual entity and rela- tion extraction tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Compared with mERE-LS that only uses LA, our full model mERE has nearly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7% F1 value improvement on average and yields similar or higher results on 13 languages except for Sv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The improvement can be attributed to our switcher-based language-specific training strategy, which finally extracts accurate information for entity recognition in each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Compared with our baseline mERE-LS-LA, our full model mERE has nearly 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4% F1 value improvement on average which means mERE-LS also has nearly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7% F1 value improvement on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' All such impressive results demon- strate that our full model mERE truly enhances the representation quality and mitigates language interference to a certain extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We set several language groups to analyze the impact of different languages: (1)MONO: 14 languages in monolingual training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2)EURO: It, Fr, Pt, De, Es, En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (3)SVO2: EURO, Ru, Sv, Nl, Pl, Uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The default is all languages in multilingual training from Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Compared with mERE-LS-LA training in multilingual corpora, we can observe that multilingual training achieves much higher results than mERE-LS-LA (MONO) monolingual training from Table 2, especially on low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such as improvements of Uk (25%), Fa (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1%), and Ru (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It demonstrates that languages with less training data can benefit most from high-resource languages in multilingual training including ERE tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The results of the EURO family group are close to mERE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is worth noting that Es achieves the best score in the EURO group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that Es benefits a lot from similarities of languages that are in the same language family even with less training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the SVO group, we can also visualize that most languages in EURO decrease slightly with the interference of other non-EURO languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The different language families, or the languages with a big difference in syntactic structures might be the main interference among languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' However, compared with mERE (SVO), mERE yields the same results on low-resource languages and somewhat higher results on high-resource languages even the three non-SVO (Fa, Ar, and Ko) data involved during the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We suppose that these non-SVO languages which are big different from others and are all low-resource may facilitate distinguishing high-resource languages in learning language-specific 2SVO stands for the relative position of the Subject, Verb, and Object in the typical affirmative sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We treat Korean, Farsi, and Arabic as non-SVO languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Arabic is VSO, while Korean and Farsi are SOV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 13 features due to each sub-module from LS being independent, without sharing parameters in the same space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Lastly, we also observe some duplicated F1 scores across low-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' This phenomenon is caused by a small number of sentences in test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 Entity and Relation Analysis Figure 3 shows F1 scores of relation and entity pair of mERE and mERE-LS- LA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We can observe that the relation classification seems to be easier than the named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The correctness of entity pair extraction is the main bottleneck of the model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' With the help of our LA and LS, mERE achieves higher results on entity pair recognition compared with mERE-LS- LA in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Surprisingly, we can visualize that the performance of relation classification also has a slight improvement in mERE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that the improvement of the named entity recognition facilitates relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Since information interaction between two sub-tasks can benefit each other in the joint training architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 50 55 60 65 70 75 80 85 90 95 100 Total It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk Relation(mERE) Entity Pair(mERE) Relation(mERE-LS-LA) Entity Pair(mERE-LS-LA) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3 The F1 scores of relations and entity pairs on all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' F1 scores of detailed relation labels are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Most of the relations achieve higher F1 scores across languages, such as “no relation” and “has-type”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Part of relations differs widely across languages, such as relation “has-child”(F1 = 100 on Nl, F1 = 33 on De, F1 = 0 on Es).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The big difference is caused by the number of relations of training data in each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For some relations that occur F1 = 0 scores, we find out the relations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='g won- award on Nl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' has-parent on Pl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' has-child on Es) are only one test sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Such low results for some languages could be explained by a smaller number of relations in the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Springer Nature 2021 LATEX template ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Article Title ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='En ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='It ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Fr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Pt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Es ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='De ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Ar ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Nl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Ru ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Uk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Sv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Fa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Ko ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='no_relation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='is-where ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='birth-place ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='movie-has-director ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-occupation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='from-country ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-genre ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-author ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-population ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='headquarters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='is-member-of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org-has-member ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-parent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org-has-founder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-spouse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='won-award ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-nationality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org-leader ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='starring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-edu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-child ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='event-year ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-sibling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-length ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='invented-when ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-tourist-attraction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-lifespan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='first-product ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-height ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-highest-mountain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='invented-by ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='has-weight ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='post-code ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='loc-leader ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='eats ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4 The F1 scores of all relation labels on all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The darker color means a higher F1 score, while the lighter color means a lower F1 score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Figure 5 shows F1 scores of head entities and tail entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We can observe that F1 scores of head entities are much higher than tail entities among most languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It seems that head entities are easier to be recognized than tail entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is because the head entity always occurs at the beginning position of the sentence and thus the model probably memorizes the position, while the tail entity does not have any consistent position which is hard to predict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 Ablation Study Sentences Concatenation To validate the effect of the number of sentences for learning the unified features among different languages, we conduct sev- eral experiments on the different numbers of sentences in concatenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We learn from Figure 6 that there are evident F1 improvements with LA on dif- ferent concatenation numbers of sentences over only one sentence encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The multilingual model obtains the best performance when concatenating with the sentence pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The increasing number of concatenated sentences has a slight decrease in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conjecture that increasing the number of sentences may also bring somewhat interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 15 50 55 60 65 70 75 80 85 90 95 100 Total It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk head entity tail entity Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5 The performance of head entities (blue bar) and tail entities (orange bar) on different languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1 2 3 4 Languages 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 F1 score mERE-LS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 6 The performance of sentences concatenation in the first training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Selection Mechanism To observe how the selection mechanism affects our model performance, we also train one-to-one sub-modules of LS called mERE14 without using the selection mechanism in the second training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Each inde- pendent sub-module corresponds to a language and each sentence is routed via a language prefix which represents the number of sub-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We can visualize from Figure 7 that increasing the number of parameters also improves obvi- ously over mERE-LS-LA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Nonetheless, the mERE14 will suffer from the sharp increasing training time and inference time, and big space consumption when the number of languages is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Instead of increasing parameters, our Language-specific Switcher can effectively ameliorate extraction quality with only slight extra parameters and less time consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Since similar languages tend to select the same sub-modules from our LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The mERE saves Springer Nature 2021 LATEX template 16 Article Title nearly 700M model capacity in our statistics and achieves better performance among most languages compared with mERE14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is obvious that mERE is light and easy to transfer to other multi-field tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Selection Distribution It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk Languages 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 F1 scores mERE-LS-LA mERE14 mERE Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 7 The performance of three models on 14 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' mERE14 utilizes 14 one-to-one sub-modules of LS without the selection mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Each sub-module corresponds to a language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Figure 8 illustrates the heatmap of selection probability on 6 sub-modules from LS for each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For each sub-module from top to bottom in Figure 8, we can visualize θ1 pays more attention to low-resource languages while θ4, θ5, and θ6 pay more attention to languages from the EURO family, which are mostly high-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The θ2 and θ3 seem to be more balanced on parameters sharing of languages except for 2 or 3 prominent languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that some sub-modules are mainly used to extract features from similar languages and others are used to assist the specific languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' For each language from left to right, we can visualize that the selected sub-modules with higher probabilities are easy to distinguish in high-resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In contrast, the selection probabilities across all sub-modules are relatively similar on low-resource languages in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We conclude that train- ing data is rich enough to determine which way to route on high-resource languages and a more balanced selection decision is made on less training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It is learned from Figure 8 that there are nearly 3 out of 6 prominently higher selection probabilities on the high-resource languages, and so do the low-resource languages with careful observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It proves that only 3 sub- modules play the dominant role in refining the language-specific feature for each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' To avoid interference from the other irrelevant sub-modules, we adopt a top-K strategy to filter out 6 − k sub-modules with lower selec- tion probabilities in the evaluation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The top-6 strategy means selecting all sub-modules, which is the same as the training stage and the performance is relatively low (77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='74) on average, while our mERE achieves the best perfor- mance (77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='87) when adopting the top-3 strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' It demonstrates that filtering out the least important sub-modules is necessary to enhance the prediction quality, which also reduces the redundant parameters in the evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Springer Nature 2021 LATEX template Article Title 17 top-1 achieves the worst performance (77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='60), which demonstrates the part of sub-modules are also helpful for the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Therefore, the best performance is obtained when the k value is balanced in all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Layer Number of It Fr De Pt Nl En Ko Pl Es Ar Ru Sv Fa Uk 1 2 3 4 5 6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 8 The selection probability distributions of 6 sub-modules from LS on 14 languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The sub-modules {θ}6 1 are numbered from 1 to 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The languages are ordered from high- resource languages (left) to low-resource languages (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The darker color means a higher selection probability to the corresponding sub-module and a lower probability to select a certain sub-module when the color is lighter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Language-specific Switcher Table 3 used to evaluate the effect of the layer number of LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' We divide the 6 sub-modules into 2 groups (each group has the same layer number) with different combinations of layer numbers to accommo- date the scenarios, such as high- and low-resource language feature extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' From Table 3, we can observe that the combination 1-2 achieves the best F1 score on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The combinations which are set to 1-1 and 4-4 also achieve better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' With the increase or decrease of the layer number to a cer- tain degree, the performances are almost the same, which maintains relatively low averaged F1 scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The full layer number combination 4-4 is an exception in the case, which demonstrates the performance still can be improved when the model capacity is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' According to the outcomes from Table 3, we conclude that the layer number of LS obviously impacts the results, with the best results attained when a balance is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5 Conclusion In this paper, we introduce a two-stage training method and a robust frame- work called mERE for multilingual entity and relation extraction, which ameliorates the sentence representation quality and mitigates the language interference among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Specifically, we first learn the gener- alities across all languages to obtain the unified language representation via the Language-universal Aggregator and then learn the specialties of each lan- guage via the Language-specific Switcher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Experimental results demonstrate Springer Nature 2021 LATEX template 18 Article Title Table 3 The different layer numbers of sub-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Every 3 sub-modules in a group has the same layer numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01 and Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='02 denote the layer number of the first group and second group respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01 Layer Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='02 AVG IT FR DE PT NL EN KO PL ES AR RU SV FA UK 1 1 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1 2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1 3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 1 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 2 2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 2 3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 2 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 3 3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 3 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 4 4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='5 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='0 that our method significantly outperforms both monolingual and multilingual ERE baselines, which demonstrates that our framework can extract relational triples among various languages well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Moreover, our framework is also light and easy to transfer to other backbone models of multi-field tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In the future, we will pay more attention to complex multilingual relational triple extraction, such as overlapping relational triples or multiple relational triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Besides, we will also do further research on a better contextual repre- sentation among multiple languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Although there is a long way to experience in multilingual entity and relation extraction tasks, it is important to inves- tigate the valuable structured information in many other languages for the downstream NLP tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' This work was supported in part by the National Nat- ural Science Foundation of China (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 62276017, U1636211, 61672081), the 2022 Tencent Big Travel Rhino-Bird Special Research Program, and the Fund of the State Key Laboratory of Software Development Environment (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' SKLSDE-2021ZX-18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' References [1] Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Bidirectional LSTM-CRF models for sequence tagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' CoRR abs/1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01991 (2015) 1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='01991 [2] Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Shou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Pyramid: A layered model for nested named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Jurafsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schluter, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tetreault, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5918–5928.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='525 [3] Joshi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Weld, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Spanbert: Improving pre-training by representing and predicting spans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Linguistics 8, 64–77 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1162/tacl a 00300 Springer Nature 2021 LATEX template Article Title 19 [4] Tan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Shen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhuang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A sequence-to-set net- work for nested named entity recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3936–3942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2021/542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2021/542 [5] Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Seo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Choi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Zero-shot relation extraction via reading comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Levy, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Specia, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August 3-4, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 333–342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Asso- ciation for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 18653/v1/K17-1034.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/K17-1034 [6] Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Logic-guided semantic representation learning for zero-shot relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Scott, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2967–2978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' International Com- mittee on Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='265.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling- main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='265 [7] Lin, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cambria, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Fusing topology contexts and logical rules in language models for knowledge graph completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Fusion 90, 253–264 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='inffus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='020 [8] Seganti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Firlag, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Skowronska, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Satlawa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Andruszkiewicz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multilingual entity and relation extraction dataset and model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Merlo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tiedemann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsarfaty, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguis- tics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1946–1955.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='eacl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='eacl- main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='166 [9] Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lipton, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsvetkov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': On negative interference in mul- tilingual models: Findings and A meta-learning treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Confer- ence on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4438–4450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Com- putational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='359 [10] Gong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Genzel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Adaptive sparse transformer for multilingual translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' CoRR abs/2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='07358 (2021) 2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='07358 Springer Nature 2021 LATEX template 20 Article Title [11] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': High-resource language-specific training for multilingual neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Raedt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Thirty-First International Joint Con- ference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4461–4467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2022/619.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022/619 [12] Mitchell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Talukdar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Betteridge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Carlson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mishra, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gardner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kisiel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Krish- namurthy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mazaitis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mohamed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Nakashole, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Platanios, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ritter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Samadi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Settles, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wijaya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Saparov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Greaves, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Welling, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Never- ending learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACM 61(5), 103–115 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1145/3191513 [13] Yates, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Banko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Broadhead, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cafarella, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Etzioni, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Soder- land, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Textrunner: Open information extraction on the web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Sidner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schultz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Stone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Human Language Technology Conference of the North American Chapter of the Association of Com- putational Linguistics, Proceedings, April 22-27, 2007, Rochester, New York, USA, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 25–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/N07-4013/ [14] Fader, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Soderland, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Etzioni, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Identifying relations for open infor- mation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A Meeting of SIG- DAT, a Special Interest Group of The ACL, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1535–1545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D11-1142/ [15] de S´a Mesquita, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schmidek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Barbosa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Effectiveness and efficiency of open relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A Meeting of SIGDAT, a Special Interest Group of The ACL, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 447–457.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D13-1043/ [16] White, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Reisinger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sakaguchi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Vieira, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rudinger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rawlins, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Durme, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Universal decompositional semantics on universal dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Carreras, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Duh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2016 Conference on Empirical Meth- ods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1713–1723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d16-1177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d16-1177 Springer Nature 2021 LATEX template Article Title 21 [17] Corro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gemulla, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Clausie: clause-based open information extrac- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Schwabe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Almeida, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Glaser, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Baeza-Yates, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Moon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') 22nd International World Wide Web Con- ference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 355–366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' International World Wide Web Conferences Steering Com- mittee / ACM, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1145/2488388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2488420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1145/2488388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2488420 [18] Angeli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Premkumar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Manning, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' : Leveraging linguistic structure for open domain information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Pro- cessing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 344–354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computer Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p15-1034.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p15-1034 [19] Cui, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Neural open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Gurevych, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Miyao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 407–413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Associa- tion for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/ v1/P18-2065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/P18-2065/ [20] Kolluru, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Aggarwal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rathore, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mausam, Chakrabarti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Imojie: Iterative memory-based joint open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Juraf- sky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schluter, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tetreault, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, ACL 2020, Online, July 5-10, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5871–5886.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/ 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='521 [21] Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Low resource quantitative information extraction via structure searching and prefix-based text generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2023) [22] Stanovsky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Michael, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dagan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Supervised open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Walker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ji, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Stent, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Pro- ceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 885–895.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n18-1081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n18-1081 [23] Kolluru, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Adlakha, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Aggarwal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mausam, Chakrabarti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Springer Nature 2021 LATEX template 22 Article Title Openie6: Iterative grid labeling and coordination analysis for open information extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Conference on Empirical Meth- ods in Natural Language Processing, EMNLP 2020, Online, Novem- ber 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3748–3761.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Lin- guistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='306 [24] Zhan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Span model for open information extraction on accurate corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo- sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 9523–9530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020) [25] Socher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huval, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Manning, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' : Semantic composition- ality through recursive matrix-vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Tsujii, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Henderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Pasca, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2012 Joint Conference on Empiri- cal Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1201–1211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D12- 1110/ [26] Hashimoto, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Miwa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsuruoka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chikayama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Simple cus- tomization of recursive neural networks for semantic relation classifica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A Meeting of SIGDAT, a Special Interest Group of The ACL, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1372–1376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/D13-1137/ [27] Zeng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Relation classification via convolutional deep neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Hajic, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tsujii, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') COLING 2014, 25th International Conference on Computational Linguistics, Pro- ceedings of the Conference: Technical Papers, August 23-29, 2014, Dublin, Ireland, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2335–2344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/C14- 1220/ [28] Xu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Feng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Semantic relation classifi- cation via convolutional neural networks with simple negative sam- pling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: M`arquez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Callison-Burch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Pighin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Marton, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2015 Conference on Empirical Meth- ods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 536–540.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computa- tional Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d15-1062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template Article Title 23 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/d15-1062 [29] Roth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yih, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A linear programming formulation for global inference in natural language tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Ng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Riloff, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceed- ings of the Eighth Conference on Computational Natural Language Learning, CoNLL 2004, Held in Cooperation with HLT-NAACL 2004, Boston, Massachusetts, USA, May 6-7, 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/W04-2401/ [30] Kate, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mooney, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Joint entity and relation extraction using card- pyramid parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Lapata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sarkar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Fourteenth Conference on Computational Natural Language Learning, CoNLL 2010, Uppsala, Sweden, July 15-16, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 203–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ACL, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/W10-2924/ [31] Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lam, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Jointly identifying entities and extracting relations in encyclopedia text via A graphical model approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jurafsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') COLING 2010, 23rd International Conference on Computational Linguistics, Posters Volume, 23-27 August 2010, Beijing, China, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1399–1407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Chinese Information Processing Society of China, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/C10-2160/ [32] Li, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ji, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Incremental joint extraction of entity mentions and rela- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 402–412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computer Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p14-1038.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3115/v1/p14-1038 [33] Miwa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bansal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': End-to-end relation extraction using lstms on sequences and tree structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 54th Annual Meet- ing of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Computer Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/p16-1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/p16-1105 [34] Zheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Joint entity and relation extraction based on a hybrid neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Neuro- computing 257, 59–66 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='neucom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 075 [35] Tan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xiao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Jointly extracting multiple triplets with multilayer translation constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: The Thirty-Third AAAI Con- ference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Springer Nature 2021 LATEX template 24 Article Title 7080–7087.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1609/aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='v33i01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 33017080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1609/aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='v33i01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='33017080 [36] Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Attention as relation: Learning supervised multi-head self-attention for relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Bessiere, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the Twenty-Ninth Inter- national Joint Conference on Artificial Intelligence, IJCAI 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3787–3793.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2020/524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2020/524 [37] Wadden, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wennberg, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Luan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hajishirzi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Entity, relation, and event extraction with contextualized span representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Inui, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP- IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 5783–5788.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1585.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1585 [38] Eberts, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ulges, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Span-based joint entity and relation extraction with transformer pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Giacomo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Catal´a, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dilkina, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Milano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Barro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bugar´ın, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intel- ligence (PAIS 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Frontiers in Artificial Intelligence and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 325, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2006–2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' IOS Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3233/ FAIA200321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3233/FAIA200321 [39] Ji, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Span-based joint entity and relation extraction with attention-based span-specific and contextual semantic representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Scott, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 28th International Conference on Compu- tational Linguistics, COLING 2020, Barcelona, Spain (Online), Decem- ber 8-13, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 88–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' International Committee on Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='coling-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='8 [40] Qiao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Fang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A joint model for entity and relation extraction based on BERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Neural Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 34(5), 3471–3481 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1007/s00521-021-05815-z [41] Lai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cheng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ye, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': RMAN: relational multi-head attention neural network for joint extraction of entities and relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 52(3), 3132–3142 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1007/ s10489-021-02600-2 Springer Nature 2021 LATEX template Article Title 25 [42] Zheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Joint extraction of entities and relations based on a novel tagging scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Barzilay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1227–1236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/P17-1113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/P17-1113 [43] Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zeng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Extracting relational facts by an end-to-end neural model with copy mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Gurevych, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Miyao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 56th Annual Meeting of the Associa- tion for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 506–514.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/P18-1047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/P18-1047/ [44] Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zeng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Learning the extrac- tion order of multiple relational facts in a sentence with reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Inui, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Process- ing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 367–377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1035.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/D19-1035 [45] Nayak, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' : Effective modeling of encoder-decoder archi- tecture for joint entity and relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: The Thirty- Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con- ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 8528–8535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' AAAI Press, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://ojs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='php/AAAI/article/view/6374 [46] Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': A triple relation network for joint entity and relation extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Electronics 11(10) (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='3390/electronics11101535 [47] Devlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Toutanova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': BERT: pre-training of deep bidirectional transformers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Burstein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Doran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Solorio, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4171–4186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1423 Springer Nature 2021 LATEX template 26 Article Title [48] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Alternating language modeling for cross-lingual pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: AAAI 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 9386–9393 (2020) [49] Conneau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Khandelwal, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chaudhary, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wen- zek, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Guzm´an, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Grave, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Stoy- anov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Unsupervised cross-lingual representation learning at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Lin- guistics, Online (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='747.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='747 [50] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Ganlm: Encoder-decoder pre-training with an auxiliary discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' CoRR abs/2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='10218 (2022) 2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='10218.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='10218 [51] Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Peng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Cross-lingual cross-modal con- solidation for effective multilingual video corpus moment retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: NAACL 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1854–1862 (2022) [52] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Guo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': UM4: unified multilingual multiple teacher-student model for zero-resource neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Raedt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Pro- ceedings of the Thirty-First International Joint Conference on Artifi- cial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4454–4460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022/618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='24963/ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='2022/618 [53] Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Muzio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Singhal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hassan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Song, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multilingual machine transla- tion systems from microsoft for WMT21 shared task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: WMT@EMNLP 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 446–455 (2021) [54] Guo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wei, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Lvp- m3: Language-aware visual prompt for multilingual multimodal machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' EMNLP (2022) [55] Firat, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bengio, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multi-way, multilingual neural machine translation with a shared attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Knight, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Nenkova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rambow, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 866–875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' The Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n16-1101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n16-1101 Springer Nature 2021 LATEX template Article Title 27 [56] Johnson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schuster, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Krikun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tho- rat, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Vi´egas, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wattenberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Corrado, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hughes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dean, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Google’s multilingual neural machine translation system: Enabling zero- shot translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Linguistics 5, 339–351 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='1162/tacl a 00065 [57] Fan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bhosale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schwenk, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', El-Kishky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Goyal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Baines, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Celebi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wenzek, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chaudhary, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Birch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liptchinsky, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Edunov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Auli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Joulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Beyond english-centric multilingual machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 22, 107–110748 (2021) [58] Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Pan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Qiu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Feng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Pre-training multilingual neural machine translation by leveraging alignment informa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 2649–2663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/ 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='210 [59] Aharoni, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Johnson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Firat, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Massively multilingual neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Burstein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Doran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Solorio, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Pro- ceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technolo- gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 3874–3884.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Compu- tational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/n19-1388 [60] Zhang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Williams, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Titov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Sennrich, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Improving massively multilingual neural machine translation and zero-shot translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Jurafsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Chai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Schluter, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tetreault, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, ACL 2020, Online, July 5-10, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 1628–1639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/ 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='148 [61] V´azquez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Raganato, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Tiedemann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Creutz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Multilingual NMT with a language-independent attention bridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Augenstein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gella, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ruder, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Can, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Welbl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Conneau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Ren, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Rei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 4th Workshop on Representation Learning for NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 33–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/w19-4305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/w19-4305 [62] Philip, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Berard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gall´e, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Besacier, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Monolingual adapters Springer Nature 2021 LATEX template 28 Article Title for zero-shot neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Webber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Cohn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Proceedings of the 2020 Conference on Empir- ical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 4465–4470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Lin- guistics, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='361.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='361 [63] Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Jones, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Gomez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Kaiser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Polosukhin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Guyon, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Luxburg, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Bengio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Fergus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Vish- wanathan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Garnett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=') Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa- Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='pdf [64] Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Mirhoseini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Maziarz, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Davis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', Dean, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: International Conference on Learning Rep- resentations (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='id=B1ckMDqlg [65] K¨oksal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=', ¨Ozg¨ur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=': The RELX dataset and matching the multilingual blanks for cross-lingual relation classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' In: Find- ings of the Association for Computational Linguistics: EMNLP 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' 340–350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' Association for Computational Linguistics, Online (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='aclweb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='org/anthology/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} +page_content='32' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE3T4oBgHgl3EQfSgnV/content/2301.04434v1.pdf'} diff --git a/.gitattributes b/.gitattributes index 956d871f57e53f209047510ed4005be89f94d060..8b256dd9053642e33c1b3dfc3b38020ba11bfaa6 100644 --- a/.gitattributes +++ b/.gitattributes @@ -4727,3 +4727,69 @@ KE[[:space:]]Research[[:space:]]Center[[:space:]]Intro/vector_store/index.faiss VdE1T4oBgHgl3EQfbATf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text -dA0T4oBgHgl3EQfPP9i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text VdE1T4oBgHgl3EQfbATf/content/2301.03169v1.pdf filter=lfs diff=lfs merge=lfs -text +BNE3T4oBgHgl3EQfswvl/content/2301.04671v1.pdf filter=lfs diff=lfs merge=lfs -text +a9E5T4oBgHgl3EQfew9G/content/2301.05621v1.pdf filter=lfs diff=lfs merge=lfs -text +n9E4T4oBgHgl3EQfuw0c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +3tE1T4oBgHgl3EQfSQPo/content/2301.03065v1.pdf filter=lfs diff=lfs merge=lfs -text +kNAyT4oBgHgl3EQfyPlA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4dAyT4oBgHgl3EQfP_bc/content/2301.00038v1.pdf filter=lfs diff=lfs merge=lfs -text +U9E_T4oBgHgl3EQfxhwl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +69E1T4oBgHgl3EQfBgJT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +IdE3T4oBgHgl3EQfuguG/content/2301.04685v1.pdf filter=lfs diff=lfs merge=lfs -text +ddFAT4oBgHgl3EQf6h5C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +y9E2T4oBgHgl3EQfhgf_/content/2301.03950v1.pdf filter=lfs diff=lfs merge=lfs -text +MdFIT4oBgHgl3EQfcCt7/content/2301.11264v1.pdf filter=lfs diff=lfs merge=lfs -text +79FLT4oBgHgl3EQfsi_P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +_NE5T4oBgHgl3EQfSA5Z/content/2301.05525v1.pdf filter=lfs diff=lfs merge=lfs -text +tdAzT4oBgHgl3EQfc_wl/content/2301.01411v1.pdf filter=lfs diff=lfs merge=lfs -text +3tE1T4oBgHgl3EQfSQPo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4dE0T4oBgHgl3EQfeQDL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +e9FKT4oBgHgl3EQfAy1w/content/2301.11700v1.pdf filter=lfs diff=lfs merge=lfs -text +e9FKT4oBgHgl3EQfAy1w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +-9AyT4oBgHgl3EQfRPbk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +g9E3T4oBgHgl3EQf4AtG/content/2301.04768v1.pdf filter=lfs diff=lfs merge=lfs -text +s9E5T4oBgHgl3EQfKg7i/content/2301.05467v1.pdf filter=lfs diff=lfs merge=lfs -text +2dAyT4oBgHgl3EQfbvf7/content/2301.00271v1.pdf filter=lfs diff=lfs merge=lfs -text +PtFOT4oBgHgl3EQf4zQ-/content/2301.12951v1.pdf filter=lfs diff=lfs merge=lfs -text +g9E3T4oBgHgl3EQf4AtG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +etE0T4oBgHgl3EQfXAB2/content/2301.02286v1.pdf filter=lfs diff=lfs merge=lfs -text +_9AyT4oBgHgl3EQfqvjk/content/2301.00550v1.pdf filter=lfs diff=lfs merge=lfs -text +a9E2T4oBgHgl3EQfFQYC/content/2301.03643v1.pdf filter=lfs diff=lfs merge=lfs -text +S9E3T4oBgHgl3EQfZwr5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +IdE3T4oBgHgl3EQfuguG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +INFIT4oBgHgl3EQfYSsB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ANFRT4oBgHgl3EQftjjG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ntFRT4oBgHgl3EQfbTfo/content/2301.13560v1.pdf filter=lfs diff=lfs merge=lfs -text +ntFRT4oBgHgl3EQfbTfo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +a9E2T4oBgHgl3EQfFQYC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ZNE3T4oBgHgl3EQf2Avb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +btFPT4oBgHgl3EQfxDUf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +l9E3T4oBgHgl3EQfKQkw/content/2301.04351v1.pdf filter=lfs diff=lfs merge=lfs -text +k9E0T4oBgHgl3EQf7wIz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4dAyT4oBgHgl3EQfP_bc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +yNE0T4oBgHgl3EQf-wIo/content/2301.02817v1.pdf filter=lfs diff=lfs merge=lfs -text +K9AzT4oBgHgl3EQfVvwt/content/2301.01288v1.pdf filter=lfs diff=lfs merge=lfs -text +ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf filter=lfs diff=lfs merge=lfs -text +ZNE3T4oBgHgl3EQf2Avb/content/2301.04752v1.pdf filter=lfs diff=lfs merge=lfs -text +PtFOT4oBgHgl3EQf4zQ-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +19E4T4oBgHgl3EQfaQyU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +c9E5T4oBgHgl3EQffw9-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +c9E5T4oBgHgl3EQffw9-/content/2301.05629v1.pdf filter=lfs diff=lfs merge=lfs -text +0NAzT4oBgHgl3EQfDPod/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +TtE3T4oBgHgl3EQfEAn3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf filter=lfs diff=lfs merge=lfs -text +ZdE0T4oBgHgl3EQfnAFi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +eNE0T4oBgHgl3EQf5gKT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HtE3T4oBgHgl3EQfWwou/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +XdFRT4oBgHgl3EQfNjdq/content/2301.13510v1.pdf filter=lfs diff=lfs merge=lfs -text +l9E3T4oBgHgl3EQfKQkw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +YdFQT4oBgHgl3EQfeDYW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +kNE3T4oBgHgl3EQf5gsm/content/2301.04781v1.pdf filter=lfs diff=lfs merge=lfs -text +3NAyT4oBgHgl3EQf1vm8/content/2301.00741v1.pdf filter=lfs diff=lfs merge=lfs -text +e9AzT4oBgHgl3EQfafwj/content/2301.01368v1.pdf filter=lfs diff=lfs merge=lfs -text +yNE0T4oBgHgl3EQf-wIo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +INFIT4oBgHgl3EQfYSsB/content/2301.11247v1.pdf filter=lfs diff=lfs merge=lfs -text +ctE1T4oBgHgl3EQfxgX2/content/2301.03424v1.pdf filter=lfs diff=lfs merge=lfs -text +q9E2T4oBgHgl3EQfKwbV/content/2301.03707v1.pdf filter=lfs diff=lfs merge=lfs -text +k9E0T4oBgHgl3EQf7wIz/content/2301.02779v1.pdf filter=lfs diff=lfs merge=lfs -text +wNFST4oBgHgl3EQfQzi0/content/2301.13760v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/0NAzT4oBgHgl3EQfDPod/vector_store/index.faiss b/0NAzT4oBgHgl3EQfDPod/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8c04f9347cd80bfe83227eb482090c2b8a92e3cf --- /dev/null +++ b/0NAzT4oBgHgl3EQfDPod/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:953ebfb91bafd0bfd41743ecabf306ddc2c1badd4b8da75886fb0547894b9353 +size 6029357 diff --git a/0tFST4oBgHgl3EQfVziF/content/tmp_files/2301.13778v1.pdf.txt b/0tFST4oBgHgl3EQfVziF/content/tmp_files/2301.13778v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..62d4113b85136c41059c60b31c1d3eeaea302efa --- /dev/null +++ b/0tFST4oBgHgl3EQfVziF/content/tmp_files/2301.13778v1.pdf.txt @@ -0,0 +1,1461 @@ +Differentially Private Distributed Bayesian +Linear Regression with MCMC +Barı¸s Alparslan1, Sinan Yıldırım1, 2, and S¸. ˙Ilker Birbil3 +1Faculty of Engineering and Natural Sciences, Sabancı University, ˙Istanbul, Turkey∗ +2Center of Excellence in Data Analytics (VER˙IM), Sabancı University, ˙Istanbul, Turkey +3Department of Business Analytics, University of Amsterdam, Amsterdam, The Netherlands +February 1, 2023 +Abstract +We propose a novel Bayesian inference framework for distributed differentially private +linear regression. We consider a distributed setting where multiple parties hold parts of the +data and share certain summary statistics of their portions in privacy-preserving noise. We +develop a novel generative statistical model for privately shared statistics, which exploits a +useful distributional relation between the summary statistics of linear regression. Bayesian +estimation of the regression coefficients is conducted mainly using Markov chain Monte Carlo +algorithms, while we also provide a fast version to perform Bayesian estimation in one iteration. +The proposed methods have computational advantages over their competitors. We provide +numerical results on both real and simulated data, which demonstrate that the proposed +algorithms provide well-rounded estimation and prediction. +Keywords: Differential privacy, linear regression, distributed learning, MCMC +1 +Introduction +Linear regression is a mathematical method that lies at the core of statistical research. Many +researchers have been working on linear regression since the 19th century, and hence, many +well-known solution methods exist. On a separate note, privacy-preserving statistical learning has +gained popularity and importance in recent years, with differential privacy prevailing as the most +commonly used definition for privacy (Dwork, 2006; Dwork et al., 2014a; Dankar and El Emam, +2013). As a result, there is a recent but growing interest in differentially private linear regression. +Many works in the data privacy literature do not mainly focus on regression but are motivated by +or can be applied to regression. As an example, differentially private empirical risk minimisation +(Chaudhuri et al., 2009; Bassily et al., 2014; Abadi et al., 2016; Kuru et al., 2022) can be applied to +regression once it is cast as a data-driven optimisation problem. Many general-purpose Bayesian +differentially private estimation methods can also be used in regression problems. Williams and +Mcsherry (2010) is one of the first works that considered a hierarchical model for the privatised +data and Bayesian estimation for the model parameters. Zhang et al. (2016) analyse several +differential privacy mechanisms for posterior sampling and suggest using these mechanisms also +∗The study was funded by the Scientific and Technological Research Council of Turkey (T¨UB˙ITAK) ARDEB +Grant No 120E534. Barı¸s Alparslan and Sinan Yıldırım were supported by the project. +1 +arXiv:2301.13778v1 [stat.ML] 31 Jan 2023 + +for linear regression. Dimitrakakis et al. (2017) developed a posterior sampling query algorithm +to combine differential privacy and Bayesian inference. Contrary to those one-sample approaches, +general-purpose differentially private Markov chain Monte Carlo (MCMC) algorithms, which aim +to identify the posterior distribution via iterative sampling, can also be applied to regression +(Wang et al., 2015; Foulds et al., 2016; Wang et al., 2015; Yıldırım and Ermi¸s, 2019; Heikkil¨a +et al., 2019; Gong, 2022; Alparslan and Yıldırım, 2022; Ju et al., 2022). +Several works in the literature are somewhat more directly related to differentially private regression. +Zhang et al. (2012) suggested a functional mechanism method, which is based on perturbing +polynomial objective functions with privacy-preserving noise. As an alternative, Dwork et al. +(2014b); Wang (2018) considered perturbation of summary statistics. Alabi et al. (2022) provide +a technical discussion on different point estimation methods for differentially private simple linear +regression, that is when we have a single feature. Ferrando et al. (2022) present a method to +compute confidence intervals for the coefficients of linear regression. Cai et al. (2021) study the +rates of convergence for parameter estimation with differential privacy via output perturbation, +where a non-private estimator is perturbed. All those works consider point estimation of the +linear regression parameters. +In this paper, we focus on differential private distributed Bayesian inference for the parameters of +linear regression. We use a novel hierarchical model that relies on a distributional relationship +(Proposition 1) between the summary statistics of linear regression, which, to the best of our +knowledge, has not been exploited so far. We propose Bayesian inference algorithms that take +perturbations of summary statistics as observations. The general inferential tool we pick in this +paper is MCMC, a well-known framework for iterative sampling from posterior distributions. As +we shall see, the proposed MCMC algorithms in this paper already have lower computational +complexities per iteration than their closest competitors in Bernstein and Sheldon (2019). Addi- +tionally, we also propose much faster Bayesian estimation methods that perform estimation in +one iteration. Finally, we assume a distributed setting where the total dataset is shared among +multiple parties (data nodes), who want to collaborate for the inference of a common parameter, +see e.g., Heikkil¨a et al. (2017) for such a setting. The non-distributed setting is just a special +case (single data holder) for our methodology. +This paper has connections with several works in the literature, yet it has significant differences +from each of those, as we shall explain below. +For the privacy-preserving mechanism, we consider adding noise to summary statistics of linear +regression, similarly to Wang (2018); Bernstein and Sheldon (2019). The adaSSP framework of +Wang (2018) motivates the fast Bayesian estimation methods developed in this paper. However, +adaSSP is a point estimation method while we aim for a posterior distribution. The latter work, +Bernstein and Sheldon (2019), is particularly related to this paper as they also study Bayesian +linear regression with differential privacy using perturbed statistics of data. However, there are +some important differences between our work and that of Bernstein and Sheldon (2019). These +differences stem from the choice of summary statistics and the consequent hierarchical structure +used for modelling linear regression. Those modelling differences lead to significant differences in +the inference methods as well as significant computational advantages for our methods. Specifically, +the computational complexity of our methods is O(d3), where d is the number of features. This +order is much less than the O(d6) of Bernstein and Sheldon (2019). Finally, neither Wang (2018) +nor Bernstein and Sheldon (2019) has considered a distributed learning setting like we do in +2 + +this paper, although both works can be modified for the distributed setting after moderate +modifications. +Foulds et al. (2016); Heikkil¨a et al. (2017) are other differentially Bayesian inference methods +that target posterior distributions of perturbed summary statistics of sensitive data. The one by +Heikkil¨a et al. (2017) is particularly interesting because they consider a distributed setting and +present linear regression as their showcase example. However, we differ from those works in the +way we model the perturbed statistics and in the choice of inference methods. Specifically, Foulds +et al. (2016); Heikkil¨a et al. (2017) treat the perturbed statistics as if not perturbed, while we +incorporate the effect of perturbation in our model. +Recently, Alparslan and Yıldırım (2022) and Ju et al. (2022) employ data augmentation for +modelling sensitive and privatised data and propose MCMC for Bayesian inference, the latter work +having linear regression as a major application. Their methods have O(n) complexity per iteration +in general where n is the number of instances in the data set, which can be slow when n is large. +In contrast, our methods are scalable in data size since their computational complexities do not +depend on n. We note that Alparslan and Yıldırım (2022, Section 4.2) also present an MCMC +method scalable with n that exploits the approximate normality of additive summary statistics. +However, a direct application of that would lead to an algorithm with O(d6) computational +complexity (per iteration), like in Bernstein and Sheldon (2019). +The paper is organised as follows: In Section 2 we review differential privacy. In Section 3 we lay +out the hierarchical model for differentially private distributed linear regression with perturbed +summary statistics. In Section 4, we present and discuss the aspects of the proposed inference +algorithms. Section 5, we provide numerical experiments. We conclude in Section 6. +Notation: +Matrices and vectors are shown in bold-face notation. For a matrix A, its transpose, +trace, and determinant (whenever they exist) are AT , tr(A), and |A|, respectively. For any +sequence {ai}i≥0, we let ai:j = (ai, . . . , aj). We write x ∼ P to mean the random variable x +has distribution P. N(m, Σ) stands for the multivariate normal distribution with mean m and +covariance Σ. Wishart and inverse-Wishart distributions with scale matrix Λ and κ degrees of +freedom are shown as W(Λ, κ) and IW(Λ, κ), respectively. IG(a, b) stands for the inverse-gamma +distribution with shape and scale parameters a and b. We augment those notations with x to +denote the respective probability density functions (pdf), e.g., as N(x; m, Σ). +2 +Differential Privacy +Differential privacy (Dwork, 2006, 2008) concerns randomised algorithms that run on sensitive, +or usually private, data. A randomised algorithm takes an input data set D ∈ D and returns a +random output in O, where the randomness is intrinsic to the algorithm. A differentially private +algorithm constrains the difference between the probability distributions of the outputs obtained +from neighbouring data sets. We say two data sets are neighbours if they differ by one individual’s +piece of data. +Definition 1 (Differential privacy). A randomised algorithm M : D �→ O is (ϵ, δ)-differentially +private (DP) if for any pair of neighbouring data sets D, D′ ∈ D and for any subset O ⊆ O of the +of support domain, it satisfies +P[M(D) ∈ O] ≤ eϵP[M(D′) ∈ O] + δ. +3 + +The definition implies that smaller (ϵ, δ) leads to more privacy. +Privacy-preserving algorithms often use noise-adding mechanisms. A popular noise-adding mecha- +nism is the Gaussian mechanism (Dwork et al., 2006), which perturbs a function f : D �→ Rk of +the sensitive data, for some k ≥ 1, with a random noise drawn from the Gaussian distribution. +The amount of the added noise depends on the L2-sensitivity of the function, given by +∆f = +max +neighbourD1,D2∈D∥f(D1) − f(D2)∥2. +An (ϵ, δ)-DP Gaussian mechanism returns +f(D) + ∆fσ(ϵ, δ)v, +v ∼ N(0, Ik) +(1) +upon taking D as the input, where the quantity σ(ϵ, δ) ensures (ϵ, δ)-DP. In this work, we take +σ(ϵ, δ) as the analytical solution given in Balle and Wang (2018, Algorithm 1) due to its tightness. +The Gaussian mechanism is also central to other forms of privacy, such as zero-concentrated DP +(Bun and Steinke, 2016) and Gaussian DP (Dong et al., 2022). +In this paper, we consider (ϵ, δ)-DP as the type of privacy and the Gaussian mechanism to generate +noisy observations. Moreover, the proposed methods in this paper never use the sensitive data +once given the noisy observations generated using the Gaussian mechanism, hence exploiting the +post-processing property of differential privacy (Dwork and Roth, 2014). +Theorem 1 (Post-processing). If M : D �→ O be (ϵ, δ)-DP and let f : O → O′ be another mapping +independent of D given M(D). Then fM : D �→ O′ with fM(D) = f(M(D)) is (ϵ, δ)-DP. +3 +Differentially Private Distributed Linear Regression +In this section, we present a new hierarchical model for differentially private distributed linear +regression. For ease of exposition, we first present a model with a single data holder, then +generalise the model for the distributed setting. +3.1 +Basic Model and Privacy Setup +Suppose we have a sequence of random variables {(xi, yi) : i = 1, . . . , n}, where xi ∈ X ⊆ Rd×1 +are the feature vectors and yi ∈ Y ⊆ R is the i’th response variable. We consider the normal +linear regression to model the dependency between xi and yi. Specifically, +yi = xT +i θ + ei, +ei +i.i.d. +∼ N(0, σ2 +y), +i = 1, . . . , n, +where θ ∈ Rd is the vector of the linear regression coefficients. We assume that the feature vectors +xi’s are i.i.d. with distribution Px. Below, we will particularly focus on the case when Px can be +assumed to be a normal distribution. However, we will also present algorithms for general Px. +In matrix notation, the above can shortly be expressed as +y = Xθ + e, +e ∼ N(0, σ2 +yIn), +where X = +� +xT +1 +. . . +xT +n +�T is the so-called design matrix, y = +� +y1 +. . . +yn +�T . Additionally, we +also define the summary statistics of X and y given by +S := XT X, +z := XT y, +4 + +respectively. We assume a setup where S and z are privately released as the noisy summary +statistics ˆS and ˆz are constructed as +ˆS = S + σsM, +(2) +ˆz = z + σzv, +v ∼ N(0, Id), +(3) +where M is a d × d symmetric matrix with its upper triangular elements drawn from N(0, 1). +Dwork et al. (2014b) arrange σs and σz so that both (2) and (3) are (ϵ/2, δ/2) differentially +private, leading to (ϵ, δ)-DP overall. Differently than Dwork et al. (2014b), we set +σs = σz = ∆szσ(ϵ, δ), +where σ(ϵ, δ) is given in Balle and Wang (2018, Algorithm 1), and ∆sz is the overall L2 sensitivity +of [S, z], given by +∆sz = +� +∥X∥4 + ∥X∥2∥Y ∥2 +with ∥X∥ = maxx∈X ∥x∥2 and ∥Y ∥ = maxy∈Y |y|. +Based on the above relations, we shall represent a hierarchical model that enables Bayesian +inference of θ given ˆS and ˆz. One important element of our modelling approach is the following +result that establishes the conditional distribution of z given S, θ, and σ2 +y. +Proposition 1. For the normal linear regression model, we have +z|S, θ, σ2 +y ∼ N(Sθ, Sσ2 +y). +Proof. First, note that, +E[z|X, θ, σ2 +y] = E[XT Xθ + XT e] = Sθ, +(4) +Cov(z|X, θ, σ2 +y) = XT Xσ2 +y = Sσ2 +y, +(5) +and observe that both moments depend on X through its statistic S. Therefore, the conditional +density of z given S, θ, and σ2 +y is +p(z|X, θ, σ2 +y) = N(z; Sθ, Sσ2 +y). +Next, define the function f : Rn×d �→ [0, ∞) with f(X) = p(z|X, θ, σ2 +y) and let CS,θ,σ2y = {X : +XT X = S}, Since the function f is constant over CS,θ,σ2y, we can write +p(z|S) = +� +CS,θ,σ2y +fdPx = N(z; Sθ, Sσ2 +y), +where the second equation is by moment equations in (4) and (5) above. This concludes the +proof. +Finally, we assign prior distributions for θ, σ2 +y as +θ ∼ N(m, C), +σ2 +y ∼ IG(a, b). +(6) +5 + +At this point, it is worth discussing some important modelling differences between our work and +Bernstein and Sheldon (2019). In Bernstein and Sheldon (2019), the central limit theorem (CLT) +is applied to +� +S, z, yT y +� +, leading to a normality assumption for the whole vector. In contrast, +we use the exact conditional distribution p(z|S, θ, σ2) thanks to Proposition 1. Moreover, unlike +Bernstein and Sheldon (2019), we do not require a noisy version yT y, hence have a slight advantage +of using less privacy-preserving noise. In summary, our model has a different hierarchical structure +and requires less privacy-preserving noise. +3.2 +Distributed Setting +Next, we extend our model to the distributed setting, where the total data are shared among +J ≥ 1 data holders as +(X, y) = {(Xj, yj); j = 1, . . . , J}. +(7) +We let ni be number of rows in each xi, so that n = n1 + . . . + nJ. Each data holder j shares +their own summary statistics Sj = XT +j Xj, zj = XT +j yj with privacy-preserving noise +ˆSj = Sj + σsMj, +ˆzj = z + σzvj, +vj ∼ N(0, Id). +(8) +Note that, to preserve a given (ϵ, δ)-DP overall, each party must provide that level of privacy +for their data, hence σs and σz are the same as before. The hierarchical structure of the overall +model (specified for normally distributed xi’s) is shown in Figure 1. +Figure 1: Differentially private distributed linear regression model (specified for normally distributed xi’s.) +The distributed setting deserves separate consideration than the single data holder case for a couple +of reasons: Firstly, the node-specific observations ( ˆS1, ˆz1), . . . , ( ˆSJ, ˆzJ) are altogether statistically +more informative on θ than their aggregates �J +j=1 ˆSj and �J +j=1 ˆzj. This is because the aggregate +versions are not sufficient statistics of the node-specific observations ( ˆS1, ˆz1), . . . , ( ˆSJ, ˆzJ) with +respect to θ (even when σ2 +y is known.) Therefore, when the node-specific observations are available, +one should not, in principle, trivially aggregate them and apply an inference method designed for +J = 1 using those aggregates. +Secondly, the partitioning of data as in (7) can be relevant to data privacy applications even +outside the distributed learning framework, rendering the methodology in Section 4 useful in a +6 + +broader sense. For example, batches of (x, y)-type of data may be donated to a common data +collector as in (8). At this point, a particular and interesting relation exists with pan-privacy +applications (Dwork et al., 2010). Imagine that sensitive data from individuals are collected +sequentially in time, and the data holder is concerned about possible intrusions into the memory +where the sensitive data are stored. Then, one possible way to ensure the privacy of the data +against such possible intrusions, which is the promise of pan-privacy, is to store the noisy statistics +of every new batch of data and erase the original sensitive data. Then, at any time the data +collector has data of the form ( ˆS1, ˆz1), . . . , ( ˆSJ, ˆzJ), each pair corresponding to a batch. As a +result, inference algorithms as in Section 4 can be applied. +4 +Algorithms for Bayesian Inference +Bayesian inference targets the posterior distribution of the latent variables of the model, in +particular θ, given the observations ˆS1:J and ˆz1:J. We present several Bayesian inference algorithms +for the hierarchical model described in the previous section. In addition to other concerns like +computational budget, the choice among those approaches mainly depends on the specification of +Px as the distribution of S directly depends on it. In this paper, we have considered the following +two cases and devised algorithms for each of them: +1. In some cases it may be adequate to specify Px = N(0, Σx). This leads to S|Σx ∼ W(Σx, n). +Further, to account for the uncertainty about the covariance Σx, one can treat it as a random +variable with Σx ∼ IW(Λ, κ). Figure 1 shows the hierarchical structure of the distributed +setting with those specifications. We defer discussing the conflict between the normality and +boundedness assumptions to Remark 1 towards the end of Section 4.1. +2. As the second case, we assume a general (non-normal) Px. A normal approximation, based on +the CLT, could be considered for the distribution S (Wilson and Ghahramani, 2011). However, +this would require the knowledge (or accurate estimation) of up to the fourth moments of Px +as well as expensive computations for sampling S. We circumvent those difficulties by plugging +in a point estimate of S given ˆS and use it during the sampling process as if it is the true +S itself. Then, we develop two different algorithms for inference of θ, one being an MCMC +algorithm and the other providing a closed form-solution for the posterior of θ following a +rough point-wise estimation of σ2 +y. Note that these algorithms with fixed S do not require a +distribution for x. +Next, we provide the details of our approaches and the resulting algorithms. +4.1 +Normally Distributed Features +In this section, we present an MCMC algorithm for Bayesian inference for the differentially private +distributed linear regression model when Px = N(0, Σx) and Σx ∼ IW(Λ, κ). The latent variables +involved in this variant are θ, Σx, σ2 +y, S1:J, z1:J. Their posterior distribution given ˆS1:J, ˆz1:J can +be written as +p(θ, σ2 +y, Σx, z1:J, S1:J|ˆz1:J, ˆS1:J) ∝ p(θ)p(σ2 +y)p(Σx) +J +� +j=1 +p(zj|θ, σ2 +y, S)p(Sj|Σx)p( ˆSj|Sj)p(ˆzj|zj). +(9) +7 + +One could design an MCMC algorithm for this posterior distribution that updates θ, σ2 +y, Σx, z1:J, +S1:J in turn based on their full conditional distributions. However, such an algorithm suffers from +poor convergence because of a high posterior correlation between θ and z1:J (as verified in our +numerical studies). It is well known that highly correlated variables result in poor convergence +if they are updated one conditional on the other. To alleviate that problem, we work with the +reduced model where z1:J are integrated out. The reduced model has θ, Σx, σ2 +y as its latent +variables, whose joint posterior distribution can be written as +p(θ, σ2 +y,Σx, S|ˆz, ˆS) ∝ p(θ)p(σ2 +y)p(Σx) +J +� +j=1 +p(Sj|Σx)p( ˆSj|Sj)p(ˆzj|Sj, θ, σ2 +y), +(10) +where p(ˆz|S, θ, σ2 +y) = N(ˆz; Sθ, σ2 +ySθ + σ2 +zId). +We would like to sample from the posterior distribution in (10) via MCMC that updates θ, σ2 +y, +Σx, S1:J in turn based on their full conditional distributions. The variables θ and Σx enjoy +closed-form full conditional distributions (see Appendix A for the derivations): +Σx|S1:J, ˆS1:J, ˆz1:J ∼ IW +� +�Λ + +J +� +j=1 +Sj, κ + n +� +� , +(11) +θ|σ2 +y, ˆz, S1:J ∼ N(mp, Σp), +(12) +where the posterior moments for θ are +Σ−1 +p += +J +� +j=1 +Sj(σ2 +ySj + σ2 +zI)−1Sj + C−1, +mp = Σp +� +� +J +� +j=1 +Sj(σ2 +ySj + σ2 +zI)−1 ˆzj + C−1m +� +� . +The full-conditional distributions of S1:J and σ2 +y have no closed form; hence we design Metropolis- +Hastings (MH) moves to update them. For σ2 +y, one can simply use a random-walk MH move +targeting p(σ2 +y|θ, S1:J, ˆz1:J). For S1:J, their full conditional distribution can be factorised as +p(S1:J| ˆS1:J, ˆz1:J, Σx, σ2 +y, θ) = +J +� +j=1 +p(Sj| ˆSj, ˆzj, Σx, σ2 +y, θ), +where each factor is given by +p(Sj| ˆSj, ˆzj, Σx, σ2 +y, θ) ∝ p(ˆzj|Sj, θ, σ2 +y)p(Sj|Σx)p( ˆSj|Sj). +Thanks to that factorised form, each Sj can be updated with an MH move independently and +in parallel. For the MH algorithm to update one Sj, we propose a new value from a Wishart +distribution as S′ +j ∼ W(Sj/α, α), which has mean Sj and variance determined by α. In our +experiments, we adjust a using ideas from the adaptive MCMC framework (Andrieu and Thoms, +2008) to target an acceptance rate of around 0.2. +Algorithm 1 represents the overall MCMC algorithm for the hierarchical model for differentially +Bayesian distributed linear regression when Px is a normal distribution with a random covariance +matrix having an inverse-Wishart distribution. We call this algorithm MCMC-normalX. +8 + +Algorithm 1: MCMC-normalX - one iteration +Input: Current values of S1:J, θ, σ2 +y, Σx; observations ˆS1:J,ˆz1:J; noise variances σ2 +s, σ2 +z; +proposal parameters a, σ2 +q; hyperparameters a, b, κ, Λ, m, C. +Output: New sample of Σx, S, σ2 +y, θ +1 Sample Σx using (11). +2 for j = 1, 2, . . . J do +3 +Update Sj via an MH move targeting p(Sj|Σx, θ, ˆzj). +4 Sample θ using (12). +5 Update σ2 +y via an MH move targeting p(σ2 +y|θ, S1:J, ˆz1:J). +Remark 1. Admittedly, a potential concern is a conflict between the normality and boundedness +assumptions (both for x and y). However, we also note that the collected data often happen +to have some natural boundaries (which can be exploited to determine the sensitivity of the +shared statistics), and yet the normal distribution is still used for modelling and subsequent +inference mainly for sake of tractability. With the normality assumption, one can implement +computationally efficient algorithms at the expense of minor modelling inaccuracies. While we +acknowledge the methodologies in Alparslan and Yıldırım (2022, Section 4.2) and Ju et al. (2022) +that can correctly incorporate the effect of truncation into inference, we remark that those methods +pay the price of exactness by having O(n) computational complexity per iteration. +4.2 +Features with a General Distribution +The normality assumption for xi’s in Section 2 may not be adequate for some data sets. Moreover, +when d is large, updating Sj’s can be the bottleneck of MCMC-normalX in Algorithm 1 in terms of +computation time and convergence. We propose two algorithms to address both of those concerns. +As it turns out, those algorithms provide accurate estimations even for the case of normally +distributed features; see Section 5.1. +Our approach for xi’s with a general distribution is based on estimating Sj’s from the beginning, +using some principled estimation method, and fixing Sj’s to those estimates during the whole +course of the inference procedure. In that way, we obtain a faster MCMC algorithm at the expense +of targeting an approximate posterior distribution. Moreover, we have observed in our experiments +that this variant is quite competitive in terms of accuracy, especially when the total number of +nodes J increases. We call this variant MCMC-fixedS and present it in Algorithm 2. +As for estimating Sj’s, one could simply consider taking the privately shared ˆSj as an estimator +for Sj, but ˆSj is not necessarily a positive (semi-)definite matrix. Instead, we propose the nearest +positive semi-definite matrix of to ˆSj as the estimator of Sj in terms of the Frobenius norm. (The +nearest positive definite matrix to ˆSj does not exist.) To find the nearest positive semi-definite +matrix, we follow Higham (1988) and apply the following procedure for each j = 1, . . . , J: (i) +Calculate the eigendecomposition ˆSj = EDET , where E is a matrix of eigenvectors, and D is a +diagonal matrix consisting of the eigenvalues λi. (ii) The nearest symmetric positive semi-definite +matrix is �Sj = ED+ET , where D+ is a diagonal matrix with D+(i, i) = max{D(i, i), 0}. +Note that �Sj found above is the maximum likelihood estimator of Sj given ˆSj (over the set +of positive semi-definite matrices) since the conditional distribution of ˆSj given Sj is a normal +9 + +Algorithm 2: MCMC-fixedS - one iteration +Input: Current values of θ, σ2 +y; estimates ˆS1:J, observations ˆz1:J; noise variance σ2 +z, and +hyperparameters a, b, m, C. +Output: New sample of σ2 +y, θ. +1 Use S1:J = �S1:J throughout. +2 Sample θ using (12). +3 Update σ2 +y via an MH move targeting p(σ2 +y|θ, S1:J, ˆz1:J). +Algorithm 3: Bayes-fixedS-fast +Input: ˆS1:J, ˆz1:J; noise variance: σ2 +z; estimate ˜σ2 +y of σ2 +y; hyperparameters: m, C. +Output: Estimate ˆθ. +1 for j = 1, 2, . . . J do +2 +Calculate the estimate �Sj for Sj using ˆSj. +3 +Calculate Σj = �Sj(˜σ2 +y �Sj + σ2 +zI)−1 �Sj. +4 +Calculate mj = �Sj(˜σ2 +y �Sj + σ2 +zI)−1 ˆzj. +5 return Posterior moments of θ: Σ−1 +post = �J +j=1 Σj + C−1, +mpost = Σpost +� +C−1m + �J +j=1 mj +� +. +distribution with mean Sj. +MCMC-fixedS in Algorithm 2 is faster than MCMC-normalX in Algorithm 1, since it avoids the step +to update Sj’s, which constitutes the main computational burden on Algorithm 1. However, +MCMC-fixedS can be made even faster by fixing σ2 +y also. As a crude estimator, we used ˜σ2 +y = ∥Y∥/3 +throughout the experiments. When σ2 +y is fixed in addition to S1:J, we end up with a non-iterative +method where the posterior distribution of θ is calculated in closed form. We call the resulting +algorithm Bayes-fixedS-fast and present it in Algorithm 3. Algorithm 3 does nothing but +returns the moments of the posterior distribution of θ given �Sj’s, ˆzj’s, ˜σ2 +y, and the prior parameters +for θ. +4.3 +Computational Cost +All our methods described in this section require O(d3) computation (per iteration for the iterative +ones in Algorithms 1 and 2, or as a whole for the fast version in Algorithm 3) since they deal with +d × d matrices. In contrast, as Bernstein and Sheldon (2019) apply CLT to the vector [S, z, yT y], +their methods deal with covariance matrices of size (d2 + d + 1) explicitly, which leads to O(d6) +computation per MCMC iteration. For even moderate d, this computational difference becomes +dramatic and the latter may be prohibitive. Moreover, the complexity of our methods does not +depend on n. This is in contrast to the O(n) complexity of general-purpose methods, such as +Alparslan and Yıldırım (2022, Section 4.3) and Ju et al. (2022), that can be applied to linear +regression. +10 + +4.4 +Extensions +We mention two other variants of our methodology, deferring the details to Appendix B. +Another solution for dealing with non-normal Px could be to average the feature vectors in X +(and the corresponding response variables in y), so that the averaged rows of X can be modelled +as approximately normal, due to CLT. This enables using the methods devised for normally +distributed features. For the details of this approach, see Appendix B.1. +Secondly, if the features are normally distributed but the data are not centred, we need to +include the intercept parameter, which corresponds to appending xi with a one from the left, and +MCMC-normalX does not directly apply. In that case, we can modify the hierarchical model that +accommodates the non-centralised features and the intercept parameter and still benefit from +the sampling techniques involved in MCMC-normalX in Algorithm 1. Appendix B.2 contains the +details of the modified hierarchical model. +5 +Numerical Experiments +We present several numerical evaluations of the proposed methods, MCMC-normalX, MCMC-fixedS, +and Bayes-fixedS-fast with simulated and real data. We compare our algorithms with two +methods: adaSSP of Wang (2018) and the MCMC method of Bernstein and Sheldon (2019) for +differentially private linear regression that we call MCMC-B&S. Note that adaSSP and MCMC-B&S +are originally proposed for the non-distributed setting, that is, J = 1. For a comprehensive +comparison, we have implemented their extensions for J ≥ 1. The details of those extensions are +provided in Appendix C. In particular, we have carefully generalised the model in Bernstein and +Sheldon (2019) for J ≥ 1 similarly as we have done for our model in Section 3.2. What we call +MCMC-B&S is the adaptation of Bernstein and Sheldon (2019, Algorithm 1) for this generalised +model (and (ϵ, δ)-DP). The code to replicate all of the experiments in this section can be found at +https://github.com/sinanyildirim/Bayesian_DP_dist_LR.git. +5.1 +Experiments with Simulated Data +We have considered two different configurations, (n = 105, d = 2) and (n = 105, d = 5), for +the problem size. For each (n, d), we have simulated the data as follows: We have generated +θ ∼ N(0, Id), xi ∼ N(0, Σx) where Σx ∼ IW(Λ, κ) with κ = d + 1 and selected the scale matrix +randomly as Λ = V T V , where V is a d × d matrix of i.i.d. variables from N(0, 1). The response +variables y have been generated with σ2 +y = 1. For inference, we have used the same Λ, κ as above +and a = 20, b = 0.5, m = 0d×1, C = (a − 1)/bId for the other hyperparameters. +We have evaluated the methods at all combinations of J ∈ {1, 5, 10} and ϵ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}. +All the MCMC algorithms have been run for 104 iterations. For each (J, ϵ) pair, we have tried +each method 50 times (each with different noisy observations) to obtain average performances. +For performance metrics, we have looked at the mean squared errors (MSE) of (i) the estimates ˆθ, +and (ii) the predictions ˆy(xtest) generated by the methods. For the Bayesian methods, ˆθ is taken as +the mean posterior, which can be numerically estimated for the MCMC algorithms. For prediction +performance, we have calculated E[ˆy(xtest) − ytest]2. For the Bayesian methods, ˆy(xtest) is the +posterior predictive expectation of ytest at xtest. For adaSSP, we simply take ˆy(xtest) = xT +test ˆθ. +11 + +The results are summarised in Figure 2. We observe that MCMC-fixedS and Bayes-fixedS-fast +outperform adaSSP and MCMC-B&S in almost all cases both in terms of estimation and prediction. +Comparing the full-scale algorithms MCMC-normalX and MCMC-B&S (that involve updates of S), we +observe a clear advantage of MCMC-normalX at d = 2, but MCMC-B&S becomes more competitive at +d = 5. This can be attributed to the fact that MCMC-B&S requires the extra statistic yT y, unlike +MCMC-normalX, which causes MCMC-B&S to use more noisy statistics. This difference becomes more +significant at small d, where the relative effect of the presence of yT y on the sensitivity is more +significant. Finally, all methods improve as ϵ grows, which is expected. +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-9.5 +-9 +-8.5 +-8 +-7.5 +(log-)MSE: prediction, J = 1 +MCMC-normalX +MCMC-fixedS +Bayes-fixedS-fast +MCMC-B&S +adaSSP +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-9 +-8 +-7 +-6 +(log-)MSE: prediction, J = 5 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-9 +-8 +-7 +-6 +-5 +(log-)MSE: prediction, J = 10 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-10.5 +-10 +-9.5 +-9 +(log-)MSE: estimation J = 1 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-10.5 +-10 +-9.5 +-9 +-8.5 +-8 +-7.5 +(log-)MSE: estimation J = 5 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-10 +-9 +-8 +-7 +-6 +(log-)MSE: estimation J = 10 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-6 +-5 +-4 +-3 +-2 +(log-)MSE: prediction, J = 1 +MCMC-normalX +MCMC-fixedS +Bayes-fixedS-fast +MCMC-B&S +adaSSP +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-5 +-4 +-3 +-2 +-1 +(log-)MSE: prediction, J = 5 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-4 +-3 +-2 +-1 +0 +(log-)MSE: prediction, J = 10 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-3 +-2.5 +-2 +-1.5 +-1 +(log-)MSE: estimation J = 1 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-3 +-2.5 +-2 +-1.5 +-1 +(log-)MSE: estimation J = 5 +0.1 +0.2 +0.5 +1 +2 +5 +10 +0 +-2.5 +-2 +-1.5 +-1 +-0.5 +(log-)MSE: estimation J = 10 +Figure 2: Averaged prediction and estimation performances (over 50 runs). Top row: n = 105, d = 2, Bottom row: +n = 105, d = 5. +0 +10 +20 +d +0 +2 +4 +6 +8 #10-3 +J = 1 +MCMC-normalX +MCMC-fixedS +MCMC-B&S +0 +10 +20 +d +0 +0.005 +0.01 +0.015 +0.02 +J = 5 +0 +10 +20 +d +0 +0.01 +0.02 +0.03 +0.04 +J = 10 +Figure 3: Run times per iteration for MCMC algorithms +We also compare the computation times of the MCMC algorithms MCMC-normalX, MCMC-fixedS, +and MCMC-B&S1. Figure 3 shows the run-times of the algorithms vs d. The drastic difference in +computational loads explained in Section 4.3 is also visible in the figure. While MCMC-B&S may be +improved in terms of accuracy as d increases, the O(d6) dramatically slows it down. +1The algorithms were run in MATLAB 2021b on an Apple M1 chip with 8 cores and 16 GB LPDDR4 memory. +12 + +5.2 +Experiments with Real Data +For the real data case, we have used four different data sets from the UCI Machine Learning +Repository. We have disregarded the columns including string data or key values (ID, name, +date, etc.), and we have considered the most right-hand column as y. The finalised data sets are +summarised below. +data set +n +d +hyperlinks +power plant energy +7655 +4 +view link +bike sharing +13904 +14 +view link +air quality +7486 +12 +view link +3d road +347900 +3 +view link +For prediction, we have taken 80% of the data for training and the rest for testing. We present the +average prediction performances (out of 50 runs) in Table 1 for each dataset and J with ϵ = 1. We +observe that the prediction performances of the compared methods are close, while MCMC-fixed-S +and Bayes-fixed-S are arguably the most stable ones. When J > 1 (the distributed data setting), +those two methods beat adaSSP and MCMC-B&S more satisfactorily. +Table 1: Averaged prediction performances (over 50 runs) for the real datasets - ϵ = 1 +J +data sets +MCMC-normalX +MCMC-fixedS +Bayes-fixedS-fast +MCMC-B&S +adaSSP +J = 1 +PowerPlant +0.0129 +0.0129 +0.0129 +0.0128 +0.0139 +BikeSharing +0.0024 +0.0021 +0.0021 +0.0020 +0.0107 +AirQuality +0.0060 +0.0057 +0.0057 +0.0062 +0.0066 +3droad +0.0229 +0.0229 +0.0229 +0.0229 +0.0229 +J = 5 +PowerPlant +0.0133 +0.0134 +0.0134 +0.0136 +0.0235 +BikeSharing +0.0174 +0.0045 +0.0045 +0.0086 +0.0382 +AirQuality +0.0142 +0.0100 +0.0099 +0.0130 +0.0227 +3droad +0.0229 +0.0229 +0.0229 +0.0229 +0.0229 +J = 10 +PowerPlant +0.0142 +0.0143 +0.0143 +0.0143 +0.0351 +BikeSharing +0.0812 +0.0082 +0.0082 +0.0137 +0.0526 +AirQuality +0.0985 +0.0117 +0.0117 +0.0216 +0.0314 +3droad +0.0229 +0.0229 +0.0229 +0.0229 +0.0229 +6 +Conclusion +We propose a novel Bayesian inference framework, with MCMC being its main workhorse, for a +differentially private distributed linear regression setting where the data is partitioned among the +data holders. We provide several Bayesian inference algorithms suited to the developed hierarchical +model for linear regression. Those algorithms can be preferred one over the other depending on +the computational budget, model specifics, or how much we know about the underlying statistical +facts of the data. We exploit the conditional structure between the summary statistics of linear +regression, as given in Proposition 1, which leads to feasible algorithms with computational +advantages over their competitors. The numerical experiments show that the proposed methods +are competitive with their state-of-the-art alternatives in terms of accuracy. +The extensions mentioned in Section 4.4 indicate potential future directions. There is also room +13 + +for improvement of MCMC-normalX. We chose the most common MH moves to update σ2 +y and +Sj’s, without paying much attention to their efficiencies. Especially for large d, more advanced +techniques, such as those stemming from Hamiltonian Monte Carlo (Neal, 2001) or pseudo-marginal +MCMC (Andrieu and Roberts, 2009), may be employed to facilitate the mixing of the algorithm. +7 +Acknowledgement +The study was funded by the Scientific and Technological Research Council of Turkey (T¨UB˙ITAK) +ARDEB Grant No 120E534. +Supplementary material: +The code to replicate the experiments in Section 5 can be found at +https://github.com/sinanyildirim/Bayesian_DP_dist_LR.git. +References +Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. +(2016). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC +Conference on Computer and Communications Security, CCS ’16, pages 308–318, New York, +NY, USA. ACM. 1 +Alabi, D., McMillan, A., Sarathy, J., Smith, A., and Vadhan, S. (2022). Differentially private +simple linear regression. Proceedings on Privacy Enhancing Technologies, 2022:184–204. 1 +Alparslan, B. and Yıldırım, S. (2022). Statistic selection and mcmc for differentially private +bayesian estimation. Statistics and Computing, 32(5):66. 1, 1, 4.3 +Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo +computations. Annals of Statistics, 37(2):569–1078. 6 +Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive mcmc. Statistics and Computing, +18(4):343–373. 4.1 +Balle, B. and Wang, Y.-X. (2018). Improving the Gaussian mechanism for differential privacy: +Analytical calibration and optimal denoising. In Dy, J. and Krause, A., editors, Proceedings of +the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine +Learning Research, pages 394–403. PMLR. 2, 3.1 +Bassily, R., Smith, A., and Thakurta, A. (2014). Private empirical risk minimization: Efficient +algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of +Computer Science, pages 464–473. 1 +Bernstein, G. and Sheldon, D. R. (2019). Differentially private bayesian linear regression. In +Wallach, H., Larochelle, H., Beygelzimer, A., d'Alch´e-Buc, F., Fox, E., and Garnett, R., editors, +Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc. 1, 3.1, +4.3, 5, C.1, C.1 +Bun, M. and Steinke, T. (2016). Concentrated differential privacy: Simplifications, extensions, +and lower bounds. In Proceedings, Part I, of the 14th International Conference on Theory of +Cryptography - Volume 9985, pages 635–658, New York, NY, USA. Springer-Verlag New York, +Inc. 2 +14 + +Cai, T. T., Wang, Y., and Zhang, L. (2021). The cost of privacy: Optimal rates of convergence for +parameter estimation with differential privacy. The Annals of Statistics, 49(5):2825 – 2850. 1 +Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2009). Differentially private empirical risk +minimization. 1 +Dankar, F. K. and El Emam, K. (2013). Practicing differential privacy in health care: A review. +Trans. Data Priv., 6(1):35–67. 1 +Dimitrakakis, C., Nelson, B., Zhang, Z., Mitrokotsa, A., and Rubinstein, B. I. (2017). Differential +privacy for bayesian inference through posterior sampling. Journal of machine learning research, +18(11):1–39. 1 +Dong, J., Roth, A., and Su, W. J. (2022). Gaussian differential privacy. Journal of the Royal +Statistical Society Series B, 84(1):3–37. 2 +Dwork, C. (2006). Differential privacy. In Bugliesi, M., Preneel, B., Sassone, V., and Wegener, +I., editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg. Springer +Berlin Heidelberg. 1, 2 +Dwork, C. (2008). Differential privacy: A survey of results. In Agrawal, M., Du, D., Duan, Z., +and Li, A., editors, Theory and Applications of Models of Computation, pages 1–19, Berlin, +Heidelberg. Springer Berlin Heidelberg. 2 +Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in +private data analysis. In Theory of Cyrptography, pages 265–284. Springer. 2 +Dwork, C., Naor, M., Pitassi, T., Rothblum, G. N., and Yekhanin, S. (2010). Pan-private streaming +algorithms. In ICS, pages 66–80. 3.2 +Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends +Theor. Comput. Sci., 9(3–4):211–407. 2 +Dwork, C., Roth, A., et al. (2014a). The algorithmic foundations of differential privacy. Foundations +and Trends® in Theoretical Computer Science, 9(3–4):211–407. 1 +Dwork, C., Talwar, K., Thakurta, A., and Zhang, L. (2014b). Analyze gauss: Optimal bounds for +privacy-preserving principal component analysis. In Proceedings of the Forty-Sixth Annual ACM +Symposium on Theory of Computing, STOC ’14, page 11–20, New York, NY, USA. Association +for Computing Machinery. 1, 3.1 +Ferrando, C., Wang, S., and Sheldon, D. (2022). Parametric bootstrap for differentially private +confidence intervals. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings +of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of +Proceedings of Machine Learning Research, pages 1598–1618. PMLR. 1 +Foulds, J., Geumlek, J., and an Kamalika Chaudhuri, M. W. (2016). On the theory and practice +of privacy-preserving Bayesian data analysis. Technical report, arxiv:1603.07294. 1 +Gong, R. (2022). Exact inference with approximate computation for differentially private data +via perturbations. Journal of Privacy and Confidentiality, 12(2). 1 +15 + +Heikkil¨a, M., Lagerspetz, E., Kaski, S., Shimizu, K., Tarkoma, S., and Honkela, A. (2017). +Differentially private bayesian learning on distributed data. In Guyon, I., Luxburg, U. V., +Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in +Neural Information Processing Systems, volume 30. Curran Associates, Inc. 1 +Heikkil¨a, M. A., J¨alk¨o, J., Dikmen, O., and Honkela, A. (2019). Differentially private Markov +chain Monte Carlo. In NeurIPS. 1 +Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear +Algebra and its Applications, 103:103–118. 4.2 +Ju, N., Awan, J., Gong, R., and Rao, V. (2022). Data augmentation MCMC for bayesian inference +from privatized data. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances +in Neural Information Processing Systems. 1, 1, 4.3 +Kuru, N., Birbil, S. I., G¨urb¨uzbalaban, M., and Yıldırım, S. (2022). +Differentially private +accelerated optimization algorithms. SIAM Journal on Optimization, 32(2):795–821. 1 +Neal, R. (2001). Annealed importance sampling. Statistics and Computing, 11:125–139. 6 +Wang, Y.-X. (2018). Revisiting differentially private linear regression: optimal and adaptive +prediction & estimation in unbounded domain. In UAI. 1, 5, C.2, C.2 +Wang, Y.-X., Fienberg, S., and Smola, A. (2015). Privacy for free: Posterior sampling and +stochastic gradient monte carlo. In Bach, F. and Blei, D., editors, Proceedings of the 32nd +International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning +Research, pages 2493–2502, Lille, France. PMLR. 1 +Williams, O. and Mcsherry, F. (2010). Probabilistic inference and differential privacy. In Lafferty, +J., Williams, C., Shawe-Taylor, J., Zemel, R., and Culotta, A., editors, Advances in Neural +Information Processing Systems, volume 23. Curran Associates, Inc. 1 +Wilson, A. G. and Ghahramani, Z. (2011). Generalised wishart processes. In Proceedings of the +Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11, page 736–744, +Arlington, Virginia, USA. AUAI Press. 2 +Yıldırım, S. and Ermi¸s, B. (2019). Exact MCMC with differentially private moves. Statistics and +Computing, 29(5):947–963. 1 +Zhang, J., Zhang, Z., Xiao, X., Yang, Y., and Winslett, M. (2012). Functional mechanism: +Regression analysis under differential privacy. Proc. VLDB Endow., 5(11):1364–1375. 1 +Zhang, Z., Rubinstein, B., and Dimitrakakis, C. (2016). On the differential privacy of bayesian +inference. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). 1 +16 + +A +Derivations for MCMC-normalX +We reserve this section for the derivations required for our algorithm MCMC-normalX. +Full Conditional Distribution of Σx: +We note that +p(Σx|S1:J, ˆS1:J, ˆz1:J) ∝ p(Σx) +J +� +j=1 +p(Sj|Σx) += +|Λ|dκ/2 +2dk/2Γd( κ +2)|Σx|−(d+κ+1)/2e− 1 +2 tr(ΛΣ−1 +x ) +J +� +j=1 +|Sj|(nj−d−1)/2e− 1 +2 tr(Σ−1 +x Sj) +2njd/2|Σx|nj/2Γd(nj/2) +∝ |Σx|− n +2 − (d+κ+1) +2 +e− 1 +2 (� tr(Σ−1 +x Sj)+tr(ΛΣ−1 +x )) +∝ |Σx|− (d+κ+n+1) +2 +e− 1 +2 tr((� Sj+Λ)Σ−1 +x ). +Therefore, we have +Σx|S1:J, ˆS1:J, ˆz1:J ∼ IW +� +�Λ + +J +� +j=1 +Sj, κ + n +� +� . +Full Conditional Distribution of θ: +The posterior of θ is proportional to +p(θ|S1:J, σ2 +y, ˆz1:J) ∝ N(θ; m, C)p(ˆz1:J|S1:J, θ, σ2 +y). +For the second factor, we have +p(ˆz1:J|S1:J, θ, σ2 +y) ∝ +J +� +i=1 +p(ˆzj|Sj, θ, σ2 +y) = +J +� +i=1 +N +� ˆzj; Sjθ, σ2 +ySj + σ2 +zI +� +∝ +J +� +i=1 +exp +� +−1 +2(ˆzj − Sjθ)T (σ2 +ySj + σ2 +zI)−1(ˆzj − Sjθ) +� +∝ exp +� +� +�−1 +2 +� +�θT +� +�� +j +Sj(σ2 +ySj + σ2 +zI)−1Sj +� +� θ − 2θT +� +�� +j +Sj(σ2 +ySj + σ2 +zI)−1 +� +� ˆzj +� +� +� +� +� . +Reorganising the terms, we end up with +p(θ|S1:J, σ2 +y, ˆz1:J) ∝ exp +� +−1 +2 +� +θT Σ−1 +postθ − 2θT Σ−1 +postmpost +�� +, +where Σ−1 +post = � +j Sj(σ2 +ySj + σ2 +ZI)−1Sj + C−1 and mpost = Σpost[� +j Sj(σ2 +ySj + σ2 +zI)−1)ˆzj + +C−1m]. Therefore, θ|S1:J, σ2 +y, ˆz1:J ∼ N(mpost, Σpost). +Acceptance Ratio for the MH Update of Sj: +We drop the index j from Sj for simplicity. +When S′ ∼ W(S/α, α), the proposal density is +q(S′|S) = |S′|(α−d−1)/2e−tr[αS−1S′]/2 +|S/α|α/22αd/2Γd( α +2 ) += |S′|(α−d−1)/2e−tr[αS−1S′]/2 +|S|α/22αd/2Γd( α +2 ) +αα/2. +17 + +Therefore, the acceptance ratio corresponding to this proposal is +min +� +1, q(S|S′) +q(S′|S) +W(S′; njΣx, κ)p( ˆS| ˆS′)N(ˆz; S′θ, σ2 +ySθ + σ2 +zId) +W(S; njΣx, κ)p( ˆS| ˆS)N(ˆz; Sθ, σ2ySθ + σ2zId) +� +, +where the ratio of proposals becomes +q(S|S′) +q(S′|S) = |S|(α−d−1)/2|S|α/2e−tr[aS′−1S]/2 +|S′|(α−d−1)/2|S′|α/2e−tr[αS−1S′]/2 = +� |S| +|S′| +�α−(d+1)/2 +eα(tr[S−1S′]−tr[S′−1S])/2. +Acceptance Ratio for the MH Update of σ2 +y: +To update σ2 +y, we use a random walk proposal +σ2′ +y ∼ N(σ2 +y, σ2 +q). The resulting acceptance ratio is +min +� +1, +IG(σ2′ +y ; a, b) �J +j=1 N(ˆzj; Sjθ, σ2′ +y Sjθ + σ2 +zId) +IG(σ2y; a, b) �J +j=1 N(ˆzj; Sjθ, σ2ySjθ + σ2zId) +� +B +Other Variants +This appendix is reserved for the details of the other variants mentioned in Section 4.4. For +simplicity, we will assume a single data holder, i.e., J = 1; the extension to J > 1 should be +straightforward. +B.1 +Approximating Normality by Averaging +When xi, i = 1, . . . , n are not normal, another approach that we propose is based on modifying +the data to such that the rows of the modified feature matrix, called Xav, are averages of k > 1 +original features in X, and thus approximately normal, by the CLT. Specifically, let n be divisible +by k so that m = n/k is an integer. Consider the m × n matrix +A = +1 +√ +k +� +���� +11×k +01×k +. . . +01×k +01×k +11×k +. . . +01×k +... +... +... +... +01×k +01×k +. . . +11×k +� +���� +m×n +, +Then the matrix Xav = AX corresponds to constructing a shorter m × d matrix whose i’th +column is the average of the rows (i − 1)k + 1, . . . , ik of X (scaled by 1/ +√ +k the preserve the +norm). When k is large enough, we can make normality assumptions for the rows of Xav. Further, +we consider +yav := Ay = Xavθ + Ae, +whose mean is Xavθ and covariance AAT σ2 +y. But, we have AAT = Im, so the covariance is σ2 +yIm. +Therefore, the same hierarchical model in Figure 1 can be used for X′, y′ with their respective +summary statistics +zav = (Xav)T yav, +Sav = (Xav)T Xav, +as well as the noisy versions of those summary statistics to provide a given level of privacy. Note +that Sav and zav have the same sensitivities as S and z, hence the same noise variances are +needed for privacy. However, there is less information in Sav and zav due to averaging. +18 + +B.2 +Including the Intercept +If we include the intercept parameter, which corresponds to appending xi with a 1 from the left, +the design matrix will be changed from S to S0 = +� n +n¯xT +n¯x +S +� +, where ¯x = 1 +n +�n +i=1 xi. Also, note +that S = (n − 1)�Σx + n¯x¯xT where �Σx is the sample covariance. Under the normality assumption +for xi’s, ¯x ∼ N(m, Σx/n) and (n − 1)�Σx ∼ W(n − 1, Σx) are independent and have known +distributions. Therefore, we can write a model that includes b = ¯x, ˆ +Σx, and S0 where S0 replaces +S in the standard model. More specifically, we have the following hierarchical model: +θ ∼ N(m, C), +Σx ∼ IW(Λ, κ), +ˆ +Σx|Σx ∼ W(n − 1, Σx), +b|Σx ∼ N(µ, Σx/n), +z|θ, Σ2 +y, ˆΣ, b ∼ N(S0θ, S0σ2 +y), +ˆS| ˆΣ, b = N(S0, σ2 +sI), +ˆz|z = N(z, σ2 +zI) +with S0 = +� n +nbT +nb +(n − 1) ˆΣ + nbbT +� +. +C +Compared Methods +Here, we provide the details of the methods which we compare with the proposed methods in +this paper. Those methods are originally proposed for J = 1. However, for comparison, we +implemented their natural extensions to the general (distributed) case J ≥ 1. The implementations +of those methods can also be found in the code package provided for this paper. +C.1 +MCMC-B&S Adapted to the Distributed Setting +In Bernstein and Sheldon (2019), only J = 1 is considered, and the vector ss = [vec(S), z = +XT y, u = yT y] is perturbed with privacy-preserving noise to generate the observations of +the model. For J ≥ 1, we consider the following natural extension for generating perturbed +observations ˆss = [vec( ˆSj), ˆzj, ˆuj] along with +ˆSj = Sj + σdpMj, +ˆzj = zj + vj, +vj ∼ N(0, σ2 +dpId), +ˆuj = uj + wj, +wj ∼ N(0, σ2 +dp), (13) +where σdp = σ(ϵ, δ)∆ss with ∆ss = +� +∥X∥4 + ∥X∥2∥Y∥2 + ∥Y∥4. +For completeness, we provide the further specifics of the model: We take (θ, σ2 +y) ∼ NIG(a0, b0, m, Λ0) +where Λ0 = C−1 and Px = N(0, Σx) with Σx ∼ IW(Λ, κ). +During the comparisons, we set a0, b0, m, C, Λ, κ to the same values for both this model and our +proposed model that assumes normally distributed features, i.e., Px = N(0, Σx). Then, we apply +an extension of Bernstein and Sheldon (2019, Algorithm 1) suited to those observations. One +iteration of that algorithm includes the following steps in order: +• Calculate the D × 1 mean vector and D × D covariance matrix +µss = E[ss], +Σss = Cov[ss]. +This step requires the fourth moments N(0, Σx). +• Sample ssj ∼ N(µ(j) +post,ss, Σ(j) +post,ss) with +Σ(j) +post,ss = (njΣss(θ)−1 + (1/σ2 +dp)I)−1, +and +µ(j) +post,ss = Σ(j) +post,ss(Σss(θ)−1µss + ˆssj/σ2 +dp). +19 + +• Sample Σx ∼ IW +� +Λ + �J +j=1 Sj, n + κ +� +. +• Sample (θ, σ2 +y) ∼ NIG(an, bn, mn, Λn) by sampling σ2 +y ∼ IG(an, bn), followed by sampling +θ ∼ N(µn, σ2 +yΛ−1 +n ) with an = a0 + n/2, bn = 0.5u + mT C−1m − mT +nΛnmn, and +Λn = Λ0 + +J +� +j=1 +Sj, +mn = Λ−1 +n +� +� +J +� +j=1 +zj + Λ0m +� +� , +. +C.2 +A Variant of adaSSP for the Distributed Setting +The adaSSP algorithm of (Wang, 2018) is originally designed for a single data holder, i.e., J = 1. +In adaSSP, a differentially private estimate of θ is released as +ˆθ = ( ˆS + λI)−1 ˆz. +(14) +Here, ˆS and ˆz are the privatised versions of S and z as in (2) and (3), except that ϵ and δ must be +changed to 2ϵ/3 and 2δ/3 in those equations to provide (ϵ, δ) differential privacy. This is because +adaSSP uses another parameter λ, which is also calculated from the sensitive data and a third of +the privacy budget is spent for privatising that calculation. With v ∼ N(0, 1), λ is specifically +calculated as +λ = max{0, σ +� +d ln(6/δ) ln(2d2/ρ) − ˜λmin} +with σ = ∥X∥2/(ϵ/3), λmin = min(eig(S)), and +˜λmin = max{λmin + +� +ln(6/δ)σv − ln(6/δ)σv, 0}. +We consider an extension of (Wang, 2018) for J ≥ 1. To perform the extension, we reflect on its +tendency to approximate a (regularised) least square solution and consider the following estimate +ˆθ = +� +� +J +� +j=1 +ˆSj + I +J +� +j=1 +λj +� +� +−1 � +� +J +� +j=1 +ˆzj +� +� . +(15) +Here, ˆSj, ˆzj and λj are calculated in data node j separately from the other nodes. The estimation +procedure in (15) does not properly account for the Bayesian paradigm but aggregates the shared +ˆSj’s and ˆzj’s to approximate the (regularised) least squares solution. +20 + diff --git a/0tFST4oBgHgl3EQfVziF/content/tmp_files/load_file.txt b/0tFST4oBgHgl3EQfVziF/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..425c8d5d0751ff2b267392152dccd6b32a163c57 --- /dev/null +++ b/0tFST4oBgHgl3EQfVziF/content/tmp_files/load_file.txt @@ -0,0 +1,943 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf,len=942 +page_content='Differentially Private Distributed Bayesian Linear Regression with MCMC Barı¸s Alparslan1, Sinan Yıldırım1, 2, and S¸.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' ˙Ilker Birbil3 1Faculty of Engineering and Natural Sciences, Sabancı University, ˙Istanbul, Turkey∗ 2Center of Excellence in Data Analytics (VER˙IM), Sabancı University, ˙Istanbul, Turkey 3Department of Business Analytics, University of Amsterdam, Amsterdam, The Netherlands February 1, 2023 Abstract We propose a novel Bayesian inference framework for distributed differentially private linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We consider a distributed setting where multiple parties hold parts of the data and share certain summary statistics of their portions in privacy-preserving noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We develop a novel generative statistical model for privately shared statistics, which exploits a useful distributional relation between the summary statistics of linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Bayesian estimation of the regression coefficients is conducted mainly using Markov chain Monte Carlo algorithms, while we also provide a fast version to perform Bayesian estimation in one iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The proposed methods have computational advantages over their competitors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We provide numerical results on both real and simulated data, which demonstrate that the proposed algorithms provide well-rounded estimation and prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Keywords: Differential privacy, linear regression, distributed learning, MCMC 1 Introduction Linear regression is a mathematical method that lies at the core of statistical research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Many researchers have been working on linear regression since the 19th century, and hence, many well-known solution methods exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' On a separate note, privacy-preserving statistical learning has gained popularity and importance in recent years, with differential privacy prevailing as the most commonly used definition for privacy (Dwork, 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2014a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Dankar and El Emam, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As a result, there is a recent but growing interest in differentially private linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Many works in the data privacy literature do not mainly focus on regression but are motivated by or can be applied to regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As an example, differentially private empirical risk minimisation (Chaudhuri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Bassily et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Abadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Kuru et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2022) can be applied to regression once it is cast as a data-driven optimisation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Many general-purpose Bayesian differentially private estimation methods can also be used in regression problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Williams and Mcsherry (2010) is one of the first works that considered a hierarchical model for the privatised data and Bayesian estimation for the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2016) analyse several differential privacy mechanisms for posterior sampling and suggest using these mechanisms also ∗The study was funded by the Scientific and Technological Research Council of Turkey (T¨UB˙ITAK) ARDEB Grant No 120E534.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Barı¸s Alparslan and Sinan Yıldırım were supported by the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='13778v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='ML] 31 Jan 2023 for linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Dimitrakakis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2017) developed a posterior sampling query algorithm to combine differential privacy and Bayesian inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Contrary to those one-sample approaches, general-purpose differentially private Markov chain Monte Carlo (MCMC) algorithms, which aim to identify the posterior distribution via iterative sampling, can also be applied to regression (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Foulds et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Yıldırım and Ermi¸s, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Heikkil¨a et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Gong, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Alparslan and Yıldırım, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Several works in the literature are somewhat more directly related to differentially private regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2012) suggested a functional mechanism method, which is based on perturbing polynomial objective functions with privacy-preserving noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As an alternative, Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2014b);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Wang (2018) considered perturbation of summary statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Alabi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022) provide a technical discussion on different point estimation methods for differentially private simple linear regression, that is when we have a single feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Ferrando et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022) present a method to compute confidence intervals for the coefficients of linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2021) study the rates of convergence for parameter estimation with differential privacy via output perturbation, where a non-private estimator is perturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' All those works consider point estimation of the linear regression parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In this paper, we focus on differential private distributed Bayesian inference for the parameters of linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We use a novel hierarchical model that relies on a distributional relationship (Proposition 1) between the summary statistics of linear regression, which, to the best of our knowledge, has not been exploited so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We propose Bayesian inference algorithms that take perturbations of summary statistics as observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The general inferential tool we pick in this paper is MCMC, a well-known framework for iterative sampling from posterior distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As we shall see, the proposed MCMC algorithms in this paper already have lower computational complexities per iteration than their closest competitors in Bernstein and Sheldon (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Addi- tionally, we also propose much faster Bayesian estimation methods that perform estimation in one iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Finally, we assume a distributed setting where the total dataset is shared among multiple parties (data nodes), who want to collaborate for the inference of a common parameter, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Heikkil¨a et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2017) for such a setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The non-distributed setting is just a special case (single data holder) for our methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This paper has connections with several works in the literature, yet it has significant differences from each of those, as we shall explain below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For the privacy-preserving mechanism, we consider adding noise to summary statistics of linear regression, similarly to Wang (2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Bernstein and Sheldon (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The adaSSP framework of Wang (2018) motivates the fast Bayesian estimation methods developed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, adaSSP is a point estimation method while we aim for a posterior distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The latter work, Bernstein and Sheldon (2019), is particularly related to this paper as they also study Bayesian linear regression with differential privacy using perturbed statistics of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, there are some important differences between our work and that of Bernstein and Sheldon (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' These differences stem from the choice of summary statistics and the consequent hierarchical structure used for modelling linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Those modelling differences lead to significant differences in the inference methods as well as significant computational advantages for our methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Specifically, the computational complexity of our methods is O(d3), where d is the number of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This order is much less than the O(d6) of Bernstein and Sheldon (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Finally, neither Wang (2018) nor Bernstein and Sheldon (2019) has considered a distributed learning setting like we do in 2 this paper, although both works can be modified for the distributed setting after moderate modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Foulds et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Heikkil¨a et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2017) are other differentially Bayesian inference methods that target posterior distributions of perturbed summary statistics of sensitive data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The one by Heikkil¨a et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2017) is particularly interesting because they consider a distributed setting and present linear regression as their showcase example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, we differ from those works in the way we model the perturbed statistics and in the choice of inference methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Specifically, Foulds et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Heikkil¨a et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2017) treat the perturbed statistics as if not perturbed, while we incorporate the effect of perturbation in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Recently, Alparslan and Yıldırım (2022) and Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022) employ data augmentation for modelling sensitive and privatised data and propose MCMC for Bayesian inference, the latter work having linear regression as a major application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Their methods have O(n) complexity per iteration in general where n is the number of instances in the data set, which can be slow when n is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In contrast, our methods are scalable in data size since their computational complexities do not depend on n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We note that Alparslan and Yıldırım (2022, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2) also present an MCMC method scalable with n that exploits the approximate normality of additive summary statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, a direct application of that would lead to an algorithm with O(d6) computational complexity (per iteration), like in Bernstein and Sheldon (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The paper is organised as follows: In Section 2 we review differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Section 3 we lay out the hierarchical model for differentially private distributed linear regression with perturbed summary statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Section 4, we present and discuss the aspects of the proposed inference algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Section 5, we provide numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We conclude in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Notation: Matrices and vectors are shown in bold-face notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For a matrix A, its transpose, trace, and determinant (whenever they exist) are AT , tr(A), and |A|, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For any sequence {ai}i≥0, we let ai:j = (ai, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , aj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We write x ∼ P to mean the random variable x has distribution P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' N(m, Σ) stands for the multivariate normal distribution with mean m and covariance Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Wishart and inverse-Wishart distributions with scale matrix Λ and κ degrees of freedom are shown as W(Λ, κ) and IW(Λ, κ), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' IG(a, b) stands for the inverse-gamma distribution with shape and scale parameters a and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We augment those notations with x to denote the respective probability density functions (pdf), e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', as N(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' m, Σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 Differential Privacy Differential privacy (Dwork, 2006, 2008) concerns randomised algorithms that run on sensitive, or usually private, data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' A randomised algorithm takes an input data set D ∈ D and returns a random output in O, where the randomness is intrinsic to the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' A differentially private algorithm constrains the difference between the probability distributions of the outputs obtained from neighbouring data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We say two data sets are neighbours if they differ by one individual’s piece of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Definition 1 (Differential privacy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' A randomised algorithm M : D �→ O is (ϵ, δ)-differentially private (DP) if for any pair of neighbouring data sets D, D′ ∈ D and for any subset O ⊆ O of the of support domain, it satisfies P[M(D) ∈ O] ≤ eϵP[M(D′) ∈ O] + δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 3 The definition implies that smaller (ϵ, δ) leads to more privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Privacy-preserving algorithms often use noise-adding mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' A popular noise-adding mecha- nism is the Gaussian mechanism (Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2006), which perturbs a function f : D �→ Rk of the sensitive data, for some k ≥ 1, with a random noise drawn from the Gaussian distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The amount of the added noise depends on the L2-sensitivity of the function, given by ∆f = max neighbourD1,D2∈D∥f(D1) − f(D2)∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' An (ϵ, δ)-DP Gaussian mechanism returns f(D) + ∆fσ(ϵ, δ)v, v ∼ N(0, Ik) (1) upon taking D as the input, where the quantity σ(ϵ, δ) ensures (ϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In this work, we take σ(ϵ, δ) as the analytical solution given in Balle and Wang (2018, Algorithm 1) due to its tightness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The Gaussian mechanism is also central to other forms of privacy, such as zero-concentrated DP (Bun and Steinke, 2016) and Gaussian DP (Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In this paper, we consider (ϵ, δ)-DP as the type of privacy and the Gaussian mechanism to generate noisy observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Moreover, the proposed methods in this paper never use the sensitive data once given the noisy observations generated using the Gaussian mechanism, hence exploiting the post-processing property of differential privacy (Dwork and Roth, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Theorem 1 (Post-processing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' If M : D �→ O be (ϵ, δ)-DP and let f : O → O′ be another mapping independent of D given M(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Then fM : D �→ O′ with fM(D) = f(M(D)) is (ϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 3 Differentially Private Distributed Linear Regression In this section, we present a new hierarchical model for differentially private distributed linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For ease of exposition, we first present a model with a single data holder, then generalise the model for the distributed setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Basic Model and Privacy Setup Suppose we have a sequence of random variables {(xi, yi) : i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , n}, where xi ∈ X ⊆ Rd×1 are the feature vectors and yi ∈ Y ⊆ R is the i’th response variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We consider the normal linear regression to model the dependency between xi and yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Specifically, yi = xT i θ + ei, ei i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' ∼ N(0, σ2 y), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , n, where θ ∈ Rd is the vector of the linear regression coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We assume that the feature vectors xi’s are i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' with distribution Px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Below, we will particularly focus on the case when Px can be assumed to be a normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, we will also present algorithms for general Px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In matrix notation, the above can shortly be expressed as y = Xθ + e, e ∼ N(0, σ2 yIn), where X = � xT 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' xT n �T is the so-called design matrix, y = � y1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' yn �T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Additionally, we also define the summary statistics of X and y given by S := XT X, z := XT y, 4 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We assume a setup where S and z are privately released as the noisy summary statistics ˆS and ˆz are constructed as ˆS = S + σsM, (2) ˆz = z + σzv, v ∼ N(0, Id), (3) where M is a d × d symmetric matrix with its upper triangular elements drawn from N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2014b) arrange σs and σz so that both (2) and (3) are (ϵ/2, δ/2) differentially private, leading to (ϵ, δ)-DP overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differently than Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2014b), we set σs = σz = ∆szσ(ϵ, δ), where σ(ϵ, δ) is given in Balle and Wang (2018, Algorithm 1), and ∆sz is the overall L2 sensitivity of [S, z], given by ∆sz = � ∥X∥4 + ∥X∥2∥Y ∥2 with ∥X∥ = maxx∈X ∥x∥2 and ∥Y ∥ = maxy∈Y |y|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Based on the above relations, we shall represent a hierarchical model that enables Bayesian inference of θ given ˆS and ˆz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' One important element of our modelling approach is the following result that establishes the conditional distribution of z given S, θ, and σ2 y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For the normal linear regression model, we have z|S, θ, σ2 y ∼ N(Sθ, Sσ2 y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' First, note that, E[z|X, θ, σ2 y] = E[XT Xθ + XT e] = Sθ, (4) Cov(z|X, θ, σ2 y) = XT Xσ2 y = Sσ2 y, (5) and observe that both moments depend on X through its statistic S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Therefore, the conditional density of z given S, θ, and σ2 y is p(z|X, θ, σ2 y) = N(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sθ, Sσ2 y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Next, define the function f : Rn×d �→ [0, ∞) with f(X) = p(z|X, θ, σ2 y) and let CS,θ,σ2y = {X : XT X = S}, Since the function f is constant over CS,θ,σ2y, we can write p(z|S) = � CS,θ,σ2y fdPx = N(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sθ, Sσ2 y), where the second equation is by moment equations in (4) and (5) above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Finally, we assign prior distributions for θ, σ2 y as θ ∼ N(m, C), σ2 y ∼ IG(a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (6) 5 At this point, it is worth discussing some important modelling differences between our work and Bernstein and Sheldon (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Bernstein and Sheldon (2019), the central limit theorem (CLT) is applied to � S, z, yT y � , leading to a normality assumption for the whole vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In contrast, we use the exact conditional distribution p(z|S, θ, σ2) thanks to Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Moreover, unlike Bernstein and Sheldon (2019), we do not require a noisy version yT y, hence have a slight advantage of using less privacy-preserving noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In summary, our model has a different hierarchical structure and requires less privacy-preserving noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 Distributed Setting Next, we extend our model to the distributed setting, where the total data are shared among J ≥ 1 data holders as (X, y) = {(Xj, yj);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , J}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (7) We let ni be number of rows in each xi, so that n = n1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' + nJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Each data holder j shares their own summary statistics Sj = XT j Xj, zj = XT j yj with privacy-preserving noise ˆSj = Sj + σsMj, ˆzj = z + σzvj, vj ∼ N(0, Id).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (8) Note that, to preserve a given (ϵ, δ)-DP overall, each party must provide that level of privacy for their data, hence σs and σz are the same as before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The hierarchical structure of the overall model (specified for normally distributed xi’s) is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Figure 1: Differentially private distributed linear regression model (specified for normally distributed xi’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=') The distributed setting deserves separate consideration than the single data holder case for a couple of reasons: Firstly, the node-specific observations ( ˆS1, ˆz1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , ( ˆSJ, ˆzJ) are altogether statistically more informative on θ than their aggregates �J j=1 ˆSj and �J j=1 ˆzj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This is because the aggregate versions are not sufficient statistics of the node-specific observations ( ˆS1, ˆz1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , ( ˆSJ, ˆzJ) with respect to θ (even when σ2 y is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=') Therefore, when the node-specific observations are available, one should not, in principle, trivially aggregate them and apply an inference method designed for J = 1 using those aggregates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Secondly, the partitioning of data as in (7) can be relevant to data privacy applications even outside the distributed learning framework, rendering the methodology in Section 4 useful in a 6 broader sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For example, batches of (x, y)-type of data may be donated to a common data collector as in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' At this point, a particular and interesting relation exists with pan-privacy applications (Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Imagine that sensitive data from individuals are collected sequentially in time, and the data holder is concerned about possible intrusions into the memory where the sensitive data are stored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Then, one possible way to ensure the privacy of the data against such possible intrusions, which is the promise of pan-privacy, is to store the noisy statistics of every new batch of data and erase the original sensitive data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Then, at any time the data collector has data of the form ( ˆS1, ˆz1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , ( ˆSJ, ˆzJ), each pair corresponding to a batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As a result, inference algorithms as in Section 4 can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4 Algorithms for Bayesian Inference Bayesian inference targets the posterior distribution of the latent variables of the model, in particular θ, given the observations ˆS1:J and ˆz1:J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We present several Bayesian inference algorithms for the hierarchical model described in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In addition to other concerns like computational budget, the choice among those approaches mainly depends on the specification of Px as the distribution of S directly depends on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In this paper, we have considered the following two cases and devised algorithms for each of them: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In some cases it may be adequate to specify Px = N(0, Σx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This leads to S|Σx ∼ W(Σx, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Further, to account for the uncertainty about the covariance Σx, one can treat it as a random variable with Σx ∼ IW(Λ, κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Figure 1 shows the hierarchical structure of the distributed setting with those specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We defer discussing the conflict between the normality and boundedness assumptions to Remark 1 towards the end of Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As the second case, we assume a general (non-normal) Px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' A normal approximation, based on the CLT, could be considered for the distribution S (Wilson and Ghahramani, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, this would require the knowledge (or accurate estimation) of up to the fourth moments of Px as well as expensive computations for sampling S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We circumvent those difficulties by plugging in a point estimate of S given ˆS and use it during the sampling process as if it is the true S itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Then, we develop two different algorithms for inference of θ, one being an MCMC algorithm and the other providing a closed form-solution for the posterior of θ following a rough point-wise estimation of σ2 y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Note that these algorithms with fixed S do not require a distribution for x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Next, we provide the details of our approaches and the resulting algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Normally Distributed Features In this section, we present an MCMC algorithm for Bayesian inference for the differentially private distributed linear regression model when Px = N(0, Σx) and Σx ∼ IW(Λ, κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The latent variables involved in this variant are θ, Σx, σ2 y, S1:J, z1:J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Their posterior distribution given ˆS1:J, ˆz1:J can be written as p(θ, σ2 y, Σx, z1:J, S1:J|ˆz1:J, ˆS1:J) ∝ p(θ)p(σ2 y)p(Σx) J � j=1 p(zj|θ, σ2 y, S)p(Sj|Σx)p( ˆSj|Sj)p(ˆzj|zj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (9) 7 One could design an MCMC algorithm for this posterior distribution that updates θ, σ2 y, Σx, z1:J, S1:J in turn based on their full conditional distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, such an algorithm suffers from poor convergence because of a high posterior correlation between θ and z1:J (as verified in our numerical studies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' It is well known that highly correlated variables result in poor convergence if they are updated one conditional on the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' To alleviate that problem, we work with the reduced model where z1:J are integrated out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The reduced model has θ, Σx, σ2 y as its latent variables, whose joint posterior distribution can be written as p(θ, σ2 y,Σx, S|ˆz, ˆS) ∝ p(θ)p(σ2 y)p(Σx) J � j=1 p(Sj|Σx)p( ˆSj|Sj)p(ˆzj|Sj, θ, σ2 y), (10) where p(ˆz|S, θ, σ2 y) = N(ˆz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sθ, σ2 ySθ + σ2 zId).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We would like to sample from the posterior distribution in (10) via MCMC that updates θ, σ2 y, Σx, S1:J in turn based on their full conditional distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The variables θ and Σx enjoy closed-form full conditional distributions (see Appendix A for the derivations): Σx|S1:J, ˆS1:J, ˆz1:J ∼ IW � �Λ + J � j=1 Sj, κ + n � � , (11) θ|σ2 y, ˆz, S1:J ∼ N(mp, Σp), (12) where the posterior moments for θ are Σ−1 p = J � j=1 Sj(σ2 ySj + σ2 zI)−1Sj + C−1, mp = Σp � � J � j=1 Sj(σ2 ySj + σ2 zI)−1 ˆzj + C−1m � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The full-conditional distributions of S1:J and σ2 y have no closed form;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' hence we design Metropolis- Hastings (MH) moves to update them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For σ2 y, one can simply use a random-walk MH move targeting p(σ2 y|θ, S1:J, ˆz1:J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For S1:J, their full conditional distribution can be factorised as p(S1:J| ˆS1:J, ˆz1:J, Σx, σ2 y, θ) = J � j=1 p(Sj| ˆSj, ˆzj, Σx, σ2 y, θ), where each factor is given by p(Sj| ˆSj, ˆzj, Σx, σ2 y, θ) ∝ p(ˆzj|Sj, θ, σ2 y)p(Sj|Σx)p( ˆSj|Sj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Thanks to that factorised form, each Sj can be updated with an MH move independently and in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For the MH algorithm to update one Sj, we propose a new value from a Wishart distribution as S′ j ∼ W(Sj/α, α), which has mean Sj and variance determined by α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In our experiments, we adjust a using ideas from the adaptive MCMC framework (Andrieu and Thoms, 2008) to target an acceptance rate of around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Algorithm 1 represents the overall MCMC algorithm for the hierarchical model for differentially Bayesian distributed linear regression when Px is a normal distribution with a random covariance matrix having an inverse-Wishart distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We call this algorithm MCMC-normalX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 8 Algorithm 1: MCMC-normalX - one iteration Input: Current values of S1:J, θ, σ2 y, Σx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' observations ˆS1:J,ˆz1:J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' noise variances σ2 s, σ2 z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' proposal parameters a, σ2 q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' hyperparameters a, b, κ, Λ, m, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Output: New sample of Σx, S, σ2 y, θ 1 Sample Σx using (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 for j = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' J do 3 Update Sj via an MH move targeting p(Sj|Σx, θ, ˆzj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4 Sample θ using (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 5 Update σ2 y via an MH move targeting p(σ2 y|θ, S1:J, ˆz1:J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Admittedly, a potential concern is a conflict between the normality and boundedness assumptions (both for x and y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, we also note that the collected data often happen to have some natural boundaries (which can be exploited to determine the sensitivity of the shared statistics), and yet the normal distribution is still used for modelling and subsequent inference mainly for sake of tractability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' With the normality assumption, one can implement computationally efficient algorithms at the expense of minor modelling inaccuracies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' While we acknowledge the methodologies in Alparslan and Yıldırım (2022, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2) and Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022) that can correctly incorporate the effect of truncation into inference, we remark that those methods pay the price of exactness by having O(n) computational complexity per iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 Features with a General Distribution The normality assumption for xi’s in Section 2 may not be adequate for some data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Moreover, when d is large, updating Sj’s can be the bottleneck of MCMC-normalX in Algorithm 1 in terms of computation time and convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We propose two algorithms to address both of those concerns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As it turns out, those algorithms provide accurate estimations even for the case of normally distributed features;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Our approach for xi’s with a general distribution is based on estimating Sj’s from the beginning, using some principled estimation method, and fixing Sj’s to those estimates during the whole course of the inference procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In that way, we obtain a faster MCMC algorithm at the expense of targeting an approximate posterior distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Moreover, we have observed in our experiments that this variant is quite competitive in terms of accuracy, especially when the total number of nodes J increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We call this variant MCMC-fixedS and present it in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As for estimating Sj’s, one could simply consider taking the privately shared ˆSj as an estimator for Sj, but ˆSj is not necessarily a positive (semi-)definite matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Instead, we propose the nearest positive semi-definite matrix of to ˆSj as the estimator of Sj in terms of the Frobenius norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (The nearest positive definite matrix to ˆSj does not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=') To find the nearest positive semi-definite matrix, we follow Higham (1988) and apply the following procedure for each j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , J: (i) Calculate the eigendecomposition ˆSj = EDET , where E is a matrix of eigenvectors, and D is a diagonal matrix consisting of the eigenvalues λi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (ii) The nearest symmetric positive semi-definite matrix is �Sj = ED+ET , where D+ is a diagonal matrix with D+(i, i) = max{D(i, i), 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Note that �Sj found above is the maximum likelihood estimator of Sj given ˆSj (over the set of positive semi-definite matrices) since the conditional distribution of ˆSj given Sj is a normal 9 Algorithm 2: MCMC-fixedS - one iteration Input: Current values of θ, σ2 y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' estimates ˆS1:J, observations ˆz1:J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' noise variance σ2 z, and hyperparameters a, b, m, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Output: New sample of σ2 y, θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Use S1:J = �S1:J throughout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 Sample θ using (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 3 Update σ2 y via an MH move targeting p(σ2 y|θ, S1:J, ˆz1:J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Algorithm 3: Bayes-fixedS-fast Input: ˆS1:J, ˆz1:J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' noise variance: σ2 z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' estimate ˜σ2 y of σ2 y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' hyperparameters: m, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Output: Estimate ˆθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 for j = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' J do 2 Calculate the estimate �Sj for Sj using ˆSj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 3 Calculate Σj = �Sj(˜σ2 y �Sj + σ2 zI)−1 �Sj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4 Calculate mj = �Sj(˜σ2 y �Sj + σ2 zI)−1 ˆzj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 5 return Posterior moments of θ: Σ−1 post = �J j=1 Σj + C−1, mpost = Σpost � C−1m + �J j=1 mj � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' distribution with mean Sj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' MCMC-fixedS in Algorithm 2 is faster than MCMC-normalX in Algorithm 1, since it avoids the step to update Sj’s, which constitutes the main computational burden on Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, MCMC-fixedS can be made even faster by fixing σ2 y also.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' As a crude estimator, we used ˜σ2 y = ∥Y∥/3 throughout the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' When σ2 y is fixed in addition to S1:J, we end up with a non-iterative method where the posterior distribution of θ is calculated in closed form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We call the resulting algorithm Bayes-fixedS-fast and present it in Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Algorithm 3 does nothing but returns the moments of the posterior distribution of θ given �Sj’s, ˆzj’s, ˜σ2 y, and the prior parameters for θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='3 Computational Cost All our methods described in this section require O(d3) computation (per iteration for the iterative ones in Algorithms 1 and 2, or as a whole for the fast version in Algorithm 3) since they deal with d × d matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In contrast, as Bernstein and Sheldon (2019) apply CLT to the vector [S, z, yT y], their methods deal with covariance matrices of size (d2 + d + 1) explicitly, which leads to O(d6) computation per MCMC iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For even moderate d, this computational difference becomes dramatic and the latter may be prohibitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Moreover, the complexity of our methods does not depend on n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This is in contrast to the O(n) complexity of general-purpose methods, such as Alparslan and Yıldırım (2022, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='3) and Ju et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022), that can be applied to linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 10 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='4 Extensions We mention two other variants of our methodology, deferring the details to Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Another solution for dealing with non-normal Px could be to average the feature vectors in X (and the corresponding response variables in y), so that the averaged rows of X can be modelled as approximately normal, due to CLT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This enables using the methods devised for normally distributed features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For the details of this approach, see Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Secondly, if the features are normally distributed but the data are not centred, we need to include the intercept parameter, which corresponds to appending xi with a one from the left, and MCMC-normalX does not directly apply.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In that case, we can modify the hierarchical model that accommodates the non-centralised features and the intercept parameter and still benefit from the sampling techniques involved in MCMC-normalX in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 contains the details of the modified hierarchical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 5 Numerical Experiments We present several numerical evaluations of the proposed methods, MCMC-normalX, MCMC-fixedS, and Bayes-fixedS-fast with simulated and real data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We compare our algorithms with two methods: adaSSP of Wang (2018) and the MCMC method of Bernstein and Sheldon (2019) for differentially private linear regression that we call MCMC-B&S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Note that adaSSP and MCMC-B&S are originally proposed for the non-distributed setting, that is, J = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For a comprehensive comparison, we have implemented their extensions for J ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The details of those extensions are provided in Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In particular, we have carefully generalised the model in Bernstein and Sheldon (2019) for J ≥ 1 similarly as we have done for our model in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' What we call MCMC-B&S is the adaptation of Bernstein and Sheldon (2019, Algorithm 1) for this generalised model (and (ϵ, δ)-DP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The code to replicate all of the experiments in this section can be found at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='com/sinanyildirim/Bayesian_DP_dist_LR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='git.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Experiments with Simulated Data We have considered two different configurations, (n = 105, d = 2) and (n = 105, d = 5), for the problem size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For each (n, d), we have simulated the data as follows: We have generated θ ∼ N(0, Id), xi ∼ N(0, Σx) where Σx ∼ IW(Λ, κ) with κ = d + 1 and selected the scale matrix randomly as Λ = V T V , where V is a d × d matrix of i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' variables from N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The response variables y have been generated with σ2 y = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For inference, we have used the same Λ, κ as above and a = 20, b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5, m = 0d×1, C = (a − 1)/bId for the other hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We have evaluated the methods at all combinations of J ∈ {1, 5, 10} and ϵ ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5, 1, 2, 5, 10}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' All the MCMC algorithms have been run for 104 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For each (J, ϵ) pair, we have tried each method 50 times (each with different noisy observations) to obtain average performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For performance metrics, we have looked at the mean squared errors (MSE) of (i) the estimates ˆθ, and (ii) the predictions ˆy(xtest) generated by the methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For the Bayesian methods, ˆθ is taken as the mean posterior, which can be numerically estimated for the MCMC algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For prediction performance, we have calculated E[ˆy(xtest) − ytest]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For the Bayesian methods, ˆy(xtest) is the posterior predictive expectation of ytest at xtest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For adaSSP, we simply take ˆy(xtest) = xT test ˆθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 11 The results are summarised in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We observe that MCMC-fixedS and Bayes-fixedS-fast outperform adaSSP and MCMC-B&S in almost all cases both in terms of estimation and prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Comparing the full-scale algorithms MCMC-normalX and MCMC-B&S (that involve updates of S), we observe a clear advantage of MCMC-normalX at d = 2, but MCMC-B&S becomes more competitive at d = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This can be attributed to the fact that MCMC-B&S requires the extra statistic yT y, unlike MCMC-normalX, which causes MCMC-B&S to use more noisy statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This difference becomes more significant at small d, where the relative effect of the presence of yT y on the sensitivity is more significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Finally, all methods improve as ϵ grows, which is expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 (log-)MSE: prediction, J = 1 MCMC-normalX MCMC-fixedS Bayes-fixedS-fast MCMC-B&S adaSSP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 9 8 7 6 (log-)MSE: prediction, J = 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 9 8 7 6 5 (log-)MSE: prediction, J = 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 10 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 9 (log-)MSE: estimation J = 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 10 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 (log-)MSE: estimation J = 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 10 9 8 7 6 (log-)MSE: estimation J = 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 6 5 4 3 2 (log-)MSE: prediction, J = 1 MCMC-normalX MCMC-fixedS Bayes-fixedS-fast MCMC-B&S adaSSP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 5 4 3 2 1 (log-)MSE: prediction, J = 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 4 3 2 1 0 (log-)MSE: prediction, J = 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 (log-)MSE: estimation J = 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 (log-)MSE: estimation J = 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 2 5 10 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5 (log-)MSE: estimation J = 10 Figure 2: Averaged prediction and estimation performances (over 50 runs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Top row: n = 105, d = 2, Bottom row: n = 105, d = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 0 10 20 d 0 2 4 6 8 #10-3 J = 1 MCMC-normalX MCMC-fixedS MCMC-B&S 0 10 20 d 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='02 J = 5 0 10 20 d 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='04 J = 10 Figure 3: Run times per iteration for MCMC algorithms We also compare the computation times of the MCMC algorithms MCMC-normalX, MCMC-fixedS, and MCMC-B&S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Figure 3 shows the run-times of the algorithms vs d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The drastic difference in computational loads explained in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='3 is also visible in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' While MCMC-B&S may be improved in terms of accuracy as d increases, the O(d6) dramatically slows it down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1The algorithms were run in MATLAB 2021b on an Apple M1 chip with 8 cores and 16 GB LPDDR4 memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 12 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 Experiments with Real Data For the real data case, we have used four different data sets from the UCI Machine Learning Repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We have disregarded the columns including string data or key values (ID, name, date, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' ), and we have considered the most right-hand column as y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The finalised data sets are summarised below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' data set n d hyperlinks power plant energy 7655 4 view link bike sharing 13904 14 view link air quality 7486 12 view link 3d road 347900 3 view link For prediction, we have taken 80% of the data for training and the rest for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We present the average prediction performances (out of 50 runs) in Table 1 for each dataset and J with ϵ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We observe that the prediction performances of the compared methods are close, while MCMC-fixed-S and Bayes-fixed-S are arguably the most stable ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' When J > 1 (the distributed data setting), those two methods beat adaSSP and MCMC-B&S more satisfactorily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Table 1: Averaged prediction performances (over 50 runs) for the real datasets - ϵ = 1 J data sets MCMC-normalX MCMC-fixedS Bayes-fixedS-fast MCMC-B&S adaSSP J = 1 PowerPlant 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0129 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0129 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0129 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0139 BikeSharing 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0107 AirQuality 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0060 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0057 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0057 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0066 3droad 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 J = 5 PowerPlant 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0133 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0134 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0134 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0136 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0235 BikeSharing 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0174 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0382 AirQuality 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0142 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0227 3droad 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 J = 10 PowerPlant 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0142 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0351 BikeSharing 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0137 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0526 AirQuality 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0985 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0117 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0117 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0216 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0314 3droad 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='0229 6 Conclusion We propose a novel Bayesian inference framework, with MCMC being its main workhorse, for a differentially private distributed linear regression setting where the data is partitioned among the data holders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We provide several Bayesian inference algorithms suited to the developed hierarchical model for linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Those algorithms can be preferred one over the other depending on the computational budget, model specifics, or how much we know about the underlying statistical facts of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We exploit the conditional structure between the summary statistics of linear regression, as given in Proposition 1, which leads to feasible algorithms with computational advantages over their competitors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The numerical experiments show that the proposed methods are competitive with their state-of-the-art alternatives in terms of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The extensions mentioned in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='4 indicate potential future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' There is also room 13 for improvement of MCMC-normalX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We chose the most common MH moves to update σ2 y and Sj’s, without paying much attention to their efficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Especially for large d, more advanced techniques, such as those stemming from Hamiltonian Monte Carlo (Neal, 2001) or pseudo-marginal MCMC (Andrieu and Roberts, 2009), may be employed to facilitate the mixing of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 7 Acknowledgement The study was funded by the Scientific and Technological Research Council of Turkey (T¨UB˙ITAK) ARDEB Grant No 120E534.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Supplementary material: The code to replicate the experiments in Section 5 can be found at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='com/sinanyildirim/Bayesian_DP_dist_LR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='git.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' References Abadi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Chu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Goodfellow, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', McMahan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Mironov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Talwar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Deep learning with differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages 308–318, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' ACM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Alabi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', McMillan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Sarathy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Vadhan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differentially private simple linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Proceedings on Privacy Enhancing Technologies, 2022:184–204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Alparslan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Yıldırım, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Statistic selection and mcmc for differentially private bayesian estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Statistics and Computing, 32(5):66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1, 1, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='3 Andrieu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Roberts, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The pseudo-marginal approach for efficient Monte Carlo computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Annals of Statistics, 37(2):569–1078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 6 Andrieu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Thoms, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' A tutorial on adaptive mcmc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Statistics and Computing, 18(4):343–373.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Balle, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Dy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Krause, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 394–403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Bassily, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Thakurta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Private empirical risk minimization: Efficient algorithms and tight error bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 464–473.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Bernstein, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Sheldon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differentially private bayesian linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Larochelle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Beygelzimer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=", d'Alch´e-Buc, F." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Fox, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Garnett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Advances in Neural Information Processing Systems, volume 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='3, 5, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Bun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Steinke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Concentrated differential privacy: Simplifications, extensions, and lower bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Proceedings, Part I, of the 14th International Conference on Theory of Cryptography - Volume 9985, pages 635–658, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Springer-Verlag New York, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 14 Cai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The cost of privacy: Optimal rates of convergence for parameter estimation with differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The Annals of Statistics, 49(5):2825 – 2850.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Chaudhuri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Monteleoni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Sarwate, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differentially private empirical risk minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Dankar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and El Emam, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Practicing differential privacy in health care: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Data Priv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 6(1):35–67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Dimitrakakis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Nelson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Mitrokotsa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Rubinstein, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differential privacy for bayesian inference through posterior sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Journal of machine learning research, 18(11):1–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Dong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Roth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Su, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Gaussian differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Journal of the Royal Statistical Society Series B, 84(1):3–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Bugliesi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Preneel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Sassone, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Wegener, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Springer Berlin Heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1, 2 Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differential privacy: A survey of results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Agrawal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Du, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Duan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Theory and Applications of Models of Computation, pages 1–19, Berlin, Heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Springer Berlin Heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', McSherry, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Nissim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Calibrating noise to sensitivity in private data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Theory of Cyrptography, pages 265–284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Naor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Pitassi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Rothblum, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Yekhanin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Pan-private streaming algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In ICS, pages 66–80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Roth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The algorithmic foundations of differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Trends Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 9(3–4):211–407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Roth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2014a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The algorithmic foundations of differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Talwar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Thakurta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2014b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Analyze gauss: Optimal bounds for privacy-preserving principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page 11–20, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Ferrando, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Sheldon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Parametric bootstrap for differentially private confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Camps-Valls, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Ruiz, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Valera, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 1598–1618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Foulds, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Geumlek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and an Kamalika Chaudhuri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' On the theory and practice of privacy-preserving Bayesian data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Technical report, arxiv:1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='07294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Gong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Exact inference with approximate computation for differentially private data via perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Journal of Privacy and Confidentiality, 12(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 15 Heikkil¨a, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Lagerspetz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Kaski, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Shimizu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Tarkoma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Honkela, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differentially private bayesian learning on distributed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Guyon, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Luxburg, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Bengio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Fergus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Vishwanathan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Garnett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Advances in Neural Information Processing Systems, volume 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Heikkil¨a, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', J¨alk¨o, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Dikmen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Honkela, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differentially private Markov chain Monte Carlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In NeurIPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Higham, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Computing a nearest symmetric positive semidefinite matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Linear Algebra and its Applications, 103:103–118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 Ju, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Awan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Gong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Rao, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Data augmentation MCMC for bayesian inference from privatized data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Oh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Agarwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Belgrave, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Cho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Advances in Neural Information Processing Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1, 1, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='3 Kuru, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Birbil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', G¨urb¨uzbalaban, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Yıldırım, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Differentially private accelerated optimization algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' SIAM Journal on Optimization, 32(2):795–821.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Neal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Annealed importance sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Statistics and Computing, 11:125–139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 6 Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In UAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1, 5, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Fienberg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Smola, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Privacy for free: Posterior sampling and stochastic gradient monte carlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Bach, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Blei, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 2493–2502, Lille, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Williams, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Mcsherry, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Probabilistic inference and differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Lafferty, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Williams, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Shawe-Taylor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Zemel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Culotta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', editors, Advances in Neural Information Processing Systems, volume 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Wilson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Ghahramani, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Generalised wishart processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11, page 736–744, Arlington, Virginia, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' AUAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 2 Yıldırım, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' and Ermi¸s, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Exact MCMC with differentially private moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Statistics and Computing, 29(5):947–963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Xiao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Winslett, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Functional mechanism: Regression analysis under differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' VLDB Endow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', 5(11):1364–1375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Rubinstein, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', and Dimitrakakis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' On the differential privacy of bayesian inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Proceedings of the AAAI Conference on Artificial Intelligence, 30(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 1 16 A Derivations for MCMC-normalX We reserve this section for the derivations required for our algorithm MCMC-normalX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Full Conditional Distribution of Σx: We note that p(Σx|S1:J, ˆS1:J, ˆz1:J) ∝ p(Σx) J � j=1 p(Sj|Σx) = |Λ|dκ/2 2dk/2Γd( κ 2)|Σx|−(d+κ+1)/2e− 1 2 tr(ΛΣ−1 x ) J � j=1 |Sj|(nj−d−1)/2e− 1 2 tr(Σ−1 x Sj) 2njd/2|Σx|nj/2Γd(nj/2) ∝ |Σx|− n 2 − (d+κ+1) 2 e− 1 2 (� tr(Σ−1 x Sj)+tr(ΛΣ−1 x )) ∝ |Σx|− (d+κ+n+1) 2 e− 1 2 tr((� Sj+Λ)Σ−1 x ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Therefore, we have Σx|S1:J, ˆS1:J, ˆz1:J ∼ IW � �Λ + J � j=1 Sj, κ + n � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Full Conditional Distribution of θ: The posterior of θ is proportional to p(θ|S1:J, σ2 y, ˆz1:J) ∝ N(θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' m, C)p(ˆz1:J|S1:J, θ, σ2 y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For the second factor, we have p(ˆz1:J|S1:J, θ, σ2 y) ∝ J � i=1 p(ˆzj|Sj, θ, σ2 y) = J � i=1 N � ˆzj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sjθ, σ2 ySj + σ2 zI � ∝ J � i=1 exp � −1 2(ˆzj − Sjθ)T (σ2 ySj + σ2 zI)−1(ˆzj − Sjθ) � ∝ exp � � �−1 2 � �θT � �� j Sj(σ2 ySj + σ2 zI)−1Sj � � θ − 2θT � �� j Sj(σ2 ySj + σ2 zI)−1 � � ˆzj � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Reorganising the terms, we end up with p(θ|S1:J, σ2 y, ˆz1:J) ∝ exp � −1 2 � θT Σ−1 postθ − 2θT Σ−1 postmpost �� , where Σ−1 post = � j Sj(σ2 ySj + σ2 ZI)−1Sj + C−1 and mpost = Σpost[� j Sj(σ2 ySj + σ2 zI)−1)ˆzj + C−1m].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Therefore, θ|S1:J, σ2 y, ˆz1:J ∼ N(mpost, Σpost).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Acceptance Ratio for the MH Update of Sj: We drop the index j from Sj for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' When S′ ∼ W(S/α, α), the proposal density is q(S′|S) = |S′|(α−d−1)/2e−tr[αS−1S′]/2 |S/α|α/22αd/2Γd( α 2 ) = |S′|(α−d−1)/2e−tr[αS−1S′]/2 |S|α/22αd/2Γd( α 2 ) αα/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 17 Therefore, the acceptance ratio corresponding to this proposal is min � 1, q(S|S′) q(S′|S) W(S′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' njΣx, κ)p( ˆS| ˆS′)N(ˆz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' S′θ, σ2 ySθ + σ2 zId) W(S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' njΣx, κ)p( ˆS| ˆS)N(ˆz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sθ, σ2ySθ + σ2zId) � , where the ratio of proposals becomes q(S|S′) q(S′|S) = |S|(α−d−1)/2|S|α/2e−tr[aS′−1S]/2 |S′|(α−d−1)/2|S′|α/2e−tr[αS−1S′]/2 = � |S| |S′| �α−(d+1)/2 eα(tr[S−1S′]−tr[S′−1S])/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Acceptance Ratio for the MH Update of σ2 y: To update σ2 y, we use a random walk proposal σ2′ y ∼ N(σ2 y, σ2 q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The resulting acceptance ratio is min � 1, IG(σ2′ y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' a, b) �J j=1 N(ˆzj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sjθ, σ2′ y Sjθ + σ2 zId) IG(σ2y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' a, b) �J j=1 N(ˆzj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sjθ, σ2ySjθ + σ2zId) � B Other Variants This appendix is reserved for the details of the other variants mentioned in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For simplicity, we will assume a single data holder, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', J = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' the extension to J > 1 should be straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 Approximating Normality by Averaging When xi, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , n are not normal, another approach that we propose is based on modifying the data to such that the rows of the modified feature matrix, called Xav, are averages of k > 1 original features in X, and thus approximately normal, by the CLT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Specifically, let n be divisible by k so that m = n/k is an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Consider the m × n matrix A = 1 √ k � ���� 11×k 01×k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 01×k 01×k 11×k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 01×k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 01×k 01×k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 11×k � ���� m×n , Then the matrix Xav = AX corresponds to constructing a shorter m × d matrix whose i’th column is the average of the rows (i − 1)k + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' , ik of X (scaled by 1/ √ k the preserve the norm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' When k is large enough, we can make normality assumptions for the rows of Xav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Further, we consider yav := Ay = Xavθ + Ae, whose mean is Xavθ and covariance AAT σ2 y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' But, we have AAT = Im, so the covariance is σ2 yIm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Therefore, the same hierarchical model in Figure 1 can be used for X′, y′ with their respective summary statistics zav = (Xav)T yav, Sav = (Xav)T Xav, as well as the noisy versions of those summary statistics to provide a given level of privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Note that Sav and zav have the same sensitivities as S and z, hence the same noise variances are needed for privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, there is less information in Sav and zav due to averaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 18 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 Including the Intercept If we include the intercept parameter, which corresponds to appending xi with a 1 from the left, the design matrix will be changed from S to S0 = � n n¯xT n¯x S � , where ¯x = 1 n �n i=1 xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Also, note that S = (n − 1)�Σx + n¯x¯xT where �Σx is the sample covariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Under the normality assumption for xi’s, ¯x ∼ N(m, Σx/n) and (n − 1)�Σx ∼ W(n − 1, Σx) are independent and have known distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Therefore, we can write a model that includes b = ¯x, ˆ Σx, and S0 where S0 replaces S in the standard model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' More specifically, we have the following hierarchical model: θ ∼ N(m, C), Σx ∼ IW(Λ, κ), ˆ Σx|Σx ∼ W(n − 1, Σx), b|Σx ∼ N(µ, Σx/n), z|θ, Σ2 y, ˆΣ, b ∼ N(S0θ, S0σ2 y), ˆS| ˆΣ, b = N(S0, σ2 sI), ˆz|z = N(z, σ2 zI) with S0 = � n nbT nb (n − 1) ˆΣ + nbbT � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' C Compared Methods Here, we provide the details of the methods which we compare with the proposed methods in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Those methods are originally proposed for J = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' However, for comparison, we implemented their natural extensions to the general (distributed) case J ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The implementations of those methods can also be found in the code package provided for this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='1 MCMC-B&S Adapted to the Distributed Setting In Bernstein and Sheldon (2019), only J = 1 is considered, and the vector ss = [vec(S), z = XT y, u = yT y] is perturbed with privacy-preserving noise to generate the observations of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For J ≥ 1, we consider the following natural extension for generating perturbed observations ˆss = [vec( ˆSj), ˆzj, ˆuj] along with ˆSj = Sj + σdpMj, ˆzj = zj + vj, vj ∼ N(0, σ2 dpId), ˆuj = uj + wj, wj ∼ N(0, σ2 dp), (13) where σdp = σ(ϵ, δ)∆ss with ∆ss = � ∥X∥4 + ∥X∥2∥Y∥2 + ∥Y∥4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' For completeness, we provide the further specifics of the model: We take (θ, σ2 y) ∼ NIG(a0, b0, m, Λ0) where Λ0 = C−1 and Px = N(0, Σx) with Σx ∼ IW(Λ, κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' During the comparisons, we set a0, b0, m, C, Λ, κ to the same values for both this model and our proposed model that assumes normally distributed features, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', Px = N(0, Σx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Then, we apply an extension of Bernstein and Sheldon (2019, Algorithm 1) suited to those observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' One iteration of that algorithm includes the following steps in order: Calculate the D × 1 mean vector and D × D covariance matrix µss = E[ss], Σss = Cov[ss].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This step requires the fourth moments N(0, Σx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sample ssj ∼ N(µ(j) post,ss, Σ(j) post,ss) with Σ(j) post,ss = (njΣss(θ)−1 + (1/σ2 dp)I)−1, and µ(j) post,ss = Σ(j) post,ss(Σss(θ)−1µss + ˆssj/σ2 dp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 19 Sample Σx ∼ IW � Λ + �J j=1 Sj, n + κ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' Sample (θ, σ2 y) ∼ NIG(an, bn, mn, Λn) by sampling σ2 y ∼ IG(an, bn), followed by sampling θ ∼ N(µn, σ2 yΛ−1 n ) with an = a0 + n/2, bn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='5u + mT C−1m − mT nΛnmn, and Λn = Λ0 + J � j=1 Sj, mn = Λ−1 n � � J � j=1 zj + Λ0m � � , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='2 A Variant of adaSSP for the Distributed Setting The adaSSP algorithm of (Wang, 2018) is originally designed for a single data holder, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=', J = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' In adaSSP, a differentially private estimate of θ is released as ˆθ = ( ˆS + λI)−1 ˆz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (14) Here, ˆS and ˆz are the privatised versions of S and z as in (2) and (3), except that ϵ and δ must be changed to 2ϵ/3 and 2δ/3 in those equations to provide (ϵ, δ) differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' This is because adaSSP uses another parameter λ, which is also calculated from the sensitive data and a third of the privacy budget is spent for privatising that calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' With v ∼ N(0, 1), λ is specifically calculated as λ = max{0, σ � d ln(6/δ) ln(2d2/ρ) − ˜λmin} with σ = ∥X∥2/(ϵ/3), λmin = min(eig(S)), and ˜λmin = max{λmin + � ln(6/δ)σv − ln(6/δ)σv, 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' We consider an extension of (Wang, 2018) for J ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' To perform the extension, we reflect on its tendency to approximate a (regularised) least square solution and consider the following estimate ˆθ = � � J � j=1 ˆSj + I J � j=1 λj � � −1 � � J � j=1 ˆzj � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' (15) Here, ˆSj, ˆzj and λj are calculated in data node j separately from the other nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' The estimation procedure in (15) does not properly account for the Bayesian paradigm but aggregates the shared ˆSj’s and ˆzj’s to approximate the (regularised) least squares solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} +page_content=' 20' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0tFST4oBgHgl3EQfVziF/content/2301.13778v1.pdf'} diff --git a/19E4T4oBgHgl3EQfaQyU/vector_store/index.faiss b/19E4T4oBgHgl3EQfaQyU/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d034cbd4f4bbf9c0df99343be65210c2bacb1e23 --- /dev/null +++ b/19E4T4oBgHgl3EQfaQyU/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:61fcedc61d4aa61c63504211ab74ee1f708274ddb8910e1388afcad1fd467fd8 +size 2883629 diff --git a/1tE4T4oBgHgl3EQfzg0x/content/tmp_files/2301.05274v1.pdf.txt b/1tE4T4oBgHgl3EQfzg0x/content/tmp_files/2301.05274v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..31237bce26497fd9a2124da6333f850c8ecc3d9d --- /dev/null +++ b/1tE4T4oBgHgl3EQfzg0x/content/tmp_files/2301.05274v1.pdf.txt @@ -0,0 +1,5182 @@ +arXiv:2301.05274v1 [math.PR] 12 Jan 2023 +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE +CHAOS ON PHASE BOUNDARIES +HUBERT LACOIN +Abstract. The complex Gaussian Multiplicative Chaos (or complex GMC) is infor- +mally defined as a random measure eγXdx where X is a log correlated Gaussian field on +Rd and γ “ α ` iβ is a complex parameter. The correlation function of X is of the form +Kpx, yq “ log +1 +|x ´ y| ` Lpx, yq, +where L is a continuous function. In the present paper, we consider the cases γ P PI{II +and γ P P1 +II{III where +PI{II :“ tα ` iβ : α, β P R ; |α| ą |β| ; |α| ` |β| “ +? +2du, +and +P1 +II{III :“ tα ` iβ : α, β P R ; |α| “ +a +d{2 ; |β| ą +? +2du, +We prove that if X is replaced by an approximation Xε obtained via mollification, then +eγXεdx, when properly rescaled, converges when ε Ñ 0. The limit does not depend on +the mollification kernel. When γ P PI{II, the convergence holds in probability and in Lp +for some value of p P r1, +? +2d{αq. When γ P P1 +II{III the convergence holds only in law. +In this latter case, the limit can be described a complex Gaussian white noise with a +random intensity given by a critical real GMC. The regions PI{II and P1 +II{III correspond to +phase boundary between the three different regions of the complex GMC phase diagram. +These results complete previous results obtained for the GMC in phase I [18] and III [16] +and only leave as an open problem the question of convergence in phase II. +2010 Mathematics Subject Classification: 60F99, 60G15, 82B99. +Keywords: Random distributions, log-correlated fields, Gaussian Multiplicative Chaos. +Contents +1. +Introduction +2 +2. +Main results +5 +3. +The martingale approximation for GMC +8 +4. +Proof of convergence results on for γ P PI{II +13 +5. +Proof of Proposition 3.5 +18 +6. +Proof of Proposition 2.8 +27 +7. +Proof of Theorem 3.6 +34 +Appendix A. +Technical results and their proof +36 +Appendix B. +The convergence of Mγ +ε as a distribution +39 +Appendix C. +Beyond star-scale invariance +43 +Appendix D. +Proof of Lemma 4.1 +47 +References +49 +1 + +2 +HUBERT LACOIN +1. Introduction +Let K : Rd ˆ Rd Ñ p´8, 8s be a positive definite kernel on Rd (d ě 1 is fixed) which +admits a decomposition of the form +Kpx, yq “ log +1 +|x ´ y| ` Lpx, yq, +(1.1) +(with the convention logp1{0q “ 8) where L is a continuous function on R2d . A kernel +K is positive definite if for ρ P CcpRdq (ρ continuous with compact support) +ż +R2d Kpx, yqρpxqρpyqdxdy ě 0. +(1.2) +Given a centered Gaussian field X with covariance K and γ “ α ` iβ a complex number +(α, β P R) the complex Gaussian Multiplicative Chaos (or complex GMC) with parameter +γ is the random distribution formally defined by the expression +Mγpdxq “ eγXpxqdx. +(1.3) +A difficulty comes up when trying to give an interpretation to the r.h.s. of (1.3). A field +X with a covariance given by (1.1) can be defined only as a random distribution. For a +fixed x P Rd it is not possible to make sense of Xpxq. +The problem of providing a mathematical construction of Mγ that gives a meaning to +(1.3) was first considered by Kahane in [15] in the case where γ P R, we refer to [25, 27] +for reviews on the subject. The case of γ P C was considered only more recently, see for +instance [11, 12, 13, 16, 18, 19, 20] and references therein. The standard procedure to define +the GMC is to use a sequence of approximation of the field X, consider the exponential +of the approximation and then pass to the limit. Mostly two kinds of approximation of X +have been considered in the literature: +(A) A mollification of the field, Xε, via convolution with a smooth kernel on scale ε, +(B) A martingale approximation, Xt, via an integral decomposition of the kernel K. +In the present paper we present convergence results for the random distribution eγXεpxqdx +and eγXtpxqdx and in a certain range of parameter γ. Before describing our results in more +details and provide some motivation, we first rigorously introduce the setup. +1.1. The mollification of a log-correlated field. +Log-correlated fields defined as distributions. Since K is infinite on the diagonal, it is not +possible to define a Gaussian field indexed by Rd with covariance function K. We consider +instead a process indexed by test functions. We define pK, a bilinear form on CcpRdq (the +set of compactly supported continuous functions) by +pKpρ, ρ1q “ +ż +R2d Kpx, yqρpxqρ1pyqdxdy. +(1.4) +Since pK is positive definite (in the usual sense: for any pρiqk +i“1, the matrix pKpρi, ρjqk +i,j“1 is +positive definite), it is possible to define X “ xX, ρyρPCcpRdq a centered Gaussian process +indexed by CcpRdq with covariance kernel given by pK. +Remark 1.1. There exists a modification of the process X which take value in a distri- +bution space (more specifically, such that X takes values in the Sobolev space Hs +locpRdq for +every s ă 0 (see the definition (B.3) in the appendix). For this reason (and although we +will not use this fact) we refer to X as a random distribution. + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 3 +Approximation of X via mollification. The random distribution X can be approximated +by a sequence of functional fields - processes indexed by Rd - by the mean of mollification +by a smooth kernel. Consider θ a nonnegative function in C8 +c pRdq (the set of infinitely +differentiable functions in CcpRdq) whose compact support is included in Bp0, 1q (for the +remainder of the paper Bpx, rq denotes the closed Euclidean ball of center x and radius r) +and which satisfies +ş +Bp0,1q θpxqdx “ 1. We define for ε ą 0, θε :“ ε´dθpε´1¨q and consider +pXεpxqqxPRd, the mollified version of X, that is +Xεpxq :“ xX, θεpx ´ ¨qy +(1.5) +From (1.4), the field Xεp¨q has covariance +Kεpx, yq :“ ErXεpxqXεpyqs “ +ż +R2d θεpx ´ z1qθεpy ´ z2qKpz1, z2qdz1dz2. +(1.6) +We set Kεpxq :“ Kεpx, xq and extend this convention to other functions of two variables +in Rd. +Since Kε is infinitely differentiable - thus in particular is H¨older continuous - +by Kolmogorov’s Continuity Theorem (e.g. [21, Theorem 2.9]) there exists a continuous +modification of Xεp¨q. In the remainder of the paper, we always consider the continuous +modification of a process when it exists. +This ensures that integrals such as the one +appearing in (1.7) are well defined. We define the distribution Mγ +ε by setting for f P CcpRdq +Mγ +ε pfq :“ +ż +Rd fpxqeγXεpxq´ γ2 +2 Kεpxqdx. +(1.7) +The question of interest in the present paper is the convergence of Mγ +ε when ε Ñ 0. +Remark 1.2. Note that, even if we have chosen to omit this dependence in the notation, +Xε and Mγ +ε both depend on the particular convolution kernel θ. An important feature of +our results is that the limits obtained for Mγ +ε pfq do not depend on θ. +1.2. Star-scale invariance and our assumption on K. On top of assuming that K +admits a decomposition like (1.1), we also assume that it has an almost star-scale invariant +part (see the definition (1.8)-(1.9)). This assumption might seem at first quite restrictive, +but it has been shown in [12] that it is locally satisfied as soon as the function L in +(1.1) is sufficiently regular. In Appendix C we provides details concerning the regularity +assumption for L and explain how to extend the validity of our results to all sufficiently +regular log-correlated kernels using the ideas in [12]. +Following a terminology introduced in [12], we say that a the kernel K defined on Rd is +almost star-scale invariant if it can be written in the form +@x, y P Rd, Kpx, yq “ +ż 8 +0 +p1 ´ η1e´η2tqκpetpx ´ yqqdt, +(1.8) +where η1 P r0, 1s and η2 ą 0 are constants and the function κ P C8 +c pRdq is radial, nonneg- +ative and definite positive. More precisely we assume the following: +(i) κ P C8 +c pRdq and there exists rκ : R` Ñ r0, 8q such that κpxq :“ rκp|x|q, +(ii) rκp0q “ 1 and rκprq “ 0 for r ě 1, +(iii) The mapping px, yq ÞÑ κpx ´ yq defines a positive definite kernel on Rd ˆ Rd. +We say furthermore that a kernel K has an almost star-scale invariant part, if +@x, y P Rd, Kpx, yq “ K0px, yq ` Kpx, yq +(1.9) +where Kpx, yq is an almost star-scale invariant kernel and K0 is H¨older continuous on R2d +and positive definite. + +4 +HUBERT LACOIN +1.3. Phase transitions and phase diagrams for GMC. Our main results concerns +the asymptotic behavior of Mγ +ε in the specific range of γ given in the abstract. In order +to properly motivate and present these results, it is necessary to introduce some context, +and recall known facts about the phase diagram of the complex GMC. +Phase transition at |α| “ +? +2d for the real valued GMC. The question of the existence and +identification of the limit +lim +εÑ0 Mα +ε p¨q, +has first been considered in the work of Kahane in the eighties [15], in the case when +α P R. The obtained limit in that case crucially depends on α: when |α| ă +? +2d - referred +to as the subcritical case - then Mα +ε converges in probability to a non-trivial limiting +distribution (see for instance [2, Theorem 1.1] for a short and self contained proof, we +refer to the introduction in [2] for a detailed chronological account of results obtained for +the subcritical case). +When |α| ě +? +2d, we have limεÑ0 Mα +ε pfq “ 0 and a rescaling procedure is needed in +order to obtain a non-trivial limit. The phenomenology is however different according to +whether |α| “ +? +2d (α critical) or |α| ą +? +2d (α supercritical). +In the critical case (α “ ˘ +? +2d), is has been shown, under fairly mild assumptions (see +[4, 5, 10, 26] and Theorem A below) that +a +log p1{εqMα +ε converges in probability to a +non-trivial limit called the critical GMC. +When |α| ą +? +2d, the results are less complete. So far the convergence has not been +proved for Mα +ε but only for an approximating martingale sequence Mα +t (see (3.6)) in [24]. +Besides this technical point, the most important differences with the case |α| ď +? +2d +concerns the type of the convergence and the nature of limiting object. The convergence +only holds only in law, and the limit is a purely atomic measure (a measure supported by +a countable set) see [24, Corollary 2.3]. +Phase diagram for complex GMC. When γ is allowed to assume complex value, the phase +diagram becomes more intricate. The complex plane can be divided in three open regions +with intersecting boundaries +PI :“ +␣ +α ` iβ : α2 ` β2 ă d +( +Y +! +α ` iβ : α P p +a +d{2, +? +2dq ; |α| ` |β| ă +? +2d +) +, +PII :“ +! +α ` iβ : |α| ` |β| ą +? +2d ; |α| ą +a +d{2 +) +, +PIII :“ +! +α ` iβ : α2 ` β2 ą d ; |α| ă +a +d{2 +) +. +(1.10) +This diagram first appeared in the context of complex Gaussian multiplicative cascade +[3], and also serves to describe the behavior of other related models such as the complex +REM [14] or complex branching Brownian Motion [6, 7, 23]. +The region PI corresponds to the subcritical phase. For γ P PI it has been proved +[12, 18] that Mγ +ε converges to a limit that does not depend on the mollifier θ. +The region PII corresponds to the supercritical phase, in which it is believed that Mγ +ε +- after proper renormalization - converges only in law to a purely atomic random distri- +bution. This conjecture is supported by rigorous results obtained in the case of Complex +Branching Brownian Motion [6, 23]. + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 5 +PSfrag replacements +β +α +? +d +a +d{2 +? +2d +´ +? +2d +PI +PII +PIII +Figure 1. The phase diagram of the complex GMC in the complex plane. Each region +correspond to a different limiting behavior for M γ +ε in terms of renormalization factor, +type of convergence and properties of the limit. In the present paper, we prove results +concerning the asymptotic behavior on frontier of PI Y PIII with PII. Results concerning +convergence in PI Y PIII where proved in [12, 18] (for PI) and [16] (for PIII Y PI{III). The +convergence in the region PII remains a challenging conjecture. +Finally the region PIII corresponds to yet another asymptotic behavior for Mγ +ε . Like in +PII, Mγ +ε - properly rescaled - only converges in law. The limit is given by a white noise +whose intensity is random and is given by the real valued GMC with parameter 2α (which +is subcritical, according to the definition of PIII). A similar convergence result holds on +the boundary between PII and PIII that is +PII{III :“ +! +α ` iβ : α2 ` β2 “ d ; |α| ă +a +d{2 +) +. +These convergence statements for γ P PIII Y PI{III are proved in [16]. +The present contribution. The aim of the present paper is to come closer to a completition +of the phase diagram by stating and proving convergence results for Mγ +ε on the phase +transition curves PI{II and PI{III as well as at the triple points PI{II{III. +In each case, +the limit obtained does not depend on the regularization kernel θ. We leave as an open +problem the challenging task of proving a convergence result in the frozen phase PII. +2. Main results +For simplicity of notation, we consider, for the remainder of the paper and without loss +of generality that γ is in the upper-right quarterplane of C, that is α, β ě 0. +2.1. The boundary between phase I and II. Our first result concerns the case when +γ lies on the boundary between regions I and II +PI{II :“ tα ` iβ : α ą β ą 0 ; α ` β “ +? +2du. +(2.1) + +6 +HUBERT LACOIN +Note that our definition of PI{II excludes one point of the boundary which correspond to +Critical Gaussian multiplicative chaos γ “ +? +2d (see Section 2.2 below). +Theorem 2.1. If X is a centered Gaussian field whose covariance kernel K has an almost +star-scale invariant part, γ P PI{II, and f P CcpRdq then there exists a complex valued +random variable Mγ +8pfq such that for any choice of mollifier θ the following convergence +holds in Lp if p P +” +1, +? +2d{α +¯ +. +lim +εÑ0 Mγ +ε pfq “ Mγ +8pfq. +(2.2) +The above result extends [18, Theorem 2.2] which established convergence for γ P PI. +The method which we use to prove it however, completely differs from the one employed in +[18]. In fact the method of proof that we employ in Section 4 balso provides an alternative +and much shorter proof of [18, Theorem 2.2], with the additional benefit of establishing +convergence in Lp for an optimal range of p. +Remark 2.2. We have chosen to denote the limit by Mγ +8 rather than Mγ +0 . While the +latter may seem a more natural choice, it is already in use for the initial condition of the +martingale GMC approximation introduced in Section 3 (see for instance (4.2)). +Remark 2.3. We have chosen to put the emphasis on the proof of the convergence of +Mγ +ε pfq for all fixed f, but it is true also that Mγ +ε p¨q converges as a random distribution. +More precisely the convergence (in probability) of Mγ +ε in a local Sobolev space of negative +index can in fact be deduced from the estimates obtained in the proof of (2.2). We include +the argument in Appendix B. +2.2. The boundary between phase II and III, and the triple point. Our second +result concerns the case when γ P P1 +II{III where +PII{III :“ t +a +d{2 ` iβ : β ą +a +d{2u, +P1 +II{III :“ PII{III Y t +a +d{2p1 ` iqu +(2.3) +In that case Mγ +ε needs to be rescaled in order to obtain a non-trivial limit. The convergence +holds only in law. To describe the limit we need to introduce two notions: Critical Gaussian +Multiplicative Chaos, and Gaussian White Noise with a random intensity. +Critical GMC. As explained in the introduction critical Gaussian Multiplicative Chaos +is obtained as the limit of Mα +ε when α “ +? +2d. The value +? +2d represent a threshold +for the convergence of Mα +ε . The convergence result below follows from a combination of +[5, Theorem 5] - which establishes the convergence for the martingale sequence Mα +t (see +Section 3) and [10, Theorems 1.1 and 4.4] which establish that the limit is the same for +the exponential of the mollified field Mα +ε . Alternative concise proofs of these results have +been recently given in [17]. +Theorem A. Let X be a Gaussian random field with an almost-star scale invariant kernel. +There exists a locally finite random measure M1 with dense support and no atoms such +that for every f P CcpRdq the following convergence holds in probability +lim +εÑ0 +c +π log p1{εq +2 +M +? +2d +ε +pfq “ M1pfq. +(2.4) +Remark 2.4. Note that we have set different conventions and that our M1 differs from +that in [5, Theorem 5] by a factor +b +2 +π. + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 7 +Complex white noise with random intensity given by a Real GMC. For γ P P1 +II{III we +define Mγ to be a complex white noise with intensity measure given by M1pe|γ|2L¨q It is a +random linear form which is constructed jointly with X, on an extended probability space. +Conditionally on X, for f P C8 +c pDq, Mγpfq is a complex Gaussian random variable, with +independent real and imaginary parts, both with a variance equal to +M1pe|γ|2Lf 2q “ +ż +D +e|γ|2Lpx,xqfpxq2M1pdxq. +Formally, letting P and P denote respectively the law of X and the joint law of pX, Mγp¨qq, +Mγp¨q is the random process indexed by CcpRdq which satisfies for any m, n ě 1, ρ1, . . . , ρm, f1, . . . , fn P +CcpRdq and any bounded measurable function F on Cn`m +E +“ +F +` +pxX, ρiyqm +i“1, pMγpfjqqn +j“1 +˘‰ +“ E b En +“ +F +` +pxX, ρiyqm +i“1, Σrγ, X, pfjqn +j“1s ¨ Nn +˘‰ +(2.5) +where under Pn, Nn is an n dimensional vector whose coordinate are IID standard com- +plex Gaussian variables, and Σrγ, X, pfjqn +j“1s is the positive definite square root of the +Hermitian matrix +´ +M1pe|γ|2Lfif jq +¯n +i,j“1 . +The result. Let us define the function ℓθ on Rd, obtained by convoluting z ÞÑ log 1{|z| +twice with θ, that is +ℓθpzq :“ +ż +Rd log +ˆ +1 +|z ` z1 ´ z2| +˙ +θpz1qθpz2qdz1dz2, +(2.6) +and set (recall (2.3)) +vpε, θ, γq :“ +$ +’ +& +’ +% +p2π logp1{εqq´1{4ε +d´|γ|2 +2 +´ş +Rd e|γ|2ℓθpzqdz +¯1{2 +if γ P PII{III, +a +Σd´1 +´ +2 logp1{εq +π +¯1{4 +if γ “ +a +d{2pi ` 1q +(2.7) +where Σd is the volume of the d ´ 1 dimensional sphere. Note that limεÑ0 vpε, θ, γq “ 8 +in all cases. +Theorem 2.5. Let X be a Gaussian random field with an almost star-scale covariance. +Then given γ P P1 +II{III, we have the following joint convergence in law +ˆ +X, +Mγ +ε +vpε, θ, γq +˙ +εÑ0 +ñ pX, Mγq, +(2.8) +Remark 2.6. The convergence in (2.8) implies that vpε, θ, γq´1Mγ +ε does not converge +in probability. On the heuristic level, this can be explained as follows: The white noise +that appears in the limit is the product of local fluctuations of Xε. These fluctuations are +produced by high frequencies in the Fourier spectrum of X. The set of frequencies that +produce the fluctuations diverges to infinity when ε Ñ 0. This means that the randomness +that produces the white noise become asymptotically independent of X in the limit. +Remark 2.7. The convergence (2.8) means that for any collection pρiqm +i“1 and pfjqn +j“1 we +have the convergence in law of the Cm`n valued vector +lim +εÑ0 +˜ +pxX, ρiyqm +i“1, +ˆ Mγ +ε pfjq +vpε, θ, γq +˙n +j“1 +¸ +“ +´ +pxX, ρiyqm +i“1, pMγpfjqqn +j“1 +¯ +. +(2.9) + +8 +HUBERT LACOIN +The convergence can also be shown to hold in a space of distribution. More precisely, there +exists a modification of the process Mγ taking values in the local Sobolev space H´u +loc pRdq +with u ą d{2 and Mγ +ε pfjq +vpε,θ,γq converges in law in that space. See Appendix B. +Since both X and Mγ +ε are linear forms, the convergence of finite dimensional marginals +follows from that of one dimensional marginals (this can simply be checked using Fourier +transform and L´evy Theorem). More precisely, we only need to prove the convergence for +every f P CcpRdq and ω P r0, 2πq of the real valued variable (Re denotes the real part) +Mγ +ε pf, ωq :“ Re +` +e´iωMγ +ε pfq +˘ +(2.10) +Hence Theorem 2.5 can be reduced to the proof of the following statement +Proposition 2.8. Under the assumption of Theorem 2.5, given ρ, f P CcpRdq, ω P r0, 2πq, +we have +lim +εÑ0 E +„ +eixX,ρy`i Mγ +ε pf,ωq +vpε,θ,γq + +“ E +„ +eixX,ρy´ 1 +2M1pe|γ|2L|f|2q + +. +(2.11) +The r.h.s. in (2.11) of corresponds to the Fourier transform of pX, Mγq (cf. (2.5)) +E +„ +eixX,ρy´ 1 +2 M1pe|γ|2L|f|2q + +“ E +” +eixX,ρy`iMγpfqı +, +and the convergence of the Fourier transform implies that of finite dimensional marginals. +More detailed justifications are exposed in [16, Section 1.2]. +3. The martingale approximation for GMC +Before getting to the technical core of the paper, we need one more introductory section +to present an essential tool which is used in the proof of both Theorem 2.1 and Theorem +2.5: the martingale decomposition of the field X. Under the almost star-scale assumption +for K, besides mollification, there is another natural way to approximate the log-correlated +field X by a smooth field. Extending the probability space, one can define a martingale +sequence of smooth fields pXtqtě0 that converges to X. +This allows for another approach to the construction of GMC, considering the exponen- +tial of the martingale approximation of X (see (3.7)) which we call Mγ +t (see Remark 3.2 +concerning the conflict of notation). Convergence results for Mγ +t which are a analogous +to Theorem 2.1 and 2.5 are also presented in this section. In section 3.5 we introduce an +important technical tool which is used to prove Theorem 2.5. The result (a central limit +Theorem proving convergence to a Gaussian with random variance) may find applications +in other context, so it is stated in a rather general setup. +3.1. The martingale decomposition of X. Given K with an almost star-scale invariant +part, and using the decomposition (1.8) for K, we set Qtpx, yq :“ κpet1px ´ yqq where t1 is +defined as the unique positive solution of +t1 ´ η1 +η2 +p1 ´ e´η2t1q “ t. +(3.1) +We set +Ktpx, yq :“ K0px, yq ` +ż t +0 +Qspx, yqds +“ K0px, yq ` +ż t1 +0 +p1 ´ η1e´η2sqκpespx ´ yqqds “: K0px, yq ` Ktpx, yq. +(3.2) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 9 +Note that we have limtÑ8 Ktpx, yq “ Kpx, yq. We define pXtpxqqxPRd,tě0 to be a centered +Gaussian field with covariance given by (using the notation a ^ b :“ minpa, bq, a _ b :“ +maxpa, bq) +ErXtpxqXspyqs “ Ks^tpx, yq. +(3.3) +Since ps, t, x, yq ÞÑ Ks^tpx, yq is H¨older continuous, the field admits a continuous modifi- +cation. We let Ft :“ σ +´ +pXspxqqxPRd,sPr0,ts +¯ +denote the natural filtration associated with +X¨p¨q. The process X indexed by CcpRdq and defined by xX, ρy “ limtÑ8 +ş +Rd Xtpxqρpxqdx, +is a centered Gaussian field with covariance, so that Xt is an approximation sequence for +a log-correlated field with covariance K. We also define X¨ :“ X¨ ´ X0. Recalling (3.2) +we have +ErXtpxqXspyqs “ Ks^tpx, yq. +(3.4) +An important observation is that since Ktpxq :“ Ktpx, xq “ t, for any fixed x P Rd, the +process pXtpxqqtě0 is a standard Brownian Motion. We also introduce the field Xt,ε which +is the mollification of Xt, that is +Xt,εpxq :“ +ż +Rd θεpx ´ zqXtpzqdz “ E rXεpxq | Fts . +We let Kt,εpx, yq denote the covariance of the field Xt,ε and Kt,ε,0px, yq the cross-covariance +of Xt,ε and Xt +Kt,εpx, yq :“ ErXt,εpxqXt,εpyqs “ +ż +Rd θεpx ´ z1qθεpy ´ z2qKtpz1, z2qdz1dz2, +Kt,ε,0px, yq :“ ErXt,εpxqXtpyqs “ +ż +Rd θεpx ´ zqKtpz, yqdz. +(3.5) +The quantity Kt,ε is defined similarly and we use the notation Qt,ε and Qt,ε,0 the corre- +sponding mollified versions of Qt. +3.2. The martingale approximation for the GMC. We define the distribution Mγ +t +by setting for f P CcpRdq +Mγ +t pfq :“ +ż +Rd fpxqeγXtpxq´ γ2 +2 Ktpxqdx. +(3.6) +Using the independence of the increments of X, it is elementary to check that Mtpfq is an +pFtq-martingale. We also define +Mγ +t,εpfq :“ +ż +Rd fpxqeγXt,εpxq´ γ2 +2 Kt,εpxqdx “ E rMγ +ε pfq | Fts . +(3.7) +3.3. A few properties of the covariance kernels. We introduce some technical nota- +tion and estimates that are going to be of use throughout the article. Let us first not that +if a kernel K has an almost star-scale invariant part then it can be written in the form +(1.1). Indeed, if K satisfies (1.8) then the function L defined for x ‰ y by +Lpx, yq :“ Kpx, yq ` log |x ´ y|, +(3.8) +can be extended to a continuous function on R2d. Note that we have +Lpxq “ lim +yÑx pKpx, yq ` log |x ´ y|q “ K0pxq ´ j +(3.9) + +10 +HUBERT LACOIN +where the difference term j does not depend on x and can be computed explicitely +j :“ lim +zÑ0 +` +logp1{|z|q ´ Kp0, zq +˘ +“ η1 +η2 +` +ż 8 +0 +` +1 ´ rκpe´sq +˘ +ds ă 8. +(3.10) +The above comes from the fact that +logp1{|z|q ´ Kp0, zq “ +ż logp1{|z|q +0 +p1 ´ Qlogp1{|z|q´up0, zqqdu +and the fact that the integrand on the r.h.s. converges to 1 ´ rκpe +η1 +η2 ´sq. Lastly one can +observe that the following identity holds +ℓpzq :“ lim +tÑ8 +` +Ktp0, e´tzq ´ t +˘ +“ lim +tÑ8 +ż t +0 +pκpes1´tzq ´ 1qds “ +ż 8 +0 +pκpe +η1 +η2 ´uzq ´ 1qdu, (3.11) +where in the integral in s, s1 is related to s via (3.1). To obtain the third equality, one +simply observe that s1 “ s ` η1{η2 ` op1q in the large s limit and make the change of +variable u “ t ´ s. Note that ℓpzq is a continuous negative function and that for any +|z| ě e´ η1 +η2 we have ℓpzq “ log 1 +|z| ´ j. +To conclude this subsection, we gather in a a technical lemma a couple of useful estimates +concerning Kt, Qt and their variant. +Lemma 3.1. Given R ą 0, there exists a constant CR such that for any x, y P Bp0, Rq, +t ą 0 and ε P r0, 1s +ˇˇˇˇKt,εpx, yq ´ log +ˆ +1 +maxpe´t, ε, |x ´ y|q +˙ˇˇˇˇ ď CR. +(3.12) +The bound (3.12) remains valid with Kt,ε replaced by Kt (with ε “ 0), Kt,ε,0, Kt,ε etc... +We also have ż +Rd Qtpx, yq “ +ż +Rd Qt,εpx, yqdy “ +ż +Rd Qt,ε,0px, yqdy ď Ce´dt, +(3.13) +and +0 ď t ´ Kt,εpx, yq ď C +` +etp|x ´ y| ` εq +˘2 +(3.14) +The estimates above can be proved rather directly from the definition. A detailed proof +of (3.12) is provided in [17, Appendix A.3]. The bound (3.13) follows directly from the +definition of Qt given above (3.1) and the fact that |t´t1| is uniformy bounded. The upper +bound in (3.14) can be obtained by integrating (in time and space) the inequality +1 ´ Qtpz1, z2q ď Cret1|z1 ´ z2|s2 +which follows directly from the Taylor expansion at second order of κ. +Remark 3.2. There is an obvious conflict of notation between Kt introduced above and +Kε introduced in (1.6) and the same can be said about Xt and Mγ +t . This should not cause +any confusion since we keep using the letter ε for quantities related to the mollified field +Xε and latin letters for quantities related to the martingale approximation Xt. +3.4. Convergence results for the martingale approximation. An intermediate step +to prove Theorem 2.1 and Theorem 2.5 is to show that similar results hold for the mar- +tingale approximation Mγ +t . These results present of course an interest in their own right. + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES11 +The case of γ P PI{II. +Proposition 3.3. When γ P PI{II, the martingale Mγ +t pfq is bounded Lp for p P r1, +? +2d{|α|q. +As a consequence the limit +lim +tÑ8 Mγ +t pfq “: Mγ +8pfq +(3.15) +exists almost surely. The convergence holds in Lp and the limit is non-trivial. +Remark 3.4. The martingale limit in (3.15) is the same as the limit of Mγ +ε appearing in +Theorem 2.1 (this is the reason why we use the same notation), we have +lim +tÑ8 Mγ +t pfq “ lim +εÑ0 Mγ +ε pfq. +(3.16) +This observation is important, since it establishes that the limit in (2.2) does not depend +on the choice of the mollifier. +The case γ P P1 +II{III. In order to state the convergence in law result for Mγ +t , we need to +introduce a normalization factor vpt, γq (analogous to (2.7) for the mollified case). Let us +set +vpt, γq “ +$ +& +% +e +|γ2|j +2 +` 1 +2πt +˘1{4 e +p|γ|2´dqt +2 +´ş +Rd e|γ|2ℓpzqdz +¯1{2 +, +if |γ|2 ą d +a +Σd´1 +` 2t +π +˘1{4 +if |γ|2 “ d. +(3.17) +and define +Mγ +t pf, ωq :“ Re +` +e´iωMγ +t pfq +˘ +. +(3.18) +The following analogue of Proposition 2.8 holds. +Proposition 3.5. If X is an almost star-scale invariant field and γ P P1 +II{III we have for +any ρ, f P CcpRdq +lim +tÑ0 E +„ +eixX,ρy`i +Mγ +t pf,ωq +vpt,γq + +“ E +„ +eixX,ρy´ 1 +2 M1pe|γ|2L|f|2q + +. +(3.19) +As a consequence we have the following convergence in law (in the sense of finite dimen- +sional marginals) +ˆ +X, +Mγ +t +vpt, γq +˙ +tÑ8 +ùñ +pX, Mγq. +(3.20) +3.5. CLT towards a Gaussian with random variance. We conclude this section by +introducing a technical results which is essential to prove the convergence of a sequence of +variable towards a Gaussian with random intensity in Theorem 2.5. We provide the result +and its proof in a reasonably high level of generality since it may find application in other +contexts. +Consider pFtqtě0 a filtration and pWnqně1 a sequence of real valued random variables +in L1. We introduce for each n ě 1 the martingale +Wn,t :“ E rWn | Fts . +(3.21) +We assume that the martingale Wn,t admits a modification which is continuous in t for +every n ě 1 We prove that Wn converges to to a Gaussian with random variance if the +quadratic variation of pWn,tqtě0 satisfy a law of large number and a couple of additional +technical assumptions. The result generalizes a similar CLT established for a single mar- +tingale process (see [9, Theorem 5.50, Chap. VIII-Section 5c] or [16, Theorem 2.5]). + +12 +HUBERT LACOIN +Theorem 3.6. Let us assume that and that there exists a non-negative valued random- +variable Z which is such that the three following convergences in probability hold +lim +nÑ8 +xWny8 +v2pnq “ Z, +@t ě 0 lim +nÑ8 +xWnyt +v2pnq “ 0, and lim +nÑ8 +Wn,0 +vpnq “ 0. +(3.22) +Then Xn{vpnq converges in distribution towards a random Gaussian with variance given +by Z, that is to say that for any F8 bounded measurable H we have +lim +nÑ8 E +” +HeiξWn{vpnqı +“ lim +nÑ8 E +„ +He´ ξ2Z +2 + +(3.23) +This is equivalent to saying that for any F8 random variable Y we have the following +convergence in law +pY, Wnq ùñ pY, +? +ZNq +where N is a standard Gaussian which is independent of Z and Y . +Remark 3.7. We believe that with adequate assumption on the size of the jumps, the +result may extend to the case where pWn,tqtě0 is a c`ad-l`ag martingale, with the quadratic +variation is replaced by the predictable bracket. Since we have no application in that setup, +we restricted ourselves to the continuous case where the proof is technically simpler. +Remark 3.8. In Section 6 we apply Theorem 3.6 for a sequence of variables indexed by +ε P p0, 1q (namely Mγ +ε pf, ωq) in the limit when ε Ñ 0 rather than n ě 1 and n Ñ 8. +These setups are equivalent. +3.6. Organization of the paper. The remainder of the paper is organized as follows +‚ In Section 4 we prove all the statements concerning convergence in PI{II. Section +4.1 is devoted to the proof of Proposition 3.3. The more technical proof of Theorem +2.1, which uses Proposition 3.3 as in imput is displayed in Section 4.2. +‚ The statements concerning γ P P1 +II{III, namely Proposition 3.5 and Proposition +2.8, while relying on relatively simple ideas, require a certain amount of technical +computations. In Section 5 we prove Proposition 3.5, in Section 6 Proposition 2.8. +‚ In Section 7, we present the proof of Theorem 3.6. +A significant amount of material is presented in appendices. +‚ In Appendix A, we prove a couple of auxilliary results used in Section 5/6. +‚ In Appendix B, we present and prove an extension of our main results, that is, +the convergence of Mγ +ε p¨q as a distribution. After identifying the right topology, +the proof mostly boils down to repeating the computation made in Section 4 (for +γ P PI{II) and Section 6 (for γ P P1 +II{III). +‚ In Appendix C, we explain how our results can be extended to the case of a +(sufficiently regular) log-correlated Gaussian field defined on an arbitrary open +domain D Ă Rd. +‚ In Appendix D, we present a relatively short proof of Lemma 4.1 for the sake +of completeness. It the same as the one presented in [20, Lemma 3.15], except +that we include a short proof of Lemma D.2 instead of relying on the branching +random walk literature where more general results have been shown, albeit with +much longer proofs (see for instance [8, 22]). + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES13 +A comment on notation. Throughout the paper, we use the letter C for a generic positive +constant when we need to compare two quantities. It may depend on some parameters +(for instance on γ or on the kernel K) but never on the variable t or ε. The value of C +might change from one equation to the other withing the same proof. We use C1 and C2 +if we need several constants in the same display. +4. Proof of convergence results on for γ P PI{II +In this section we prove Proposition 3.3 and Theorem 2.1. The first one is easier, recall +that due to the martingale property of Mγ +t , it is sufficient to show that the sequence +is bounded in Lp to prove convergence. This is performed in Section 4.1. We rely on +the Burkeholder-Davis-Gundy (BDG) inequality, compute the quadratic variation of the +martingale and studying its moment of order p{2. +In Section 4.2, we adapt the same method to estimate the Lp norm of Mγ +ε ´ Mγ +8. +More precisely the BDG inequality for the martingale pMγ +t,ε ´ Mγ +t qtě0, and show that the +moment of order p{2 of its quadratic variation is uniformly small in t. +4.1. Proof of Proposition 3.3. Recalling that +? +2d{α ą 1, we are going to prove that +Mγ +t pfq is bounded in Lp for +p P +´? +8d{p3αq _ 1, +? +2d{α +¯ +. +(4.1) +In the whole paper, when Mt is a complex valued continuous martingale, we use the +notation xMyt to denote the the bracket between M and M. It is the predictable process +such that |Mt|2 ´ xMyt is a local martingale. Using Burkeholder-Davis-Gundy (BDG) +inequality for Mγ +t pfq, there exists a constant Cp such that for every t ą 0 +E +“ +|Mγ +t pfq|p‰ +ď Cp +´ +ErxMγpfqyp{2 +t +s ` E r|Mγ +0 pfq|ps +¯ +. +(4.2) +We have +E +“ +|Mγ +0 pfq|2‰ +“ +ż +R2d e|γ|2K0px,yqfpxqfpyqdxdy ă 8. +(4.3) +Since p ă 2 by assumption, Jensen’s inequality implies that E r|Mγ +0 pfq|ps ă 8. Using Itˆo +calculus, we obtain an explicit expression for the quadratic variation +xMγpfqy8 “ |γ|2 +ż 8 +0 +Atdt +(4.4) +where +At :“ +ż +R2d fpxqfpyqQtpx, yqeγXtpxq`γXtpyq´ γ2 +2 Ktpxq´ γ2 +2 Ktpyqdxdy. +(4.5) +Note that At is real and positive. From (4.2), we deduce that Mγ +t pfq is bounded in Lp if +E +“ +p +ş8 +0 Atdtqp{2‰ +ă 8. To bound At from above, we take the modulus of the integrand in +(4.5) and using the assumption that β “ +? +2d ´ α (γ P PI{II) we obtain that +At ď +ż +R2d |fpxqfpyq|Qtpx, yqeαpXtpxq`Xtpyqq` 2d´2 +? +2dα +2 +pKtpxq`Ktpyqqdxdy. +(4.6) +Then using the inequality ab ď a2 +2 ` b2 +2 with +a “ |fpxq|eαXtpxq` 2d´2 +? +2dα +2 +Ktpxq +and +b “ |fpyq|eαXtpyq` 2d´2 +? +2dα +2 +Ktpyq + +14 +HUBERT LACOIN +and symmetry in x and y, we have +At ď +ż +R2d |fpxq|2Qtpx, yqe2αXtpxq`p2d´2 +? +2dαqKtpxqdxdy. +(4.7) +We use (3.13) to integrate over y and (3.12) to replace replace Ktpxq by t (at the cost of +multiplicative constant) and we have +At ď Cedt +ż +Rd |fpxq|2e2αpXtpxq´ +? +2dtqdx. +(4.8) +Now, as α ą +a +d{2, we have by p{2 ă 1 by assumption. We can use thus the following +inequality (valid for an arbitrary collection of positive real numbers paiqiPI and q P p0, 1q) +˜ÿ +iPI +ai +¸q +ď +ÿ +iPI +aq +i , +(4.9) +with q “ p{2. In the remainder of the paper, we simply say “by subadditivity” when using +(4.9). Using (4.9) and Jensen’s inequality we have +E +«ˆż 8 +0 +Atdt +˙p{2ff +ď +ÿ +ně0 +E +«ˆż n`1 +n +Atdt +˙p{2ff +ď +ÿ +ně0 +E +«ˆż n`1 +n +ErAs | Fnsds +˙p{2ff +. +(4.10) +Averaging with respect to pXs ´ Xnq we obtain from (4.8) +ż n`1 +n +E rAs | Fns ď Cedn +ż +R2d |fpxq|2e2αpXnpxq´ +? +2dnqdx “: CBn. +(4.11) +As p ą +? +8d{3α by assumption, we can conclude using the estimate in Lemma 4.1 below +for the fractional moments of Bn (the assumption on p makes the r.h.s. of (4.12) summable +in n). More precisely, we deduce from (4.10),(4.11) and (4.12) that E +”`ş8 +0 Atdt +˘p{2ı +ă 8. +Lemma 4.1. For α ą +a +d{2 and p ă +? +2d{α we have +E +” +Bp{2 +n +ı +ď Cn´ 3αp +? +8d plog nq6. +(4.12) +This result is a weaker version of [20, Lemma 3.15]. We provide, for the commodity of the +reader a self-contained of Lemma 4.1 in Appendix D. +4.2. Proof of Theorem 2.1. We prove Theorem 2.1 in the setup where our probability +space contains a martingale approximation pXtqtě0 of the field X with covariance 3.3. +More precisely we show that Mγ +ε pfq converges to the same limit as Mγ +t pfq. Working in +an enlarged probability space entails by no mean a loss of generality since the validity of +the statement “the sequence pMγ +ε pfqqεPp0,1s is Cauchy in Lp” is entirely determined by the +distribution of pXεpxqqxPRd,εPp0,1s. +Proposition 4.2. Given γ P PI{II and p P r1, +? +2d{αq we have +lim +εÑ0 sup +tą0 +E +“ +|pMγ +t ´ Mγ +t,εqpfq|p‰ +“ 0. +(4.13) +As a consequence the following convergence holds in Lp +lim +εÑ0 Mγ +ε pfq “ Mγ +8pfq +(4.14) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES15 +Proof. Let us first show indicate how (4.14) follows from (4.13). We observe that +E +“ +|pMγ +t,ε ´ Mγ +ε qpfq|2‰ +“ +ż 8 +0 +fpxqfpyq +´ +e|γ|2Kεpx,yq ´ e|γ|2Kt,εpx,yq¯ +dxdy. +(4.15) +Since limtÑ8 Kt,εpx, yq “ Kεpx, yq, using dominated convergence the r.h.s. tends to 0 when +t Ñ 8 and thus limtÑ8 Mγ +t,εpfq “ Mγ +ε pfq in L2, and hence also in Lp. Using Proposition +3.3 we thus have the following convergence in Lp +lim +tÑ8pMγ +t ´ Mγ +t,εqpfq “ pMγ +8 ´ Mγ +ε qpfq. +Taking the limit when ε to zero, we obtain that +lim +εÑ0 E r|pMγ +8 ´ Mγ +ε qpfq|ps “ lim +εÑ0 lim +tÑ8 E +“ +|pMγ +t ´ Mγ +t,εqpfq|p‰ +. +(4.16) +and we conclude using (4.13). +To prove (4.13), we assume that (4.1) holds. Then using the BDG inequality (we omit the +dependence in f for ease of reading). We have for every t ě 0 +Er|Mγ +t ´ Mγ +t,ε|ps ď CpErxMγ ´ Mγ +¨,εyp{2 +8 ` |Mγ +0 ´ Mγ +0,ε|ps. +(4.17) +The reader can then check by an explicit calculation of the second moment that +lim +εÑ0 E +” +|Mγ +0 pfq ´ Mγ +0,εpfq|pı +ď lim +εÑ0 E +” +|Mγ +0 pfq ´ Mγ +0,εpfq|2ıp{2 +“ 0 +(4.18) +Hence in view of (4.17)-(4.18), to prove (4.13) we need to show that +lim +εÑ0 ErxMγ ´ Mγ +¨,εyp{2 +8 s “ 0. +(4.19) +Expanding the product, using Itˆo calculus (Re denotes the real part) we obtain +xMγ ´ Mγ +¨,εy8 “ |γ|2 +ż 8 +0 +´ +At ´ 2Re +´ +Ap1q +t,ε +¯ +` Ap2q +t,ε +¯ +dt. +(4.20) +where, At is defined in (4.8), and recalling (3.5), Ap1q +t,ε and Ap2q +t,ε are defined by +Ap1q +t,ε :“ +ż +R2d fpxqfpyqQt,ε,0px, yqeγXtpxq`γXt,εpyq´ γ2 +2 Ktpxq´ γ2 +2 Kt,εpyqdxdy, +Ap2q +t,ε :“ +ż +R2d fpxqfpyqQt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 +2 Kt,εpxq´ γ2 +2 Kt,εpyqdxdy. +(4.21) +We are going to reduce the proof of (4.19) to that of two convergence statements concerning +Apiq +t,ε for i P t1, 2u (the first being valid for any fixed r ą 0) +lim +εÑ0 sup +tPr0,rs +E +” +|At ´ Apiq +t,ε| +ı +“ 0 +for i P t1, 2u. +(4.22) +lim +rÑ8 sup +εPp0,1s +E +«ˆż 8 +r +|Apiq +t,ε|dt +˙p{2ff +“ 0 +for i P t1, 2u. +(4.23) +Before proving (4.22)-(4.23) let us explain how (4.19) is deduced from it. Note that (4.23) +is also valid for At (this can be extracted from the proof in Section 4.1). Given δ ą 0, + +16 +HUBERT LACOIN +using subadditivity (4.9), and (4.23) we can find rδ such that for every ε ą 0 +E +«ˆż 8 +rδ +´ +At ´ 2Re +` +Ap1q +t,ε +˘ +` Ap2q +t,ε +¯ +dt +˙p{2ff +ď E +«ˆż 8 +rδ +Atdt +˙p{2 +` +ˆż 8 +rδ +2|Ap1q +t,ε |dt +˙p{2 +` +ˆż 8 +rδ +Ap2q +t,ε dt +˙p{2ff +ď δ{2. +(4.24) +Now using first Jensen’s inequality and then (4.22) (recall that At is real valued) we can +find εδ such that for every ε P p0, εδq +E +«ˆż rδ +0 +´ +At ´ 2Re +` +Ap1q +t,ε +˘ +` Ap2q +t,ε +¯ +ds +˙p{2ff +ď +ˆż rδ +0 +E +” +At ´ 2Re +` +Ap1q +t,ε +˘ +` Ap2q +t,ε +ı +ds +˙p{2 +ď +ˆż rδ +0 +E +” +2|At ´ Ap1q +t,ε | ` |Ap2q +t,ε ´ At| +ı +ds +˙p{2 +ď δ{2. +(4.25) +Using subadditivity again we deduce from (4.24)-(4.25) that if ε P p0, εδq we have +E +«ˆż rδ +0 +´ +At ´ 2Re +` +Ap1q +t,ε +˘ +` Ap2q +t,ε +¯ +dt +˙p{2ff +ď δ, +(4.26) +which (recalling (4.20)) concludes the proof of (4.19). Let us now prove (4.22)-(4.23). +The proof (4.22) follows from a rather pedestrian but rather cumbersome computation +of the L2 norm of pAt ´ Apiq +t,εq. The following lemma summarizes the key points of this +computation. +Lemma 4.3. Consider the following: +‚ Let pX, µq be a measured space and T be a set of indices. +‚ Let Zt,εp¨q, t P T , ε P p0, 1s be a collection of complex valued Gaussian processes +defined on X. We set +Gt,εpx, yq :“ ErZt,εpxqZt,εpyqs +and +Ht,εpx, yq :“ ErZt,εpxqZt,εpyqs. +(4.27) +‚ Let Zt be defined on the same probability space in such a way that pZt, Zt,εq is +jointly Gaussian. We let Gt and Ht be defined as in (4.27) and set +Ht,ε,0px, yq :“ ErZt,εpxqZtpyqs. +‚ Let gt,ε and gt be deterministic functions X Ñ R. +We assume that: +(i) The covariance functions are uniformly bounded, that is +sup +tPT +εPp0,1s +sup +x,yPX +max pHt,εpx, yq, Htpx, yq, Ht,ε,0px, yqq ă 8. +(ii) There exists a µ-integrable function h such that for every t P T and ε P p0, 1s +@x P X, +maxp|gt,εpxq|, |gtpxq|q ď hpxq +(iii) That for every t P T , we have the following pointwise convergence +lim +εÑ0 gt,ε “ gt, +and +lim +εÑ0 Ht,ε “ lim +εÑ0 Ht,ε,0 “ Ht +(4.28) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES17 +Then setting +Wt,ε :“ +ż +X +gt,εpxqeZt,εpxq´ 1 +2 Gt,εpxqµpdxq +and +Wt :“ +ż +X +gtpxqeZtpxq´ 1 +2Gtpx,xqµpdxq. +We have +lim +εÑ0 sup +tPT +E +“ +|Wε ´ Wt,ε|2‰ +“ 0. +(4.29) +Proof of Lemma 4.3. The proof is actually much shorter than the statement. We have +E +“ +|Wt,ε ´ Wt|2‰ +“ +ż +X 2 +ˆ +gt,εpxqgt,εpyqeHt,εpx,yq ´ 2Re +´ +gt,εpxqgtpyqeHt,ε,0px,yq¯ +` gtpxqgtpyqeHtpx,yq +˙ +µpdxqµpdyq +(4.30) +and using our assumptions we can apply dominated convergence. +□ +Proof of (4.22). We consider the case i “ 2 but the other one is identical. We set X “ R2d, +µ is Lebesgue measure, T “ r0, rs, and +Zt,εpx, yq “ γXt,εpxq ` γXt,εpyq, +Ztpx, yq “ γXtpxq ` γXtpyq, +gt,εpx, yq “ Qt,εpx, yqfpxqfpyqe|γ|2Kt,εpx,yq, +gtpx, yq “ Qtpx, yqfpxqfpyqe|γ|2Ktpxq. +Then the assumptions of Lemma 4.3 are immediate to check. +□ +We now provide the details for the proof of (4.23) i “ 2 (the case i “ 1 is similar). Let +us set n0pεq “ rlogp1{εqs and assume (without loss of generality) that r is an integer and +is smaller than n0. Using - as in the proof of Proposition 4.2 - subadditivity (4.9) and +Jensen’s inequality we obtain +E +«ˆż 8 +r +|Ap2q +t,ε |ds +˙p{2ff +ď +n0 +ÿ +n“r +E +«ˆż n`1 +n +|Ap2q +t,ε |dt +˙p{2ff +ď +n0´1 +ÿ +n“r +E +«ˆż n`1 +n +E +” +|Ap2q +t,ε | | Fn +ı +dt +˙p{2ff +` E +«ˆż 8 +n0 +E +” +|Ap2q +t,ε | | Fn0 +ı +dt +˙p{2ff +. +(4.31) +Proceeding as in (4.11), we obtain that if t P rn, n ` 1q, n P �r, n0 ´ 1�, or t ě n0, n “ n0, +we have (using Lemma 3.1 to replace the covariance Kn,εpxq by n) +E +” +|Ap2q +t,ε | | Fn +ı +ď C +ż +R2d |fpxq|2Qs,εpx, yqe2αpXn,εpxq´ +? +2dnq`2dndxdy. +(4.32) +Using (3.13) to integrate over y and setting +Bp2q +n,ε :“ +ż +Rd |fpxq|2e2αpXn,εpxq´ +? +2dnq`dndx +(4.33) +we obtain that +E +«ˆż 8 +r +|Ap2q +t,ε |ds +˙p{2ff +ď C +n0 +ÿ +n“r +E +” +pBp2q +n,εqp{2ı +. +(4.34) + +18 +HUBERT LACOIN +Using Jensen’s inequality for the probability θεpy ´ xqdy, we can replace the mollification +acting on Xn in the exponential by one acting of |f|2, we have +e2αXn,εpxq ď +ż +Rd θεpx ´ yqe2αXnpyqdy +which after multiplying by |fpxq|2 and integrating with respect to x implies that +Bp2q +n,ε ď +ż +D +` +|f|2 ˚ θε +˘ +pyqe2αpXnpyq´ +? +2dnq`dndy. +(4.35) +Since |f|2˚θε ď }f}2 +81t|x|ďR`1u if f is supported in Bp0, Rq, we can conclude using Lemma +4.1, that +E +” +pBp2q +n,εqp{2ı +ď Cn´ 3αp +? +8d +for a constant which does not depend on ε. Recalling that p ą +? +8d{3α (cf. (4.1)) we +obtain combining(4.32), (4.34) and (4.35) that +E +«ˆż 8 +r +|Ap2q +t,ε |ds +˙p{2ff +ď Cr1´ 3αp +2 +? +2d . +(4.36) +This concludes the proof of (4.23), and thus of Proposition 4.2. +□ +5. Proof of Proposition 3.5 +5.1. Reduction to a statement concerning the total variation. Using [16, Theorem +2.5] (which is a simpler version of Theorem 3.6 displayed above) we can reduce the proof +of (3.19) to the following convergence statement about the quadratic variation of the +martingale. +Proposition 5.1. We have the following +lim +tÑ8 vpt, γq´2xMγpf, ωqyt “ M1pe|γ|2L|f|2q. +(5.1) +Proof of Proposition 3.5 from Proposition 5.1. We simply apply [16, Theorem 2.5] to the +martingale Mγ +t pf, ωq. +□ +Setting, for notational simplicity Wt :“ Mγ +t pfq. Recall that for a complex value mar- +tingale such as Wt we use the notation xWyt for the bracket between W and its conjugate. +Using bilinearity of the martingale brackets we have +xMγpf, ωqyt “ 1 +2 +` +xWyt ` Repe´2iωxW, Wytq +˘ +(5.2) +Hence to prove (5.1), it is sufficient to prove that following convergences hold in probability. +lim +tÑ8 vpt, γq´2xWyt “ 2M1pe|γ|2L|f|2q, +lim +tÑ8 vpt, γq´2xW, Wyt “ 0. +(5.3) +The expression for the bracket of Wt can be obtained by using Itˆo calculus (recall (4.4)) +More precisely we have +xWyt “ |γ|2 +ż t +0 +Asds +and +xW, Wyt “ γ2 +ż t +0 +Bsds, +(5.4) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES19 +where At is defined in (4.5) and +Bt :“ +ż +R2d fpxqfpyqQtpx, yqeγpXtpxq`Xtpyqq´ γ2 +2 pKtpxq`Ktpyqqdxdy. +(5.5) +Now using (5.4) our first idea is to deduce (5.3) from a convergence statement concerning +At and Bt. A really important point here is that while At, properly rescaled, converges +to M1pe|γ|2Lfq in probability, this type of convergence is not sufficient to say something +about the integral +şt +0 Asds. A convenient framework to work with integrals is L1 conver- +gence, but the issue we encounter is that At certainly does not converge in L1 (we have +E +” +|M1pe|γ|2Lfq| +ı +“ 8 when f is non trivial). +To bypass this problem, restrict ourselves to likely family of event and prove L1 convergence +for the restriction. Recalling the definition of X (3.4), given q ě 0 and R ą 0, t ě 0 and +x P Rd we introduce the events +At,qpxq :“ +" +max +sPr0,tspXspxq ´ +? +2dsq ă q +* +, +Aq,R :“ +# +sup +sě0,|x|ďR +pXspxq ´ +? +2dtq ă q ++ +“ +č +xPBp0,Rq +tě0 +At,qpxq. +(5.6) +A very important fact, which is a direct consequence of [4, Proposition 19] (see also [17, +Proposition 2.4] for a concise proof). +Lemma 5.2. We have for any fixed R ą 0 +lim +qÑ8 P rAq,Rs “ 1 +(5.7) +We introduce (we drop the dependence in γ in most displays to make them easier to read) +φptq “ φpt, γq :“ +d +2 +πpt _ 1qe|γ2|j +ˆż +Rd Qtp0, zqe|γ2|Ktp0,zqdz +˙ +, +(5.8) +which plays the role of a rescaling function for At. Our main technical result in this section +is the proof that At{φptq converges in L1 towards M1pe|γ|2L|f|2q after restriction to the +event Aq,R. +Proposition 5.3. The following convergences hold for any q ě 0 and any R such that +Supppfq Ă Bp0, Rq +lim +tÑ8 E +” +|At{φptq ´ M1pe|γ|2L|f|2q|1Aq,R +ı +“ 0, +(5.9) +lim +tÑ8 E +“ +|Bt{φptq| 1Aq,R +‰ +“ 0, +(5.10) +and the above quantities are finite for every t ě 0. +To show that Proposition 5.3 implies the convergence stated in Proposition 5.1, we need +to ensure that the rescaling by φptq matches that proposed for xWyt (which is vpt, γq2) +after integrating with respect to time. This is the purpose of the following lemma. +Lemma 5.4. We have for any |γ| ě d +lim +tÑ8 +|γ|2 şt +0 φpsqds +2vpt, γq2 +“ 1. +(5.11) + +20 +HUBERT LACOIN +The proof of Lemma 5.4 is presented in Appendix A.3. +Note that the goal of the +lemma is only to obtain a more presentable expression for vpt, γq since without it, we can +still prove that Proposition 5.1 and hence Proposition 3.5 are valid with v replaced by +vpt, γq :“ |γ| +b +p +şt +0 φpsqdsq{2. +Proof of Proposition 5.1. As we have seen, it is sufficient to prove (5.3). We provide the +details concerning the convergence of xWyt (the first line in (5.3)) but that of xW, Wyt can +be obtained exactly in the same manner. Using (5.4) and Jensen’s inequality we have +E +«ˇˇˇˇˇ +xWyt +|γ|2 şt +0 φpsqds +´ M1pe|γ|2L|f|2q +ˇˇˇˇˇ 1Aq,R +ff +ď +şt +0 φpsqE +”ˇˇˇ As +φpsq ´ M1pe|γ|2L|f|2q +ˇˇˇ 1Aq,R +ı +ds +şt +0 φpsqds +. +(5.12) +Observing that +ş8 +0 φpsqds “ 8, the r.h.s. of (5.12) is simply a weighted Cesaro mean and +thus we deduce from Proposition 5.3 and more precisely from (5.9) that +lim +tÑ8 E +«ˇˇˇˇˇ +xWyt +|γ|2 şt +0 φpsqds +´ M1pe|γ|2L|f|2q +ˇˇˇˇˇ 1Aq,R +ff +“ 0 +(5.13) +Since this holds for every q ą 0 we obtain that the following convergence holds in proba- +bility (the replacement of |γ|2 şt +0 φpsqds by 2vpt, γq2 simply comes from Lemma 5.2) that +lim +tÑ0 +ˇˇˇˇ +xWyt +2vpt, γq2 ´ M1pe|γ|2L|f|2q +ˇˇˇˇ 1Ť +qě1 Aq,R “ 0 +which, since the event in the indicator has probability one (cf. Lemma 5.2) is the desired +conclusion. +□ +5.2. Restricted convergence in L2 for the critical GMC. Before starting the proof +of Proposition 5.3, we recall a result which play a key role in the proof, the L2 convergence +of M +? +2d +t +pgq towards M1pgq when considering the restriction to the event Aq,R. This also +implies convergence in L1 which is what we require for the proof of Proposition 5.3. The +result can be deduced from the L2 convergence of the truncated version of M +? +2d +t +pgq which +is proved in [17]. +Lemma 5.5. We have for any g in CcpRdq such that Supppgq Ă Bp0, Rq and any q ą 0 +lim +tÑ8 E +» +– +ˇˇˇˇˇ +c +πt +2 M +? +2d +t +pgq ´ M1pgq +ˇˇˇˇˇ +2 +1Aq,R +fi +fl “ 0, +(5.14) +and E +“ +|M1pgq|21Aq,R +‰ +ă 8. +Proof. The fact that E +“ +|M1pgq|21Aq,R +‰ +ă 8 is a simple consequence of the convergence +since for any fixed t, Er|M +? +2d +t +pgq|2s ă 8. We set (recall (5.6)) +M +? +2d,pqq +t +pgq :“ +ż +gpxqe +? +2dXtpxq´dKtpxq1At,qpxqdx, +(5.15) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES21 +From [17, Proposition 4.1], there exists an L2 variable D +pqq +8 pgq such that +lim +tÑ8 E +» +– +ˇˇˇˇˇ +c +πt +2 M +? +2d,pqq +t +pgq ´ D +pqq +8 pgq +ˇˇˇˇˇ +2fi +fl “ 0. +(5.16) +It satisfies D +pqq +8 pgq “ M1pgq on the event Aq,R. More precisely [17, Proposition 4.1] is only +stated in the special case where g is an indicator function (to keep notation light) but +the proof for g P CcpRdq is identical. On the event Aq,R we have M +? +2d,pqq +t +pgq “ M +? +2d +t +pgq. +Hence +lim sup +tÑ8 +E +» +– +ˇˇˇˇˇ +c +πt +2 M +? +2d +t +pgq ´ M1pgq +ˇˇˇˇˇ +2 +1Aq,R +fi +fl +“ lim sup +tÑ8 +E +» +– +ˇˇˇˇˇ +c +πt +2 M +? +2d,pqq +t +pfq ´ D +pqq +8 pgq +ˇˇˇˇˇ +2 +1Aq,R +fi +fl “ 0. +(5.17) +where the last equality follows from (5.16). +□ +5.3. Organizing the proof of Proposition 5.3. The two convergences rely on similar +ideas, we focus on (5.9) which is the more delicate of the two. The main idea is that since +the integrand in the definition of At +At :“ +ż +R2d fpxqfpyqQtpx, yqeγXtpxq`γXtpyq´ γ2 +2 Ktpxq´ γ2 +2 Ktpyqdxdy, +vanishes when |x ´ y| ě e´t (due to the presence of the multiplicative Qtpx, yq), the value +of the integral should not be much affected much if one changes fpyq, Xtpyq and Ktpyq by +fpxq, Xtpxq and Ktpxq in the expression. +The quantity obtained after this replacement is, up to a multiplicative factor, of the +form M +? +2d +t +pgq (recall that γ ` γ “ +? +2d) for some function g. Hence we should be able to +conclude the proof of the convergence statement using Lemma 5.5. +While this idea is relatively simple, it requires several steps to be implemented. We set +K˚ +t px, yq :“ K0pxq ` Ktpx, yq +and +r “ rptq :“ t ´ log log t +(5.18) +(we are assuming that t ą e so that 0 ď r ď t). We introduce the quantity rAt which will +appear after all our “replacement” steps have been performed, it is defined by +rAt :“ +ż +R2d Qtpx, yqe|γ|2K˚ +t px,yq|fpxq|2e +? +2dXrpxq´dKrpxqdxdy +“ +ˆż +Rd Qtp0, zqe|γ|2Ktp0,zqdz +˙ ż +Rd e|γ|2K0ptq|fpxq|2e +? +2dXrpxq´dKrpxqdx +“ φptq +c +πt +2 +ż +Rd e|γ|2Lpxq|fpxq|2e +? +2dXrpxq´dKrpxqdx “ φptq +c +πt +2 M +? +2d +r +pe|γ|2L|f|2q. +(5.19) +As a direct consequence of Lemma 5.5 (since r “ t ´ optq the presence of +? +t instead of ?r +does not affect the convergence), we have +lim +tÑ8 E +«ˇˇˇˇˇ +rAt +φptq ´ M1pe|γ|2L|f|2q +ˇˇˇˇˇ 1Aq,R +ff +“ 0. +(5.20) + +22 +HUBERT LACOIN +With this observation the proof of (5.9) reduces to showing that +lim +tÑ0 +1 +φptqE +” +|At ´ rAt|1Aq,R +ı +“ 0. +(5.21) +This requires some care but before going in the depth of the proof, let us explain the +heuristic behind (5.21). Note that rAt is obtained from At with two simple modifications: +‚ We have replaced fpxqfpyq by |fpxq|2. +‚ In the exponential, we have replaced γXtpxq`γXtpyq by +? +2dXrpxq “ pγ`γqXrpxq +and ´ γ2 +2 Ktpxq ´ γ2 +2 Ktpyq by ´dKrpxq ` |γ|2K˚ +t px, yq. +The first modification is rather straightfoward, we are integrating close to the diagonal so +that fpyq is close to fpxq. For the second modification, the idea is that replacing Xtpyq +with Xtpxq (and t with r) should not yield big modifications provided that we change the +normalization to keep the expectation of the exponential unchanged (or almost so). In +our case we have +E +„ +eγXtpxq`γXtpyq´ γ2 +2 Ktpxq´ γ2 +2 Ktpyq + +“ e|γ|2Ktpx,yq, +E +” +e +? +2dXrpxq´dKrpxq`|γ|2K˚ +t px,yqı +“ e|γ|2K˚ +t px,yq. +(5.22) +and, on the considered domain of integration, K˚ +t px, yq and Ktpx, yq are very close since +|x ´ y| ď e´t when Qtpx, yq ‰ 0. The proof of (5.21) requires three distinct steps which +are detailed in the next subsection. +5.4. The proof of (5.21). +Step 1: Changing the deterministic prefactor in the integrand. The integrand of At and +rAt have different expectations. Our first step aims to fix this by replacing fpyq by fpxq in +At and doing a small modification in the exponential factor. We set +Ap1q +t +:“ +ż +R2d |fpxq|2Qtpx, yqeγXtpxq`γXtpyq` γ2 +2 Ktpxq` γ2 +2 Ktpyq`|γ|2pK0pxq´K0px,yqqdxdy (5.23) +We are going to prove that +lim +tÑ8 φptq´1E +” +|At ´ Ap1q +t |1Aq,R +ı +“ 0 +(5.24) +Since f and K0 are uniformly continuous on the support of f and Supppfq Ă Bp0, Rq, +there exists a positive function δ with limtÑ8 δptq “ 0, such that for |x ´ y| ď e´t setting +Fpx, yq :“ fpxqfpyq ´ |fpxq|2e|γ|2pK0pxq´K0px,yqq +we have +|Fpx, yq| ď δptq1Bp0,Rqpxq1Bp0,Rqpyq +(5.25) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES23 +Hence we obtain (since α “ +a +d{2, we have Repγ2q “ d ´ |γ|2) +|At ´ Ap1q +t | “ +ˇˇˇˇ +ż +R2d Qtpx, yqFpx, yqeγXtpxq`γXtpyq` γ2 +2 Ktpxq` γ2 +2 Ktpyqdxdy +ˇˇˇˇ +ď +ż +R2d Qtpx, yq|Fpx, yq|e +b +d +2 pXtpxq`Xtpyqq`p|γ|2´dq Ktpxq`Ktpyq +2 +dxdy +ď δptq +ż +Bp0,Rq2 Qtpx, yqe +b +d +2 pXtpxq`Xtpyqq`p|γ|2´dq Ktpxq`Ktpyq +2 +dxdy +ď δptq +ż +Bp0,Rq2 Qtpx, yqe +? +2dXtpxq`p|γ|2´dqKtpxqdxdy +(5.26) +where the first inequality is simply obtained by taking the modulus of the integrand and +in the third one we simply used +ZpxqZpyq ď 1 +2pZpxq2 ` Zpyq2q +with Zpxq “ e +b +d +2 Xtpxq`p|γ|2´dq Ktpxq +2 +and then symmetry in x and y. Then we observe that +(λ denotes the Lebesgue measure) since At,qpxq Ă Aq,R we have +E +” +e +? +2dXtpxq´dKtpxq1Aq,R +ı +ď E +” +e +? +2dXpxq´dKtpxq1At,qpxq +ı +“ Pr@s P r0, ts, Bs ď qs ď +c +2 +πtq +(5.27) +where in the last line, we used Cameron-Martin formula (see Proposition A.1 in the ap- +pendix) and the fact that pXtpxqqtě0 is a standard Brownian Motion. The last inequality +is simply Lemma A.2. Combining (5.26) and (5.27) and the fact that K0 is bounded, we +have +E +” +|At ´ Ap1q +t |1Aq,R +ı +ď Cδptq +? +t +ż +Bp0,Rq2 Qtpx, yqe|γ|2Ktpxqdxdy ď C1δptqφptq. +(5.28) +□ +Step 2: Taking conditional expectation. Recalling the definition of rptq (5.18) we set +Ap2q +t +:“ ErAp1q +t +| Frs +(5.29) +For this step of the proof (and only this step), we are going to assume that K0 ” 0 (and +hence X0 ” 0q. Treating the case where X0 is a non-trivial field does not present any +extra difficulty besides the challenge of making the equations fit within the margins. This +assumption allows to replace Ktpxq and Ktpyq by t, and we get the following simplification +for the expression of Ap1q +t . +Ap1q +t +:“ +ż +R2d |fpxq|2Qtpx, yqeγXtpxq`γXtpyq`p|γ|2´dqtdxdy +(5.30) +Then we have +Ap2q +t +“ +ż +R2d |fpxq|2Qtpx, yqeγXrpxq`γXrpyq`p|γ|2´dqr`|γ|2Krr,tspx,yqdxdy, +(5.31) + +24 +HUBERT LACOIN +where Krr,ts “ Kt ´ Kr (in the remainder of the paper, we use this convention for other +quantities indexed by t). We are going to show that +lim +tÑ8 φptq´1E +” +|Ap1q +t +´ Ap2q +t |1Aq,R +ı +“ 0 +(5.32) +Recalling (5.6) we define +A +p1q +t +:“ +ż +R2d |fpxq|2Qtpx, yqeγXtpxq`γXtpyq`p|γ|2´dqt1Ar,qpxqdxdy, +A +p2q +t +:“ +ż +R2d |fpxq|2Qtpx, yqeγXrpxq`γXrpyq`p|γ|2´dqr`|γ|2Krr,tspx,yq1Ar,qpxqdxdy. +(5.33) +Since on Aq,R, Apiq +t +and A +piq +t +coincide, We have +E +” +pAp2q +t +´ Ap1q +t q21Aq,R +ı +ď E +” +pA +p2q +t +´ A +p1q +t q2ı +(5.34) +and thus we can prove that (5.32) holds by showing that +lim +tÑ8 φptq´2E +” +pA +p2q +t +´ A +p1q +t q2ı +“ 0. +(5.35) +To bound ErpA +p2q +t +´ A +p1q +t q2s we expand the square, making it an integral on R4d. We set +ξpx, yq :“ |fpxq|2Qtpx, yqe´p|γ|2´dqt ´ +eγXspxq`γXspyq ´ E +” +eγXspxq`γXspyqq | Fr +ı¯ +1Ar,qpxq. +We have +E +” +pA +p2q +t +´ A +p1q +t q2ı +“ +ż +R4d E +“ +ξpx1, y1qξpx2, y2q +‰ +dx1dy1dx2dy2. +(5.36) +As the range of correlation of the increment field Xrr,ts :“ Xt ´ Xr is smaller that e´r +have, whenever |x1 ´ x2| ě 3e´r +E +“ +ξpx1, y1qξpx2, y2q | Fr +‰ +“ 0. +(5.37) +Hence we only need to integrate the r.h.s. of (5.36) on the set |x1 ´ x2| ď 3e´r. In that +case we use +E +“ +ξpx1, y1qξpx2, y2q +‰ +ď E +“ +|ξpx1, y1q|2‰1{2 E +“ +|ξpx2, y2q|2‰1{2 . +(5.38) +and +E +“ +|ξpx, yq|2‰ +“ |fpxq|4Qtpx, yq2e2p|γ|2´dqtE +” +e +? +2dpXtpxq`Xtpyqq1Ar,qpxq +ı +(5.39) +Using Cameron-Martin formula and the fact that pXtpxqqtě0 is a standard Brownian +motion we have +E +” +e +? +2dpXtpxq`Xtpyqq1Ar,qpxq +ı +“ e2dpt`Ktpx,yqqP r@u P r0, rs, Bu ď q ´ Kupx, yqs . +Using (3.12) (and then Lemma A.2) we obtain for a constant q1 ą q +e´4dtE +” +e +? +2dpXtpxq`Xtpyqq1Aq,rpxq +ı +ď P +” +@u P r0, rs, Bu ď q1 ´ +? +2du +ı +ď Cr´3{2e´dr. +Altogether , setting hpx, y, tq :“ 1t|x1´x2|ď3e´ru|fpx1qfpx2q|2Qtpx1, y1qQtpx2, y2q (recall +that r is a function of t) we obtain that for t sufficiently large +E +” +pA +p2q +t +´ A +p1q +t q2ı +ď Cr´3{2e2p|γ|2`dqt´dr +ż +R4d hpx, y, tqdxdy +ď C1t´3{2e2|γ|2t´2dr ď C2t´1{2e2dpt´rqφptq2 ď t´1{4φptq2. +(5.40) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES25 +To get the second inequality, simply observe that h is smaller than a constant times the +indicator of the set t|x1| ď R, |x2 ´ x1| ď 3e´r, |yi ´ xi| ď e´t, i “ 1, 2u, which has volume +of order e´dpr`2tq. The third inequality is a consequence of (A.10) (see the computation +in the Appendix, while the last inequality follows from the the fact that with our choice +of parameters (5.18) we have t ´ r “ oplog tq. +Step 3: Comparing Ap2q +t +and rAt. Finally, we show that +lim +tÑ8 φptq´1E +” +|Ap2q +t +´ rAt|1Aq,R +ı +“ 0 +(5.41) +which together with (5.24)-(5.32), concludes the proof of (5.21). We introduce another +smaller time parameter, namely r “ t{2 and define p +Xpx, yq “ Xrpxq ` Xrr,rspyq. We want +to replace Xrpyq by Xrpxq in the exponential with an intermediate steps, so we set +Z1pxq :“ +? +2dXrpxq, +Z2px, yq :“ γXrpxq ` γ p +Xpx, yq, +Z3px, yq :“ γXrpxq ` γXrpyq. +(5.42) +The reader can check that we have +rAt :“ +ż +R2d |fpxq|2Qtpx, yqe|γ|2K˚ +t px,yqeZ1pxq´ 1 +2ErZ1pxqsdxdy, +Ap2q +t +:“ +ż +R2d |fpxq|2Qtpx, yqe|γ|2K˚ +t px,yqeZ3px.yq´ 1 +2ErZ3px,yqsdxdy. +(5.43) +In order to prove (5.41) taking absolute value inside the integrand, we have +E +” +|Ap2q +t +´ rAt|1Aq,R +ı +ď +max +|x|ďR +|x´y|ďe´t +E +„ˇˇˇeZ1pxq´ +ErZ2 +1 s +2 +´ eZ3´ +ErZ2 +3 s +2 +ˇˇˇ1Aq,R + +ˆ +ż +R2d |fpxq|2Qtpx, yqe|γ|2K˚ +t px,yqdxdy. +(5.44) +Since the integral is of order ep|γ|2´dqt (cf. (3.12)), which is the same order as φptq +? +t (cf. +(A.10)), the estimate (5.41) boilds down to proving +lim +tÑ8 +? +t +max +|x|ďR +|x´y|ďe´t +E +„ˇˇˇeZ1pxq´ +ErZ2 +1 s +2 +´ eZ3´ +ErZ2 +3 s +2 +ˇˇˇ1Aq,R + +“ 0. +(5.45) +To prove (5.45) we start with the decomposition +E +„ˇˇˇeZ1pxq´ +ErZ2 +1 s +2 +´ eZ3´ +ErZ2 +3 s +2 +ˇˇˇ1Aq,R + +ď E +„ˇˇˇeZ1´ +ErZ2 +1 s +2 +´ eZ2´ ErZ2s +2 +ˇˇˇ1Ar,qpxq + +` E +„ˇˇˇeZ3´ +ErZ2 +3 s +2 +´ eZ2 +2´ +ErZ2 +2 s +2 +ˇˇˇ + +(5.46) + +26 +HUBERT LACOIN +(this is just the triangle inequality and replacing Aq,R with a larger event Ar,qpxq) and +show that each term is opt´1{2q. We start with the second one. From Lemma A.3, we have +E +„ +eZ3´ +ErZ2 +3 s +2 +´ eZ2 +2´ +ErZ2 +2 s +2 +| + +ď C +a +Er|Z3 ´ Z2|2s +“ C|γ| +a +ErpXrpxq ´ Xrpyqq2s ď C1e´ct, +(5.47) +where we have used that +ErpXrpxq ´ Xrpyqq2s “ 2pr ´ Krpx, yqq ` pK0pxq ` K0pyq ´ 2K0px, yqq. +The second part of the sum is smaller than |x ´ y|c since K0 is H¨older continuous and the +first part is smaller than |x ´ y|2e2r (from (3.14)), both are exponentially small in t. For +the first term in (5.46) we factorize the part that is Fr measureable and use independence +to obtain +E +„ +|eZ1´ +ErZ2 +1 s +2 +´ eZ2´ ErZ2s +2 +|1Aq,rpxq + +“ E +” +e +? +2dXrpxq´dKrpxq1Aq,rpxq +ı +E +„ +|eZ1 +1´ +ErpZ1 +1q2s +2 +´ eZ1 +2´ +ErpZ1q2 +2s +2 +| + +, +(5.48) +where Z1 +i “ Zi ´ +? +2dXrpxq. Using Cameron-Martin formula and Lemma A.2, we have +E +” +e +? +2dXrpxq´dKrpxq1Ar,qpxq +ı +“ P r@s P r0, rs, Bs ď qs ď +c +2 +rπq. +(5.49) +The factor r´1{2 is sufficient to cancel the +? +t in (5.45) and we just have to show that the +second factor in (5.48) is small. From Lemma A.3 we have +E +„ +|eZ1 +1´ +ErpZ1 +1q2s +2 +´ eZ1 +2´ +ErpZ1 +2q2s +2 +| + +ď +b +E r|Z1 +1 ´ Z1 +2|2s +“ |γ| +b +E +“ +|Xrr,rspxq ´ Xrr,rspyq|2‰ +ď Cer|x ´ y| ď Cer´t, +(5.50) +where the penultimate inequality can be deduced from (3.14). The combination of (5.47)- +(5.49) and (5.50) concludes the proof of (5.45). +□ +Bonus step: the case of Bt. To conclude let us sketch rapidly the proof of (5.10). We can +repeat the argument of step 2 to show that +lim +tÑ8 φptq´2Er|Bt ´ ErBt | Frs|2s “ 0. +(5.51) +Then it is rather direct to check that +lim +tÑ8 φptq´1E +“ +|ErBt | Frs|1Aq,R +‰ +“ 0. +(5.52) +More precisely we have +ErBt | Frs “ +ż +R2d fpxqfpyqQtpx, yqeγpXrpxq`Xrpyqq` γ2 +2 p2Krr,tspx,yq´Krpxq´Krpyqqdxdy. + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES27 +Taking the absolute value of the integrand, using (3.12) to evaluate Kt and Krr,ts, then +the inequality ab ď pa2 ` b2q{2 and symmetry, and finally (3.13) +|ErBt | Frs| ď Cep|γ2|´dqp2r´tq +ż +R2d |fpxqfpyq|Qtpx, yqe +? +d{2pXrpxq`Xrpyqqdxdy +ď Cep|γ2|´dqp2r´tq +ż +R2d |fpxq|2Qtpx, yqe +? +2dXrpxqdxdy +ď C1ep|γ2|´dqp2r´tq´dt +ż +R2d |fpxq|2e +? +2dXrpxqdx +(5.53) +Hence we have +E +“ +|ErBt | Frs|1Aq,R +‰ +ď ep|γ2|´dqp2r´tq´dt +ż +R2d |fpxq|2E +” +e +? +2dXrpxq1Ar,qpxq +ı +dx. +(5.54) +Using Cameron Martin formula, (3.12) and Lemma A.2 (recall that r „ t) we obtain that +E +” +e +? +2dXrpxq1Ar,qpxq +ı +ď Ct´1{2edr. +(5.55) +Overall using (A.10) we have φptq´1E +“ +|ErBt | Frs|1Aq,R +‰ +ď Ce´|γ2|pt´rq. +□ +6. Proof of Proposition 2.8 +6.1. Organization of the proof. Like for the proof of Theorem 2.1, we assume that our +probability space contains a martingale approximation sequence pXtqtě0 of the field X, +with covariance given by (3.3). For the same reason as the one exposed at the beginning +of Section 4.2 this entails no loss of generality. +The main idea is to apply Theorem 3.6 (for the filtration corresponding to pXtq) to the +family Mγ +ε pf, ωq with rate vpε, θ, γq and with the variable Z being equal to M1pe|γ|2L|f|2q. +Hence need to check that the martingale Mγ +t,εpf, ωq :“ E rMγ +ε pf, ωq | Fts satisfy all the +requirements in (3.22). Setting W pεq +t +:“ Mγ +t,ε (recall (3.7)), and using the bilinearity of the +martingale bracket like in (5.2) we obtain +xMγ +¨,εpf, ωqyt “ 1 +2 +´ +xW pεqyt ` Repe´2iωxW pεq, W pεqytq +¯ +. +(6.1) +The requirements concerning the quadratic variation of Mγ +t,εpf, ωq can be obtained as +consequences of the following, +Proposition 6.1. The following convergences hold +lim +εÑ0 E +«ˇˇˇˇˇ +xW pεqy8 +2vpε, θ, γq2 ´ M1pe|γ|2L|f|2q +ˇˇˇˇˇ 1Aq,R +ff +“ 0, +lim +εÑ0 E +«ˇˇˇˇˇ +xW pεq, W pεqy8 +vpε, θ, γq2 +ˇˇˇˇˇ 1Aq,R +ff +“ 0. +(6.2) +Furthermore we have for any fixed t we have +sup +εPp0,1q +ErxW pεqyts ă 8. +(6.3) +Proposition 6.1 is proved in the next subsection, let us first show how our main results +can be deduced from it. + +28 +HUBERT LACOIN +Proof of Proposition 2.8. We must check that the three requirements in (3.22) are satis- +fied since the result follows then from Theorem 3.6. Given that limεÑ0 vpε, θ, γq “ 8, +it is sufficient for the second and third requirements to show that that the sequences +pMγ +0,εpf, ωqqεPp0,1q, and pxMγ +¨,εpf, ωqytqεPp0,1q (for a fixed t) are tight. The sequences are in +fact uniformly bounded in L1. We have +sup +εPp0,1q +Er|Mγ +0,εpf, ωq|s ď sup +εPp0,1q +Er|Mγ +0,εpfq|s ă 8. +(6.4) +Indeed taking the absolute value of the integrand, we have +Er|Mγ +0,εpfq|s ď +ż +Rd E +„ +fpxqe +? +d{2X0,εpxq` β2´pd{2q +2 +K0,εpxq + +dx “ +ż +Rd fpxqeβ2K0,εpxqdx, +(6.5) +and the uniform bound follows from (3.12). From (6.1) we have xMγ +¨,εpf, ωqyt ď xW pεqyt +and thus the uniform boundedness in L1 is consequence of (6.3). Let us now turn to +the first and main requirement in (3.22). The convergences in (6.2) imply the following +convergence in probability +lim +εÑ0 +xW pεqy8 +2vpε, θ, γq2 1Ť +qě1 Aq,R “ M1pe|γ|2L|f|2q, +lim +εÑ0 +xW pεq, W pεqy8 +vpε, θ, γq2 +1Ť +qě1 Aq,R “ 0. +(6.6) +Using Lemma 5.2 and (6.1), we conclude that +lim +εÑ0 vpε, θ, γq´2xMγ +¨,εpf, ωqy8 “ M1pe|γ|2L|f|2q +in probability. +□ +As another preliminary step to our proof, we reduce the convergence statement in +Proposition 6.1 to a convergence of the derivative of the martingale brackets. Using Itˆo +calculus we obtain that for T P r0, 8s, +xW pεqyT “ +ż T +0 +At,εdt and xW pεqyT “ +ż T +0 +Bt,εdt +where +At,ε :“ +ż +R2d fpxqfpyqQt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 +2 Kt,εpxq´ γ2 +2 Kt,εpyqdxdy, +Bt,ε :“ +ż +R2d fpxqfpyqQt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 +2 pKt,εpxq`Kt,εpyqqdxdy. +(6.7) +Similarly to what has been done in Proposition 5.3, we are going to show that, with ap- +propriate renormalizations and restrictions, At,ε and Bt,ε converge in L1 to M1pe|γ|2L|f|2q +and 0 respectively. To this end we introduce a couple of parameters (recall (3.5)) +tpt, εq :“ t ^ logp1{εq +φpt, εq :“ +d +2 +πpt _ 1qe|γ|2j +ˆż +Rd e|γ|2Kt,εp0,zqQt,εp0, zqdz +˙ +. +(6.8) +The quantity r will on Our aim is to prove the following + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES29 +Proposition 6.2. +lim +εÑ0 +tÑ8 +E +„ˇˇˇˇ +At,ε +φpt, εq ´ M1pe|γ|2L|f|2q +ˇˇˇˇ 1Aq,R + +“ 0, +lim +εÑ0 +tÑ8 +E +„ˇˇˇˇ +Bt,ε +φpt, εq +ˇˇˇˇ 1Aq,R + +“ 0, +(6.9) +and for any T ă 8 +sup +tPr0,Ts +εPp0,1q +E r|At,ε|s ă 8. +(6.10) +Remark 6.3. Let us underline that lim εÑ0 +tÑ8 Fpt, εq “ 0 means that that there exists t0pδq +and ε0pδq such that |Fpt, εq| ď δ when t ě t0 AND ε P p0, ε0q. This is a stronger statement +than both limεÑ0 limtÑ8 Fpt, εq “ 0 or limtÑ8 limεÑ0 Fpt, εq “ 0 +Clearly (6.10) implies (6.3). To deduce (6.2) from (6.9), we need to check that renormal- +izing factor 2vpε, θ, γq2 corresponds to the integral of φpt, εq. This is the content of the +following lemma whose proof is presented in Appendix A.4. +Lemma 6.4. We have for any |γ| ě d +lim +εÑ0 +|γ|2 ş8 +0 φpt, εqdt +2vpε, θ, γq2 +“ 1 +(6.11) +We can now complete the proof of Proposition 6.1 using Proposition 6.2 +Proof of Proposition 6.1. From Lemma 6.4 it is sufficient to prove the convergence of +E +«ˇˇˇˇˇ +xW pεqy8 +ş8 +0 |γ|2φpt, εq ´ M1pe|γ|2L|f|2q +ˇˇˇˇˇ 1Aq,R +ff +ď +1 +ş8 +0 φpt, εqdt +ż 8 +0 +φpt, εqE +„ˇˇˇˇ +At,ε +φpt, εq ´ M1pe|γ|2L|f|2q +ˇˇˇˇ 1Aq,R + +dt. +(6.12) +Let us fix δ ą 0, and let T and ε0 be such that for all t ą T and ε ă ε0 we have +E +„ˇˇˇˇ +At,ε +φpt, εq ´ M1pe|γ|2L|f|2q +ˇˇˇˇ 1Aq,R + +ď δ +2 +(6.13) +In the integral we can distinguish the contribution from r0, Ts from the rest. We have +from (6.10) and the fact that φpt, εq is bounded from below +sup +tPr0,Ts +εPp0,ε0q +E +„ˇˇˇˇ +At,ε +φpt, εq ´ M1pe|γ|2L|f|2q +ˇˇˇˇ 1Aq,R + +ă 8. +(6.14) +As a consequence, since +ş8 +0 φpt, εqdt diverges when ε Ñ 0, taking ε1 sufficiently small we +have forall ε P p0, ε1q +1 +ş8 +0 φpt, εq +ż T +0 +φpt, εqE +„ At,ε +φpt, εq ´ M1pe|γ|2L|f|2q + +dt ď δ +2, +(6.15) + +30 +HUBERT LACOIN +which implies that for ε ď ε0 ^ ε1 we have +E +«ˇˇˇˇˇ +xW pεqy8 +ş8 +0 φpt, εqdt ´ M1pe|γ|2L|f|2q +ˇˇˇˇˇ 1Aq,R +ff +ď δ +(6.16) +and thus conclude the proof. +□ +6.2. Proof of Proposition 6.2. Let us start with the proof of (6.10). Noting that At,ε +is positive, we have +E rAt,εs “ +ż +R2d fpxqfpyqQt,εpx, yqe|γ|2Kt,εpx,yqdxdy. +(6.17) +We can just use (3.12) and bound Qt,εpx, yq by 1 and Kt,εpx, yq by T `C to conclude. For +the proof of the convergence of At,ε we proceed exactly as for the proof of Proposition 5.3. +We assume that tpt, εq ą e (recall (6.8)) and set +r “ rpt, εq :“ t ´ log log t, +(6.18) +Setting K˚ +t,εpx, yq :“ K0pxq ` Kt,εpx, yq, we define +rAt,ε :“ +ż +R2d |fpxq|2Qt,εpx, yqe|γ|2K˚ +t,εpx,yqe +? +2dXrpxq´2dKrpxqdxdy +“ φpt, εqM +? +2d +r +pe|γ|2L|f|2q +(6.19) +Since lim εÑ0 +tÑ8 rpt, εq “ 8, we obtain, as a direct consequence of Lemma 5.5 that +lim +εÑ0 +tÑ8 +E +«ˇˇˇˇˇ +rAt,ε +φpt, εq ´ M1pe|γ|2L|f|2q +ˇˇˇˇˇ 1Aq,R +ff +“ 0. +(6.20) +Our task is thus to prove that +lim +εÑ0 +tÑ8 +φpt, εq´1E +” +| rAt,ε ´ At,ε|1Aq,R +ı +“ 0. +(6.21) +Like for the proof of (5.21) in the previous section, we proceed in three steps. +Step 1: Changing the deterministic prefactor in the integrand. Set +Ap1q +t,ε :“ +ż +R2d |fpxq|2Qt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 +2 Kt,εpxq´ γ2 +2 Kt,εpyq`|γ|2pK0pxq´K0,εpx,yqqdxdy +Let us prove that +lim +εÑ0 +tÑ8 +φpt, εq´1E +” +|Ap1q +t,ε ´ At,ε|1Aq,R +ı +“ 0. +(6.22) +Let As a direct consequence of the continuity of f and of K0, if one sets +sup +|x|,|y|ďR +|x´y|ďet`2ε +ˇˇˇfpxqfpyq ´ |fpxq|2e|γ|2pK0pxq´K0,εpx,yqqˇˇˇ “: δpε, tq, +(6.23) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES31 +we have lim εÑ0 +tÑ8 δpε, tq “ 0. Since Qt,εpx, yq “ 0 when |x ´ y| ě et ` 2ε repeating the +computation (5.26) and using (3.13) we get +|Ap1q +t,ε ´ At,ε| ď δpε, tq +ż +Bp0,Rq2 Qt,εpx, yqe +? +2dXt,εpxq`p|γ|2´dqKt,εpxqdxdy +ď Ce´dtδpε, tq +ż +Bp0,Rq +e +? +2dXt,εpxq`p|γ|2´dqKt,εpxqdx +(6.24) +Using Cameron-Martin formula, we obtain (assuming |x|, |y| ď R and |x ´ y| ď et ` 2ε) +for a constant q1 ą q +E +” +e +? +2dXt,εpxq´dKt,εpxq1Aq,R +ı +ď E +” +e +? +2dXt,εpxq`p|γ|2´dqKt,εpxq1At,qpxq +ı +“ P +” +@s P r0, ts, Bs ď +? +2dps ´ Ks,ε,0pxqq ` q +ı +ď Pp@s P r0, ts, Bs ď q1q ď Cpt _ 1q´1{2et|γ|2 +(6.25) +where in the second inequality we have used (3.12) to estimate covariances. Hence, using +(A.20) we deduce from (6.24) that +E +” +|Ap1q +t,ε ´ At,ε|1Aq,R +ı +ď Cδpε, tqt´1{2et|γ|2´dt ď C1δpε, tqφpt, εq. +This concludes the proof of (6.22). +□ +Step 2: Taking conditional expectation. We set +Ap2q +t,ε :“ E +” +Ap1q +t,ε | Fr +ı +(6.26) +and we are going to prove +lim +εÑ0 +tÑ8 +φpt, εq´2E +” +|Ap2q +t,ε ´ Ap1q +t,ε |21Aq,R +ı +“ 0. +(6.27) +Like what we did in the previous section, we assume here that K0 ” 0 to simplify the +writing (but this does not affect the proof). +In that case note that since Kt,εpxq “ +Kt,εpyq “ Kt,εpxq, we can factorize the term. We have (recall that Krr,ts,ε “ Kt,ε ´ Kr,ε) +Ap2q +t,ε :“ +ż +R2d |fpxq|2Qt,εpx, yqeγXr,εpxq`γXr,εpyq`p|γ2|´dqKr,εpxq`|γ|2Krr,ts,εpx,yqdxdy +(6.28) +Setting +ζpx, yq :“ eγXt,εpxq`γXt,εpyq`p|γ2|´dqKt,εpxq, +A +p1q +t,ε :“ +ż +R2d |fpxq|2Qt,εpx, yqζpx, yq1Ar,qpxqdxdy, +A +p2q +t,ε :“ +ż +R2d |fpxq|2Qt,εpx, yqErζpx, yq |Frs1Ar,qpxqdxdy +(6.29) +we realize that +E +” +|Ap2q +t,ε ´ Ap1q +t,ε |21Aq,R +ı +ď E +” +|A +p2q +t,ε ´ A +p1q +t,ε |2ı +(6.30) +Now we set +ξt,εpx, yq :“ |fpxq|2Qt,εpx, yq pζpx, yq ´ Erζpx, yq |Frsq 1Ar,qpxq. +(6.31) + +32 +HUBERT LACOIN +We have +E +” +|A +p2q +t,ε ´ A +p1q +t,ε |2ı +ď +ż +R4d E +“ +ξpx1, y1qξpx2, y2q +‰ +dx1dx2dy1dy2 +(6.32) +The range of the convariance of Xrr,ts,ε is smaller than e´r ` 2ε, and Qt,εpx, yq vanishes +when |x ´ y| ě e´t ` 2ε. All of this implies that if if |x1 ´ x2| ě 2e´r (if ε is sufficiently +small, then e´r is much larger than both ε and e´t cf. (6.8)) then +E +“ +ξpx1, y1qξpx2, y2q | Fr +‰ +“ 0. +(6.33) +When |x1 ´ x2| ď 2e´r we can use Cauchy-Schwarz to bound the covariance. We have +E +“ +|ξpx, yq|2‰ +ď |fpxq|4 pQt,εpx, yqq2 Er|ζpx, yq|21Ar,qpxqs +(6.34) +and from Cameron-Martin formula, we have, for |x ´ y| ď e´t ` 2ε +Er|ζpx, yq|21Ar,qpxqs +“ e2|γ|2Kt,εpxq`2dKt,εpx,yqP +´ +@s P r0, rs, Bs ď +? +2dps ´ Ks,ε,0pxq ´ Ks,ε,0py, xqq ` q +¯ +ď Cep|γ|2`dqtP +´ +@s P r0, rs, Bs ď ´ +? +2ds ` q1¯ +ď C1etp2|γ|2`dqr´3{2. +where in the first inequality we used (3.12) which replace the Kt,ε and Ks,ε by t and +s respectively at the cost of an additive constant and in the second inequality we used +Lemma A.2. Altogether we obtain that +E +” +|A +p2q +t,ε ´ A +p1q +t,ε |2ı +ď Cetp2|γ|2`dqr´3{2 +ˆ +ż +R4d 1t|x1´x2|ď2e´ru|fpx1q|2|fpx2q|2Qt,εpx1, y1qQt,εpx2, y2qdxdy +ď C1e2|γ|2t`dpt´rqr´3{2 +ˆż +Rd Qt,εp0, zqdz +˙2 +ď C2edpt´rqr´1{2φpt, εq2. +(6.35) +We conclude the proof of (6.27) by observing (recall (6.8)) that +lim +εÑ0 +tÑ8 +edpt´rqr´1{2 “ 0. +(6.36) +□ +Step 3: Final comparison. Finally to conclude we need to show that +lim +εÑ0 +tÑ8 +φpt, εq´2E +” +|Ap2q +t,ε ´ rAt,ε|21Aq,R +ı +“ 0. +(6.37) +We set (recall that Xrs,ts,ε “ Xt,ε ´ Xs,ε´) +Z1pxq :“ +? +2dXrpxq, +Z2px, yq :“ +? +2dXrpxq ` γXrr,rs,εpxq ` γXrr,rs,εpyq, +Z3px, yq :“ γXr,εpxq ` γXr,εpyq. +(6.38) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES33 +The reader can check (using (6.26) rather than (6.28) since the latter assumes K0 ” 0) +that +rAt,ε :“ +ż +R2d |fpxq|2Qt,εpx, yqe|γ|2K˚ +t,εpx,yqeZ1pxq´ 1 +2 ErZ1pxqsdxdy, +Ap2q +t,ε :“ +ż +R2d |fpxq|2Qt,εpx, yqe|γ|2K˚ +t,εpx,yqeZ3px,yq´ 1 +2 ErZ3px,yqsdxdy. +(6.39) +In order to prove (6.37) taking absolute value inside the integrand using Jensen’s inequality, +we just have to obtain a uniform bound on the integrand, that is, to show that +lim +tÑ8 +εÑ0 +t1{2 +max +|x|ďR +|x´y|ďe´t`2ε +E +„ˇˇˇeZ1pxq´ +ErZ2 +1 pxqs +2 +´ eZ3px,yq´ +ErZ2 +3 px,yqs +2 +ˇˇˇ1Aq,R + +“ 0. +(6.40) +The restriction for x and y comes from the support of f and Qt,ε respectively. To prove +(5.45) we start with the decomposition +E +„ˇˇˇeZ1pxq´ +ErZ2 +1 s +2 +´ eZ3´ +ErZ2 +3 s +2 +ˇˇˇ1Aq,R + +ď E +„ˇˇˇeZ1´ +ErZ2 +1 s +2 +´ eZ2´ ErZ2s +2 +ˇˇˇ1Ar,qpxq + +` E +„ˇˇˇeZ3´ +ErZ2 +3 s +2 +´ eZ2 +2´ +ErZ2 +2 s +2 +ˇˇˇ + +(6.41) +(the inequality is just the triangle inequality and replacing Aq,R with a larger event), and +show that each term is opt´1{2q. Let us start with the second one. Using Lemma A.3, we +have +E +„ +eZ3´ +ErZ2 +3 s +2 +´ eZ2 +2´ +ErZ2 +2 s +2 +| + +ď C +a +Er|Z3 ´ Z2|2s +“ C +b +Er| +? +2dXrpxq ´ γXr,εpxq ´ γXr,εpyq|2s +ď C1 +ˆb +E r|Xrpxq ´ Xr,εpxq|2s ` +b +E r|Xrpxq ´ Xr,εpyq|2s +˙ +“ C1 ´ +pKrpxq ` Kr,εpxq ´ 2Kr,ε,0pxqq1{2 ` pKrpxq ` Kr,εpxq ´ 2Kr,ε,0py, xqq1{2¯ +ď C2 pε ` |x ´ y|qc ď C1e´ct +(6.42) +where to obtain the last line we have used (3.14) and the H¨older continuity of K0. For the +first term in (6.41) we factorize the Fr-measureable part and use independence to obtain +E +„ +|eZ1´ +ErZ2 +1 s +2 +´ eZ2´ ErZ2s +2 +|1Ar,qpxq + +“ E +” +e +? +2dXrpxq´dKrpxq1Ar,qpxq +ı +E +„ +|eZ1 +1´ +ErpZ1 +1q2s +2 +´ eZ1 +2´ +ErpZ1q2 +2s +2 +| + +, +(6.43) +where Z1 +i “ Zi ´ +? +2dXrpxq. We have from Cameron-Martin Formula and Lemma A.2 +E +” +e +? +2dXrpxq´dKrpxq1Ar,qpxq +ı +“ P r@s P r0, rs, Bs ď qs ď Cr´1{2. +(6.44) + +34 +HUBERT LACOIN +This is obviously Opt´1{2q so to conclude we only need to show that the other factor in +(6.43) goes to zero. We also have from Lemma A.3 and (3.14) +E +„ +|eZ1 +1´ +ErpZ1 +1q2s +2 +´ eZ1 +2´ +ErpZ1q2 +2s +2 +| + +ď C +b +E r|Z1 +1 ´ Z1 +2|2s +ď C +` +Krr,rspxq ` Krr,rs,εpxq ` Krr,rs,εpyq ´ 2Krr,rs,ε,0pxq ´ 2Krr,rs,ε,0py, xq +˘1{2 +ď C1erp|x ´ y| ` εq ď Cepr´tq. +(6.45) +This concludes the proof. +□ +The convergence of Bt,ε. To prove the second convergence in (6.9), it is sufficient again to +show first that +lim +tÑ8 +εÑ0 +ϕpt, εq´2E +“ +|Bt,ε ´ ErBt,ε | Frs|21Aq,R +‰ +“ 0 +(6.46) +repeating the computation of step two, and then prove that +lim +tÑ8 +εÑ0 +Er|ErBt,ε | Frs|1Aq,Rs “ 0. +We leave this part to the reader, since this is very similar to the computation performed +at the end of Section 5. +□ +7. Proof of Theorem 3.6 +We need to show that for any H bounded and F8-measurable and ξ P R we have +lim +nÑ8 E +„ +H +ˆ +eiξ Wn +vpnq ´ e´ ξ2Z +2 +˙ +“ 0. +(7.1) +We first assume that the collection of variables vpnq´2xWny8 is uniformly essentially +bounded, that is, that there exists M such that for every n ě 1 +P +“ +vpnq´2xWny8 ě M +‰ +“ 0 +(7.2) +Note that this implies also that P rZ ě Ms “ 0. We assume, to simplify notation that +ξ “ 1 (this entails no loss of generality). We set Ht :“ E rH | Fts and Zt :“ E rZ | Fts we +have +E +„ +H +ˆ +ei ξWn +vpnq ´ e´ ξ2Z +2 +˙ +“ E +” +Hpe´ Z +2 ´ e´ Zt +2 q +ı +` E +” +pH ´ Htq +´ +ei Wn +vpnq ´ e´ Zt +2 +¯ı +` E +” +Ht +´ +ei Wn +vpnq ´ e´ Zt +2 +¯ı +“: E1pt, nq ` E2pt, nq ` E3pt, nq. +(7.3) +We prove the convergence (7.1) by showing that for i “ 1, 2, 3 +lim +tÑ8 lim sup +nÑ8 |Eipt, nq| “ 0. +(7.4) +Using the fact that z ÞÑ ez is 1-Lipshitz (first line) and has modulus bounded by 1 (second +line) in tz P C : Repzq ď 0u we have +|E1pt, nq| ď E +” +|H| +ˇˇˇe´ Z +2 ´ e´ Zt +2 +ˇˇˇ +ı +ď }H}8 +2 +E r|Z ´ Zt|s , +|E2pt, nq| ď E +” +|H ´ Ht| +ˇˇˇei Wn +vpnq ´ e´ Z +2 +ˇˇˇ +ı +ď 2E r|H ´ Ht|s . +(7.5) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES35 +Since Ht and Zt converge respectively to H and Z in L1, (7.4) holds for i “ 1, 2. For +i “ 3, we observe that for fixed t the process +Mpnq +u +:“ e +iWn,t`u´Wn,t +vpnq +` +xWnyt`u´xWnyt +2vpnq2 +´ Zt +2 +is a martingale for the filtration pGuq :“ pFt`uq, which converges in L1 when u Ñ 8. In +particular we have +E +„ +e +iWn´Wn,t +vpnq +` xWny8´xWnyt +2vpnq2 +| Ft + +“ 1. +(7.6) +Multiplying by Hte´ Zt +2 and taking expectation we obtain that +E +„ +Hte +iWn´Wn,t +vpnq +` xWny8´xWnyt +2vpnq2 +´ Zt +2 + +“ E +” +Hte´ Zt +2 +ı +(7.7) +Hence we have (using that }Ht}8 ď }H}8) +|E3pt, nq| ď E +„ +|Ht| +ˇˇˇˇei Wn +vpnq ´ e +ipWn´Wn,tq +vpnq +` xWny8´xWnyt +2vpnq2 +´ Zt +2 +ˇˇˇˇ + +ď }H}8E +„ˇˇˇˇ1 ´ e +´ +iWn,t +vpnq ` xWny8´xWnyt +2vpnq2 +´ Zt +2 +ˇˇˇˇ + +, +(7.8) +From (3.22) we have the following convergence in probability for any fixed t +lim +nÑ8 ´iWn,t +vpnq ` xWny8 ´ xWnyt +2vpnq2 +´ Zt +2 “ Z ´ Zt +2 +. +(7.9) +Using assumption (7.2), taking the limit in the r.h.s. of (7.8) and using dominated con- +vergence, we obtain that +lim sup +nÑ8 |E3pt, nq| ď }H}8E +”ˇˇˇ1 ´ e +Z´Zt +2 +ˇˇˇ +ı +. +(7.10) +Since Zt converges to Z we can conclude that (7.4) also holds for i “ 3 using dominated +convergence again (both variables are uniformly bounded). +Let us now remove the boundedness assumption. Given A ą 0 we set +TA,n :“ inftt : vpnq´2xWnyt “ Au +and +W A +n :“ Wn,TA,n. +Note that E +“ +W A +n | Ft +‰ +“ Wt^TA,n so that (using the notation xW A +n yt to denote the qua- +dratic variation of this martingale) we have +lim +nÑ8 vpnq´2xW A +n y8 “ Z ^ A. +(7.11) +Since we have proved (7.1) under the assumption (7.2) we know that for every A ą 0 +lim +nÑ8 E +„ +H +ˆ +ei ξW A +n +vpnq ´ e´ ξ2pZ^Aq +2 +˙ +“ 0 +(7.12) +From the convergence assumption, we have +lim sup +nÑ8 PrTA,n “ 8s ď P rZ ě As +(7.13) +and hence +lim +AÑ8 lim inf +nÑ8 P +“ +W A +n “ Wn +‰ +“ lim +AÑ8 PrZ ^ A “ Zs “ 1. + +36 +HUBERT LACOIN +As a consequence we can conclude using (7.12) that +lim +nÑ8 E +„ +H +ˆ +eiξ Wn +vpnq ´ e´ ξ2Z +2 +˙ +“ lim +AÑ8 lim +nÑ8 E +„ +H +ˆ +ei ξW A +n +vpnq ´ e´ ξ2pZ^Aq +2 +˙ +“ 0. +(7.14) +□ +Acknowledgements: This work was supported by a productivity grant from CNPq and +a JCNE grant from FAPERJ. +Appendix A. Technical results and their proof +A.1. Standard Gaussian tools. We first display two standard tools which are used +throughout the proof. The first is the standard Cameron-Martin formula which describes +how a Gaussian process is affected by an exponential tilt. +Proposition A.1. Let pY pzqqzPZ be a centered Gaussian field indexed by a set Z. We +let H denote its covariance and P denote its law. Given z0 P Z let us define rPz0 the +probability obtained from P after a tilt by Y pz0q that is +drPz0 +dP :“ eY pz0q´ 1 +2 Hpz0,z0q +(A.1) +Under rPz0, Y is a Gaussian field with covariance H, and mean rEz0rY pzqs “ Hpz, z0q. +The second is a bound on the probability for a Brownian Motion to remain below a line. +Both estimates can be proved directly using the reflexion principle. +Lemma A.2. Let B be a standard Brownian Motion and let P denote its distribution, +setting gtpaq :“ +şu` +0 +e´ z2 +2t dz. we have +P +« +sup +sPr0,ts +Bs ď a +ff +“ +c +2π +t gtpaq ď +c +2π +t a. +(A.2) +Additionally for any a, b ą 0 there exists Ca,b such that f +P +« +sup +sPr0,ts +pBs ` bsq ď a +ff +“ +1 +? +2πt +ż +e´ u2 +2t p1 ´ e +2apa`u´bsq` +t +qdu ď Ca,be´ b2t +2 t´3{2. +(A.3) +A.2. Comparing exponentiated Gaussians. In or comparison of partition functions +Lemma A.3. Consider pX1, X2, Y1, Y2q an R4 valued centered Gaussian vector and set +X :“ X1 ` iX2 and Y “ Y1 ` iY2. Assuming that +ErX2 +2s ď 1 and Er|X ´ Y |2s ď 1 +(A.4) +then there exits a constant C such that +E +”ˇˇeX´ 1 +2ErX2s ´ eY ´ 1 +2ErY 2sˇˇ +ı +ď CE +“ +|X ´ Y |2‰ +(A.5) +Proof. We factorize eX´ 1 +2ErX2s, use the Cameron-Martin formula and rearrange the ex- +pectation terms in the exponential, we obtain +E +„ˇˇeY ´ ErY 2s +2 +´ eX´ ErX2s +2 +ˇˇ + +“ E +„ +eX1` +ErX2 +2 s´ErX2 +1 s +2 +ˇˇeY ´X` ErX2s´ErY 2s +2 +´ 1 +ˇˇ + +“ e +ErX2 +2 s +2 +E +„ˇˇeY ´X´ ErpX´Y q2s +2 +´iErX2pY ´Xqs ´ 1 +ˇˇ + +. +(A.6) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES37 +The prefactor is bounded (by assumption) by e1{2. For the rest, setting Z “ Y ´ X (and +letting Z1 and Z2 denote the real and imaginary part) we have using the triangle inequality +E +„ˇˇeZ´ ErZ2s +2 +´iErX2Zs ´ 1 +ˇˇ + +ď +ˇˇeiErX2Zs ´ 1 +ˇˇE +„ˇˇeZ´ ErZ2s +2 +ˇˇ + +` E +„ˇˇeZ´ ErZ2s +2 +´ 1 +ˇˇ + +. +(A.7) +For the first term, using that |ErX2Zs| ď +a +ErX2 +2sEr|Z|2s ď +a +Er|Z|2s ď 1, and that +|eu ´ 1| ď e|u| for u ď 1 and computing expectation, we obtain that +ˇˇeiErX2Zs ´ 1 +ˇˇE +„ˇˇeZ´ ErZ2s +2 +ˇˇ + +ď e +a +Er|Z|2se +ErZ2 +2 s +2 +ď e3{2a +Er|Z|2s. +(A.8) +For the second term we have (using again |eu ´ 1| ď e|u|) +E +„ˇˇeZ´ ErZ2s +2 +´ 1 +ˇˇ + +ď +d +E +„ˇˇeZ´ ErZ2s +2 +´ 1 +ˇˇ2 + +“ +a +eEr|Z|2s ´ 1 ď e1{2a +Er|Z|2s, +(A.9) +which yields the desired result for C “ e2 ` e. +□ +A.3. Proof of Lemma 5.4. Let us first compute the order of magnitude of φptq. Let us +set for practical purpose φptq :“ +ş +Qtp0, zqe|γ|2Ktp0,zqdz. Using (3.12) (recall that |z| ď e´t +on the integrand) and (3.13) we have +φptq — ep|γ|2´dqt +and +φptq — t´1{2ep|γ|2´dqt +(A.10) +As a consequence when |γ|2 ą d most of the integral is carried by rt ´ +? +t, ts and we have +ż t +0 +φpsqds “ p1 ` op1qq +ż t +t´ +? +t +φpsqds +“ p1 ` op1qq +ż t +t´ +? +t +c +s _ 1 +t +φpsqds +“ p1 ` op1qq +c +2 +πte|γ|2j +ż t +0 +φpsqds. +(A.11) +We observe that +|γ|2Qsp0, zqe|γ|2Ksp0,zq “ Bs +´ +e|γ|2Ksp0,zq¯ +. +Using Fubini and integrating w.r.t. time and making a change of variable we have +|γ|2 +ż t +0 +φpsqds “ +ż +Rd +´ +e|γ|2Ktp0,zq ´ 1 +¯ +dz +“ ep|γ|2´dqt +ż +Rd +´ +e|γ|2pKtp0,e´tzq´tq ´ e´|γ|2t¯ +dz. +(A.12) +The integrand in the second line is bounded above by p|z| _ 1q´|γ|2. This is obvious for +|z| ě et since the integrand vanishes, and when |z| ď et this can be obtainded from (3.11). +Furthermore it converges to e|γ|2ℓpzq and we obtain using dominated convergence that +lim +tÑ8 +|γ|2 şt +0 φpsqds +ep|γ|2´dqt +“ +ż +Rd e|γ|2ℓpzqdz, +(A.13) +which combined with (A.11), proves the lemma in the case |γ|2 ą d. When |γ|2 “ d, we +observe that using, as in (A.12), a change of variable and dominated convergence, we have +lim +sÑ8 φpsq “ +ż +Rd κpe +η1 +η2 zqedℓpzqdz. +(A.14) + +38 +HUBERT LACOIN +On the other hand we have from (A.12) +ż t +0 +φpsqds “ +ż +Rd +´ +edpKtp0,e´tzq´tq ´ e´dt¯ +dz +(A.15) +We have, for 1 ď |z| ď et, +Ktp0, e´tzq “ Kp0, e´tzq “ Kp0, e´tzq ´ K0p0, e´tzq +“ t ` log 1 +|z| ` pL ´ K0qp0, e´tzq. +(A.16) +Since pL ´ K0qp0, e´t|z|q “ ´j ` δ +` +e´t|z| +˘ +where δpuq tends to zero when u Ñ 0 we can +deduce that +ż +Rd +´ +edpKtp0,e´tzq´tq ´ e´dt¯ +dz “ p1 ` op1qq +ż +1t1ď|z|ďetuedpKtp0,e´tzq´tqdz +“ p1 ` op1qqe´dj +ż +1t1ď|z|ďetu|z|´ddz +“ p1 ` op1qqe´djΣd´1t. +(A.17) +Since φpsq converges, we deduce that its limit equals its Cesaro limit and thus +lim +sÑ8 φpsq “ e´djΣd´1, +(A.18) +which implies in turn that +ż t +0 +d +2 +πps ^ 1qedjφpsq “ p1 ` op1qq2 +c +2t +π Σd´1, +(A.19) +and concludes the proof of the lemma. +□ +A.4. Proof of Lemma 6.4. Let us again start with the case |γ|2 ą d. As in the proof of +Lemma 5.4, we can compute the asymptotic of φpt, εq (when t and ε goes to infinity and +zero respectively) +φpt, εq — t´1{2e|γ|2t´dt. +(A.20) +Since suptPr0,Ts +εPp0,1q +φpt, εq ă 8 for every finite T, this implies that the integral +ş8 +0 φpt, εq is +mostly carried by values of s around logp1{εq (say ˘ +a +logp1{εq). For this reason, we can +replace the term pt _ 1q´1{2 by plog 1{εq´1{2. +|γ|2 +ż 8 +0 +φpt, εqdt “ p1 ` op1qq +d +2 +πplog 1{εqe|γ|2j +ż 8 +0 +ż +Rd |γ|2e|γ|2Kt,εp0,zqQt,εp0, zqdz (A.21) +Using Fubini and integrating with respect to time as in (A.12) we have +ż 8 +0 +ż +Rd |γ|2e|γ|2Kt,εp0,zqQt,εp0, zqdz “ +ż +Rd +´ +e|γ|2Kεp0,zq ´ 1 +¯ +dz +(A.22) +We then perform a change of variable for z +ż +Rd +´ +e|γ|2Kεp0,zq ´ 1 +¯ +dz “ εd´|γ|2 ż +Rd +´ +e|γ|2pKεp0,εzq`logpεqq ´ ε|γ|2¯ +dz +(A.23) +Next we observe that +Kεp0, εzq ` logpεq “ ℓθpzq ` pLεp0, εzq ´ Kεp0, εzqq . + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES39 +Using dominated convergence as ε goes to zero (the integrand is bounded above by p|z| _ +1q´|γ|2 and recalling (3.9) we obtain that +lim +εÑ0 +ż +Rd +´ +e|γ|2pKεp0,εzq`logpεqq ´ ε|γ|2¯ +dz “ e´|γ|2j +ż +Rd e´|γ|2ℓθpzqdz. +(A.24) +The combination of (A.21)-(A.24) concludes the proof in the case |γ|2 ą d. For the case +|γ|2 “ d, based on (A.20) we know that setting Tε “ logp1{εq ´ +a +logp1{εq +ż 8 +0 +φpt, εqdt “ p1 ` op1qq +ż Tε +0 +φpt, εqdt. +(A.25) +Now in this range for t it is tedious but not difficult to check that +lim +εÑ0 sup +tPr0,Tεs +ş +Rd e|γ|2Kt,εp0,zqQt,εp0, zqdz +ş +Rd e|γ|2Ktp0,zqQtp0, zqdz +“ 1. +(A.26) +From this we obtain that +ż 8 +0 +φpt, εqdt “ p1 ` op1qq +ż Tε +0 +φpt, εqdt “ p1 ` op1qq +ż Tε +0 +φptqdt +(A.27) +and we can conclude using Lemma 5.4. +Appendix B. The convergence of Mγ +ε as a distribution +We have chosen for simplicity, to present our convergence results as convergence of a +collection of random variables Mγ +ε pfq indexed by CcpRdq. We can go further and prove +that Mγ +ε p¨q converges as a distribution. For this purpose we need to recall the definition +of local Sobolev/Bessel spaces. +The Bessel space Hs,ppRkq, s P R and p P r1, 8s on Rk is defined by +Hs,ppRkq :“ tϕ P D1pRkq : p1 ` |ξ|2qs{2 pϕpξq P LppRkqu +(B.1) +where D1pRkq is the space of distribution and pϕpξq is the Fourier transform of ϕ defined +for ϕ P C8 +c pRkq by pϕpξq “ +ş +Rk eiξxϕpxqdx. It is a Banach space when equiped with the +norm +}f}Hs,p “ +ż +Rkp1 ` |ξ|2qps{2|pϕpξq|pdξ +(B.2) +For U Ă Rk open, the local Bessel space Hs,p +locpUq denotes the set of distributions which +belongs to Hs,ppUq after multiplication by an arbitrary smooth function with compact +support +Hs,p +locpUq :“ +! +ϕ P D1pUq | ρϕ P Hs,ppRdq for all ρ P C8 +c pUq +) +, +(B.3) +where above ρϕ is identified with its extension by zero on Rk. It is equiped with the +topology generated by the family of seminorms rρ, ρ P C8 +c pUq defined by rρpϕq :“ }ϕρ}Hs,p. +In the particular case where p “ 2 we write HspRkq :“ Hs,2pRkq which is a Hilbert space +(and use the same convention for the local spaces). The convergence result for Mγ +ε p¨q as a +distribution for γ P PI{II is the following. +Theorem B.1. If X is a centered Gaussian field whose covariance kernel K has an +almost star-scale invariant part, γ P PI{II, p P r1, +? +2dαq and s ă ´ d +p, then there exists +Mγ +8 P Hs,p +locpRdq such that for every ρ P C8 +c pRdq +lim +εÑ0 E +“ +}Mγ +ε pρ ¨q ´ Mγ +8pρ ¨q}p +Hs,p +‰ +“ 0. +(B.4) + +40 +HUBERT LACOIN +In particular Mγ +ε converges to Mγ +8 in probability in the Hs,p +locpRdq topology. +Similarly in P1 +II{III the convergence in law holds also for the distribution. +Theorem B.2. Let X be a Gaussian random field with an almost star-scale covariance. +Then given γ P P1 +II{III, and s ă ´ d +2 the following joint convergence in law for the Hs +locpRdq +topology +ˆ +X, +Mγ +ε +vpε, θ, γq +˙ +εÑ0 +ñ pX, Mγq, +(B.5) +Remark B.3. In the proof of Theorems B.1 and B.2 presented below, we are going to +assume that our probability space contains a martingale sequence pXtqtě0 of fields with co- +variance (3.3) approximating X. For reasons analogous to the one exposed at the beginning +of Section 4.2 this entails no loss of generality. +B.1. The case of Theorem B.1. Let us fix ρ P C8 +c pRdq. We want to prove that Mγ +ε pρ ¨q +converges in Hs,ppRdq. We first define the limit point. We set (without underlying the +dependence in ρ to keep the notation light) +x +Mγ +ε pξq “ +ż +Rd ρpxqeiξ.xeγXεpxq´ γ2 +2 Kεpxqdx, +x +Mγ +8pξq “ lim +εÑ0 +x +Mγ +ε pξq. +(B.6) +We let Mγ +8pρ ¨q denote the random distribution whose Fourier transform is given by x +Mγ +8pξq. +The proof of (B.4), implies that Mγ +8pρ ¨q P Hs,ppRdq with probability one. To prove (B.4), +note that we have +E +“ +}Mγ +ε pρ ¨q ´ Mγ +8pρ ¨q}p +Hs,p +‰ +“ +ż +Rd E +” +|px +Mγ +ε ´ x +Mγ +8qpξq|pı +p1 ` |ξ|2q +ps +2 dξ. +(B.7) +Hence with our assumption on s ă ´ d +p it is sufficient to prove that +lim sup +εÑ0 +sup +ξPRd E +” +|px +Mγ +ε ´ x +Mγ +8qpξq|pı +ă 8, +@ξ P Rd, lim +εÑ0 E +” +|px +Mγ +ε ´ x +Mγ +8qpξq|pı +“ 0. +(B.8) +and we can then conclude using dominated convergence (the first line yields the domina- +tion). The second line is simply (2.2) with fpxq “ ρpxqeiξ.x. For the first line it sufficient +to prove that +lim sup +εÑ0 +sup +ξPRd E +” +|x +Mγ +ε pξq|pı +ă 8, +since the bound for x +Mγ +8pξq| can then be obtained by Fatou. We set V pεq +t +pξq “ Erx +Mγ +ε | Fts. +Using the BDG inequality we have +E +” +|x +Mγ +ε pξq|pı +ď CE +” +|V pεq +0 +pξq|p ` xV pεqpξqyp{2 +8 +ı +. +(B.9) +Now we have (recall that p ă +? +2d{α ď 2) +E +” +|V pεq +0 +pξq|2ı +“ +ż +R2d ρpxqρpyqeiξ.px´yqe|γ|2K0,εpx,yqdxdy +(B.10) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES41 +and we can conclude by replacing eiξ.px´yq by 1 and observing that since K is continuous +K0,ε is uniformly bounded for x, y in the support of ρ and ε P p0, 1q. For the quadratic +variation part, we have +xV pεqy8 “ |γ|2 +ż 8 +0 +At,εpξqdt, +(B.11) +where, +At,εpξq :“ +ż +R2d ρpxqρpyqQt,εpx, yqeiξpx´yqeγXt,εpxq`γXt,εpyq´ γ2 +2 Kt,εpxq´ γ2 +2 Kt,εpyqdxdy +ď +ż +R2d ρpxqρpyqQt,εpx, yqeαpXt,εpxq`Xt,εpyqq` β2´α2 +2 +pKt,ε`Kt,εpyqqdxdy “: At,ε, +(B.12) +the inequality being obtain by taking the modulus of the integrand. To conclude, we just +need to prove that +sup +εPp0,1q +E +«ˆż 8 +0 +At,εdt +˙p{2ff +ă 8 +(B.13) +For this part we can just repeat the computations made to prove (4.23) in Section 4.2. +B.2. The case of Theorem B.2. Since the convergence of finite dimensional marginal +has been established, we only need to prove tightness of the distribution of vpε, θ, γq´1Mγ +ε pρ ¨q +in HspRdq for every ρ. For this, we simply replicate the strategy presented in [16], with a +minor twist. Since in our case, the Fourier transform in not in L2, we need to consider a +restriction to the event Aq,R where R is such that the support ρ is contained in Bp0, Rq +(recall (5.6)). Keeping the notation introduced in (B.6) for the Fourier transform, we are +going to prove the following analogue of [16, Lemma B.2] (we use the notation vpεq for +vpε, θ, γq for ease of reading) +Lemma B.4. If the support of ρ is included in Bp0, Rq then the following holds for every +a P Rd with a constant C which depends on ρ. +sup +εPp0,1q +ξPRd +E +” +vpεq´2|x +Mγ +ε pξq|21Aq,R +ı +ă 8, +sup +εPp0,1q +ξPRd +E +” +vpεq´2|x +Mγ +ε pξ ` aq ´ x +Mγ +ε pξq|21Aq,R +ı +ď C|a|2, +(B.14) +Proof. We introduce a martingale whose limit coincides with x +Mγ +ε pξq on the event Aq,R. +Given x P Rd and q ą 0 we set +Tqpxq :“ inftt ą 0 : Xtpxq “ +? +2dt ` qu, +(B.15) +and define +N pεq +t +pξq :“ +ż +Rd ρpxqeiξ.xeγXt^Tqpxq,εpxq´ γ2 +2 Kt^Tqpxq,εpxqdx. +(B.16) +Since Tqpxq “ 8 for all x in the support of ρ on the event Aq,R, we have +N pεq +8 pξq1Aq,R “ x +Mγ +ε pξq1Aq,R. +(B.17) + +42 +HUBERT LACOIN +Hence it is sufficient to prove +sup +εPp0,1q +ξPRd +E +” +vpεq´2|N pεq +8 pξq|2ı +ă 8, +sup +εPp0,1q +ξPRd +E +” +vpεq´2|N pεq +8 pξ ` aq ´ N pεq +8 pξq|2ı +ď C|a|2. +(B.18) +Let us prove the only second inequality, since the first one is only easier. +We set for +simplicity Wt :“ N pεq +t +pξ ` aq ´ N pεq +t +pξq. We have +E +” +|N pεq +8 pξ ` aq ´ N pεq +8 pξq|2ı +“ Er|W8|2s “ Er|W0|2s ` E rxWy8s . +We are going to prove a bound for each of the term in the r.h.s. . We have +Er|W0|2s “ +ż +R2d ρpxqρpyq +´ +eipξ`aq.x ´ eiξ.x¯ ´ +e´ipξ`aq.y ´ eiξ.y¯ +e|γ|2K0,εpx,yq +ď C|a|2 +ż +ρpxqρpyq|x||y|dxdy ď C1|a|2. +(B.19) +where in the second line have taken the modulus of the integrand, and used the fact +that the complex exponential is Lipshitz. To bound the expected value of the quadratic +variation, using Itˆo calculus, and observing that tTqpxq ă tu “ At,qpxq (recall (5.6)) we +obtain that +xWy8 “ |γ|2 +ż 8 +0 +Utdt. +(B.20) +where +Ut :“ +ż +R2d ρpxqρpyqQt,εpx, yq +´ +eipξ`aq.x ´ eiξ.x¯ ´ +e´ipξ`aq.y ´ eiξ.y¯ +ˆ eγXt,εpxq`γXt,εpyq´ γ2 +2 Kt,εpxq´ γ2 +2 Kt,εpyq1At,qpxqXAt,qpyqdx. +(B.21) +Taking the modulus in the integrand value everywhere inside the integral and using the +fact that the complex exponential is Lipshitz fwe obtain +Ut ď |a|2 +ż +R2d ρpxqρpyq|x||y|Qt,εpx, yq +ˆ e +? +d{2pXt,εpxq`Xt,εpyqq` |γ|2´d +2 +pKt,εpxq`Kt,εpyqq1At,qpxqXAt,qpyqdxdy +ď C|a|2 +ż +R2d ρpxq2|x|2Qt,εpx, yqe +? +2dXt,εpxq`p|γ|2´dqKt,εpxq1At,qpxqdxdy, +(B.22) +where the second line is obtained via the same step as (5.26) (ab ď a2`b2{2 and symmetry +and in x and y). Now recalling (6.25) we have +E +” +e +? +2dXt,εpxq´dKt,εpxq1At,qpxq +ı +ď Cpt _ 1q´1{2. +(B.23) +where to obtain the first inequality, we used (3.12) to show that Kspx, yq (and all similar +terms) are well estimated by t for s P r0, ts. Now we have +E rUts ď C|a|2e´dt +? +t _ 1 +ż +R2d ρpxq2|x|2Qt,εpx, yqe|γ|2Kt,εpx,yqdx ď C1|a|2φpt, εq. +(B.24) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES43 +After integrating with respect to t (recalling Lemma 6.4) we obtain that +ErxWy8s ď C|a|2vpεq2, +(B.25) +for a constant C which is independent of ε and ξ and a, which combined with (B.19), +concludes the proof. +□ +Appendix C. Beyond star-scale invariance +The assumption that the kernel can be written in the form (1.8) may be felt as unnec- +essarily restrictive, since after all, given an open domain D Ă Rd and a positive definite +Kernel kernel K : +D2 Ñ p´8, 8s that admits a decomposition of the form (1.1), the +mollified field Xε can be defined on +Dε :“ tx P D : inf +yPDA |x ´ y| ą 2εu. +More precisely in that case the field X is indexed by CcpDq the set of functions with +compact support on D (in (1.4), R2d is replaced by D2), and Xε remains defined by (1.5) +(here θεpx ´ ¨q, which for x P Dε, has its support included in D, is identified with its +restriction on D). +It turns out that our results can be extended to the the general setup described above, +only with an additional regularity assumption concerning the function L present in (1.1). +Given U Ă D, we say that the restriction of K to U has an almost star-scale invariant +part, if +@x, y P U, Kpx, yq “ K0px, yq ` Kpx, yq +(C.1) +where K is an almost-star scale invariant Kernel, and K0 : U 2 Ñ R is positive definite +and H¨older continuous. +To extend the result we use the fact (proved in [12]) that if L is sufficiently regular +then K is locally star-scale invariant in the sense defined above. We state this result as a +proposition. It can be directly derived from [12, Theorem 4.5]. +Proposition C.1. If K is a positive definite kernel on D that can be written in the form +(1.1) with L P Hs +locpD2q with s ą d, then for every z P D, there exist δz ą 0 such that the +restriction of K to Bpz, δzq has an almost star-scale invariant part. +To extend Theorem 2.5 we require another technical result, which states that with the +same assumption as above, and U an open set whose closure is included in D, K can be +approximated by a kernel with an almost star-scale invariant part defined on U. This is +the content of the following result, [16, Lemma 2.1] +Proposition C.2. Given K a covariance kernel on D of the form (1.1) with L P Hs +locpD2q +for s ą d , U a bounded open set whose closure satisfies U Ă D and δ ą 0, then there +exists a kernel Kpδq on U satisfying (C.1) such that +(A) For all x, y P U, +|Kpδqpx, yq ´ Kpx, yq| ď δ. +(B) ∆pδqpx, yq “ Kpδqpx, yq ´ Kpx, yq is a positive definite kernel on U. +Remark C.3. More precisely, [16, Lemma 2.1] states that one can chose η1 “ 0 (recall +(1.8)) for the almost-star scale invariant part of Kpδq, but this refinement is not required +for our purpose. + +44 +HUBERT LACOIN +C.1. The case of Theorem 2.1. The extension of the result to the case of a general +log-correlated field defined on a domain D is the following. +Theorem C.4. If X is a centered Gaussian field defined on D whose covariance kernel +K can be written in the form (1.1) with L P Hs +locpD2q for s ą d, and f P CcpRdq, then +there exists a complex valued random variable Mγ +8pfq such that for any choice of mollifier +θ the following convergence holds in Lp if p P +” +1, +? +2d{α +¯ +. +lim +εÑ0 Mγ +ε pfq “ Mγ +8pfq. +(C.2) +Proof. This follows quite immediately via a localization argument using a partition of +unity. Let f P CcpDq be fixed. Using Proposition C.1, we can cover the support of f (which +is compact) by finitely many Euclidean balls Bpzi, εiq, i P I such that for every i P I the +restriction of K to Bpzi, εiq has an almost star-scale invariant part. Using a partition of the +unity, we can write f :“ ř +iPI fi where fi is continuous with compact support included in +Bpzi, εiq. Using Theorem 2.1 for K restricted to Bpzi, εiq, we obtain that Mγ +ε pfiq converges +in Lp for every fi and thus we obtain the convergence for Mγ +ε pfq “ ř +iPI Mγ +ε pfiq. +□ +C.2. The case of Theorem 2.5. To extend the result for γ P P1 +II{III it is sufficient to +extend Proposition 2.8. In the statement below, we implicitely use the fact that the critical +multiplicative chaos M1 is well defined under our assumptions (see [17, Theorem C.2] for +a proof). +Proposition C.5. If X is a centered Gaussian field defined on D whose covariance kernel +K can be written in the form (1.1) with L P Hs +locpD2q for s ą d, given ρ, f P CcpDq, +ω P r0, 2πq, we have +lim +εÑ0 E +„ +eixX,ρy`i Mγ +ε pf,ωq +vpε,θ,γq + +“ E +„ +eixX,ρy´ 1 +2M1pe|γ|2L|f|2q + +. +(C.3) +Proof. Given a fixed f P CcpDq, and n ě 1, we chose U which contains the support of +f and Kn : U 2 Ñ p´8, 8s satisfying the assumptions of Kpδq of Proposition C.2 with +δ “ 1{n. We let Zn be a centered Gaussian field indexed by U, independent of X and with +covariance ∆n “ Kn ´K and define Xn a field indexed by CcpUq by setting Xn “ X `Zn. +Note that Xn has covariance Kn. We let Mγ,n +ε +and M +1 +n denote the mollified GMC and +critical GMC associated with Xn. For simplicity, we define all the pZnqně1 on the same +probability space: the fields Zn form an independent sequence which is independent of +X. We let P denote the corresponding probability. From Proposition 2.8 we have for each +n ě 1 +lim +εÑ0 E +„ +eixXn,ρy`i Mγ,n +ε +pf,ωq +vpε,θ,γq + +“ E +„ +eixXn,ρy´ 1 +2 M +1 +npe|γ|2Ln|f|2q + +, +(C.4) +where Ln :“ L ` ∆n. In order to conclude, we need to show that (for any choice of Kpδq) +lim +nÑ8 sup +εPp0,1q +ˇˇˇˇE +„ +eixXn,ρy`i Mγ,n +ε +pf,ωq +vpε,θ,γq + +´ E +„ +eixX,ρy`i Mγ +ε pf,ωq +vpε,θ,γq +ˇˇˇˇ “ 0 +(C.5) +and that +lim +nÑ8 E +„ +eixXn,ρy´ 1 +2M +1 +npe|γ|2Ln|f|2q + +“ E +„ +eixX,ρy´ 1 +2 M +1pe|γ|2Lpδq|f|2q + +. +(C.6) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES45 +Note that it is sufficient to show that the difference between the terms in the l.h.s. and +the r.h.s. tend to zero in probability (uniformly in ε) that is +lim +nÑ8 E r|xXn, ρy ´ xX, ρy| _ 1s “ 0, +lim +nÑ8 E +”ˇˇˇM +1 +npe|γ|2Ln|f|2q ´ M +1pe|γ|2L|f|2q +ˇˇˇ _ 1 +ı +“ 0, +lim +nÑ8 sup +εPp0,1q +E +„ˇˇˇˇ +Mγ,n +ε +pf, ωq +vpε, θ, γq +´ Mγ +ε pf, ωq +vpε, θ, γq +ˇˇˇˇ _ 1 + +“ 0. +(C.7) +The first line is immediate via the computation of the L2 norm (the convergence holds in +L2). For the second line, we set gn “ e|γ|2Ln|f|2 and g “ e|γ|2L|f|2. Using the notational +convention introduced in Section 3.1, we let Zn,ε denote the mollification of Zn and ∆n,ε +its covariance. Letting e +? +2dZn,ε´d∆n,ε denote the function x ÞÑ e +? +2dZn,εpxq´d∆n,εpxq we have +E +„´ +M +? +2d,n +ε +pgnq ´ M +? +2d +ε +pgq +¯2 +| X + +“ E +” +M +? +2d +ε +pe +? +2dZn,ε´d∆n,εgn ´ gq2 | X +ı +“ +ż +U2 +´ +e2d∆n,εpx,yqgnpxqgnpyq ´ 2gnpxqgpyq ` gpxqgpyq +¯ +M +? +2d +ε +pdxqM +? +2d +ε +pdyq. +(C.8) +From the assumption that |∆npx, yq| ď 1{n (and thus |Lnpxq ´ Lpxq| ď 1{n) we obtain +that +|e2d∆n,εpx,yqgnpxqgnpyq ´ 2gnpxqgpyq ` gpxqgpyq| ď Cgpxqgpyq +n +and hence +E +„´ +M +? +2d,n +ε +pgnq ´ M +? +2d +ε +pgq +¯2 +| X + +ď C +n M +? +2d +ε +pgq2 +(C.9) +Using Fatou after renormalization we obtain that +E +”` +M1 +npgnq ´ M1pgq +˘2 | X +ı +ď C +n M1pgq2 +(C.10) +which implies the second line in (C.7). For the third line, we are going to Proposition +(C.1). More precisely, we use a decomposition of f “ ř +iPI fi where fi is continous with +compact support included in Ui and the restriction of K to Ui has an almost star-scale +invariant part. We are going to prove that for each i P I. +lim +nÑ8 sup +εPp0,1q +E +„ˇˇˇˇ +Mγ,n +ε +pfi, ωq +vpε, θ, γq +´ Mγ +ε pfi, ωq +vpε, θ, γq +ˇˇˇˇ _ 1 + +“ 0. +(C.11) +This operation shows that it is in fact sufficient to prove the third line of (C.7) assuming +that K is an almost star-scale invariant Kernel. We can thus further our probability space +contains pXtqtě0 a martingale sequence of fields with covariance Kt (we adopt the notation +of Section 3.1) approximating X. We equip our space with the filtration +Gt :“ σppXsqsPr0,ts, pZnqně1q. +We recall the definition of Tqpxq in (B.15) and define +W pn,εq +t +:“ +ż +U +peγZn,εpxq´ γ2 +2 ∆n,εpxq ´ 1qfpxqeγXt^Tqpxq,ε´ γ2 +2 Kt^Tq,εpxqdx +(C.12) +Setting +Aq :“ t@x P Supppfq, @t ą 0, Xtpxq ď +? +2dt ` qu + +46 +HUBERT LACOIN +We have from the definition +W pn,εq +8 +1Aq “ |Mγ,n +ε +pfq ´ Mγ +ε pfq|1Aq +Hence we have (for any ω P r0, 2πq since the projection on one axis reduces the modulus +E +“ +|Mγ,n +ε +pf, ωq ´ Mγ +ε pf, ωq|21Aq +‰ +ď Er|W pn,εq +8 +|2s “ Er|W pn,εq +0 +|2s ` ErxW pn,εqy8s. +(C.13) +Since from Lemma 5.2 we have limqÑ8 PrAqs “ 1, to prove the third line in (C.7), it is +sufficient to show that for any q we have +lim +nÑ8 sup +εPp0,1q +vpε, θ, γq´2 ´ +Er|W pn,εq +0 +|2s ` ErxW pn,εqy8s +¯ +. +(C.14) +For the first term, we have +Er|W pn,εq +0 +|2s “ +ż +U2 fpxqfpyqpe|γ|2∆n,εpx,yq´1qe|γ|2K0,εpx,yqdxdy ď Cn´1 +(C.15) +where the inequality obtained taking the modulus of the integrand and using the fact that +|∆npx, yq| ď 1{n and the other terms are uniformly bounded. The derivative of the bracket +of W pn,εq is given by |γ|2 times (recall that by (5.6) we have At,qpxq “ tTqpxq ď tu) +Dt :“ +ż +R2d Qt,εpx, yqGn,εpxqGn,εpyq +ˆ eγXt,ε`γXt,εpyq´ γ2 +2 Kt,εpxq´ γ2 +2 Kt,εpyq1At,qpxqXAt,qpyqdxdy. +(C.16) +with Gn,εpxq “ peγZn,εpxq´ γ2 +2 ∆n,εpxq ´ 1q. Repeating once more the computation in (5.26) +we obtain that +Dt ď +ż +R2d Qt,εpx, yq|Gn,εpxq|2e +? +2dXt,ε`p|γ|2´dqKt,εpxq1At,qpxqdxdy. +(C.17) +We define a martingale W +pεq and W +pεq +t +by setting +W pεq +t +:“ E rMγ,n +ε +pf, ωq ´ Mγ +ε pf, ωq | Gts +(C.18) +Now we have +E +“ +|Gn,εpxq|2‰ +“ e|γ|2∆n,εpxq ´ 1 ď Cn´1 +This the term is independent of the rest, thus using (B.23) we obtain that +ErDts ď Cn´1 +ż +R2d Qt,εpx, yqe|γ|2Kt,εpxqdxdy ď C1n´1φpt, εq. +(C.19) +Integrating against t we conclude that +ErxW pn,εqy8s ď Cn´1vpε, θ, γq2 +and this concludes the proof of (C.14). +□ + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES47 +Appendix D. Proof of Lemma 4.1 +We use Kahane convexity inequality in order to compare Bn to the the partition function +of a Gaussian branching random walk (or polymer on a 2d-adic tree). We assume without +loss of generality that Supppfq Ă r0, 1sd. For x, y P r0, 1sd we let 2´kpx,yq be the sidelength +of the smallest dyadic cube that contains x and y. +kpx, yq :“ inf +! +n ě 0 : Dm P �0, 2n ´ 1�d, tx, yu Ă +´ +2´nm ` r0, 2´nqd¯) +. +and set knpx, yq :“ kpx, yq ^ n. Note that kn defines a positive definite function and that +kpx, yq ď log2 +´ +1 +|x´y| +¯ +` C. Hence from Lemma 3.1 there exists a constant A ą 0 such +that +plog 2qknpx, yq ď Krn log 2spx, yq ` A. +(D.1) +Using Kahane’s convexity inequality (proved in [15] see also [27, Theorem 2.1]) which we +introduce in a simplified setup +Lemma D.1. If C1 and C2 are two bounded positive definite kernel on an arbitrary space +X satisfying +@x, y P X, +C1px, yq ď C2px, yq +µ is a finite measure on r0, 1sd and F : R` Ñ R is a concave function with at most +polynomial growth at infinity and Y1 and Y2 are Gaussian fields with respective covariance +C1 and C2 then we have for any θ P R +E +„ +F +ˆż +eθY1pxq´ θ2 +2 C1pxqµpdxq +˙ +ď E +„ +F +ˆż +eY2pxq´ θ2 +2 C2pxqµpdxq +˙ +. +(D.2) +Hence if Zn denotes a field defined on r0, 1sd with covariance kn we can apply Lemma +D.1 result for the fields ?log 2Zn and Xrn log 2s` +? +AN where N is an independent standard +Gaussian (the fields have their resepective covariances given by the two sides of Equation +(D.1)), µpdxq “ |fpxq|2dx and Fpuq “ up{2. Recalling (4.11) we have +E +” +Bp{2 +rn log 2s +ı +ď CE +» +– +˜ +2dn +ż +r0,1sd |fpxq|2e2α?log 2pZnpxq´?2d log 2nqdx +¸p{2fi +fl . +(D.3) +The constant C above takes care of the fact that the variance of ?log 2Znpxq and Xrn log 2s +differ by a Op1q term, and also of the moment of the variable N. We can ignore the +constant f at the cost of a prefactor }f}p +8. To conclude we thus need a bound on the +moment of order p{2 of the partition function of the Gaussian branching random walk +Wn,ζ :“ 2dn +ż +r0,1sd eζpZnpxq´?2d log 2nqdx “ +ÿ +mP�0,2n´1�d +eζpZnpm2´nq´?2d log 2nq, +(D.4) +for ζ “ 2α?log 2. The following result is a particular case of [8, Theorem 1.6]. We present +a shorter proof which is valid in our context for the sake of completeness. +Lemma D.2. Given ζ ą ?2d log 2 and q ď +?2d log 2 +ζ +there exists positive constant C and +b such that +E rpWn,ζqqs ď Cn´ +3qζ +2?2d log 2plog nq6 + +48 +HUBERT LACOIN +Proof. We split our integral in three parts. We set +Bnpxq :“ tDm P �1, n�, Zmpxq ě +a +2d log 2 ` plog nq2u, +Cnpxq :“ BA +npxq X tZnpxq ď +a +2d log 2n ´ plog nq2u, +Anpxq :“ BA +npxq X CA +npxq +(D.5) +We define Wn,ζpAq, Wn,ζpBq and Wn,ζpCq by setting, for I P tA, B, Cu +Wn,ζpIq :“ 2dn +ż +r0,1sd eζpZnpxq´?2d log 2nq1Inpxqdx +(D.6) +Using subadditivity (4.9) we have +E rpWn,ζqqs ď E rWn,ζpAqqs ` E rWn,ζpBqqs ` E rWn,ζpCqqs . +(D.7) +We are going to show that the two last terms in the r.h.s. decay faster than any negative +power of n and then prove a bound of the right order of magnitude for E rpWn,ζqqs. Letting +setting Bn :“ Ť +xPr0,1s Bnpxq, and q1 “ ?2d log 2ζ´1 (q1 P rq, 1q) we have +E rWn,ζpBqqs ď E rpWn,ζqq1Bns ď E +” +pWn,ζqq1ı q +q1 P rBns1´ q +q1 . +(D.8) +Using subadditivity (4.9) for the sum (D.4) with θ “ q1, +E +” +pWn,ζqq1ı +ď E +“ +Wn,?2d log 2 +‰ +“ 1. +(D.9) +The inequality on the right comes from the fact that pWm,?2d log 2qmě1 is a martingale for +the natural filtration associated with Zn. Using the optional stopping Theorem for this +same martingale, we can obtain a bound for the probability of Bn, +PrBns ď P +” +Dm, Wm,?2d log 2 ě e +?2 log 2plog nq2ı +ď e´?2 log 2plog nq2. +(D.10) +This yields a subpolynomial decay for ErWn,ζpBqqs. For Wn,ζpCq using the fact that Zn is a +Gaussian of variance n, we obtain using Jensen’s inequality, the Cameron-Martin formula +and Gaussian tail bounds +E rpWn,ζpCqqqs1{q ď E rWn,ζpCqs “ 2dnE +” +eqpZn´?2d log 2nq1tZnď?2d log 2n´plog nq2u +ı +“ e +ˆ +d log 2` ζ2 +2 ´ζ?2d log 2 +˙ +n +P +” +Znp0q ď p +a +2d log 2 ´ ζqn ´ plog nq2ı +ď ep?2d log 2´ζqplog nq2, +(D.11) +also proving a subpolynomial decay. It remains to estimate the main part E rpWn,ζpAqqqs. +Using first subaddivity (4.9) and then Jensen’s inequality +E rpWn,ζpAqqqs ď E +„ +Wn,?2d log 2pAq +qζ +?2d log 2 + +ď E +“ +Wn,?2d log 2pAq +‰ +qζ +?2d log 2 . +(D.12) +The Cameron-Martin formula directly expresses E +“ +Wn,?2d log 2pAq +‰ +as the probability con- +cerning the Gaussian centered random walk pZmp0qqmě0, +E +“ +Wn,?2d log 2pAq +‰ +“ P +“ +@m P �1, n�, Zmp0q ď plog nq2 ; Znp0q ě ´plog nq2‰ +ď Cn´3{2plog nq6. +(D.13) + +CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES49 +The bound for the probability of the event above is valid for any random walk with IID +centered increments with finite second moment (see for instance [1, Lemma A.3]) which +concludes our proof. +□ +References +[1] Elie A¨ıd´ekon and Zhan Shi. Weak convergence for the minimal position in a branching random walk: +a simple proof. Period. Math. Hungar., 61(1-2):43–54, 2010. +[2] Nathana¨el Berestycki. An elementary approach to Gaussian multiplicative chaos. Electron. Commun. +Probab., 22:Paper No. 27, 12, 2017. +[3] B. Derrida, M. R. Evans, and E. R. Speer. Mean field theory of directed polymers with random +complex weights. Comm. Math. Phys., 156(2):221–244, 1993. +[4] Bertrand Duplantier, R´emi Rhodes, Scott Sheffield, and Vincent Vargas. Critical Gaussian multiplica- +tive chaos: convergence of the derivative martingale. Ann. Probab., 42(5):1769–1808, 2014. +[5] Bertrand Duplantier, R´emi Rhodes, Scott Sheffield, and Vincent Vargas. Renormalization of critical +Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys., 330(1):283–330, 2014. +[6] Lisa Hartung and Anton Klimovsky. The glassy phase of the complex branching Brownian motion +energy model. Electron. Commun. Probab., 20:no. 78, 15, 2015. +[7] Lisa Hartung and Anton Klimovsky. The phase diagram of the complex branching Brownian motion +energy model. Electron. J. Probab., 23:Paper No. 127, 27, 2018. +[8] Yueyun Hu and Zhan Shi. Minimal position and critical martingale convergence in branching random +walks, and directed polymers on disordered trees. Ann. Probab., 37(2):742–789, 2009. +[9] Jean Jacod and Albert N. Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren +der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer- +Verlag, Berlin, second edition, 2003. +[10] Janne Junnila and Eero Saksman. Uniqueness of critical Gaussian chaos. Electron. J. Probab., 22:Paper +No. 11, 31, 2017. +[11] Janne Junnila, Eero Saksman, and Lauri Viitasaari. On the regularity of complex multiplicative chaos. +arXiv e-prints, page arXiv:1905.12027, May 2019. +[12] Janne Junnila, Eero Saksman, and Christian Webb. Decompositions of log-correlated fields with ap- +plications. Ann. Appl. Probab., 29(6):3786–3820, 2019. +[13] Janne Junnila, Eero Saksman, and Christian Webb. Imaginary multiplicative chaos: moments, regu- +larity and connections to the Ising model. Ann. Appl. Probab., 30(5):2099–2164, 2020. +[14] Zakhar Kabluchko and Anton Klimovsky. Complex random energy model: zeros and fluctuations. +Probab. Theory Related Fields, 158(1-2):159–196, 2014. +[15] Jean-Pierre Kahane. Sur le chaos multiplicatif. (On multiplicative chaos). Ann. Sci. Math. Qu´e., +9:105–150, 1985. +[16] Hubert Lacoin. Convergence in law for complex Gaussian multiplicative chaos in phase III. Ann. +Probab., 50(3):950–983, 2022. +[17] Hubert +Lacoin. +Critical +Gaussian +Multiplicative +Chaos +revisited. +arXiv +e-prints, +page +arXiv:2209.06683, September 2022. +[18] Hubert Lacoin. A universality result for subcritical complex Gaussian multiplicative chaos. Ann. Appl. +Probab., 32(1):269–293, 2022. +[19] Hubert Lacoin, R´emi Rhodes, and Vincent Vargas. A probabilistic approach of ultraviolet renormali- +sation in the boundary Sine-Gordon model. to appear in Probab. Theory Related Fields. +[20] Hubert Lacoin, R´emi Rhodes, and Vincent Vargas. Complex Gaussian multiplicative chaos. Comm. +Math. Phys., 337(2):569–632, 2015. +[21] Jean-Fran¸cois Le Gall. Brownian motion, martingales, and stochastic calculus, volume 274 of Graduate +Texts in Mathematics. Springer, 2016. +[22] Thomas Madaule. Convergence in law for the branching random walk seen from its tip. J. Theor. +Probab., 30:27–63, 2017. +[23] Thomas Madaule, R´emi Rhodes, and Vincent Vargas. The glassy phase of complex branching Brow- +nian motion. Comm. Math. Phys., 334(3):1157–1187, 2015. +[24] Thomas Madaule, R´emi Rhodes, and Vincent Vargas. Glassy phase and freezing of log-correlated +gaussian potentials. Ann. Appl. Probab., 26(2):643–690, 04 2016. + +50 +HUBERT LACOIN +[25] Ellen Powell. Critical Gaussian multiplicative chaos: a review. arXiv e-prints, page arXiv:2006.13767, +June 2020. +[26] Ellen Powell. Critical Gaussian multiplicative chaos: +a review. Markov Process. Related Fields, +27(4):557–506, 2021. +[27] R´emi Rhodes and Vincent Vargas. Gaussian multiplicative chaos and applications: a review. Probab. +Surv., 11:315–392, 2014. +IMPA, Institudo de Matem´atica Pura e Aplicada, Estrada Dona Castorina 110 Rio de +Janeiro, CEP-22460-320, Brasil. + diff --git a/1tE4T4oBgHgl3EQfzg0x/content/tmp_files/load_file.txt b/1tE4T4oBgHgl3EQfzg0x/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..dcb7a8095964ac36e5f1b44cd936cdc6ecdc1545 --- /dev/null +++ b/1tE4T4oBgHgl3EQfzg0x/content/tmp_files/load_file.txt @@ -0,0 +1,1913 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf,len=1912 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='05274v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='PR] 12 Jan 2023 CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES HUBERT LACOIN Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The complex Gaussian Multiplicative Chaos (or complex GMC) is infor- mally defined as a random measure eγXdx where X is a log correlated Gaussian field on Rd and γ “ α ` iβ is a complex parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The correlation function of X is of the form Kpx, yq “ log 1 |x ´ y| ` Lpx, yq, where L is a continuous function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the present paper, we consider the cases γ P PI{II and γ P P1 II{III where PI{II :“ tα ` iβ : α, β P R ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |α| ą |β| ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |α| ` |β| “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2du, and P1 II{III :“ tα ` iβ : α, β P R ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |α| “ a d{2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |β| ą ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2du, We prove that if X is replaced by an approximation Xε obtained via mollification, then eγXεdx, when properly rescaled, converges when ε Ñ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The limit does not depend on the mollification kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' When γ P PI{II, the convergence holds in probability and in Lp for some value of p P r1, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{αq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' When γ P P1 II{III the convergence holds only in law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In this latter case, the limit can be described a complex Gaussian white noise with a random intensity given by a critical real GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The regions PI{II and P1 II{III correspond to phase boundary between the three different regions of the complex GMC phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' These results complete previous results obtained for the GMC in phase I [18] and III [16] and only leave as an open problem the question of convergence in phase II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2010 Mathematics Subject Classification: 60F99, 60G15, 82B99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Keywords: Random distributions, log-correlated fields, Gaussian Multiplicative Chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Introduction 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Main results 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The martingale approximation for GMC 8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of convergence results on for γ P PI{II 13 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 18 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8 27 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6 34 Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Technical results and their proof 36 Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence of Mγ ε as a distribution 39 Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Beyond star-scale invariance 43 Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 47 References 49 1 2 HUBERT LACOIN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Introduction Let K : Rd ˆ Rd Ñ p´8, 8s be a positive definite kernel on Rd (d ě 1 is fixed) which admits a decomposition of the form Kpx, yq “ log 1 |x ´ y| ` Lpx, yq, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) (with the convention logp1{0q “ 8) where L is a continuous function on R2d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A kernel K is positive definite if for ρ P CcpRdq (ρ continuous with compact support) ż R2d Kpx, yqρpxqρpyqdxdy ě 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) Given a centered Gaussian field X with covariance K and γ “ α ` iβ a complex number (α, β P R) the complex Gaussian Multiplicative Chaos (or complex GMC) with parameter γ is the random distribution formally defined by the expression Mγpdxq “ eγXpxqdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) A difficulty comes up when trying to give an interpretation to the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A field X with a covariance given by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) can be defined only as a random distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For a fixed x P Rd it is not possible to make sense of Xpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The problem of providing a mathematical construction of Mγ that gives a meaning to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) was first considered by Kahane in [15] in the case where γ P R, we refer to [25, 27] for reviews on the subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The case of γ P C was considered only more recently, see for instance [11, 12, 13, 16, 18, 19, 20] and references therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The standard procedure to define the GMC is to use a sequence of approximation of the field X, consider the exponential of the approximation and then pass to the limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Mostly two kinds of approximation of X have been considered in the literature: (A) A mollification of the field, Xε, via convolution with a smooth kernel on scale ε, (B) A martingale approximation, Xt, via an integral decomposition of the kernel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the present paper we present convergence results for the random distribution eγXεpxqdx and eγXtpxqdx and in a certain range of parameter γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Before describing our results in more details and provide some motivation, we first rigorously introduce the setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The mollification of a log-correlated field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Log-correlated fields defined as distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Since K is infinite on the diagonal, it is not possible to define a Gaussian field indexed by Rd with covariance function K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We consider instead a process indexed by test functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We define pK, a bilinear form on CcpRdq (the set of compactly supported continuous functions) by pKpρ, ρ1q “ ż R2d Kpx, yqρpxqρ1pyqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) Since pK is positive definite (in the usual sense: for any pρiqk i“1, the matrix pKpρi, ρjqk i,j“1 is positive definite), it is possible to define X “ xX, ρyρPCcpRdq a centered Gaussian process indexed by CcpRdq with covariance kernel given by pK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' There exists a modification of the process X which take value in a distri- bution space (more specifically, such that X takes values in the Sobolev space Hs locpRdq for every s ă 0 (see the definition (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) in the appendix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For this reason (and although we will not use this fact) we refer to X as a random distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 3 Approximation of X via mollification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The random distribution X can be approximated by a sequence of functional fields - processes indexed by Rd - by the mean of mollification by a smooth kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Consider θ a nonnegative function in C8 c pRdq (the set of infinitely differentiable functions in CcpRdq) whose compact support is included in Bp0, 1q (for the remainder of the paper Bpx, rq denotes the closed Euclidean ball of center x and radius r) and which satisfies ş Bp0,1q θpxqdx “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We define for ε ą 0, θε :“ ε´dθpε´1¨q and consider pXεpxqqxPRd, the mollified version of X, that is Xεpxq :“ xX, θεpx ´ ¨qy (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) From (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4), the field Xεp¨q has covariance Kεpx, yq :“ ErXεpxqXεpyqs “ ż R2d θεpx ´ z1qθεpy ´ z2qKpz1, z2qdz1dz2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) We set Kεpxq :“ Kεpx, xq and extend this convention to other functions of two variables in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Since Kε is infinitely differentiable - thus in particular is H¨older continuous - by Kolmogorov’s Continuity Theorem (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [21, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9]) there exists a continuous modification of Xεp¨q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the remainder of the paper, we always consider the continuous modification of a process when it exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This ensures that integrals such as the one appearing in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) are well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We define the distribution Mγ ε by setting for f P CcpRdq Mγ ε pfq :“ ż Rd fpxqeγXεpxq´ γ2 2 Kεpxqdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) The question of interest in the present paper is the convergence of Mγ ε when ε Ñ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that, even if we have chosen to omit this dependence in the notation, Xε and Mγ ε both depend on the particular convolution kernel θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' An important feature of our results is that the limits obtained for Mγ ε pfq do not depend on θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Star-scale invariance and our assumption on K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' On top of assuming that K admits a decomposition like (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1), we also assume that it has an almost star-scale invariant part (see the definition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This assumption might seem at first quite restrictive, but it has been shown in [12] that it is locally satisfied as soon as the function L in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) is sufficiently regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In Appendix C we provides details concerning the regularity assumption for L and explain how to extend the validity of our results to all sufficiently regular log-correlated kernels using the ideas in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Following a terminology introduced in [12], we say that a the kernel K defined on Rd is almost star-scale invariant if it can be written in the form @x, y P Rd, Kpx, yq “ ż 8 0 p1 ´ η1e´η2tqκpetpx ´ yqqdt, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) where η1 P r0, 1s and η2 ą 0 are constants and the function κ P C8 c pRdq is radial, nonneg- ative and definite positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely we assume the following: (i) κ P C8 c pRdq and there exists rκ : R` Ñ r0, 8q such that κpxq :“ rκp|x|q, (ii) rκp0q “ 1 and rκprq “ 0 for r ě 1, (iii) The mapping px, yq ÞÑ κpx ´ yq defines a positive definite kernel on Rd ˆ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We say furthermore that a kernel K has an almost star-scale invariant part, if @x, y P Rd, Kpx, yq “ K0px, yq ` Kpx, yq (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) where Kpx, yq is an almost star-scale invariant kernel and K0 is H¨older continuous on R2d and positive definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 4 HUBERT LACOIN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Phase transitions and phase diagrams for GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Our main results concerns the asymptotic behavior of Mγ ε in the specific range of γ given in the abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In order to properly motivate and present these results, it is necessary to introduce some context, and recall known facts about the phase diagram of the complex GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Phase transition at |α| “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d for the real valued GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The question of the existence and identification of the limit lim εÑ0 Mα ε p¨q, has first been considered in the work of Kahane in the eighties [15], in the case when α P R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The obtained limit in that case crucially depends on α: when |α| ă ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d - referred to as the subcritical case - then Mα ε converges in probability to a non-trivial limiting distribution (see for instance [2, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1] for a short and self contained proof, we refer to the introduction in [2] for a detailed chronological account of results obtained for the subcritical case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' When |α| ě ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d, we have limεÑ0 Mα ε pfq “ 0 and a rescaling procedure is needed in order to obtain a non-trivial limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The phenomenology is however different according to whether |α| “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d (α critical) or |α| ą ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d (α supercritical).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the critical case (α “ ˘ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d), is has been shown, under fairly mild assumptions (see [4, 5, 10, 26] and Theorem A below) that a log p1{εqMα ε converges in probability to a non-trivial limit called the critical GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' When |α| ą ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d, the results are less complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' So far the convergence has not been proved for Mα ε but only for an approximating martingale sequence Mα t (see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6)) in [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Besides this technical point, the most important differences with the case |α| ď ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d concerns the type of the convergence and the nature of limiting object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence only holds only in law, and the limit is a purely atomic measure (a measure supported by a countable set) see [24, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Phase diagram for complex GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' When γ is allowed to assume complex value, the phase diagram becomes more intricate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The complex plane can be divided in three open regions with intersecting boundaries PI :“ ␣ α ` iβ : α2 ` β2 ă d ( Y !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' α ` iβ : α P p a d{2, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dq ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |α| ` |β| ă ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ) , PII :“ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' α ` iβ : |α| ` |β| ą ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |α| ą a d{2 ) , PIII :“ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' α ` iβ : α2 ` β2 ą d ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |α| ă a d{2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) This diagram first appeared in the context of complex Gaussian multiplicative cascade [3], and also serves to describe the behavior of other related models such as the complex REM [14] or complex branching Brownian Motion [6, 7, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The region PI corresponds to the subcritical phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For γ P PI it has been proved [12, 18] that Mγ ε converges to a limit that does not depend on the mollifier θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The region PII corresponds to the supercritical phase, in which it is believed that Mγ ε after proper renormalization - converges only in law to a purely atomic random distri- bution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This conjecture is supported by rigorous results obtained in the case of Complex Branching Brownian Motion [6, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 5 PSfrag replacements β α ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' d a d{2 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d PI PII PIII Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The phase diagram of the complex GMC in the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Each region correspond to a different limiting behavior for M γ ε in terms of renormalization factor, type of convergence and properties of the limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the present paper, we prove results concerning the asymptotic behavior on frontier of PI Y PIII with PII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Results concerning convergence in PI Y PIII where proved in [12, 18] (for PI) and [16] (for PIII Y PI{III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence in the region PII remains a challenging conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Finally the region PIII corresponds to yet another asymptotic behavior for Mγ ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Like in PII, Mγ ε - properly rescaled - only converges in law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The limit is given by a white noise whose intensity is random and is given by the real valued GMC with parameter 2α (which is subcritical, according to the definition of PIII).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A similar convergence result holds on the boundary between PII and PIII that is PII{III :“ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' α ` iβ : α2 ` β2 “ d ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |α| ă a d{2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' These convergence statements for γ P PIII Y PI{III are proved in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The present contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The aim of the present paper is to come closer to a completition of the phase diagram by stating and proving convergence results for Mγ ε on the phase transition curves PI{II and PI{III as well as at the triple points PI{II{III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In each case, the limit obtained does not depend on the regularization kernel θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We leave as an open problem the challenging task of proving a convergence result in the frozen phase PII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Main results For simplicity of notation, we consider, for the remainder of the paper and without loss of generality that γ is in the upper-right quarterplane of C, that is α, β ě 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The boundary between phase I and II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Our first result concerns the case when γ lies on the boundary between regions I and II PI{II :“ tα ` iβ : α ą β ą 0 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' α ` β “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) 6 HUBERT LACOIN Note that our definition of PI{II excludes one point of the boundary which correspond to Critical Gaussian multiplicative chaos γ “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If X is a centered Gaussian field whose covariance kernel K has an almost star-scale invariant part, γ P PI{II, and f P CcpRdq then there exists a complex valued random variable Mγ 8pfq such that for any choice of mollifier θ the following convergence holds in Lp if p P ” 1, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{α ¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' lim εÑ0 Mγ ε pfq “ Mγ 8pfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) The above result extends [18, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2] which established convergence for γ P PI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The method which we use to prove it however, completely differs from the one employed in [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In fact the method of proof that we employ in Section 4 balso provides an alternative and much shorter proof of [18, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2], with the additional benefit of establishing convergence in Lp for an optimal range of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have chosen to denote the limit by Mγ 8 rather than Mγ 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' While the latter may seem a more natural choice, it is already in use for the initial condition of the martingale GMC approximation introduced in Section 3 (see for instance (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have chosen to put the emphasis on the proof of the convergence of Mγ ε pfq for all fixed f, but it is true also that Mγ ε p¨q converges as a random distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely the convergence (in probability) of Mγ ε in a local Sobolev space of negative index can in fact be deduced from the estimates obtained in the proof of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We include the argument in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The boundary between phase II and III, and the triple point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Our second result concerns the case when γ P P1 II{III where PII{III :“ t a d{2 ` iβ : β ą a d{2u, P1 II{III :“ PII{III Y t a d{2p1 ` iqu (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) In that case Mγ ε needs to be rescaled in order to obtain a non-trivial limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence holds only in law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To describe the limit we need to introduce two notions: Critical Gaussian Multiplicative Chaos, and Gaussian White Noise with a random intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Critical GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' As explained in the introduction critical Gaussian Multiplicative Chaos is obtained as the limit of Mα ε when α “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The value ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d represent a threshold for the convergence of Mα ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence result below follows from a combination of [5, Theorem 5] - which establishes the convergence for the martingale sequence Mα t (see Section 3) and [10, Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4] which establish that the limit is the same for the exponential of the mollified field Mα ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Alternative concise proofs of these results have been recently given in [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let X be a Gaussian random field with an almost-star scale invariant kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' There exists a locally finite random measure M1 with dense support and no atoms such that for every f P CcpRdq the following convergence holds in probability lim εÑ0 c π log p1{εq 2 M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ε pfq “ M1pfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that we have set different conventions and that our M1 differs from that in [5, Theorem 5] by a factor b 2 π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 7 Complex white noise with random intensity given by a Real GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For γ P P1 II{III we define Mγ to be a complex white noise with intensity measure given by M1pe|γ|2L¨q It is a random linear form which is constructed jointly with X, on an extended probability space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Conditionally on X, for f P C8 c pDq, Mγpfq is a complex Gaussian random variable, with independent real and imaginary parts, both with a variance equal to M1pe|γ|2Lf 2q “ ż D e|γ|2Lpx,xqfpxq2M1pdxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Formally, letting P and P denote respectively the law of X and the joint law of pX, Mγp¨qq, Mγp¨q is the random process indexed by CcpRdq which satisfies for any m, n ě 1, ρ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' , ρm, f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' , fn P CcpRdq and any bounded measurable function F on Cn`m E “ F ` pxX, ρiyqm i“1, pMγpfjqqn j“1 ˘‰ “ E b En “ F ` pxX, ρiyqm i“1, Σrγ, X, pfjqn j“1s ¨ Nn ˘‰ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) where under Pn, Nn is an n dimensional vector whose coordinate are IID standard com- plex Gaussian variables, and Σrγ, X, pfjqn j“1s is the positive definite square root of the Hermitian matrix ´ M1pe|γ|2Lfif jq ¯n i,j“1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us define the function ℓθ on Rd, obtained by convoluting z ÞÑ log 1{|z| twice with θ, that is ℓθpzq :“ ż Rd log ˆ 1 |z ` z1 ´ z2| ˙ θpz1qθpz2qdz1dz2, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) and set (recall (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3)) vpε, θ, γq :“ $ ’ & ’ % p2π logp1{εqq´1{4ε d´|γ|2 2 ´ş Rd e|γ|2ℓθpzqdz ¯1{2 if γ P PII{III, a Σd´1 ´ 2 logp1{εq π ¯1{4 if γ “ a d{2pi ` 1q (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) where Σd is the volume of the d ´ 1 dimensional sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that limεÑ0 vpε, θ, γq “ 8 in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let X be a Gaussian random field with an almost star-scale covariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Then given γ P P1 II{III, we have the following joint convergence in law ˆ X, Mγ ε vpε, θ, γq ˙ εÑ0 ñ pX, Mγq, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) implies that vpε, θ, γq´1Mγ ε does not converge in probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' On the heuristic level, this can be explained as follows: The white noise that appears in the limit is the product of local fluctuations of Xε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' These fluctuations are produced by high frequencies in the Fourier spectrum of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The set of frequencies that produce the fluctuations diverges to infinity when ε Ñ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This means that the randomness that produces the white noise become asymptotically independent of X in the limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) means that for any collection pρiqm i“1 and pfjqn j“1 we have the convergence in law of the Cm`n valued vector lim εÑ0 ˜ pxX, ρiyqm i“1, ˆ Mγ ε pfjq vpε, θ, γq ˙n j“1 ¸ “ ´ pxX, ρiyqm i“1, pMγpfjqqn j“1 ¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) 8 HUBERT LACOIN The convergence can also be shown to hold in a space of distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely, there exists a modification of the process Mγ taking values in the local Sobolev space H´u loc pRdq with u ą d{2 and Mγ ε pfjq vpε,θ,γq converges in law in that space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' See Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Since both X and Mγ ε are linear forms, the convergence of finite dimensional marginals follows from that of one dimensional marginals (this can simply be checked using Fourier transform and L´evy Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely, we only need to prove the convergence for every f P CcpRdq and ω P r0, 2πq of the real valued variable (Re denotes the real part) Mγ ε pf, ωq :“ Re ` e´iωMγ ε pfq ˘ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) Hence Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 can be reduced to the proof of the following statement Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Under the assumption of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5, given ρ, f P CcpRdq, ω P r0, 2πq, we have lim εÑ0 E „ eixX,ρy`i Mγ ε pf,ωq vpε,θ,γq \uf6be “ E „ eixX,ρy´ 1 2M1pe|γ|2L|f|2q \uf6be .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) The r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) of corresponds to the Fourier transform of pX, Mγq (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5)) E „ eixX,ρy´ 1 2 M1pe|γ|2L|f|2q \uf6be “ E ” eixX,ρy`iMγpfqı , and the convergence of the Fourier transform implies that of finite dimensional marginals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More detailed justifications are exposed in [16, Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The martingale approximation for GMC Before getting to the technical core of the paper, we need one more introductory section to present an essential tool which is used in the proof of both Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5: the martingale decomposition of the field X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Under the almost star-scale assumption for K, besides mollification, there is another natural way to approximate the log-correlated field X by a smooth field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Extending the probability space, one can define a martingale sequence of smooth fields pXtqtě0 that converges to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This allows for another approach to the construction of GMC, considering the exponen- tial of the martingale approximation of X (see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7)) which we call Mγ t (see Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 concerning the conflict of notation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Convergence results for Mγ t which are a analogous to Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 are also presented in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 we introduce an important technical tool which is used to prove Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The result (a central limit Theorem proving convergence to a Gaussian with random variance) may find applications in other context, so it is stated in a rather general setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The martingale decomposition of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given K with an almost star-scale invariant part, and using the decomposition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) for K, we set Qtpx, yq :“ κpet1px ´ yqq where t1 is defined as the unique positive solution of t1 ´ η1 η2 p1 ´ e´η2t1q “ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) We set Ktpx, yq :“ K0px, yq ` ż t 0 Qspx, yqds “ K0px, yq ` ż t1 0 p1 ´ η1e´η2sqκpespx ´ yqqds “: K0px, yq ` Ktpx, yq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES 9 Note that we have limtÑ8 Ktpx, yq “ Kpx, yq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We define pXtpxqqxPRd,tě0 to be a centered Gaussian field with covariance given by (using the notation a ^ b :“ minpa, bq, a _ b :“ maxpa, bq) ErXtpxqXspyqs “ Ks^tpx, yq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) Since ps, t, x, yq ÞÑ Ks^tpx, yq is H¨older continuous, the field admits a continuous modifi- cation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We let Ft :“ σ ´ pXspxqqxPRd,sPr0,ts ¯ denote the natural filtration associated with X¨p¨q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The process X indexed by CcpRdq and defined by xX, ρy “ limtÑ8 ş Rd Xtpxqρpxqdx, is a centered Gaussian field with covariance, so that Xt is an approximation sequence for a log-correlated field with covariance K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We also define X¨ :“ X¨ ´ X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Recalling (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) we have ErXtpxqXspyqs “ Ks^tpx, yq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) An important observation is that since Ktpxq :“ Ktpx, xq “ t, for any fixed x P Rd, the process pXtpxqqtě0 is a standard Brownian Motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We also introduce the field Xt,ε which is the mollification of Xt, that is Xt,εpxq :“ ż Rd θεpx ´ zqXtpzqdz “ E rXεpxq | Fts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We let Kt,εpx, yq denote the covariance of the field Xt,ε and Kt,ε,0px, yq the cross-covariance of Xt,ε and Xt Kt,εpx, yq :“ ErXt,εpxqXt,εpyqs “ ż Rd θεpx ´ z1qθεpy ´ z2qKtpz1, z2qdz1dz2, Kt,ε,0px, yq :“ ErXt,εpxqXtpyqs “ ż Rd θεpx ´ zqKtpz, yqdz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) The quantity Kt,ε is defined similarly and we use the notation Qt,ε and Qt,ε,0 the corre- sponding mollified versions of Qt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The martingale approximation for the GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We define the distribution Mγ t by setting for f P CcpRdq Mγ t pfq :“ ż Rd fpxqeγXtpxq´ γ2 2 Ktpxqdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) Using the independence of the increments of X, it is elementary to check that Mtpfq is an pFtq-martingale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We also define Mγ t,εpfq :“ ż Rd fpxqeγXt,εpxq´ γ2 2 Kt,εpxqdx “ E rMγ ε pfq | Fts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A few properties of the covariance kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We introduce some technical nota- tion and estimates that are going to be of use throughout the article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us first not that if a kernel K has an almost star-scale invariant part then it can be written in the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Indeed, if K satisfies (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) then the function L defined for x ‰ y by Lpx, yq :“ Kpx, yq ` log |x ´ y|, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) can be extended to a continuous function on R2d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that we have Lpxq “ lim yÑx pKpx, yq ` log |x ´ y|q “ K0pxq ´ j (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) 10 HUBERT LACOIN where the difference term j does not depend on x and can be computed explicitely j :“ lim zÑ0 ` logp1{|z|q ´ Kp0, zq ˘ “ η1 η2 ` ż 8 0 ` 1 ´ rκpe´sq ˘ ds ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) The above comes from the fact that logp1{|z|q ´ Kp0, zq “ ż logp1{|z|q 0 p1 ´ Qlogp1{|z|q´up0, zqqdu and the fact that the integrand on the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' converges to 1 ´ rκpe η1 η2 ´sq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lastly one can observe that the following identity holds ℓpzq :“ lim tÑ8 ` Ktp0, e´tzq ´ t ˘ “ lim tÑ8 ż t 0 pκpes1´tzq ´ 1qds “ ż 8 0 pκpe η1 η2 ´uzq ´ 1qdu, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) where in the integral in s, s1 is related to s via (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To obtain the third equality, one simply observe that s1 “ s ` η1{η2 ` op1q in the large s limit and make the change of variable u “ t ´ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that ℓpzq is a continuous negative function and that for any |z| ě e´ η1 η2 we have ℓpzq “ log 1 |z| ´ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To conclude this subsection, we gather in a a technical lemma a couple of useful estimates concerning Kt, Qt and their variant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given R ą 0, there exists a constant CR such that for any x, y P Bp0, Rq, t ą 0 and ε P r0, 1s ˇˇˇˇKt,εpx, yq ´ log ˆ 1 maxpe´t, ε, |x ´ y|q ˙ˇˇˇˇ ď CR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) The bound (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) remains valid with Kt,ε replaced by Kt (with ε “ 0), Kt,ε,0, Kt,ε etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We also have ż Rd Qtpx, yq “ ż Rd Qt,εpx, yqdy “ ż Rd Qt,ε,0px, yqdy ď Ce´dt, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) and 0 ď t ´ Kt,εpx, yq ď C ` etp|x ´ y| ` εq ˘2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) The estimates above can be proved rather directly from the definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A detailed proof of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) is provided in [17, Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The bound (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) follows directly from the definition of Qt given above (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) and the fact that |t´t1| is uniformy bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The upper bound in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) can be obtained by integrating (in time and space) the inequality 1 ´ Qtpz1, z2q ď Cret1|z1 ´ z2|s2 which follows directly from the Taylor expansion at second order of κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' There is an obvious conflict of notation between Kt introduced above and Kε introduced in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) and the same can be said about Xt and Mγ t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This should not cause any confusion since we keep using the letter ε for quantities related to the mollified field Xε and latin letters for quantities related to the martingale approximation Xt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Convergence results for the martingale approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' An intermediate step to prove Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 is to show that similar results hold for the mar- tingale approximation Mγ t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' These results present of course an interest in their own right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES11 The case of γ P PI{II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' When γ P PI{II, the martingale Mγ t pfq is bounded Lp for p P r1, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{|α|q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' As a consequence the limit lim tÑ8 Mγ t pfq “: Mγ 8pfq (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) exists almost surely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence holds in Lp and the limit is non-trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The martingale limit in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) is the same as the limit of Mγ ε appearing in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 (this is the reason why we use the same notation), we have lim tÑ8 Mγ t pfq “ lim εÑ0 Mγ ε pfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16) This observation is important, since it establishes that the limit in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) does not depend on the choice of the mollifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The case γ P P1 II{III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In order to state the convergence in law result for Mγ t , we need to introduce a normalization factor vpt, γq (analogous to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) for the mollified case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us set vpt, γq “ $ & % e |γ2|j 2 ` 1 2πt ˘1{4 e p|γ|2´dqt 2 ´ş Rd e|γ|2ℓpzqdz ¯1{2 , if |γ|2 ą d a Σd´1 ` 2t π ˘1{4 if |γ|2 “ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17) and define Mγ t pf, ωq :“ Re ` e´iωMγ t pfq ˘ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) The following analogue of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If X is an almost star-scale invariant field and γ P P1 II{III we have for any ρ, f P CcpRdq lim tÑ0 E „ eixX,ρy`i Mγ t pf,ωq vpt,γq \uf6be “ E „ eixX,ρy´ 1 2 M1pe|γ|2L|f|2q \uf6be .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) As a consequence we have the following convergence in law (in the sense of finite dimen- sional marginals) ˆ X, Mγ t vpt, γq ˙ tÑ8 ùñ pX, Mγq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CLT towards a Gaussian with random variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We conclude this section by introducing a technical results which is essential to prove the convergence of a sequence of variable towards a Gaussian with random intensity in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We provide the result and its proof in a reasonably high level of generality since it may find application in other contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Consider pFtqtě0 a filtration and pWnqně1 a sequence of real valued random variables in L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We introduce for each n ě 1 the martingale Wn,t :“ E rWn | Fts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) We assume that the martingale Wn,t admits a modification which is continuous in t for every n ě 1 We prove that Wn converges to to a Gaussian with random variance if the quadratic variation of pWn,tqtě0 satisfy a law of large number and a couple of additional technical assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The result generalizes a similar CLT established for a single mar- tingale process (see [9, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='50, Chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' VIII-Section 5c] or [16, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 12 HUBERT LACOIN Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us assume that and that there exists a non-negative valued random- variable Z which is such that the three following convergences in probability hold lim nÑ8 xWny8 v2pnq “ Z, @t ě 0 lim nÑ8 xWnyt v2pnq “ 0, and lim nÑ8 Wn,0 vpnq “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) Then Xn{vpnq converges in distribution towards a random Gaussian with variance given by Z, that is to say that for any F8 bounded measurable H we have lim nÑ8 E ” HeiξWn{vpnqı “ lim nÑ8 E „ He´ ξ2Z 2 \uf6be (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) This is equivalent to saying that for any F8 random variable Y we have the following convergence in law pY, Wnq ùñ pY, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ZNq where N is a standard Gaussian which is independent of Z and Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We believe that with adequate assumption on the size of the jumps, the result may extend to the case where pWn,tqtě0 is a c`ad-l`ag martingale, with the quadratic variation is replaced by the predictable bracket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Since we have no application in that setup, we restricted ourselves to the continuous case where the proof is technically simpler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In Section 6 we apply Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6 for a sequence of variables indexed by ε P p0, 1q (namely Mγ ε pf, ωq) in the limit when ε Ñ 0 rather than n ě 1 and n Ñ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' These setups are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Organization of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The remainder of the paper is organized as follows ‚ In Section 4 we prove all the statements concerning convergence in PI{II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 is devoted to the proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The more technical proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1, which uses Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 as in imput is displayed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ The statements concerning γ P P1 II{III, namely Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 and Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8, while relying on relatively simple ideas, require a certain amount of technical computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In Section 5 we prove Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5, in Section 6 Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ In Section 7, we present the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A significant amount of material is presented in appendices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ In Appendix A, we prove a couple of auxilliary results used in Section 5/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ In Appendix B, we present and prove an extension of our main results, that is, the convergence of Mγ ε p¨q as a distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' After identifying the right topology, the proof mostly boils down to repeating the computation made in Section 4 (for γ P PI{II) and Section 6 (for γ P P1 II{III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ In Appendix C, we explain how our results can be extended to the case of a (sufficiently regular) log-correlated Gaussian field defined on an arbitrary open domain D Ă Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ In Appendix D, we present a relatively short proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 for the sake of completeness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It the same as the one presented in [20, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15], except that we include a short proof of Lemma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 instead of relying on the branching random walk literature where more general results have been shown, albeit with much longer proofs (see for instance [8, 22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES13 A comment on notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Throughout the paper, we use the letter C for a generic positive constant when we need to compare two quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It may depend on some parameters (for instance on γ or on the kernel K) but never on the variable t or ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The value of C might change from one equation to the other withing the same proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We use C1 and C2 if we need several constants in the same display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of convergence results on for γ P PI{II In this section we prove Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The first one is easier, recall that due to the martingale property of Mγ t , it is sufficient to show that the sequence is bounded in Lp to prove convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This is performed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We rely on the Burkeholder-Davis-Gundy (BDG) inequality, compute the quadratic variation of the martingale and studying its moment of order p{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2, we adapt the same method to estimate the Lp norm of Mγ ε ´ Mγ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely the BDG inequality for the martingale pMγ t,ε ´ Mγ t qtě0, and show that the moment of order p{2 of its quadratic variation is uniformly small in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Recalling that ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{α ą 1, we are going to prove that Mγ t pfq is bounded in Lp for p P ´?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 8d{p3αq _ 1, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{α ¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) In the whole paper, when Mt is a complex valued continuous martingale, we use the notation xMyt to denote the the bracket between M and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It is the predictable process such that |Mt|2 ´ xMyt is a local martingale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Burkeholder-Davis-Gundy (BDG) inequality for Mγ t pfq, there exists a constant Cp such that for every t ą 0 E “ |Mγ t pfq|p‰ ď Cp ´ ErxMγpfqyp{2 t s ` E r|Mγ 0 pfq|ps ¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) We have E “ |Mγ 0 pfq|2‰ “ ż R2d e|γ|2K0px,yqfpxqfpyqdxdy ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) Since p ă 2 by assumption, Jensen’s inequality implies that E r|Mγ 0 pfq|ps ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Itˆo calculus, we obtain an explicit expression for the quadratic variation xMγpfqy8 “ |γ|2 ż 8 0 Atdt (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) where At :“ ż R2d fpxqfpyqQtpx, yqeγXtpxq`γXtpyq´ γ2 2 Ktpxq´ γ2 2 Ktpyqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) Note that At is real and positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' From (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2), we deduce that Mγ t pfq is bounded in Lp if E “ p ş8 0 Atdtqp{2‰ ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To bound At from above, we take the modulus of the integrand in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) and using the assumption that β “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ´ α (γ P PI{II) we obtain that At ď ż R2d |fpxqfpyq|Qtpx, yqeαpXtpxq`Xtpyqq` 2d´2 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dα 2 pKtpxq`Ktpyqqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) Then using the inequality ab ď a2 2 ` b2 2 with a “ |fpxq|eαXtpxq` 2d´2 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dα 2 Ktpxq and b “ |fpyq|eαXtpyq` 2d´2 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dα 2 Ktpyq 14 HUBERT LACOIN and symmetry in x and y, we have At ď ż R2d |fpxq|2Qtpx, yqe2αXtpxq`p2d´2 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dαqKtpxqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) We use (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) to integrate over y and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) to replace replace Ktpxq by t (at the cost of multiplicative constant) and we have At ď Cedt ż Rd |fpxq|2e2αpXtpxq´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dtqdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) Now, as α ą a d{2, we have by p{2 ă 1 by assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We can use thus the following inequality (valid for an arbitrary collection of positive real numbers paiqiPI and q P p0, 1q) ˜ÿ iPI ai ¸q ď ÿ iPI aq i , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) with q “ p{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the remainder of the paper, we simply say “by subadditivity” when using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) and Jensen’s inequality we have E «ˆż 8 0 Atdt ˙p{2ff ď ÿ ně0 E «ˆż n`1 n Atdt ˙p{2ff ď ÿ ně0 E «ˆż n`1 n ErAs | Fnsds ˙p{2ff .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) Averaging with respect to pXs ´ Xnq we obtain from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) ż n`1 n E rAs | Fns ď Cedn ż R2d |fpxq|2e2αpXnpxq´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dnqdx “: CBn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) As p ą ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 8d{3α by assumption, we can conclude using the estimate in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 below for the fractional moments of Bn (the assumption on p makes the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) summable in n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely, we deduce from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10),(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) that E ”`ş8 0 Atdt ˘p{2ı ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For α ą a d{2 and p ă ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{α we have E ” Bp{2 n ı ď Cn´ 3αp ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 8d plog nq6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) This result is a weaker version of [20, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We provide, for the commodity of the reader a self-contained of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 in Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We prove Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 in the setup where our probability space contains a martingale approximation pXtqtě0 of the field X with covariance 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely we show that Mγ ε pfq converges to the same limit as Mγ t pfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Working in an enlarged probability space entails by no mean a loss of generality since the validity of the statement “the sequence pMγ ε pfqqεPp0,1s is Cauchy in Lp” is entirely determined by the distribution of pXεpxqqxPRd,εPp0,1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given γ P PI{II and p P r1, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{αq we have lim εÑ0 sup tą0 E “ |pMγ t ´ Mγ t,εqpfq|p‰ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) As a consequence the following convergence holds in Lp lim εÑ0 Mγ ε pfq “ Mγ 8pfq (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES15 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us first show indicate how (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) follows from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We observe that E “ |pMγ t,ε ´ Mγ ε qpfq|2‰ “ ż 8 0 fpxqfpyq ´ e|γ|2Kεpx,yq ´ e|γ|2Kt,εpx,yq¯ dxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) Since limtÑ8 Kt,εpx, yq “ Kεpx, yq, using dominated convergence the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' tends to 0 when t Ñ 8 and thus limtÑ8 Mγ t,εpfq “ Mγ ε pfq in L2, and hence also in Lp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 we thus have the following convergence in Lp lim tÑ8pMγ t ´ Mγ t,εqpfq “ pMγ 8 ´ Mγ ε qpfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Taking the limit when ε to zero, we obtain that lim εÑ0 E r|pMγ 8 ´ Mγ ε qpfq|ps “ lim εÑ0 lim tÑ8 E “ |pMγ t ´ Mγ t,εqpfq|p‰ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16) and we conclude using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To prove (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13), we assume that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Then using the BDG inequality (we omit the dependence in f for ease of reading).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have for every t ě 0 Er|Mγ t ´ Mγ t,ε|ps ď CpErxMγ ´ Mγ ¨,εyp{2 8 ` |Mγ 0 ´ Mγ 0,ε|ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17) The reader can then check by an explicit calculation of the second moment that lim εÑ0 E ” |Mγ 0 pfq ´ Mγ 0,εpfq|pı ď lim εÑ0 E ” |Mγ 0 pfq ´ Mγ 0,εpfq|2ıp{2 “ 0 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) Hence in view of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18), to prove (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) we need to show that lim εÑ0 ErxMγ ´ Mγ ¨,εyp{2 8 s “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) Expanding the product, using Itˆo calculus (Re denotes the real part) we obtain xMγ ´ Mγ ¨,εy8 “ |γ|2 ż 8 0 ´ At ´ 2Re ´ Ap1q t,ε ¯ ` Ap2q t,ε ¯ dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) where, At is defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8), and recalling (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5), Ap1q t,ε and Ap2q t,ε are defined by Ap1q t,ε :“ ż R2d fpxqfpyqQt,ε,0px, yqeγXtpxq`γXt,εpyq´ γ2 2 Ktpxq´ γ2 2 Kt,εpyqdxdy, Ap2q t,ε :“ ż R2d fpxqfpyqQt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 2 Kt,εpxq´ γ2 2 Kt,εpyqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) We are going to reduce the proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) to that of two convergence statements concerning Apiq t,ε for i P t1, 2u (the first being valid for any fixed r ą 0) lim εÑ0 sup tPr0,rs E ” |At ´ Apiq t,ε| ı “ 0 for i P t1, 2u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) lim rÑ8 sup εPp0,1s E «ˆż 8 r |Apiq t,ε|dt ˙p{2ff “ 0 for i P t1, 2u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) Before proving (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) let us explain how (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) is deduced from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) is also valid for At (this can be extracted from the proof in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given δ ą 0, 16 HUBERT LACOIN using subadditivity (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9), and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) we can find rδ such that for every ε ą 0 E «ˆż 8 rδ ´ At ´ 2Re ` Ap1q t,ε ˘ ` Ap2q t,ε ¯ dt ˙p{2ff ď E «ˆż 8 rδ Atdt ˙p{2 ` ˆż 8 rδ 2|Ap1q t,ε |dt ˙p{2 ` ˆż 8 rδ Ap2q t,ε dt ˙p{2ff ď δ{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24) Now using first Jensen’s inequality and then (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) (recall that At is real valued) we can find εδ such that for every ε P p0, εδq E «ˆż rδ 0 ´ At ´ 2Re ` Ap1q t,ε ˘ ` Ap2q t,ε ¯ ds ˙p{2ff ď ˆż rδ 0 E ” At ´ 2Re ` Ap1q t,ε ˘ ` Ap2q t,ε ı ds ˙p{2 ď ˆż rδ 0 E ” 2|At ´ Ap1q t,ε | ` |Ap2q t,ε ´ At| ı ds ˙p{2 ď δ{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='25) Using subadditivity again we deduce from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='25) that if ε P p0, εδq we have E «ˆż rδ 0 ´ At ´ 2Re ` Ap1q t,ε ˘ ` Ap2q t,ε ¯ dt ˙p{2ff ď δ, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) which (recalling (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20)) concludes the proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us now prove (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The proof (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) follows from a rather pedestrian but rather cumbersome computation of the L2 norm of pAt ´ Apiq t,εq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The following lemma summarizes the key points of this computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Consider the following: ‚ Let pX, µq be a measured space and T be a set of indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ Let Zt,εp¨q, t P T , ε P p0, 1s be a collection of complex valued Gaussian processes defined on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set Gt,εpx, yq :“ ErZt,εpxqZt,εpyqs and Ht,εpx, yq :“ ErZt,εpxqZt,εpyqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='27) ‚ Let Zt be defined on the same probability space in such a way that pZt, Zt,εq is jointly Gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We let Gt and Ht be defined as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='27) and set Ht,ε,0px, yq :“ ErZt,εpxqZtpyqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ Let gt,ε and gt be deterministic functions X Ñ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We assume that: (i) The covariance functions are uniformly bounded, that is sup tPT εPp0,1s sup x,yPX max pHt,εpx, yq, Htpx, yq, Ht,ε,0px, yqq ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (ii) There exists a µ-integrable function h such that for every t P T and ε P p0, 1s @x P X, maxp|gt,εpxq|, |gtpxq|q ď hpxq (iii) That for every t P T , we have the following pointwise convergence lim εÑ0 gt,ε “ gt, and lim εÑ0 Ht,ε “ lim εÑ0 Ht,ε,0 “ Ht (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='28) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES17 Then setting Wt,ε :“ ż X gt,εpxqeZt,εpxq´ 1 2 Gt,εpxqµpdxq and Wt :“ ż X gtpxqeZtpxq´ 1 2Gtpx,xqµpdxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have lim εÑ0 sup tPT E “ |Wε ´ Wt,ε|2‰ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='29) Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The proof is actually much shorter than the statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have E “ |Wt,ε ´ Wt|2‰ “ ż X 2 ˆ gt,εpxqgt,εpyqeHt,εpx,yq ´ 2Re ´ gt,εpxqgtpyqeHt,ε,0px,yq¯ ` gtpxqgtpyqeHtpx,yq ˙ µpdxqµpdyq (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='30) and using our assumptions we can apply dominated convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ Proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We consider the case i “ 2 but the other one is identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set X “ R2d, µ is Lebesgue measure, T “ r0, rs, and Zt,εpx, yq “ γXt,εpxq ` γXt,εpyq, Ztpx, yq “ γXtpxq ` γXtpyq, gt,εpx, yq “ Qt,εpx, yqfpxqfpyqe|γ|2Kt,εpx,yq, gtpx, yq “ Qtpx, yqfpxqfpyqe|γ|2Ktpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Then the assumptions of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 are immediate to check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ We now provide the details for the proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) i “ 2 (the case i “ 1 is similar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us set n0pεq “ rlogp1{εqs and assume (without loss of generality) that r is an integer and is smaller than n0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using - as in the proof of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 - subadditivity (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) and Jensen’s inequality we obtain E «ˆż 8 r |Ap2q t,ε |ds ˙p{2ff ď n0 ÿ n“r E «ˆż n`1 n |Ap2q t,ε |dt ˙p{2ff ď n0´1 ÿ n“r E «ˆż n`1 n E ” |Ap2q t,ε | | Fn ı dt ˙p{2ff ` E «ˆż 8 n0 E ” |Ap2q t,ε | | Fn0 ı dt ˙p{2ff .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='31) Proceeding as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11), we obtain that if t P rn, n ` 1q, n P �r, n0 ´ 1�, or t ě n0, n “ n0, we have (using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 to replace the covariance Kn,εpxq by n) E ” |Ap2q t,ε | | Fn ı ď C ż R2d |fpxq|2Qs,εpx, yqe2αpXn,εpxq´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dnq`2dndxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='32) Using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) to integrate over y and setting Bp2q n,ε :“ ż Rd |fpxq|2e2αpXn,εpxq´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dnq`dndx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='33) we obtain that E «ˆż 8 r |Ap2q t,ε |ds ˙p{2ff ď C n0 ÿ n“r E ” pBp2q n,εqp{2ı .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='34) 18 HUBERT LACOIN Using Jensen’s inequality for the probability θεpy ´ xqdy, we can replace the mollification acting on Xn in the exponential by one acting of |f|2, we have e2αXn,εpxq ď ż Rd θεpx ´ yqe2αXnpyqdy which after multiplying by |fpxq|2 and integrating with respect to x implies that Bp2q n,ε ď ż D ` |f|2 ˚ θε ˘ pyqe2αpXnpyq´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dnq`dndy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='35) Since |f|2˚θε ď }f}2 81t|x|ďR`1u if f is supported in Bp0, Rq, we can conclude using Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1, that E ” pBp2q n,εqp{2ı ď Cn´ 3αp ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 8d for a constant which does not depend on ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Recalling that p ą ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 8d{3α (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1)) we obtain combining(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='32), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='34) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='35) that E «ˆż 8 r |Ap2q t,ε |ds ˙p{2ff ď Cr1´ 3αp 2 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='36) This concludes the proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23), and thus of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Reduction to a statement concerning the total variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using [16, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5] (which is a simpler version of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6 displayed above) we can reduce the proof of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) to the following convergence statement about the quadratic variation of the martingale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have the following lim tÑ8 vpt, γq´2xMγpf, ωqyt “ M1pe|γ|2L|f|2q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 from Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We simply apply [16, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5] to the martingale Mγ t pf, ωq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ Setting, for notational simplicity Wt :“ Mγ t pfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Recall that for a complex value mar- tingale such as Wt we use the notation xWyt for the bracket between W and its conjugate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using bilinearity of the martingale brackets we have xMγpf, ωqyt “ 1 2 ` xWyt ` Repe´2iωxW, Wytq ˘ (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) Hence to prove (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1), it is sufficient to prove that following convergences hold in probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' lim tÑ8 vpt, γq´2xWyt “ 2M1pe|γ|2L|f|2q, lim tÑ8 vpt, γq´2xW, Wyt “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) The expression for the bracket of Wt can be obtained by using Itˆo calculus (recall (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4)) More precisely we have xWyt “ |γ|2 ż t 0 Asds and xW, Wyt “ γ2 ż t 0 Bsds, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES19 where At is defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) and Bt :“ ż R2d fpxqfpyqQtpx, yqeγpXtpxq`Xtpyqq´ γ2 2 pKtpxq`Ktpyqqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) Now using (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) our first idea is to deduce (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) from a convergence statement concerning At and Bt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A really important point here is that while At, properly rescaled, converges to M1pe|γ|2Lfq in probability, this type of convergence is not sufficient to say something about the integral şt 0 Asds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A convenient framework to work with integrals is L1 conver- gence, but the issue we encounter is that At certainly does not converge in L1 (we have E ” |M1pe|γ|2Lfq| ı “ 8 when f is non trivial).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To bypass this problem, restrict ourselves to likely family of event and prove L1 convergence for the restriction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Recalling the definition of X (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4), given q ě 0 and R ą 0, t ě 0 and x P Rd we introduce the events At,qpxq :“ " max sPr0,tspXspxq ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dsq ă q , Aq,R :“ # sup sě0,|x|ďR pXspxq ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dtq ă q + “ č xPBp0,Rq tě0 At,qpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) A very important fact, which is a direct consequence of [4, Proposition 19] (see also [17, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4] for a concise proof).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have for any fixed R ą 0 lim qÑ8 P rAq,Rs “ 1 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) We introduce (we drop the dependence in γ in most displays to make them easier to read) φptq “ φpt, γq :“ d 2 πpt _ 1qe|γ2|j ˆż Rd Qtp0, zqe|γ2|Ktp0,zqdz ˙ , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) which plays the role of a rescaling function for At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Our main technical result in this section is the proof that At{φptq converges in L1 towards M1pe|γ|2L|f|2q after restriction to the event Aq,R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The following convergences hold for any q ě 0 and any R such that Supppfq Ă Bp0, Rq lim tÑ8 E ” |At{φptq ´ M1pe|γ|2L|f|2q|1Aq,R ı “ 0, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) lim tÑ8 E “ |Bt{φptq| 1Aq,R ‰ “ 0, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) and the above quantities are finite for every t ě 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To show that Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 implies the convergence stated in Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1, we need to ensure that the rescaling by φptq matches that proposed for xWyt (which is vpt, γq2) after integrating with respect to time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This is the purpose of the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have for any |γ| ě d lim tÑ8 |γ|2 şt 0 φpsqds 2vpt, γq2 “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) 20 HUBERT LACOIN The proof of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4 is presented in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that the goal of the lemma is only to obtain a more presentable expression for vpt, γq since without it, we can still prove that Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 and hence Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 are valid with v replaced by vpt, γq :“ |γ| b p şt 0 φpsqdsq{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' As we have seen, it is sufficient to prove (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We provide the details concerning the convergence of xWyt (the first line in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3)) but that of xW, Wyt can be obtained exactly in the same manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) and Jensen’s inequality we have E «ˇˇˇˇˇ xWyt |γ|2 şt 0 φpsqds ´ M1pe|γ|2L|f|2q ˇˇˇˇˇ 1Aq,R ff ď şt 0 φpsqE ”ˇˇˇ As φpsq ´ M1pe|γ|2L|f|2q ˇˇˇ 1Aq,R ı ds şt 0 φpsqds .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) Observing that ş8 0 φpsqds “ 8, the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) is simply a weighted Cesaro mean and thus we deduce from Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 and more precisely from (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) that lim tÑ8 E «ˇˇˇˇˇ xWyt |γ|2 şt 0 φpsqds ´ M1pe|γ|2L|f|2q ˇˇˇˇˇ 1Aq,R ff “ 0 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) Since this holds for every q ą 0 we obtain that the following convergence holds in proba- bility (the replacement of |γ|2 şt 0 φpsqds by 2vpt, γq2 simply comes from Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) that lim tÑ0 ˇˇˇˇ xWyt 2vpt, γq2 ´ M1pe|γ|2L|f|2q ˇˇˇˇ 1Ť qě1 Aq,R “ 0 which, since the event in the indicator has probability one (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) is the desired conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Restricted convergence in L2 for the critical GMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Before starting the proof of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3, we recall a result which play a key role in the proof, the L2 convergence of M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d t pgq towards M1pgq when considering the restriction to the event Aq,R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This also implies convergence in L1 which is what we require for the proof of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The result can be deduced from the L2 convergence of the truncated version of M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d t pgq which is proved in [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have for any g in CcpRdq such that Supppgq Ă Bp0, Rq and any q ą 0 lim tÑ8 E » – ˇˇˇˇˇ c πt 2 M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d t pgq ´ M1pgq ˇˇˇˇˇ 2 1Aq,R fi fl “ 0, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) and E “ |M1pgq|21Aq,R ‰ ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The fact that E “ |M1pgq|21Aq,R ‰ ă 8 is a simple consequence of the convergence since for any fixed t, Er|M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d t pgq|2s ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set (recall (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6)) M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d,pqq t pgq :“ ż gpxqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXtpxq´dKtpxq1At,qpxqdx, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES21 From [17, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1], there exists an L2 variable D pqq 8 pgq such that lim tÑ8 E » – ˇˇˇˇˇ c πt 2 M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d,pqq t pgq ´ D pqq 8 pgq ˇˇˇˇˇ 2fi fl “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16) It satisfies D pqq 8 pgq “ M1pgq on the event Aq,R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely [17, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1] is only stated in the special case where g is an indicator function (to keep notation light) but the proof for g P CcpRdq is identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' On the event Aq,R we have M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d,pqq t pgq “ M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d t pgq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Hence lim sup tÑ8 E » – ˇˇˇˇˇ c πt 2 M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d t pgq ´ M1pgq ˇˇˇˇˇ 2 1Aq,R fi fl “ lim sup tÑ8 E » – ˇˇˇˇˇ c πt 2 M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d,pqq t pfq ´ D pqq 8 pgq ˇˇˇˇˇ 2 1Aq,R fi fl “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17) where the last equality follows from (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Organizing the proof of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The two convergences rely on similar ideas, we focus on (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) which is the more delicate of the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The main idea is that since the integrand in the definition of At At :“ ż R2d fpxqfpyqQtpx, yqeγXtpxq`γXtpyq´ γ2 2 Ktpxq´ γ2 2 Ktpyqdxdy, vanishes when |x ´ y| ě e´t (due to the presence of the multiplicative Qtpx, yq), the value of the integral should not be much affected much if one changes fpyq, Xtpyq and Ktpyq by fpxq, Xtpxq and Ktpxq in the expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The quantity obtained after this replacement is, up to a multiplicative factor, of the form M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d t pgq (recall that γ ` γ “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d) for some function g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Hence we should be able to conclude the proof of the convergence statement using Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' While this idea is relatively simple, it requires several steps to be implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set K˚ t px, yq :“ K0pxq ` Ktpx, yq and r “ rptq :“ t ´ log log t (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) (we are assuming that t ą e so that 0 ď r ď t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We introduce the quantity rAt which will appear after all our “replacement” steps have been performed, it is defined by rAt :“ ż R2d Qtpx, yqe|γ|2K˚ t px,yq|fpxq|2e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxqdxdy “ ˆż Rd Qtp0, zqe|γ|2Ktp0,zqdz ˙ ż Rd e|γ|2K0ptq|fpxq|2e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxqdx “ φptq c πt 2 ż Rd e|γ|2Lpxq|fpxq|2e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxqdx “ φptq c πt 2 M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d r pe|γ|2L|f|2q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) As a direct consequence of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 (since r “ t ´ optq the presence of ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t instead of ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='r does not affect the convergence), we have lim tÑ8 E «ˇˇˇˇˇ rAt φptq ´ M1pe|γ|2L|f|2q ˇˇˇˇˇ 1Aq,R ff “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) 22 HUBERT LACOIN With this observation the proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) reduces to showing that lim tÑ0 1 φptqE ” |At ´ rAt|1Aq,R ı “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) This requires some care but before going in the depth of the proof, let us explain the heuristic behind (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that rAt is obtained from At with two simple modifications: ‚ We have replaced fpxqfpyq by |fpxq|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ‚ In the exponential, we have replaced γXtpxq`γXtpyq by ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq “ pγ`γqXrpxq and ´ γ2 2 Ktpxq ´ γ2 2 Ktpyq by ´dKrpxq ` |γ|2K˚ t px, yq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The first modification is rather straightfoward, we are integrating close to the diagonal so that fpyq is close to fpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the second modification, the idea is that replacing Xtpyq with Xtpxq (and t with r) should not yield big modifications provided that we change the normalization to keep the expectation of the exponential unchanged (or almost so).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In our case we have E „ eγXtpxq`γXtpyq´ γ2 2 Ktpxq´ γ2 2 Ktpyq \uf6be “ e|γ|2Ktpx,yq, E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxq`|γ|2K˚ t px,yqı “ e|γ|2K˚ t px,yq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) and, on the considered domain of integration, K˚ t px, yq and Ktpx, yq are very close since |x ´ y| ď e´t when Qtpx, yq ‰ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) requires three distinct steps which are detailed in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Step 1: Changing the deterministic prefactor in the integrand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The integrand of At and rAt have different expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Our first step aims to fix this by replacing fpyq by fpxq in At and doing a small modification in the exponential factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set Ap1q t :“ ż R2d |fpxq|2Qtpx, yqeγXtpxq`γXtpyq` γ2 2 Ktpxq` γ2 2 Ktpyq`|γ|2pK0pxq´K0px,yqqdxdy (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) We are going to prove that lim tÑ8 φptq´1E ” |At ´ Ap1q t |1Aq,R ı “ 0 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24) Since f and K0 are uniformly continuous on the support of f and Supppfq Ă Bp0, Rq, there exists a positive function δ with limtÑ8 δptq “ 0, such that for |x ´ y| ď e´t setting Fpx, yq :“ fpxqfpyq ´ |fpxq|2e|γ|2pK0pxq´K0px,yqq we have |Fpx, yq| ď δptq1Bp0,Rqpxq1Bp0,Rqpyq (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='25) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES23 Hence we obtain (since α “ a d{2, we have Repγ2q “ d ´ |γ|2) |At ´ Ap1q t | “ ˇˇˇˇ ż R2d Qtpx, yqFpx, yqeγXtpxq`γXtpyq` γ2 2 Ktpxq` γ2 2 Ktpyqdxdy ˇˇˇˇ ď ż R2d Qtpx, yq|Fpx, yq|e b d 2 pXtpxq`Xtpyqq`p|γ|2´dq Ktpxq`Ktpyq 2 dxdy ď δptq ż Bp0,Rq2 Qtpx, yqe b d 2 pXtpxq`Xtpyqq`p|γ|2´dq Ktpxq`Ktpyq 2 dxdy ď δptq ż Bp0,Rq2 Qtpx, yqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXtpxq`p|γ|2´dqKtpxqdxdy (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) where the first inequality is simply obtained by taking the modulus of the integrand and in the third one we simply used ZpxqZpyq ď 1 2pZpxq2 ` Zpyq2q with Zpxq “ e b d 2 Xtpxq`p|γ|2´dq Ktpxq 2 and then symmetry in x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Then we observe that (λ denotes the Lebesgue measure) since At,qpxq Ă Aq,R we have E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXtpxq´dKtpxq1Aq,R ı ď E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXpxq´dKtpxq1At,qpxq ı “ Pr@s P r0, ts, Bs ď qs ď c 2 πtq (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='27) where in the last line, we used Cameron-Martin formula (see Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 in the ap- pendix) and the fact that pXtpxqqtě0 is a standard Brownian Motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The last inequality is simply Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Combining (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='27) and the fact that K0 is bounded, we have E ” |At ´ Ap1q t |1Aq,R ı ď Cδptq ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t ż Bp0,Rq2 Qtpx, yqe|γ|2Ktpxqdxdy ď C1δptqφptq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='28) □ Step 2: Taking conditional expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Recalling the definition of rptq (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) we set Ap2q t :“ ErAp1q t | Frs (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='29) For this step of the proof (and only this step), we are going to assume that K0 ” 0 (and hence X0 ” 0q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Treating the case where X0 is a non-trivial field does not present any extra difficulty besides the challenge of making the equations fit within the margins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This assumption allows to replace Ktpxq and Ktpyq by t, and we get the following simplification for the expression of Ap1q t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ap1q t :“ ż R2d |fpxq|2Qtpx, yqeγXtpxq`γXtpyq`p|γ|2´dqtdxdy (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='30) Then we have Ap2q t “ ż R2d |fpxq|2Qtpx, yqeγXrpxq`γXrpyq`p|γ|2´dqr`|γ|2Krr,tspx,yqdxdy, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='31) 24 HUBERT LACOIN where Krr,ts “ Kt ´ Kr (in the remainder of the paper, we use this convention for other quantities indexed by t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We are going to show that lim tÑ8 φptq´1E ” |Ap1q t ´ Ap2q t |1Aq,R ı “ 0 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='32) Recalling (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) we define A p1q t :“ ż R2d |fpxq|2Qtpx, yqeγXtpxq`γXtpyq`p|γ|2´dqt1Ar,qpxqdxdy, A p2q t :“ ż R2d |fpxq|2Qtpx, yqeγXrpxq`γXrpyq`p|γ|2´dqr`|γ|2Krr,tspx,yq1Ar,qpxqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='33) Since on Aq,R, Apiq t and A piq t coincide, We have E ” pAp2q t ´ Ap1q t q21Aq,R ı ď E ” pA p2q t ´ A p1q t q2ı (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='34) and thus we can prove that (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='32) holds by showing that lim tÑ8 φptq´2E ” pA p2q t ´ A p1q t q2ı “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='35) To bound ErpA p2q t ´ A p1q t q2s we expand the square, making it an integral on R4d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set ξpx, yq :“ |fpxq|2Qtpx, yqe´p|γ|2´dqt ´ eγXspxq`γXspyq ´ E ” eγXspxq`γXspyqq | Fr ı¯ 1Ar,qpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have E ” pA p2q t ´ A p1q t q2ı “ ż R4d E “ ξpx1, y1qξpx2, y2q ‰ dx1dy1dx2dy2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='36) As the range of correlation of the increment field Xrr,ts :“ Xt ´ Xr is smaller that e´r have, whenever |x1 ´ x2| ě 3e´r E “ ξpx1, y1qξpx2, y2q | Fr ‰ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='37) Hence we only need to integrate the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='36) on the set |x1 ´ x2| ď 3e´r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In that case we use E “ ξpx1, y1qξpx2, y2q ‰ ď E “ |ξpx1, y1q|2‰1{2 E “ |ξpx2, y2q|2‰1{2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='38) and E “ |ξpx, yq|2‰ “ |fpxq|4Qtpx, yq2e2p|γ|2´dqtE ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dpXtpxq`Xtpyqq1Ar,qpxq ı (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='39) Using Cameron-Martin formula and the fact that pXtpxqqtě0 is a standard Brownian motion we have E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dpXtpxq`Xtpyqq1Ar,qpxq ı “ e2dpt`Ktpx,yqqP r@u P r0, rs, Bu ď q ´ Kupx, yqs .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) (and then Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) we obtain for a constant q1 ą q e´4dtE ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dpXtpxq`Xtpyqq1Aq,rpxq ı ď P ” @u P r0, rs, Bu ď q1 ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2du ı ď Cr´3{2e´dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Altogether , setting hpx, y, tq :“ 1t|x1´x2|ď3e´ru|fpx1qfpx2q|2Qtpx1, y1qQtpx2, y2q (recall that r is a function of t) we obtain that for t sufficiently large E ” pA p2q t ´ A p1q t q2ı ď Cr´3{2e2p|γ|2`dqt´dr ż R4d hpx, y, tqdxdy ď C1t´3{2e2|γ|2t´2dr ď C2t´1{2e2dpt´rqφptq2 ď t´1{4φptq2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='40) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES25 To get the second inequality, simply observe that h is smaller than a constant times the indicator of the set t|x1| ď R, |x2 ´ x1| ď 3e´r, |yi ´ xi| ď e´t, i “ 1, 2u, which has volume of order e´dpr`2tq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The third inequality is a consequence of (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) (see the computation in the Appendix, while the last inequality follows from the the fact that with our choice of parameters (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) we have t ´ r “ oplog tq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Step 3: Comparing Ap2q t and rAt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Finally, we show that lim tÑ8 φptq´1E ” |Ap2q t ´ rAt|1Aq,R ı “ 0 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='41) which together with (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24)-(5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='32), concludes the proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We introduce another smaller time parameter, namely r “ t{2 and define p Xpx, yq “ Xrpxq ` Xrr,rspyq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We want to replace Xrpyq by Xrpxq in the exponential with an intermediate steps, so we set Z1pxq :“ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq, Z2px, yq :“ γXrpxq ` γ p Xpx, yq, Z3px, yq :“ γXrpxq ` γXrpyq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='42) The reader can check that we have rAt :“ ż R2d |fpxq|2Qtpx, yqe|γ|2K˚ t px,yqeZ1pxq´ 1 2ErZ1pxqsdxdy, Ap2q t :“ ż R2d |fpxq|2Qtpx, yqe|γ|2K˚ t px,yqeZ3px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='yq´ 1 2ErZ3px,yqsdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='43) In order to prove (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='41) taking absolute value inside the integrand, we have E ” |Ap2q t ´ rAt|1Aq,R ı ď max |x|ďR |x´y|ďe´t E „ˇˇˇeZ1pxq´ ErZ2 1 s 2 ´ eZ3´ ErZ2 3 s 2 ˇˇˇ1Aq,R \uf6be ˆ ż R2d |fpxq|2Qtpx, yqe|γ|2K˚ t px,yqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='44) Since the integral is of order ep|γ|2´dqt (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12)), which is the same order as φptq ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10)), the estimate (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='41) boilds down to proving lim tÑ8 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t max |x|ďR |x´y|ďe´t E „ˇˇˇeZ1pxq´ ErZ2 1 s 2 ´ eZ3´ ErZ2 3 s 2 ˇˇˇ1Aq,R \uf6be “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='45) To prove (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='45) we start with the decomposition E „ˇˇˇeZ1pxq´ ErZ2 1 s 2 ´ eZ3´ ErZ2 3 s 2 ˇˇˇ1Aq,R \uf6be ď E „ˇˇˇeZ1´ ErZ2 1 s 2 ´ eZ2´ ErZ2s 2 ˇˇˇ1Ar,qpxq \uf6be ` E „ˇˇˇeZ3´ ErZ2 3 s 2 ´ eZ2 2´ ErZ2 2 s 2 ˇˇˇ \uf6be (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='46) 26 HUBERT LACOIN (this is just the triangle inequality and replacing Aq,R with a larger event Ar,qpxq) and show that each term is opt´1{2q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We start with the second one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' From Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3, we have E „ eZ3´ ErZ2 3 s 2 ´ eZ2 2´ ErZ2 2 s 2 | \uf6be ď C a Er|Z3 ´ Z2|2s “ C|γ| a ErpXrpxq ´ Xrpyqq2s ď C1e´ct, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='47) where we have used that ErpXrpxq ´ Xrpyqq2s “ 2pr ´ Krpx, yqq ` pK0pxq ` K0pyq ´ 2K0px, yqq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The second part of the sum is smaller than |x ´ y|c since K0 is H¨older continuous and the first part is smaller than |x ´ y|2e2r (from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14)), both are exponentially small in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the first term in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='46) we factorize the part that is Fr measureable and use independence to obtain E „ |eZ1´ ErZ2 1 s 2 ´ eZ2´ ErZ2s 2 |1Aq,rpxq \uf6be “ E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxq1Aq,rpxq ı E „ |eZ1 1´ ErpZ1 1q2s 2 ´ eZ1 2´ ErpZ1q2 2s 2 | \uf6be , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='48) where Z1 i “ Zi ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Cameron-Martin formula and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2, we have E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxq1Ar,qpxq ı “ P r@s P r0, rs, Bs ď qs ď c 2 rπq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='49) The factor r´1{2 is sufficient to cancel the ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='45) and we just have to show that the second factor in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='48) is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' From Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 we have E „ |eZ1 1´ ErpZ1 1q2s 2 ´ eZ1 2´ ErpZ1 2q2s 2 | \uf6be ď b E r|Z1 1 ´ Z1 2|2s “ |γ| b E “ |Xrr,rspxq ´ Xrr,rspyq|2‰ ď Cer|x ´ y| ď Cer´t, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='50) where the penultimate inequality can be deduced from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The combination of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='47)- (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='49) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='50) concludes the proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ Bonus step: the case of Bt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To conclude let us sketch rapidly the proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We can repeat the argument of step 2 to show that lim tÑ8 φptq´2Er|Bt ´ ErBt | Frs|2s “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='51) Then it is rather direct to check that lim tÑ8 φptq´1E “ |ErBt | Frs|1Aq,R ‰ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='52) More precisely we have ErBt | Frs “ ż R2d fpxqfpyqQtpx, yqeγpXrpxq`Xrpyqq` γ2 2 p2Krr,tspx,yq´Krpxq´Krpyqqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES27 Taking the absolute value of the integrand, using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) to evaluate Kt and Krr,ts, then the inequality ab ď pa2 ` b2q{2 and symmetry, and finally (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) |ErBt | Frs| ď Cep|γ2|´dqp2r´tq ż R2d |fpxqfpyq|Qtpx, yqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' d{2pXrpxq`Xrpyqqdxdy ď Cep|γ2|´dqp2r´tq ż R2d |fpxq|2Qtpx, yqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxqdxdy ď C1ep|γ2|´dqp2r´tq´dt ż R2d |fpxq|2e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxqdx (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='53) Hence we have E “ |ErBt | Frs|1Aq,R ‰ ď ep|γ2|´dqp2r´tq´dt ż R2d |fpxq|2E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq1Ar,qpxq ı dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='54) Using Cameron Martin formula, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 (recall that r „ t) we obtain that E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq1Ar,qpxq ı ď Ct´1{2edr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='55) Overall using (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) we have φptq´1E “ |ErBt | Frs|1Aq,R ‰ ď Ce´|γ2|pt´rq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Organization of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Like for the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1, we assume that our probability space contains a martingale approximation sequence pXtqtě0 of the field X, with covariance given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the same reason as the one exposed at the beginning of Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 this entails no loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The main idea is to apply Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6 (for the filtration corresponding to pXtq) to the family Mγ ε pf, ωq with rate vpε, θ, γq and with the variable Z being equal to M1pe|γ|2L|f|2q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Hence need to check that the martingale Mγ t,εpf, ωq :“ E rMγ ε pf, ωq | Fts satisfy all the requirements in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Setting W pεq t :“ Mγ t,ε (recall (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7)), and using the bilinearity of the martingale bracket like in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) we obtain xMγ ¨,εpf, ωqyt “ 1 2 ´ xW pεqyt ` Repe´2iωxW pεq, W pεqytq ¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) The requirements concerning the quadratic variation of Mγ t,εpf, ωq can be obtained as consequences of the following, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The following convergences hold lim εÑ0 E «ˇˇˇˇˇ xW pεqy8 2vpε, θ, γq2 ´ M1pe|γ|2L|f|2q ˇˇˇˇˇ 1Aq,R ff “ 0, lim εÑ0 E «ˇˇˇˇˇ xW pεq, W pεqy8 vpε, θ, γq2 ˇˇˇˇˇ 1Aq,R ff “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) Furthermore we have for any fixed t we have sup εPp0,1q ErxW pεqyts ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 is proved in the next subsection, let us first show how our main results can be deduced from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 28 HUBERT LACOIN Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We must check that the three requirements in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) are satis- fied since the result follows then from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given that limεÑ0 vpε, θ, γq “ 8, it is sufficient for the second and third requirements to show that that the sequences pMγ 0,εpf, ωqqεPp0,1q, and pxMγ ¨,εpf, ωqytqεPp0,1q (for a fixed t) are tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The sequences are in fact uniformly bounded in L1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have sup εPp0,1q Er|Mγ 0,εpf, ωq|s ď sup εPp0,1q Er|Mγ 0,εpfq|s ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) Indeed taking the absolute value of the integrand, we have Er|Mγ 0,εpfq|s ď ż Rd E „ fpxqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' d{2X0,εpxq` β2´pd{2q 2 K0,εpxq \uf6be dx “ ż Rd fpxqeβ2K0,εpxqdx, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) and the uniform bound follows from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' From (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) we have xMγ ¨,εpf, ωqyt ď xW pεqyt and thus the uniform boundedness in L1 is consequence of (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us now turn to the first and main requirement in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergences in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) imply the following convergence in probability lim εÑ0 xW pεqy8 2vpε, θ, γq2 1Ť qě1 Aq,R “ M1pe|γ|2L|f|2q, lim εÑ0 xW pεq, W pεqy8 vpε, θ, γq2 1Ť qě1 Aq,R “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) Using Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1), we conclude that lim εÑ0 vpε, θ, γq´2xMγ ¨,εpf, ωqy8 “ M1pe|γ|2L|f|2q in probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ As another preliminary step to our proof, we reduce the convergence statement in Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 to a convergence of the derivative of the martingale brackets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Itˆo calculus we obtain that for T P r0, 8s, xW pεqyT “ ż T 0 At,εdt and xW pεqyT “ ż T 0 Bt,εdt where At,ε :“ ż R2d fpxqfpyqQt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 2 Kt,εpxq´ γ2 2 Kt,εpyqdxdy, Bt,ε :“ ż R2d fpxqfpyqQt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 2 pKt,εpxq`Kt,εpyqqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) Similarly to what has been done in Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3, we are going to show that, with ap- propriate renormalizations and restrictions, At,ε and Bt,ε converge in L1 to M1pe|γ|2L|f|2q and 0 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To this end we introduce a couple of parameters (recall (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5)) tpt, εq :“ t ^ logp1{εq φpt, εq :“ d 2 πpt _ 1qe|γ|2j ˆż Rd e|γ|2Kt,εp0,zqQt,εp0, zqdz ˙ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) The quantity r will on Our aim is to prove the following CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES29 Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' lim εÑ0 tÑ8 E „ˇˇˇˇ At,ε φpt, εq ´ M1pe|γ|2L|f|2q ˇˇˇˇ 1Aq,R \uf6be “ 0, lim εÑ0 tÑ8 E „ˇˇˇˇ Bt,ε φpt, εq ˇˇˇˇ 1Aq,R \uf6be “ 0, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) and for any T ă 8 sup tPr0,Ts εPp0,1q E r|At,ε|s ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us underline that lim εÑ0 tÑ8 Fpt, εq “ 0 means that that there exists t0pδq and ε0pδq such that |Fpt, εq| ď δ when t ě t0 AND ε P p0, ε0q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This is a stronger statement than both limεÑ0 limtÑ8 Fpt, εq “ 0 or limtÑ8 limεÑ0 Fpt, εq “ 0 Clearly (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) implies (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To deduce (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) from (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9), we need to check that renormal- izing factor 2vpε, θ, γq2 corresponds to the integral of φpt, εq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This is the content of the following lemma whose proof is presented in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have for any |γ| ě d lim εÑ0 |γ|2 ş8 0 φpt, εqdt 2vpε, θ, γq2 “ 1 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) We can now complete the proof of Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 using Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 Proof of Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' From Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4 it is sufficient to prove the convergence of E «ˇˇˇˇˇ xW pεqy8 ş8 0 |γ|2φpt, εq ´ M1pe|γ|2L|f|2q ˇˇˇˇˇ 1Aq,R ff ď 1 ş8 0 φpt, εqdt ż 8 0 φpt, εqE „ˇˇˇˇ At,ε φpt, εq ´ M1pe|γ|2L|f|2q ˇˇˇˇ 1Aq,R \uf6be dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) Let us fix δ ą 0, and let T and ε0 be such that for all t ą T and ε ă ε0 we have E „ˇˇˇˇ At,ε φpt, εq ´ M1pe|γ|2L|f|2q ˇˇˇˇ 1Aq,R \uf6be ď δ 2 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) In the integral we can distinguish the contribution from r0, Ts from the rest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have from (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) and the fact that φpt, εq is bounded from below sup tPr0,Ts εPp0,ε0q E „ˇˇˇˇ At,ε φpt, εq ´ M1pe|γ|2L|f|2q ˇˇˇˇ 1Aq,R \uf6be ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) As a consequence, since ş8 0 φpt, εqdt diverges when ε Ñ 0, taking ε1 sufficiently small we have forall ε P p0, ε1q 1 ş8 0 φpt, εq ż T 0 φpt, εqE „ At,ε φpt, εq ´ M1pe|γ|2L|f|2q \uf6be dt ď δ 2, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) 30 HUBERT LACOIN which implies that for ε ď ε0 ^ ε1 we have E «ˇˇˇˇˇ xW pεqy8 ş8 0 φpt, εqdt ´ M1pe|γ|2L|f|2q ˇˇˇˇˇ 1Aq,R ff ď δ (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16) and thus conclude the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us start with the proof of (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Noting that At,ε is positive, we have E rAt,εs “ ż R2d fpxqfpyqQt,εpx, yqe|γ|2Kt,εpx,yqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17) We can just use (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) and bound Qt,εpx, yq by 1 and Kt,εpx, yq by T `C to conclude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the proof of the convergence of At,ε we proceed exactly as for the proof of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We assume that tpt, εq ą e (recall (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8)) and set r “ rpt, εq :“ t ´ log log t, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) Setting K˚ t,εpx, yq :“ K0pxq ` Kt,εpx, yq, we define rAt,ε :“ ż R2d |fpxq|2Qt,εpx, yqe|γ|2K˚ t,εpx,yqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´2dKrpxqdxdy “ φpt, εqM ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d r pe|γ|2L|f|2q (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) Since lim εÑ0 tÑ8 rpt, εq “ 8, we obtain, as a direct consequence of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 that lim εÑ0 tÑ8 E «ˇˇˇˇˇ rAt,ε φpt, εq ´ M1pe|γ|2L|f|2q ˇˇˇˇˇ 1Aq,R ff “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) Our task is thus to prove that lim εÑ0 tÑ8 φpt, εq´1E ” | rAt,ε ´ At,ε|1Aq,R ı “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) Like for the proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) in the previous section, we proceed in three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Step 1: Changing the deterministic prefactor in the integrand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Set Ap1q t,ε :“ ż R2d |fpxq|2Qt,εpx, yqeγXt,εpxq`γXt,εpyq´ γ2 2 Kt,εpxq´ γ2 2 Kt,εpyq`|γ|2pK0pxq´K0,εpx,yqqdxdy Let us prove that lim εÑ0 tÑ8 φpt, εq´1E ” |Ap1q t,ε ´ At,ε|1Aq,R ı “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) Let As a direct consequence of the continuity of f and of K0, if one sets sup |x|,|y|ďR |x´y|ďet`2ε ˇˇˇfpxqfpyq ´ |fpxq|2e|γ|2pK0pxq´K0,εpx,yqqˇˇˇ “: δpε, tq, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES31 we have lim εÑ0 tÑ8 δpε, tq “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Since Qt,εpx, yq “ 0 when |x ´ y| ě et ` 2ε repeating the computation (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) and using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) we get |Ap1q t,ε ´ At,ε| ď δpε, tq ż Bp0,Rq2 Qt,εpx, yqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXt,εpxq`p|γ|2´dqKt,εpxqdxdy ď Ce´dtδpε, tq ż Bp0,Rq e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXt,εpxq`p|γ|2´dqKt,εpxqdx (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24) Using Cameron-Martin formula, we obtain (assuming |x|, |y| ď R and |x ´ y| ď et ` 2ε) for a constant q1 ą q E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXt,εpxq´dKt,εpxq1Aq,R ı ď E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXt,εpxq`p|γ|2´dqKt,εpxq1At,qpxq ı “ P ” @s P r0, ts, Bs ď ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dps ´ Ks,ε,0pxqq ` q ı ď Pp@s P r0, ts, Bs ď q1q ď Cpt _ 1q´1{2et|γ|2 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='25) where in the second inequality we have used (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) to estimate covariances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Hence, using (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) we deduce from (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24) that E ” |Ap1q t,ε ´ At,ε|1Aq,R ı ď Cδpε, tqt´1{2et|γ|2´dt ď C1δpε, tqφpt, εq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This concludes the proof of (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ Step 2: Taking conditional expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set Ap2q t,ε :“ E ” Ap1q t,ε | Fr ı (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) and we are going to prove lim εÑ0 tÑ8 φpt, εq´2E ” |Ap2q t,ε ´ Ap1q t,ε |21Aq,R ı “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='27) Like what we did in the previous section, we assume here that K0 ” 0 to simplify the writing (but this does not affect the proof).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In that case note that since Kt,εpxq “ Kt,εpyq “ Kt,εpxq, we can factorize the term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have (recall that Krr,ts,ε “ Kt,ε ´ Kr,ε) Ap2q t,ε :“ ż R2d |fpxq|2Qt,εpx, yqeγXr,εpxq`γXr,εpyq`p|γ2|´dqKr,εpxq`|γ|2Krr,ts,εpx,yqdxdy (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='28) Setting ζpx, yq :“ eγXt,εpxq`γXt,εpyq`p|γ2|´dqKt,εpxq, A p1q t,ε :“ ż R2d |fpxq|2Qt,εpx, yqζpx, yq1Ar,qpxqdxdy, A p2q t,ε :“ ż R2d |fpxq|2Qt,εpx, yqErζpx, yq |Frs1Ar,qpxqdxdy (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='29) we realize that E ” |Ap2q t,ε ´ Ap1q t,ε |21Aq,R ı ď E ” |A p2q t,ε ´ A p1q t,ε |2ı (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='30) Now we set ξt,εpx, yq :“ |fpxq|2Qt,εpx, yq pζpx, yq ´ Erζpx, yq |Frsq 1Ar,qpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='31) 32 HUBERT LACOIN We have E ” |A p2q t,ε ´ A p1q t,ε |2ı ď ż R4d E “ ξpx1, y1qξpx2, y2q ‰ dx1dx2dy1dy2 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='32) The range of the convariance of Xrr,ts,ε is smaller than e´r ` 2ε, and Qt,εpx, yq vanishes when |x ´ y| ě e´t ` 2ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' All of this implies that if if |x1 ´ x2| ě 2e´r (if ε is sufficiently small, then e´r is much larger than both ε and e´t cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8)) then E “ ξpx1, y1qξpx2, y2q | Fr ‰ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='33) When |x1 ´ x2| ď 2e´r we can use Cauchy-Schwarz to bound the covariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have E “ |ξpx, yq|2‰ ď |fpxq|4 pQt,εpx, yqq2 Er|ζpx, yq|21Ar,qpxqs (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='34) and from Cameron-Martin formula, we have, for |x ´ y| ď e´t ` 2ε Er|ζpx, yq|21Ar,qpxqs “ e2|γ|2Kt,εpxq`2dKt,εpx,yqP ´ @s P r0, rs, Bs ď ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dps ´ Ks,ε,0pxq ´ Ks,ε,0py, xqq ` q ¯ ď Cep|γ|2`dqtP ´ @s P r0, rs, Bs ď ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2ds ` q1¯ ď C1etp2|γ|2`dqr´3{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' where in the first inequality we used (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) which replace the Kt,ε and Ks,ε by t and s respectively at the cost of an additive constant and in the second inequality we used Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Altogether we obtain that E ” |A p2q t,ε ´ A p1q t,ε |2ı ď Cetp2|γ|2`dqr´3{2 ˆ ż R4d 1t|x1´x2|ď2e´ru|fpx1q|2|fpx2q|2Qt,εpx1, y1qQt,εpx2, y2qdxdy ď C1e2|γ|2t`dpt´rqr´3{2 ˆż Rd Qt,εp0, zqdz ˙2 ď C2edpt´rqr´1{2φpt, εq2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='35) We conclude the proof of (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='27) by observing (recall (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8)) that lim εÑ0 tÑ8 edpt´rqr´1{2 “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='36) □ Step 3: Final comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Finally to conclude we need to show that lim εÑ0 tÑ8 φpt, εq´2E ” |Ap2q t,ε ´ rAt,ε|21Aq,R ı “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='37) We set (recall that Xrs,ts,ε “ Xt,ε ´ Xs,ε´) Z1pxq :“ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq, Z2px, yq :“ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq ` γXrr,rs,εpxq ` γXrr,rs,εpyq, Z3px, yq :“ γXr,εpxq ` γXr,εpyq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='38) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES33 The reader can check (using (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) rather than (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='28) since the latter assumes K0 ” 0) that rAt,ε :“ ż R2d |fpxq|2Qt,εpx, yqe|γ|2K˚ t,εpx,yqeZ1pxq´ 1 2 ErZ1pxqsdxdy, Ap2q t,ε :“ ż R2d |fpxq|2Qt,εpx, yqe|γ|2K˚ t,εpx,yqeZ3px,yq´ 1 2 ErZ3px,yqsdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='39) In order to prove (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='37) taking absolute value inside the integrand using Jensen’s inequality, we just have to obtain a uniform bound on the integrand, that is, to show that lim tÑ8 εÑ0 t1{2 max |x|ďR |x´y|ďe´t`2ε E „ˇˇˇeZ1pxq´ ErZ2 1 pxqs 2 ´ eZ3px,yq´ ErZ2 3 px,yqs 2 ˇˇˇ1Aq,R \uf6be “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='40) The restriction for x and y comes from the support of f and Qt,ε respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To prove (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='45) we start with the decomposition E „ˇˇˇeZ1pxq´ ErZ2 1 s 2 ´ eZ3´ ErZ2 3 s 2 ˇˇˇ1Aq,R \uf6be ď E „ˇˇˇeZ1´ ErZ2 1 s 2 ´ eZ2´ ErZ2s 2 ˇˇˇ1Ar,qpxq \uf6be ` E „ˇˇˇeZ3´ ErZ2 3 s 2 ´ eZ2 2´ ErZ2 2 s 2 ˇˇˇ \uf6be (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='41) (the inequality is just the triangle inequality and replacing Aq,R with a larger event), and show that each term is opt´1{2q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us start with the second one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3, we have E „ eZ3´ ErZ2 3 s 2 ´ eZ2 2´ ErZ2 2 s 2 | \uf6be ď C a Er|Z3 ´ Z2|2s “ C b Er| ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq ´ γXr,εpxq ´ γXr,εpyq|2s ď C1 ˆb E r|Xrpxq ´ Xr,εpxq|2s ` b E r|Xrpxq ´ Xr,εpyq|2s ˙ “ C1 ´ pKrpxq ` Kr,εpxq ´ 2Kr,ε,0pxqq1{2 ` pKrpxq ` Kr,εpxq ´ 2Kr,ε,0py, xqq1{2¯ ď C2 pε ` |x ´ y|qc ď C1e´ct (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='42) where to obtain the last line we have used (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) and the H¨older continuity of K0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the first term in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='41) we factorize the Fr-measureable part and use independence to obtain E „ |eZ1´ ErZ2 1 s 2 ´ eZ2´ ErZ2s 2 |1Ar,qpxq \uf6be “ E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxq1Ar,qpxq ı E „ |eZ1 1´ ErpZ1 1q2s 2 ´ eZ1 2´ ErpZ1q2 2s 2 | \uf6be , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='43) where Z1 i “ Zi ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have from Cameron-Martin Formula and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXrpxq´dKrpxq1Ar,qpxq ı “ P r@s P r0, rs, Bs ď qs ď Cr´1{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='44) 34 HUBERT LACOIN This is obviously Opt´1{2q so to conclude we only need to show that the other factor in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='43) goes to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We also have from Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3 and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) E „ |eZ1 1´ ErpZ1 1q2s 2 ´ eZ1 2´ ErpZ1q2 2s 2 | \uf6be ď C b E r|Z1 1 ´ Z1 2|2s ď C ` Krr,rspxq ` Krr,rs,εpxq ` Krr,rs,εpyq ´ 2Krr,rs,ε,0pxq ´ 2Krr,rs,ε,0py, xq ˘1{2 ď C1erp|x ´ y| ` εq ď Cepr´tq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='45) This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ The convergence of Bt,ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To prove the second convergence in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9), it is sufficient again to show first that lim tÑ8 εÑ0 ϕpt, εq´2E “ |Bt,ε ´ ErBt,ε | Frs|21Aq,R ‰ “ 0 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='46) repeating the computation of step two, and then prove that lim tÑ8 εÑ0 Er|ErBt,ε | Frs|1Aq,Rs “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We leave this part to the reader, since this is very similar to the computation performed at the end of Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6 We need to show that for any H bounded and F8-measurable and ξ P R we have lim nÑ8 E „ H ˆ eiξ Wn vpnq ´ e´ ξ2Z 2 ˙\uf6be “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) We first assume that the collection of variables vpnq´2xWny8 is uniformly essentially bounded, that is, that there exists M such that for every n ě 1 P “ vpnq´2xWny8 ě M ‰ “ 0 (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) Note that this implies also that P rZ ě Ms “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We assume, to simplify notation that ξ “ 1 (this entails no loss of generality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set Ht :“ E rH | Fts and Zt :“ E rZ | Fts we have E „ H ˆ ei ξWn vpnq ´ e´ ξ2Z 2 ˙\uf6be “ E ” Hpe´ Z 2 ´ e´ Zt 2 q ı ` E ” pH ´ Htq ´ ei Wn vpnq ´ e´ Zt 2 ¯ı ` E ” Ht ´ ei Wn vpnq ´ e´ Zt 2 ¯ı “: E1pt, nq ` E2pt, nq ` E3pt, nq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) We prove the convergence (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) by showing that for i “ 1, 2, 3 lim tÑ8 lim sup nÑ8 |Eipt, nq| “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) Using the fact that z ÞÑ ez is 1-Lipshitz (first line) and has modulus bounded by 1 (second line) in tz P C : Repzq ď 0u we have |E1pt, nq| ď E ” |H| ˇˇˇe´ Z 2 ´ e´ Zt 2 ˇˇˇ ı ď }H}8 2 E r|Z ´ Zt|s , |E2pt, nq| ď E ” |H ´ Ht| ˇˇˇei Wn vpnq ´ e´ Z 2 ˇˇˇ ı ď 2E r|H ´ Ht|s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES35 Since Ht and Zt converge respectively to H and Z in L1, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) holds for i “ 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For i “ 3, we observe that for fixed t the process Mpnq u :“ e iWn,t`u´Wn,t vpnq ` xWnyt`u´xWnyt 2vpnq2 ´ Zt 2 is a martingale for the filtration pGuq :“ pFt`uq, which converges in L1 when u Ñ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In particular we have E „ e iWn´Wn,t vpnq ` xWny8´xWnyt 2vpnq2 | Ft \uf6be “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) Multiplying by Hte´ Zt 2 and taking expectation we obtain that E „ Hte iWn´Wn,t vpnq ` xWny8´xWnyt 2vpnq2 ´ Zt 2 \uf6be “ E ” Hte´ Zt 2 ı (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) Hence we have (using that }Ht}8 ď }H}8) |E3pt, nq| ď E „ |Ht| ˇˇˇˇei Wn vpnq ´ e ipWn´Wn,tq vpnq ` xWny8´xWnyt 2vpnq2 ´ Zt 2 ˇˇˇˇ \uf6be ď }H}8E „ˇˇˇˇ1 ´ e ´ iWn,t vpnq ` xWny8´xWnyt 2vpnq2 ´ Zt 2 ˇˇˇˇ \uf6be , (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) From (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) we have the following convergence in probability for any fixed t lim nÑ8 ´iWn,t vpnq ` xWny8 ´ xWnyt 2vpnq2 ´ Zt 2 “ Z ´ Zt 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) Using assumption (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2), taking the limit in the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' of (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) and using dominated con- vergence, we obtain that lim sup nÑ8 |E3pt, nq| ď }H}8E ”ˇˇˇ1 ´ e Z´Zt 2 ˇˇˇ ı .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) Since Zt converges to Z we can conclude that (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) also holds for i “ 3 using dominated convergence again (both variables are uniformly bounded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us now remove the boundedness assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given A ą 0 we set TA,n :“ inftt : vpnq´2xWnyt “ Au and W A n :“ Wn,TA,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that E “ W A n | Ft ‰ “ Wt^TA,n so that (using the notation xW A n yt to denote the qua- dratic variation of this martingale) we have lim nÑ8 vpnq´2xW A n y8 “ Z ^ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) Since we have proved (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) under the assumption (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) we know that for every A ą 0 lim nÑ8 E „ H ˆ ei ξW A n vpnq ´ e´ ξ2pZ^Aq 2 ˙\uf6be “ 0 (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) From the convergence assumption, we have lim sup nÑ8 PrTA,n “ 8s ď P rZ ě As (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) and hence lim AÑ8 lim inf nÑ8 P “ W A n “ Wn ‰ “ lim AÑ8 PrZ ^ A “ Zs “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 36 HUBERT LACOIN As a consequence we can conclude using (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) that lim nÑ8 E „ H ˆ eiξ Wn vpnq ´ e´ ξ2Z 2 ˙\uf6be “ lim AÑ8 lim nÑ8 E „ H ˆ ei ξW A n vpnq ´ e´ ξ2pZ^Aq 2 ˙\uf6be “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) □ Acknowledgements: This work was supported by a productivity grant from CNPq and a JCNE grant from FAPERJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Technical results and their proof A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Standard Gaussian tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We first display two standard tools which are used throughout the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The first is the standard Cameron-Martin formula which describes how a Gaussian process is affected by an exponential tilt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let pY pzqqzPZ be a centered Gaussian field indexed by a set Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We let H denote its covariance and P denote its law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given z0 P Z let us define rPz0 the probability obtained from P after a tilt by Y pz0q that is drPz0 dP :“ eY pz0q´ 1 2 Hpz0,z0q (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) Under rPz0, Y is a Gaussian field with covariance H, and mean rEz0rY pzqs “ Hpz, z0q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The second is a bound on the probability for a Brownian Motion to remain below a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Both estimates can be proved directly using the reflexion principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let B be a standard Brownian Motion and let P denote its distribution, setting gtpaq :“ şu` 0 e´ z2 2t dz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' we have P « sup sPr0,ts Bs ď a ff “ c 2π t gtpaq ď c 2π t a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) Additionally for any a, b ą 0 there exists Ca,b such that f P « sup sPr0,ts pBs ` bsq ď a ff “ 1 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2πt ż e´ u2 2t p1 ´ e 2apa`u´bsq` t qdu ď Ca,be´ b2t 2 t´3{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Comparing exponentiated Gaussians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In or comparison of partition functions Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Consider pX1, X2, Y1, Y2q an R4 valued centered Gaussian vector and set X :“ X1 ` iX2 and Y “ Y1 ` iY2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Assuming that ErX2 2s ď 1 and Er|X ´ Y |2s ď 1 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) then there exits a constant C such that E ”ˇˇeX´ 1 2ErX2s ´ eY ´ 1 2ErY 2sˇˇ ı ď CE “ |X ´ Y |2‰ (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We factorize eX´ 1 2ErX2s, use the Cameron-Martin formula and rearrange the ex- pectation terms in the exponential, we obtain E „ˇˇeY ´ ErY 2s 2 ´ eX´ ErX2s 2 ˇˇ \uf6be “ E „ eX1` ErX2 2 s´ErX2 1 s 2 ˇˇeY ´X` ErX2s´ErY 2s 2 ´ 1 ˇˇ \uf6be “ e ErX2 2 s 2 E „ˇˇeY ´X´ ErpX´Y q2s 2 ´iErX2pY ´Xqs ´ 1 ˇˇ \uf6be .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES37 The prefactor is bounded (by assumption) by e1{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the rest, setting Z “ Y ´ X (and letting Z1 and Z2 denote the real and imaginary part) we have using the triangle inequality E „ˇˇeZ´ ErZ2s 2 ´iErX2Zs ´ 1 ˇˇ \uf6be ď ˇˇeiErX2Zs ´ 1 ˇˇE „ˇˇeZ´ ErZ2s 2 ˇˇ \uf6be ` E „ˇˇeZ´ ErZ2s 2 ´ 1 ˇˇ \uf6be .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) For the first term, using that |ErX2Zs| ď a ErX2 2sEr|Z|2s ď a Er|Z|2s ď 1, and that |eu ´ 1| ď e|u| for u ď 1 and computing expectation, we obtain that ˇˇeiErX2Zs ´ 1 ˇˇE „ˇˇeZ´ ErZ2s 2 ˇˇ \uf6be ď e a Er|Z|2se ErZ2 2 s 2 ď e3{2a Er|Z|2s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) For the second term we have (using again |eu ´ 1| ď e|u|) E „ˇˇeZ´ ErZ2s 2 ´ 1 ˇˇ \uf6be ď d E „ˇˇeZ´ ErZ2s 2 ´ 1 ˇˇ2 \uf6be “ a eEr|Z|2s ´ 1 ď e1{2a Er|Z|2s, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) which yields the desired result for C “ e2 ` e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us first compute the order of magnitude of φptq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us set for practical purpose φptq :“ ş Qtp0, zqe|γ|2Ktp0,zqdz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) (recall that |z| ď e´t on the integrand) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) we have φptq — ep|γ|2´dqt and φptq — t´1{2ep|γ|2´dqt (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) As a consequence when |γ|2 ą d most of the integral is carried by rt ´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t, ts and we have ż t 0 φpsqds “ p1 ` op1qq ż t t´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t φpsqds “ p1 ` op1qq ż t t´ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t c s _ 1 t φpsqds “ p1 ` op1qq c 2 πte|γ|2j ż t 0 φpsqds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) We observe that |γ|2Qsp0, zqe|γ|2Ksp0,zq “ Bs ´ e|γ|2Ksp0,zq¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Fubini and integrating w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' time and making a change of variable we have |γ|2 ż t 0 φpsqds “ ż Rd ´ e|γ|2Ktp0,zq ´ 1 ¯ dz “ ep|γ|2´dqt ż Rd ´ e|γ|2pKtp0,e´tzq´tq ´ e´|γ|2t¯ dz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) The integrand in the second line is bounded above by p|z| _ 1q´|γ|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This is obvious for |z| ě et since the integrand vanishes, and when |z| ď et this can be obtainded from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Furthermore it converges to e|γ|2ℓpzq and we obtain using dominated convergence that lim tÑ8 |γ|2 şt 0 φpsqds ep|γ|2´dqt “ ż Rd e|γ|2ℓpzqdz, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) which combined with (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11), proves the lemma in the case |γ|2 ą d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' When |γ|2 “ d, we observe that using, as in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12), a change of variable and dominated convergence, we have lim sÑ8 φpsq “ ż Rd κpe η1 η2 zqedℓpzqdz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) 38 HUBERT LACOIN On the other hand we have from (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) ż t 0 φpsqds “ ż Rd ´ edpKtp0,e´tzq´tq ´ e´dt¯ dz (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) We have, for 1 ď |z| ď et, Ktp0, e´tzq “ Kp0, e´tzq “ Kp0, e´tzq ´ K0p0, e´tzq “ t ` log 1 |z| ` pL ´ K0qp0, e´tzq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16) Since pL ´ K0qp0, e´t|z|q “ ´j ` δ ` e´t|z| ˘ where δpuq tends to zero when u Ñ 0 we can deduce that ż Rd ´ edpKtp0,e´tzq´tq ´ e´dt¯ dz “ p1 ` op1qq ż 1t1ď|z|ďetuedpKtp0,e´tzq´tqdz “ p1 ` op1qqe´dj ż 1t1ď|z|ďetu|z|´ddz “ p1 ` op1qqe´djΣd´1t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17) Since φpsq converges, we deduce that its limit equals its Cesaro limit and thus lim sÑ8 φpsq “ e´djΣd´1, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) which implies in turn that ż t 0 d 2 πps ^ 1qedjφpsq “ p1 ` op1qq2 c 2t π Σd´1, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) and concludes the proof of the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us again start with the case |γ|2 ą d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' As in the proof of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4, we can compute the asymptotic of φpt, εq (when t and ε goes to infinity and zero respectively) φpt, εq — t´1{2e|γ|2t´dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) Since suptPr0,Ts εPp0,1q φpt, εq ă 8 for every finite T, this implies that the integral ş8 0 φpt, εq is mostly carried by values of s around logp1{εq (say ˘ a logp1{εq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For this reason, we can replace the term pt _ 1q´1{2 by plog 1{εq´1{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' |γ|2 ż 8 0 φpt, εqdt “ p1 ` op1qq d 2 πplog 1{εqe|γ|2j ż 8 0 ż Rd |γ|2e|γ|2Kt,εp0,zqQt,εp0, zqdz (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) Using Fubini and integrating with respect to time as in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) we have ż 8 0 ż Rd |γ|2e|γ|2Kt,εp0,zqQt,εp0, zqdz “ ż Rd ´ e|γ|2Kεp0,zq ´ 1 ¯ dz (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) We then perform a change of variable for z ż Rd ´ e|γ|2Kεp0,zq ´ 1 ¯ dz “ εd´|γ|2 ż Rd ´ e|γ|2pKεp0,εzq`logpεqq ´ ε|γ|2¯ dz (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) Next we observe that Kεp0, εzq ` logpεq “ ℓθpzq ` pLεp0, εzq ´ Kεp0, εzqq .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES39 Using dominated convergence as ε goes to zero (the integrand is bounded above by p|z| _ 1q´|γ|2 and recalling (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) we obtain that lim εÑ0 ż Rd ´ e|γ|2pKεp0,εzq`logpεqq ´ ε|γ|2¯ dz “ e´|γ|2j ż Rd e´|γ|2ℓθpzqdz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24) The combination of (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21)-(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24) concludes the proof in the case |γ|2 ą d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the case |γ|2 “ d, based on (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) we know that setting Tε “ logp1{εq ´ a logp1{εq ż 8 0 φpt, εqdt “ p1 ` op1qq ż Tε 0 φpt, εqdt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='25) Now in this range for t it is tedious but not difficult to check that lim εÑ0 sup tPr0,Tεs ş Rd e|γ|2Kt,εp0,zqQt,εp0, zqdz ş Rd e|γ|2Ktp0,zqQtp0, zqdz “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) From this we obtain that ż 8 0 φpt, εqdt “ p1 ` op1qq ż Tε 0 φpt, εqdt “ p1 ` op1qq ż Tε 0 φptqdt (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='27) and we can conclude using Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence of Mγ ε as a distribution We have chosen for simplicity, to present our convergence results as convergence of a collection of random variables Mγ ε pfq indexed by CcpRdq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We can go further and prove that Mγ ε p¨q converges as a distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For this purpose we need to recall the definition of local Sobolev/Bessel spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The Bessel space Hs,ppRkq, s P R and p P r1, 8s on Rk is defined by Hs,ppRkq :“ tϕ P D1pRkq : p1 ` |ξ|2qs{2 pϕpξq P LppRkqu (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) where D1pRkq is the space of distribution and pϕpξq is the Fourier transform of ϕ defined for ϕ P C8 c pRkq by pϕpξq “ ş Rk eiξxϕpxqdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It is a Banach space when equiped with the norm }f}Hs,p “ ż Rkp1 ` |ξ|2qps{2|pϕpξq|pdξ (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) For U Ă Rk open, the local Bessel space Hs,p locpUq denotes the set of distributions which belongs to Hs,ppUq after multiplication by an arbitrary smooth function with compact support Hs,p locpUq :“ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' ϕ P D1pUq | ρϕ P Hs,ppRdq for all ρ P C8 c pUq ) , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) where above ρϕ is identified with its extension by zero on Rk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It is equiped with the topology generated by the family of seminorms rρ, ρ P C8 c pUq defined by rρpϕq :“ }ϕρ}Hs,p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the particular case where p “ 2 we write HspRkq :“ Hs,2pRkq which is a Hilbert space (and use the same convention for the local spaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The convergence result for Mγ ε p¨q as a distribution for γ P PI{II is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If X is a centered Gaussian field whose covariance kernel K has an almost star-scale invariant part, γ P PI{II, p P r1, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dαq and s ă ´ d p, then there exists Mγ 8 P Hs,p locpRdq such that for every ρ P C8 c pRdq lim εÑ0 E “ }Mγ ε pρ ¨q ´ Mγ 8pρ ¨q}p Hs,p ‰ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) 40 HUBERT LACOIN In particular Mγ ε converges to Mγ 8 in probability in the Hs,p locpRdq topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Similarly in P1 II{III the convergence in law holds also for the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let X be a Gaussian random field with an almost star-scale covariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Then given γ P P1 II{III, and s ă ´ d 2 the following joint convergence in law for the Hs locpRdq topology ˆ X, Mγ ε vpε, θ, γq ˙ εÑ0 ñ pX, Mγq, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) Remark B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the proof of Theorems B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 presented below, we are going to assume that our probability space contains a martingale sequence pXtqtě0 of fields with co- variance (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) approximating X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For reasons analogous to the one exposed at the beginning of Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 this entails no loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The case of Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let us fix ρ P C8 c pRdq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We want to prove that Mγ ε pρ ¨q converges in Hs,ppRdq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We first define the limit point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set (without underlying the dependence in ρ to keep the notation light) x Mγ ε pξq “ ż Rd ρpxqeiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='xeγXεpxq´ γ2 2 Kεpxqdx, x Mγ 8pξq “ lim εÑ0 x Mγ ε pξq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) We let Mγ 8pρ ¨q denote the random distribution whose Fourier transform is given by x Mγ 8pξq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The proof of (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4), implies that Mγ 8pρ ¨q P Hs,ppRdq with probability one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To prove (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4), note that we have E “ }Mγ ε pρ ¨q ´ Mγ 8pρ ¨q}p Hs,p ‰ “ ż Rd E ” |px Mγ ε ´ x Mγ 8qpξq|pı p1 ` |ξ|2q ps 2 dξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) Hence with our assumption on s ă ´ d p it is sufficient to prove that lim sup εÑ0 sup ξPRd E ” |px Mγ ε ´ x Mγ 8qpξq|pı ă 8, @ξ P Rd, lim εÑ0 E ” |px Mγ ε ´ x Mγ 8qpξq|pı “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) and we can then conclude using dominated convergence (the first line yields the domina- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The second line is simply (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) with fpxq “ ρpxqeiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the first line it sufficient to prove that lim sup εÑ0 sup ξPRd E ” |x Mγ ε pξq|pı ă 8, since the bound for x Mγ 8pξq| can then be obtained by Fatou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set V pεq t pξq “ Erx Mγ ε | Fts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using the BDG inequality we have E ” |x Mγ ε pξq|pı ď CE ” |V pεq 0 pξq|p ` xV pεqpξqyp{2 8 ı .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) Now we have (recall that p ă ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{α ď 2) E ” |V pεq 0 pξq|2ı “ ż R2d ρpxqρpyqeiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='px´yqe|γ|2K0,εpx,yqdxdy (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES41 and we can conclude by replacing eiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='px´yq by 1 and observing that since K is continuous K0,ε is uniformly bounded for x, y in the support of ρ and ε P p0, 1q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the quadratic variation part, we have xV pεqy8 “ |γ|2 ż 8 0 At,εpξqdt, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) where, At,εpξq :“ ż R2d ρpxqρpyqQt,εpx, yqeiξpx´yqeγXt,εpxq`γXt,εpyq´ γ2 2 Kt,εpxq´ γ2 2 Kt,εpyqdxdy ď ż R2d ρpxqρpyqQt,εpx, yqeαpXt,εpxq`Xt,εpyqq` β2´α2 2 pKt,ε`Kt,εpyqqdxdy “: At,ε, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) the inequality being obtain by taking the modulus of the integrand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To conclude, we just need to prove that sup εPp0,1q E «ˆż 8 0 At,εdt ˙p{2ff ă 8 (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) For this part we can just repeat the computations made to prove (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The case of Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Since the convergence of finite dimensional marginal has been established, we only need to prove tightness of the distribution of vpε, θ, γq´1Mγ ε pρ ¨q in HspRdq for every ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For this, we simply replicate the strategy presented in [16], with a minor twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Since in our case, the Fourier transform in not in L2, we need to consider a restriction to the event Aq,R where R is such that the support ρ is contained in Bp0, Rq (recall (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Keeping the notation introduced in (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) for the Fourier transform, we are going to prove the following analogue of [16, Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2] (we use the notation vpεq for vpε, θ, γq for ease of reading) Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If the support of ρ is included in Bp0, Rq then the following holds for every a P Rd with a constant C which depends on ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' sup εPp0,1q ξPRd E ” vpεq´2|x Mγ ε pξq|21Aq,R ı ă 8, sup εPp0,1q ξPRd E ” vpεq´2|x Mγ ε pξ ` aq ´ x Mγ ε pξq|21Aq,R ı ď C|a|2, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We introduce a martingale whose limit coincides with x Mγ ε pξq on the event Aq,R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given x P Rd and q ą 0 we set Tqpxq :“ inftt ą 0 : Xtpxq “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dt ` qu, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) and define N pεq t pξq :“ ż Rd ρpxqeiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='xeγXt^Tqpxq,εpxq´ γ2 2 Kt^Tqpxq,εpxqdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16) Since Tqpxq “ 8 for all x in the support of ρ on the event Aq,R, we have N pεq 8 pξq1Aq,R “ x Mγ ε pξq1Aq,R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17) 42 HUBERT LACOIN Hence it is sufficient to prove sup εPp0,1q ξPRd E ” vpεq´2|N pεq 8 pξq|2ı ă 8, sup εPp0,1q ξPRd E ” vpεq´2|N pεq 8 pξ ` aq ´ N pεq 8 pξq|2ı ď C|a|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) Let us prove the only second inequality, since the first one is only easier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set for simplicity Wt :“ N pεq t pξ ` aq ´ N pεq t pξq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have E ” |N pεq 8 pξ ` aq ´ N pεq 8 pξq|2ı “ Er|W8|2s “ Er|W0|2s ` E rxWy8s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We are going to prove a bound for each of the term in the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We have Er|W0|2s “ ż R2d ρpxqρpyq ´ eipξ`aq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='x ´ eiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='x¯ ´ e´ipξ`aq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='y ´ eiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='y¯ e|γ|2K0,εpx,yq ď C|a|2 ż ρpxqρpyq|x||y|dxdy ď C1|a|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) where in the second line have taken the modulus of the integrand, and used the fact that the complex exponential is Lipshitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To bound the expected value of the quadratic variation, using Itˆo calculus, and observing that tTqpxq ă tu “ At,qpxq (recall (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6)) we obtain that xWy8 “ |γ|2 ż 8 0 Utdt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='20) where Ut :“ ż R2d ρpxqρpyqQt,εpx, yq ´ eipξ`aq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='x ´ eiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='x¯ ´ e´ipξ`aq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='y ´ eiξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='y¯ ˆ eγXt,εpxq`γXt,εpyq´ γ2 2 Kt,εpxq´ γ2 2 Kt,εpyq1At,qpxqXAt,qpyqdx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='21) Taking the modulus in the integrand value everywhere inside the integral and using the fact that the complex exponential is Lipshitz fwe obtain Ut ď |a|2 ż R2d ρpxqρpyq|x||y|Qt,εpx, yq ˆ e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' d{2pXt,εpxq`Xt,εpyqq` |γ|2´d 2 pKt,εpxq`Kt,εpyqq1At,qpxqXAt,qpyqdxdy ď C|a|2 ż R2d ρpxq2|x|2Qt,εpx, yqe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXt,εpxq`p|γ|2´dqKt,εpxq1At,qpxqdxdy, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='22) where the second line is obtained via the same step as (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) (ab ď a2`b2{2 and symmetry and in x and y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Now recalling (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='25) we have E ” e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXt,εpxq´dKt,εpxq1At,qpxq ı ď Cpt _ 1q´1{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) where to obtain the first inequality, we used (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) to show that Kspx, yq (and all similar terms) are well estimated by t for s P r0, ts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Now we have E rUts ď C|a|2e´dt ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' t _ 1 ż R2d ρpxq2|x|2Qt,εpx, yqe|γ|2Kt,εpx,yqdx ď C1|a|2φpt, εq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='24) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES43 After integrating with respect to t (recalling Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) we obtain that ErxWy8s ď C|a|2vpεq2, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='25) for a constant C which is independent of ε and ξ and a, which combined with (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19), concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Beyond star-scale invariance The assumption that the kernel can be written in the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) may be felt as unnec- essarily restrictive, since after all, given an open domain D Ă Rd and a positive definite Kernel kernel K : D2 Ñ p´8, 8s that admits a decomposition of the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1), the mollified field Xε can be defined on Dε :“ tx P D : inf yPDA |x ´ y| ą 2εu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely in that case the field X is indexed by CcpDq the set of functions with compact support on D (in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4), R2d is replaced by D2), and Xε remains defined by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) (here θεpx ´ ¨q, which for x P Dε, has its support included in D, is identified with its restriction on D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It turns out that our results can be extended to the the general setup described above, only with an additional regularity assumption concerning the function L present in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given U Ă D, we say that the restriction of K to U has an almost star-scale invariant part, if @x, y P U, Kpx, yq “ K0px, yq ` Kpx, yq (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) where K is an almost-star scale invariant Kernel, and K0 : U 2 Ñ R is positive definite and H¨older continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To extend the result we use the fact (proved in [12]) that if L is sufficiently regular then K is locally star-scale invariant in the sense defined above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We state this result as a proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It can be directly derived from [12, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If K is a positive definite kernel on D that can be written in the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) with L P Hs locpD2q with s ą d, then for every z P D, there exist δz ą 0 such that the restriction of K to Bpz, δzq has an almost star-scale invariant part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To extend Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5 we require another technical result, which states that with the same assumption as above, and U an open set whose closure is included in D, K can be approximated by a kernel with an almost star-scale invariant part defined on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This is the content of the following result, [16, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1] Proposition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given K a covariance kernel on D of the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) with L P Hs locpD2q for s ą d , U a bounded open set whose closure satisfies U Ă D and δ ą 0, then there exists a kernel Kpδq on U satisfying (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) such that (A) For all x, y P U, |Kpδqpx, yq ´ Kpx, yq| ď δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (B) ∆pδqpx, yq “ Kpδqpx, yq ´ Kpx, yq is a positive definite kernel on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Remark C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely, [16, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1] states that one can chose η1 “ 0 (recall (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8)) for the almost-star scale invariant part of Kpδq, but this refinement is not required for our purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 44 HUBERT LACOIN C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The case of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The extension of the result to the case of a general log-correlated field defined on a domain D is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If X is a centered Gaussian field defined on D whose covariance kernel K can be written in the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) with L P Hs locpD2q for s ą d, and f P CcpRdq, then there exists a complex valued random variable Mγ 8pfq such that for any choice of mollifier θ the following convergence holds in Lp if p P ” 1, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d{α ¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' lim εÑ0 Mγ ε pfq “ Mγ 8pfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' This follows quite immediately via a localization argument using a partition of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Let f P CcpDq be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Proposition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1, we can cover the support of f (which is compact) by finitely many Euclidean balls Bpzi, εiq, i P I such that for every i P I the restriction of K to Bpzi, εiq has an almost star-scale invariant part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using a partition of the unity, we can write f :“ ř iPI fi where fi is continuous with compact support included in Bpzi, εiq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 for K restricted to Bpzi, εiq, we obtain that Mγ ε pfiq converges in Lp for every fi and thus we obtain the convergence for Mγ ε pfq “ ř iPI Mγ ε pfiq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The case of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To extend the result for γ P P1 II{III it is sufficient to extend Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In the statement below, we implicitely use the fact that the critical multiplicative chaos M1 is well defined under our assumptions (see [17, Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2] for a proof).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proposition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If X is a centered Gaussian field defined on D whose covariance kernel K can be written in the form (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) with L P Hs locpD2q for s ą d, given ρ, f P CcpDq, ω P r0, 2πq, we have lim εÑ0 E „ eixX,ρy`i Mγ ε pf,ωq vpε,θ,γq \uf6be “ E „ eixX,ρy´ 1 2M1pe|γ|2L|f|2q \uf6be .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given a fixed f P CcpDq, and n ě 1, we chose U which contains the support of f and Kn : U 2 Ñ p´8, 8s satisfying the assumptions of Kpδq of Proposition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 with δ “ 1{n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We let Zn be a centered Gaussian field indexed by U, independent of X and with covariance ∆n “ Kn ´K and define Xn a field indexed by CcpUq by setting Xn “ X `Zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that Xn has covariance Kn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We let Mγ,n ε and M 1 n denote the mollified GMC and critical GMC associated with Xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For simplicity, we define all the pZnqně1 on the same probability space: the fields Zn form an independent sequence which is independent of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We let P denote the corresponding probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' From Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8 we have for each n ě 1 lim εÑ0 E „ eixXn,ρy`i Mγ,n ε pf,ωq vpε,θ,γq \uf6be “ E „ eixXn,ρy´ 1 2 M 1 npe|γ|2Ln|f|2q \uf6be , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) where Ln :“ L ` ∆n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' In order to conclude, we need to show that (for any choice of Kpδq) lim nÑ8 sup εPp0,1q ˇˇˇˇE „ eixXn,ρy`i Mγ,n ε pf,ωq vpε,θ,γq \uf6be ´ E „ eixX,ρy`i Mγ ε pf,ωq vpε,θ,γq \uf6beˇˇˇˇ “ 0 (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) and that lim nÑ8 E „ eixXn,ρy´ 1 2M 1 npe|γ|2Ln|f|2q \uf6be “ E „ eixX,ρy´ 1 2 M 1pe|γ|2Lpδq|f|2q \uf6be .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES45 Note that it is sufficient to show that the difference between the terms in the l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' and the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' tend to zero in probability (uniformly in ε) that is lim nÑ8 E r|xXn, ρy ´ xX, ρy| _ 1s “ 0, lim nÑ8 E ”ˇˇˇM 1 npe|γ|2Ln|f|2q ´ M 1pe|γ|2L|f|2q ˇˇˇ _ 1 ı “ 0, lim nÑ8 sup εPp0,1q E „ˇˇˇˇ Mγ,n ε pf, ωq vpε, θ, γq ´ Mγ ε pf, ωq vpε, θ, γq ˇˇˇˇ _ 1 \uf6be “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) The first line is immediate via the computation of the L2 norm (the convergence holds in L2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the second line, we set gn “ e|γ|2Ln|f|2 and g “ e|γ|2L|f|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using the notational convention introduced in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1, we let Zn,ε denote the mollification of Zn and ∆n,ε its covariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Letting e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dZn,ε´d∆n,ε denote the function x ÞÑ e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dZn,εpxq´d∆n,εpxq we have E „´ M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d,n ε pgnq ´ M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ε pgq ¯2 | X \uf6be “ E ” M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ε pe ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dZn,ε´d∆n,εgn ´ gq2 | X ı “ ż U2 ´ e2d∆n,εpx,yqgnpxqgnpyq ´ 2gnpxqgpyq ` gpxqgpyq ¯ M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ε pdxqM ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ε pdyq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) From the assumption that |∆npx, yq| ď 1{n (and thus |Lnpxq ´ Lpxq| ď 1{n) we obtain that |e2d∆n,εpx,yqgnpxqgnpyq ´ 2gnpxqgpyq ` gpxqgpyq| ď Cgpxqgpyq n and hence E „´ M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d,n ε pgnq ´ M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ε pgq ¯2 | X \uf6be ď C n M ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2d ε pgq2 (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) Using Fatou after renormalization we obtain that E ”` M1 npgnq ´ M1pgq ˘2 | X ı ď C n M1pgq2 (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) which implies the second line in (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For the third line, we are going to Proposition (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' More precisely, we use a decomposition of f “ ř iPI fi where fi is continous with compact support included in Ui and the restriction of K to Ui has an almost star-scale invariant part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We are going to prove that for each i P I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' lim nÑ8 sup εPp0,1q E „ˇˇˇˇ Mγ,n ε pfi, ωq vpε, θ, γq ´ Mγ ε pfi, ωq vpε, θ, γq ˇˇˇˇ _ 1 \uf6be “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) This operation shows that it is in fact sufficient to prove the third line of (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) assuming that K is an almost star-scale invariant Kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We can thus further our probability space contains pXtqtě0 a martingale sequence of fields with covariance Kt (we adopt the notation of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) approximating X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We equip our space with the filtration Gt :“ σppXsqsPr0,ts, pZnqně1q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We recall the definition of Tqpxq in (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) and define W pn,εq t :“ ż U peγZn,εpxq´ γ2 2 ∆n,εpxq ´ 1qfpxqeγXt^Tqpxq,ε´ γ2 2 Kt^Tq,εpxqdx (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) Setting Aq :“ t@x P Supppfq, @t ą 0, Xtpxq ď ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dt ` qu 46 HUBERT LACOIN We have from the definition W pn,εq 8 1Aq “ |Mγ,n ε pfq ´ Mγ ε pfq|1Aq Hence we have (for any ω P r0, 2πq since the projection on one axis reduces the modulus E “ |Mγ,n ε pf, ωq ´ Mγ ε pf, ωq|21Aq ‰ ď Er|W pn,εq 8 |2s “ Er|W pn,εq 0 |2s ` ErxW pn,εqy8s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) Since from Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 we have limqÑ8 PrAqs “ 1, to prove the third line in (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7), it is sufficient to show that for any q we have lim nÑ8 sup εPp0,1q vpε, θ, γq´2 ´ Er|W pn,εq 0 |2s ` ErxW pn,εqy8s ¯ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14) For the first term, we have Er|W pn,εq 0 |2s “ ż U2 fpxqfpyqpe|γ|2∆n,εpx,yq´1qe|γ|2K0,εpx,yqdxdy ď Cn´1 (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='15) where the inequality obtained taking the modulus of the integrand and using the fact that |∆npx, yq| ď 1{n and the other terms are uniformly bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The derivative of the bracket of W pn,εq is given by |γ|2 times (recall that by (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) we have At,qpxq “ tTqpxq ď tu) Dt :“ ż R2d Qt,εpx, yqGn,εpxqGn,εpyq ˆ eγXt,ε`γXt,εpyq´ γ2 2 Kt,εpxq´ γ2 2 Kt,εpyq1At,qpxqXAt,qpyqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='16) with Gn,εpxq “ peγZn,εpxq´ γ2 2 ∆n,εpxq ´ 1q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Repeating once more the computation in (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='26) we obtain that Dt ď ż R2d Qt,εpx, yq|Gn,εpxq|2e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 2dXt,ε`p|γ|2´dqKt,εpxq1At,qpxqdxdy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='17) We define a martingale W pεq and W pεq t by setting W pεq t :“ E rMγ,n ε pf, ωq ´ Mγ ε pf, ωq | Gts (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='18) Now we have E “ |Gn,εpxq|2‰ “ e|γ|2∆n,εpxq ´ 1 ď Cn´1 This the term is independent of the rest, thus using (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='23) we obtain that ErDts ď Cn´1 ż R2d Qt,εpx, yqe|γ|2Kt,εpxqdxdy ď C1n´1φpt, εq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='19) Integrating against t we conclude that ErxW pn,εqy8s ď Cn´1vpε, θ, γq2 and this concludes the proof of (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES47 Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 We use Kahane convexity inequality in order to compare Bn to the the partition function of a Gaussian branching random walk (or polymer on a 2d-adic tree).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We assume without loss of generality that Supppfq Ă r0, 1sd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For x, y P r0, 1sd we let 2´kpx,yq be the sidelength of the smallest dyadic cube that contains x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' kpx, yq :“ inf !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' n ě 0 : Dm P �0, 2n ´ 1�d, tx, yu Ă ´ 2´nm ` r0, 2´nqd¯) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' and set knpx, yq :“ kpx, yq ^ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Note that kn defines a positive definite function and that kpx, yq ď log2 ´ 1 |x´y| ¯ ` C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Hence from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 there exists a constant A ą 0 such that plog 2qknpx, yq ď Krn log 2spx, yq ` A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1) Using Kahane’s convexity inequality (proved in [15] see also [27, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1]) which we introduce in a simplified setup Lemma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' If C1 and C2 are two bounded positive definite kernel on an arbitrary space X satisfying @x, y P X, C1px, yq ď C2px, yq µ is a finite measure on r0, 1sd and F : R` Ñ R is a concave function with at most polynomial growth at infinity and Y1 and Y2 are Gaussian fields with respective covariance C1 and C2 then we have for any θ P R E „ F ˆż eθY1pxq´ θ2 2 C1pxqµpdxq ˙\uf6be ď E „ F ˆż eY2pxq´ θ2 2 C2pxqµpdxq ˙\uf6be .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2) Hence if Zn denotes a field defined on r0, 1sd with covariance kn we can apply Lemma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1 result for the fields ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='log 2Zn and Xrn log 2s` ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' AN where N is an independent standard Gaussian (the fields have their resepective covariances given by the two sides of Equation (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='1)), µpdxq “ |fpxq|2dx and Fpuq “ up{2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Recalling (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) we have E ” Bp{2 rn log 2s ı ď CE » – ˜ 2dn ż r0,1sd |fpxq|2e2α?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='log 2pZnpxq´?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2nqdx ¸p{2fi fl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3) The constant C above takes care of the fact that the variance of ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='log 2Znpxq and Xrn log 2s differ by a Op1q term, and also of the moment of the variable N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We can ignore the constant f at the cost of a prefactor }f}p 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' To conclude we thus need a bound on the moment of order p{2 of the partition function of the Gaussian branching random walk Wn,ζ :“ 2dn ż r0,1sd eζpZnpxq´?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2nqdx “ ÿ mP�0,2n´1�d eζpZnpm2´nq´?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2nq, (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) for ζ “ 2α?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='log 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The following result is a particular case of [8, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We present a shorter proof which is valid in our context for the sake of completeness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Lemma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Given ζ ą ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2 and q ď ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2 ζ there exists positive constant C and b such that E rpWn,ζqqs ď Cn´ 3qζ 2?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2plog nq6 48 HUBERT LACOIN Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We split our integral in three parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' We set Bnpxq :“ tDm P �1, n�, Zmpxq ě a 2d log 2 ` plog nq2u, Cnpxq :“ BA npxq X tZnpxq ď a 2d log 2n ´ plog nq2u, Anpxq :“ BA npxq X CA npxq (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='5) We define Wn,ζpAq, Wn,ζpBq and Wn,ζpCq by setting, for I P tA, B, Cu Wn,ζpIq :“ 2dn ż r0,1sd eζpZnpxq´?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2nq1Inpxqdx (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='6) Using subadditivity (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) we have E rpWn,ζqqs ď E rWn,ζpAqqs ` E rWn,ζpBqqs ` E rWn,ζpCqqs .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='7) We are going to show that the two last terms in the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' decay faster than any negative power of n and then prove a bound of the right order of magnitude for E rpWn,ζqqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Letting setting Bn :“ Ť xPr0,1s Bnpxq, and q1 “ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2ζ´1 (q1 P rq, 1q) we have E rWn,ζpBqqs ď E rpWn,ζqq1Bns ď E ” pWn,ζqq1ı q q1 P rBns1´ q q1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='8) Using subadditivity (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) for the sum (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='4) with θ “ q1, E ” pWn,ζqq1ı ď E “ Wn,?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2 ‰ “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) The inequality on the right comes from the fact that pWm,?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2qmě1 is a martingale for the natural filtration associated with Zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using the optional stopping Theorem for this same martingale, we can obtain a bound for the probability of Bn, PrBns ď P ” Dm, Wm,?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2 ě e ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 log 2plog nq2ı ď e´?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2 log 2plog nq2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='10) This yields a subpolynomial decay for ErWn,ζpBqqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' For Wn,ζpCq using the fact that Zn is a Gaussian of variance n, we obtain using Jensen’s inequality, the Cameron-Martin formula and Gaussian tail bounds E rpWn,ζpCqqqs1{q ď E rWn,ζpCqs “ 2dnE ” eqpZn´?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2nq1tZnď?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2n´plog nq2u ı “ e ˆ d log 2` ζ2 2 ´ζ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2 ˙ n P ” Znp0q ď p a 2d log 2 ´ ζqn ´ plog nq2ı ď ep?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2´ζqplog nq2, (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='11) also proving a subpolynomial decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' It remains to estimate the main part E rpWn,ζpAqqqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Using first subaddivity (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='9) and then Jensen’s inequality E rpWn,ζpAqqqs ď E „ Wn,?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2pAq qζ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2 \uf6be ď E “ Wn,?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2pAq ‰ qζ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12) The Cameron-Martin formula directly expresses E “ Wn,?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2pAq ‰ as the probability con- cerning the Gaussian centered random walk pZmp0qqmě0, E “ Wn,?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='2d log 2pAq ‰ “ P “ @m P �1, n�, Zmp0q ď plog nq2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Znp0q ě ´plog nq2‰ ď Cn´3{2plog nq6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13) CONVERGENCE FOR COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS ON PHASE BOUNDARIES49 The bound for the probability of the event above is valid for any random walk with IID centered increments with finite second moment (see for instance [1, Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='3]) which concludes our proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' □ References [1] Elie A¨ıd´ekon and Zhan Shi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Weak convergence for the minimal position in a branching random walk: a simple proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Hungar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 61(1-2):43–54, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [2] Nathana¨el Berestycki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' An elementary approach to Gaussian multiplicative chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 22:Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 27, 12, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [3] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Derrida, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Evans, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Speer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Mean field theory of directed polymers with random complex weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 156(2):221–244, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [4] Bertrand Duplantier, R´emi Rhodes, Scott Sheffield, and Vincent Vargas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Critical Gaussian multiplica- tive chaos: convergence of the derivative martingale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 42(5):1769–1808, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [5] Bertrand Duplantier, R´emi Rhodes, Scott Sheffield, and Vincent Vargas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Renormalization of critical Gaussian multiplicative chaos and KPZ relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 330(1):283–330, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [6] Lisa Hartung and Anton Klimovsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The glassy phase of the complex branching Brownian motion energy model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 20:no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 78, 15, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [7] Lisa Hartung and Anton Klimovsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The phase diagram of the complex branching Brownian motion energy model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 23:Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 127, 27, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [8] Yueyun Hu and Zhan Shi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 37(2):742–789, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [9] Jean Jacod and Albert N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Shiryaev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Springer- Verlag, Berlin, second edition, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [10] Janne Junnila and Eero Saksman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Uniqueness of critical Gaussian chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 22:Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 11, 31, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [11] Janne Junnila, Eero Saksman, and Lauri Viitasaari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' On the regularity of complex multiplicative chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' arXiv e-prints, page arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='12027, May 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [12] Janne Junnila, Eero Saksman, and Christian Webb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Decompositions of log-correlated fields with ap- plications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 29(6):3786–3820, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [13] Janne Junnila, Eero Saksman, and Christian Webb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Imaginary multiplicative chaos: moments, regu- larity and connections to the Ising model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 30(5):2099–2164, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [14] Zakhar Kabluchko and Anton Klimovsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Complex random energy model: zeros and fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theory Related Fields, 158(1-2):159–196, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [15] Jean-Pierre Kahane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Sur le chaos multiplicatif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' (On multiplicative chaos).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Qu´e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 9:105–150, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [16] Hubert Lacoin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Convergence in law for complex Gaussian multiplicative chaos in phase III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 50(3):950–983, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [17] Hubert Lacoin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Critical Gaussian Multiplicative Chaos revisited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' arXiv e-prints, page arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='06683, September 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [18] Hubert Lacoin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A universality result for subcritical complex Gaussian multiplicative chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 32(1):269–293, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [19] Hubert Lacoin, R´emi Rhodes, and Vincent Vargas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' A probabilistic approach of ultraviolet renormali- sation in the boundary Sine-Gordon model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' to appear in Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theory Related Fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [20] Hubert Lacoin, R´emi Rhodes, and Vincent Vargas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Complex Gaussian multiplicative chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 337(2):569–632, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [21] Jean-Fran¸cois Le Gall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Brownian motion, martingales, and stochastic calculus, volume 274 of Graduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [22] Thomas Madaule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Convergence in law for the branching random walk seen from its tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 30:27–63, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [23] Thomas Madaule, R´emi Rhodes, and Vincent Vargas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' The glassy phase of complex branching Brow- nian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 334(3):1157–1187, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [24] Thomas Madaule, R´emi Rhodes, and Vincent Vargas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Glassy phase and freezing of log-correlated gaussian potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 26(2):643–690, 04 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' 50 HUBERT LACOIN [25] Ellen Powell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Critical Gaussian multiplicative chaos: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' arXiv e-prints, page arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content='13767, June 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [26] Ellen Powell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Critical Gaussian multiplicative chaos: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Markov Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Related Fields, 27(4):557–506, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' [27] R´emi Rhodes and Vincent Vargas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Gaussian multiplicative chaos and applications: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' Surv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=', 11:315–392, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} +page_content=' IMPA, Institudo de Matem´atica Pura e Aplicada, Estrada Dona Castorina 110 Rio de Janeiro, CEP-22460-320, Brasil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tE4T4oBgHgl3EQfzg0x/content/2301.05274v1.pdf'} diff --git a/29E1T4oBgHgl3EQfSAP8/vector_store/index.pkl b/29E1T4oBgHgl3EQfSAP8/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..14b0c47b1af65bc105551b4113b2f018c6bd1905 --- /dev/null +++ b/29E1T4oBgHgl3EQfSAP8/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:86972a6df02c07bbb45187646c7e1f11bdcb107eb4624f311a9df8373dacc7b3 +size 172606 diff --git a/2dAyT4oBgHgl3EQfbvf7/content/2301.00271v1.pdf b/2dAyT4oBgHgl3EQfbvf7/content/2301.00271v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a9d0d480c6b15e4237a1150adca366d00b482f16 --- /dev/null +++ b/2dAyT4oBgHgl3EQfbvf7/content/2301.00271v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:901ef71c199885f409519f409a64fb38232015d39f5772ea75602b94d8ce3d93 +size 850815 diff --git a/2dAyT4oBgHgl3EQfbvf7/vector_store/index.pkl b/2dAyT4oBgHgl3EQfbvf7/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..163939045e88e4663943ac227165196f9f96aac9 --- /dev/null +++ b/2dAyT4oBgHgl3EQfbvf7/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:66ee4371f18a30079bc997dcf6a1145f459c51ec5bf7b8480fab95aa25c6419f +size 562930 diff --git a/3NAyT4oBgHgl3EQf1vm8/content/2301.00741v1.pdf b/3NAyT4oBgHgl3EQf1vm8/content/2301.00741v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a32f85971da72b37ae78c50947554ae7abbd0b07 --- /dev/null +++ b/3NAyT4oBgHgl3EQf1vm8/content/2301.00741v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4dac01ffb683820418c7367618397d39c518a433ab5da8f808662712cdde7098 +size 811268 diff --git a/3NAyT4oBgHgl3EQf1vm8/vector_store/index.pkl b/3NAyT4oBgHgl3EQf1vm8/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..1c8ccb2ba1f0f9e4ebab0f67ab2ddc14edacc9a0 --- /dev/null +++ b/3NAyT4oBgHgl3EQf1vm8/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e8e3182e884b2a8802e32ddd79db0d27b8b0dbf35699b3d4581112e07d9f4aa3 +size 77647 diff --git a/3dAzT4oBgHgl3EQfuf2L/content/tmp_files/2301.01692v1.pdf.txt b/3dAzT4oBgHgl3EQfuf2L/content/tmp_files/2301.01692v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..37ded03a2545e988fd7b512f2572b7b918afba40 --- /dev/null +++ b/3dAzT4oBgHgl3EQfuf2L/content/tmp_files/2301.01692v1.pdf.txt @@ -0,0 +1,510 @@ +arXiv:2301.01692v1 [gr-qc] 3 Jan 2023 +Another Friedman-type solution that eliminates the problem of the divergent +cosmological constant, implemented in the framework of the lattice regularization of +the theory of gravity +S.N. Vergeles∗ +Landau Institute for Theoretical Physics, +Russian Academy of Sciences, Chernogolovka, +Moscow region, 142432 Russia +and +Moscow Institute of Physics and Technology, +Department of Theoretical Physics, +Dolgoprudnyj, Moskow region, 141707 Russia +Lattice regularization of the theory of gravity provides a new possibility for solving the problem +of the divergent cosmological constant. The solution of the Einstein equation within the framework +of the Friedmann paradigm with a finite bare cosmological constant is mathematically correct, since +all local physical quantities (energy density including vacuum energy, etc.) on the lattice are finite. +As a result, a solution is obtained that demonstrates an exponential growth of the cosmological scale +factor a(t) in the initial period of evolution (inflation phase of the Universe) and then passes into a +power law (a(t) ∝ +√ +t). +PACS numbers: 04.60.Bc +1. +Introduction. +In the fundamental review [1] +the following facts were stated regarding the problem +of divergent energy (divergent cosmological constant) +of the ground state in quantum field theory: +(i) In +flat Minkowski space-time, these divergences, generally +speaking, take place, but in the case of supersymmetric +theories, the energies of the ground states strictly vanish. +(ii) In curved space-time, even in the case of supergravity, +the cosmological constant diverges. (iii) The superstring +theory does not save the situation either. +Since then, many papers have been published on this +problem. Here we note only a few approaches to solving +the problem, which seem to us very promising. +The first approach is represented by works [2–7]. In +these papers, efforts were made to solve the problem of +the cosmological constant in detail, that is, through mi- +croscopic analysis. In particular, the probability of the +following process was calculated. Let there be a massive +particle in the de Sitter space. This particle gives rise to +a pair of the same particles for a sufficiently long period +of time. This problem has been studied for both free and +interacting fields. +A similar statement of the problem +for massive charged particles in the case of a flat space- +time in the presence of a constant electric field leads to +the creation of particle-antiparticle pair that weaken the +initial electric field. In the case of de Sitter space, pair +production also leads to a decrease in the cosmological +constant with time. Unfortunately, in these works there +is no study of the reverse influence of quantized mate- +rial fields on the space-time geometry. It is possible that +continued efforts in this direction will lead to a solution +∗e-mail:vergeles@itp.ac.ru +to the problem of the cosmological constant. +In the paper [8] the mean of the energy-momentum +tensor of a quantized scalar field is calculated in the case +of an anisotropic metric, which is considered to be clas- +sical and variable in time. Regularization is carried out +in the usual way: the vacuum expectation value of the +energy-momentum tensor, calculated in the case of a sta- +tionary vacuum, is subtracted from the obtained value. +The authors of the paper [9] study such models of +field theory which, although not supersymmetric, have +the same number of boson and fermion degrees of free- +dom. In this case, the divergences of the highest, fourth +degree are eliminated in the quantum mean of the energy- +momentum tensor. It is shown what conditions the al- +ready renormalized field masses must satisfy in order to +reduce all other divergences. +The work [10] seems to us to be interesting and com- +plementary to the present work, since a bare cosmological +constant is also introduced in [10], and the reduction of +the huge vacuum energy is a dynamic effect, not a fine- +tuning effect. +Another interesting approach to solving the problem, +using the macroscopic thermodynamic ideology, is pre- +sented in [11] (see there also references for the articles +of F.R. Klinkhamer and G.E. Volovik). The main idea +of this approach is as follows. A bare cosmological con- +stant is introduced into the system describing gravity and +matter. The bare cosmological constant plays the role of +the chemical potential µ. If the system comes to a state +of thermodynamic equilibrium, then a large thermody- +namic potential is of interest. Let Ω be a large thermo- +dynamic potential for the spatial volume V . It is known +that +Ω(β, µ, V ) = −P(β, µ)V. +(1) + +2 +Here, β stands for inverse temperature. +In our case, +β should be understood as the (imaginary) time dur- +ing which the transition quantum amplitude (or partition +function) is calculated. We have an obvious limitation for +β values: |βH| ≪ 1, where H = ˙a/a is Hubble constant +and a(t) is the cosmic scale factor. Otherwise, there can +be no thermodynamic equilibrium. +The standard spa- +tially flat Robertson-Walker metric +d s2 = (d x0)2 − a2(t)(d xα)2, +α = 1, 2, 3 +(2) +is used in [11]. Since the gravitational degrees of free- +dom are exhausted by only one global parameter a(t), +then the potential (1) is saturated with the degrees of +freedom of matter. The main idea of the authors of the +paper [11] is that in the case of thermal equilibrium (if it +exists), the pressure on the right side of the equality (1) +tends to zero, since there is no external pressure at all. +Further, the effective energy-momentum tensor of matter +is formed by the potential (1). Therefore, the effective +energy density of matter, including the vacuum energy, +under the condition of thermal equilibrium is estimated +as ε ∼ Ω/V −→ 0. Thus the problem of the divergent +cosmological constant is removed. +The fundamental defect of all the papers cited here +is the fact that the vacuum energy (in particular, the +energy of zero-point oscillations) is not limited. +Figu- +ratively speaking, the Dirac sea has no bottom. +And +although the divergences in physical quantities are elim- +inated by subtracting vacuum values from them, there +remains a feeling of unsteadiness of the ground under +the feet of the researcher. The reason for this is that in +this case the characteristic divergences are power-law of +the fourth degree. +On the other hand, if the hypothesis is accepted that on +ultra-small scales, space-time has the property of gran- +ularity (this property is modeled by a lattice), then the +formulation and solution of at least some problems turn +out to be mathematically correct (see below). +This work is an ideological continuation of the work +[11]. The essential difference between the present paper +and the paper [11] is that we assume a lattice regular- +ization of the theory of gravity (see [12] and references +there). Lattice regularization provides a new possibility +for solving the problem of the divergent cosmological +constant. The solution of the Einstein equation within +the framework of the Friedmann paradigm with a finite +bare cosmological constant is mathematically correct, +since all local physical quantities (energy density in- +cluding vacuum energy, etc.) +on the lattice are finite. +Our approach assumes that all physical quantities are +determined by taking into account quantum zero point +fluctuations. +In particular, the energy density and +pressure are mainly determined by quantum fluctua- +tions. Since the equations considered here describe such +large energy densities that, on the characteristic time +intervals, have actions exceeding the Planck constant +by a huge number of times, we assume the considered +physical quantities to be classical and use the classical +equations [13]. As a result, a solution is obtained that +demonstrates an exponential growth of the scale factor +in the initial period of evolution and then passes into a +power law. +2. Einstein equation and solution. We use the energy- +momentum tensor of matter in the form of the energy- +momentum tensor of an ideal relativistic fluid: +T a +b = (ε + p)U aUb − pδa +b . +(3) +We work in an orthonormal basis in which the metric ten- +sor ηab = diag(1, −1, −1, −1). On the right side of (3), +the symbols ε and p denote the energy density and pres- +sure, respectively, and these quantities also include vac- +uum energy and pressure. Since fermionic fields, in con- +trast to bosonic ones, make a negative contribution to the +vacuum energy, but there are significantly more fermionic +degrees of freedom than bosonic ones, we have ε < 0. +Moreover, lattice regularization means that |ε|, |p| < ∞. +Note that in (3) the pressure p is different from the pres- +sure P(β, µ) in (1). A comparison of these values is given +below. U a is the averaged 4-velocity of the macroscopic +regions of the lattice. In our case U a = (1, 0, 0, 0). To +compensate for the vacuum energy, a bare finite positive +cosmological constant Λ0 is introduced into the Einstein +equation[14]: +Ra +b −1 +2δa +b R = 8πG +c4 T a +b + Λ0δa +b . +(4) +We assume that the cosmological constant +Λ0 = const ∼ l−2 +P , +lP ∼ +� +8πGℏ +c3 +∼ 10−32cm. +(5) +For the metric, we use ansatz (2). In order not to clutter +up the formulas, we introduce the notation +8πG +c4 ε = ˜ε, +8πG +c4 p = ˜p. +(6) +All components of the Einstein equation are reduced to +two equations: +3 ˙a2 +a2 = Λ0 + ˜ε, +2¨a +a + ˙a2 +a2 = Λ0 − ˜p. +(7) +Here ˙a ≡ d a/ d x0. +Another equation ∇aT a +b = 0 is a +consequence of equations (7), and therefore it does not +need to be considered. Let us introduce the Hubble con- +stant ˜H(t) ≡ ˙a/a, with the help of which Eqs. (7) are +rewritten as follows: +2 ˙˜H + (˜ε + ˜p) = 0, +3 ˜H2 − (Λ0 + ˜ε) = 0. +(8) +So we have 3 unknown functions {˜ε(t), ˜p(t), ˜H(t)} and 2 +equations (8). The missing equation is the equation of +state relating energy density and pressure. Regarding the +equation of state, the following facts are reliably known: +(i) in the case of real dusty matter, we have ˜p = 0; (ii) in + +3 +the case of real ultrarelativistic matter we have ˜p = ˜ε/3; +in the case of vacuum energy and pressure, we have ˜p = +−˜ε. In all three cases, the energy density and pressure +are linearly related. Therefore, we propose to accept the +following hypothesis: +˜p = κΛ0 + (κ − 1)˜ε ←→ ˜ε + ˜p = κ(˜ε + Λ0). +(9) +This equation is linear and inhomogeneous with an un- +known function κ(t), the asymptotics of which are fur- +ther determined based on the known dynamics. The set +of equations (8) and (9) has a solution: +˙˜H = −3 +2κ ˜H2 → ˜H(t) = ˜H0 +� +1 + 3 +2H0 +� t +0 +κ(t′) d t′ +�−1 +, +(10) +˜ε(t) = −Λ0 + 3 ˜H2 +0 +� +1 + 3 +2H0 +� t +0 +κ(t′) d t′ +�−2 +, +(11) +˜p(t) = Λ0 + 3 +� +κ(t) − 1 +� ˜H2 +0 +� +1 + 3 +2H0 +� t +0 +κ(t′) d t′ +�−2 +. +(12) +Here ˜H0 ≡ H0/c is the integration constant, ˜H(t) ≡ +H(t)/c, and H0 is the Hubble constant at the beginning +of the inflation phase, [H(t)] = [H0] = s−1. +We indicate some of the most obvious properties of the +solution (10), (11), (12). The estimates given below are +very rough. Let us accept the following estimates for the +duration of the inflation time tinf, and for the constant +Λ0: +tinf ∼= 10−37s, +H0 ∼= 1039s−1, +˜H0 ∼= 1029cm−1. (13) +Then H0tinf ∼= 100. Let’s take κ0 ≡ κ(t = 0) ∼= 1/150. +Assume that during the time tinf the function κ changes +insignificantly. Then for t < tinf the solutions (10), (11), +(12) take the form +˜H(t) ∼= ˜H0, +˜ε(t) ∼= −˜p ∼= −Λ0 + 3 ˜H2 +0. +(14) +Thus, during inflation, the scale factor a(t) increased by +(exp H0tinf) ≈ (exp 100) ≈ 1043 times. +Assume that when t > tinf, the function κ(t) becomes +equal to κ = 4/3. In this case, the solutions (10), (11), +(12) give a power-law expansion: +H(t) ∼= 1 +2t, +˜ε(t) ∼= −Λ0 + 3 +4t2 , +˜p ∼= Λ0 + 1 +4t2 . +(15) +Solution (15) shows that the scale factor and the density +of real matter change according to the well-known law, +as well as the correct equation of state in the case of +ultrarelativistic matter: +a(t) ∝ +√ +t, +ρreal = +3 +32πGt2 , +preal = 1 +3εreal. +(16) +3. Thermodynamic considerations. Here, the possibil- +ity of using a thermodynamic approach to this problem +is briefly discussed, and some thermodynamic relations +are also given. The purpose of this consideration is to +(at least superficially) explain the state equation (9). +The estimation (13) means that +˜H2 +0 ≪ Λ0. +(17) +It can be seen from Eq. (11) that the maximum frequen- +cies of the degrees of freedom of matter in the modern +era are of the order of +|ωmax| ∼ c +� +Λ0. +(18) +We are interested in small times when H ∼ H0 (see Eq. +(10). +Since at these times the space was many orders +of magnitude more compact, then for small times the +estimate |ωmax| ≫ c√Λ0 was valid. Consider the time +interval ∆t ≲ H−1, for which we have +∆a/a ∼ H∆t ≲ 1, +∆t|ωmax| ≫ 1. +(19) +Taking into account Eq. (19), we can assume that for a +time interval ∆t the thermodynamic equilibrium of the +vacuum degrees of freedom is realized. This assumption +cannot be extended to those degrees of freedom whose +frequencies ∆t|ω| ≲ 1. But such degrees of freedom make +a small contribution to the total energy-momentum ten- +sor. +When passing to the Euclidean signature by Wick’s +rotation ∆t = −i∆τ [15], the parameter +T ≡ β−1 = ℏ(∆τ)−1 ∼ ℏH +(20) +acquires the meaning of temperature. Let us determine +the temperature value in Kelvin degrees at the begin- +ning of the inflation process, when, according to some +estimates H0 ∼ 1039s−1. Then +T0 ∼ ℏH0 +k +∼ +� +1028�◦ K. +(21) +Here k is the Boltzmann constant. The temperature es- +timate (21) is within the known temperature estimates +in the initial phase of inflation. +Once again, we note that thermodynamic considera- +tions do not apply to low-frequency degrees of freedom. +In particular, ordinary real matter may, generally speak- +ing, not be in a state of thermal equilibrium. +According to Eqs. (10) and (20) we have: +ℏ d β ∼ d(1/H) = 3/2κ d t. +But in the inflation phase a(t) = a0eHt, and so d t = +H−1 d a/a. Thus we have: +d β/β ∼ (3/2)κ d a/a. +(22) +Since the temperature decreases in the inflation phase, it +can be seen from (22) that κ(t = 0) > 0. + +4 +It can be seen from the first Eq. (7) that the constant +Λ0 cancels out the huge negative energy of the vacuum, +so that in the era of power-law expansion only the rel- +atively extremely small positive energy density of real +matter affects the dynamics. From the given solution of +Einstein’s equations, it can be seen that the huge value +of pressure is also mainly reduced by the constant Λ0. +In the presented solution we have ˜p ∼ −˜ε ∼ Λ0. Such a +ratio of pressure and energy density of matter is dictated +by the relativistic invariance of quantum states. +We will show that the contraction of the enormous vac- +uum pressure ˜p can be interpreted as a thermodynamic +effect. Indeed, the contribution of the cosmological con- +stant to the action for volume V = +� � +|g| d3 x and time +interval ∆t is equal to +i AΛ0 /ℏ = − ic4 +8πGℏΛ0V ∆t. +(23) +As a result of the Wick rotation according to the formula +∆t = −i∆τ and due to (20) the action (23) is trans- +formed to the form +i AΛ0 /ℏ −→ − +c4 +8πGℏΛ0V ∆τ = − c4 +8πGΛ0V β. +(24) +Adding (24) to the Euclidean action has the same effect +as adding µNβ. +Here N is the number of degrees of +freedom on the part of the lattice contained in the volume +V , and µ is the total chemical potential of the lattice. +Equating the value (µNβ) to the value on the right side +of the Eq. (24), we find: +µ = − c4 +8πGΛ0 +V +N . +(25) +Usually the chemical potential is the independent vari- +able. But here it is a function of volume. Therefore, the +total pressure is determined by a more complex formula: +P(β, µ) = − +� ∂Ω +∂V +� +β,µ +− +�∂Ω +∂µ +� +β,V +∂µ +∂V = p − +c4 +8πGΛ0. +(26) +Here we have taken into account the equality N += +−(∂Ω/∂µ)β,V and Eq. (25). On the left hand side of +Eq. (26) the pressure P(β, µ) is the same as the pressure +in Eq. (1). The above solution of the Einstein equations +shows that P(β, µ) is negligible compared to the total +pressure p of matter. This fact was pointed out and used +in the work [11] +The estimate ˜p ∼= Λ0 together with the vacuum energy +hypothesis ˜ε ∼= −Λ0 justifies the equation of state (9). In +both parts of equality (˜ε + ˜p) = κ(˜ε + Λ0), the diverging +values of the quantities cancel each other out. This fact +is the result of solving dynamic equations. +A more accurate equation of state should be obtained +by microscopic analysis in the spirit of the works [2–7]. +Acknowledgments +I thank Prof. G.E. Volovik for awakening my interest +in the thermodynamic study of the problem. I am grate- +ful to Prof. +E.T. Akhmedov for numerous discussions +and advice in the course of work. This work was carried +out as a part of the State Program 0033-2019-0005. +[1] S. Weinberg, Reviews of modern physics 61, 1 (1989). +[2] D. Krotov and A. M. Polyakov, Nuclear Physics B 849, +410 (2011). +[3] A. Polyakov, arXiv preprint arXiv:1209.4135 (2012). +[4] E. Akhmedov, International Journal of Modern Physics +D 23, 1430001 (2014). +[5] E. Akhmedov, U. Moschella, and F. Popov, Physical Re- +view D 99, 086009 (2019). +[6] E. Akhmedov, Modern Physics Letters A 36, 2130020 +(2021). +[7] A. Y. Kamenshchik, A. A. Starobinsky, and T. Var- +danyan, The European Physical Journal C 82, 1 (2022). +[8] Y. B. Zel’Dovich and A. Starobinskiˇı, Soviet Journal of +Experimental and Theoretical Physics 34, 1159 (1972). +[9] A. Y. Kamenshchik, A. A. Starobinsky, A. Tronconi, +T. Vardanyan, and G. Venturi, The European Physical +Journal C 78, 1 (2018). +[10] S. Appleby and E. V. Linder, Journal of Cosmology and +Astroparticle Physics 2020, 037 (2020). +[11] F. Klinkhamer and G. Volovik, Physical Review D 105, +084066 (2022). +[12] S. Vergeles, Classical and Quantum Gravity 38, 085022 +(2021). +[13] We mean the fact that according to (5), (6) and (11) +we have the estimate (l3 +P tP ε)/ℏ ∼ 1. Here tP ∼ lP /c ∼ +10−43s is the Planck time. However, the inflation time +tinf is several orders of magnitude longer than the Planck +time (see (13)), and therefore (l3 +P tinfε)/ℏ ≫ 1. This +means that in the Planck volume, on a time interval much +greater than the Planckian but much less than the infla- +tion time, the action of the system is much greater than +the Planck constant, and therefore a classical description +is possible. +[14] In lattice theory [12], the cosmological constant is intro- +duced in a natural way. +[15] The correctness of the sign during Wick rotation is es- +tablished by the example of the action of a scalar field. + diff --git a/3dAzT4oBgHgl3EQfuf2L/content/tmp_files/load_file.txt b/3dAzT4oBgHgl3EQfuf2L/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..65383539ee2c6cb16fee8b3bd675ae5a6705d88b --- /dev/null +++ b/3dAzT4oBgHgl3EQfuf2L/content/tmp_files/load_file.txt @@ -0,0 +1,222 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf,len=221 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='01692v1 [gr-qc] 3 Jan 2023 Another Friedman-type solution that eliminates the problem of the divergent cosmological constant, implemented in the framework of the lattice regularization of the theory of gravity S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Vergeles∗ Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia and Moscow Institute of Physics and Technology, Department of Theoretical Physics, Dolgoprudnyj, Moskow region, 141707 Russia Lattice regularization of the theory of gravity provides a new possibility for solving the problem of the divergent cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The solution of the Einstein equation within the framework of the Friedmann paradigm with a finite bare cosmological constant is mathematically correct, since all local physical quantities (energy density including vacuum energy, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=') on the lattice are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' As a result, a solution is obtained that demonstrates an exponential growth of the cosmological scale factor a(t) in the initial period of evolution (inflation phase of the Universe) and then passes into a power law (a(t) ∝ √ t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' PACS numbers: 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='Bc 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In the fundamental review [1] the following facts were stated regarding the problem of divergent energy (divergent cosmological constant) of the ground state in quantum field theory: (i) In flat Minkowski space-time, these divergences, generally speaking, take place, but in the case of supersymmetric theories, the energies of the ground states strictly vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (ii) In curved space-time, even in the case of supergravity, the cosmological constant diverges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (iii) The superstring theory does not save the situation either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Since then, many papers have been published on this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Here we note only a few approaches to solving the problem, which seem to us very promising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The first approach is represented by works [2–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In these papers, efforts were made to solve the problem of the cosmological constant in detail, that is, through mi- croscopic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In particular, the probability of the following process was calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Let there be a massive particle in the de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This particle gives rise to a pair of the same particles for a sufficiently long period of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This problem has been studied for both free and interacting fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' A similar statement of the problem for massive charged particles in the case of a flat space- time in the presence of a constant electric field leads to the creation of particle-antiparticle pair that weaken the initial electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In the case of de Sitter space, pair production also leads to a decrease in the cosmological constant with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Unfortunately, in these works there is no study of the reverse influence of quantized mate- rial fields on the space-time geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' It is possible that continued efforts in this direction will lead to a solution ∗e-mail:vergeles@itp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='ru to the problem of the cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In the paper [8] the mean of the energy-momentum tensor of a quantized scalar field is calculated in the case of an anisotropic metric, which is considered to be clas- sical and variable in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Regularization is carried out in the usual way: the vacuum expectation value of the energy-momentum tensor, calculated in the case of a sta- tionary vacuum, is subtracted from the obtained value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The authors of the paper [9] study such models of field theory which, although not supersymmetric, have the same number of boson and fermion degrees of free- dom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In this case, the divergences of the highest, fourth degree are eliminated in the quantum mean of the energy- momentum tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' It is shown what conditions the al- ready renormalized field masses must satisfy in order to reduce all other divergences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The work [10] seems to us to be interesting and com- plementary to the present work, since a bare cosmological constant is also introduced in [10], and the reduction of the huge vacuum energy is a dynamic effect, not a fine- tuning effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Another interesting approach to solving the problem, using the macroscopic thermodynamic ideology, is pre- sented in [11] (see there also references for the articles of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Klinkhamer and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Volovik).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The main idea of this approach is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' A bare cosmological con- stant is introduced into the system describing gravity and matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The bare cosmological constant plays the role of the chemical potential µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' If the system comes to a state of thermodynamic equilibrium, then a large thermody- namic potential is of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Let Ω be a large thermo- dynamic potential for the spatial volume V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' It is known that Ω(β, µ, V ) = −P(β, µ)V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (1) 2 Here, β stands for inverse temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In our case, β should be understood as the (imaginary) time dur- ing which the transition quantum amplitude (or partition function) is calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' We have an obvious limitation for β values: |βH| ≪ 1, where H = ˙a/a is Hubble constant and a(t) is the cosmic scale factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Otherwise, there can be no thermodynamic equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The standard spa- tially flat Robertson-Walker metric d s2 = (d x0)2 − a2(t)(d xα)2, α = 1, 2, 3 (2) is used in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Since the gravitational degrees of free- dom are exhausted by only one global parameter a(t), then the potential (1) is saturated with the degrees of freedom of matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The main idea of the authors of the paper [11] is that in the case of thermal equilibrium (if it exists), the pressure on the right side of the equality (1) tends to zero, since there is no external pressure at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Further, the effective energy-momentum tensor of matter is formed by the potential (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Therefore, the effective energy density of matter, including the vacuum energy, under the condition of thermal equilibrium is estimated as ε ∼ Ω/V −→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Thus the problem of the divergent cosmological constant is removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The fundamental defect of all the papers cited here is the fact that the vacuum energy (in particular, the energy of zero-point oscillations) is not limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Figu- ratively speaking, the Dirac sea has no bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' And although the divergences in physical quantities are elim- inated by subtracting vacuum values from them, there remains a feeling of unsteadiness of the ground under the feet of the researcher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The reason for this is that in this case the characteristic divergences are power-law of the fourth degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' On the other hand, if the hypothesis is accepted that on ultra-small scales, space-time has the property of gran- ularity (this property is modeled by a lattice), then the formulation and solution of at least some problems turn out to be mathematically correct (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This work is an ideological continuation of the work [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The essential difference between the present paper and the paper [11] is that we assume a lattice regular- ization of the theory of gravity (see [12] and references there).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Lattice regularization provides a new possibility for solving the problem of the divergent cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The solution of the Einstein equation within the framework of the Friedmann paradigm with a finite bare cosmological constant is mathematically correct, since all local physical quantities (energy density in- cluding vacuum energy, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=') on the lattice are finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Our approach assumes that all physical quantities are determined by taking into account quantum zero point fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In particular, the energy density and pressure are mainly determined by quantum fluctua- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Since the equations considered here describe such large energy densities that, on the characteristic time intervals, have actions exceeding the Planck constant by a huge number of times, we assume the considered physical quantities to be classical and use the classical equations [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' As a result, a solution is obtained that demonstrates an exponential growth of the scale factor in the initial period of evolution and then passes into a power law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Einstein equation and solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' We use the energy- momentum tensor of matter in the form of the energy- momentum tensor of an ideal relativistic fluid: T a b = (ε + p)U aUb − pδa b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (3) We work in an orthonormal basis in which the metric ten- sor ηab = diag(1, −1, −1, −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' On the right side of (3), the symbols ε and p denote the energy density and pres- sure, respectively, and these quantities also include vac- uum energy and pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Since fermionic fields, in con- trast to bosonic ones, make a negative contribution to the vacuum energy, but there are significantly more fermionic degrees of freedom than bosonic ones, we have ε < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Moreover, lattice regularization means that |ε|, |p| < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Note that in (3) the pressure p is different from the pres- sure P(β, µ) in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' A comparison of these values is given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' U a is the averaged 4-velocity of the macroscopic regions of the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In our case U a = (1, 0, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' To compensate for the vacuum energy, a bare finite positive cosmological constant Λ0 is introduced into the Einstein equation[14]: Ra b −1 2δa b R = 8πG c4 T a b + Λ0δa b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (4) We assume that the cosmological constant Λ0 = const ∼ l−2 P , lP ∼ � 8πGℏ c3 ∼ 10−32cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (5) For the metric, we use ansatz (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In order not to clutter up the formulas, we introduce the notation 8πG c4 ε = ˜ε, 8πG c4 p = ˜p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (6) All components of the Einstein equation are reduced to two equations: 3 ˙a2 a2 = Λ0 + ˜ε, 2¨a a + ˙a2 a2 = Λ0 − ˜p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (7) Here ˙a ≡ d a/ d x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Another equation ∇aT a b = 0 is a consequence of equations (7), and therefore it does not need to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Let us introduce the Hubble con- stant ˜H(t) ≡ ˙a/a, with the help of which Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (7) are rewritten as follows: 2 ˙˜H + (˜ε + ˜p) = 0, 3 ˜H2 − (Λ0 + ˜ε) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (8) So we have 3 unknown functions {˜ε(t), ˜p(t), ˜H(t)} and 2 equations (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The missing equation is the equation of state relating energy density and pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Regarding the equation of state, the following facts are reliably known: (i) in the case of real dusty matter, we have ˜p = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (ii) in 3 the case of real ultrarelativistic matter we have ˜p = ˜ε/3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' in the case of vacuum energy and pressure, we have ˜p = −˜ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In all three cases, the energy density and pressure are linearly related.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Therefore, we propose to accept the following hypothesis: ˜p = κΛ0 + (κ − 1)˜ε ←→ ˜ε + ˜p = κ(˜ε + Λ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (9) This equation is linear and inhomogeneous with an un- known function κ(t), the asymptotics of which are fur- ther determined based on the known dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The set of equations (8) and (9) has a solution: ˙˜H = −3 2κ ˜H2 → ˜H(t) = ˜H0 � 1 + 3 2H0 � t 0 κ(t′) d t′ �−1 , (10) ˜ε(t) = −Λ0 + 3 ˜H2 0 � 1 + 3 2H0 � t 0 κ(t′) d t′ �−2 , (11) ˜p(t) = Λ0 + 3 � κ(t) − 1 � ˜H2 0 � 1 + 3 2H0 � t 0 κ(t′) d t′ �−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (12) Here ˜H0 ≡ H0/c is the integration constant, ˜H(t) ≡ H(t)/c, and H0 is the Hubble constant at the beginning of the inflation phase, [H(t)] = [H0] = s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' We indicate some of the most obvious properties of the solution (10), (11), (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The estimates given below are very rough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Let us accept the following estimates for the duration of the inflation time tinf, and for the constant Λ0: tinf ∼= 10−37s, H0 ∼= 1039s−1, ˜H0 ∼= 1029cm−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (13) Then H0tinf ∼= 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Let’s take κ0 ≡ κ(t = 0) ∼= 1/150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Assume that during the time tinf the function κ changes insignificantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Then for t < tinf the solutions (10), (11), (12) take the form ˜H(t) ∼= ˜H0, ˜ε(t) ∼= −˜p ∼= −Λ0 + 3 ˜H2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (14) Thus, during inflation, the scale factor a(t) increased by (exp H0tinf) ≈ (exp 100) ≈ 1043 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Assume that when t > tinf, the function κ(t) becomes equal to κ = 4/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In this case, the solutions (10), (11), (12) give a power-law expansion: H(t) ∼= 1 2t, ˜ε(t) ∼= −Λ0 + 3 4t2 , ˜p ∼= Λ0 + 1 4t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (15) Solution (15) shows that the scale factor and the density of real matter change according to the well-known law, as well as the correct equation of state in the case of ultrarelativistic matter: a(t) ∝ √ t, ρreal = 3 32πGt2 , preal = 1 3εreal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (16) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Thermodynamic considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Here, the possibil- ity of using a thermodynamic approach to this problem is briefly discussed, and some thermodynamic relations are also given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The purpose of this consideration is to (at least superficially) explain the state equation (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The estimation (13) means that ˜H2 0 ≪ Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (17) It can be seen from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (11) that the maximum frequen- cies of the degrees of freedom of matter in the modern era are of the order of |ωmax| ∼ c � Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (18) We are interested in small times when H ∼ H0 (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Since at these times the space was many orders of magnitude more compact, then for small times the estimate |ωmax| ≫ c√Λ0 was valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Consider the time interval ∆t ≲ H−1, for which we have ∆a/a ∼ H∆t ≲ 1, ∆t|ωmax| ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (19) Taking into account Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (19), we can assume that for a time interval ∆t the thermodynamic equilibrium of the vacuum degrees of freedom is realized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This assumption cannot be extended to those degrees of freedom whose frequencies ∆t|ω| ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' But such degrees of freedom make a small contribution to the total energy-momentum ten- sor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' When passing to the Euclidean signature by Wick’s rotation ∆t = −i∆τ [15], the parameter T ≡ β−1 = ℏ(∆τ)−1 ∼ ℏH (20) acquires the meaning of temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Let us determine the temperature value in Kelvin degrees at the begin- ning of the inflation process, when, according to some estimates H0 ∼ 1039s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Then T0 ∼ ℏH0 k ∼ � 1028�◦ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (21) Here k is the Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The temperature es- timate (21) is within the known temperature estimates in the initial phase of inflation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Once again, we note that thermodynamic considera- tions do not apply to low-frequency degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In particular, ordinary real matter may, generally speak- ing, not be in a state of thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' According to Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (10) and (20) we have: ℏ d β ∼ d(1/H) = 3/2κ d t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' But in the inflation phase a(t) = a0eHt, and so d t = H−1 d a/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Thus we have: d β/β ∼ (3/2)κ d a/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (22) Since the temperature decreases in the inflation phase, it can be seen from (22) that κ(t = 0) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' 4 It can be seen from the first Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (7) that the constant Λ0 cancels out the huge negative energy of the vacuum, so that in the era of power-law expansion only the rel- atively extremely small positive energy density of real matter affects the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' From the given solution of Einstein’s equations, it can be seen that the huge value of pressure is also mainly reduced by the constant Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In the presented solution we have ˜p ∼ −˜ε ∼ Λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Such a ratio of pressure and energy density of matter is dictated by the relativistic invariance of quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' We will show that the contraction of the enormous vac- uum pressure ˜p can be interpreted as a thermodynamic effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Indeed, the contribution of the cosmological con- stant to the action for volume V = � � |g| d3 x and time interval ∆t is equal to i AΛ0 /ℏ = − ic4 8πGℏΛ0V ∆t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (23) As a result of the Wick rotation according to the formula ∆t = −i∆τ and due to (20) the action (23) is trans- formed to the form i AΛ0 /ℏ −→ − c4 8πGℏΛ0V ∆τ = − c4 8πGΛ0V β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (24) Adding (24) to the Euclidean action has the same effect as adding µNβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Here N is the number of degrees of freedom on the part of the lattice contained in the volume V , and µ is the total chemical potential of the lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Equating the value (µNβ) to the value on the right side of the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (24), we find: µ = − c4 8πGΛ0 V N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (25) Usually the chemical potential is the independent vari- able.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' But here it is a function of volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Therefore, the total pressure is determined by a more complex formula: P(β, µ) = − � ∂Ω ∂V � β,µ − �∂Ω ∂µ � β,V ∂µ ∂V = p − c4 8πGΛ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (26) Here we have taken into account the equality N = −(∂Ω/∂µ)β,V and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' On the left hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (26) the pressure P(β, µ) is the same as the pressure in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' The above solution of the Einstein equations shows that P(β, µ) is negligible compared to the total pressure p of matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This fact was pointed out and used in the work [11] The estimate ˜p ∼= Λ0 together with the vacuum energy hypothesis ˜ε ∼= −Λ0 justifies the equation of state (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' In both parts of equality (˜ε + ˜p) = κ(˜ε + Λ0), the diverging values of the quantities cancel each other out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This fact is the result of solving dynamic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' A more accurate equation of state should be obtained by microscopic analysis in the spirit of the works [2–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Acknowledgments I thank Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Volovik for awakening my interest in the thermodynamic study of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' I am grate- ful to Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Akhmedov for numerous discussions and advice in the course of work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This work was carried out as a part of the State Program 0033-2019-0005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Weinberg, Reviews of modern physics 61, 1 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Krotov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Polyakov, Nuclear Physics B 849, 410 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Polyakov, arXiv preprint arXiv:1209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content='4135 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Akhmedov, International Journal of Modern Physics D 23, 1430001 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Akhmedov, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Moschella, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Popov, Physical Re- view D 99, 086009 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Akhmedov, Modern Physics Letters A 36, 2130020 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Kamenshchik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Starobinsky, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Var- danyan, The European Physical Journal C 82, 1 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Zel’Dovich and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Starobinskiˇı, Soviet Journal of Experimental and Theoretical Physics 34, 1159 (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Kamenshchik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Starobinsky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Tronconi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Vardanyan, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Venturi, The European Physical Journal C 78, 1 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Appleby and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Linder, Journal of Cosmology and Astroparticle Physics 2020, 037 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Klinkhamer and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Volovik, Physical Review D 105, 084066 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Vergeles, Classical and Quantum Gravity 38, 085022 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [13] We mean the fact that according to (5), (6) and (11) we have the estimate (l3 P tP ε)/ℏ ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' Here tP ∼ lP /c ∼ 10−43s is the Planck time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' However, the inflation time tinf is several orders of magnitude longer than the Planck time (see (13)), and therefore (l3 P tinfε)/ℏ ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' This means that in the Planck volume, on a time interval much greater than the Planckian but much less than the infla- tion time, the action of the system is much greater than the Planck constant, and therefore a classical description is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [14] In lattice theory [12], the cosmological constant is intro- duced in a natural way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} +page_content=' [15] The correctness of the sign during Wick rotation is es- tablished by the example of the action of a scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfuf2L/content/2301.01692v1.pdf'} diff --git a/3tE1T4oBgHgl3EQfSQPo/content/2301.03065v1.pdf b/3tE1T4oBgHgl3EQfSQPo/content/2301.03065v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0102246e1e95cdae2b1c4e6ffcd4a98b09301f9f --- /dev/null +++ b/3tE1T4oBgHgl3EQfSQPo/content/2301.03065v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:27de6f0a7b39010959ef80fcde14e60e12a48e30f6dc4323951c4d9ef3f25217 +size 271532 diff --git a/3tE1T4oBgHgl3EQfSQPo/vector_store/index.faiss b/3tE1T4oBgHgl3EQfSQPo/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..f33de90128e40f7627c40fb9b98ac3a2a551666a --- /dev/null +++ b/3tE1T4oBgHgl3EQfSQPo/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:36a439462d8596160d8ff28e81bc27a7ef00550aecbb1954872c042f31136d19 +size 3604525 diff --git a/3tE1T4oBgHgl3EQfSQPo/vector_store/index.pkl b/3tE1T4oBgHgl3EQfSQPo/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..54bc1a55211fc201b7050383a0592b61308502d3 --- /dev/null +++ b/3tE1T4oBgHgl3EQfSQPo/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dae12c78700371ca0922c4c9577eb46609d8737a48b1c598717ab92d57227c29 +size 123703 diff --git a/4dAyT4oBgHgl3EQfP_bc/content/2301.00038v1.pdf b/4dAyT4oBgHgl3EQfP_bc/content/2301.00038v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b431d126e455c74e49c13beecca33b49c133e3e6 --- /dev/null +++ b/4dAyT4oBgHgl3EQfP_bc/content/2301.00038v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2812f9bd2cf0c562afaedb8590c06d2d4fe1fd58682559956cad953e0f653b97 +size 995706 diff --git a/4dAyT4oBgHgl3EQfP_bc/vector_store/index.faiss b/4dAyT4oBgHgl3EQfP_bc/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..80724257bd3b0b658f654ca76ab6ec4c9a8d574c --- /dev/null +++ b/4dAyT4oBgHgl3EQfP_bc/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8c61ee272022cdce9ee4a456a91fa31a246571b2fbd1139ecdd4525a73a1f6ac +size 9699373 diff --git a/4dAyT4oBgHgl3EQfP_bc/vector_store/index.pkl b/4dAyT4oBgHgl3EQfP_bc/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..890cd145a714ecaa9c84e2b4b83c79212cba77a9 --- /dev/null +++ b/4dAyT4oBgHgl3EQfP_bc/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:208e93d8bb6cb079acb6807f6bd024b9bc666b6f92fa92b9c405e867454e8da4 +size 335746 diff --git a/4dE0T4oBgHgl3EQfeQDL/vector_store/index.faiss b/4dE0T4oBgHgl3EQfeQDL/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..758bae017325faef33a320d991faa7dbbc8752a5 --- /dev/null +++ b/4dE0T4oBgHgl3EQfeQDL/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b30453450cb467b17c88e8e62733e7ca09506128e978c1b929bdc9f010d52f75 +size 3342381 diff --git a/69E0T4oBgHgl3EQffAC0/content/tmp_files/2301.02399v1.pdf.txt b/69E0T4oBgHgl3EQffAC0/content/tmp_files/2301.02399v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d3a85be093b85c2243880b37596adb7c8f5eecfb --- /dev/null +++ b/69E0T4oBgHgl3EQffAC0/content/tmp_files/2301.02399v1.pdf.txt @@ -0,0 +1,6045 @@ +Mon. Not. R. Astron. Soc. 000, 1–?? (0000) +Printed 9 January 2023 +(MN LaTEX style file v2.2) +Photometric variable stars in the young open cluster +NGC 6823 +Sneh Lata1⋆, W. P. Chen2,3, J. C. Pandey1, Athul Dileep1, Zhong-Han Ai3, +Alisher S. Hojaev4, Neelam Panwar1, Santosh Joshi1, Soumen Mondal5, +Siddhartha Biswas5, B. C. Bhatt6 +1Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263002, Uttarakhand, India +2Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli 32001 Taoyuan, Taiwan +3Department of Physics, National Central University, 300 Zhongda Road, Zhongli 32001 Taoyuan, Taiwan +4Ulugh Beg Astronomical Institute, Uzbekistan Academy of Sciences, Tashkent, Republic of Uzbekistan +5S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India +6Indian Institute of Astrophysics, Koramangala, Bangalore-560034, India +Accepted ———. Received ———; +ABSTRACT +We present stellar variability towards the young open cluster NGC 6823. Time series V - +and I-band CCD photometry led to identification and characterization of 88 variable +stars, of which only 14 have been previously recognized. We ascertain the membership +of each variable with optical UBV I and infrared photometry, and with Gaia EDR3 +parallax and proper motion data. Seventy two variable stars are found to be cluster +members, of which 25 are main sequence stars and 48 are pre-main-sequence stars. +The probable cluster members collectively suggest an isochrone age of the cluster to +be about 2 Myrs based on the GAIA photometry. With the color and magnitude, as +well as the shape of the light curve, we have classified the main sequence variables into +β Cep, δ Scuti, slowly pulsating B type, and new class variables. Among the pre-main- +sequence variables, eight are classical T Tauri variables, and four are Herbig Ae/Be +objects, whereas the remaining belong to the weak-lined T Tauri population. The +variable nature of 32 stars is validated with TESS light curves. Our work provides +refined classification of variability of pre-main-sequence and main-sequence cluster +members of the active star-forming complex, Sharpless 86. Despite no strong evidence +of the disk-locking mechanism in the present sample of TTSs, one TTS with larger +∆(I − K) is found to be slow rotator. +Key words: +open clusters and associations: individual NGC 6823, Hertzsprung- +Russell and color-magnitude diagram, stars: pre-main-sequence, stars: variables: T +Tauri, Herbig Ae/Be +1 +INTRODUCTION +Young open clusters serve as useful tools for the studies +of the star formation mechanism and early stellar evolu- +tion. For example, young star clusters are used to trace the +Galactic spiral structure. In particular, variability of young +stellar members provides diagnostics on the sporadic (accre- +tion or occultation) or periodical (rotation) properties of the +stars, and of their relation to the circumstellar environments +(Morales-Calderon et al. 2011). +Pre-main-sequence (PMS) objects are categorized on +⋆ E-mail: sneh@aries.res.in +the basis of the spectral energy distribution in the infrared +wavelengths: Class 0 , Class I, Class II, and Class III (Lada +1987; Andre et al. 1993) with the classification sequence +roughly corresponding to the evolutionary status. Namely, +a Class 0 object signifies a clump of dust and gas heavily en- +shrouded in the molecular envelope, and is detected only in +far-infrared wavelengths or longer. A Class I object is more +evolved, now emerging from the cloud to become visible in +near- and mid-infrared. A Class I object is in the protostellar +stage and derives the luminosity from mass accretion. +A Class II object, corresponding to a classical T Tauri +star (TTS), has dispersed much of the envelope of gas and +dust but retains a circumstellar disk within which plan- +© 0000 RAS +arXiv:2301.02399v1 [astro-ph.SR] 6 Jan 2023 + +2 +Sneh Lata et al. +ets may condense or are being formed. Inside the optically +thick but geometrically thin disk, the dust grains absorb the +starlight and re-emit in the infrared, manifest as infrared +excess seen typically in a classical TTS. Accretion from the +disk onto the star, while matter is partly lost as bipolar +jets/outflows, leads to strong emission lines in the spectrum. +As the inner disk is dissipated (or going into planet forma- +tion), the PMS object then evolves to Class III, now with +negligible infrared excess and with weak emission lines, if +any, due to surface chromospheric activity. A Class III object +hence is called a weak-lined TTS (Joy 1945, Appenzeller & +Mundt 1989). Variability of PMS objects hence serves as an +important diagnosis to understand the earliest PMS stellar +evolution, e.g., the accretion (Johnstone et al. 2018), rota- +tion (Herbst et al. 1994), or dust properties (Huang et al. +2019). +Here we report the variability study of the Galactic +young open cluster NGC 6823. At a distance of about 2 kpc, +the cluster is associated with the prominent H II region, +Sharpless 86. This cluster has been investigated by several +authors (Turner 1979, Stone 1988, Bica et al. 2008, Sagar +and Joshi 1981; Guetter 1992; Massey et al. 1995; Pigulski et +al. 2000; Hojaev et al. 2003, Zahajkiewicz 2012). Using op- +tical and JHK photometric observations Riaz et al. (2012) +found a large population of young stellar sources in the re- +gion, including two δ Scuti variables of PMS nature, and 13 +other variables such as eclipsing binaries, slowly pulsating B +candidates and UX Ori type variables. In the line of sight to +the cluster the reddening has been found to be from 0.7 to +1.1 mag following a normal reddening law (Rangwal et al. +2017). The aim of the present work is to identify variables +in a relatively large field of ∼ 14′ ×14′ of the member versus +nonmember variable stellar populations in the region. Par- +ticularly, photometric rotation periods of PMS members are +derived to add to the data inventory for the study of the +angular momentum evolution of low-mass stars. +We describe in Section 2 observations, data reduction +procedure, detection of variables, and period determina- +tions. In Section 3, membership of the identified variable +candidates is discussed using Gaia proper motion data, pho- +tometric two-color diagrams (TCDs) and color-magnitude +diagrams (CMDs). Section 4 then presents the nature of +known and newly identified variable stars, while Section 5 +deals with TESS light curves. We discuss correlation be- +tween amplitude and rotation periods of TTSs along with +their color excess in Section 6. The results are summarized +in Section 7. +2 +OBSERVATIONS AND DATA REDUCTION +We have observed NGC 6823 with the 0.81-m f/7 Ritchey- +Chretien Tenagra automated telescope in southern Arizona, +equipped with a 1024 × 1024 pixel SITe camera. Each pixel +corresponds to 0.87′′, which yields a field of view of ∼ 14.8′× +14.8′. The observations were carried out from 2012 early +October to 2012 December. In total, data were acquired on +54 nights in two passbands, with 232 frames in V band and +243 frames in I band, with typical seeing of 2–3′′. Bias and +twilight flats were taken every observing night. The observed +region of the cluster in I band is shown in Fig. 1. The log of +the observations is given in Table 1. +Figure 1. The observed region of open cluster NGC 6823. Each +variable star identified in this work is encircled. +Figure 2. Photometric errors as a function of instrumental mag- +nitude in I band. Open circles represent the variables stars iden- +tified in the present work. +The observed images were processed using standard +IRAF tasks: zerocombine, flatcombine and CCDPROC. We +have performed aperture as well as point spread function +(PSF) photometry to derive the magnitude of stars. The +PSF photometry was obtained using program ALLSTAR +(Stetson 1987). To match the stars between different pho- +tometric files we used the daomatch routine of DAOPHOT +(Stetson 1992) whereas daomaster was used to match the +point sources, and to obtain a file having corrected mag- +nitude of stars from all the files. The daomaster program +also removes the flux variation of stars in different frames +© 0000 RAS, MNRAS 000, 1–?? + +23.400 +42 +213 +240 +264 +298 +4498. +0SE'E2 +402 +6FF +478 +546 +521 +I +.614 +6.3 +DEC +23.300 +7月 +826 +831 +965 +950 +10002 +1025 +1122 +23.250 +1151 +1156 +1226 +1235 +1268 +1298 +1317 +1352 +682 +1406 +1405 +23.200 +1459 +1500 +1155 +15506 +295.91010 +295.850 +295.800 +295.750 +295.700 +RA0.04 +0.02 +10 +12 +8 +14 +16 +18 +instVariable stars in NGC 6823 +3 +Figure 3. The V and I band sample light curves of a few variables +identified in the present work where ∆m represents the differential +magnitude. +due to exposure time and airmass. This program makes the +magnitudes of stars in each photometry file equal to that of +reference file by applying a constant value. +We have used the V and I observations of Massey et +al. (1995) for conversion of the present instrumental magni- +tudes to the standard ones. For this, the mean instrumental +magnitudes in V and I bands given by DAOMASTER (Stet- +son 1992) have been converted into standard ones with the +following transformation equations. +V = v + (−0.042 ± 0.001) × (V − I) + 0.818 ± 0.014 +V − I = (0.982 ± 0.004) × (v − i) + 1.185 ± 0.002, +where v and i are the instrumental magnitudes, and V and I +refer to the standard magnitudes of stars in V and I filters. +The estimated photometric error as a function of the mean +instrumental magnitude is shown in Fig. 2. +2.1 +Variables identification +To identify variable stars, we first produced the light curves +of all the stars cross-matched in different CCD frames. The +light curves were obtained by plotting the differential mag- +nitudes (∆m) of stars (variable minus the comparison star) +against the given Julian date (JD). We used the Lomb- +Scargle periodogram (Lomb 1976; Scargle 1982) to derive +the periods and produced phased light curves accordingly to +Table 1. Log of the observations of NGC 6823. N and Exp. rep- +resent number of frames obtained and exposure time in seconds, +respectively. +S. No. +Date of +I +V +Observations +(N×Exp.) +(N×Exp.) +1 +13 oct 2012 +6× 30 +6 × 50 +2 +15 oct 2012 +3× 30 +3 × 50 +3 +16 oct 2012 +6× 30 +5 × 50 +4 +17 oct 2012 +6× 30 +6 × 50 +5 +19 oct 2012 +3× 30 +5 × 50 +6 +20 oct 2012 +6× 30 +6 × 50 +7 +21 oct 2012 +6× 30 +4 × 50 +8 +22 oct 2012 +6× 30 +6 × 50 +9 +23 oct 2012 +3× 30 +2 × 50 +10 +24 oct 2012 +6× 30 +6 × 50 +11 +25 oct 2012 +6× 30 +5 × 50 +12 +26 oct 2012 +5× 30 +5 × 50 +13 +27 oct 2012 +6× 30 +6 × 50 +14 +28 oct 2012 +6× 30 +6 × 50 +15 +29 oct 2012 +6× 30 +6 × 50 +16 +30 oct 2012 +6× 30 +6 × 50 +17 +31 oct 2012 +6× 30 +6 × 50 +18 +01 nov 2012 +6× 30 +4 × 50 +19 +02 nov 2012 +- +2 × 50 +20 +03 nov 2012 +6× 30 +5 × 50 +21 +04 nov 2012 +6× 30 +5 × 50 +22 +05 nov 2012 +5× 30 +5 × 50 +23 +06 nov 2012 +6× 30 +6 × 50 +24 +08 nov 2012 +6× 30 +6 × 50 +25 +11 nov 2012 +5× 30 +5 × 50 +26 +12 nov 2012 +2× 30 +3 × 50 +27 +14 nov 2012 +6× 30 +6 × 50 +28 +17 nov 2012 +3× 30 +3 × 50 +29 +19 nov 2012 +3× 30 +3 × 50 +30 +20 nov 2012 +6× 30 +6 × 50 +31 +22 nov 2012 +6× 30 +6 × 50 +32 +25 nov 2012 +6× 30 +6 × 50 +33 +27 nov 2012 +6× 30 +6 × 50 +34 +28 nov 2012 +6× 30 +6 × 50 +35 +29 nov 2012 +5× 30 +3 × 50 +36 +30 nov 2012 +6× 30 +6 × 50 +37 +01 dec 2012 +3× 30 +3 × 50 +38 +02 dec 2012 +3× 30 +3 × 50 +39 +03 dec 2012 +3× 30 +3 × 50 +40 +04 dec 2012 +3× 30 +3 × 50 +41 +05 dec 2012 +3× 30 +3 × 50 +42 +06 dec 2012 +3× 30 +3 × 50 +43 +07 dec 2012 +3× 30 +3 × 50 +44 +08 dec 2012 +3× 30 +3 × 50 +45 +09 dec 2012 +3× 30 +3 × 50 +46 +10 dec 2012 +3× 30 +1 × 50 +47 +11 dec 2012 +2× 30 +2 × 50 +48 +12 dec 2012 +3× 30 +3 × 50 +49 +13 dec 2012 +3× 30 +3 × 50 +50 +17 dec 2012 +3× 30 +3 × 50 +51 +18 dec 2012 +3× 30 +3 × 50 +52 +20 dec 2012 +3× 30 +3 × 50 +53 +21 dec 2012 +3× 30 +3 × 50 +54 +26 dec 2012 +6× 30 +- +ascertain their most probable periods. A few variables seem +to show periodic variability but their periodic nature was +not obvious in their observed light curves. The phased light +curves of all stars were inspected, and we adopted the pe- +riod value which produces the most consistent phased light +curve. The light curves of a few variables are shown in Fig. 3 +as examples. The phased light curves of variables identified +in both V and I bands are presented in Fig. 4 and Fig. 5, +whereas Fig. 6 shows variables identified in the I band only. +By eye inspection and periodogram analysis, we have +detected 88 variables. We have listed optical and near- +infrared (NIR) data of the variable stars in Table 2, including +an identification number, coordinates, and optical as well as +NIR photometric data. These are the star ID numbers la- +belled in Fig. 1. These 88 variable stars include 14 known +variables, with periods varying from ∼0.03 days to more +than 60 days. We have plotted in Fig. 7 the root mean square +(RMS) scatter of each star to confirm their variability. The +observed RMS scatter includes both the intrinsic variability +and the mean photometric error. The larger circles in Fig. 7 +show the variables identified in the present work, indicat- +ing large RMS values for variables. Some stars have large +RMS values but do not show noticeable brightness varia- +tion. Some of these objects are found to be close to the edge +© 0000 RAS, MNRAS 000, 1–?? + +154v +154i +385v +385i +-0.6 +-0.4 +-1.0 +-0.6 +-0.5 +-0.4 +-0.4 +-0.2 +-0.2 +0.0 +-0.2 +0.0 +m +m +m +m +0.0 +0.5 +0.0 +0.2 +0.2 +1.0 +0.2 +1 +0.4 +0.4 +1.5 +0.4 +0.6 +0.6 +2.0 +0.6 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +JD-JDmin +JD-JDmin +JD-JDmin +JD-JDmin +531v +531i +561v +561i +-0.6 +-0.4 +-0.6 +-0.4 +-0.4 +-0.4 +-0.2 +-0.2 +-0.2 +-0.2 +7 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +0.2 +0.2 +0.2 +0.2 +0.4 +0.4 +0.6 +0.4 +0.6 +0.4 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +JD-JDmin +JD-JDmin +JD-JDmin +JD-JDmin +655v +655i +752v +752i +-0.4 +-0.4 +-0.4 +-0.4 +-0.2 +-0.2 +-0.2 +-0.2 +0.0 +0.0 +m +0.2 +m +m +m +0.2 +0.0 +0.0 +0.4 +0.4 +0.6 +0.2 +0.2 +0.8 +0.6 +1.0 +0.8 +0.4 +0.4 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +JD-JDmin +JD-JDmin +JD-JDmin +JD-JDmin +757v +1235v +757i +1235i +-0.4 +-0.3 +-0.4 +-0.4 +-0.2 +-0.2 +-0.2 +0.2 +0.1 +0.0 +0.0 +m +m +m +m +0.0 +0.0 +0.2 +0.2 +0.1 +0.4 +0.4 +0.2 +0.2 +0.6 +0.6± +0.4 +0.3 +0.8 +0.8 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +0 20 40 60 80 +JD-JDmin +JD-JDmin +JD-JDmin +JD-JDmin1548v +1548i +1268i +-1.0 +-0.3 +-0.4 +-0.2 +-0.5 +-0.2 +-0.1 +F +0.0 +m +m +0.0 +0.0 +0.5 +0.1 +0.2 +1.0 +0.2 +1.5 +0.3 +0.4 +0 +20 40 60 80 +0 20 40 60 80 +0 +20 40 60 80 +JD-JDmin +JD-JDmin +JD-JDmin4 +Sneh Lata et al. +Table 2. The V I and JHK 2mass data, amplitude and period of variables identified towards NGC 6823. The 2MASS data were obtained +from the 2mass catalog (Cutri et al. 2003). The first column with an asterisk symbol represents a known variable. +ID +RA +Dec +V +V − I +J +H +K +(mag) +(mag) +(mag) +(mag) +(mag) +103 +295.668444 +23.412417 +18.115±0.101 +2.190±0.048 +14.231±0.041 +13.140±0.036 +12.508±0.034 +135 +295.730111 +23.406833 +18.454±0.124 +2.428±0.054 +14.324±0.056 +12.758±0.081 +11.586±0.044 +142 +295.921528 +23.403194 +- +- +9.997±0.022 +8.072±0.034 +7.137±0.020 +147 +295.717833 +23.404972 +18.251±0.102 +2.442±0.043 +13.925±0.029 +12.915±0.037 +12.452±0.031 +154 +295.729444 +23.404194 +15.305±0.021 +2.514±0.015 +10.509±0.021 +9.561±0.030 +8.621±0.024 +177 +295.798972 +23.398806 +- +- +14.623±0.040 +13.622±0.040 +13.154±0.036 +201 +295.806361 +23.392806 +18.651±0.129 +1.686± - +- +- +- +213 +295.678611 +23.391889 +18.583±0.133 +1.531±0.099 +15.949±0.093 +15.302±0.128 +14.913±0.129 +238 +295.856583 +23.385806 +- +- +9.096±0.022 +7.248±0.033 +6.386±0.027 +239 +295.793083 +23.386500 +17.564±0.063 +2.161±0.036 +13.328± - +12.411±0.044 +11.853±0.034 +240 +295.913278 +23.384861 +16.320±0.033 +1.113±0.034 +14.480±0.035 +14.178±0.051 +14.074±0.052 +264 +295.759250 +23.382944 +- +- +14.953±0.040 +14.097±0.043 +13.771±0.045 +298 +295.707806 +23.376667 +17.367±0.056 +1.772±0.040 +14.216±0.034 +13.319±0.040 +12.605±0.030 +369 +295.889056 +23.363222 +- +- +13.520±0.026 +12.672±0.033 +12.243±0.031 +377 +295.880000 +23.361417 +18.610±0.127 +2.027± - +- +- +- +385 +295.847556 +23.360861 +16.904±0.040 +1.763±0.029 +13.554±0.028 +12.719±0.033 +12.086±0.027 +402 +295.716611 +23.358944 +- +- +15.213±0.058 +14.159±0.063 +13.558±0.056 +449 +295.874806 +23.347806 +14.985±0.017 +1.571±0.017 +12.262±0.023 +11.665±0.028 +11.521±0.024 +452 +295.918972 +23.345917 +- +- +14.529±0.056 +13.475±0.055 +13.008±0.043 +478 +295.847167 +23.343222 +- +- +14.474±0.042 +13.418±0.046 +13.002±0.043 +502 +295.883889 +23.339000 +18.593±0.122 +2.086±0.067 +15.050±0.051 +14.019±0.053 +13.695±0.055 +510 +295.795694 +23.339139 +14.154±0.014 +1.061±0.020 +12.211±0.021 +11.957±0.031 +11.770±0.027 +527 +295.868056 +23.335778 +17.461±0.055 +2.126±0.032 +13.688±0.037 +12.840±0.040 +12.605±0.038 +529 +295.910194 +23.335083 +- +- +14.243±0.039 +12.844±0.040 +11.984±0.033 +531 +295.850028 +23.335583 +17.400±0.055 +2.102±0.031 +13.562±0.032 +12.740±0.036 +12.460±0.031 +546 +295.746583 +23.334750 +17.928±0.082 +1.702±0.060 +14.461± - +13.676± - +14.144±0.102 +561 +295.718194 +23.332694 +18.193±0.100 +2.100±0.051 +14.652± - +13.775± - +13.376±0.041 +576 +295.862722 +23.329111 +- +- +14.668±0.042 +13.423±0.039 +12.865±0.034 +614 +295.687444 +23.325333 +15.851±0.023 +1.277±0.023 +13.709±0.028 +13.328±0.041 +13.109±0.036 +619 +295.856806 +23.323000 +15.920±0.022 +1.721±0.018 +12.883±0.024 +12.309±0.031 +12.076±0.026 +623* +295.834472 +23.322306 +13.173±0.009 +1.202±0.012 +11.141±0.019 +10.662±0.030 +10.519±0.024 +655* +295.837528 +23.317306 +17.282±0.052 +2.287±0.028 +12.735±0.025 +11.397±0.031 +10.313±0.023 +679 +295.768611 +23.313583 +13.725±0.014 +0.967±0.018 +11.556±0.021 +10.530±0.030 +9.546±0.024 +706 +295.752944 +23.310389 +17.376±0.056 +1.963±0.036 +13.936±0.037 +13.149±0.046 +12.880±0.041 +731 +295.789306 +23.307667 +18.493±0.128 +2.239±0.060 +14.424±0.043 +13.458±0.051 +13.086±0.044 +733* +295.798444 +23.307361 +15.211±0.018 +1.224±0.023 +12.935±0.029 +12.515±0.045 +12.256±0.044 +752 +295.737667 +23.306472 +16.172±0.028 +1.398±0.028 +13.743±0.028 +13.207±0.040 +12.978±0.037 +753* +295.798472 +23.305694 +- +- +14.578±0.048 +13.491±0.062 +12.736±0.058 +757* +295.803833 +23.305278 +16.899±0.042 +2.077±0.029 +13.186±0.028 +12.420±0.035 +12.138±0.031 +765 +295.785417 +23.304806 +17.592±0.124 +1.533±0.075 +14.421± - +14.039±0.103 +13.848±0.076 +822* +295.787917 +23.297000 +14.529±0.015 +1.225±0.020 +12.396±0.026 +12.024±0.030 +11.823±0.032 +826 +295.825139 +23.295944 +- +- +14.661±0.044 +13.740±0.051 +13.406±0.045 +831* +295.746556 +23.296667 +- +- +11.266±0.033 +8.761±0.030 +7.326±0.020 +860 +295.798389 +23.292583 +17.563±0.121 +1.880±0.072 +14.754±0.055 +13.748±0.045 +13.055±0.041 +886* +295.794056 +23.290250 +14.448±0.015 +1.065±0.018 +12.637±0.022 +12.379±0.031 +12.207±0.029 +903* +295.801167 +23.288028 +14.382±0.014 +1.036±0.017 +12.568± - +12.141± - +11.928±0.033 +924* +295.787583 +23.285444 +18.146±0.097 +2.210±0.048 +14.154± - +13.363± - +13.035±0.046 +945 +295.855139 +23.282167 +14.524±0.014 +1.206±0.015 +12.395±0.033 +12.051±0.040 +11.913±0.033 +950 +295.707250 +23.283611 +- +- +12.424±0.022 +11.060±0.026 +10.310±0.021 +951 +295.797167 +23.282278 +17.150±0.051 +2.019±0.032 +13.664±0.030 +12.913±0.043 +12.626±0.038 +965 +295.891500 +23.279944 +14.600±0.017 +1.125±0.018 +12.661±0.023 +12.150±0.031 +12.050±0.030 +979* +295.775389 +23.280333 +- +- +15.201±0.083 +14.179±0.079 +13.432±0.057 +1000 +295.814639 +23.277861 +13.574±0.011 +0.579 ±0.014 +12.544±0.021 +12.472±0.033 +12.342±0.032 +1007* +295.778417 +23.277111 +14.624±0.016 +1.181 ±0.020 +12.508±0.026 +12.220±0.039 +12.003±0.033 +1025 +295.690889 +23.276194 +- +- +15.839±0.088 +14.503±0.058 +13.751±0.052 +1061* +295.788972 +23.270083 +- +- +14.267±0.033 +12.456± - +12.081± - +1063 +295.778528 +23.270139 +9.702±0.018 +0.631±0.018 +8.785±0.019 +8.712±0.029 +8.652±0.024 +1064 +295.758861 +23.270389 +14.451±0.014 +1.047±0.018 +12.514±0.022 +12.088±0.035 +11.874±0.029 +1066 +295.843528 +23.269278 +16.715±0.037 +3.602±0.014 +10.303±0.022 +9.170±0.028 +8.693±0.025 +1072 +295.820667 +23.269139 +14.714±0.014 +1.098±0.017 +12.751±0.022 +12.523±0.033 +12.317±0.030 +1087* +295.798806 +23.266806 +- +- +9.945±0.019 +7.952±0.042 +7.059±0.040 +1094 +295.817722 +23.265111 +16.634±0.034 +1.949±0.023 +13.251±0.022 +12.572±0.031 +12.283±0.029 +1122 +295.709611 +23.261028 +13.788±0.011 +0.824±0.014 +12.308±0.022 +12.085±0.032 +11.956±0.028 +1151 +295.806028 +23.255889 +- +- +15.007±0.059 +13.956±0.041 +13.596±0.046 +1155 +295.768556 +23.255472 +18.407±0.117 +2.004±0.062 +14.928±0.039 +14.169±0.049 +13.918±0.055 +1168 +295.883528 +23.252556 +- +- +15.273±0.057 +14.244±0.061 +13.974±0.059 +1191 +295.875000 +23.248667 +- +- +15.444±0.065 +13.630± - +12.955± - +1228 +295.851056 +23.243861 +- +- +15.146±0.055 +13.810±0.063 +13.109±0.038 +1230 +295.756194 +23.244750 +14.580±0.014 +0.897±0.017 +12.948±0.026 +12.700±0.036 +12.604±0.033 +1235 +295.672972 +23.244722 +12.983±0.012 +0.937±0.012 +11.555± - +11.322± - +11.205±0.037 +1262 +295.775250 +23.238000 +17.173±0.050 +2.100±0.030 +13.351±0.034 +12.474±0.041 +11.998±0.032 +1266 +295.802833 +23.236806 +18.656±0.134 +2.123±0.069 +14.808±0.038 +14.078±0.049 +13.694±0.045 +1268 +295.699250 +23.237972 +- +- +9.148±0.019 +7.211±0.034 +6.303±0.026 +1295 +295.812361 +23.232472 +- +- +14.982±0.043 +13.783±0.040 +12.963±0.032 +1298 +295.671972 +23.234000 +18.572±0.133 +2.430±0.059 +14.280±0.049 +13.287±0.055 +12.611±0.042 +1317 +295.899889 +23.227722 +- +- +15.778±0.081 +14.299±0.063 +13.344±0.038 +1352 +295.816861 +23.222944 +12.586±0.011 +0.693±0.012 +11.411±0.022 +11.168±0.030 +11.106±0.026 +1389 +295.718444 +23.218000 +16.432±0.031 +1.683±0.025 +13.25 ±0.027 +12.387±0.034 +11.659±0.027 +1405 +295.778889 +23.214194 +18.752±0.142 +1.817±0.090 +15.644±0.069 +14.713±0.071 +14.516±0.090 +1406 +295.844722 +23.213083 +17.981±0.088 +1.589±0.063 +15.113±0.122 +14.442±0.237 +13.856±0.283 +1459 +295.758944 +23.204833 +- +- +15.208±0.056 +14.355±0.055 +13.932±0.060 +1500 +295.892056 +23.195889 +15.993±0.033 +1.365±0.031 +13.631±0.038 +13.176±0.051 +13.053±0.042 +1506 +295.738167 +23.197333 +15.499±0.024 +1.237±0.021 +13.540 ± - +13.123±0.036 +13.088± - +1508 +295.846250 +23.195111 +- +- +14.502±0.043 +13.425±0.050 +12.769±0.036 +1511 +295.813722 +23.194889 +16.513±0.034 +1.795±0.026 +13.734±0.028 +13.124±0.037 +12.874±0.033 +1525 +295.817722 +23.191972 +13.517±0.015 +1.170±0.015 +11.520 ±0.023 +11.221±0.028 +11.071±0.026 +1526 +295.740750 +23.192917 +8.846±0.024 +0.721±0.019 +7.610 ±0.029 +7.327±0.036 +7.256±0.024 +1548 +295.840667 +23.186917 +18.460±0.141 +6.181±0.018 +8.177±0.023 +6.609±0.017 +5.875±0.020 +of the detector whereas a few stars contains spurious data +points. The derived periods of stars are given in Table 2. +3 +CLUSTER MEMBERSHIP OF VARIABLE +STARS +For each variable star, its UBV I plus 2MASS photometry +along with Gaia EDR3 proper motion and parallax have +been used to assess the likelihood of cluster membership. +The UBV , JHK, and mid infrared (MIR) data at wave- +© 0000 RAS, MNRAS 000, 1–?? + +Variable stars in NGC 6823 +5 +lengths 3.6, 4.5, 5.8 and 8 micron, are taken from Massey +et al. (1995), Cutri et al. (2003), and GLIMPSE survey, re- +spectively. +3.1 +Gaia Characterization of the Variable Stars +The 88 variable stars reported in this work have been char- +acterized with the Gaia EDR3 parallax and proper motion +measurements. Fig. 8 plots the sky positions of all the Gaia +sources (in gray) within 30′ toward NGC 6823. This covers +the field of the Tenagra images (variable stars marked in +black crosses) and is much wider than the cluster’s angular +size of ∼ 3.′6 (red circle) (Morales et al. 2013). The stellar +density is clearly enhanced toward the center. +Each variable star was matched with Gaia counterparts +within a radius of 2.′′5 as the compromise of the seeing of the +Tenagra images, leading to 91 Gaia sources. Fig. 9 presents +the proper motion vector plot of all the stars (gray) and +those within 4′ nominal cluster region (black small circles, +1294 stars) for which the members should be concentrated, +serving as the sample of cluster members. This 4′ (posi- +tional) sample has a mean of µα ≈ −1.7 mas yr−1 and +µδ ≈ −5.3 mas yr−1, which agrees well with the litera- +ture values (Cantat-Gaudin & Anders 2020). Shown in the +bottom panel are the proper motions for variable stars (in +black with error bars). One sees that the majority of our +variable stars share the same proper motion ranges. +Gaia measures repeatedly the astrometry of a source +from which the parallax and proper motion are solved simul- +taneously. Parallax, however, does not serve as a constraint +for membership as stringently as the proper motion, because +given the uncertainties, negative average values may result, +rendering the reciprocal to estimate the distance possible +only if a statistical inference is exercised (Bailer-Jones et al. +2021). For our work the parallax value was used directly. The +parallax of the 4′ sample exhibits a peak around 0.45 mas, +indeed consistent with the literature value (Cantat-Gaudin +& Anders 2020), and so does the variable star sample, as +demonstrated in Fig. 10. If the 4′ sample is further di- +vided by proper motion ranges, one finds no star within 1– +2 mas yr−1 from the cluster’s mean having parallax between +0.4 mas and 0.6 mas. This signifies the sufficiency as mem- +bership criteria of (1) a radius of 1 mas yr−1 in the proper +motion from the cluster average proper motion, and (2) a +parallax value 0.35–0.55 mas. A variable satisfying both (1) +and (2) is therefore considered a “highly probable” mem- +ber, whereas one that fulfills only (1) or (2) is classified as +a “possible” member. Table 4 lists information about the +proper motions, parallax, and magnitudes for the 88 vari- +ables identified in the present work. +Fig. 11 shows the Gaia G versus BP − RP CMD for +the highly probably members (in red) and possible mem- +bers (in blue). Overlapped in the diagram is the PARSEC +isochrones of 1, 2, and 4 Myr, respectively, each shifted by +a distance modulus of 11.753 (parallax of 0.446 mas) and +reddening of E(B −V ) = 0.8 (Sagar & Joshi 1981) adopting +the reddening law of AV = 3.1 E(B −V ), AG = 0.83627 AV , +ABP = 1.08337 AV , and ARP = 0.63439 AV . The highly +probable members indicate an age of roughly 2 Myr. +Three variables have ambiguous Gaia counterparts +within the matching radius. Star No. 478 has two possible +matches, equally faint thereby with relatively large uncer- +tainties in Gaia data but either one is consistent with being +a member. The star was not detected in our V band im- +age and appears progressively brighter from I = 14.47 mag, +to 2MASS J = 13.42 mag, H = 13.42 mag, and Ks = +13.00 mag. +Star No. 1063 is the second brightest star in our variable +list, with the brightest one (No. 1526) being clearly not a +member. The star also has two Gaia matches, with contrast- +ing brightness (G = 9.72 mag versus 12.87 mag). Given its +V = 9.70 mag, the fainter one, having an outlying parallax +of 0.282 mas, is eliminated. The other counterpart, however, +has a negative parallax value with a large uncertainty. This +compromises its membership determination. Its optical and +NIR colors both suggest an early-type star and its position +in the CMD suggests a main-sequence member. +Star No. 1262 has V += 17.173 mag, 2MASS J = +13.351 mag, H = 12.474 mag, and Ks = 11.998 mag. The +brighter Gaia match has G = 16.379 mag but has a neg- +ative parallax value and inconsistent proper motion. The +other Gaia star is faint, with G = 19.291 and no measure- +ments in the other two Gaia bands, has parallax and proper +motion values well consistent with being a member. +3.2 +Colors and Magnitudes +3.2.1 +U − B vs B − V TCD +To identify probable MS variables, we have plotted in Fig. 12 +the U − B versus B − V for variable stars identified in the +cluster region with the photometric data of 22 stars found +in Massey et al. (1995). Reddening in terms of color excess +E(B−V ) ranges from 0.7 to 1.1 mag (Erickson 1971; Guetter +1992; Massey et al. 1995; Pigulski et al. 2000). Pigulski et +al. (2000) recognized the highest extinction in the eastern +part of the cluster where a trapezium system, i.e., of O, B +spectral types, is located. The eastern part of their observed +field is the direction to the reflection nebula NGC 6820, and +their study suggested more than half of the total absorption +to arise from nearby interstellar matter toward NGC 6823. +It is inferred that there is significant differential reddening +within the cluster, manifest that the cluster is located behind +at least AV = ∼ 3 mag (Riaz et al. 2012). Rangwal et al. +(2017) studied the interstellar extinction of open clusters +and found that NGC 6823 follows a normal extinction law in +optical as well as in the NIR wavelengths. The U −B versus +B − V TCD shows that the stars exhibiting within E(B − +V ) = 0.7–1.1 mag could be MS members of the cluster, +indicating a nonuniform reddening across the cluster. The +reddened theoretical ZAMS of Girardi et al. (2002) is fitted +to the TCD. The value of color excess E(V − I) was taken +as 0.88 mag which has been calculated using the minimum +reddening value of E(B − V )=0.70 mag. +3.2.2 +J − H vs H − K TCD +Fig. 13 shows the J − H versus H − K TCD for NGC 6823. +Only 86 stars were cross-matched between the present sam- +ple of variable stars and the 2MASS catalog, with the JHK +counterparts of two stars No. 201 and No. 377 not found +during the match. In the 2MASS TCD, the “F” and “T” +regions are locations of probable Class III/field stars and +Class II sources, respectively. The filled squares plotted in +© 0000 RAS, MNRAS 000, 1–?? + +6 +Sneh Lata et al. +Figure 4. The I and V band phased light curves of variable stars identified in the region of NGC 6823. +blue and green colors represent, respectively, probable PMS +and MS members. Circles in the diagram represents field +stars. Riaz et al. (2012) from their NIR CCD found early- +type MS dwarfs concentrating close to (H −Ks) ∼ 0.7 mag, +and (J − H) ∼ 1.5 mag, having extinction AV +⩾ 10. +These authors have noticed another population near the +classical TTS locus close to (H − Ks) ∼ 0.6 mag and +(J − H) ∼ 1.0 mag, presumably being young disk-bearing +members. In the 2MASS TCD, about half the detected vari- +ables are in the “T” or “F” regions hence could be T Tauri +variables. A few PMS stars located below the TTS locus are +probably Herbig Ae/Be stars. We note that star No. 679 +occupies the position where Herbig Ae/Be stars are placed, +while in U − B versus B − V TCD it lies close to the MS +locus; it could thus be either a reddened MS star or a Herbig +Ae/Be member. +Following Gutermuth et al. (2008) to classify young stel- +lar sources, Riaz et al. (2012) used MIR IRAC data and +found 2 Class I, 94 Class II, and 394 Class III or field stars +in the region. The figure 4(a) of Riaz et al. (2012) is plot- +ted with the (H − Ks) and [4.5] − [8] TCD for the 490 +sources. This shows both YSOs and the diskless sources +© 0000 RAS, MNRAS 000, 1–?? + +135v +103v +103i +135i +-0.6 +-0.3 +-1.0 +-0.6 +-0.4 +-0.4 +-0.211 +-0.5 +-0.2 +-0.2 +-0.1 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.2 +0.5 +0.2 +0.1 +0.4 +1.0 +0.4 +0.2 +0.6 +0.6 +0.3 +1.5 +0.8 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +147v +147i +154v +154i +-0.6 +0.4 +-0.6 +.0.4 +Tpo +-0.4 +0.2 +.0.2 +-0.2 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.2 +0.2 +0.2 +0.2 +0.4E +0.4 +0.4E +0.6 +0.4 +0.6 +0.6 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +201v +201i +213v +213i +-0.6 +-0.6 +-0.4 +-0.8E +-0.6 +-0.4 +-0.2 +-0.4 +-0.4 +-0.2 +0.0 +-0.2 +m +m +m +m -0.2 +0.0 +0.2 +0.0 +0.0 +0.2 +0.4 +0.2 +0.2 +0.4 +0.6 +0.4 +0.4 +0.6 +0.8 +0.6 +0.6 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +239v +239i +240v +240i +.1.0 +-0.3 +1.0 +0.3 +-0.5 +-0.5 +-0.2 +-0.2 +0.0 +0.0 +-0.1 +-0.1 +m +m +m +m +0.5 +0.5 +0.0 +0.0 +1.0 +1.0 +0.1 +0.1 +1.5 +1.5E +0.2 +王 +2.0 +2.0 +0.3 +0.2 +0.00.5 1.0 1.52.0 +0.00.5 1.01.52.0 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase298v +298i +377v +377i +-0.6 +0.4 +0.4 +-0.4 +.0.2 +-0.5 +0.2耳 +-0.2 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.2 +0.2 +0.5 +0.2 +0.4 +0.4 +0.6 +0.6 +1.0 +0.4 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +385v +385i +449v +449i +1.0 +-0.6 +0.2 +0.2 +-0.4 +-0.5 +.0.1 +0.1 +-0.2 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +0.2 +0.5 +0.1 +0.1 +0.4 +1.0 +0.6 +0.2 +0.2 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +502v +502i +510v +510i +-0.4 +-0.2 +-0.2 +0.2 +0.5 +-0.1 +.0.1 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.2 +0.5 +0.1 +0.1 +0.4 +1.0 +0.6 +0.2 +0.2 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +527v +527i +531v +531i +.0.4 +0.4 +-0.6 +0.4 +-0.4 +.0.2 +0.2 +-0.2 +-0.2 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +二 +0.2 +0.2 +0.2 +0.2 +0.4 +0.4 +0.4 +0.6 +0.4 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase546v +546i +561v +561i +-0.6 +0.3 +-0.6 +0.4 +0.2 +-0.4 +-0.4 +-0.2 +-0.1 +0.2 +-0.2 +m +0.0 +m +m +0.0 +0.0 +0.1 +0.0 +0.2 +0.2 +0.2 +0.2 +0.4 曲 +0.3 +0.4 +0.4 +0.6 +0.4 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +614v +614i +619v +619i +-0.3 +-0.3 +-0.2 +0.2 +-0.2 +-0.2 +-0.1 +-0.1 +-0.1 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.1 +0.1 +0.1 +0.1 +0.2 +0.2 +0.2 +0.3 +0.3 +0.2 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +623v +623i +655v +655i +-0.2 +-0.2 +-0.5 +-0.4 +-0.2 +-0.1 +-0.1 +0.0 +0.0 +m +m +m +m +0.0 +0.0 +0.2 +0.5 +0.4 +0.1 +0.1 +14 +0.6 +0.2 +0.2 +1.0 +0.8 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +679v +679i +706v +706i +-0.2 +0.3 +.0.4 +-0.3 +-0.2 +-0.2 +-0.1 +0.2 +-0.1 +.0.1 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +0.1 +0.1 +0.1 +0.2 +0.2 +0.2 +0.2 +0.3 +0.4 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase731v +731i +733v +733i +-0.6 +0.4 +-0.2 +-0.3 +-0.4 +-0.2 +.0.1 +-0.2 +-0.2 +.0.1 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.1 +0.2 +0.1 +0.2 +0.2 +0.4 +0.2 +0.6 +0.4 +0.3 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +752v +752i +757v +757i +-0.4 +0.4 +0. 2 +0.3 +-0.2 +-0.2 +-0.2 +0.2 +.0.1 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +0.1 +0.2 +0.2 +0.2 +0.2 +0.4 +0.4 +0.4 +0.3 +0.00.5 1.01.52.0 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +765v +765i +822v +822i +-0.6 +-0.6 +-0.2 +-0.2 +-0.4 +-0.4 +-0.1 +0.1 +-0.2 +-0.2 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.1 +0.2 +0.2 +0.1 +0.2 +0.4 +0.4 +0.6 +0.6 +0.2 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +860v +860i +886v +886i +( +-0.4 +-0.2 +-0.2 +-0. +-0.5 +0.1 +0.0 +0.0 +m +m +m +m +0.0 +0.0 +0.2 +0.1 +0.5 +0. +0.4 +0.2 +1.0 +0.6 +0.3 +. +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +PhaseVariable stars in NGC 6823 +7 +Figure 5. Continued. +to have similar NIR colors, but from their IRAC TCD +the photospheric and the disk population at IRAC color +[4.5] − [8] ∼ 0.4 mag are readily distinguishable. They have +noted that a few Class III/field stars are mixed with Class II +sources. Their IRAC TCD in figure. 4(b) shows different lo- +cales of Class I and Class II sources. The protostars (Class I) +are located in the top-right corner and exhibit the reddest +in the [3.6] − [5.8] color, whereas the Class II sources are +placed at [4.5] − [8] ⩾ 0.5 mag, [3.6] − [5.8] ⩾ 0.4 mag, and +the Class III/field stars are found to be near [4.5] − [8] and +[3.6] − [5.8] ∼ 0.2 to 0.3 mag. +3.2.3 +NIR and MIR TCDs +To see the distribution of young variable sources we have +plotted them in the NIR and MIR TCD (left panel) and MIR +TCD (right panel) in Fig. 14. To obtain these plots we have +cross-matched the coordinates of variable stars with those +from the Spitzer Galactic Legacy Infrared Mid-Plane Survey +Extraordinaire (GLIMPSE), yielding MIR counterparts of +all 88 variable stars. A few stars, namely Nos. 154, 238, 313, +1405, and 1406 do not have magnitudes at [4.5] and other +wavelengths. The H − K versus [4.5] − [8] TCD shows most +young stellar sources to have H − K ≳ 0.3 mag whereas the +© 0000 RAS, MNRAS 000, 1–?? + +1064v +1064i +1066v +1066i +-0.2 +-0.3 +-0.2 +-0.15 +-0.10 +-0.2 +-0.1 +.0.1 +0.05 +-0.1 +0.0 +m +m +1.. +m +m +0.0 +0.00 +0.0 +0.1 +0.05 +0.1 +0.1 +0.2 +0.10E +0.2 +0.2 +0.3 +0.15 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1072v +1072i +1094v +1094i +0.15 +-0.3 +-0.3 +-0.10 +-0.2 +-0.2 +0.1 +.0.05 +.0.1 +.0.1 +m +m +m +0.00 +0.0 +0.0 +0.0 +0.05 +0.1 +0.1 +0.1 +0.10E +0.2 +0.2 +0.15 +0.2 +0.3 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1122v +1122i +1155v +1155i +-0.2 +-0.2 +-0.6 +-0.4 +-0.4 +-0.2 +-0.1 +0.1 +0.2 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.2 +0.2 +0.1 +0.1 +0.4 +0.4 +0.2 +0.2 +0.6 +0.6 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1230v +1230i +1235v +1235i +-0.2 +0.2 +-0.4 +-0.4 +-0.2 +-0.2 +-0.1 +0.1 +0.0 +0.0 +m +m +m +m +0.0 +0.0 +0.2 +0.2 +0.4 +0.4 +0.1 +0.1 +0.6F +0.6E +0.2 +0.2 +0.8 +0.8 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase1262v +1262i +1266v +1266i +-0.4 +-0.3 +-0.6F +-0.6 +0.2 +.0.4 +-0.4 +-0.2 +-0.1 +-0.2 +-0.2 +m +m +0.0 +m +0.0 +m +0.0 +0.0 +0.1 +0.2 +0.2 +0.2 +0.4 +0.2 +0.4 +0.3 +0.6 +0.4 +0.4 +0.8 +0.6 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1298v +1298i +1352v +1352i +2.0 +1.0 +0.2 +0.2 +1.5 +-0.5 +0.1 +-0.1 +-1.0 +m -0.5 +m +m +m +0.0 +0.0 +0.0 +0.0 +0.5 +0.5 +0.1 +0.1 +1.0 +.5 +1.0 +0.2 +0.2 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1389v +1389i +1405v +1405i +-0.4 +-0.4 +-0.6 F +-0.6 +-0.4 +-0.4 +0 +-0.2 +-0.2 +.0.2 +-0.2 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +0.2 +0.2 +0.2 +0.2 +0.4 +0.4 +0.4 +0.4 +0.6 +0.6 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1406v +1406i +1500v +1500i +-0.8 +-0.3 +-0.4 +-0.2 +-0.6 +-0.2 +-0.2 +-0.1 +-0.4 +.0.1 +0.0 +0.0 +m -0.2 +m +m +m +0.0 +0.0 +0.2 +0.1 +0.1 +0.2 +0.4 +0.2 +0.2 +0.4 +0.6 +0.6 +0.3 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase1506v +1506i +1511v +1511i +0.3 +-0.3 +-0.2 +-0.3 +-0.2 +-0.2 +-0.2 +-0.1 +.0.1 +-0.1 +-0.1 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.1 +0.1 +0.1 +0.1 +0.2 +0.2 +0.2 +0.3 +0.2 +0.3 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1525v +1525i +1526v +1526i +-0.3 +0.2 +-0.5 +0.3 +-0.2 +-0.2 +-0.1 +0.0 +.0.1 +m -0.1 +m +m +m +0.0 +0.5 +0.0 +0.0 +0.1 +0.1 +1.0 +0. +0.2 +0.2 +0.2 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1548v +1548i +1.0 +-0.3 +-0.2 +0.5 +.0.1 +0.0 +m +m +0.0 +0.5 +0.1 +1.0 +0.2 +1.5 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase903v +903i +924v +924i +-0.2 +-0.2 +-0.6 +-0.4 +.0.4 +-0.1 +-0.1 +-0.2 +-0.2 +m +m +m +0.0 +m +0.0 +0.0 +0.0 +0.2 +0.4 +0.1 +0.1 +0.2 +0.6 +0.2 +0.2 +0.8 +0.4 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +945v +945i +951v +951i +.0.2 +-0.2 +0.4 +0.3 +-0.2 +0.2 +-0.1 +-0.1 +0.1 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.2 +0.1 +0.1 +0.1 +0.4 +0.2 +0.2 +0.2 +0.6 +0.3 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +965v +965i +1000v +1000i +-0.3 +.0.2 +-0.2 +.0.2 +-0.2 +0.1 +-0.1 +0.1 +m +m +m +0.0 +0.0 +0.0 +0.0 +0.1 +0.1 +0.1 +0.1 +0.2 +0.2 +0.2 +0.2 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1007v +1007i +1063v +1063i +-0.2 +-0.3 +0.4 +-0.4 +-0.3 +-0.2 +T +-0.1 +0.2 +-0.2 +-0.1 +m +m +m -0.1 +0.0 +0.0 +0.0 +0.0 +0.1 +0.1 +0.2 +0.1 +0.2 +0.2 +0.2 +0.4 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase8 +Sneh Lata et al. +Figure 6. The I band phased light curves of probable variable candidates around the cluster. +[4.5] − [8] and [3.6] − [5.8] TCD shows a few young stellar +objects to be positioned as field stars or other populations. +3.2.4 +IPHAS data +To identify the young stellar sources with Hα emission, +i.e., the indicator of accretion disks, we have compared the +present data with Table 3 for IPHAS photometry of Riaz +et al. (2012). We got 29 common stars after the match that +have IPHAS photometry, with stars No. 502, 576, 655, 679, +and 979 having Hα emission with equivalent width greater +than 10 ˚A, judged by the (r′ − i′) versus (r′ − Halpha) TCD +for NGC 6823 (Riaz et al. 2012). The location of these five +stars is shown with the red square in the present (J − H) +versus (H − K) TCD. The Hα emission is found to be vari- +able in nature, therefore, it is necessary to check the location +of the objects in spectral type/color versus magnitude dia- +gram to know their membership and nature (Mart´ın et al. +2000). Two stars Nos. 655 and 979 could be considered as +PMS objects which may possess circumstellar accreting disk. +Barrado y Navascu´es et al. (2001) showed that Hα emission +depends on the spectral type or color in the sense that Hα +emission is found to be larger for cooler objects in a plot +between the Hα emission and (I − J) color. The (I − J) +and (I − K) colors for star no. 655 is about 2.26 mag and +4.682 mag, respectively. In the case of star no. 979, we have +taken I magnitude from Pigulski et al. (2000) to determine +its (I − J) and (I − K) colors due to lack of (V − I) color in +present observations, yielding (I − J) and (I − K) colors as +2.020 mag and 3.789 mag, respectively. Stars Nos. 655 and +979 in particular satisfy both colors and Hα emission be- +ing greater than 10 ˚A, hence are young stars with accretion +disks. +3.2.5 +V vs V − I CMD +Sixty one variable stars were detected in both V and I +bands. Their V magnitudes and V −I color are given in Ta- +ble 2, and Fig. 15 shows their V versus (V − I) CMD. The +PMS isochrones and evolutionary tracks for different masses +are taken from Siess et al. (2000). The solid curve represents +ZAMS by Girardi et al. (2002). We determined the distance +modulus of the cluster to be (V −MV ) = 14.31 mag by com- +paring the ZAMS of Girardi et al. (2002) for solar metallicity +to the V versus V − I CMD, which corresponds to a dis- +tance of 2.59 kpc. The present estimate of distance matches +well with those derived in earlier works of NGC 6823. The +isochrone of age 4 Myr also fits the data well. The CMD is +known to be contaminated by the foreground field stars (e.g. +Guetter 1992; Pigulski et al. 2000; Bica et al. 2008). After +analysis of CMD, Pigulski et al. (2000) and Riaz et al. (2012) +noted two different populations in the cluster, one consist- +ing of older, massive stars which are located near or on the +ZAMS, while the other one being younger objects with ages +less than 10 Myr and are of lower masses (∼ 0.1–0.4 M⊙), +that is, of PMS stars. Pigulski et al. (2000) also concluded +that stars lying in B region of their figure 11(a) are cluster +stars of PMS nature, evolving towards the MS. The present +CMD containing variable stars also shows MS of the cluster +to go up to around V = 16 mag; location of variables in the +CMD suggests the majority of these stars to be probable +members. Most the fainter and redder stars lying between +(V − I) =∼ 2 mag and ∼ 3 mag could be PMS objects. +In this CMD, to maintain clarity we have not plotted star +No. 1548 despite it being detected in the I band, because it +has V − I color more than 6 mag. Star No. 449 may be a +possible PMS star but its placement in the U −B/B−V and +J −H/H −K TCDs suggests a field star, even though it has +proper motions in the range of probable cluster members. +© 0000 RAS, MNRAS 000, 1–?? + +142i +177i +238i +264i +0.4 +-0.4 +-0.3 +-0.6 +-0.2 +-0.4 +-0.2 +-0.2 +-0.1 +-0.2 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +0.1 +0.2 +0.2 +0.2 +0.2 +0.4 +0.4 +0.4 +0.3 +0.6 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +369i +402i +452i +478i +-0.4 +-0.6 +-0.6 +-0.4 +-0.4 +-0.2 +-0.2 +-0.2 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.2 +0.2 +0.2 +0.5 +0.4 +0.4 +0.4 +0.6 +1.0 +0.6 +0.6 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +529i +576i +753i +826i +0.6民 +-0.6 +-0.6 +-0.6 +0.4 +-0.4 +-0.4 +-0.4 +-0.2 +-0.2 +-0.2 +-0.2 +m +m +m +0.0 +m +0.0 +0.0 +0.0 +0.2 +0.2 +0.2 +0.2 +0.4 +0.4 F +0.4 +0.4 +0.6 +0.6 +0.6 +0.8 +0.6 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +831i +950i +979i +1025i +1.5 +-0.6 +0.6 +.0.4 +-1.0 +-0.4 +0.5 +-0.2 +-0.5 +-0.2 +m +m +m +0.0 +m +0.0 +0.0 +0.0 +0.2 +0.5 +0.2 +三 +0.4 +0.5 +1.0E +0.4 +0.6 +1.5 +0.6 +0.8 +1.0 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase1061i +1087i +1151i +1168i +-0.4 +-0.4 +1.0 +-0.6 +-0.4 +-0.2 +-0.2 +-0.5 +-0.2 +m +m +m +m +0.0 +0.0 +0.0 +0.0 +0.2 +0.2 +0.2 +0.5 +0.4 +0.4 +0.4 +1.0 +0.6 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1191i +1228i +1268i +1295i +0.4 +1.0 +-0.5 +-0.5 +-0.5 +0.2 +0.0 +m +m +m +m +0.0 +0.0 +0.0 +0.5 +0.5 +0.5 +0.2 +1.0 +1.0 +1.0 +0.4 +1.5 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1317i +1459i +1508i +.1.0 +-0.6 +-0.6 +-0.4 +0.4 +-0.5 +-0.2 +-0.2 +0.0 +m +m +m +0.0 +0.0 +0.2 +0.5 +0.2 +0.4 +1.0 +0.4 +0.6 +1.5 +0.6 +0.8 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +PhaseVariable stars in NGC 6823 +9 +3.2.6 +NIR CMDs +The J versus (J − K) and J versus J − H CMDs for the +present sample of variable stars are shown in Fig. 16. it +is seen that the MS is almost vertical and clearly sepa- +rated from the PMS objects/field stars as in the case of +the V versus (V − I) CMD. Bica et al. (2008) described the +same and from statistical cleaned CMD, they found that +two populations are distributed separately where majority +of PMS objects are faint and redder. They found the age +of the cluster in the range from 2 to 7 Myr, a color excess +E(B −V )=∼0.86 mag, and AV =2.7±0.2. In their work af- +ter fitting theoretical models, the absolute distance modulus +of the cluster was found to be (m − M)O = 11.5 mag. +Although stars numbered Nos. 142, 402 826, 950, 924, +1025, 1066, 1087, 1298, and 1548 are nonmembers from +the analysis of the Gaia data, we have considered them as +possible PMS objects based on their positions in different +CMD and TCDs. We note that there are 10 stars, namely, +Nos. 240, 614, 623, 752, 965, 1235, 1352, 1500, 1525, and +1526, that are designated as nonmembers from proper mo- +tion and parallax and, these could be MS stars based on +location in TCDs and CMDs. Star 1506 is located well away +from the MS in U − B/B − V TCD while it is lying on te +MS in V/V −I, J/H −K and J/J −H. The analysis of Gaia +data also found it to be nonmember. This is a doubtful case +for being an MS member. From Gaia data analysis we found +stars Nos. 201, 239, 449, 619, 765, 861, 1151, 1168, 1191 and +1508 as possible or probable members but their locations in +various TCDs and CMDs do not seem to be consistent with +membership. Thus, these are considered field stars. +We looked for the matches of our 8 previously identified +PMS stars based on their 2MASS colors and their spectra +taken at the 2.16 m telescope of Beijing Observatory (Ho- +jaev et al. 2003). The spectra showed the strong H-alpha +in emission, the SED in continuum and other features typi- +cal either for TTS or Herbig Ae/Be stars. The cross-match +yields 3 common stars namely 154, 655 and 679 for two of +them we have already determined their features (their loca- +tion on the diagrams, their proper motions and parallaxes). +In the present work, we have classified 655 as classical TTS +and 679 as MS. There was doubt to consider 679 as PMS +because in U − B versus B − V TCD it is lying on MS but +in J − H versus H − K diagram it is placed in the location +of classical TTS. Now, we determined the membership of +star No 154. It might be probable member of the cluster as +Herbig Ae/Be type star while earlier (Hojaev et al. 2003) +it has been classified as classical TTS, though it has very +different position in V versus V − I CMD to be PMS star +but GAIA suggests it to be highly probable member, and +in J − H versus H − K it is located where Herbig Ae/Be +stars are found. Therefore, it could be considered as Herbig +Ae/Be star. +We have considered members those stars which fulfill +criteria like location in TCDs, CMDs, and have consistent +kinematics. Therefore, using proper motion data together +with location in various TCDs and CMDs obtained from +present and available photometric UBV I, NIR, and MIR +data we classify 25, 48, and 15, respectively, as MS, PMS +members of the cluster, and field stars. The classification of +variables is given in Table 3. +Figure 7. Magnitude as a function of rms value of each star +detected in I band. Open circles represent variable stars identified +in this work. +Figure 8. The sky positions of all the Gaia sources (in gray) +within 30′ toward NGC 6823. +4 +CHARACTERISTICS OF VARIABLE STARS +The log(L/L⊙) vs log Teff diagram (H − R diagram) for 21 +members (MS variables) is shown as Fig. 17. We are not +able to locate four MS stars Nos. 240, 752, 1107 and 1500 +in this plot due to lack of their U and B band data. Here, +the effective temperature and bolometric correction (BC) +have been determined from Toress relation (2010) using the +intrinsic (B − V ) color. The Mbol values of stars are ob- +tained from the relation Mbol = MV +BC, where MV is the +absolute V -band magnitude. The luminosity was obtained +from the relation log(L/L⊙) = −0.4(Mbol − Mbol⊙), where +© 0000 RAS, MNRAS 000, 1–?? + +0.8 +0.6 +0 +S +0 +M +R +0.4 +0.2 +00 +0 +0 +0 +0 +8 +10 +12 +14 +16 +18 +instNGC 6823 +23.8 +23.6 +Decl. [deg] +23.4 +23.2 +23.0 +22.8 +296.2 +296.0 +295.8 +295.6 +295.4 +R.A. [deg]10 +Sneh Lata et al. +Figure 9. The upper panel represents proper motion of all the +stars (gray) and those within 4′ cluster region (black small circles, +1294 stars). The lower panel shows proper motions for variable +stars (in black with error bars). +Mbol⊙ is the bolometric magnitude for the Sun. The MS +variable stars have been classified according to their periods +of variability, the shape of light curves, and their positions +in the H-R diagram. We detected one star as β Cep-type. +Four stars Nos. 679, 886, 1122 and 1352 are located in the +instability strip of slowly pulsating B type (SPB) stars. The +positions in the cluster H-R diagram as well as the observed +variability characteristics of nine stars allow us to conclude +that these variables belong to the new class variables. One +star based on its location in the H − R diagram should be +δ Scuti-type variable. +In the present study, we have detected 48 PMS stars +as most likely cluster members in the PMS stage of evo- +lution. Of these, 4, 8, and 36 stars are classified as Herbig +Figure 10. Histogram of parallaxes for stars within 4 arcmin, +where histogram shaded with black is for variable samples iden- +tified in the present work. +Figure 11. The G vs BP − RP CMD for the present sample +of variable stars. The filled and open squares denote probable +and possible cluster members, and dotted points are considered +nonmembers. +Ae/Be stars, classical TTSs, and weak-lined TTSs, respec- +tively. The amplitudes of weak-lined TTSs range from ∼0.05 +to ∼0.2 mag, and most weak-lined TTSs vary with shorter +periods of less than 1.0 days. The periods and amplitudes of +classical TTSs are found to range from ∼ 0.05 to ∼ 30 days +and ∼ 0.2 to ∼ 0.7 mag, respectively. The above results +suggest that stars with disks, i.e., classical TTSs, exhibit +relatively larger amplitudes than the weak-lined TTSs do, +with the stellar variability in classical TTSs arising from the +presence of the spots, hot and cold, on the stellar surfaces +© 0000 RAS, MNRAS 000, 1–?? + +0 +pmDE[mas/yr +4 +-6 +-8 +-10 +-12 +6 +4 +2 +0 +-2 +-4 +9- +-8 +PmRA[mas/yr]2 +0 +-2 +pmDE[mas/yr +-6 +-8 +-10 ++ +-12 +6 +4 +2 +0 +-2 +-4 +-6 +-8 +PmRA[mas/yr]260 +200 +150 +100 +50 +0.0 +0.5 +1.0 +1.5 +2.0 +plx [mas]10 +12 +14 +[eu] +16 +G +18 +20 +2 +3 +1 +4 +5 +BP - RP[mag]Variable stars in NGC 6823 +11 +Figure 12. (U − B)/(B − V ) TCD for variable stars identified in +the present study. All the UBV data are taken from Massey et +al. (1995). The continuous and dotted line represent the ZAMS +(Girardi et al. 2002) which are shifted along the reddening vector +for reddening E(B − V ) = 0.32 mag and 0.45 mag. Triangles are +those stars that are identified as MS variables. +as found in the previous studies (e.g. Bouvier et al. 1993; +Pandey et al. 2019). +4.1 +Known variables +In the CCD search for variable stars in NGC 6823, Pigulski +et al. (2000) demonstrated that all stars with spectral types +later than A0 are PMS objects. They detected two variable +stars of δ Scuti type and these stars could be at the PMS +stage of evolution and suggested that these objects can fur- +ther be used to test the evolutionary changes in this class of +variable stars. The CMD was used to compare and discuss +the position of the two discovered δ Scuti stars with refer- +ence to the theoretical instability strip for PMS stars of this +type. They have also 13 other variables including one bright +cluster eclipsing binary and an SPB candidate. +Of 15 variables identified by Pigulski et al (2000), 14 +were found to be variable in the present work. We could not +detect variability in the star H8 (E88 or BL 4) (B0 V:pe by +Turner 1979), B1.5 V by Massey et al. 1995), and B1 V by +Shi & Hu (1999). Pigulski et al (2000) noted this stars as +the brightest variable member in the observed cluster field +and found to be a binary star where only one eclipse was +detected in the I band. +Now we will describe the nature of all the known 14 +variable stars individually. +Stars BL 50 (822) and HP 57 (1007) with periods +0.0718530 days, 0.10114 days for BL 50 and 0.0785819 days, +0.0644149 days for HP 57 were found to be most likely clus- +ter PMS members by Pigulski et al. (2000). With their po- +sitions in the cluster CMD as well as the observed periods +Figure 13. (J − H)/(H − K) TCD for variable stars detected +in the field of NGC 6823. The JHK data have been taken from +the 2MASS catalog (Cutri et al. 2003). The continuous and long +dashed lines show sequences for dwarfs and giants (Bessell & Brett +1988), respectively. The TTS locus (Meyer et al. 1997) is shown +by a dotted line. The small dashed lines are reddening vectors +(Cohen et al. 1981) and an increment of visual extinction of AV += 5 mag is denoted by crosses on the reddening vectors. Filled +squares with blue colors represents PMS. The MS population are +shown by green squares whereas open circles may be either MS +members of the cluster or field stars. Triangles (black) represent +two MS members BL 50 and HP 57. +Pigulski et al. (2000) concluded that both objects could be δ +Scuti variables. The present membership analysis, i.e., from +kinematics and positions in various CMDs and TCDs, sug- +gests both stars to be MS members. In the H-R diagram star +No. 822 is positioned where new class variables are found +(between the red edge of SPB and the blue edge of δ Scuti +instability strip). Star No. 1007 could not be placed in the H- +R diagram due to unavailability of UBV data. The present +period of stars 822 is derived as 0.143 days and 0.084 days +while the periodogram analysis gives period of 0.064 days +for star 1007. The period derived for star 1007 is in good +agreement with that derived by Pigulski et al. (2000). The +location of these two stars were shown with red and black +triangles in V versus (V −I) CMD and J −H versus H −K +TCD, respectively. +Star No. 903, a probable cluster MS member was dis- +covered as the third pulsator (G 51) by Pigulski et al. (2000). +Its brightness varies with a period of 0.848 days with an am- +plitude about 0.03 mag. The star was classified by Pigulski +et al. (2000) as an SPB variable according to their variability +characteristics. +The brightness of star No. 886 (G52) found to be binary +by Pigulski et al. (2000) varies with period of 0.61 days +with an amplitude 0.03 mag. It is diagnosed as a member of +the cluster from proper motion and its location in various +© 0000 RAS, MNRAS 000, 1–?? + +1063 +-0.5 +881 +0 +1000 679 +1502 +449 +9658 +0.5 +2斤 +B +U +614 +1.5 +2 +1506 +0 +0.5 +1 +1.5 +2 +B-VX +X +2.5 +X +X +2 +0 +F +T +X +X +1.5 +H +1 +0 +0.5 +0 +-0.6 +-0.4 +-0.2 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +1.6 +1.8 +2 +H-K12 +Sneh Lata et al. +Figure 14. (H − K) vs [4.5] − [8.0] and [3.6] − [5.8] vs [4.5] − +[8.0] TCDs for variable stars detected in the field of NGC 6823. +Blue circles are PMS young stellar sources while black circles are +MS/field stars. +Figure 15. V/(V −I) CMD for variable stars in the region of the +cluster NGC 6823. The open circles (blue) are MS variables, and +probable PMS variable stars are shown by filled circles (magenta). +The open circles in black color are considered field stars. The +continuous curve is ZAMS by Girardi et al. (2002) while dashed +lines are PMS isochrones taken for 0.1, 1, 2, 5, 10 Myrs (Siess +et al. 2000). The PMS evolutionary tracks for different masses +ranging from 0.7 to 5.0 M⊙ from Siess et al. (2000) are plotted +with dotted curves. BL 50 and HP 57 are shown by red triangles. +Figure 16. J/(H − K) and J/(J − H) CMD for variable stars +detected in the field of NGC 6823. The JHK data have been taken +from the 2MASS catalogue (Cutri et al. 2003). Circles (blue) and +circles (green) represent MS and PMS, respectively. The Open +circles in black color demonstrate the field stars. The locations +of stars No. 822 (BL 50) and 1007 (HP 57) are shown with open +circle in red color. +photometric diagrams. The present estimates for period and +amplitude are consistent with those reported in Pigulski et +al. (2000). +Star No. 733 has proper motion values of µα += +−1.671 mas/yr and µδ = −5.453 mas/yr, hence is a prob- +able member of the cluster. Our analysis suggests possibly +more than one period, with 0.143 d and 0.512 d. In Pigulski +et al. (2000) it is H30, and they found its period of more +than 3 days. +The brightness of star No. 757 was found to be chang- +ing with one single period of 0.553 days. The present work +classified this star to be a probable PMS cluster member. +Pigulski et al. (2000) named it V2 and derived its period of +about 1.24 days, commenting that the true period for this +star corresponds to an alias frequency, and they found this +star to be of PMS type source. The present observations +confirm its variability and its PMS nature. The light curves +and periodogram analysis manifest that it could be an eclips- +ing binary with primary and secondary depths being nearly +equal. Morales-Calderon et al. (2012) found six new can- +didate sources as PMS eclipsing binaries with multi-epoch +data of about 2400 stars associated with the Orion Nebula +Cluster, and it is stated that the PMS eclipsing binaries are +valuable as they are in the stage of PMS evolution which +is highly dynamic, therefore their detection is rare at this +stage. +Star No. 924 may be a PMS variable with light curve +varying with more than one period. The proper motion sug- +gests a nonmember of the cluster but its position in TCDs +© 0000 RAS, MNRAS 000, 1–?? + +2 +2 +0 +0 +00 +0 +1 +0 +0 +0 +[5.8] +Q +0 +K- +二 +1 +0 +0 +0 +H +[3.6] +0 +00 +0 +0 +8 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +8 +0 +0 +00 +0 +0 +00 +0 +Q +0 +8 +0 +60 +0 +0 +0 +0 +1 +2 +-1 +0 +1 +2 +[4.5]-[8.0] +[4.5]-[8.0]8 +0 +0 +10 +0.1 Myr +12 +0 +1 Myr +5.0 +14 +2 Myr +4.0 +3.5 +5 Myr +3.0 +/2.5 +10 Myr +1 2.0 +16 +11.7 +Q +>1.4 +11.1 +Q.9 +0.7 +18 +20 +0 +2 +3 +4 +V-I6 +6 +8 +8 +0 +0 +0 +00 +8 +10 +10 +0 +0 +0 +0 +0 +& +& +0 +J12 +0 +0 +0 +0 +0 +000 +Q +00 +14 +0 +0 +14 +00 +0000 +0o0 +8 +00 +8 +0@ +0 +0 +0 +0 +0 +0 +0 +00 +16 +0 +16 +0 +18 +18 +-1 +0 +1 +2 +3 +4 +-1 +0 +1 +2 +3 +J-K +H-Variable stars in NGC 6823 +13 +and CMDs indicates a possible weak-lined TTSs. It is des- +ignated as V4 by Pigulski et al. (2000). +Star V5 of Pigulski et al. (2000) is numbered as No. 1061 +in this work. We considered it a field star based on its loca- +tion in CMDs and TCDs. Its brightness in V and I bands +varies with a period of 0.438 days. The variability of this +star is confirmed in the present work. +Star V8 (979) which could be a classical TTS based on +its location in the J − H versus H − K diagram. It has a +period of about 0.038 days. The kinematic data indicate it to +be a possible member of the cluster of PMS nature. Pigulski +et al. (2000) also found it to be suspected PMS variable. +Star No. 753 was designated as V7 by Pigulski et al. +(2000). The period of V7 could not be found by Pigulski et +al. (2000) due to either irregular brightness or long-period +variations. In our analysis, this star is considered a probable +member of the cluster according to the proper motion study. +Its position in the CMD and TCDs suggests a PMS Class II +object. This star shows periodic brightness variation with +its period and amplitude being 0.036 days and 0.225 mag, +respectively. +Star No. 655 (V3 in Pigulski et al. 2000) is a periodic +variable with two possible periods, of about 17 days and of +0.059 days. The location of this star in the J − H versus +H − K TCD suggests a Class II source while proper motion +data also suggest cluster membership. +Star No. 1087 is found to be nonmember based on its +proper motion values. Its location in TCDs suggests a PMS +source. Its brightness changes periodically with a period of +∼ 0.125 days. In Pigulski et al. (2000) this star (V1) was the +reddest object among their variable sample. +Star No. 831 is referred to as V6 by Pigulski et al. (2000) +and they found this star too red as a member of the cluster. +We confirm this star, with a period of about 1 day, to be a +field star. +Star No. 623, E 100, is a PMS object, though it was +considered as a nonmember of the cluster in Pigulski et al. +(2000) because its proper motion values were different from +those of cluster members (Erickson 1971). They mentioned +that this star might belong to the foreground population +and it is of a late type object. The present estimation of its +membership using Gaia data also finds it to be nonmember. +4.2 +Newly detected variables +Now we present newly identified variables in this work. Star +No. 1235 is classified, on the basis of the shape of its light +curve, to be an eclipsing binary, bearing similarity to that +of an EA (Algol) type. In EA type eclipsing binaries, both +stars are nearly spherical in shape, with an extremely wide +range of periods from 0.2 days to 10000 days, and with a +wide range of amplitude of variability. Star No. 1235 has a +period of 1.622 days and a variation amplitude of 0.211 mag. +In the H −R diagram, this star is found to be located in the +region of new class variables. More observations of this star +are required to confirm its nature. This star is a member of +the cluster based on locations in TCDs. However, Gaia data +suggest a nonmember of the cluster. +The light curves of star No. 449 in both V and I bands +reveal it to be a short-period variable. Its periodogram in +both V and I exhibits peaks around 3.2 days and 0.789 days. +Gaia data suggest it to be a probable member. +[h] +Table 3. Period and amplitude of variable stars. Last column rep- +resents membership classification of stars along with their classifi- +cation based on variability characteristics. The stars with asterisk +are previously known variables. The cTTS, wTTS and HAe/Be +are classical, weak-lined TTS and Herbig Ae/Be star, respectively. +ID +Period +Period (TESS) +Amp. +class. +(days) +(days) +(mag) +103 +1.919 +1.913 +0.087 +PMS, wTTS +135 +0.041, 0.010 +- +0.336 +PMS, cTTS +142 +0.504 +- +0.156 +PMS, wTTS +147 +0.940, 0.071 +- +0.080 +PMS, wTTS +154 +1.008 +- +0.580 +PMS, HAe/Be +177 +0.784 +- +0.129 +PMS, wTTS +201 +0.850, 0.845 +- +0.115 +Field +213 +0.253, 0.509 +- +0.167 +Field +238 +0.497 +- +0.166 +Field +239 +0.506, 0.969 +0.889, 2.429 +1.028 +PMS, wTTS +240 +1.109, 0.067 +2.253 +0.032 +MS +264 +0.546 +- +0.202 +PMS, wTTS +298 +0.357, 0.082 +- +0.107 +PMS, HAe/Be +369 +5.699 +2.400, 0.600, 7.041 +0.288 +PMS +377 +0.0332 +- +0.103 +Field +385 +30.100, 0.958 +5.243, 3.960, 0.939 +0.425 +PMS, HAe/Be +402 +0.804 +- +0.394 +PMS, wTTS +449 +3.852, 0.789 +5.297, 0.713, 4.084 +0.037 +Field +452 +3.572 +- +0.203 +PMS, wTTS +478 +9.199, 0.898 +3.066, 2.622, 0.902 +0.366 +PMS, wTTS +502 +1.138, 0.887 +- +0.238 +PMS, wTTS +510 +0.143, 0.030 +- +0.025 +MS, New +527 +0.671, 2.057 +2.045, 2.879 +0.168 +PMS, wTTS +529 +0.047 +- +0.290 +PMS, wTTS +531 +0.755, 3.064 +3.084, 6.232, 9.713 +0.219 +PMS, wTTS +546 +0.806, 0.057 +- +0.044 +Field +561 +10.300, 0.909 +3.24 +0.149 +PMS, wTTS +576 +0.882 +0.850, 3.715 +0.237 +PMS, wTTS +614 +0.707 +0.705, 1.775 +0.051 +MS +619 +0.852 +3.825, 0.850 +0.030 +Field +623* +0.044, 0.053 +0.153, 1.595 +0.022 +MS +655* +17.716, 0.030 +- +0.236 +PMS, cTTS +679 +1.1242, 0.059, 0.564 +0.565, 3.376 +0.046 +MS +706 +4.336, 0.561 +- +0.049 +PMS, wTTS +731 +0.359, 0.099 +- +0.065 +PMS, wTTS +733* +0.512, 0.143 +- +0.029 +MS +752 +0.153 +0.153, 10.770 +0.257 +MS +753* +0.036 +- +0.225 +PMS, cTTS +757* +0.553 +- +0.125 +PMS, wTTS +765 +0.112, 0.124 +- +0.133 +Field +822* +0.143, 0.084 +- +0.034 +MS, New +826 +0.072 +- +0.139 +PMS, wTTS +831* +1.009 +1.147, 1.545, 1.095 +1.463 +Field +860 +8.517, 0.523 +- +0.197 +PMS, cTTS +886* +0.446, 0.618 +- +0.032 +MS +903* +0.848 +- +0.033 +MS +924* +3.206, 0.59, 0.759 +- +0.123 +PMS, wTTS +945 +0.662, 0.663, 1.965 +1.966, 6.000 +0.026 +MS +950 +0.504 +3.179, 2.442 +0.265 +PMS, wTTS +951 +1.392, 0.775 +- +0.064 +PMS, wTTS +965 +2.661, 0.726 +2.65, 4.805 +0.053 +MS, New +979* +0.036 +0.064, 5.002 +0.185 +PMS, cTTS +1000 +0.042, 0.486 +- +0.016 +MS, New +1007* +0.064 +0.527, 0.064, 4.818 +0.037 +MS +1025 +0.059 +- +0.600 +PMS, wTTS +1061* +0.438 +1.581, 6.269 +0.099 +Field +1063 +1.049, 0.028 +- +0.131 +MS, β Cep +1064 +0.653, 0.059, 0.395 +0.804, 5.291 +0.025 +MS +1066 +0.0518, 0.082 +2.166, 1.203 +0.013 +PMS, wTTS +1072 +0.484, 0.032 +0.819, 11.649 +0.025 +MS New +1087* +0.125 +- +0.103 +PMS, wTTS +1094 +0.815 +- +0.081 +PMS, wTTS +1122 +2.402, 0.705 +0.705, 11.649 +0.039 +MS, SPB +1151 +0.769 +0.153, 4.834 +0.359 +Field +1155 +10.955, 0.100 +- +0.092 +PMS, wTTS +1168 +0.526 +- +0.240 +Field +1191 +0.924 +- +0.481 +Field +1228 +0.902 +- +0.448 +PMS, wTTS +1230 +0.386, 0.629 +0.385, 1.755 +0.019 +MS, New +1235 +1.622, 3.267 +3.243 +0.211 +MS, New +1262 +1.215, 0.446 +- +0.058 +PMS, wTTS +1266 +3.382 +- +0.148 +PMS, wTTS +1268 +63.269 +5.240, 0.996 +0.276 +PMS, wTTS +1295 +0.028 +- +0.495 +PMS, cTTS +1298 +0.983, 0.496 +- +0.438 +PMS, cTTS +1317 +0.485 +- +0.671 +PMS, cTTS +1352 +0.027, 0.336 +- +0.014 +MS, SBP +1389 +0.111, 0.166 +- +0.086 +PMS, HAe/Be +1405 +0.077, 0.064 +- +0.128 +Field +1406 +0.140, 0.082 +- +0.123 +Field +1459 +0.865 +- +0.172 +PMS, wTTS +1500 +0.072 +- +0.046 +MS +1506 +0.259, 0.491 +- +0.031 +MS +1508 +0.027 +- +0.264 +Field +1511 +0.059, 0.110 +- +0.032 +Field +1525 +1.132, 0.063 +- +0.034 +MS, New +1526 +0.058 +- +0.075 +MS +1548 +0.986, 0.329 +- +0.174 +PMS, wTTS +© 0000 RAS, MNRAS 000, 1–?? + +14 +Sneh Lata et al. +Figure 17. +log(L/L⊙)/ log Teff diagram for the probable MS +variable stars identified in the present study. The continuous curve +represents the instability strip of SPB stars whereas dotted curve +shows the instability region of δ Scuti stars. The dashed curve +shows the location of β Cep stars (cf. Balona et al. 2011). +The variability of the star No. 527 suggest that it is a pe- +riodic variable whose light varies with a period of 0.671 days. +It is found to be a probable member of the cluster from +its proper motion measurements. Its location in CMDs and +TCDs indicates a PMS object. +The brightness of star No. 531, a probable PMS member +of the cluster, is found to vary with a period of 0.755 days +or 3.065 days, with the variability characteristics consistent +with TTSs. +The proper motion values are not in favor of star +No. 752 to be a cluster member, though in the V versus +V − I CMD, it is located along the MS. The period is de- +rived as 0.153 days and the amplitude is about 0.2 mag. The +variability characteristics of this star is similar to a pulsat- +ing type star or eclipsing binary. After doubling its period +its light curves show two minima which have almost equal +depth. It could be an EW type eclipsing (W Ursae Majoris +eclipsing system). The EW type variables have periods of +less than one day, with almost equal depths of primary and +secondary minima. +Star No. 1508 has a period of ∼ 0.027 day with an am- +plitude of about 0.2 mag. This variable resembles that of the +SX Phe type (Cohen & Sarajedini 2012), which are similar +to δ Scuti stars but pulsate with amplitudes up to 0.7 mag +according to the variability types listed in the General Cat- +alog of Variable Stars (GCVS). +5 +TESS LIGHT CURVES +A few variables like No. 1235 and No. 752 have times se- +ries data from the Transiting Exoplanet Survey Satellite +(TESS; Ricker et al. 2015). The high-quality light curves +from the TESS can be used to understand stellar and plan- +etary evolution and this data provide us opportunity to +study the rotation of stars (Canto Martins et al. 2020). +Here, we present folded light curves, exhibited as Fig. 18 for +32 stars which do not have flux contribution from nearby +brighter sources to account for the low spatial resolution +of TESS. TESS observes the sky in sectors with each sec- +tor observed for about 27 days. The eleanor pipeline to ex- +tract times series data of objects from TESS images has +been used, which is an open-source tool (Feinstein et al. +2019, https://archive.stsci.edu/hlsp/eleanor). We can use +the eleanor package to create light curves for fainter ob- +jects for a more detailed or optimized analysis of individ- +ual objects (Feinstein et al. 2019). The eleanor uses TESS +Full Frame Images (FFIs) to extract systematics-corrected +flux for any given star observed by TESS. It takes TIC ID, +coordinates (RA and DEC) of a star. First, the raw flux +is calculated by aperture photometry as RAW FLUX that +is background subtracted. This raw flux is then corrected +for possible systematic effects, which creates a flux called +CORR FLUX. For isolated stars, to obtain the corrected +flux we have taken default apertures. The eleanor software +also provides the option to define one’s own aperture. We +have extracted light curves of all the detected in the present +photometry. +Out of 32 variables, there are 7 stars which are diag- +nosed as PMS and 14 as MS. The periods of all the 32 stars +have been determined using the method described in the +Section 2.1. The periods for 14 stars (103, 527, 531, 576, +614, 619, 679, 752, 945, 965, 1007, 1122, 1230 and 1235) +are found to be in good agreement with that obtained from +the present ground based optical data. The nature of star +No. 752 and No. 1235 as mentioned earlier is confirmed from +their TESS light curves; that is, star No. 752 shows unequal +maxima, likely due to the O’Connell effect (O’Connell 1951), +for which the maxima between eclipses in some eclipsing bi- +naries are not found equal in brightness (Knote et al. 2022). +The phased light curves of stars Nos. 369, 561, and 619 show +brightness variations similar to Algol type eclipsing binaries. +The light curves of stars 527, 531, 576, 965, 1064, 1072 and +1122 were folded by doubling the value of their derived pe- +riod. Three stars 527, 531 and 576 of them are probable +PMS stars while the remaining 4 stars are cluster members +of MS type. The folded light curves and periods of 1064, +1072 and 1122 are similar to the variability characteristic of +EW type variables. The light curve of star 576 seems to have +properties of EA type variable. The stars 527 and 965 could +be weak-lined TTSs based on their variability characteris- +tics as these sources are of PMS nature and show periodic +variability. The period of star 531 was derived as 3.084 days +using TESS data while its period comes out to be 0.755 days +from V and I band light curves. The variability character- +istics for those stars whose periods determined from present +V and I data do not match with that derived from TESS +observations could be revisited in the future observations +of the cluster NGC 6823. The conflicts between periods for +some cases may arise due to the contribution of flux from +nearby stars in TESS data despite being selected isolated +stars. The present work identified 5 MS, 4 PMS stars and 1 +field variable of eclipsing nature, two of which are confirmed +eclipsing binaries and remaining are suspected ones. Their +© 0000 RAS, MNRAS 000, 1–?? + +5 +1063 +1526 +4 +1 +111 +1 +3 +log +1352 +1122 +17 +606 +30 +10 +Kbr +2 +1506 +614 +4.5 +4 +log + T +leffVariable stars in NGC 6823 +15 +Table 4. The proper motion, parallax and photometry by Gaia. The last column refers to likely or possible membership for each variable +star. +ID +RA +DEC +µra +µDec +plx +gmag +bpmag +rpmag +mem +degree +degree +mas/yr +mas/yr +mas +(mag) +mag +103 +295.667936 +23.412217 +-1.392±0.046 +-5.264±0.077 +0.500±0.074 +17.288±0.003 +18.560±0.015 +16.172±0.006 +2 +135 +295.729818 +23.406842 +-1.335±0.050 +-5.330±0.079 +0.605±0.085 +17.340±0.007 +18.463±0.025 +16.006±0.017 +1 +142 +295.921757 +23.403326 +-4.224±0.059 +-6.330±0.096 +-0.125±0.102 +16.699±0.003 +21.455±0.111 +14.950±0.005 +0 +147 +295.717480 +23.404825 +-1.601±0.043 +-5.533±0.068 +0.154±0.071 +17.151±0.003 +18.555±0.013 +15.988±0.005 +1 +154 +295.729082 +23.404078 +-1.583±0.012 +-5.173±0.018 +0.411±0.019 +13.680±0.003 +15.006±0.006 +12.486±0.006 +2 +177 +295.798833 +23.398720 +-1.430±0.059 +-5.249±0.097 +0.382±0.099 +17.841±0.003 +19.238±0.024 +16.679±0.007 +2 +201 +295.806239 +23.392781 +-1.829±0.065 +-4.434±0.111 +0.764±0.121 +18.017±0.003 +18.879±0.021 +17.098±0.009 +1 +213 +295.678068 +23.391730 +-2.955±0.072 +-2.616±0.122 +0.692±0.126 +18.086±0.003 +18.923±0.017 +17.191±0.008 +0 +238 +295.856620 +23.385850 +-1.810±0.048 +-5.933±0.080 +-0.041±0.079 +15.379±0.005 +21.173±0.091 +13.658±0.008 +1 +239 +295.792933 +23.386486 +-1.545±0.133 +-5.335±0.205 +0.314±0.186 +19.537±0.012 +20.487±0.072 +18.373±0.046 +1 +240 +295.913449 +23.384987 +-2.683±0.022 +-9.082±0.035 +0.809±0.037 +16.070±0.003 +16.629±0.004 +15.346±0.004 +0 +264 +295.758973 +23.382855 +-1.839±0.081 +-4.993±0.141 +0.316±0.146 +18.200±0.003 +19.690±0.028 +17.004±0.007 +1 +298 +295.707379 +23.376514 +-1.757±0.036 +-4.931±0.055 +0.518±0.058 +16.844±0.005 +17.817±0.017 +15.833±0.012 +2 +369 +295.889138 +23.363276 +-2.759±0.058 +-5.104±0.097 +0.180±0.097 +17.647±0.003 +19.962±0.039 +16.257±0.008 +0 +377 +295.880082 +23.361511 +-1.767±0.066 +-5.422±0.102 +0.503±0.107 +18.157±0.007 +19.323±0.030 +17.036±0.021 +2 +385 +295.847545 +23.360887 +-1.713±0.025 +-4.949±0.039 +0.454±0.041 +16.211±0.006 +17.138±0.021 +15.246±0.015 +2 +402 +295.716202 +23.358795 +1.039±0.544 +-9.595±0.908 +-1.529±1.016 +19.114±0.006 +20.359±0.063 +17.606±0.020 +0 +449 +295.874874 +23.347861 +-1.534±0.011 +-5.289±0.018 +0.421±0.019 +14.456±0.003 +15.283±0.003 +13.559±0.004 +2 +452 +295.919127 +23.346023 +-1.632±0.091 +-5.204±0.163 +0.187±0.154 +18.342±0.003 +19.687±0.034 +16.889±0.010 +1 +478 +295.846924 +23.343243 +-2.242±0.123 +-5.663±0.287 +0.414±0.207 +18.715±0.003 +20.513±0.146 +17.239±0.011 +2 +478 +295.847334 +23.343217 +-1.835±0.094 +-5.443±0.160 +0.513±0.166 +18.445±0.005 +19.556±0.035 +16.804±0.017 +2 +502 +295.883889 +23.339095 +-1.539±0.061 +-5.143±0.098 +0.633±0.100 +17.859±0.005 +19.066±0.032 +16.755±0.015 +1 +510 +295.795529 +23.339088 +-1.736±0.010 +-5.177±0.015 +0.483±0.016 +13.870±0.003 +14.370±0.003 +13.188±0.004 +2 +527 +295.868122 +23.335831 +-1.350±0.032 +-5.299±0.052 +0.467±0.055 +16.580±0.003 +17.741±0.006 +15.496±0.005 +2 +529 +295.910436 +23.335234 +-1.692±0.169 +-5.130±0.251 +0.688±0.245 +19.127±0.007 +20.413±0.056 +17.532±0.019 +1 +531 +295.850017 +23.335616 +-1.798±0.030 +-5.427±0.046 +0.477±0.050 +16.447±0.004 +17.610±0.013 +15.360±0.009 +2 +546 +295.746235 +23.334619 +1.642±0.054 +-0.744±0.078 +0.666±0.079 +17.331±0.003 +18.235±0.008 +16.373±0.004 +0 +561 +295.717802 +23.332530 +-1.806±0.058 +-5.112±0.077 +0.449±0.084 +17.330±0.003 +18.517±0.015 +16.256±0.006 +2 +576 +295.862641 +23.329178 +-1.923±0.092 +-5.421±0.138 +0.003±0.150 +18.117±0.004 +19.508±0.028 +16.934±0.008 +1 +614 +295.686941 +23.325122 +0.064±0.021 +-2.606±0.028 +0.631±0.030 +15.454±0.003 +16.096±0.004 +14.665±0.004 +0 +619 +295.856809 +23.323021 +-1.705±0.018 +-5.254±0.028 +0.468±0.030 +15.271±0.003 +16.180±0.004 +14.321±0.004 +2 +623 +295.834392 +23.322264 +-5.268±0.009 +-19.204±0.013 +1.568±0.014 +12.832±0.003 +13.444±0.003 +12.086±0.004 +0 +655 +295.837455 +23.317270 +-1.973±0.042 +-5.777±0.068 +1.110±0.079 +16.811±0.008 +18.136±0.032 +15.636±0.023 +1 +679 +295.768320 +23.313487 +-1.905±0.009 +-5.483±0.013 +0.465±0.015 +13.468±0.003 +13.893±0.003 +12.833±0.004 +2 +706 +295.752612 +23.310267 +-1.994±0.035 +-5.380±0.051 +0.518±0.052 +16.539±0.003 +17.599±0.007 +15.508±0.005 +2 +731 +295.789104 +23.307583 +-1.690±0.068 +-5.348±0.086 +0.444±0.094 +17.553±0.003 +18.975±0.020 +16.406±0.007 +2 +733 +295.798253 +23.307303 +-1.671±0.016 +-5.453±0.021 +0.447±0.022 +14.822±0.003 +15.418±0.003 +14.057±0.004 +2 +752 +295.737297 +23.306309 +-4.190±0.024 +-9.756±0.033 +0.807±0.036 +15.715±0.004 +16.429±0.010 +14.875±0.009 +0 +753 +295.798228 +23.305611 +-1.439±0.091 +-5.723±0.130 +0.527±0.132 +18.213±0.010 +19.645±0.052 +16.983±0.037 +2 +757 +295.803663 +23.305216 +-1.823±0.027 +-5.343±0.036 +0.420±0.038 +16.075±0.003 +17.227±0.006 +15.000±0.006 +2 +765 +295.785197 +23.304768 +-1.971±0.055 +-5.559±0.075 +0.582±0.084 +17.403±0.003 +18.407±0.020 +16.391±0.007 +1 +822 +295.787697 +23.296925 +-1.931±0.012 +-5.372±0.017 +0.440±0.020 +14.172±0.003 +14.769±0.004 +13.413±0.004 +2 +826 +295.825083 +23.296002 +0.000±0.000 +0.000±0.000 +0.000±0.000 +18.717±0.006 +19.528±0.088 +16.822±0.010 +0 +831 +295.746221 +23.296549 +-3.198±0.140 +-6.012±0.190 +0.051±0.164 +18.030±0.034 +20.951±0.092 +16.343±0.113 +0 +860 +295.798251 +23.292496 +-1.763±0.053 +-5.198±0.075 +0.296±0.086 +17.181±0.003 +18.444±0.012 +16.091±0.007 +1 +886 +295.793856 +23.290165 +-1.700±0.016 +-5.457±0.017 +0.501±0.019 +14.140±0.003 +14.596±0.003 +13.490±0.004 +2 +903 +295.800965 +23.287961 +-1.443±0.018 +-5.239±0.025 +0.444±0.025 +14.092±0.003 +14.566±0.003 +13.425±0.004 +2 +924 +295.787347 +23.285362 +-1.173±0.096 +-7.786±0.132 +-0.663±0.160 +17.259±0.004 +18.378±0.013 +16.050±0.006 +0 +945 +295.855106 +23.282160 +-1.481±0.027 +-5.241±0.040 +0.579±0.039 +14.176±0.003 +14.745±0.003 +13.423±0.004 +1 +950 +295.706797 +23.283426 +-3.581±0.166 +-4.734±0.244 +1.034±0.261 +18.148±0.004 +21.250±0.095 +16.437±0.008 +0 +951 +295.796964 +23.282188 +-1.581±0.030 +-5.247±0.043 +0.424±0.049 +16.307±0.003 +17.417±0.006 +15.267±0.005 +2 +965 +295.891582 +23.279985 +0.251±0.066 +-2.097±0.096 +1.647±0.102 +14.281±0.003 +14.802±0.004 +13.562±0.005 +0 +979 +295.775108 +23.280240 +-1.692±0.116 +-5.685±0.169 +0.939±0.173 +18.478±0.004 +19.642±0.032 +17.336±0.011 +1 +1000 +295.814485 +23.277802 +-1.142±0.009 +-3.501±0.013 +0.635±0.014 +13.457±0.003 +13.714±0.003 +13.041±0.004 +0 +1007 +295.778155 +23.276998 +-1.989±0.014 +-5.533±0.017 +0.462±0.020 +14.277±0.003 +14.835±0.004 +13.530±0.004 +2 +1025 +295.690388 +23.275981 +-1.408±0.245 +-4.138±0.340 +0.725±0.434 +19.836±0.011 +20.939±0.089 +18.552±0.043 +0 +1061 +295.788730 +23.269975 +-1.671±0.053 +-5.426±0.070 +0.567±0.076 +17.298±0.003 +18.639±0.013 +16.154±0.005 +1 +1063 +295.778243 +23.269561 +-2.431±0.095 +-5.395±0.081 +0.282±0.090 +12.869±0.003 +00.000±0.000 +00.000±0.000 +1 +1063 +295.778279 +23.270083 +-1.210±0.090 +-5.981±0.149 +-0.091±0.141 +09.720±0.003 +09.906±0.003 +09.274±0.004 +1 +1064 +295.758524 +23.270269 +-2.317±0.038 +-4.554±0.053 +0.521±0.058 +14.183±0.003 +14.645±0.003 +13.493±0.004 +2 +1066 +295.843490 +23.269270 +-3.124±0.021 +-4.962±0.028 +0.291±0.030 +14.584±0.003 +16.863±0.004 +13.214±0.004 +0 +1072 +295.820520 +23.269079 +-1.645±0.013 +-5.282±0.018 +0.468±0.019 +14.395±0.003 +14.918±0.003 +13.690±0.004 +2 +1087 +295.798607 +23.266730 +-3.210±0.068 +-5.424±0.095 +-0.081±0.102 +16.758±0.005 +22.007±0.122 +14.938±0.008 +0 +1094 +295.817575 +23.265043 +-1.438±0.023 +-5.392±0.032 +0.428±0.033 +15.783±0.003 +16.830±0.005 +14.765±0.005 +2 +1122 +295.709131 +23.260843 +-1.586±0.010 +-5.419±0.015 +0.523±0.017 +13.588±0.003 +13.956±0.003 +13.029±0.004 +2 +1151 +295.805720 +23.255733 +-1.697±0.114 +-5.153±0.163 +0.173±0.158 +18.349±0.007 +19.909±0.042 +17.113±0.021 +1 +1155 +295.768235 +23.255355 +-1.672±0.060 +-5.173±0.080 +0.266±0.087 +17.543±0.003 +18.600±0.015 +16.523±0.007 +1 +1168 +295.883351 +23.252588 +-1.697±0.098 +-5.681±0.144 +0.519±0.147 +18.327±0.004 +19.726±0.041 +17.177±0.010 +2 +1191 +295.875000 +23.248688 +-1.715±0.119 +-5.193±0.172 +0.321±0.183 +18.703±0.006 +20.107±0.041 +17.449±0.014 +1 +1228 +295.850980 +23.243847 +-1.660±0.116 +-5.465±0.169 +0.200±0.170 +18.582±0.005 +20.077±0.048 +17.393±0.013 +1 +1230 +295.755855 +23.244602 +-1.353±0.018 +-5.260±0.023 +0.524±0.025 +14.356±0.003 +14.761±0.003 +13.759±0.004 +2 +1235 +295.672376 +23.244490 +4.176±0.009 +-1.613±0.012 +0.757±0.013 +12.759±0.003 +13.223±0.003 +12.126±0.004 +0 +1262 +295.774562 +23.237761 +-1.522±0.228 +-5.636±0.521 +0.437±0.441 +19.291±0.006 +00.000±0.000 +00.000±0.000 +2 +1262 +295.774980 +23.237889 +-0.719±0.097 +-4.431±0.131 +-1.092±0.153 +16.379±0.003 +17.455±0.006 +15.228±0.007 +0 +1266 +295.802542 +23.236774 +-1.624±0.068 +-5.081±0.086 +0.554±0.093 +17.741±0.003 +18.960±0.022 +16.686±0.006 +1 +1268 +295.698738 +23.237776 +-2.864±0.083 +-5.120±0.113 +0.230±0.119 +15.750±0.004 +21.208±0.109 +13.997±0.007 +0 +1295 +295.812280 +23.232347 +-1.564±0.182 +-4.156±0.212 +0.354±0.225 +18.726±0.015 +20.052±0.046 +17.061±0.037 +1 +1298 +295.671363 +23.233613 +-1.763±0.227 +-10.821±0.301 +-1.850±0.289 +18.089±0.021 +18.880±0.071 +16.384±0.040 +0 +1317 +295.899959 +23.227779 +-1.562±0.101 +-5.431±0.123 +0.589±0.137 +18.039±0.010 +19.288±0.036 +16.868±0.028 +1 +1352 +295.816693 +23.222874 +-0.419±0.008 +-4.078±0.011 +1.831±0.012 +12.449±0.003 +12.760±0.003 +11.975±0.004 +0 +1389 +295.717974 +23.217819 +-2.076±0.024 +-5.544±0.032 +0.434±0.035 +15.834±0.004 +16.701±0.010 +14.881±0.008 +2 +1405 +295.778615 +23.214104 +-0.016±0.083 +-4.330±0.113 +0.999±0.120 +18.085±0.003 +19.069±0.014 +17.103±0.007 +0 +1406 +295.844691 +23.213100 +-3.267±0.064 +1.679±0.081 +0.991±0.089 +17.530±0.003 +18.310±0.023 +16.559±0.011 +0 +1459 +295.758607 +23.204733 +-1.710±0.090 +-5.469±0.124 +0.343±0.133 +18.147±0.003 +19.354±0.022 +17.032±0.008 +1 +1500 +295.892106 +23.195945 +3.974±0.049 +-3.001±0.071 +0.924±0.071 +15.646±0.003 +16.328±0.003 +14.820±0.004 +0 +1506 +295.737755 +23.197158 +-1.684±0.022 +-4.291±0.026 +0.674±0.028 +15.219±0.003 +15.857±0.004 +14.435±0.004 +0 +1508 +295.846040 +23.195095 +-2.071±0.089 +-4.858±0.124 +0.392±0.142 +18.061±0.005 +19.437±0.035 +16.831±0.013 +2 +1511 +295.813526 +23.194842 +4.169±0.025 +20.500±0.032 +3.135±0.035 +15.890±0.003 +16.829±0.004 +14.933±0.004 +0 +1525 +295.817542 +23.191915 +-0.781±0.009 +-7.011±0.012 +0.655±0.013 +13.206±0.003 +13.785±0.003 +12.468±0.004 +0 +1526 +295.740382 +23.192673 +59.603±0.010 +-58.093±0.014 +9.066±0.015 +08.663±0.003 +08.977±0.003 +08.173±0.004 +0 +1548 +295.840568 +23.186899 +-1.083±0.043 +-3.305±0.056 +0.248±0.060 +13.737±0.003 +18.375±0.013 +12.116±0.006 +0 +derived parameters are listed in Table 5. The masses and +ages of two suspected PMS binaries could not be obtained +due to unavailability of their V −I color. Since UBV data of +MS star no. 752 are not available, the temperature for this +star has been obtained using theoretical models of Girardi +et al. (2002) and present V magnitude. +© 0000 RAS, MNRAS 000, 1–?? + +16 +Sneh Lata et al. +Figure 18. The phased light curves of variable stars using TESS data. +Figure 19. Amplitude of variability and rotation period of TTSs with ∆(I − K) is shown. +6 +CORRELATION BETWEEN +CIRCUMSTELLAR DISKS AND +VARIABILITY +Accretion onto the stellar surface creates hotspots that +brighten the light curve up to 3 mag, whereas the magnetic +field is responsible for cool and therefore dark spots. Herbst +et al. (1994) studied photometric variability of PMS stars in +the Orion Nebula Cluster, and showed that slower rotators +have larger IR excess than fast rotators, indicating disk lock- +ing, for which the angular momentum is transported through +magnetic field lines from the central star to the circumstellar +disk. This supported the results by Edwards et al. (1993) for +which low-mass young stars with accretion disks have peri- +ods more than 4 days, whereas stars without have periods +ranging from 1.5 to 16 days. Rotation seems to be regulated +after the disk is dissipated, as the star spins up while con- +© 0000 RAS, MNRAS 000, 1–?? + +103 +239 +240 +264 +1230 +160 +230 +100 +1225 +155 +90 +220 +1220 +xni +150 +xni +xnl +80 +Xr +210 +145 +1215 +70 +200 +1210 +140 +60 +1205 +135 +190 +50 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +369 +385 +449 +478 +3000 +340 +1270E +275 +335 +2990 +270 +1260 +330 +2980 +265 +xnl +Xr +xni +325 +1250 +2970 +260 +320 +1240 +2960 +255 +315 +2950 +310 +1230 +250 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +527 +531 +561 +576 +160 +550 +620 +205 F +540 +615 +200 +155 +610 +530 +195 +xnl +xnl +xnl +xn +150 +605 +520 +190 +600 +145 +510 +185 +595 +140 +500 +590 +180 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +614 +619 +623 +679 +06 +345 +2160E +2230 +85 +340 +2220 +2150 +80 +335 +2210 +xn +xn +xn +75 +x +330 +2140 +L +2200 +70 +325 +2130 +2190 +65 +320 +60 +315 +2120 +2180 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase752 +831 +945 +950 +300 +815 +430 +205 +810 +425 +290 +200 +805 +420 +280 +xnl +xnl +195 +xni +xni +800 +415 +270 +190 +795 +410 +260 +185 +790 +405 +250 +785 +400 +180 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +965 +979 +1007 +1061 +355 +6920 +1.784×104 +6940 +350 +1.782×104 +6920 +6900 +345 +xnl +1.780×104 +6900 +xn +xni +340 +6880 +F +1.778×104 +6880 +335 +6860 +1.776×104 +6860 +330 +325 +6840 +1.774×104 +6840 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.01.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1064 +1066 +1072 +1122 +1110 +415 +1540 +380 +410 +1100 +1530 +370 +405 +xn +xni +1090 +400 +1520 +360 +395 +1080 +1510 +350 +390 +1070 +385 +1500 +340 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase +1151 +1230 +1235 +1268 +540 +2330 +1000 +165 +530 +2325 +900 +160 +520 +2320 +800 +155 +xn +xn +xni +xn +510 +2315 +700 +150 +500 +2310 +600 +490 +145 +2305 +500 +480 +2300 +400 +140 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +0.00.5 1.0 1.52.0 +Phase +Phase +Phase +Phase0.4 +0.3 +(mag +Amp. +0.2 +0.1 +0 +0 +2 +△(I-K)30 +28 +26 +24 +22 +20 +18 +(days) +16 +Period +14 +12 +10 +8 +6 +4 +2 +0 +0 +2 +△(I-K)Variable stars in NGC 6823 +17 +[h] +Table 5. The derived parameters of the confirmed/suspected +eclipsing binaries. The last column refers to binary classification. +ID +Age +Mass +Mbol +log(L/L⊙) +log Teff +class. +Binary +Myrs +M⊙ +mag +class. +369 +- +- +- +- +- +PMS +EA? +561 +1.3 +1.28 +- +- +- +PMS +EA? +576 +- +- +- +- +- +PMS +EA? +619 +- +- +- +- +- +Field +EA? +752 +4.0 +1.95 +- +3.915 +MS +EW +757 +0.4 +1.50 +- +- +- +PMS +EW? +1064 +4.0 +3.40 +-0.794 +2.211 +4.148 +MS +EW? +1072 +4.0 +3.20 +0.1394 +1.837 +4.047 +MS +EW? +1122 +4.0 +4.59 +-1.286 +2.407 +4.141 +MS +EW? +1235 +4.0 +6.75 +-1.272 +2.402 +3.979 +MS +EA +tracting towards the MS (Bouvier et al. 2007). These results +support the magnetic-disk model which controls PMS winds +and angular momentum of young stellar objects during the +PMS evolution. +Models for a disk-star interaction (Ostriker & Shu 1995, +Shu et al. 1994, Ghosh & Lamb 1979) are supported by +the rotation periods of PMS objects in young open star +clusters (Attridge & Herbst 1992, Herbst et al. 2001, 2002, +2004). Kearns & Herbst (1998) and Nordhagen et al. (2006) +determined the rotation periods in two clusters. James et +al. (2010) derived light-curve periods of sun-like sources in +the young cluster NGC 1039. Lamm et al. (2004) presented +the rotation period of PMS objects, which supports the +disk-locking mechanism in young stars. Broeg et al. (2006) +measured rotational periods of young objects to under- +stand the star formation scenario that the off-cloud young +sources should rotate faster if these objects were ejected from +the cloud. They did not find significant period distribution +off-cloud weak-lined TTS south of Taurus-Auriga with re- +spect to weak-lined TTS inside the Taurus-Auriga molecu- +lar cloud. Godoy-Rivera (2021) studied stellar rotation and +found that the distribution of period with mass in the case +of open clusters gives important constraints to study angu- +lar momentum evolution and it is evident that spin down +process depends on the mass. The rotation periods of the +members of cluster have been presented, which are found +to be in range from 0.5 days up to 11.5 days (Meibom et +al. 2009, 2011). Gondoin (2018) concluded that the stellar +rotation evolution in open star clusters could be from loss +of angular momentum, which occurs due to strong winds +during the early evolution of young solar type stars. +A disk-bearing YSO spins down due to magnetic brak- +ing (Koenigl 1991; Ostriker & Shu 1995). The increasing disk +fraction with rotation period in open clusters was reported +by Cieza & Baliber (2007). As discussed above, to explore +a correlation between the variability of classical TTSs with +color excess, mass, and age, we have plotted amplitude of +variability with ∆(I −K) excess in Fig. 19 (left panel), while +the right panel of Fig. 19 shows the rotation period with +∆(I − K) excess. Here the ∆(I − K) excess of PMS sources +is determined using the following relation, +∆(I − K) = (I − K)obs − (AI − AK) − (I − K)0, +where (I −K)obs and (I −K)0 are the observed and intrinsic +colors of stars, whereas AI and AK denote the interstellar +extinction in the I and K bands, respectively. To estimate +the value of (I − K)0 of YSOs, it was necessary to estimate +their masses and ages. These values are available for only 22 +PMS objects from the V versus V −I CMD after comparing +with the theoretical models of Siess et al. (2000). Of the +22 sources, there are 4 classical TTSs for which we could +estimate the age and mass. The AI and AK are estimated +using the relations given by Cohen et al. (1981) by adopting +AV = 2.24 mag. The (I − K)0 value is obtained from the +PMS evolutionary models of Siess et al. (2000) of a given +mass and age. Fig. 19 (left panel) shows that a larger ∆(I − +K) value for classical TTSs corresponds to a relatively larger +amplitude of variability, consistent with those found in the +literature, though we find no clear correlation between ∆(I− +K) and rotation period. However one classical TTS No. 655 +with larger ∆(I − K) excess is found to be rotating with a +longer period. +7 +SUMMARY +This work presents 88 variable stars in the young star cluster +NGC 6823. The association of detected variables to the clus- +ter has been discussed with the Gaia kinematic data, and +the optical and NIR TCDs and CMDs. The membership +of previously known variables has also been discussed. We +have detected 48 stars as PMS stars, of which eight are clas- +sified as classical TTSs while 36 and 4 as weak-lined TTSs +and Herbig Ae/Be stars, respectively. Three known variables +H30, V2 and V8 are found to PMS variables as suggested +by Pigulski et al. (2000) while two stars BL 50 and HP 57 +previously detected as PMS δ Scuti pulsators are turned out +to be MS members of the cluster from their proper motion, +parallax values and positions on the TCDs and CMDs. TTSs +have periods ranging from 0.01 days to 30 days, and ampli- +tudes of brightness variation from 0.05 mag to 0.7 mag, with +the classical TTSs varying generally with larger amplitudes +than weak-lined TTSs do. It is noted that 3 of the 4 classi- +cal TTSs with larger values of the disk indicator (∆(I −K)) +are found to have relatively larger amplitude variation. The +present results do not support the disk-locking mechanism, +however one classical TTS having large ∆(I − K) is found +to be rotating slowly. In addition, we have identified 25 stars +to be MS variables (SPB stars, δ Scuti, β Cephei and new +class variable stars). Their variability has been characterized +based on the period, amplitude, shape of the light curves, +and location on the H − R diagram. Fifteen variable stars +may belong to the field star population. +8 +ACKNOWLEDGMENTS +We are thankful to Prof. E. L. Mart´ın for the valuable sug- +gestions that improved scientific content of the present work. +Late Dr. A. K. Pandey facilitated this collaboration project +as Director of ARIES during WPC’s visit. He will be for- +ever remembered. SL will always be grateful to him for all +the support and encouragement. We acknowledge the assis- +tance of Michael Schwartz who managed the Tenagra Ob- +servatory in acquisition of the images of this study. ASH +and JCP thanks Ministry of Innovation Development of +Uzbekistan and Department of Science and Technology of +India for financing the joint project (Project References: +UZB-Ind-2021-99 & INT/UZBEK/P-19). This publication +makes use of data products from the 2MASS, which is a +joint project of the University of Massachusetts and the +© 0000 RAS, MNRAS 000, 1–?? + +18 +Sneh Lata et al. +Infrared Processing and Analysis Center/California Insti- +tute of Technology, funded by the National Aeronautics +and Space Administration and the National Science Foun- +dation. This paper includes data collected by the TESS +mission. Funding for the TESS mission is provided by the +NASA’s Science Mission Directorate. We also acknowledge +”Galactic Legacy Infrared Midplane Survey Extraordinaire” +(GLIMPSE) Legacy Program for Spitzer IRAC data. This +work also used data from the European Space Agency (ESA) +space mission Gaia. Gaia data are being processed by the +Gaia Data Processing and Analysis Consortium (DPAC). +Funding for the DPAC is provided by national institutions, +in particular the institutions participating in the Gaia Mul- +tiLateral Agreement (MLA). The Gaia mission website is +https://www.cosmos.esa.int/gaia. The Gaia archive website +is https://archives.esac.esa.int/gaia. +AVAILABILITY OF DATA +The data underlying this article will be shared upon +request +to +the +corresponding +author. +The +2MASS +data +are +available +at +https://vizier.u-strasbg.fr/viz- +bin/VizieR?-source=II/246. The Gaia and Spitzer IRAC +data are obtained from https://gea.esac.esa.int/archive/ +and +https://irsa.ipac.caltech.edu/cgi-bin/Gator/nph- +scan?submit=Select&projshort=SPITZER, +re- +spectively. +We +used +the +following +links +https://archive.stsci.edu/hlsp/eleanor +and +https://adina.feinste.in/eleanor/ to obtain TESS data. +REFERENCES +[] Andre +Philippe, +Ward-Thompson +Derek, +Barsony +Mary, 1993, ApJ, 406, 122 +[] Appenzeller I., Mundt R, 1989A&ARv, 1, 291A +[] Attridge Joanne M., Herbst William, 1992, ApJ, 398, +61 +[] Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Dem- +leitner M., Andrae R., 2021, AJ, 161, 147 +[] Barrado y Navascu´es D., Zapatero Osorio M. R., B´ejar +V. J. S., Rebolo R., Mart´ın E. L., Mundt R., Bailer- +Jones, C. A. L., 2001, A&A, 377, 9 +[] Bessell M. S., Brett J. M., 1988, PASP, 100, 1134 +[] Bica E., Bonatto C., Dutra C. M., 2008, A&A, 489, +1129 +[] Bouvier J., Cabrit S., Fern´andez M., Mart´ın E. L., +Matthews J. M., 1993, A&AS, 101, 485 +[] Bouvier J., Alencar S. H. P., Boutelier T., Dougados +C., Balog Z., Grankin K., Hodgkin S. T., Ibrahimov M. +A., Kun M., Magakian T. Yu., Pinte C., 2007, A&A, +463, 1017 +[] Broeg C., Joergens V., Fernandez M., et al., 2006, A&A, +450, 1135 +[] Canto Martins B. L., Gomes R. L., Messias Y. S, 2020, +ApJS, 250, 20 +[] Cohen J. G., Persson S. E., Elias J. H., Frogel J. A., +1981, ApJ, 249, 481 +[] Cohen R. E., Sarajedini A., 2012, MNRAS, 419, 342 +[] Cutri R. M. et al., 2003 , 2MASS All Sky Cat- +alog of Point Sources, VizieR Online Data Cata- +log, University of Massachusetts and Infrared Process- +ing and Analysis Center (IPAC/California Institute +of Technology), 2246, 0 https://vizier.u-strasbg.fr/viz- +bin/VizieR?-source=II/246 +[] Cantat-Gaudin T., Anders, F. 2020, A&A, 633, A99. +doi:10.1051/0004-6361/201936691 +[] Edwards Suzan, Strom Stephen E., Hartigan Patrick, +Strom +Karen +M., +Hillenbrand +Lynne +A., +Herbst +William, Attridge Joanne, Merrill K. M., Probst Ron, +Gatley Ian, 1993, AJ, 106, 372 +[] Erickson R.R., 1971, Astron. Astrophys., 10, 270. +[] Feinstein Adina D., Montet Benjamin T., Foreman- +Mackey Daniel, 2019, PASP, 131, i4502 +[] Finkenzeller U, Mundt R., 1984, A&A Supp, 55, 109 +[] Gaia +Collaboration +et +al. +2018, +A&A, +616, +13 +https://gea.esac.esa.int/archive/ +[] Girardi L., Bertelli G., Bressan A., Chiosi C., Groe- +newegen M. A. T., Marigo P., Salasnich B., Weiss A., +2002, A&A, 391, 195 +[] Ghosh P., Lamb F. K., 1979, ApJ, 234, 296 +[] Godoy-Rivera Diego, Pinsonneault Marc H., Rebull +Luisa M., 2021, arXiv210101183G +[] Gondoin P., 2017, A&A, 616, 154 +[] Gutermuth R. A. et al., 2008 , ApJ , 674 , 336 +[] Guetter H.H., 1992, Astron. J., 103, 197 +[] Herbst W., Herbst D. K., Grossman E. J., Weinstein +D. 1994, AJ,108, 1906 +[] Herbst W., Booth J. F., Koret D. L., et al., 1987, AJ, +94, 137 +[] Herbst William, Hamilton Catrina M., et al., 2002, +PASP, 114, 1167 +[] Herbst W., Bailer-Jones C. A. L., Mundt R., Meisen- +heimer K., Wackermann R., 2002, A&A, 396, 513 +[] Herbst W., Bailer-Jones C. A. L., Mundt R., 2001, ApJ, +554, 197 +[] Herbst W., Rhode K. L., Hillenbrand L. A., Curran G., +2000, AJ, 119, 261 +[] Hojaev A. S., Chen W. P., Lee H. T., 2003, A&AT, 22, +799 +[] Huang P. C., et al., 2019, ApJ, 871, 183 +[] James D. J., Barnes S. A., Meibom S., et al., 2010, +A&A, 515, 100 +[] Johnstone D., et al. 2018, ApJ, 854, 31 +[] Joy Alfred H., 1945, ApJ, 102, 168 +[] Kearns Kristin E., Herbst William, 1998, AJ, 116, 261 +[] Lada C. J., 1987, Star Forming Regions, IAUS 115, 1 +[] Lamm M. H., Bailer-Jones C. A. L., Mundt R., Herbst +W., Scholz A. 2004, A&A, 417, 557 +[] Knote M. F., Caballero-Nieves Saida M., Gokhale +Vayujeet, et al., 2022, arXiv220604142K +[] Mart´ın E. L., Brandner W., Bouvier J, Luhman K. L., +Stauffer J., Basri G., Zapatero Osorio M. R., Barrado +y Navascu´es D., 2000, ApJ, 543, 299 +[] Massey Philip, Johnson Kelsey E., Degioia-Eastwood +Kathleen, ApJ, 1995, 454, 151 +[] Meibom S., Mathieu Robert D., Stassun Keivan G., +2009, ApJ, 695, 679 +[] Meibom S.; Mathieu Robert D., Stassun Keivan G., +Liebesny Paul, Saar Steven H., 2011, ApJ, 733, 115 +[] Meyer M. R., Calvet N., Hillenbrand L. A., 1997, AJ, +114 , 288 +[] Morales E. F. E., Wyrowski F., Schuller F., et al., 2013, +© 0000 RAS, MNRAS 000, 1–?? + +Variable stars in NGC 6823 +19 +A&A, 560, A76. doi:10.1051/0004-6361/201321626 +[] Morales-Calder´on M., et al., 2011, ApJ, 733, 50 +[] Nordhagen Stella, Herbst William, Rhode Katherine L., +Williams Eric C, 2006, AJ, 132, 1555 +[] Ostriker Eve C., Shu Frank H., 1995, ApJ, 447, 813 +[] O’Connell D. J. K., 1951, Publications of the Riverview +College Observatory, 2, 85 +[] Pandey J. C., Karmakar S., Joshi A., Sharma Saurabh, +Bhushan Pandey S., Pandey A. K., 2019, RAA, 19, 7 +[] Pedrosa Antonio, 1997, IAUS, 182, 306 +[] Pigulski A., Kolaczkowski Z., Kopacki G., 2000, AcA, +50, 113 +[] Ricker George R., Winn Joshua N, Vanderspek R., et +al., 2015, Journal of Astronomical Telescopes, Instru- +ments, and Systems, 1, 014003 +[] Rangwal Geeta, Yadav R. K. S., Durgapal Alok K., +Bisht D., 2017, PASA, 34, 68 +[] Riaz B., Mart´ın E. L., Tata R., Monin J. -L., Phan-Bao +N., Bouy H., 2012, MNRAS, 419, 1887 +[] Sagar R., Joshi U.C. 1981, Astrophys. Space Sci., 75, +465 +[] Siess L., Dufour E., Forestini M., 2000, A&A, 358, 593 +[] Shu Frank, Najita Joan, Ostriker Eve, Wilkin Frank, +Ruden Steven, Lizano Susana, 1994, ApJ, 429, 781 +[] Stone D. G., 1979, Astron. J., 96, 1389 +[] Shi H.M., Hu, J.Y. 1999, Astron. Astrophys. Suppl. +Ser., 136, 313. +[] Stetson P. B, 1992, J. R. Astron. Soc. Can., 86, 71 +[] Stetson P. B., 1987, PASP, 99, 191 +[] Torres G., 2010, AJ, 140, 1158 +[] Turner D. G., 1979, JRASC, 73, 74 +[] Zahajkiewicz E., 2012, AN, 333, 1086 +© 0000 RAS, MNRAS 000, 1–?? + diff --git a/69E0T4oBgHgl3EQffAC0/content/tmp_files/load_file.txt b/69E0T4oBgHgl3EQffAC0/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..6a720b8f4b665f14252454bd4bec554831c79313 --- /dev/null +++ b/69E0T4oBgHgl3EQffAC0/content/tmp_files/load_file.txt @@ -0,0 +1,5975 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf,len=5974 +page_content='Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (0000) Printed 9 January 2023 (MN LaTEX style file v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2) Photometric variable stars in the young open cluster NGC 6823 Sneh Lata1⋆, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Chen2,3, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pandey1, Athul Dileep1, Zhong-Han Ai3, Alisher S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Hojaev4, Neelam Panwar1, Santosh Joshi1, Soumen Mondal5, Siddhartha Biswas5, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Bhatt6 1Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263002, Uttarakhand, India 2Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli 32001 Taoyuan, Taiwan 3Department of Physics, National Central University, 300 Zhongda Road, Zhongli 32001 Taoyuan, Taiwan 4Ulugh Beg Astronomical Institute, Uzbekistan Academy of Sciences, Tashkent, Republic of Uzbekistan 5S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Bose National Centre for Basic Sciences, Kolkata 700106, India 6Indian Institute of Astrophysics, Koramangala, Bangalore-560034, India Accepted ———.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Received ———;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ABSTRACT We present stellar variability towards the young open cluster NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Time series V - and I-band CCD photometry led to identification and characterization of 88 variable stars, of which only 14 have been previously recognized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We ascertain the membership of each variable with optical UBV I and infrared photometry, and with Gaia EDR3 parallax and proper motion data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Seventy two variable stars are found to be cluster members, of which 25 are main sequence stars and 48 are pre-main-sequence stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The probable cluster members collectively suggest an isochrone age of the cluster to be about 2 Myrs based on the GAIA photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' With the color and magnitude, as well as the shape of the light curve, we have classified the main sequence variables into β Cep, δ Scuti, slowly pulsating B type, and new class variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Among the pre-main- sequence variables, eight are classical T Tauri variables, and four are Herbig Ae/Be objects, whereas the remaining belong to the weak-lined T Tauri population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The variable nature of 32 stars is validated with TESS light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Our work provides refined classification of variability of pre-main-sequence and main-sequence cluster members of the active star-forming complex, Sharpless 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Despite no strong evidence of the disk-locking mechanism in the present sample of TTSs, one TTS with larger ∆(I − K) is found to be slow rotator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Key words: open clusters and associations: individual NGC 6823, Hertzsprung- Russell and color-magnitude diagram, stars: pre-main-sequence, stars: variables: T Tauri, Herbig Ae/Be 1 INTRODUCTION Young open clusters serve as useful tools for the studies of the star formation mechanism and early stellar evolu- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' For example, young star clusters are used to trace the Galactic spiral structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In particular, variability of young stellar members provides diagnostics on the sporadic (accre- tion or occultation) or periodical (rotation) properties of the stars, and of their relation to the circumstellar environments (Morales-Calderon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pre-main-sequence (PMS) objects are categorized on ⋆ E-mail: sneh@aries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='in the basis of the spectral energy distribution in the infrared wavelengths: Class 0 , Class I, Class II, and Class III (Lada 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Andre et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1993) with the classification sequence roughly corresponding to the evolutionary status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Namely, a Class 0 object signifies a clump of dust and gas heavily en- shrouded in the molecular envelope, and is detected only in far-infrared wavelengths or longer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A Class I object is more evolved, now emerging from the cloud to become visible in near- and mid-infrared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A Class I object is in the protostellar stage and derives the luminosity from mass accretion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A Class II object, corresponding to a classical T Tauri star (TTS), has dispersed much of the envelope of gas and dust but retains a circumstellar disk within which plan- © 0000 RAS arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='02399v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='SR] 6 Jan 2023 2 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ets may condense or are being formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Inside the optically thick but geometrically thin disk, the dust grains absorb the starlight and re-emit in the infrared, manifest as infrared excess seen typically in a classical TTS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Accretion from the disk onto the star, while matter is partly lost as bipolar jets/outflows, leads to strong emission lines in the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' As the inner disk is dissipated (or going into planet forma- tion), the PMS object then evolves to Class III, now with negligible infrared excess and with weak emission lines, if any, due to surface chromospheric activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A Class III object hence is called a weak-lined TTS (Joy 1945, Appenzeller & Mundt 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Variability of PMS objects hence serves as an important diagnosis to understand the earliest PMS stellar evolution, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', the accretion (Johnstone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2018), rota- tion (Herbst et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1994), or dust properties (Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Here we report the variability study of the Galactic young open cluster NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' At a distance of about 2 kpc, the cluster is associated with the prominent H II region, Sharpless 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This cluster has been investigated by several authors (Turner 1979, Stone 1988, Bica et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2008, Sagar and Joshi 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Guetter 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Massey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Hojaev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2003, Zahajkiewicz 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Using op- tical and JHK photometric observations Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2012) found a large population of young stellar sources in the re- gion, including two δ Scuti variables of PMS nature, and 13 other variables such as eclipsing binaries, slowly pulsating B candidates and UX Ori type variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the line of sight to the cluster the reddening has been found to be from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 mag following a normal reddening law (Rangwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The aim of the present work is to identify variables in a relatively large field of ∼ 14′ ×14′ of the member versus nonmember variable stellar populations in the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Par- ticularly, photometric rotation periods of PMS members are derived to add to the data inventory for the study of the angular momentum evolution of low-mass stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We describe in Section 2 observations, data reduction procedure, detection of variables, and period determina- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In Section 3, membership of the identified variable candidates is discussed using Gaia proper motion data, pho- tometric two-color diagrams (TCDs) and color-magnitude diagrams (CMDs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Section 4 then presents the nature of known and newly identified variable stars, while Section 5 deals with TESS light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We discuss correlation be- tween amplitude and rotation periods of TTSs along with their color excess in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The results are summarized in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2 OBSERVATIONS AND DATA REDUCTION We have observed NGC 6823 with the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='81-m f/7 Ritchey- Chretien Tenagra automated telescope in southern Arizona, equipped with a 1024 × 1024 pixel SITe camera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Each pixel corresponds to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='87′′, which yields a field of view of ∼ 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8′× 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The observations were carried out from 2012 early October to 2012 December.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In total, data were acquired on 54 nights in two passbands, with 232 frames in V band and 243 frames in I band, with typical seeing of 2–3′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Bias and twilight flats were taken every observing night.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The observed region of the cluster in I band is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The log of the observations is given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The observed region of open cluster NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Each variable star identified in this work is encircled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Photometric errors as a function of instrumental mag- nitude in I band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Open circles represent the variables stars iden- tified in the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The observed images were processed using standard IRAF tasks: zerocombine, flatcombine and CCDPROC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We have performed aperture as well as point spread function (PSF) photometry to derive the magnitude of stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The PSF photometry was obtained using program ALLSTAR (Stetson 1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' To match the stars between different pho- tometric files we used the daomatch routine of DAOPHOT (Stetson 1992) whereas daomaster was used to match the point sources, and to obtain a file having corrected mag- nitude of stars from all the files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The daomaster program also removes the flux variation of stars in different frames © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='400 42 213 240 264 298 4498.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=" 0SE'E2 402 6FF 478 546 521 I ." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='614 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 DEC 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='300 7月 826 831 965 950 10002 1025 1122 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='250 1151 1156 1226 1235 1268 1298 1317 1352 682 1406 1405 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='200 1459 1500 1155 15506 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='91010 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='800 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='750 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='700 RA0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='02 10 12 8 14 16 18 instVariable stars in NGC 6823 3 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The V and I band sample light curves of a few variables identified in the present work where ∆m represents the differential magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' due to exposure time and airmass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This program makes the magnitudes of stars in each photometry file equal to that of reference file by applying a constant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We have used the V and I observations of Massey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (1995) for conversion of the present instrumental magni- tudes to the standard ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' For this, the mean instrumental magnitudes in V and I bands given by DAOMASTER (Stet- son 1992) have been converted into standard ones with the following transformation equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' V = v + (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='001) × (V − I) + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='818 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 V − I = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='982 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004) × (v − i) + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='185 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='002, where v and i are the instrumental magnitudes, and V and I refer to the standard magnitudes of stars in V and I filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The estimated photometric error as a function of the mean instrumental magnitude is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 Variables identification To identify variable stars, we first produced the light curves of all the stars cross-matched in different CCD frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The light curves were obtained by plotting the differential mag- nitudes (∆m) of stars (variable minus the comparison star) against the given Julian date (JD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We used the Lomb- Scargle periodogram (Lomb 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Scargle 1982) to derive the periods and produced phased light curves accordingly to Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Log of the observations of NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' N and Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' rep- resent number of frames obtained and exposure time in seconds, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Date of I V Observations (N×Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=') (N×Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='13 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='15 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='16 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='17 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='19 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='20 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='21 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='22 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='23 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='24 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='25 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='26 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='27 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='28 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='29 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='30 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='31 oct 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='02 nov 2012 2 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='03 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='04 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='06 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='08 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='11 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='12 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='14 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='17 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='19 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='20 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='22 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='25 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='27 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='28 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='29 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='30 nov 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='02 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='03 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='04 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='06 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='07 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='08 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='09 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='10 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='11 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='12 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='13 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='17 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='18 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='20 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='21 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3× 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 × 50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='26 dec 2012 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6× 30 ascertain their most probable periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A few variables seem to show periodic variability but their periodic nature was not obvious in their observed light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The phased light curves of all stars were inspected, and we adopted the pe- riod value which produces the most consistent phased light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The light curves of a few variables are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3 as examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The phased light curves of variables identified in both V and I bands are presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 4 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 5, whereas Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 6 shows variables identified in the I band only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' By eye inspection and periodogram analysis, we have detected 88 variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We have listed optical and near- infrared (NIR) data of the variable stars in Table 2, including an identification number, coordinates, and optical as well as NIR photometric data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' These are the star ID numbers la- belled in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' These 88 variable stars include 14 known variables, with periods varying from ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='03 days to more than 60 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We have plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 7 the root mean square (RMS) scatter of each star to confirm their variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The observed RMS scatter includes both the intrinsic variability and the mean photometric error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The larger circles in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 7 show the variables identified in the present work, indicat- ing large RMS values for variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Some stars have large RMS values but do not show noticeable brightness varia- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Some of these objects are found to be close to the edge © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 154v 154i 385v 385i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 JD-JDmin JD-JDmin JD-JDmin JD-JDmin 531v 531i 561v 561i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 7 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 JD-JDmin JD-JDmin JD-JDmin JD-JDmin 655v 655i 752v 752i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 JD-JDmin JD-JDmin JD-JDmin JD-JDmin 757v 1235v 757i 1235i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 JD-JDmin JD-JDmin JD-JDmin JD-JDmin1548v 1548i 1268i 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 JD-JDmin JD-JDmin JD-JDmin4 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The V I and JHK 2mass data, amplitude and period of variables identified towards NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The 2MASS data were obtained from the 2mass catalog (Cutri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The first column with an asterisk symbol represents a known variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ID RA Dec V V − I J H K (mag) (mag) (mag) (mag) (mag) 103 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='668444 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='412417 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='115±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='101 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='190±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='048 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='231±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='140±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='508±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 135 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='730111 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='406833 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='454±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='124 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='428±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='054 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='324±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='758±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='586±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='044 142 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='921528 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='403194 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='997±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='072±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='137±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 147 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='717833 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='404972 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='251±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='102 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='442±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='925±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='915±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='452±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 154 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='729444 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='404194 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='305±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='514±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='509±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='561±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='621±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 177 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798972 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='398806 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='623±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='622±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='154±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 201 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='806361 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='392806 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='651±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='129 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='686± - 213 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='678611 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='391889 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='583±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='133 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='531±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='099 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='949±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='093 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='302±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='128 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='913±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='129 238 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='856583 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='385806 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='096±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='248±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='386±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 239 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='793083 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='386500 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='564±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='063 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='161±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='328± - 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='411±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='044 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='853±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 240 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='913278 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='384861 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='320±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='113±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='480±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='178±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='074±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='052 264 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='759250 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='382944 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='953±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='097±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='771±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='045 298 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='707806 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='376667 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='367±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='772±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='216±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='319±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='605±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 369 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='889056 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='363222 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='520±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='672±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='243±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 377 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='880000 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='361417 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='610±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='127 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027± - 385 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='847556 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='360861 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='904±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='763±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='554±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='719±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 402 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='716611 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='358944 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='213±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='159±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='063 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='558±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 449 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='874806 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='347806 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='985±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='571±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='262±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='665±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='521±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 452 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='918972 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='345917 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='529±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='475±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 478 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='847167 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='343222 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='474±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='418±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='002±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 502 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='883889 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='339000 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='593±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='122 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='067 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='050±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='053 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='695±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 510 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='795694 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='339139 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='154±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='061±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='957±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='770±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 527 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='868056 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335778 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='461±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='126±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='688±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='840±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='605±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 529 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='910194 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335083 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='243±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='844±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='984±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 531 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850028 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335583 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='400±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='102±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='562±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='740±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='460±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 546 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='746583 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='334750 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='928±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='082 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='702±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='060 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='461± - 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='676± - 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='144±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='102 561 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='718194 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='332694 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='193±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='100 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='100±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='652± - 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='775± - 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='376±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 576 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='862722 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='329111 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='668±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='423±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='865±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 614 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='687444 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='325333 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='851±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='277±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='709±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='328±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='109±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 619 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='856806 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='323000 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='920±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='721±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='883±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='309±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='076±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 623* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='834472 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='322306 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='202±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='141±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='662±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='519±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 655* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='837528 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='317306 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='052 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='287±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='735±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='397±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='313±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 679 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='768611 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='313583 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='725±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='967±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='556±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='530±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='546±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 706 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='752944 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='310389 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='376±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='963±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='936±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='149±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='880±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 731 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='789306 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='307667 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='493±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='128 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='239±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='060 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='424±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='458±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='044 733* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798444 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='307361 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='224±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='935±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='515±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='045 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='256±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='044 752 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='737667 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='306472 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='172±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='398±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='743±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='207±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='978±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 753* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798472 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='305694 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='578±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='048 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='491±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='062 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='736±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 757* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='803833 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='305278 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='899±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='077±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='186±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='420±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='138±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 765 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='785417 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='304806 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='592±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='124 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='533±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='075 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='421± - 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='103 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='848±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='076 822* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='787917 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='297000 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='529±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='225±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='396±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='823±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 826 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='825139 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='295944 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='661±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='044 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='740±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='406±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='045 831* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='746556 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='296667 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='266±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='761±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='326±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 860 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798389 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='292583 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='563±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='121 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='880±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='072 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='754±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='748±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='045 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 886* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='794056 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='290250 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='448±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='065±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='637±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='379±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='207±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 903* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='801167 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='288028 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='382±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='568± - 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='141± - 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='928±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 924* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='787583 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='285444 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='146±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='097 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='210±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='048 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='154± - 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='363± - 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 945 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='855139 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282167 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='524±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='206±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='395±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='913±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 950 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='707250 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='283611 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='424±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='060±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='310±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 951 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='797167 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282278 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='150±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='664±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='913±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='626±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 965 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='891500 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='279944 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='600±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='125±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='661±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='150±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='050±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 979* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='775389 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='280333 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='201±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='083 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='179±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='079 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='432±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='057 1000 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='814639 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='277861 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='574±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='579 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='544±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='472±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='342±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 1007* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778417 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='277111 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='624±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='016 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='181 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='508±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='220±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 1025 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='690889 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='276194 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='839±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='088 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='503±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='751±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='052 1061* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='788972 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='270083 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='267±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='456± - 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081± - 1063 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778528 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='270139 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='702±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='631±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='785±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='712±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='652±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 1064 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='758861 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='270389 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='451±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='047±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='514±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='088±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='874±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 1066 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='843528 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269278 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='715±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='602±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='303±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='170±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='693±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 1072 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='820667 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269139 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='714±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='098±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='751±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='523±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='317±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 1087* 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798806 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='266806 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='945±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='952±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 1094 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='817722 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='265111 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='634±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='949±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='251±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='572±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='283±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 1122 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='709611 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='261028 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='788±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='824±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='308±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='085±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='956±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 1151 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='806028 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='255889 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='956±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='596±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 1155 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='768556 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='255472 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='407±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='117 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='062 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='928±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='169±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='049 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='918±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 1168 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='883528 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='252556 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='273±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='057 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='244±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='061 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='974±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059 1191 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='875000 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='248667 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='444±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='065 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='630± - 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='955± - 1228 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='851056 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='243861 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='146±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='810±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='063 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='109±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 1230 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='756194 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='244750 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='580±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='897±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='948±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='700±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='604±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 1235 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='672972 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='244722 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='983±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='937±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='555± - 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='322± - 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='205±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 1262 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='775250 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='238000 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='050 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='100±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='351±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='474±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='998±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 1266 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='802833 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='236806 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='656±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='134 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='123±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='069 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='808±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='078±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='049 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='694±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='045 1268 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='699250 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='237972 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='148±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='303±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 1295 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='812361 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='232472 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='982±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='783±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='963±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 1298 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671972 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='234000 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='572±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='133 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='430±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='280±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='049 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='287±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='611±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 1317 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='899889 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='227722 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='299±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='063 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='344±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 1352 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='816861 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='222944 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='586±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='693±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='411±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='168±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='106±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 1389 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='718444 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='218000 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='432±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='683±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='25 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='387±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='659±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 1405 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778889 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='214194 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='752±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='142 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='817±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='090 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='644±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='069 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='713±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='516±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='090 1406 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='844722 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='213083 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='981±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='088 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='589±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='063 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='113±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='122 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='442±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='237 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='856±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='283 1459 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='758944 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='204833 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='208±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='355±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='932±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='060 1500 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='892056 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='195889 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='993±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='365±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='631±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='176±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='053±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 1506 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='738167 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='197333 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='499±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='237±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='540 ± - 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='123±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='088± - 1508 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='846250 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='195111 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='502±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='425±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='050 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='769±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 1511 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='813722 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='194889 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='513±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='795±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='734±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='124±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='874±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 1525 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='817722 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='191972 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='517±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='170±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='520 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='221±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 1526 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='740750 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='192917 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='846±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='721±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='610 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='327±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='256±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 1548 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='840667 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='186917 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='460±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='141 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='181±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='177±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='609±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='875±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 of the detector whereas a few stars contains spurious data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The derived periods of stars are given in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3 CLUSTER MEMBERSHIP OF VARIABLE STARS For each variable star, its UBV I plus 2MASS photometry along with Gaia EDR3 proper motion and parallax have been used to assess the likelihood of cluster membership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The UBV , JHK, and mid infrared (MIR) data at wave- © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Variable stars in NGC 6823 5 lengths 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 and 8 micron, are taken from Massey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (1995), Cutri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2003), and GLIMPSE survey, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 Gaia Characterization of the Variable Stars The 88 variable stars reported in this work have been char- acterized with the Gaia EDR3 parallax and proper motion measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 8 plots the sky positions of all the Gaia sources (in gray) within 30′ toward NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This covers the field of the Tenagra images (variable stars marked in black crosses) and is much wider than the cluster’s angular size of ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='′6 (red circle) (Morales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The stellar density is clearly enhanced toward the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Each variable star was matched with Gaia counterparts within a radius of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='′′5 as the compromise of the seeing of the Tenagra images, leading to 91 Gaia sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 9 presents the proper motion vector plot of all the stars (gray) and those within 4′ nominal cluster region (black small circles, 1294 stars) for which the members should be concentrated, serving as the sample of cluster members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This 4′ (posi- tional) sample has a mean of µα ≈ −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 mas yr−1 and µδ ≈ −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 mas yr−1, which agrees well with the litera- ture values (Cantat-Gaudin & Anders 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Shown in the bottom panel are the proper motions for variable stars (in black with error bars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' One sees that the majority of our variable stars share the same proper motion ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Gaia measures repeatedly the astrometry of a source from which the parallax and proper motion are solved simul- taneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Parallax, however, does not serve as a constraint for membership as stringently as the proper motion, because given the uncertainties, negative average values may result, rendering the reciprocal to estimate the distance possible only if a statistical inference is exercised (Bailer-Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' For our work the parallax value was used directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The parallax of the 4′ sample exhibits a peak around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='45 mas, indeed consistent with the literature value (Cantat-Gaudin & Anders 2020), and so does the variable star sample, as demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' If the 4′ sample is further di- vided by proper motion ranges, one finds no star within 1– 2 mas yr−1 from the cluster’s mean having parallax between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 mas and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 mas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This signifies the sufficiency as mem- bership criteria of (1) a radius of 1 mas yr−1 in the proper motion from the cluster average proper motion, and (2) a parallax value 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='35–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='55 mas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A variable satisfying both (1) and (2) is therefore considered a “highly probable” mem- ber, whereas one that fulfills only (1) or (2) is classified as a “possible” member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Table 4 lists information about the proper motions, parallax, and magnitudes for the 88 vari- ables identified in the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 11 shows the Gaia G versus BP − RP CMD for the highly probably members (in red) and possible mem- bers (in blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Overlapped in the diagram is the PARSEC isochrones of 1, 2, and 4 Myr, respectively, each shifted by a distance modulus of 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='753 (parallax of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='446 mas) and reddening of E(B −V ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 (Sagar & Joshi 1981) adopting the reddening law of AV = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 E(B −V ), AG = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='83627 AV , ABP = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='08337 AV , and ARP = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='63439 AV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The highly probable members indicate an age of roughly 2 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Three variables have ambiguous Gaia counterparts within the matching radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 478 has two possible matches, equally faint thereby with relatively large uncer- tainties in Gaia data but either one is consistent with being a member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The star was not detected in our V band im- age and appears progressively brighter from I = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='47 mag, to 2MASS J = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='42 mag, H = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='42 mag, and Ks = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1063 is the second brightest star in our variable list, with the brightest one (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1526) being clearly not a member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The star also has two Gaia matches, with contrast- ing brightness (G = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='72 mag versus 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='87 mag).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Given its V = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='70 mag, the fainter one, having an outlying parallax of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282 mas, is eliminated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The other counterpart, however, has a negative parallax value with a large uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This compromises its membership determination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its optical and NIR colors both suggest an early-type star and its position in the CMD suggests a main-sequence member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1262 has V = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173 mag, 2MASS J = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='351 mag, H = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='474 mag, and Ks = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='998 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The brighter Gaia match has G = 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='379 mag but has a neg- ative parallax value and inconsistent proper motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The other Gaia star is faint, with G = 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='291 and no measure- ments in the other two Gaia bands, has parallax and proper motion values well consistent with being a member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 Colors and Magnitudes 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 U − B vs B − V TCD To identify probable MS variables, we have plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 12 the U − B versus B − V for variable stars identified in the cluster region with the photometric data of 22 stars found in Massey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Reddening in terms of color excess E(B−V ) ranges from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 mag (Erickson 1971;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Guetter 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Massey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) recognized the highest extinction in the eastern part of the cluster where a trapezium system, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', of O, B spectral types, is located.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The eastern part of their observed field is the direction to the reflection nebula NGC 6820, and their study suggested more than half of the total absorption to arise from nearby interstellar matter toward NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It is inferred that there is significant differential reddening within the cluster, manifest that the cluster is located behind at least AV = ∼ 3 mag (Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Rangwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2017) studied the interstellar extinction of open clusters and found that NGC 6823 follows a normal extinction law in optical as well as in the NIR wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The U −B versus B − V TCD shows that the stars exhibiting within E(B − V ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 mag could be MS members of the cluster, indicating a nonuniform reddening across the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The reddened theoretical ZAMS of Girardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2002) is fitted to the TCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The value of color excess E(V − I) was taken as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='88 mag which has been calculated using the minimum reddening value of E(B − V )=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='70 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 J − H vs H − K TCD Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 13 shows the J − H versus H − K TCD for NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Only 86 stars were cross-matched between the present sam- ple of variable stars and the 2MASS catalog, with the JHK counterparts of two stars No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 201 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 377 not found during the match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the 2MASS TCD, the “F” and “T” regions are locations of probable Class III/field stars and Class II sources, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The filled squares plotted in © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 6 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The I and V band phased light curves of variable stars identified in the region of NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' blue and green colors represent, respectively, probable PMS and MS members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Circles in the diagram represents field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2012) from their NIR CCD found early- type MS dwarfs concentrating close to (H −Ks) ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 mag, and (J − H) ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 mag, having extinction AV ⩾ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' These authors have noticed another population near the classical TTS locus close to (H − Ks) ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 mag and (J − H) ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 mag, presumably being young disk-bearing members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the 2MASS TCD, about half the detected vari- ables are in the “T” or “F” regions hence could be T Tauri variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A few PMS stars located below the TTS locus are probably Herbig Ae/Be stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We note that star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 679 occupies the position where Herbig Ae/Be stars are placed, while in U − B versus B − V TCD it lies close to the MS locus;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' it could thus be either a reddened MS star or a Herbig Ae/Be member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Following Gutermuth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2008) to classify young stel- lar sources, Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2012) used MIR IRAC data and found 2 Class I, 94 Class II, and 394 Class III or field stars in the region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The figure 4(a) of Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2012) is plot- ted with the (H − Ks) and [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8] TCD for the 490 sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This shows both YSOs and the diskless sources © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 135v 103v 103i 135i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 147v 147i 154v 154i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 Tpo 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 201v 201i 213v 213i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m m -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 239v 239i 240v 240i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 王 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase298v 298i 377v 377i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2耳 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 385v 385i 449v 449i 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 502v 502i 510v 510i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 527v 527i 531v 531i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 二 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase546v 546i 561v 561i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 曲 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 614v 614i 619v 619i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 623v 623i 655v 655i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 679v 679i 706v 706i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase731v 731i 733v 733i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 752v 752i 757v 757i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 765v 765i 822v 822i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 860v 860i 886v 886i ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase PhaseVariable stars in NGC 6823 7 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' to have similar NIR colors, but from their IRAC TCD the photospheric and the disk population at IRAC color [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8] ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 mag are readily distinguishable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' They have noted that a few Class III/field stars are mixed with Class II sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Their IRAC TCD in figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 4(b) shows different lo- cales of Class I and Class II sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The protostars (Class I) are located in the top-right corner and exhibit the reddest in the [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6] − [5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8] color, whereas the Class II sources are placed at [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8] ⩾ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 mag, [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6] − [5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8] ⩾ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 mag, and the Class III/field stars are found to be near [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8] and [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6] − [5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8] ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 NIR and MIR TCDs To see the distribution of young variable sources we have plotted them in the NIR and MIR TCD (left panel) and MIR TCD (right panel) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' To obtain these plots we have cross-matched the coordinates of variable stars with those from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), yielding MIR counterparts of all 88 variable stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A few stars, namely Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 154, 238, 313, 1405, and 1406 do not have magnitudes at [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] and other wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The H − K versus [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8] TCD shows most young stellar sources to have H − K ≳ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 mag whereas the © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1064v 1064i 1066v 1066i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='. m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='10E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1072v 1072i 1094v 1094i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='10E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1122v 1122i 1155v 1155i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1230v 1230i 1235v 1235i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase1262v 1262i 1266v 1266i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1298v 1298i 1352v 1352i 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1389v 1389i 1405v 1405i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1406v 1406i 1500v 1500i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase1506v 1506i 1511v 1511i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1525v 1525i 1526v 1526i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1548v 1548i 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase903v 903i 924v 924i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 945v 945i 951v 951i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 965v 965i 1000v 1000i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1007v 1007i 1063v 1063i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 m m m -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase8 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The I band phased light curves of probable variable candidates around the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8] and [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6] − [5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8] TCD shows a few young stellar objects to be positioned as field stars or other populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 IPHAS data To identify the young stellar sources with Hα emission, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', the indicator of accretion disks, we have compared the present data with Table 3 for IPHAS photometry of Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We got 29 common stars after the match that have IPHAS photometry, with stars No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 502, 576, 655, 679, and 979 having Hα emission with equivalent width greater than 10 ˚A, judged by the (r′ − i′) versus (r′ − Halpha) TCD for NGC 6823 (Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The location of these five stars is shown with the red square in the present (J − H) versus (H − K) TCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The Hα emission is found to be vari- able in nature, therefore, it is necessary to check the location of the objects in spectral type/color versus magnitude dia- gram to know their membership and nature (Mart´ın et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Two stars Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 655 and 979 could be considered as PMS objects which may possess circumstellar accreting disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Barrado y Navascu´es et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2001) showed that Hα emission depends on the spectral type or color in the sense that Hα emission is found to be larger for cooler objects in a plot between the Hα emission and (I − J) color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The (I − J) and (I − K) colors for star no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 655 is about 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='26 mag and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='682 mag, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the case of star no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 979, we have taken I magnitude from Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) to determine its (I − J) and (I − K) colors due to lack of (V − I) color in present observations, yielding (I − J) and (I − K) colors as 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 mag and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='789 mag, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Stars Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 655 and 979 in particular satisfy both colors and Hα emission be- ing greater than 10 ˚A, hence are young stars with accretion disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 V vs V − I CMD Sixty one variable stars were detected in both V and I bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Their V magnitudes and V −I color are given in Ta- ble 2, and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 15 shows their V versus (V − I) CMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The PMS isochrones and evolutionary tracks for different masses are taken from Siess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The solid curve represents ZAMS by Girardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We determined the distance modulus of the cluster to be (V −MV ) = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='31 mag by com- paring the ZAMS of Girardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2002) for solar metallicity to the V versus V − I CMD, which corresponds to a dis- tance of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='59 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present estimate of distance matches well with those derived in earlier works of NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The isochrone of age 4 Myr also fits the data well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The CMD is known to be contaminated by the foreground field stars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Guetter 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Bica et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' After analysis of CMD, Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) and Riaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2012) noted two different populations in the cluster, one consist- ing of older, massive stars which are located near or on the ZAMS, while the other one being younger objects with ages less than 10 Myr and are of lower masses (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 M⊙), that is, of PMS stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) also concluded that stars lying in B region of their figure 11(a) are cluster stars of PMS nature, evolving towards the MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present CMD containing variable stars also shows MS of the cluster to go up to around V = 16 mag;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' location of variables in the CMD suggests the majority of these stars to be probable members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Most the fainter and redder stars lying between (V − I) =∼ 2 mag and ∼ 3 mag could be PMS objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In this CMD, to maintain clarity we have not plotted star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1548 despite it being detected in the I band, because it has V − I color more than 6 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 449 may be a possible PMS star but its placement in the U −B/B−V and J −H/H −K TCDs suggests a field star, even though it has proper motions in the range of probable cluster members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 142i 177i 238i 264i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 369i 402i 452i 478i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 529i 576i 753i 826i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6民 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 F 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 831i 950i 979i 1025i 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 三 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase1061i 1087i 1151i 1168i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1191i 1228i 1268i 1295i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1317i 1459i 1508i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 m m m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase PhaseVariable stars in NGC 6823 9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 NIR CMDs The J versus (J − K) and J versus J − H CMDs for the present sample of variable stars are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' it is seen that the MS is almost vertical and clearly sepa- rated from the PMS objects/field stars as in the case of the V versus (V − I) CMD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Bica et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2008) described the same and from statistical cleaned CMD, they found that two populations are distributed separately where majority of PMS objects are faint and redder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' They found the age of the cluster in the range from 2 to 7 Myr, a color excess E(B −V )=∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='86 mag, and AV =2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In their work af- ter fitting theoretical models, the absolute distance modulus of the cluster was found to be (m − M)O = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Although stars numbered Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 142, 402 826, 950, 924, 1025, 1066, 1087, 1298, and 1548 are nonmembers from the analysis of the Gaia data, we have considered them as possible PMS objects based on their positions in different CMD and TCDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We note that there are 10 stars, namely, Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 240, 614, 623, 752, 965, 1235, 1352, 1500, 1525, and 1526, that are designated as nonmembers from proper mo- tion and parallax and, these could be MS stars based on location in TCDs and CMDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star 1506 is located well away from the MS in U − B/B − V TCD while it is lying on te MS in V/V −I, J/H −K and J/J −H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The analysis of Gaia data also found it to be nonmember.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This is a doubtful case for being an MS member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' From Gaia data analysis we found stars Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 201, 239, 449, 619, 765, 861, 1151, 1168, 1191 and 1508 as possible or probable members but their locations in various TCDs and CMDs do not seem to be consistent with membership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Thus, these are considered field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We looked for the matches of our 8 previously identified PMS stars based on their 2MASS colors and their spectra taken at the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='16 m telescope of Beijing Observatory (Ho- jaev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The spectra showed the strong H-alpha in emission, the SED in continuum and other features typi- cal either for TTS or Herbig Ae/Be stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The cross-match yields 3 common stars namely 154, 655 and 679 for two of them we have already determined their features (their loca- tion on the diagrams, their proper motions and parallaxes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the present work, we have classified 655 as classical TTS and 679 as MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' There was doubt to consider 679 as PMS because in U − B versus B − V TCD it is lying on MS but in J − H versus H − K diagram it is placed in the location of classical TTS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Now, we determined the membership of star No 154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It might be probable member of the cluster as Herbig Ae/Be type star while earlier (Hojaev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2003) it has been classified as classical TTS, though it has very different position in V versus V − I CMD to be PMS star but GAIA suggests it to be highly probable member, and in J − H versus H − K it is located where Herbig Ae/Be stars are found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Therefore, it could be considered as Herbig Ae/Be star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We have considered members those stars which fulfill criteria like location in TCDs, CMDs, and have consistent kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Therefore, using proper motion data together with location in various TCDs and CMDs obtained from present and available photometric UBV I, NIR, and MIR data we classify 25, 48, and 15, respectively, as MS, PMS members of the cluster, and field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The classification of variables is given in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Magnitude as a function of rms value of each star detected in I band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Open circles represent variable stars identified in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The sky positions of all the Gaia sources (in gray) within 30′ toward NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 4 CHARACTERISTICS OF VARIABLE STARS The log(L/L⊙) vs log Teff diagram (H − R diagram) for 21 members (MS variables) is shown as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We are not able to locate four MS stars Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 240, 752, 1107 and 1500 in this plot due to lack of their U and B band data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Here, the effective temperature and bolometric correction (BC) have been determined from Toress relation (2010) using the intrinsic (B − V ) color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The Mbol values of stars are ob- tained from the relation Mbol = MV +BC, where MV is the absolute V -band magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The luminosity was obtained from the relation log(L/L⊙) = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4(Mbol − Mbol⊙), where © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0 S 0 M R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 00 0 0 0 0 8 10 12 14 16 18 instNGC 6823 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 Decl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' [deg] 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' [deg]10 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The upper panel represents proper motion of all the stars (gray) and those within 4′ cluster region (black small circles, 1294 stars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The lower panel shows proper motions for variable stars (in black with error bars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Mbol⊙ is the bolometric magnitude for the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The MS variable stars have been classified according to their periods of variability, the shape of light curves, and their positions in the H-R diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We detected one star as β Cep-type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Four stars Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 679, 886, 1122 and 1352 are located in the instability strip of slowly pulsating B type (SPB) stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The positions in the cluster H-R diagram as well as the observed variability characteristics of nine stars allow us to conclude that these variables belong to the new class variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' One star based on its location in the H − R diagram should be δ Scuti-type variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the present study, we have detected 48 PMS stars as most likely cluster members in the PMS stage of evo- lution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Of these, 4, 8, and 36 stars are classified as Herbig Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Histogram of parallaxes for stars within 4 arcmin, where histogram shaded with black is for variable samples iden- tified in the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The G vs BP − RP CMD for the present sample of variable stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The filled and open squares denote probable and possible cluster members, and dotted points are considered nonmembers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Ae/Be stars, classical TTSs, and weak-lined TTSs, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The amplitudes of weak-lined TTSs range from ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 to ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 mag, and most weak-lined TTSs vary with shorter periods of less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The periods and amplitudes of classical TTSs are found to range from ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 to ∼ 30 days and ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 to ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 mag, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The above results suggest that stars with disks, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', classical TTSs, exhibit relatively larger amplitudes than the weak-lined TTSs do, with the stellar variability in classical TTSs arising from the presence of the spots, hot and cold, on the stellar surfaces © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 0 pmDE[mas/yr 4 6 8 10 12 6 4 2 0 2 4 9- 8 PmRA[mas/yr]2 0 2 pmDE[mas/yr 6 8 10 + 12 6 4 2 0 2 4 6 8 PmRA[mas/yr]260 200 150 100 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 plx [mas]10 12 14 [eu] 16 G 18 20 2 3 1 4 5 BP - RP[mag]Variable stars in NGC 6823 11 Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (U − B)/(B − V ) TCD for variable stars identified in the present study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' All the UBV data are taken from Massey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The continuous and dotted line represent the ZAMS (Girardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2002) which are shifted along the reddening vector for reddening E(B − V ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='32 mag and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='45 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Triangles are those stars that are identified as MS variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' as found in the previous studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Bouvier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pandey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 Known variables In the CCD search for variable stars in NGC 6823, Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) demonstrated that all stars with spectral types later than A0 are PMS objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' They detected two variable stars of δ Scuti type and these stars could be at the PMS stage of evolution and suggested that these objects can fur- ther be used to test the evolutionary changes in this class of variable stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The CMD was used to compare and discuss the position of the two discovered δ Scuti stars with refer- ence to the theoretical instability strip for PMS stars of this type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' They have also 13 other variables including one bright cluster eclipsing binary and an SPB candidate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Of 15 variables identified by Pigulski et al (2000), 14 were found to be variable in the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We could not detect variability in the star H8 (E88 or BL 4) (B0 V:pe by Turner 1979), B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 V by Massey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1995), and B1 V by Shi & Hu (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al (2000) noted this stars as the brightest variable member in the observed cluster field and found to be a binary star where only one eclipse was detected in the I band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Now we will describe the nature of all the known 14 variable stars individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Stars BL 50 (822) and HP 57 (1007) with periods 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0718530 days, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='10114 days for BL 50 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0785819 days, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0644149 days for HP 57 were found to be most likely clus- ter PMS members by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' With their po- sitions in the cluster CMD as well as the observed periods Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (J − H)/(H − K) TCD for variable stars detected in the field of NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The JHK data have been taken from the 2MASS catalog (Cutri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The continuous and long dashed lines show sequences for dwarfs and giants (Bessell & Brett 1988), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The TTS locus (Meyer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1997) is shown by a dotted line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The small dashed lines are reddening vectors (Cohen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1981) and an increment of visual extinction of AV = 5 mag is denoted by crosses on the reddening vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Filled squares with blue colors represents PMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The MS population are shown by green squares whereas open circles may be either MS members of the cluster or field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Triangles (black) represent two MS members BL 50 and HP 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) concluded that both objects could be δ Scuti variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present membership analysis, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', from kinematics and positions in various CMDs and TCDs, sug- gests both stars to be MS members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the H-R diagram star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 822 is positioned where new class variables are found (between the red edge of SPB and the blue edge of δ Scuti instability strip).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1007 could not be placed in the H- R diagram due to unavailability of UBV data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present period of stars 822 is derived as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='143 days and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='084 days while the periodogram analysis gives period of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064 days for star 1007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The period derived for star 1007 is in good agreement with that derived by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The location of these two stars were shown with red and black triangles in V versus (V −I) CMD and J −H versus H −K TCD, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 903, a probable cluster MS member was dis- covered as the third pulsator (G 51) by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its brightness varies with a period of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='848 days with an am- plitude about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='03 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The star was classified by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) as an SPB variable according to their variability characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The brightness of star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 886 (G52) found to be binary by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) varies with period of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='61 days with an amplitude 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='03 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It is diagnosed as a member of the cluster from proper motion and its location in various © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 881 0 1000 679 1502 449 9658 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 2斤 B U 614 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 2 1506 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 2 B-VX X 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 X X 2 0 F T X X 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 H 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8 2 H-K12 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (H − K) vs [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0] and [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6] − [5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8] vs [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5] − [8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0] TCDs for variable stars detected in the field of NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Blue circles are PMS young stellar sources while black circles are MS/field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' V/(V −I) CMD for variable stars in the region of the cluster NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The open circles (blue) are MS variables, and probable PMS variable stars are shown by filled circles (magenta).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The open circles in black color are considered field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The continuous curve is ZAMS by Girardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2002) while dashed lines are PMS isochrones taken for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1, 1, 2, 5, 10 Myrs (Siess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The PMS evolutionary tracks for different masses ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 M⊙ from Siess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) are plotted with dotted curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' BL 50 and HP 57 are shown by red triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J/(H − K) and J/(J − H) CMD for variable stars detected in the field of NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The JHK data have been taken from the 2MASS catalogue (Cutri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Circles (blue) and circles (green) represent MS and PMS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The Open circles in black color demonstrate the field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The locations of stars No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 822 (BL 50) and 1007 (HP 57) are shown with open circle in red color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' photometric diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present estimates for period and amplitude are consistent with those reported in Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 733 has proper motion values of µα = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671 mas/yr and µδ = −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='453 mas/yr, hence is a prob- able member of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Our analysis suggests possibly more than one period, with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='143 d and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='512 d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) it is H30, and they found its period of more than 3 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The brightness of star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 757 was found to be chang- ing with one single period of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='553 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present work classified this star to be a probable PMS cluster member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) named it V2 and derived its period of about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='24 days, commenting that the true period for this star corresponds to an alias frequency, and they found this star to be of PMS type source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present observations confirm its variability and its PMS nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The light curves and periodogram analysis manifest that it could be an eclips- ing binary with primary and secondary depths being nearly equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Morales-Calderon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2012) found six new can- didate sources as PMS eclipsing binaries with multi-epoch data of about 2400 stars associated with the Orion Nebula Cluster, and it is stated that the PMS eclipsing binaries are valuable as they are in the stage of PMS evolution which is highly dynamic, therefore their detection is rare at this stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 924 may be a PMS variable with light curve varying with more than one period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The proper motion sug- gests a nonmember of the cluster but its position in TCDs © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2 2 0 0 00 0 1 0 0 0 [5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='8] Q 0 K- 二 1 0 0 0 H [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='6] 0 00 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 00 0 0 00 0 Q 0 8 0 60 0 0 0 0 1 2 1 0 1 2 [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5]-[8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0] [4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5]-[8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0]8 0 0 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 Myr 12 0 1 Myr 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 14 2 Myr 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 5 Myr 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 /2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 10 Myr 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 16 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 Q >1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 18 20 0 2 3 4 V-I6 6 8 8 0 0 0 00 8 10 10 0 0 0 0 0 & & 0 J12 0 0 0 0 0 000 Q 00 14 0 0 14 00 0000 0o0 8 00 8 0@ 0 0 0 0 0 0 0 00 16 0 16 0 18 18 1 0 1 2 3 4 1 0 1 2 3 J-K H-Variable stars in NGC 6823 13 and CMDs indicates a possible weak-lined TTSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It is des- ignated as V4 by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star V5 of Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) is numbered as No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1061 in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We considered it a field star based on its loca- tion in CMDs and TCDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its brightness in V and I bands varies with a period of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='438 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The variability of this star is confirmed in the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star V8 (979) which could be a classical TTS based on its location in the J − H versus H − K diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It has a period of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The kinematic data indicate it to be a possible member of the cluster of PMS nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) also found it to be suspected PMS variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 753 was designated as V7 by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The period of V7 could not be found by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) due to either irregular brightness or long-period variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In our analysis, this star is considered a probable member of the cluster according to the proper motion study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its position in the CMD and TCDs suggests a PMS Class II object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This star shows periodic brightness variation with its period and amplitude being 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 days and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='225 mag, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 655 (V3 in Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2000) is a periodic variable with two possible periods, of about 17 days and of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The location of this star in the J − H versus H − K TCD suggests a Class II source while proper motion data also suggest cluster membership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1087 is found to be nonmember based on its proper motion values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its location in TCDs suggests a PMS source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its brightness changes periodically with a period of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='125 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) this star (V1) was the reddest object among their variable sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 831 is referred to as V6 by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) and they found this star too red as a member of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We confirm this star, with a period of about 1 day, to be a field star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 623, E 100, is a PMS object, though it was considered as a nonmember of the cluster in Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) because its proper motion values were different from those of cluster members (Erickson 1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' They mentioned that this star might belong to the foreground population and it is of a late type object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present estimation of its membership using Gaia data also finds it to be nonmember.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 Newly detected variables Now we present newly identified variables in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1235 is classified, on the basis of the shape of its light curve, to be an eclipsing binary, bearing similarity to that of an EA (Algol) type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In EA type eclipsing binaries, both stars are nearly spherical in shape, with an extremely wide range of periods from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 days to 10000 days, and with a wide range of amplitude of variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1235 has a period of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='622 days and a variation amplitude of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In the H −R diagram, this star is found to be located in the region of new class variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' More observations of this star are required to confirm its nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This star is a member of the cluster based on locations in TCDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' However, Gaia data suggest a nonmember of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The light curves of star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 449 in both V and I bands reveal it to be a short-period variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its periodogram in both V and I exhibits peaks around 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 days and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='789 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Gaia data suggest it to be a probable member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' [h] Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Period and amplitude of variable stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Last column rep- resents membership classification of stars along with their classifi- cation based on variability characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The stars with asterisk are previously known variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The cTTS, wTTS and HAe/Be are classical, weak-lined TTS and Herbig Ae/Be star, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ID Period Period (TESS) Amp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (days) (days) (mag) 103 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='919 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='087 PMS, wTTS 135 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='336 PMS, cTTS 142 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='156 PMS, wTTS 147 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='940, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='080 PMS, wTTS 154 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='580 PMS, HAe/Be 177 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='784 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='129 PMS, wTTS 201 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='115 Field 213 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='253, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='509 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='167 Field 238 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='497 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='166 Field 239 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='506, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='969 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='889, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='429 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 PMS, wTTS 240 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='109, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='067 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='253 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 MS 264 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='202 PMS, wTTS 298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='357, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='107 PMS, HAe/Be 369 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='699 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='400, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='600, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='288 PMS 377 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0332 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='103 Field 385 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='100, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='958 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='243, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='960, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='425 PMS, HAe/Be 402 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='804 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='394 PMS, wTTS 449 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='852, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='789 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='297, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='713, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='084 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 Field 452 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='572 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='203 PMS, wTTS 478 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='199, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='898 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='066, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='622, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='366 PMS, wTTS 502 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='138, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='238 PMS, wTTS 510 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='143, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 MS, New 527 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='057 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='045, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='168 PMS, wTTS 529 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='047 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='290 PMS, wTTS 531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='755, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='084, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='232, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='713 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='219 PMS, wTTS 546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='806, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='057 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='044 Field 561 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='300, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='909 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='149 PMS, wTTS 576 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='882 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='715 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='237 PMS, wTTS 614 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='705, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 MS 619 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='852 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='825, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 Field 623* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='044, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='153, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='595 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 MS 655* 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='716, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='236 PMS, cTTS 679 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1242, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='564 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='565, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='376 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 MS 706 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='336, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='561 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='049 PMS, wTTS 731 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='359, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='065 PMS, wTTS 733* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='512, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029 MS 752 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='153, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='257 MS 753* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='225 PMS, cTTS 757* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='553 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='125 PMS, wTTS 765 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='112, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='124 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='133 Field 822* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='143, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='084 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 MS, New 826 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='139 PMS, wTTS 831* 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='147, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='545, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='095 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='463 Field 860 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='517, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='523 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='197 PMS, cTTS 886* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='446, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='618 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 MS 903* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 MS 924* 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='206, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='59, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='123 PMS, wTTS 945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='662, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='663, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='965 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='966, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 MS 950 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='504 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='179, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='442 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='265 PMS, wTTS 951 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='392, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064 PMS, wTTS 965 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='661, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='726 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='65, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='805 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='053 MS, New 979* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='185 PMS, cTTS 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='016 MS, New 1007* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='527, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='818 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 MS 1025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='600 PMS, wTTS 1061* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='438 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='581, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='099 Field 1063 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='049, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='131 MS, β Cep 1064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='653, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='395 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='804, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='291 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 MS 1066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0518, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='082 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='166, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='203 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 PMS, wTTS 1072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='484, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='819, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='649 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 MS New 1087* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='103 PMS, wTTS 1094 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='815 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081 PMS, wTTS 1122 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='402, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='705, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='649 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 MS, SPB 1151 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='769 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='153, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='359 Field 1155 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='955, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='092 PMS, wTTS 1168 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='526 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='240 Field 1191 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='924 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='481 Field 1228 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='448 PMS, wTTS 1230 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='386, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='629 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='385, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='755 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 MS, New 1235 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='622, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='267 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='243 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211 MS, New 1262 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='215, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='446 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 PMS, wTTS 1266 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='382 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='148 PMS, wTTS 1268 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='240, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='996 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='276 PMS, wTTS 1295 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='495 PMS, cTTS 1298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='983, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='496 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='438 PMS, cTTS 1317 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='485 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671 PMS, cTTS 1352 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 MS, SBP 1389 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='111, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='166 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086 PMS, HAe/Be 1405 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='077, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='128 Field 1406 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='140, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='123 Field 1459 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='172 PMS, wTTS 1500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 MS 1506 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='259, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='491 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='031 MS 1508 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='264 Field 1511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='110 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 Field 1525 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='132, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 MS, New 1526 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='075 MS 1548 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='986, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='329 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='174 PMS, wTTS © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 14 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' log(L/L⊙)/ log Teff diagram for the probable MS variable stars identified in the present study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The continuous curve represents the instability strip of SPB stars whereas dotted curve shows the instability region of δ Scuti stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The dashed curve shows the location of β Cep stars (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Balona et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The variability of the star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 527 suggest that it is a pe- riodic variable whose light varies with a period of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It is found to be a probable member of the cluster from its proper motion measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Its location in CMDs and TCDs indicates a PMS object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The brightness of star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 531, a probable PMS member of the cluster, is found to vary with a period of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='755 days or 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='065 days, with the variability characteristics consistent with TTSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The proper motion values are not in favor of star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 752 to be a cluster member, though in the V versus V − I CMD, it is located along the MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The period is de- rived as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='153 days and the amplitude is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The variability characteristics of this star is similar to a pulsat- ing type star or eclipsing binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' After doubling its period its light curves show two minima which have almost equal depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It could be an EW type eclipsing (W Ursae Majoris eclipsing system).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The EW type variables have periods of less than one day, with almost equal depths of primary and secondary minima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1508 has a period of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 day with an am- plitude of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This variable resembles that of the SX Phe type (Cohen & Sarajedini 2012), which are similar to δ Scuti stars but pulsate with amplitudes up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 mag according to the variability types listed in the General Cat- alog of Variable Stars (GCVS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 5 TESS LIGHT CURVES A few variables like No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1235 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 752 have times se- ries data from the Transiting Exoplanet Survey Satellite (TESS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Ricker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The high-quality light curves from the TESS can be used to understand stellar and plan- etary evolution and this data provide us opportunity to study the rotation of stars (Canto Martins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Here, we present folded light curves, exhibited as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 18 for 32 stars which do not have flux contribution from nearby brighter sources to account for the low spatial resolution of TESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' TESS observes the sky in sectors with each sec- tor observed for about 27 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The eleanor pipeline to ex- tract times series data of objects from TESS images has been used, which is an open-source tool (Feinstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2019, https://archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='stsci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='edu/hlsp/eleanor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We can use the eleanor package to create light curves for fainter ob- jects for a more detailed or optimized analysis of individ- ual objects (Feinstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The eleanor uses TESS Full Frame Images (FFIs) to extract systematics-corrected flux for any given star observed by TESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It takes TIC ID, coordinates (RA and DEC) of a star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' First, the raw flux is calculated by aperture photometry as RAW FLUX that is background subtracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This raw flux is then corrected for possible systematic effects, which creates a flux called CORR FLUX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' For isolated stars, to obtain the corrected flux we have taken default apertures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The eleanor software also provides the option to define one’s own aperture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We have extracted light curves of all the detected in the present photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Out of 32 variables, there are 7 stars which are diag- nosed as PMS and 14 as MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The periods of all the 32 stars have been determined using the method described in the Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The periods for 14 stars (103, 527, 531, 576, 614, 619, 679, 752, 945, 965, 1007, 1122, 1230 and 1235) are found to be in good agreement with that obtained from the present ground based optical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The nature of star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 752 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1235 as mentioned earlier is confirmed from their TESS light curves;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' that is, star No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 752 shows unequal maxima, likely due to the O’Connell effect (O’Connell 1951), for which the maxima between eclipses in some eclipsing bi- naries are not found equal in brightness (Knote et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The phased light curves of stars Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 369, 561, and 619 show brightness variations similar to Algol type eclipsing binaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The light curves of stars 527, 531, 576, 965, 1064, 1072 and 1122 were folded by doubling the value of their derived pe- riod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Three stars 527, 531 and 576 of them are probable PMS stars while the remaining 4 stars are cluster members of MS type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The folded light curves and periods of 1064, 1072 and 1122 are similar to the variability characteristic of EW type variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The light curve of star 576 seems to have properties of EA type variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The stars 527 and 965 could be weak-lined TTSs based on their variability characteris- tics as these sources are of PMS nature and show periodic variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The period of star 531 was derived as 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='084 days using TESS data while its period comes out to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='755 days from V and I band light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The variability character- istics for those stars whose periods determined from present V and I data do not match with that derived from TESS observations could be revisited in the future observations of the cluster NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The conflicts between periods for some cases may arise due to the contribution of flux from nearby stars in TESS data despite being selected isolated stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present work identified 5 MS, 4 PMS stars and 1 field variable of eclipsing nature, two of which are confirmed eclipsing binaries and remaining are suspected ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Their © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 5 1063 1526 4 1 111 1 3 log 1352 1122 17 606 30 10 Kbr 2 1506 614 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 4 log T leffVariable stars in NGC 6823 15 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The proper motion, parallax and photometry by Gaia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The last column refers to likely or possible membership for each variable star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ID RA DEC µra µDec plx gmag bpmag rpmag mem degree degree mas/yr mas/yr mas (mag) mag 103 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='667936 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='412217 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='392±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='264±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='077 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='500±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='074 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='288±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='560±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='172±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 2 135 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='729818 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='406842 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='050 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='330±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='079 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='605±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='085 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='340±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='463±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 1 142 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='921757 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='403326 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='224±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='330±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='096 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='125±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='102 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='699±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='455±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='111 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='950±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 0 147 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='717480 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='404825 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='601±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='533±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='154±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='151±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='555±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='988±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 1 154 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='729082 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='404078 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='583±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='411±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='680±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='486±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 2 177 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798833 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='398720 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='430±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='059 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='249±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='097 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='382±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='099 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='841±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='238±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='679±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 2 201 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='806239 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='392781 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='829±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='065 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='434±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='111 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='764±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='121 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='879±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='098±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 1 213 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='678068 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='391730 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='955±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='072 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='616±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='122 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='692±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='126 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='923±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='191±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 0 238 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='856620 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='385850 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='810±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='048 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='933±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='079 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='379±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='091 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='658±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 1 239 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='792933 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='386486 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='545±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='133 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='205 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='314±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='186 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='537±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='487±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='072 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='373±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 1 240 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='913449 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='384987 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='683±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='082±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='809±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='070±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='629±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='346±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 264 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='758973 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='382855 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='839±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='993±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='141 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='316±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='146 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='200±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='690±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 1 298 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='707379 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='376514 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='757±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='931±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='518±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='844±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='817±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='833±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 2 369 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='889138 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='363276 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='759±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='104±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='097 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='180±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='097 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='647±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='962±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='257±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 0 377 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='880082 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='361511 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='767±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='066 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='422±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='102 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='503±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='107 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='157±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='323±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 2 385 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='847545 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='360887 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='713±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='949±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='454±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='138±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='246±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 2 402 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='716202 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='358795 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='544 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='595±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='908 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='529±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='016 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='114±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='359±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='063 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='606±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 0 449 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='874874 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='347861 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='534±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='289±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='421±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='456±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='283±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='559±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 452 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='919127 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='346023 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='632±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='091 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='204±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='163 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='187±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='154 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='342±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='687±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='889±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 1 478 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='846924 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='343243 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='242±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='123 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='663±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='287 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='414±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='207 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='715±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='513±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='146 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='239±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 2 478 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='847334 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='343217 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='835±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='094 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='443±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='160 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='513±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='166 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='445±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='556±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='804±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 2 502 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='883889 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='339095 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='539±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='061 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='143±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='633±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='100 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='859±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='066±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='755±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 1 510 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='795529 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='339088 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='736±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='177±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='483±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='016 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='870±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='370±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='188±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 527 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='868122 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335831 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='350±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='299±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='052 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='467±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='580±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='741±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='496±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 2 529 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='910436 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335234 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='692±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='169 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='130±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='251 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='688±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='245 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='127±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='413±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='532±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 1 531 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850017 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='335616 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='427±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='477±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='050 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='447±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='610±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='360±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 2 546 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='746235 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='334619 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='642±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='744±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='078 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='666±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='079 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='331±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='235±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='373±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 561 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='717802 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='332530 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='806±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='112±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='077 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='449±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='084 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='330±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='517±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='256±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 2 576 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='862641 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='329178 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='923±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='092 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='421±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='138 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='150 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='117±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='508±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='934±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 1 614 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='686941 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='325122 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='606±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='631±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='454±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='096±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='665±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 619 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='856809 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='323021 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='705±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='254±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='468±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='271±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='180±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='321±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 623 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='834392 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='322264 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='268±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='204±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='568±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='832±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='444±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 655 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='837455 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='317270 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='973±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='777±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='068 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='110±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='079 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='811±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='136±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='636±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 1 679 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='768320 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='313487 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='905±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='483±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='465±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='468±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='893±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='833±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 706 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='752612 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='310267 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='994±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='380±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='518±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='052 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='539±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='599±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='508±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 2 731 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='789104 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='307583 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='690±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='068 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='348±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='444±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='094 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='553±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='975±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='406±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 2 733 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798253 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='307303 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='016 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='453±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='447±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='822±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='418±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='057±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 752 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='737297 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='306309 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='190±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='756±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='807±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='715±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='429±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='875±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 0 753 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798228 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='305611 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='439±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='091 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='723±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='527±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='132 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='213±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='645±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='052 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='983±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 2 757 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='803663 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='305216 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='823±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='343±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='420±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='075±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='227±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 2 765 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='785197 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='304768 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='971±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='055 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='559±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='582±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='084 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='403±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='407±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='391±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 1 822 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='787697 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='296925 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='931±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='372±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='440±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='172±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='769±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='413±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 826 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='825083 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='296002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='717±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='528±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='088 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='822±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 0 831 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='746221 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='296549 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='198±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='140 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='190 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='051±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='164 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='951±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='092 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='343±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='113 0 860 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798251 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='292496 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='763±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='053 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='198±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='296±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='181±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='444±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='091±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 1 886 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='793856 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='290165 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='700±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='016 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='457±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='501±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='140±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='596±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='490±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 903 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='800965 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='287961 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='443±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='239±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='444±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='092±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='566±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='425±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 924 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='787347 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='285362 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='096 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='786±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='132 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='663±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='160 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='259±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='378±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='050±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 0 945 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='855106 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282160 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='481±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='027 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='241±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='579±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='176±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='745±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='423±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 1 950 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='706797 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='283426 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='581±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='166 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='734±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='244 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='034±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='261 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='148±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='250±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='095 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='437±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 0 951 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='796964 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282188 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='581±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='247±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='424±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='049 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='307±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='417±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='267±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 2 965 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='891582 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='279985 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='251±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='066 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='097±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='096 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='647±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='102 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='281±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='802±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='562±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 0 979 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='775108 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='280240 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='692±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='116 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='685±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='169 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='939±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='478±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='642±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='336±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 1 1000 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='814485 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='277802 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='142±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='501±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='635±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='457±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='714±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1007 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778155 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='276998 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='989±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='533±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='462±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='020 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='277±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='835±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='530±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 1025 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='690388 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='275981 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='408±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='245 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='138±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='340 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='725±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='434 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='836±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='939±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='089 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='552±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 0 1061 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='788730 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269975 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='053 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='426±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='567±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='076 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='298±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='639±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='154±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 1 1063 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778243 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269561 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='431±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='095 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='395±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='090 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='869±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 1 1063 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778279 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='270083 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='210±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='090 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='981±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='149 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='091±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='141 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='720±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='906±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='274±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 1 1064 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='758524 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='270269 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='317±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='038 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='554±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='521±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='058 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='183±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='645±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='493±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 1066 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='843490 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269270 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='124±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='962±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='291±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='030 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='584±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='863±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='214±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1072 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='820520 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='269079 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='645±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='282±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='468±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='019 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='395±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='918±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='690±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 1087 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='798607 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='266730 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='210±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='068 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='424±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='102 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='758±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='122 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='938±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 0 1094 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='817575 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='265043 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='438±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='392±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='428±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='033 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='783±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='830±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='765±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 2 1122 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='709131 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='260843 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='586±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='419±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='523±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='017 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='588±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='956±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='029±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 1151 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='805720 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='255733 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='697±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='114 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='153±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='163 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='158 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='349±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='909±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='042 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='113±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 1 1155 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='768235 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='255355 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='672±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='060 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='266±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='087 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='543±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='600±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='523±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 1 1168 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='883351 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='252588 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='697±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='098 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='681±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='144 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='519±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='147 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='327±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='726±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='177±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 2 1191 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='875000 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='248688 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='715±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='119 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='193±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='321±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='183 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='703±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='107±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='041 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='449±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 1 1228 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850980 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='243847 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='660±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='116 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='465±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='169 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='200±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='170 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='582±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='077±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='048 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='393±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 1 1230 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='755855 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='244602 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='353±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='018 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='260±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='524±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='356±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='761±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='759±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 2 1235 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='672376 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='244490 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='176±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='613±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='757±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='759±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='223±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='126±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1262 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='774562 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='237761 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='522±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='228 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='636±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='521 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='437±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='441 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='291±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='000 2 1262 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='774980 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='237889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='719±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='097 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='431±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='131 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='092±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='153 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='379±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='455±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='228±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 0 1266 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='802542 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='236774 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='624±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='068 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='554±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='093 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='741±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='960±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='686±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 1 1268 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='698738 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='237776 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='864±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='083 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='120±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='230±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='119 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='750±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='208±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='109 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='997±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 0 1295 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='812280 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='232347 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='564±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='182 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='156±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='212 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='354±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='225 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='726±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='052±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='046 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='061±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='037 1 1298 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='671363 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='233613 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='763±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='227 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='821±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='301 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='850±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='289 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='089±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='021 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='880±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='384±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='040 0 1317 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='899959 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='227779 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='562±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='101 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='431±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='123 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='589±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='137 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='039±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='288±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='036 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='868±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 1 1352 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='816693 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='222874 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='419±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='078±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='831±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='449±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='760±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='975±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1389 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='717974 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='217819 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='076±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='024 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='544±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='434±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='834±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='701±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='881±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 2 1405 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778615 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='214104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='016±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='083 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='330±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='999±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='120 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='085±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='069±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='103±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='007 0 1406 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='844691 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='213100 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='267±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='064 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='679±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='081 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='991±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='089 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='530±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='310±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='023 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='559±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011 0 1459 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='758607 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='204733 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='710±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='090 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='469±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='124 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='343±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='133 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='147±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='354±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='008 1 1500 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='892106 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='195945 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='974±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='049 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='001±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='924±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='646±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='328±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='820±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1506 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='737755 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='197158 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='684±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='022 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='291±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='026 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='674±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='028 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='219±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='857±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='435±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1508 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='846040 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='195095 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='071±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='089 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='858±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='124 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='392±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='142 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='061±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='005 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='437±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='831±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 2 1511 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='813526 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='194842 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='169±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='025 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='500±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='032 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='135±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='035 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='890±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='829±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='933±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1525 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='817542 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='191915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='781±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='009 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='011±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='655±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='206±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='785±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='468±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1526 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='740382 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='192673 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='603±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='010 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='093±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='014 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='066±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='015 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='663±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='977±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='173±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='004 0 1548 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='840568 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='186899 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='083±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='043 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='305±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='056 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='248±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='060 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='737±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='003 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='375±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='013 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='116±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='006 0 derived parameters are listed in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The masses and ages of two suspected PMS binaries could not be obtained due to unavailability of their V −I color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Since UBV data of MS star no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 752 are not available, the temperature for this star has been obtained using theoretical models of Girardi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2002) and present V magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 16 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The phased light curves of variable stars using TESS data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Figure 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Amplitude of variability and rotation period of TTSs with ∆(I − K) is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 6 CORRELATION BETWEEN CIRCUMSTELLAR DISKS AND VARIABILITY Accretion onto the stellar surface creates hotspots that brighten the light curve up to 3 mag, whereas the magnetic field is responsible for cool and therefore dark spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Herbst et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (1994) studied photometric variability of PMS stars in the Orion Nebula Cluster, and showed that slower rotators have larger IR excess than fast rotators, indicating disk lock- ing, for which the angular momentum is transported through magnetic field lines from the central star to the circumstellar disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This supported the results by Edwards et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (1993) for which low-mass young stars with accretion disks have peri- ods more than 4 days, whereas stars without have periods ranging from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 to 16 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Rotation seems to be regulated after the disk is dissipated, as the star spins up while con- © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 103 239 240 264 1230 160 230 100 1225 155 90 220 1220 xni 150 xni xnl 80 Xr 210 145 1215 70 200 1210 140 60 1205 135 190 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 369 385 449 478 3000 340 1270E 275 335 2990 270 1260 330 2980 265 xnl Xr xni 325 1250 2970 260 320 1240 2960 255 315 2950 310 1230 250 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 527 531 561 576 160 550 620 205 F 540 615 200 155 610 530 195 xnl xnl xnl xn 150 605 520 190 600 145 510 185 595 140 500 590 180 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 614 619 623 679 06 345 2160E 2230 85 340 2220 2150 80 335 2210 xn xn xn 75 x 330 2140 L 2200 70 325 2130 2190 65 320 60 315 2120 2180 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase752 831 945 950 300 815 430 205 810 425 290 200 805 420 280 xnl xnl 195 xni xni 800 415 270 190 795 410 260 185 790 405 250 785 400 180 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 965 979 1007 1061 355 6920 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='784×104 6940 350 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='782×104 6920 6900 345 xnl 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='780×104 6900 xn xni 340 6880 F 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='778×104 6880 335 6860 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='776×104 6860 330 325 6840 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='774×104 6840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1064 1066 1072 1122 1110 415 1540 380 410 1100 1530 370 405 xn xni 1090 400 1520 360 395 1080 1510 350 390 1070 385 1500 340 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase 1151 1230 1235 1268 540 2330 1000 165 530 2325 900 160 520 2320 800 155 xn xn xni xn 510 2315 700 150 500 2310 600 490 145 2305 500 480 2300 400 140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 Phase Phase Phase Phase0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 (mag Amp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1 0 0 2 △(I-K)30 28 26 24 22 20 18 (days) 16 Period 14 12 10 8 6 4 2 0 0 2 △(I-K)Variable stars in NGC 6823 17 [h] Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The derived parameters of the confirmed/suspected eclipsing binaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The last column refers to binary classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ID Age Mass Mbol log(L/L⊙) log Teff class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Binary Myrs M⊙ mag class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 369 PMS EA?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 561 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='28 PMS EA?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 576 PMS EA?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 619 Field EA?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 752 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='95 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='915 MS EW 757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='50 PMS EW?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1064 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='794 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='211 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='148 MS EW?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1072 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1394 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='837 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='047 MS EW?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1122 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='59 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='286 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='407 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='141 MS EW?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1235 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='272 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='402 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='979 MS EA tracting towards the MS (Bouvier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' These results support the magnetic-disk model which controls PMS winds and angular momentum of young stellar objects during the PMS evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Models for a disk-star interaction (Ostriker & Shu 1995, Shu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1994, Ghosh & Lamb 1979) are supported by the rotation periods of PMS objects in young open star clusters (Attridge & Herbst 1992, Herbst et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2001, 2002, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Kearns & Herbst (1998) and Nordhagen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2006) determined the rotation periods in two clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' James et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2010) derived light-curve periods of sun-like sources in the young cluster NGC 1039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Lamm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2004) presented the rotation period of PMS objects, which supports the disk-locking mechanism in young stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Broeg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2006) measured rotational periods of young objects to under- stand the star formation scenario that the off-cloud young sources should rotate faster if these objects were ejected from the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' They did not find significant period distribution off-cloud weak-lined TTS south of Taurus-Auriga with re- spect to weak-lined TTS inside the Taurus-Auriga molecu- lar cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Godoy-Rivera (2021) studied stellar rotation and found that the distribution of period with mass in the case of open clusters gives important constraints to study angu- lar momentum evolution and it is evident that spin down process depends on the mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The rotation periods of the members of cluster have been presented, which are found to be in range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 days up to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='5 days (Meibom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2009, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Gondoin (2018) concluded that the stellar rotation evolution in open star clusters could be from loss of angular momentum, which occurs due to strong winds during the early evolution of young solar type stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A disk-bearing YSO spins down due to magnetic brak- ing (Koenigl 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Ostriker & Shu 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The increasing disk fraction with rotation period in open clusters was reported by Cieza & Baliber (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' As discussed above, to explore a correlation between the variability of classical TTSs with color excess, mass, and age, we have plotted amplitude of variability with ∆(I −K) excess in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 19 (left panel), while the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 19 shows the rotation period with ∆(I − K) excess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Here the ∆(I − K) excess of PMS sources is determined using the following relation, ∆(I − K) = (I − K)obs − (AI − AK) − (I − K)0, where (I −K)obs and (I −K)0 are the observed and intrinsic colors of stars, whereas AI and AK denote the interstellar extinction in the I and K bands, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' To estimate the value of (I − K)0 of YSOs, it was necessary to estimate their masses and ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' These values are available for only 22 PMS objects from the V versus V −I CMD after comparing with the theoretical models of Siess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Of the 22 sources, there are 4 classical TTSs for which we could estimate the age and mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The AI and AK are estimated using the relations given by Cohen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (1981) by adopting AV = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='24 mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The (I − K)0 value is obtained from the PMS evolutionary models of Siess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) of a given mass and age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 19 (left panel) shows that a larger ∆(I − K) value for classical TTSs corresponds to a relatively larger amplitude of variability, consistent with those found in the literature, though we find no clear correlation between ∆(I− K) and rotation period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' However one classical TTS No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 655 with larger ∆(I − K) excess is found to be rotating with a longer period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 7 SUMMARY This work presents 88 variable stars in the young star cluster NGC 6823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The association of detected variables to the clus- ter has been discussed with the Gaia kinematic data, and the optical and NIR TCDs and CMDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The membership of previously known variables has also been discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We have detected 48 stars as PMS stars, of which eight are clas- sified as classical TTSs while 36 and 4 as weak-lined TTSs and Herbig Ae/Be stars, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Three known variables H30, V2 and V8 are found to PMS variables as suggested by Pigulski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' (2000) while two stars BL 50 and HP 57 previously detected as PMS δ Scuti pulsators are turned out to be MS members of the cluster from their proper motion, parallax values and positions on the TCDs and CMDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' TTSs have periods ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='01 days to 30 days, and ampli- tudes of brightness variation from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='05 mag to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='7 mag, with the classical TTSs varying generally with larger amplitudes than weak-lined TTSs do.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' It is noted that 3 of the 4 classi- cal TTSs with larger values of the disk indicator (∆(I −K)) are found to have relatively larger amplitude variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The present results do not support the disk-locking mechanism, however one classical TTS having large ∆(I − K) is found to be rotating slowly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' In addition, we have identified 25 stars to be MS variables (SPB stars, δ Scuti, β Cephei and new class variable stars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Their variability has been characterized based on the period, amplitude, shape of the light curves, and location on the H − R diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Fifteen variable stars may belong to the field star population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 8 ACKNOWLEDGMENTS We are thankful to Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Mart´ın for the valuable sug- gestions that improved scientific content of the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Late Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Pandey facilitated this collaboration project as Director of ARIES during WPC’s visit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' He will be for- ever remembered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' SL will always be grateful to him for all the support and encouragement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We acknowledge the assis- tance of Michael Schwartz who managed the Tenagra Ob- servatory in acquisition of the images of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ASH and JCP thanks Ministry of Innovation Development of Uzbekistan and Department of Science and Technology of India for financing the joint project (Project References: UZB-Ind-2021-99 & INT/UZBEK/P-19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 18 Sneh Lata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Infrared Processing and Analysis Center/California Insti- tute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foun- dation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This paper includes data collected by the TESS mission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Funding for the TESS mission is provided by the NASA’s Science Mission Directorate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We also acknowledge ”Galactic Legacy Infrared Midplane Survey Extraordinaire” (GLIMPSE) Legacy Program for Spitzer IRAC data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' This work also used data from the European Space Agency (ESA) space mission Gaia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia Mul- tiLateral Agreement (MLA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The Gaia mission website is https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='cosmos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='esa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='int/gaia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The Gaia archive website is https://archives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='esac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='esa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='int/gaia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' AVAILABILITY OF DATA The data underlying this article will be shared upon request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The 2MASS data are available at https://vizier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='u-strasbg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='fr/viz- bin/VizieR?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='-source=II/246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' The Gaia and Spitzer IRAC data are obtained from https://gea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='esac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='esa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='int/archive/ and https://irsa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='ipac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='caltech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='edu/cgi-bin/Gator/nph- scan?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='submit=Select&projshort=SPITZER, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' We used the following links https://archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='stsci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='edu/hlsp/eleanor and https://adina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='feinste.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='in/eleanor/ to obtain TESS data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' REFERENCES [] Andre Philippe, Ward-Thompson Derek, Barsony Mary, 1993, ApJ, 406, 122 [] Appenzeller I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mundt R, 1989A&ARv, 1, 291A [] Attridge Joanne M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Herbst William, 1992, ApJ, 398, 61 [] Bailer-Jones C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Rybizki J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Fouesneau M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Dem- leitner M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Andrae R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2021, AJ, 161, 147 [] Barrado y Navascu´es D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Zapatero Osorio M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', B´ejar V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Rebolo R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mart´ın E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mundt R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bailer- Jones, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2001, A&A, 377, 9 [] Bessell M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Brett J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1988, PASP, 100, 1134 [] Bica E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bonatto C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Dutra C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2008, A&A, 489, 1129 [] Bouvier J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Cabrit S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Fern´andez M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mart´ın E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Matthews J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1993, A&AS, 101, 485 [] Bouvier J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Alencar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Boutelier T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Dougados C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Balog Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Grankin K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Hodgkin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Ibrahimov M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Kun M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Magakian T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Pinte C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2007, A&A, 463, 1017 [] Broeg C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Joergens V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Fernandez M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2006, A&A, 450, 1135 [] Canto Martins B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Gomes R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Messias Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' S, 2020, ApJS, 250, 20 [] Cohen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Persson S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Elias J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Frogel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1981, ApJ, 249, 481 [] Cohen R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Sarajedini A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2012, MNRAS, 419, 342 [] Cutri R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2003 , 2MASS All Sky Cat- alog of Point Sources, VizieR Online Data Cata- log, University of Massachusetts and Infrared Process- ing and Analysis Center (IPAC/California Institute of Technology), 2246, 0 https://vizier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='u-strasbg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='fr/viz- bin/VizieR?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='-source=II/246 [] Cantat-Gaudin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Anders, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2020, A&A, 633, A99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1051/0004-6361/201936691 [] Edwards Suzan, Strom Stephen E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Hartigan Patrick, Strom Karen M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Hillenbrand Lynne A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Herbst William, Attridge Joanne, Merrill K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Probst Ron, Gatley Ian, 1993, AJ, 106, 372 [] Erickson R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1971, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 10, 270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' [] Feinstein Adina D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Montet Benjamin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Foreman- Mackey Daniel, 2019, PASP, 131, i4502 [] Finkenzeller U, Mundt R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1984, A&A Supp, 55, 109 [] Gaia Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2018, A&A, 616, 13 https://gea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='esac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='esa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='int/archive/ [] Girardi L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bertelli G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bressan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Chiosi C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Groe- newegen M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Marigo P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Salasnich B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Weiss A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2002, A&A, 391, 195 [] Ghosh P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Lamb F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1979, ApJ, 234, 296 [] Godoy-Rivera Diego, Pinsonneault Marc H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Rebull Luisa M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2021, arXiv210101183G [] Gondoin P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2017, A&A, 616, 154 [] Gutermuth R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2008 , ApJ , 674 , 336 [] Guetter H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1992, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 103, 197 [] Herbst W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Herbst D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Grossman E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Weinstein D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1994, AJ,108, 1906 [] Herbst W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Booth J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Koret D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1987, AJ, 94, 137 [] Herbst William, Hamilton Catrina M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2002, PASP, 114, 1167 [] Herbst W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bailer-Jones C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mundt R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Meisen- heimer K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Wackermann R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2002, A&A, 396, 513 [] Herbst W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bailer-Jones C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mundt R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2001, ApJ, 554, 197 [] Herbst W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Rhode K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Hillenbrand L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Curran G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2000, AJ, 119, 261 [] Hojaev A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Chen W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Lee H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2003, A&AT, 22, 799 [] Huang P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2019, ApJ, 871, 183 [] James D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Barnes S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Meibom S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2010, A&A, 515, 100 [] Johnstone D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2018, ApJ, 854, 31 [] Joy Alfred H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1945, ApJ, 102, 168 [] Kearns Kristin E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Herbst William, 1998, AJ, 116, 261 [] Lada C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1987, Star Forming Regions, IAUS 115, 1 [] Lamm M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bailer-Jones C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mundt R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Herbst W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Scholz A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 2004, A&A, 417, 557 [] Knote M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Caballero-Nieves Saida M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Gokhale Vayujeet, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2022, arXiv220604142K [] Mart´ın E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Brandner W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bouvier J, Luhman K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Stauffer J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Basri G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Zapatero Osorio M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Barrado y Navascu´es D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2000, ApJ, 543, 299 [] Massey Philip, Johnson Kelsey E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Degioia-Eastwood Kathleen, ApJ, 1995, 454, 151 [] Meibom S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mathieu Robert D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Stassun Keivan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2009, ApJ, 695, 679 [] Meibom S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Mathieu Robert D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Stassun Keivan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Liebesny Paul, Saar Steven H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2011, ApJ, 733, 115 [] Meyer M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Calvet N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Hillenbrand L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1997, AJ, 114 , 288 [] Morales E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Wyrowski F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Schuller F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2013, © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Variable stars in NGC 6823 19 A&A, 560, A76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='1051/0004-6361/201321626 [] Morales-Calder´on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2011, ApJ, 733, 50 [] Nordhagen Stella, Herbst William, Rhode Katherine L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Williams Eric C, 2006, AJ, 132, 1555 [] Ostriker Eve C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Shu Frank H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1995, ApJ, 447, 813 [] O’Connell D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1951, Publications of the Riverview College Observatory, 2, 85 [] Pandey J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Karmakar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Joshi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Sharma Saurabh, Bhushan Pandey S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Pandey A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2019, RAA, 19, 7 [] Pedrosa Antonio, 1997, IAUS, 182, 306 [] Pigulski A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Kolaczkowski Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Kopacki G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2000, AcA, 50, 113 [] Ricker George R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Winn Joshua N, Vanderspek R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2015, Journal of Astronomical Telescopes, Instru- ments, and Systems, 1, 014003 [] Rangwal Geeta, Yadav R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Durgapal Alok K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bisht D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2017, PASA, 34, 68 [] Riaz B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Mart´ın E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Tata R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Monin J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' -L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Phan-Bao N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Bouy H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2012, MNRAS, 419, 1887 [] Sagar R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Joshi U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1981, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 75, 465 [] Siess L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Dufour E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Forestini M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2000, A&A, 358, 593 [] Shu Frank, Najita Joan, Ostriker Eve, Wilkin Frank, Ruden Steven, Lizano Susana, 1994, ApJ, 429, 781 [] Stone D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1979, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 96, 1389 [] Shi H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', Hu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' 1999, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 136, 313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' [] Stetson P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' B, 1992, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' Can.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 86, 71 [] Stetson P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1987, PASP, 99, 191 [] Torres G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2010, AJ, 140, 1158 [] Turner D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 1979, JRASC, 73, 74 [] Zahajkiewicz E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=', 2012, AN, 333, 1086 © 0000 RAS, MNRAS 000, 1–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E0T4oBgHgl3EQffAC0/content/2301.02399v1.pdf'} diff --git a/69E1T4oBgHgl3EQfBgJT/vector_store/index.faiss b/69E1T4oBgHgl3EQfBgJT/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..99ec5e35162a5d7d6eef3aeeddb6249e9228941f --- /dev/null +++ b/69E1T4oBgHgl3EQfBgJT/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1c2659485322d20e86c65b07e2654d3caa534312fca25da689510cdc03a000c2 +size 3407917 diff --git a/79FLT4oBgHgl3EQfsi_P/vector_store/index.faiss b/79FLT4oBgHgl3EQfsi_P/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..4bad0c9bfa940ec0921faa81ec9e36f595af15db --- /dev/null +++ b/79FLT4oBgHgl3EQfsi_P/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4229dda66407e2fd5aff0533465eab62aee1b67af5d69a4c831da4e29c750bbc +size 7864365 diff --git a/8NE4T4oBgHgl3EQfCwsd/content/tmp_files/2301.04862v1.pdf.txt b/8NE4T4oBgHgl3EQfCwsd/content/tmp_files/2301.04862v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..0c3f620a351703c0a32257914eddc7220af6a477 --- /dev/null +++ b/8NE4T4oBgHgl3EQfCwsd/content/tmp_files/2301.04862v1.pdf.txt @@ -0,0 +1,648 @@ +arXiv:2301.04862v1 [cs.PL] 12 Jan 2023 +Naturalistic Static Program Analysis +Mohammad Mehdi Pourhashem Kallehbasti +Department of Electrical and Computer Engineering +University of Science and Technology of Mazandaran +P.O. Box 48518-78195, Behshahr, Iran +pourhashem@mazust.ac.ir +Mohammad Ghafari +TU Clausthal, Germany +mohammad.ghafari@tu-clausthal.de +Abstract—Static program analysis development is a non-trivial +and time-consuming task. We present a framework through +which developers can define static program analyses in natural +language. We show the application of this framework to identify +cryptography misuses in Java programs, and we discuss how it +facilitates static program analysis development for developers. +Index Terms—Static program analysis, cryptography, natural +language programming +I. INTRODUCTION +Static program analysis is the art of examining programs +without requiring to execute the code. However, static analysis +tools generate false positives and tuning them requires exper- +tise. Likewise, program analysis development requires a deep +knowledge of compiler or mastering an analysis framework. +End-user programming is a set of techniques that enable +end users to write programs at a level of complexity that is +adequate to their practices, background, and skills. For in- +stance, it includes visual languages to program robots through +visual blocks [1], and simplified programming languages to +translate English sentences to Bash commands [2]. We believe +that end-user programming techniques can also help to hide the +complexity of writing a static program analysis task for non- +professional programmers and empower them in this domain. +We introduce NASRA (NAturalistic Static pRogram Analy- +sis), a framework that enables developers to define a program +analysis task in natural language (NL), and it generates the +corresponding Query Language (QL) query that underlies +CodeQL program analysis engine.1 We illustrate the appli- +cation of this framework to find cryptography misuses in Java +programs. NASRA is open source and publicly available.2 +The ultimate goal of NASRA is to enable “naturalistic” +static program analysis development in a way that developers +can specify what they need without deep knowledge of static +program analysis and how a specific framework works. Its +higher level of abstraction than existing static analysis frame- +works may facilitate a more intuitive formulation of program +analysis tasks. Similarly, its agnostic nature to programming +languages can provide a cross-language interface for program +analysis, which obviates the need to learn the specifics of a +program analysis framework. This paper presents a prelimi- +nary step to realize the above goal. +1https://codeql.github.com +2https://doi.org/10.5281/zenodo.7495044 +II. THE NASRA FRAMEWORK +Cryptography is an essential component to security, but it is +one of the notorious topics where developers struggle a lot [3], +[4]. Locating the init method invoked on a Cipher object +is often deemed to be the first step to analyze cryptography +code in Java programs. For instance, in CodeQL, one should +write the following query to implement this task. +from +MethodAccess init +where init.getMethod().getName() = "init" and +init.getReceiverType().getName() = "Cipher" +select init +We have developed a framework, called NASRA, that +enables a more intuitive formulation of the above task in the +form below: +An object of Cipher invokes init. +NASRA is a rule-driven synthesizer. We rely on predefined +rules due to a lack of trustworthy labeled examples required +for a data-driven approach in this domain. NASRA receives a +program analysis inquiry in natural language, applies semantic +parsing, and generates CodeQL commands. The input inquiry +should comply with a subset of the syntax of Attempto +Controlled English (ACE) controlled natural language. We +use Attempto Parsing Engine (APE), a tool that receives a +series of ACE statements and produces the corresponding +Discourse Representation Structures (DRS) that is a semantic +representation of the input text. NASRA applies the translation +rules, explained later in this section, on the given DRS and +produces the corresponding CodeQL statements. Thanks to +APE, the way one can formulate NASRA statements is very +flexible and there is no need for absolute correspondence with +the NASRA syntax. We chose CodeQL as our code analysis +engine because it is an industry-leading and community- +powered tool, and its publicly available to all GitHub users +without any installation hassle. To employ NASRA for a new +static analysis framework, only the transformation rules have +to be adapted. To support a new application domain, we should +identify the types of queries that the current syntax does not +support, add the corresponding production rules to the syntax, +and develop translations for them. NASRA is open source, +and currently, supports program analysis tasks that concern +cryptography misuses in Java programs. + +A. Syntax and Semantics +Each NASRA query comprises one or more Statement. The +syntax is shown below (terminals have different color). +Query ::= Statement Query | Statement +Statement ::= BasicStatement | LogicalStatement +| Extension +BasicStatement ::= Exp is (Exp | in List) +Exp ::= Prefix Exp | type | ID | Literal +Prefix ::= ((adjective|ε) attribute of) +LogicalStatement ::= Statement and Statement | +Statement or Statement | It is false that Statement +| If Statement then Statement +a) Expression: The smallest building block is Exp. It +includes a Literal (String or int) or an ID (user defined +identifier) that are directly mapped to CodeQL expressions. +An Exp can also be a CodeQL type such as class, variable, +and method access that are mapped to Class, Variable, +and MethodAccess, respectively. +b) Prefix: Each Exp can have an optional Prefix in +the form of “attribute of” that indicates an attribute of +the expression. For instance, name, type, argument, and +method are attributes of an entity (i.e., Exp), and they cor- +respond to getName(), getType(), getArgument(), +and getMethod() methods in CodeQL, respectively. +For example, “name of method1” is an Exp, where “name” +is an attribute and method1 is an ID, and the whole expres- +sion is translated to method1.getName() in CodeQL. +Additionally, the attribute itself can have an optional +ordinal +number +as +an +adjective, +like +second +in +the +Exp “second argument of init” that is translated to +“init.getArgument(1)”, where second is translated to +1 as an argument according to zero-based numbering. +Note that “attribute of” can be repeated several times, where +each attribute may have an adjective. For example, the Exp +“The type of the second argument of init” has one ID +(i.e.,init) and two attributes (i.e., type and argument). +c) Basic Statement: Each BasicStatement is a statement +that can serve as a Boolean condition as well as an assumption. +As a Boolean condition, BasicStatement produces equiva- +lence of two Exps, as well as membership of an Exp in a list. +In “Exp is Exp” structure, both sides of equivalence are Exps +and they need to be equal, while in “Exp is in List” structure, +the Exp needs to be equal to an item in a list. Accordingly, a +statement like “arg1 is in ["RSA", "AES"].” is a disjunctive +expression and can be rephrased to “arg1 is "RSA" or arg1 +is "AES".”, that is ultimately translated to “arg1 = "RSA" +or arg1 = "AES"”. +The syntax structure Exp is Exp can also produce as- +sumptions when the second Exp is a CodeQL type. The +assumptions are mapped to the from part of a CodeQL query. +For instance, the statement “var1 is a variable.” translates to +“Variable var1” and belongs to the from part. +d) Logical Statement: A LogicalStatement can be a +negation, conjunction, disjunction, or implication. For exam- +ple, “If arg1 is "RSA" then arg2 is "AES".” is translated to +“not (arg1 = "RSA") or arg2 = "AES"” in Cod- +eQL, since p ⇒ q is equivalent to ¬p ∨ q. +B. Extensibility +One can extend NASRA to cover auxiliary statements and +statement patterns. Their corresponding production rules are +as follows. +Extension ::= Pattern | AuxiliaryStatement +We introduce these features through three statement pat- +terns and one auxiliary statement that are helpful to cover +constraints on using Java cryptography objects. +1) Patterns: We present three patterns that extend Pattern +nonterminal in the syntax. We discuss each in the following. +a) Invocation: We use this pattern to state that a method +is invoked by an instance of a specific class. It can also be +used to make sure that there is no invocation of a method by +any instance of a specific class. +Pattern1 ::= An object of ID (invokes|does not invoke) ID. +The NASRA query shown in Section II is an example of this +pattern. The transformation follows a number of steps. First, a +MethodAccess is declared with the same name used in the +NASRA statement (i.e.,init). Then the conditions need to be +added to the where part. Specifically, the name of the method +of the MethodAccess init should be "init" that is +stated in the second line. Finally, a MethodAccess has a +receiver, that is the object invoking its method. In this case, +the name of the type of the receiver should be "Cipher", +that is expressed in CodeQL in the third line. +If one needs to make sure that no invocation occurs, an +existential quantifier must be used, as shown in the following. +from +where not +(exists +(MethodAccess +init +| +init.getMethod().getName() = "init" and +init.getReceiverType().getName() = "Cipher")) +It means that there is no such MethodAccess init that +has these conditions. We can state this in NASRA in the form +below. +An object of Cipher doesn’t invoke init. +b) Partial order constraints: This pattern enables one to +put partial order constraints on method invocations. In other +words, one can enforce a method invocation to be preceded +(or followed) by another method invocation. +Pattern2::=MethodName (precedes|follows) MethodName. +For example, there are two steps in CodeQL for stating that +“invocation of getInstance is earlier than invocation of +init”. First, one should specify that both methods are in the +same scope. Next, the line number of the preceding method +invocation has to be smaller than the line number of the other +method invocation. This is shown below. + +getInstance.getEnclosingCallable() += +init.getEnclosingCallable() and +getInstance.getLocation().getEndLine() +< +init.getLocation().getEndLine() +We can express this query in NASRA as follows. +getInstance precedes init. +c) Method signature constraint: It is possible to express +signature of a method using Pattern3. +Pattern3 ::= MethodName’s signature is List. +A method signature can be seen as an ordered list of data +types. This list contains names of data types as strings, such +that the first string is the name of the first argument’s data +type and so on. For example, the following NASRA query +states that getInstance method has two arguments and +the names of their types are "int" and "Certificate", +respectively. +getInstance’s signature is ["int", "Certificate"]. +This query is translated to the following CodeQL query. +(count (getInstance.getAnArgument()) = 2) and +getInstance.getArgument(0).getType(). +toString()="int" and getInstance. +getArgument(1).getType().toString()= +"Certificate" +First, the number of arguments is set to the size of the user +defined list, then the type of arguments are constrained one +by one. count (method.getAnArgument()) returns +the number of arguments of the method. getArgument(i) +returns +the +argument number i +in +the +given +method, +getType() returns the type of the given argument, and +finally toString() converts the given data type to a String. +2) AuxiliaryStatement: We aim to find misuses in code +that violate one or more mandatory constraints. For instance, +suppose that if the second argument of init method is +"private key" then it is mandatory that the encryption al- +gorithm, i.e., the second argument of getInstance method +is "RSA", and also if the encryption algorithm is "AES" +then it is mandatory that the mode of encryption, i.e., the +first argument of the getInstance method, is "CBC". The +following NASRA query will find such violations. +It is false that if the type of the second argument of init +is "PrivateKey", then the algorithm of getInstance’s +first argument is "RSA" or it is false that if the algorithm of +getInstance’s first argument is "AES" then the mode of +getInstance’s first argument is "CBC". +In order to find any violation of these constraints, dis- +junction of their negation has to be stated in the query.3 +3For example, in “X is driving in an urban area(Cond1). It is necessary that +X is driving slower than 60 km/h (Cons1). It is necessary that X fastens the +seat belt (Cons2).”, the query needs to find an X that is driving in an urban +area and is driving faster than 60 km/h or is not using the seat belt. If we +assign a Boolean variable to each statement as mentioned in the statements, it +should aim Cond1 ∧(¬Cons1 ∨¬Cons2) whose necessity part is translated +to the disjunction of negation of two constraints. +Nevertheless, the above statement becomes much longer and +harder to comprehend as the number of constraints increases. +We define auxiliary statements to ease the formulation as +well as the comprehension of complex queries for developers. +Particularly, NecessityStatements are auxiliary statements that +enable developers to enforce mandatory constraints in short +and independent statements. It starts with “It is necessary that” +and follows the syntax below. +NecessityStatement +::= +It is necessary that Statement. +Therefore, instead of writing disjunction of negation of all +constraints in one single statement, developers can benefit +this construct (i.e., NecessiyStatement) to define all such +constraints in several statements within a query. Accordingly, +the single but long previous statement can be stated as two +separate statements shown below. +It is necessary that if the type of the second argument of init is +"PrivateKey", then the algorithm of getInstance’s first +argument is "RSA". +It is necessary that if the algorithm of getInstance’s first +argument is "AES" then the mode of getInstance’s first +argument is "CBC". +Necessity statements are treated differently from other state- +ments. If there is only one NecessityStatement, its enclosing +statement is negated and added to the where part of the +CodeQL query. If there are more than one, e.g., n constraints +Cons1, Cons2, ..., Consn, then the “(not T Cons1 or +not T Cons2 or ... or not T Consn)” will be added +to the where part, where T Consi is the translation of Consi. +III. WORKING EXAMPLES +Cipher is one of the most misused APIs in Java cryp- +tography [4]. Listing 1 shows how to create a Cipher +object in Java. We should call the Cipher’s getInstance +method. This method receives a number of arguments. The +first one is transformation that is a string containing +three parts separated by “/”. These parts are algorithm, +mode, and padding, respectively. Next, we should call the +init method on the cipher object with two arguments to +indicate the operation mode of the cipher, and to initialize +this object with a Key or Certificate. +Cipher cipher = Cipher.getInstance("AES/ECB/ +PKCS5Padding"); +cipher.init(Cipher.ENCRYPT_MODE,new SecretKeySpec( +keyBytes, "AES")); +Listing 1. Setting up the Cipher object in Java +In the rest of this section, we present three different program +analysis tasks to ensure secure use of Java Cipher. +A. Key vs. Algorithm +Task 1: If the key has a type of PublicKey, PrivateKey, +or Certificate, or encryption mode is WRAP MODE or UN- +WRAP MODE, then algorithm of transformation must be +“RSA”. + +Listing 2 shows how to check this constraint in CodeQL. +from MethodAccess getInstance, MethodAccess init +where init.getMethod().getName() = "init" and init. +getReceiverType().getName() = "Cipher" and +getInstance.getMethod().getName() = "getInstance +" and getInstance.getReceiverType().getName() = +"Cipher" and (((init.getArgument(0).toString() = +"Cipher.WRAP MODE" or init.getArgument(0). +toString() = "Cipher.UNWRAP MODE") or (init. +getArgument(1).getType().toString() = "java. +security.PublicKey" or init.getArgument(1). +getType().toString() = "java.security.PrivateKey +" or init.getArgument(1).toString() = "java. +security.cert.Certificate")) and not(getInstance +.getArgument(0).toString().replaceAll("\",""). +splitAt("/",0) = "RSA")) +select getInstance, init +Listing 2. Key vs. Algorithm constraint in CodeQL +This constraint can be expressed in NASRA as follows. +An +object +of +Cipher +invokes +init. +An +object +of +Cipher invokes getInstance. It is necessary that if +init’s +first +argument +is +in +["Cipher.WRAP_MODE", +"Cipher.UNWRAP_MODE"] +or +the +type +of +the +second +argument of init is in ["PublicKey", "PrivateKey", +"Certificate"] then the algorithm of getInstance’s +first argument is "RSA". +B. Algorithm vs. Transformation Mode +Task 2: If the algorithm of transformation is “RSA” then +the mode of transformation must be either “” or “ECB”. +Listing 3 shows the corresponding query to check this +constraint in CodeQL. We should look for code in which the +algorithm is “RSA”, but neither “ECB” nor “” is set for the +mode. +from MethodAccess getInstance +where getInstance.getMethod().getName() = " +getInstance" and getInstance.getReceiverType(). +getName() = "Cipher" and (getInstance. +getArgument(0).toString().replaceAll("\"",""). +splitAt("/", 0) = "RSA") and not (getInstance. +getArgument(0).toString().replaceAll("\"",""). +splitAt("/", 1) = "" or getInstance.getArgument +(0).toString().replaceAll("\"","").splitAt("/", +1) = "ECB") +select getInstance +Listing 3. Algorithm vs. Transformation Mode constraint in CodeQL +This constraint can be expressed in NASRA as follows. +An object of Cipher invokes getInstance. It is necessary +that if the algorithm of getInstance’s first argument is +"RSA" then the mode of getInstance’s first argument is in +["", "ECB"]. +Thanks to Attempto Parsing Engine (APE), NASRA state- +ments do not need to exactly follow the syntax rules meaning +that a degree of freedom in paraphrasing is possible. For +instance, the part “the algorithm of getInstance’s first +argument is "RSA"” can also be written in two other forms: +(i) the algorithm of the first argument of getInstance is +"RSA". +(ii) "RSA" is the algorithm of getInstance’s first argument. +C. Transformation and Encryption Mode vs. Signature +Task 3: If the transformation mode is either of “CBC”, +“PCBC”, “CTR”, “CTS”, “CFB”, or “OFB”, and the en- +cryption mode is not “Cipher.ENCRYPT MODE”, then the +invoked init method should not have any of the following +signature: init(encmode, cert), init(encmode, cert, ranGen), +init(encmode, key), init(encmode, key, ranGen). +Listing 4 presents how to enforce this constraint in CodeQL. +from MethodAccess getInstance, MethodAccess init +where init.getMethod().getName() = "init" and init. +getReceiverType().getName() = "Cipher" and +getInstance.getMethod().getName() = "getInstance +" and getInstance.getReceiverType().getName() = +"Cipher" and ((getInstance.getArgument(0). +toString().replaceAll("\"","").splitAt("/", 1) = +"CBC" or getInstance.getArgument(0).toString(). +replaceAll("\"","").splitAt("/", 1) = "PCBC" or +getInstance.getArgument(0).toString().replaceAll +("\"","").splitAt("/", 1) = "CTR" and +getInstance.getArgument(0).toString().replaceAll +("\"","").splitAt("/", 1) = "CTS" or getInstance +.getArgument(0).toString().replaceAll("\"",""). +splitAt("/", 1) = "CFB" or getInstance. +getArgument(0).toString().replaceAll("\"",""). +splitAt("/", 1) = "OFB") and not (init. +getArgument(0).toString() = "Cipher.ENCRYPT_MODE +")) and ((count (getInstance.getAnArgument()) = +2 and getInstance.getArgument(0).getType(). +toString() = "int" and getInstance.getArgument +(1).getType().toString() = "Certificate") or ( +count (getInstance.getAnArgument()) = 3 and +getInstance.getArgument(0).getType().toString() += "int" and getInstance.getArgument(1).getType() +.toString() = "Certificate" and getInstance. +getArgument(2).getType().toString() = " +SecureRandom") or (count (getInstance. +getAnArgument()) = 2 and getInstance.getArgument +(0).getType().toString() = "int" and getInstance +.getArgument(1).getType().toString() = "Key") or +(count (getInstance.getAnArgument()) = 3 and +getInstance.getArgument(0).getType().toString() += "int" and getInstance.getArgument(1).getType() +.toString() = "Key" and getInstance.getArgument +(2).getType().toString() = "SecureRandom")) +select init, getInstance +Listing 4. Transformation and Encryption mode vs. Signature constraint in +CodeQL +The implementation of this task in NASRA is shown below. +An +object +of +Cipher +invokes +getInstance. +An +object +of +Cipher +invokes +init. +It +is +necessary +that +if +the +mode +of +getInstance’s +first +argument +is +in +["CBC","PCBC","CTR","CTS","CFB","OFB"] +and +init’s first argument is not "Cipher.ENCRYPT_MODE" +then +getInstance’s +signature +is +not +["int","Certificate"] +and +is +not +["int","Certificate","SecureRandom"] +and +is +not +["int","Key"] +and +is +not +["int","Key","SecureRandom"]. +D. Discussion +Table I presents the number of distinct operators and +operands (i.e., vocabulary), and the total number of operators +and operands (i.e., length) needed for each analysis task.4 +4In NASRA, we consider user defined terminals such as init, “RSA”, and +getInstance as operands and count the rest of language constructs as operators. + +TABLE I +CODEQL VS. NASRA +Analysis Task +Vocabulary +Length +CodeQL +NASRA +CodeQL +NASRA +Key vs. Algorithm (III-A) +32 +19 +179 +39 +Algorithm vs. Mode (III-B) +27 +18 +107 +24 +Mode vs. Signature (III-C) +42 +26 +434 +56 +Evidently, queries in NASRA are significantly shorter than +queries in CodeQL (i.e., up to 87% reduction in length), and +they consume a lot fewer programming constructs (i.e., up to +38% fewer vocabularies). We computed Halstead complexity +measures to estimate the coding time and the difficulty to +write or understand these queries [5]. The results showed that +developers require a lot less effort and time to develop these +tasks in NASRA than in CodeQL. +We also asked ten developers to share their opinion about +queries in NASRA. They unanimously stated that they are +succinct and easy to understand, and one commented that +“these queries read like API documentation”. +It is noteworthy that NASRA’s performance, i.e., how well +it can detect API misuses, depends on its underlying analy- +sis framework which is currently CodeQL. In other words, +NASRA obviates the low-level details needed to define static +program analyses, but the issues with false positives remain +to be relevant. Moreover, despite being natural, the use of +NASRA still requires knowledge of its syntax. +IV. RELATED WORK +Mapping a natural language statement into a formal repre- +sentation has received great attention in the community but +not much in the program analysis development domain. +Schlegel +et +al. +developed +an +end-user +programming +paradigm for Python, that maps natural language commands +into Python code [6]. Landhauber et al. proposed a domain +agnostic command interpreter that receives natural language +commands in English and uses ontology to produce relevant +API calls [7]. Yaghmazadeh et al. developed SQLIZER, a +system to automatically synthesize SQL queries from a natural +language [8]. Luo et al. investigated the translation from +a natural language query to visualization with the goal of +simplifying the creation of data visualizations [9]. +Heyman et al. developed a Python code completion tool +that enriches developers’ code with the natural language de- +scription of the intended data science task [10]. Nguyen et al. +presented an approach that takes as input an English descrip- +tion of a programming task and synthesizes the corresponding +API code template for the task [11]. Desai et al. built a general +framework for constructing program synthesizers that take +natural language inputs and produce expressions in a target +Domain Specific Language [12]. Zhai et al. proposed a search- +based technique to automatically translate NL comments to +formal program specifications that specify the expected pre +and post conditions [13]. +The work presented in this paper is also related to cryp- +tography domain. There exist tools that find cryptography +misuses [14] and libraries that facilitate the adoption of +cryptography for developers [15]. Nevertheless, none of them +employed a natural language approach. +V. CONCLUSION +We introduced NASRA, an open-source framework to de- +fine static program analyses in natural language. We demon- +strated the application of this framework to find misuses in +Java cryptography. The ultimate goal of NASRA is to enable +a naturalistic way to develop static program analyses, which is +usable for mainstream developers. To realize this goal, further +studies are needed to determine NASRA’s effectiveness in +real-world settings. The expressiveness of its queries and the +effort required to extend it to other problem domains have to +be investigated as well. Finally, automatic translation without +pre-defined rules is also an exciting future research direction. +REFERENCES +[1] E. Barakova, J. Gillesen, B. Huskens, and T. Lourens, “End-user +programming architecture facilitates the uptake of robots in social +therapies,” Robotics and Autonomous Systems, vol. 61, no. 7, 2013. +[2] X. V. Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, “NL2Bash: +A corpus and semantic parser for natural language interface to the +linux operating system,” in Proceedings of the Eleventh International +Conference on Language Resources and Evaluation (LREC 2018), 2018. +[3] M. Hazhirpasand, O. Nierstrasz, M. Shabani, and M. Ghafari, “Hurdles +for developers in cryptography,” in 2021 IEEE International Conference +on Software Maintenance and Evolution (ICSME), 2021, pp. 659–663. +[4] M. Hazhirpasand, M. Ghafari, and O. Nierstrasz, “Java cryptography +uses in the wild,” in Proceedings of the 14th ACM / IEEE International +Symposium on Empirical Software Engineering and Measurement, 2020. +[5] M. H. Halstead, Elements of Software Science (Operating and program- +ming systems series). +Elsevier Science Inc., 1977. +[6] V. Schlegel, B. Lang, S. Handschuh, and A. Freitas, “Vajra: Step-by- +step programming with natural language,” in Proceedings of the 24th +International Conference on Intelligent User Interfaces, 2019. +[7] M. Landh¨auber, S. Weigelt, and W. F. Tichy, “Nlci: A natural language +command interpreter,” Automated Software Engg., vol. 24, no. 4, p. +839–861, dec 2017. +[8] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, “Sqlizer: Query +synthesis from natural language,” Proc. ACM Program. Lang., vol. 1, +no. OOPSLA, oct 2017. +[9] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin, “Natural language +to visualization by neural machine translation,” IEEE Transactions on +Visualization and Computer Graphics, vol. 28, no. 1, pp. 217–226, 2022. +[10] G. Heyman, R. Huysegems, P. Justen, and T. Van Cutsem, “Natural +language-guided programming,” ser. Onward!, 2021, p. 39–55. +[11] A. T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and T. N. +Nguyen, “Statistical translation of english texts to api code templates,” +in 2018 IEEE International Conference on Software Maintenance and +Evolution (ICSME), 2018, pp. 194–205. +[12] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, +S. R, and S. Roy, “Program synthesis using natural language,” in Pro- +ceedings of the 38th International Conference on Software Engineering, +ser. ICSE ’16, 2016. +[13] J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan, +and X. Zhang, “C2s: Translating natural language comments to formal +program specifications,” in Proceedings of the 28th ACM Joint Meeting +on European Software Engineering Conference and Symposium on the +Foundations of Software Engineering, ser. ESEC/FSE 2020, 2020. +[14] Y. Zhang, M. M. A. Kabir, Y. Xiao, D. D. Yao, and N. Meng, “Automatic +detection of java cryptographic api misuses: Are we there yet,” IEEE +Transactions on Software Engineering, 2022. +[15] S. Kafader and M. Ghafari, “Fluentcrypto: Cryptography in easy mode,” +in 2021 IEEE International Conference on Software Maintenance and +Evolution (ICSME), 2021, pp. 402–412. + diff --git a/8NE4T4oBgHgl3EQfCwsd/content/tmp_files/load_file.txt b/8NE4T4oBgHgl3EQfCwsd/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..dd841f163ee222a4232110b18179ad00d45c5dd5 --- /dev/null +++ b/8NE4T4oBgHgl3EQfCwsd/content/tmp_files/load_file.txt @@ -0,0 +1,511 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf,len=510 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='04862v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='PL] 12 Jan 2023 Naturalistic Static Program Analysis Mohammad Mehdi Pourhashem Kallehbasti Department of Electrical and Computer Engineering University of Science and Technology of Mazandaran P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Box 48518-78195, Behshahr, Iran pourhashem@mazust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='ir Mohammad Ghafari TU Clausthal, Germany mohammad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='ghafari@tu-clausthal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='de Abstract—Static program analysis development is a non-trivial and time-consuming task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We present a framework through which developers can define static program analyses in natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We show the application of this framework to identify cryptography misuses in Java programs, and we discuss how it facilitates static program analysis development for developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Index Terms—Static program analysis, cryptography, natural language programming I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' INTRODUCTION Static program analysis is the art of examining programs without requiring to execute the code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' However, static analysis tools generate false positives and tuning them requires exper- tise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Likewise, program analysis development requires a deep knowledge of compiler or mastering an analysis framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' End-user programming is a set of techniques that enable end users to write programs at a level of complexity that is adequate to their practices, background, and skills.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For in- stance, it includes visual languages to program robots through visual blocks [1], and simplified programming languages to translate English sentences to Bash commands [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We believe that end-user programming techniques can also help to hide the complexity of writing a static program analysis task for non- professional programmers and empower them in this domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We introduce NASRA (NAturalistic Static pRogram Analy- sis), a framework that enables developers to define a program analysis task in natural language (NL), and it generates the corresponding Query Language (QL) query that underlies CodeQL program analysis engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='1 We illustrate the appli- cation of this framework to find cryptography misuses in Java programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' NASRA is open source and publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='2 The ultimate goal of NASRA is to enable “naturalistic” static program analysis development in a way that developers can specify what they need without deep knowledge of static program analysis and how a specific framework works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Its higher level of abstraction than existing static analysis frame- works may facilitate a more intuitive formulation of program analysis tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Similarly, its agnostic nature to programming languages can provide a cross-language interface for program analysis, which obviates the need to learn the specifics of a program analysis framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' This paper presents a prelimi- nary step to realize the above goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 1https://codeql.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='com 2https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='7495044 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' THE NASRA FRAMEWORK Cryptography is an essential component to security, but it is one of the notorious topics where developers struggle a lot [3], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Locating the init method invoked on a Cipher object is often deemed to be the first step to analyze cryptography code in Java programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For instance, in CodeQL, one should write the following query to implement this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' from MethodAccess init where init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "Cipher" select init We have developed a framework, called NASRA, that enables a more intuitive formulation of the above task in the form below: An object of Cipher invokes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' NASRA is a rule-driven synthesizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We rely on predefined rules due to a lack of trustworthy labeled examples required for a data-driven approach in this domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' NASRA receives a program analysis inquiry in natural language, applies semantic parsing, and generates CodeQL commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The input inquiry should comply with a subset of the syntax of Attempto Controlled English (ACE) controlled natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We use Attempto Parsing Engine (APE), a tool that receives a series of ACE statements and produces the corresponding Discourse Representation Structures (DRS) that is a semantic representation of the input text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' NASRA applies the translation rules, explained later in this section, on the given DRS and produces the corresponding CodeQL statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Thanks to APE, the way one can formulate NASRA statements is very flexible and there is no need for absolute correspondence with the NASRA syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We chose CodeQL as our code analysis engine because it is an industry-leading and community- powered tool, and its publicly available to all GitHub users without any installation hassle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' To employ NASRA for a new static analysis framework, only the transformation rules have to be adapted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' To support a new application domain, we should identify the types of queries that the current syntax does not support, add the corresponding production rules to the syntax, and develop translations for them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' NASRA is open source, and currently, supports program analysis tasks that concern cryptography misuses in Java programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Syntax and Semantics Each NASRA query comprises one or more Statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The syntax is shown below (terminals have different color).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Query ::= Statement Query | Statement Statement ::= BasicStatement | LogicalStatement | Extension BasicStatement ::= Exp is (Exp | in List) Exp ::= Prefix Exp | type | ID | Literal Prefix ::= ((adjective|ε) attribute of) LogicalStatement ::= Statement and Statement | Statement or Statement | It is false that Statement | If Statement then Statement a) Expression: The smallest building block is Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It includes a Literal (String or int) or an ID (user defined identifier) that are directly mapped to CodeQL expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' An Exp can also be a CodeQL type such as class, variable, and method access that are mapped to Class, Variable, and MethodAccess, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' b) Prefix: Each Exp can have an optional Prefix in the form of “attribute of” that indicates an attribute of the expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For instance, name, type, argument, and method are attributes of an entity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', Exp), and they cor- respond to getName(), getType(), getArgument(), and getMethod() methods in CodeQL, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For example, “name of method1” is an Exp, where “name” is an attribute and method1 is an ID, and the whole expres- sion is translated to method1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Additionally, the attribute itself can have an optional ordinal number as an adjective, like second in the Exp “second argument of init” that is translated to “init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(1)”, where second is translated to 1 as an argument according to zero-based numbering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Note that “attribute of” can be repeated several times, where each attribute may have an adjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For example, the Exp “The type of the second argument of init” has one ID (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=',init) and two attributes (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', type and argument).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' c) Basic Statement: Each BasicStatement is a statement that can serve as a Boolean condition as well as an assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' As a Boolean condition, BasicStatement produces equiva- lence of two Exps, as well as membership of an Exp in a list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' In “Exp is Exp” structure, both sides of equivalence are Exps and they need to be equal, while in “Exp is in List” structure, the Exp needs to be equal to an item in a list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Accordingly, a statement like “arg1 is in ["RSA", "AES"].” is a disjunctive expression and can be rephrased to “arg1 is "RSA" or arg1 is "AES".”, that is ultimately translated to “arg1 = "RSA" or arg1 = "AES"”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The syntax structure Exp is Exp can also produce as- sumptions when the second Exp is a CodeQL type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The assumptions are mapped to the from part of a CodeQL query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For instance, the statement “var1 is a variable.” translates to “Variable var1” and belongs to the from part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' d) Logical Statement: A LogicalStatement can be a negation, conjunction, disjunction, or implication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For exam- ple, “If arg1 is "RSA" then arg2 is "AES".” is translated to “not (arg1 = "RSA") or arg2 = "AES"” in Cod- eQL, since p ⇒ q is equivalent to ¬p ∨ q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Extensibility One can extend NASRA to cover auxiliary statements and statement patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Their corresponding production rules are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Extension ::= Pattern | AuxiliaryStatement We introduce these features through three statement pat- terns and one auxiliary statement that are helpful to cover constraints on using Java cryptography objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 1) Patterns: We present three patterns that extend Pattern nonterminal in the syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We discuss each in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' a) Invocation: We use this pattern to state that a method is invoked by an instance of a specific class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It can also be used to make sure that there is no invocation of a method by any instance of a specific class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Pattern1 ::= An object of ID (invokes|does not invoke) ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The NASRA query shown in Section II is an example of this pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The transformation follows a number of steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' First, a MethodAccess is declared with the same name used in the NASRA statement (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=',init).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Then the conditions need to be added to the where part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Specifically, the name of the method of the MethodAccess init should be "init" that is stated in the second line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Finally, a MethodAccess has a receiver, that is the object invoking its method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' In this case, the name of the type of the receiver should be "Cipher", that is expressed in CodeQL in the third line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' If one needs to make sure that no invocation occurs, an existential quantifier must be used, as shown in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' from where not (exists (MethodAccess init | init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "Cipher")) It means that there is no such MethodAccess init that has these conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We can state this in NASRA in the form below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' An object of Cipher doesn’t invoke init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' b) Partial order constraints: This pattern enables one to put partial order constraints on method invocations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' In other words, one can enforce a method invocation to be preceded (or followed) by another method invocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Pattern2::=MethodName (precedes|follows) MethodName.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For example, there are two steps in CodeQL for stating that “invocation of getInstance is earlier than invocation of init”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' First, one should specify that both methods are in the same scope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Next, the line number of the preceding method invocation has to be smaller than the line number of the other method invocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' This is shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getEnclosingCallable() = init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getEnclosingCallable() and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getLocation().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getEndLine() < init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getLocation().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getEndLine() We can express this query in NASRA as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getInstance precedes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' c) Method signature constraint: It is possible to express signature of a method using Pattern3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Pattern3 ::= MethodName’s signature is List.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' A method signature can be seen as an ordered list of data types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' This list contains names of data types as strings, such that the first string is the name of the first argument’s data type and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For example, the following NASRA query states that getInstance method has two arguments and the names of their types are "int" and "Certificate", respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getInstance’s signature is ["int", "Certificate"].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' This query is translated to the following CodeQL query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' (count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getAnArgument()) = 2) and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' toString()="int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString()= "Certificate" First, the number of arguments is set to the size of the user defined list, then the type of arguments are constrained one by one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' count (method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getAnArgument()) returns the number of arguments of the method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(i) returns the argument number i in the given method, getType() returns the type of the given argument, and finally toString() converts the given data type to a String.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 2) AuxiliaryStatement: We aim to find misuses in code that violate one or more mandatory constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For instance, suppose that if the second argument of init method is "private key" then it is mandatory that the encryption al- gorithm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', the second argument of getInstance method is "RSA", and also if the encryption algorithm is "AES" then it is mandatory that the mode of encryption, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', the first argument of the getInstance method, is "CBC".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The following NASRA query will find such violations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is false that if the type of the second argument of init is "PrivateKey", then the algorithm of getInstance’s first argument is "RSA" or it is false that if the algorithm of getInstance’s first argument is "AES" then the mode of getInstance’s first argument is "CBC".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' In order to find any violation of these constraints, dis- junction of their negation has to be stated in the query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='3 3For example, in “X is driving in an urban area(Cond1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is necessary that X is driving slower than 60 km/h (Cons1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is necessary that X fastens the seat belt (Cons2).”, the query needs to find an X that is driving in an urban area and is driving faster than 60 km/h or is not using the seat belt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' If we assign a Boolean variable to each statement as mentioned in the statements, it should aim Cond1 ∧(¬Cons1 ∨¬Cons2) whose necessity part is translated to the disjunction of negation of two constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nevertheless, the above statement becomes much longer and harder to comprehend as the number of constraints increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We define auxiliary statements to ease the formulation as well as the comprehension of complex queries for developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Particularly, NecessityStatements are auxiliary statements that enable developers to enforce mandatory constraints in short and independent statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It starts with “It is necessary that” and follows the syntax below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' NecessityStatement ::= It is necessary that Statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Therefore, instead of writing disjunction of negation of all constraints in one single statement, developers can benefit this construct (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', NecessiyStatement) to define all such constraints in several statements within a query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Accordingly, the single but long previous statement can be stated as two separate statements shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is necessary that if the type of the second argument of init is "PrivateKey", then the algorithm of getInstance’s first argument is "RSA".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is necessary that if the algorithm of getInstance’s first argument is "AES" then the mode of getInstance’s first argument is "CBC".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Necessity statements are treated differently from other state- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' If there is only one NecessityStatement, its enclosing statement is negated and added to the where part of the CodeQL query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' If there are more than one, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', n constraints Cons1, Cons2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', Consn, then the “(not T Cons1 or not T Cons2 or .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' or not T Consn)” will be added to the where part, where T Consi is the translation of Consi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' WORKING EXAMPLES Cipher is one of the most misused APIs in Java cryp- tography [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Listing 1 shows how to create a Cipher object in Java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We should call the Cipher’s getInstance method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' This method receives a number of arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The first one is transformation that is a string containing three parts separated by “/”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' These parts are algorithm, mode, and padding, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Next, we should call the init method on the cipher object with two arguments to indicate the operation mode of the cipher, and to initialize this object with a Key or Certificate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Cipher cipher = Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getInstance("AES/ECB/ PKCS5Padding");' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='init(Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='ENCRYPT_MODE,new SecretKeySpec( keyBytes, "AES"));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Listing 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Setting up the Cipher object in Java In the rest of this section, we present three different program analysis tasks to ensure secure use of Java Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Key vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Algorithm Task 1: If the key has a type of PublicKey, PrivateKey, or Certificate, or encryption mode is WRAP MODE or UN- WRAP MODE, then algorithm of transformation must be “RSA”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Listing 2 shows how to check this constraint in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' from MethodAccess getInstance, MethodAccess init where init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "Cipher" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "getInstance " and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "Cipher" and (((init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='WRAP MODE" or init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' toString() = "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='UNWRAP MODE") or (init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='PublicKey" or init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='PrivateKey " or init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='cert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='Certificate")) and not(getInstance .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll("\\","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' splitAt("/",0) = "RSA")) select getInstance, init Listing 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Key vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Algorithm constraint in CodeQL This constraint can be expressed in NASRA as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' An object of Cipher invokes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' An object of Cipher invokes getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is necessary that if init’s first argument is in ["Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='WRAP_MODE", "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='UNWRAP_MODE"] or the type of the second argument of init is in ["PublicKey", "PrivateKey", "Certificate"] then the algorithm of getInstance’s first argument is "RSA".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Algorithm vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Transformation Mode Task 2: If the algorithm of transformation is “RSA” then the mode of transformation must be either “” or “ECB”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Listing 3 shows the corresponding query to check this constraint in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We should look for code in which the algorithm is “RSA”, but neither “ECB” nor “” is set for the mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' from MethodAccess getInstance where getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = " getInstance" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getName() = "Cipher" and (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' splitAt("/", 0) = "RSA") and not (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' splitAt("/", 1) = "" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument (0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='splitAt("/", 1) = "ECB") select getInstance Listing 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Algorithm vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Transformation Mode constraint in CodeQL This constraint can be expressed in NASRA as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' An object of Cipher invokes getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is necessary that if the algorithm of getInstance’s first argument is "RSA" then the mode of getInstance’s first argument is in ["", "ECB"].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Thanks to Attempto Parsing Engine (APE), NASRA state- ments do not need to exactly follow the syntax rules meaning that a degree of freedom in paraphrasing is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' For instance, the part “the algorithm of getInstance’s first argument is "RSA"” can also be written in two other forms: (i) the algorithm of the first argument of getInstance is "RSA".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' (ii) "RSA" is the algorithm of getInstance’s first argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Transformation and Encryption Mode vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Signature Task 3: If the transformation mode is either of “CBC”, “PCBC”, “CTR”, “CTS”, “CFB”, or “OFB”, and the en- cryption mode is not “Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='ENCRYPT MODE”, then the invoked init method should not have any of the following signature: init(encmode, cert), init(encmode, cert, ranGen), init(encmode, key), init(encmode, key, ranGen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Listing 4 presents how to enforce this constraint in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' from MethodAccess getInstance, MethodAccess init where init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "init" and init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "Cipher" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getMethod().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "getInstance " and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getReceiverType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getName() = "Cipher" and ((getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='splitAt("/", 1) = "CBC" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='splitAt("/", 1) = "PCBC" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll ("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='splitAt("/", 1) = "CTR" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll ("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='splitAt("/", 1) = "CTS" or getInstance .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' splitAt("/", 1) = "CFB" or getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='replaceAll("\\"","").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' splitAt("/", 1) = "OFB") and not (init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='ENCRYPT_MODE ")) and ((count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getAnArgument()) = 2 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' toString() = "int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "Certificate") or ( count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getAnArgument()) = 3 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType() .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "Certificate" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getArgument(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = " SecureRandom") or (count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' getAnArgument()) = 2 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument (0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "int" and getInstance .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "Key") or (count (getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getAnArgument()) = 3 and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "int" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType() .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "Key" and getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getArgument (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='getType().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='toString() = "SecureRandom")) select init, getInstance Listing 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Transformation and Encryption mode vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Signature constraint in CodeQL The implementation of this task in NASRA is shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' An object of Cipher invokes getInstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' An object of Cipher invokes init.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is necessary that if the mode of getInstance’s first argument is in ["CBC","PCBC","CTR","CTS","CFB","OFB"] and init’s first argument is not "Cipher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='ENCRYPT_MODE" then getInstance’s signature is not ["int","Certificate"] and is not ["int","Certificate","SecureRandom"] and is not ["int","Key"] and is not ["int","Key","SecureRandom"].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Discussion Table I presents the number of distinct operators and operands (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', vocabulary), and the total number of operators and operands (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', length) needed for each analysis task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='4 4In NASRA, we consider user defined terminals such as init, “RSA”, and getInstance as operands and count the rest of language constructs as operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' TABLE I CODEQL VS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' NASRA Analysis Task Vocabulary Length CodeQL NASRA CodeQL NASRA Key vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Algorithm (III-A) 32 19 179 39 Algorithm vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Mode (III-B) 27 18 107 24 Mode vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Signature (III-C) 42 26 434 56 Evidently, queries in NASRA are significantly shorter than queries in CodeQL (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', up to 87% reduction in length), and they consume a lot fewer programming constructs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', up to 38% fewer vocabularies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We computed Halstead complexity measures to estimate the coding time and the difficulty to write or understand these queries [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The results showed that developers require a lot less effort and time to develop these tasks in NASRA than in CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We also asked ten developers to share their opinion about queries in NASRA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' They unanimously stated that they are succinct and easy to understand, and one commented that “these queries read like API documentation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' It is noteworthy that NASRA’s performance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', how well it can detect API misuses, depends on its underlying analy- sis framework which is currently CodeQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' In other words, NASRA obviates the low-level details needed to define static program analyses, but the issues with false positives remain to be relevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Moreover, despite being natural, the use of NASRA still requires knowledge of its syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' RELATED WORK Mapping a natural language statement into a formal repre- sentation has received great attention in the community but not much in the program analysis development domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Schlegel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' developed an end-user programming paradigm for Python, that maps natural language commands into Python code [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Landhauber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' proposed a domain agnostic command interpreter that receives natural language commands in English and uses ontology to produce relevant API calls [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Yaghmazadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' developed SQLIZER, a system to automatically synthesize SQL queries from a natural language [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' investigated the translation from a natural language query to visualization with the goal of simplifying the creation of data visualizations [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Heyman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' developed a Python code completion tool that enriches developers’ code with the natural language de- scription of the intended data science task [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' presented an approach that takes as input an English descrip- tion of a programming task and synthesizes the corresponding API code template for the task [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Desai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' built a general framework for constructing program synthesizers that take natural language inputs and produce expressions in a target Domain Specific Language [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Zhai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' proposed a search- based technique to automatically translate NL comments to formal program specifications that specify the expected pre and post conditions [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The work presented in this paper is also related to cryp- tography domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' There exist tools that find cryptography misuses [14] and libraries that facilitate the adoption of cryptography for developers [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nevertheless, none of them employed a natural language approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' CONCLUSION We introduced NASRA, an open-source framework to de- fine static program analyses in natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' We demon- strated the application of this framework to find misuses in Java cryptography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The ultimate goal of NASRA is to enable a naturalistic way to develop static program analyses, which is usable for mainstream developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' To realize this goal, further studies are needed to determine NASRA’s effectiveness in real-world settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' The expressiveness of its queries and the effort required to extend it to other problem domains have to be investigated as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Finally, automatic translation without pre-defined rules is also an exciting future research direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' REFERENCES [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Barakova, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Gillesen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Huskens, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Lourens, “End-user programming architecture facilitates the uptake of robots in social therapies,” Robotics and Autonomous Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 61, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 7, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [2] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Lin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Zettlemoyer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Ernst, “NL2Bash: A corpus and semantic parser for natural language interface to the linux operating system,” in Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Hazhirpasand, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nierstrasz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Shabani, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Ghafari, “Hurdles for developers in cryptography,” in 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 659–663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Hazhirpasand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Ghafari, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nierstrasz, “Java cryptography uses in the wild,” in Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Halstead, Elements of Software Science (Operating and program- ming systems series).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Elsevier Science Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [6] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Schlegel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Lang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Handschuh, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Freitas, “Vajra: Step-by- step programming with natural language,” in Proceedings of the 24th International Conference on Intelligent User Interfaces, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Landh¨auber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Weigelt, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Tichy, “Nlci: A natural language command interpreter,” Automated Software Engg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 839–861, dec 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [8] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Yaghmazadeh, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Wang, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Dillig, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Dillig, “Sqlizer: Query synthesis from natural language,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' ACM Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' OOPSLA, oct 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Luo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Tang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Tang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Chai, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Qin, “Natural language to visualization by neural machine translation,” IEEE Transactions on Visualization and Computer Graphics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 217–226, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [10] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Heyman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Huysegems, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Justen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Van Cutsem, “Natural language-guided programming,” ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Onward!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=', 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 39–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nguyen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Rigby, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nguyen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Palani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Karanfil, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Nguyen, “Statistical translation of english texts to api code templates,” in 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 194–205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Desai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Gulwani, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Hingorani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Jain, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Karkare, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Marron, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' R, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Roy, “Program synthesis using natural language,” in Pro- ceedings of the 38th International Conference on Software Engineering, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' ICSE ’16, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Zhai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Shi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Pan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Fang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Ma, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Tan, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Zhang, “C2s: Translating natural language comments to formal program specifications,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' ESEC/FSE 2020, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Kabir, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Xiao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Yao, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Meng, “Automatic detection of java cryptographic api misuses: Are we there yet,” IEEE Transactions on Software Engineering, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Kafader and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' Ghafari, “Fluentcrypto: Cryptography in easy mode,” in 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} +page_content=' 402–412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NE4T4oBgHgl3EQfCwsd/content/2301.04862v1.pdf'} diff --git a/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf b/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a179755cea73cca324b777896eeb7cf93295647c Binary files /dev/null and b/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf differ diff --git a/9tFPT4oBgHgl3EQfYzRy/content/tmp_files/2301.13075v1.pdf.txt b/9tFPT4oBgHgl3EQfYzRy/content/tmp_files/2301.13075v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..473ccc7d211519a6d8ec2a3320a0dd76d50708b7 --- /dev/null +++ b/9tFPT4oBgHgl3EQfYzRy/content/tmp_files/2301.13075v1.pdf.txt @@ -0,0 +1,351 @@ +arXiv:2301.13075v1 [quant-ph] 30 Jan 2023 +Threshold theorem in quantum annealing with deterministic analog control errors +Manaka Okuyama1 and Masayuki Ohzeki1,2,3 +1Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan +2Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo,152-8551, Japan and +3Sigma-i Co., Ltd., Tokyo 108-0075, Japan +(Dated: January 31, 2023) +We investigate the effect of deterministic analog control errors in the time-dependent Hamiltonian on iso- +lated quantum dynamics. Deterministic analog control errors are formulated as time-dependent operators in the +Schr¨odinger equation. We give an upper bound on the distance between two states in time evolution with and +without deterministic analog control errors. As a result, we prove that, if the strength of deterministic analog +control errors is less than the inverse of computational time, the final state in quantum dynamics without deter- +ministic analog control errors can be obtained through a constant-order number of measurements in quantum +dynamics with deterministic analog control errors. +I. +INTRODUCTION +Quantum annealing [1–8] is an analog quantum computa- +tion that utilizes continuous time evolution of quantum sys- +tems, and, thereby, analog control errors of the parameters +are inevitable in experimental systems. Because the theory +of quantum error correction and suppression is incomplete +in quantum annealing [9–13], estimating the effect of analog +control errors is one of the most critical problems. +There are two main types of analog control errors in quan- +tum annealing. +One is a stochastic control error [14–17], +which represents an instantaneous parameter fluctuation. For +this type of control error, recent studies [18, 19] proved that, +if the strength of the stochastic control errors is less than the +inverse of the computation time, information about the final +state in quantum dynamics without analog control errors can +be recovered from quantum dynamics with stochastic control +errors. The other is deterministic control error, which is, for +example, a bias acting on the magnetic field or a deviation in +the value of the interaction. Deterministic control errors have +been discussed so far in many literatures [20–26], but they are +limited to specific problems. +The present study investigates in general whether it is pos- +sible to recover information about the target state, which is +the final state in ideal time evolution, from quantum dynam- +ics with deterministic analog control errors. We give an upper +bound on the distance between two states in quantum dynam- +ics with and without deterministic control errors using only in- +formation about the deterministic control errors. Furthermore, +using this bound, we prove that, if the strength of the deter- +ministic control errors is less than the inverse of the computa- +tion time, information about the target state can be recovered +through a constant-order number of measurements in quan- +tum dynamics with deterministic analog control errors. This +result is intuitively obvious but it is important from the per- +spective of experimental systems to give mathematical proof. +The proof is based on the method proposed by Kieu to derive +a quantum speed limit [27, 28]. +The organization of this paper is as follows. In Sec. II, +we define the model and obtain the main result. Finally, our +conclusion is presented in Sec. III. +II. +RESULT +We consider the following isolated quantum dynamics: +i d +dt|ψ(t)⟩ = ˆH(t)|ψ(t)⟩, +(1) +where 0 ≤ t ≤ T and ℏ = 1. In general, it is difficult to com- +pletely control the time-dependent Hamiltonian ˆH(t) without +control errors in experimental systems. Deterministic ana- +log control errors can take any form physically permissible +but should also be described as a Hermitian operator since +we consider isolated quantum dynamics. Thus, we incorpo- +rate the deterministic analog control errors of ˆH(t) into the +Schr¨odinger equation as a Hermitian operator ˆV(t). We ex- +press the Schr¨odinger equation with deterministic analog con- +trol errors as follows: +i d +dt|φ(t)⟩ = ( ˆH(t) + ˆV(t))|φ(t)⟩. +(2) +Then, we obtain the following result. +Theorem 1. The distance between two final states |ψ(T)⟩ and +|φ(T)⟩ is bounded from above by +∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v, +(3) +where ∥ |a⟩ ∥ ≡ √⟨a|a⟩, v ≡ +� T +0 dt +��� ˆV(t) +���, and +��� ˆA +��� is the eigen- +value of ˆA with the largest absolute value. +Proof of Theorem 1. From Eqs. (1) and (2), we obtain +d +dt(|ψ(t)⟩ − |φ(t)⟩) = −i ˆH(t)(|ψ(t)⟩ − |φ(t)⟩) + i ˆV(t) |φ(t)⟩ ,(4) +and +d +dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2 Re +� +(⟨ψ(t)| − ⟨φ(t)|) d +dt(|ψ(t)⟩ − |φ(t)⟩) +� += 2 Re +� +(⟨ψ(t)| − ⟨φ(t)|)i ˆV(t) |φ(t)⟩ +� +≤ 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · ∥ ˆV(t) |φ(t)⟩ ∥, +(5) +where we used the Cauchy-Schwartz inequality. On the other +hand, we find +d +dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · d +dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥. +(6) + +2 +Thus, we obtain +d +dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥ ≤ ∥ ˆV(t) |φ(t)⟩ ∥ ≤ ∥ ˆV(t)∥. +(7) +Finally, by integrating both sides from 0 to T, we arrive at Eq. +(3). +□ +It is worth mentioning that the right hand side of Eq. (3) +contains only information about the control errors ˆV and not +about ˆH(t). +The inequality (3) makes sense only if v < 2 is satisfied +because +∥ |ψ(T)⟩ − |φ(T)⟩ ∥ = +� +2 − 2 Re ⟨ψ(t)|φ(t)⟩ ≤ 2. +(8) +In particular, when the strength of deterministic control errors +is less than the inverse of the computation time, +��� ˆV(t) +��� < +√ +2 +T , +(9) +we have +∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v < +√ +2. +(10) +This means that the two final states have non-zero overlap +Re ⟨ψ(T)|φ(T)⟩ ≥ 1 − v2 +2 > 0. +(11) +Then, it is possible to recover the information about |ψ(T)⟩ +from |φ(T)⟩. +For example, we expand the two final states |ψ(T)⟩ and +|φ(T)⟩ as +|ψ(T)⟩ = +� +n +Cn |n⟩ , +(12) +|φ(T)⟩ = +� +n +Dn |n⟩ , +(13) +where |n⟩ is the measurement basis. We are interested in the +mth eigenstate of the measurement basis and its probability +amplitude Cm is given by +|Cm|2 = 1 − ǫ2, +(14) +with 0 ≤ ǫ < 1. Then, we arrive at: +Corollary 2. If +1 − v2/2 > ǫ ≥ 0, +(15) +then the probability amplitude of the mth eigenstate in the +Schr¨odinger equation with deterministic analog control errors +(2) takes a non-zero value, +|Dm| ≥ 1 − v2 +2 − ǫ +√ +1 − ǫ2 > 0. +(16) +Corollary 2 states that the number of measurements re- +quired to obtain |m⟩ is independent of the computation time +T in quantum dynamics with deterministic analog control er- +rors (2). Thus, under the condition (15), deterministic control +errors do not seriously affect the efficiency of quantum anneal- +ing. +The condition (15) can be rewritten as +� T +0 +dt +��� ˆV(t) +��� < +� +2(1 − ǫ). +(17) +It may seem difficult to satisfy this condition for large T. +However, when T is large, the parameters should change +slowly and the strength of the analog control errors is expected +to be smaller. Thus, the condition (15) is not far from experi- +mental systems and may be acceptable. +Proof of Corollary 2. From Eq. (11), we obtain +0 < 1 − v2 +2 ≤ Re ⟨ψ(T)|φ(T)⟩ ≤ | ⟨ψ(T)|φ(T)⟩ | +≤ +� +n +|CnDn| = +√ +1 − ǫ2|Dm| + +� +n(�m) +|CnDn| +≤ +√ +1 − ǫ2|Dm| + ǫ +� +1 − |Dm|2| +≤ +√ +1 − ǫ2|Dm| + ǫ, +(18) +where we used the Cauchy-Schwartz inequality. Thus, using +Eq. (15), we obtain +|Dm| ≥ +1 − v2 +2 − ǫ +√ +1 − ǫ2 > 0. +(19) +□ +III. +CONCLUSIONS +We have established a threshold theorem that provides a +sufficient condition for obtaining the target state in isolated +quantum dynamics with any deterministic analog control er- +ror. +We have considered only deterministic analog control er- +rors. A similar threshold theorem for stochastic analog control +errors has already been obtained in Ref. [18]. For both types +of analog control error, the same point is that, if the strength +of the control errors is less than the inverse of the computation +time, the target state can be obtained through a constant-order +number of measurements in quantum dynamics with analog +control errors. It is an interesting future problem to combine +these results. +Finally, we emphasize that we do not impose any assump- +tions on time evolution. Considering a specific schedule for +each problem, such as adiabatic time evolution, might im- +prove the present results. +The present work was financially supported by JSPS KAK- +ENHI Grant No. 19H01095, 20H02168 and 21K13848. + +3 +[1] T. Kadowaki and H. Nishimori, Quantum annealing in the trans- +verse Ising model, Phys. Rev. E 58, 5355 (1998). +[2] P. Ray, B. K. Chakrabarti, and A. Chakrabarti, Sherrington- +Kirkpatrick model in a transverse field: Absence of replica +symmetry breaking due to quantum fluctuations, Phys. Rev. B +39, 11828 (1989). +[3] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum +Annealing of a Disordered Magnet, Science 284, 779 (1999). +[4] J. Brooke, T. F. Rosenbaum, and G. Aeppli, Tunable Quantum +Tunneling of Magnetic Domain Walls, Nature (London) 413, +610 (2001). +[5] G. E. Santoro, R. Martoˇn´ak, E. Tosatti, and R. Car, Theory of +Quantum Annealing of an Ising Spin Glass, Science 295, 2427 +(2002). +[6] E. +Farhi, +J. +Goldstone, +S. +Gutmann, +and +M. +Sipser, +Quantum +Computation +by +Adiabatic +Evolution, +arXiv: +quant-ph/0001106. +[7] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, +and O. Regev, Adiabatic Quantum Computation is Equivalent +to Standard Quantum Computation, SIAM J. Comput. 37, 166 +(2007). +[8] A. Mizel, D. A. Lidar, and M. Mitchell, Simple Proof of Equiv- +alence between Adiabatic Quantum Computation and the Cir- +cuit Model, Phys. Rev. Lett. 99, 070502 (2007). +[9] S. P. Jordan, E. Farhi, and P. W. Shor, Error-correcting codes +for adiabatic quantum computation, Phys. Rev. A 74, 052322 +(2006). +[10] D. A. Lidar, Towards Fault Tolerant Adiabatic Quantum Com- +putation, Phys. Rev. Lett. 100, 160506 (2008). +[11] G. Quiroz and D. A. Lidar, High-fidelity adiabatic quan- +tum computation via dynamical decoupling, Phys. Rev. A 86, +042333 (2012). +[12] K. L. Pudenz, T. Albash, and D. A. Lidar, Error-corrected quan- +tum annealing with hundreds of qubits, Nat. Commun. 5, 3243 +(2014). +[13] D. Venturelli, S. Mandr´a, S. Knysh, B. O’Gorman, R. Biswas, +and V. Smelyanskiy, Quantum Optimization of Fully Connected +Spin Glasses, Phys. Rev. X 5, 031040 (2015) +[14] E. Wong and M. Zakai, On the Convergence of Ordinary Inte- +grals to Stochastic Integrals, Ann. Math. Stat. 36, 1560 (1965). +[15] C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, +Berlin, 1999). +[16] A. Dutta, A. Rahmani, and A. del Campo, Anti-Kibble-Zurek +Behavior in Crossing the Quantum Critical Point of a Thermally +Isolated System Driven by a Noisy Control Field, Phys. Rev. +Lett. 117, 080402 (2016). +[17] M.-Z. Ai, J.-M. Cui, R. He, Z.-H. Qian, X.-X. Gao, Y.-F. +Huang, C.-F. Li and G.-C. Guo, Experimental verification of +anti-Kibble-Zurek behavior in a quantum system under a noisy +control field, Phys. Rev. A 103, 012608 (2021). +[18] M. Okuyama, K. Ohki, and M. Ohzeki, Threshold theorem in +isolated quantum dynamics with stochastic control errors, Phil. +Trans. R. Soc. A. 381, 20210412 (2023). +[19] K. Kobayashi, Bound on the closed quantum dynamics under +stochastic noise, arXiv:2211.14862. +[20] A. M. Childs, E. Farhi, and J. Preskill, Robustness of adiabatic +quantum computation, Phys.Rev. A 65, 012322 (2002). +[21] J. Roland and N. J. Cerf, Noise resistance of adiabatic quan- +tum computation using random matrix theory, Phys. Rev. A 71, +032330 (2005). +[22] K. C. Young, R. B-Kohout, D. A. Lidar, Adiabatic quantum +optimization with the wrong Hamiltonian, Phys. Rev. A 88, +062314 (2013). +[23] S. Mandr`a, G. G. Guerreschi, and A. Aspuru-Guzik, Adiabatic +quantum optimization in the presence of discrete noise: Re- +ducing the problem dimensionality, Phys. Rev. A 92, 062320 +(2015). +[24] S. Muthukrishnan, T. Albash, and D. A. Lidar, Sensitivity of +quantum speedup by quantum annealing to a noisy oracle, Phys. +Rev. A 99, 032324 (2019). +[25] A. Pearson, M. A., I. Hen, and D. A. Lidar, Analog errors in +quantum annealing: doom and hope, npj Quantum Inf. 5, 107 +(2019). +[26] T. Albash, V. Martin-Mayor, and I. Hen, Analog errors in Ising +machines, Quantum Sci. Technol. 4, 02LT03 (2019). +[27] T. D. Kieu, A Class of Time-Energy Uncertainty Relations for +Time-dependent Hamiltonians, Proc. R. Soc. A 475, 20190148 +(2019). +[28] M. +Okuyama +and +M. +Ohzeki, +A +useful +fundamental +speed limit for the imaginary-time Schrodinger equation, +arXiv:1806.09040. + diff --git a/9tFPT4oBgHgl3EQfYzRy/content/tmp_files/load_file.txt b/9tFPT4oBgHgl3EQfYzRy/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..01a0ffd90ab477d621abd6ac83430312c5365023 --- /dev/null +++ b/9tFPT4oBgHgl3EQfYzRy/content/tmp_files/load_file.txt @@ -0,0 +1,267 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf,len=266 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='13075v1 [quant-ph] 30 Jan 2023 Threshold theorem in quantum annealing with deterministic analog control errors Manaka Okuyama1 and Masayuki Ohzeki1,2,3 1Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan 2Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo,152-8551, Japan and 3Sigma-i Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=', Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=', Tokyo 108-0075, Japan (Dated: January 31, 2023) We investigate the effect of deterministic analog control errors in the time-dependent Hamiltonian on iso- lated quantum dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Deterministic analog control errors are formulated as time-dependent operators in the Schr¨odinger equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' We give an upper bound on the distance between two states in time evolution with and without deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' As a result, we prove that, if the strength of deterministic analog control errors is less than the inverse of computational time, the final state in quantum dynamics without deter- ministic analog control errors can be obtained through a constant-order number of measurements in quantum dynamics with deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' INTRODUCTION Quantum annealing [1–8] is an analog quantum computa- tion that utilizes continuous time evolution of quantum sys- tems, and, thereby, analog control errors of the parameters are inevitable in experimental systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Because the theory of quantum error correction and suppression is incomplete in quantum annealing [9–13], estimating the effect of analog control errors is one of the most critical problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' There are two main types of analog control errors in quan- tum annealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' One is a stochastic control error [14–17], which represents an instantaneous parameter fluctuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' For this type of control error, recent studies [18, 19] proved that, if the strength of the stochastic control errors is less than the inverse of the computation time, information about the final state in quantum dynamics without analog control errors can be recovered from quantum dynamics with stochastic control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The other is deterministic control error, which is, for example, a bias acting on the magnetic field or a deviation in the value of the interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Deterministic control errors have been discussed so far in many literatures [20–26], but they are limited to specific problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The present study investigates in general whether it is pos- sible to recover information about the target state, which is the final state in ideal time evolution, from quantum dynam- ics with deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' We give an upper bound on the distance between two states in quantum dynam- ics with and without deterministic control errors using only in- formation about the deterministic control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Furthermore, using this bound, we prove that, if the strength of the deter- ministic control errors is less than the inverse of the computa- tion time, information about the target state can be recovered through a constant-order number of measurements in quan- tum dynamics with deterministic analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' This result is intuitively obvious but it is important from the per- spective of experimental systems to give mathematical proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The proof is based on the method proposed by Kieu to derive a quantum speed limit [27, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The organization of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' II, we define the model and obtain the main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Finally, our conclusion is presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' RESULT We consider the following isolated quantum dynamics: i d dt|ψ(t)⟩ = ˆH(t)|ψ(t)⟩, (1) where 0 ≤ t ≤ T and ℏ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' In general, it is difficult to com- pletely control the time-dependent Hamiltonian ˆH(t) without control errors in experimental systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Deterministic ana- log control errors can take any form physically permissible but should also be described as a Hermitian operator since we consider isolated quantum dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Thus, we incorpo- rate the deterministic analog control errors of ˆH(t) into the Schr¨odinger equation as a Hermitian operator ˆV(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' We ex- press the Schr¨odinger equation with deterministic analog con- trol errors as follows: i d dt|φ(t)⟩ = ( ˆH(t) + ˆV(t))|φ(t)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (2) Then, we obtain the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The distance between two final states |ψ(T)⟩ and |φ(T)⟩ is bounded from above by ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v, (3) where ∥ |a⟩ ∥ ≡ √⟨a|a⟩, v ≡ � T 0 dt ��� ˆV(t) ���, and ��� ˆA ��� is the eigen- value of ˆA with the largest absolute value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' From Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (1) and (2), we obtain d dt(|ψ(t)⟩ − |φ(t)⟩) = −i ˆH(t)(|ψ(t)⟩ − |φ(t)⟩) + i ˆV(t) |φ(t)⟩ ,(4) and d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2 Re � (⟨ψ(t)| − ⟨φ(t)|) d dt(|ψ(t)⟩ − |φ(t)⟩) � = 2 Re � (⟨ψ(t)| − ⟨φ(t)|)i ˆV(t) |φ(t)⟩ � ≤ 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · ∥ ˆV(t) |φ(t)⟩ ∥, (5) where we used the Cauchy-Schwartz inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' On the other hand, we find d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥2 = 2∥ |ψ(t)⟩ − |φ(t)⟩ ∥ · d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (6) 2 Thus, we obtain d dt∥ |ψ(t)⟩ − |φ(t)⟩ ∥ ≤ ∥ ˆV(t) |φ(t)⟩ ∥ ≤ ∥ ˆV(t)∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (7) Finally, by integrating both sides from 0 to T, we arrive at Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' □ It is worth mentioning that the right hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (3) contains only information about the control errors ˆV and not about ˆH(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The inequality (3) makes sense only if v < 2 is satisfied because ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ = � 2 − 2 Re ⟨ψ(t)|φ(t)⟩ ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (8) In particular, when the strength of deterministic control errors is less than the inverse of the computation time, ��� ˆV(t) ��� < √ 2 T , (9) we have ∥ |ψ(T)⟩ − |φ(T)⟩ ∥ ≤ v < √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (10) This means that the two final states have non-zero overlap Re ⟨ψ(T)|φ(T)⟩ ≥ 1 − v2 2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (11) Then, it is possible to recover the information about |ψ(T)⟩ from |φ(T)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' For example, we expand the two final states |ψ(T)⟩ and |φ(T)⟩ as |ψ(T)⟩ = � n Cn |n⟩ , (12) |φ(T)⟩ = � n Dn |n⟩ , (13) where |n⟩ is the measurement basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' We are interested in the mth eigenstate of the measurement basis and its probability amplitude Cm is given by |Cm|2 = 1 − ǫ2, (14) with 0 ≤ ǫ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Then, we arrive at: Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' If 1 − v2/2 > ǫ ≥ 0, (15) then the probability amplitude of the mth eigenstate in the Schr¨odinger equation with deterministic analog control errors (2) takes a non-zero value, |Dm| ≥ 1 − v2 2 − ǫ √ 1 − ǫ2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (16) Corollary 2 states that the number of measurements re- quired to obtain |m⟩ is independent of the computation time T in quantum dynamics with deterministic analog control er- rors (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Thus, under the condition (15), deterministic control errors do not seriously affect the efficiency of quantum anneal- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The condition (15) can be rewritten as � T 0 dt ��� ˆV(t) ��� < � 2(1 − ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (17) It may seem difficult to satisfy this condition for large T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' However, when T is large, the parameters should change slowly and the strength of the analog control errors is expected to be smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Thus, the condition (15) is not far from experi- mental systems and may be acceptable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Proof of Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (11), we obtain 0 < 1 − v2 2 ≤ Re ⟨ψ(T)|φ(T)⟩ ≤ | ⟨ψ(T)|φ(T)⟩ | ≤ � n |CnDn| = √ 1 − ǫ2|Dm| + � n(�m) |CnDn| ≤ √ 1 − ǫ2|Dm| + ǫ � 1 − |Dm|2| ≤ √ 1 − ǫ2|Dm| + ǫ, (18) where we used the Cauchy-Schwartz inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Thus, using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (15), we obtain |Dm| ≥ 1 − v2 2 − ǫ √ 1 − ǫ2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' (19) □ III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' CONCLUSIONS We have established a threshold theorem that provides a sufficient condition for obtaining the target state in isolated quantum dynamics with any deterministic analog control er- ror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' We have considered only deterministic analog control er- rors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A similar threshold theorem for stochastic analog control errors has already been obtained in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' For both types of analog control error, the same point is that, if the strength of the control errors is less than the inverse of the computation time, the target state can be obtained through a constant-order number of measurements in quantum dynamics with analog control errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' It is an interesting future problem to combine these results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Finally, we emphasize that we do not impose any assump- tions on time evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Considering a specific schedule for each problem, such as adiabatic time evolution, might im- prove the present results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' The present work was financially supported by JSPS KAK- ENHI Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 19H01095, 20H02168 and 21K13848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 3 [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Kadowaki and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Nishimori, Quantum annealing in the trans- verse Ising model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' E 58, 5355 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Ray, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Chakrabarti, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Chakrabarti, Sherrington- Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' B 39, 11828 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Brooke, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Bitko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rosenbaum, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Aeppli, Quantum Annealing of a Disordered Magnet, Science 284, 779 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Brooke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rosenbaum, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Aeppli, Tunable Quantum Tunneling of Magnetic Domain Walls, Nature (London) 413, 610 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Santoro, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Martoˇn´ak, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Tosatti, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Car, Theory of Quantum Annealing of an Ising Spin Glass, Science 295, 2427 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Farhi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Goldstone, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Gutmann, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Sipser, Quantum Computation by Adiabatic Evolution, arXiv: quant-ph/0001106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Aharonov, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' van Dam, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Kempe, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Landau, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lloyd, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Regev, Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 37, 166 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Mizel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lidar, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Mitchell, Simple Proof of Equiv- alence between Adiabatic Quantum Computation and the Cir- cuit Model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 99, 070502 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Jordan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Farhi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Shor, Error-correcting codes for adiabatic quantum computation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 74, 052322 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lidar, Towards Fault Tolerant Adiabatic Quantum Com- putation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 100, 160506 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Quiroz and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lidar, High-fidelity adiabatic quan- tum computation via dynamical decoupling, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 86, 042333 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [12] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Pudenz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Albash, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lidar, Error-corrected quan- tum annealing with hundreds of qubits, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 5, 3243 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Venturelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Mandr´a, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Knysh, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' O’Gorman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Biswas, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Smelyanskiy, Quantum Optimization of Fully Connected Spin Glasses, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' X 5, 031040 (2015) [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Wong and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Zakai, On the Convergence of Ordinary Inte- grals to Stochastic Integrals, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 36, 1560 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Gardiner and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Zoller, Quantum Noise (Springer-Verlag, Berlin, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Dutta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rahmani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' del Campo, Anti-Kibble-Zurek Behavior in Crossing the Quantum Critical Point of a Thermally Isolated System Driven by a Noisy Control Field, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 117, 080402 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Ai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Cui, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' He, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Qian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Li and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Guo, Experimental verification of anti-Kibble-Zurek behavior in a quantum system under a noisy control field, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 103, 012608 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Okuyama, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Ohki, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Ohzeki, Threshold theorem in isolated quantum dynamics with stochastic control errors, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 381, 20210412 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Kobayashi, Bound on the closed quantum dynamics under stochastic noise, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='14862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Childs, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Farhi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Preskill, Robustness of adiabatic quantum computation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 65, 012322 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Roland and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Cerf, Noise resistance of adiabatic quan- tum computation using random matrix theory, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 71, 032330 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Young, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' B-Kohout, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lidar, Adiabatic quantum optimization with the wrong Hamiltonian, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 88, 062314 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Mandr`a, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Guerreschi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Aspuru-Guzik, Adiabatic quantum optimization in the presence of discrete noise: Re- ducing the problem dimensionality, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 92, 062320 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Muthukrishnan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Albash, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lidar, Sensitivity of quantum speedup by quantum annealing to a noisy oracle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 99, 032324 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Pearson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=', I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Hen, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Lidar, Analog errors in quantum annealing: doom and hope, npj Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 5, 107 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [26] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Albash, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Martin-Mayor, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Hen, Analog errors in Ising machines, Quantum Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' 4, 02LT03 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [27] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Kieu, A Class of Time-Energy Uncertainty Relations for Time-dependent Hamiltonians, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' A 475, 20190148 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Okuyama and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content=' Ohzeki, A useful fundamental speed limit for the imaginary-time Schrodinger equation, arXiv:1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} +page_content='09040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFPT4oBgHgl3EQfYzRy/content/2301.13075v1.pdf'} diff --git a/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf b/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4a15ebcb5f5d614271813294b8fba7b28b379ef8 --- /dev/null +++ b/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c8c0a40d5d68f61df519d4293281f7eddc82487fe787ebe45a6c942622d6dff +size 772870 diff --git a/ANFRT4oBgHgl3EQftjjG/vector_store/index.faiss b/ANFRT4oBgHgl3EQftjjG/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..af2d1507a4b42f31e0bedf0ac9dbf99fa3a5e738 --- /dev/null +++ b/ANFRT4oBgHgl3EQftjjG/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:33aba8dbb7ccc9c4622122fdeef7e145b4a89aa4392e2672f8206fef45f7ab10 +size 2031661 diff --git a/ANFRT4oBgHgl3EQftjjG/vector_store/index.pkl b/ANFRT4oBgHgl3EQftjjG/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ab89f213bc3cc10b9aa990c01aa11905b9bcc1bd --- /dev/null +++ b/ANFRT4oBgHgl3EQftjjG/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:632e38f7e75d7528cbc3e915a6884e8cf4c365b9deac4c2b365a623e42761157 +size 76987 diff --git a/BNE3T4oBgHgl3EQfswvl/content/2301.04671v1.pdf b/BNE3T4oBgHgl3EQfswvl/content/2301.04671v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a8a23e0a8dc01d3c19eec7f323fde96733749a56 --- /dev/null +++ b/BNE3T4oBgHgl3EQfswvl/content/2301.04671v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c9e08d96ce05f4fc50eeb040b5a316dd84e4117eadb24a5654f48a77dbc72a6c +size 819918 diff --git a/BNFQT4oBgHgl3EQfNDZv/content/tmp_files/2301.13270v1.pdf.txt b/BNFQT4oBgHgl3EQfNDZv/content/tmp_files/2301.13270v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d7a5fc247a7d3d545ce6fb839bf46f42edcd9f23 --- /dev/null +++ b/BNFQT4oBgHgl3EQfNDZv/content/tmp_files/2301.13270v1.pdf.txt @@ -0,0 +1,910 @@ +Revealing Rheological Parameters of Cotton-stitch-modified Cotton Fabrics by +Three-Network Modeling (TNM) of Materials +Harmony Werth1, #, Kazi Zihan Hossain1, #, M. Rashed Khan1,* +1Department of Chemical and Materials Engineering, University of Nevada, Reno +#contributed equally +*Corresponding author: mrkhan@unr.edu +Abstract +Cotton threads and fabrics are the most used textile materials and have garnered +widespread interest for smart textiles to capture human-centered cyber-physical and +human-health-related bioanalytical data. Cotton threads are sewn (manually or digitally) +into fabrics to achieve functional and fashion stitches that soften or stiffen the base fabric. +There has been limited investigation into the influence of a single stitch on the mechanical +properties of knitted cotton fabric. Such understanding may become critical to producing +optimized textile-based composites/smart materials involving sewing operations. While +stitching operations are investigated in numerous ways to produce a range of smart +wearables, herein, we demonstrate the rheological modification of base cotton fabric +induced by two types of singular stitches (straight and zigzag). We have sewn simple +straight and zigzag cotton stitches to investigate the rheological modification of the base +cotton fabrics. Uniaxial stress-strain experimental data, combined with constitutive +modeling (i.e., three-network model, TNM) obtained from the calibration software +(MCalibration), revealed the feasibility of a data-driven approach to investigate the +rheological parameters. Our experimental analyses, combined with the calibrated data, +suggest a 99.99% confidence in assessing the influence of a single stitch on knitted cotton +fabrics. We have also used distributed strain energy to analyze the mechanics and failure +of the base and stitched fabrics. Our study may enable the design and study of integrating +smart threads in cotton fabrics to produce smart wearables, e-textile, biomedical and e- +fashion textiles. + + + + + + + +Introduction +Knitted cotton fabrics have been utilized in everyday garment materials and +emerged as one of the popular base materials to generate smart wearables. In this article, +we reveal rheological parameters- also known as phenomenological parameters, of +cotton-stitch-modified cotton fabrics, harnessing Three Network Models (TNM).1,2 We +produce two types of stitches for demonstrations to modify the mechanical behavior of +knitted cotton fabrics. While the utility of cotton fabrics is ubiquitous, and numerous +demonstrations are currently published in the literature, our study focuses on +understanding the tuned mechanics of cotton fabrics by sewn stitches and unravels data +that we often overlook through stress-strain analyses. Anisotropy of knitted cotton fabric +and its modified structural properties exhibited deformations during mechanical +performance analyses.3 Several studies focused on understanding knit fabrics, fabric +elongation, deformation, and failures at critical applied stress.4–10 Advanced applications +on knitted fabrics are approached mainly by trial and error methods where in-plane +stitches are randomly generated, leaving a knowledge gap in understanding the impact +of final sewn stitches on fabrics. Sewing- one of the ancient fabric manufacturing +techniques, loops a thread into fabrics, leveraging an analog or computerized sewing +machine. Different sewing stages,11 sewing parameters,12, and sewing machines13,14 +have also been reported to alter the properties of the sewing thread. The looping process +integrates different threads and produces entanglements with aesthetic colors, body +shapes, and on-demand geometries. Different stitch patterns have also been reported to +change the rheological behavior of the sewing thread.15,16 However, the rheological +impact on the fabric due to stitching has not been adequately investigated. While the +original purpose of sewing has been joining two pieces of fabric together, the most +advanced applications integrate smart threads so that biomedical, biochemical, and +biological analyses can be performed in situ.17,18 From the design of fashion to human- +centered smart wearables, state-of-sewing leverages many stitch patterns; however, a +data-informed approach to dissect the role of sewn stitches in manipulating the final +fabrics' properties is currently lacking in the literature. +Using a sewing machine, sewn stitches create entanglements between two +threads- an upper and a bobbin thread, the bottom thread. During the entanglement, the +sewing needle loops the upper thread between the bottom thread through the fabric, and +the threads entangle. When the tension of both threads matches, the entanglement lays +in-plane of the fabric on both sides with minimal damage.19 The resulting stitch can be +varied in numerous ways to create functional and non-functional patterns based on the +types of sewing threads, fabric types, or choice of materials for the final composite +structures.20 Concurrently, stitches are used to bind two or more layers of fabric together, +which is known as a seam. To determine the impact of stitches on the mechanical +behavior of fabrics, a few research groups have tested seams in woven cotton fabric.21– +23 A few investigations on the mechanical behavior of seams in knitted fabrics are also +available in the literature.24,25 However, studies involving a single stitch thread to modify +the mechanical behavior of cotton fabric are currently lacking for a single layer of fabric. +Such studies, we believe, will become significantly crucial for future applications, i.e., +electronic textiles- because reducing materials consumption at an optimum number of + +trials and errors seems crucial to pursue robust design configurations during the +development of smart threads and electronic fabrics. +The base fabric and thread used in this work are made from cotton. We assume +both as an elastomeric network for modeling. Elastomers having 3,000 to 10,000 +repeating +units +exhibit +structural +flexibility +and +experience +stretch-induced +softening/hardening (also known as Mullins damage) under applied loads.26 For data +calibration, we use TNM in MCalibration software which maps the entire stress-strain +spectra from the uniaxial test. The TNM is also knowns as a phenomenological model to +describe deformation-induced structural evolution (i.e., the transition between soft to stiff +network) and how strain-energy density becomes redistributed (i.e., hysteresis) +throughout the experiments. Different hyperelastic models have been utilized in the +literature to represent the rheological behavior of fabrics.27–31 However, according to our +knowledge, this work presents the constitutive modeling of stitched fabrics with TNM for +the first time. The data-calibration process in MCalibration can start using default or user- +induced settings. For this study, we have chosen to start calibration using default settings +in MCalibration. The kinematics of the TNM consists of three parallel molecular networks. +We have assumed spring-dashpot domains connected in parallel for the first two, and the +third one is only a spring depicting the hyperelasticity of the first two networks. The semi- +crystalline domains are captured through the spring dashpots. While a single network can +be used to evaluate the property of the entire composite structure, we have chosen TNM +to capture effective viscoplasticity.1 + +Here, we have chosen two types of sewing stitches: straight and zigzag, to +establish and reveal rheological parameters of cotton-stitch modified cotton fabrics, +harnessing TNM. These stitches are common in sewn garments and are pre-programmed +into the default settings of modern sewing machines. Also, we investigate several +variations of the zigzag stitch that has varying stitch length and width. A commercial +sewing machine creates stitches with 100% cotton materials (i.e., threads and fabrics). +For our analyses, we investigate the surface topography of the fabric and samples with +sewn stitches using optical and scanning electron microscope (SEM) images. We perform +(a) uniaxial stress-strain and (b) repeated cyclic tests in an Instron to dissect the +mechanical behaviors of the (a) base fabric, (b) base threads, and (c) threads-laid-fabric +structures. The uniaxial stress-strain analyses have revealed three regions of interest +(i.e., elastic, yield, and viscoplastic). Also, we have investigated the permanent failure of +the entire composite (fracture) to find the extremities of experimental analyses. The cyclic +tests provide information about hysteresis, which we leverage to understand distributed +strain-energy density and the loss due to hysteresis. We outline calibration using TNM in +MCalibration to provide a simple route to test the impact of specific sewing patterns on +the mechanical behavior of the final fabric. We hypothesize that the thread, which has +significantly denser strain energy, shifts the fabric's macroscale stress-strain behavior +after stitching. We proved our hypothesis through the uniaxial test and then altered the +stitch length to investigate the factors that cause specific changes in the stress-strain +behavior. The understanding developed by investigating the changes in mechanical +behavior can be used to optimize the mechanical properties of a composite made with +cotton thread and fabric. + +Materials and Methods +Our experiments were performed to determine a constitutive equation to represent the +behavior of cotton fabric with different types of stitches. This was accomplished by +analyzing uniaxial stress-strain curves for each component (cotton fabric and cotton +thread) and different variations of the overall composite (straight stitched fabric, zigzag +stitch, and fabric with stitching holes but no thread). +Materials +The fabric used in this experiment was 100% cotton jersey knit with a unit weight of 427 +g/m2 obtained from Hobby Lobby Stores, Inc. The measured thickness of the fabric was +0.45 mm. Similarly, the thread used in this experiment was a 50-weight, 4-ply, 100% +cotton thread of Sew-Ology Brand from Hobby Lobby Stores, Inc., produced for machine +quilting. The measured outer diameter of the thread was 0.30 mm. The same thread was +used for the top and bobbin threads for all samples prepared and presented in this work. +Sample Preparation +We used a Brother SE600 sewing machine from Amazon to create stitches of manually +adjustable length and width. The tension was selected so that the tension on the bobbin +thread and the upper thread were equal, preventing the bottom thread from showing on +the top or vice-versa, as is common sewing practice. A swatch of fabric approximately 20 +cm in length was cut with scissors and then sewn wale-wise with the appropriate type of +stitch for the sample. Two samples were prepared with stitching: straight stitched and +zigzag stitched. The straight stitch was 2 mm in length. The zigzag stitches were (listed +as stitch length x stitch width): 2x5 mm, 1x5 mm, 3x5 mm, 2x3 mm, and 2x4 mm. Several +samples without any sewn stitches were also prepared for comparison. The fabric +samples were then cut to the same size with a Cricut Maker fabric cutter bought from +Amazon, allowing for accurate and reproducible sample cutting. For every sample, the +fabric was cut to the dimensions of 6 cm in length by 2 cm in width. Sample cutting was +done carefully to keep the stitching in the center of the sample. Damaged or samples with +uncentered stitches were discarded without any analysis. +Image Acquisition +Olympus SZ61 Stereo-microscope loaded with an Amscope MU1000-HS camera was +used to capture the optical microscopic images. Secondary electron images of the +samples were captured using a Thermo Scientific Scios 2 SEM. For SEM imaging, small +representative samples were cut and loaded on the sample holder with double-sided +carbon tape. Attention was given to keeping the stitch undamaged while loading on the +holder. Since the samples were nonconductive, samples were sputter-coated with Gold +(Au) to create a ~10 nm layer on the surface of the sample before imaging. Further optical +images were captured with the camera on an iPhone 13 mini. +Experimental Methods + +The data was collected using an Instron 5982 test machine for uniaxial tensile testing. +The tested area was 4 cm by 2 cm. The extra centimeter on each side allowed the grip to +hold the sample during testing. Each sample type was examined with tensile testing to +determine the stress and strain until failure at a 40 mm/min strain rate. Cyclic testing of +four cycles was then conducted for specific samples up to a sustainable strain level for +that sample type. Samples with straight stitches could only withstand slightly more than +10% strain. Therefore, cyclic tests with straight stitches were conducted up to 10% strain. +For comparison, cyclic testing up to 10% strain was also conducted for unaltered fabric +samples and the 2x5 mm zigzag stitch. +Strain-energy Density Calculation +Using the trapezoidal rule, we calculated strain-energy density from the time-dependent +force and stress data at varying strain rates. The area under the stress-strain or force- +strain curve is divided into equal-time steps. Each small area under the curve is added +until we reach the last data point to get the total area under the curve. The reported energy +density from different observations is the total after each experimental stress-strain +observation. +Constitutive Modeling of Different Fabrics +An initial prediction of the strain energy density of the straight stitched sample was +obtained based on the data collected from the unaltered fabric and thread samples. In +order to obtain the prediction, the strain energy density of the straight stitch sample and +the unaltered fabric was obtained by finding the area under the stress-strain curve of the +sample with the trapezoidal rule. The strain energy density was calculated up to 4.5% +strain because the thread samples failed around 5% strain. The strain energy of the +samples was calculated by multiplying the strain energy density by the volume of the +sample. The volume of the fabric was calculated using the sample's length, width, and +thickness. The thread volume was calculated from the measured diameter and length of +the thread sample. The straight stitch sample can be approximated by one sample of +fabric and two samples of thread, so the volume of the straight stitch sample was +calculated by adding the volume of the unaltered fabric and two threads. Similarly, the +predicted strain energy of the straight stitch sample was calculated by adding the strain +energy of the unaltered fabric and two threads. The prediction for the strain energy density +of the straight stitched sample could then be obtained by dividing the predicted stored +energy by the calculated volume. +MCalibration, from PolymerFEM,32 was used to obtain parameters for a material model +capable of representing the mechanical behavior of the fabric samples prepared in this +work. MCalibration fits the experimentally collected uniaxial stress-strain data to the +PolyUMod Three Network model.2 An average of the stress-strain behavior of each +sample type was obtained first. This set of averaged data was then processed using the +MCalibration software tools to prepare the data for calibration. The default settings were +used for the calibration. The calibrated parameters were exported and analyzed after the +automatic convergence of the calibration process. + +Results and Discussion +Surface Topography +We formed two different types of stitches on the base fabric. Figures 1a and 1b are top- +down optical microscope images of the base and sewn fabrics for visual inspection. +Figure 1b is a zoomed-in visual inspection of Figure 1a to identify differences between a +straight stitch and a zigzag stitch on the in-laid fabric. These images show that the straight +and zigzag stitches went through the fabric without significant internal damage. The +straight stitch shown in Figures 1a(ii) and 1b(ii) do not have significant bunching due to +the stitch compared with the only fabric shown in Figures 1a(i) and 1b(i); However, a +meandering network of the zigzag stitches caused the fabric within the stitch to +significantly bunch together, as shown in Figures 1 a(iii) and 1b(iii). The fabric is unable +to maintain its shape during sewing and is pulled into the stitch instead. The structural +stiffness and flexibility of the fabric may have contributed to the bunching, as observed +within the stitch dimensions. Figure 1c is the sewn fabric's SEM images to investigate the +surface topography of the stitches and fabric. SEM images in Figure 1c(i) and Figure 1c(ii) +reveal the undamaged fabric by fibers. From these visual inspections, we assume the +fabric remains structurally robust during the sewing and stitches only alter the mechanical +behavior. + +Figure 1: (a) Images were taken of samples under normal lighting conditions for visual inspection. +(b) A stereoscope was used to examine the samples. (c) Secondary electron SEM images were +taken of the fabric and sewn stitches. +Uniaxial Tensile Behavior +We investigated plain thread, plain fabric, and stitched fabrics using Instron for +mechanical behavior analyses. The uniaxial tensile test behavior of plain thread is shown + +a(i) +b(i) +c(i) +Cotton +Fabric +a(ii) +b(i) +500μm +Straight +Fabric< +Stich +Stitch +c(ii) +b(ili) +Zigzag +Stitch +5 mm +2 mm +500 μmin Figure 2a, and the plain fabric is shown in Figure 2b. For comparison, Figure 2b also +shows the behaviors of straight and zigzag (2x5mm) stitched fabrics. Four other zigzag +stitched fabrics' behavior is shown in Figure 2c. Figures 2d and 2e show the side view of +a zigzag stitched fabric loaded into Intron during tensile testing and at the end of failure +analyses. +We tested two samples of the plain threads, and both samples' behavior is shown +in Figure 2a. The plain thread failed at 5% strain but exhibited the highest strain energy +density compared to other samples tested. In contrast to the plain thread, the cotton fabric +in Figure 2b exhibited reproducible stretchability of up to 70% strain in two samples. The +inclusion of straight stitches into the plain fabric induced failure at ~12% strain, and the +zigzag stitched sample failed at ~32% strain. +The unaltered fabric had the highest stain at the point of failure, shown in Figure +2b, between 60-80%, with a strain energy density of around 1.0 MJ/m3 at failure. In +comparison, the thread samples had a strain energy density of approximately 5.0 MJ/m3 +at failure, which occurred at around 5% strain. The strain energy density of the unaltered +fabric and thread at 4.5% were 4.19x10-4 MJ/m3 and 4.64 MJ/m3, respectively. Examining +the stress-strain data for the cotton fabric and the cotton thread individually, we conclude +that combining these materials would result in a sample with a strain energy density that +falls between the different materials at a given strain. The samples with sewn straight +stitches of 2mm length failed between 10-15% strain. At a strain of 4.5%, the straight +stitched samples exhibited an average strain energy density of 1.88x10-3 MJ/m3. A +prediction of the strain energy density of the straight stitched samples at 4.5% was +obtained using the experimental values of the thread and fabric alone. The predicted +value was 7.2x10-2 MJ/m3, more significant than the measured strain energy density. This +discrepancy is expected as the sewing process exposes the thread to dynamic loads and +friction known to reduce the strength of the thread.33 Overall, the sample with sewn +straight stitches failed at all fabric samples' lowest stress and strain. The cause of the low +stress and strain at failure is suspected to be the structure of the stitches, which cannot +withstand as much strain as the fabric. The fabric, with a higher elongation at failure than +the thread, can deform under the load. Therefore, the thread in the straight stitch +withstands the load for the entire sample until the thread breaks, equivalent to sample +failure. It was observed that the thread failed before the fabric in all samples with straight +stitches. +Samples with zigzag stitches of 2mm length and 5mm width also failed at stress +and strain lower than the unaltered fabric but higher strain than the straight stitched +sample. An analysis of the strain energy density of the 2x5mm zigzag sample reveals +aspects of the mechanical behavior. At strains below 20%, the strain energy density of +the 2x5mm zigzag sample is indistinguishable from the strain energy density of the fabric; +Therefore, the fabric's mechanical properties dominate the thread's properties in the +2x5mm zigzag sample at strains under 20%. At 30% strain, the strain energy density of +the zigzag sample is nearly double that of the fabric sample. The departure of the 2x5mm +zigzag sample from the mechanical behavior of the fabric indicates that at strains above +20%, the thread is the dominant influence on the mechanical behavior. This behavior is + +investigated further in zigzag samples with varying stitch lengths and widths, as indicated +in Figure 2c. + +Figure 2: (a) The graph of the stress-strain curve for the samples of the cotton thread indicates +maximum stress of approximately 100MPa at a strain of approximately 4.5% before failure. (b) +The graph shows the stress-strain curves of the unaltered fabric, fabric with straight stitches of +2mm length, and fabric with zigzag stitches of a length of 2mm and a width of 5mm. (c) The stress- +strain graph shows the impact of varying the properties of zigzag stitches. (d) An image of a +sample with 1x5mm zigzag stitches shows the condition of the sample before uniaxial tensile +loading. (e) An image of a sample with 1x5mm zigzag stitches shows the condition of the sample +after uniaxial tensile loading. Notably, the fabric has failed while the sewn thread is intact. +During uniaxial tensile testing, it was revealed that stitch length and width are both critical +factors that influence the tensile behavior of the samples with zigzag stitches. Figure 2 +(c) shows stress-strain curves for samples with zigzag stitches of varying length and +width. The fabric samples with 2x5mm, 2x4mm, and 3x5mm zigzag stitches failed at a +higher strain than those with straight stitches but at a similar stress. As with the 2x5mm +sample, the 2x4mm and 3x5mm had similar strain energy densities at low strain until the +thread became a dominant influence. The 1x5mm zigzag sample exhibited drastically + +(a) +25 +Thread Sample 1 +b +FabricOnly 1 +-ThreadSample2 +★—FabricOnly2 +- Straight Stitch 1 +100 +8 - +- Straight Stitch 2 +—2x5mm Zigzag Stitch 1 +Stress (MPa) +Stress (MPa) +75 +2x5mm Zigzag Stitch 2 +6. +50- +4 +25 +2. +0 +0. +0 +2 +6 +8 +10 +0 +20 +40 +60 +80 +100 +Strain (%) +Strain (%) +(c) +10 +(d) +2x4mm +e +一1x5mm +2x3mm +8- +★一3x5mm +FabricStress (Mpa) +6 +Zigzag +Stitch +Failure +4 +Point +2- +Sample +Grip +0: +0 +20 +40 +60 +80 +100 +Strain (%)different behavior from the other samples with zigzag stitches. The strain energy density +of the 1x5mm zigzag samples matched that of the unaltered fabric sample up to +approximately 60% strain, indicating that the stitches had little impact on the tensile +behavior of the sample overall. The 1x5mm samples also had more extended elongation +at failure than the unaltered fabric sample. The structure of the zigzag stitch contributes +to the behavior of all the zigzag samples. Since zigzag stitches have both a stitch length +and a stitch width, the stitch could change shape as the fabric elongates. +Figures 2(d) and (e) show a 1x5mm zigzag sample before and after uniaxial tensile +testing. After testing, the stitches are longer in the direction parallel to loading and shorter +in the direction perpendicular to loading compared to before tensile testing. In other +words, the stitch could shrink in the direction perpendicular to loading while elongating in +the direction of loading. A shorter stitch length results in more threads in the sample, +which allows the stitches to deform enough to match the elongation of the fabric. The +consequence of the stitch deformation is that the fabric withstands the load while the stitch +can deform, but the stitch bears the load when it is no longer able to match the elongation +of the fabric. Eventually, the load exhausts the ability of the stitch to deform, which is +when the strain energy density of the zigzag sample deviates from that of the unaltered +fabric. It was observed that the sewn thread had snapped in all samples after the sample +had failed during tensile testing, except for the 1x5mm zigzag sample. The 1x5mm zigzag +sample in Figure 2(c) had a shorter stitch length. Another point of interest is shown in +Figure 2(e), which shows that the thread was intact after the fabric failed, which is the +opposite of all other samples that contained sewn stitches. Therefore, it is possible to +alter stitch properties to alter the fabric's tensile behavior, and the properties determine +the extent of the influence from the thread and the fabric at particular strains. +Repeated Cycling Behavior +The unaltered fabric sample, straight stitch sample, and 2x5mm zigzag stitch sample +were examined under cyclic loading to analyze stress softening and hysteresis. Any +fabrics are subjected to cyclic loading during use from body movements such as the +expansion of the chest during breathing or the movement of joints. An analysis of the +behavior of the fabric samples during cyclic loading provides information that can inform +design decisions. All samples were strained up to 10% because the straight stitch +samples failed at approximately 12% strain. Hysteresis, the change in behavior from the +loading to the unloading cycle, was observed in all samples, as shown in Figure 3. Across +all samples, the most extensive hysteresis occurred during the first cycle. Additionally, all +samples had the highest strain energy density during the loading of the first cycle. The +hysteresis between the loading and unloading cycle of the overall sample is impacted by +the relationship between the yarns' properties and the fabric's structure. The plastic +deformation of the yarns, which relates to the slippage and viscoelasticity of the fibers +within the yarn, influences hysteresis.10 The structure dictates the number and nature of +the contact points between loops of thread, which impacts the friction during loading. +Friction is the main factor determining the amount of hysteresis that will occur.5 In the +samples with stitches, the causes of tensile hysteresis are further complicated by the +presence the stitched threads, which impact the overall properties and structure of the + +sample. In Figure 3b, the straight stitch sample showed more hysteresis than the zigzag +stitched sample shown in Figure 3c, indicating that the straight stitched threads +experienced more plastic deformation than the zigzag stitched threads. The difference in +the plastic deformation experienced in the threads relates to the behavior observed in the +uniaxial tensile testing. The straight-stitched thread sustains more of the load for the entire +sample than the zigzag stitch; the thread in the straight-stitched sample experiences more +plastic deformation. Repeated cycles allow for an investigation of the hysteresis in +additional cycles and an analysis of the stress-softening behavior of the samples. The +second cycle revealed that stress softening occurred in all samples between the first and +second cycles, which can be observed in whole Figure 3 as a reduction in the strain +energy density of the loading curve between the first and second cycles. The unaltered +fabric sample in Figure 3a showed a minor stress softening, which can be attributed to +the significant difference between the maximum strain during cyclic loading and the strain +required to cause failure. Since the unaltered fabric sample has minor unrecoverable +deformation at the 10% strain tested in this experiment, minimal stress softening +occurred. In additional cycles after the second cycle, hysteresis in the fabric sample and +the zigzag sample remained the same; however, hysteresis decreased slightly in the +straight stitched sample from the second to the third cycle. The decrease in hysteresis is +attributable to the stress softening in the straight stitch sample between the second and +the third cycles, which indicates that further unrecoverable deformation occurred during +each cycle. In comparison, the fabric and the zigzag stitch samples do not experience +significant unrecoverable deformation in cycles after the second cycle. + + + + + + + + + + + + + + + + + + + + + + +Figure 2: (a) The unaltered fabric sample showed less stress softening than the 2x5mm zigzag +stitch sample but still showed hysteresis. (b) The straight stitch sample had the most stress +softening and also showed hysteresis. (c) The cyclic loading of the 2x5mm zigzag stitch sample +showed stress softening after the first cycle and hysteresis. + + + +(a) +0.06 +-OnlyFabricCycle1 +-OnlyFabricCycle2 +OnlyFabric Cycle3 +★一 +Only Fabric Cycle 4 +Stress (Mpa) +0.04 - +0.02 +0.00+ +0 +10 +5 +Strain (%) +(b) +1.0 +StraightStitchCycle1 +-Straight StitchCycle2 +Straight Stitch Cycle3 +0.8 - +★一 +Straight Stitch Cycle 4 +0.2 - +0.0 + +5 +10 +Strain (%) +(c) +0.06 +2x5mmZigzagCycle1 +—2x5mmZigzagCycle2 +2x5mmZigzagCycle3 +★一 +2x5mmZigzagCycle4 +Stress (Mpa) +0.04 +0.02 +0.00 +0 +5 +10 +Strain (%)Revealing rheological parameters of Fabric and Composite Systems +The TNM is a powerful constitutive model capturing the flow and deformation (rheology) +behaviors of materials. Bergstrom and Bischoff explained the mathematical details of the +TNM in their work.1 While the stress-strain analysis directly measures the mechanical +behavior, the rheological parameters we often overlook in stress-strain analyses can be +revealed through constitutive models. Studies on such parameters also enable data- +informed design decisions. +We used MCalibration software to perform rheological analyses using TNM and calibrate +the TNM parameters to assess unaltered and altered fabrics. MCalibration software +begins calibration with a set of initially estimated parameter values by observing the +experimental data. It tries to reduce the deviation between the predicted and the +experimental behavior by continuously updating the parameters. This process is also +known as data calibration and rheological parameter identification. When the coefficient +of determination or the R2 value stops changing significantly by reaching convergence, +the software reveals the rheological parameters in its user interface. The experimental +data and MCalibration predicted data with their respective R2 fitness are shown in Figure +4, indicating that the TNM model effectively captures the uniaxial tensile behavior of +unaltered, straight- and zigzag-stitched fabrics. The predicted data fits closely with the +experimental data for all investigated samples with this method. The prediction of the +2x5mm zigzag sample in Figure 4a matched with an R2 fitness of 0.999, which was a +closer fit than the unaltered fabric sample or the straight stitch sample. The reason for the +closer match indicates that the 2x5mm zigzag sample had behavior closest to that of a +thermoplastic polymer, which is the material on which the TNM is based. Furthermore, +the calibration calculates the material model parameters, revealing information about the +behavior of the samples that cannot be determined from an analysis of the experimental +data alone. Table 1 shows several such parameters. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Figure 3: The material calibration with the PolyUMod TNM resulted in a good prediction for (a) +the unaltered fabric sample, (b) the 2mm straight stitch sample, and (c) the 2x5mm zigzag sample. + + +(a) +3 +ExperimentalFabricData +Predicted Fabric Data +2.5 +Stress +1.5 +1 +0.5 +R2Fitness=0.997 +0 +0 +10 +20 +3040 +50 +6070 +Strain (%) +(b) +1.5 +ExperimentalStraightStitchData +-Predicted Straight StitchData +1.25 +(MPa) +1 +stress +0.75 +0.5 +0.25 +R2Fitness=0.99 +0 +0 +2.5 +5 +7.5 +10 +12.5 +Strain (%) +(c) +0.7 +Experimental2x5mmZigzagData +-Predicted2x5mmZigzagData +0.6 +0.5 +(edw) : +0.4 +0.3 +0.2 +0.1 +R2Fitness=0.999 +0 +0 +5 +10 +15 +520 +25 +30 +Strain (%)Table 1: The Three-Network Model (TNM) parameters of unaltered fabric, straight +stitch, and the 2x5 mm Zigzag stitch +Description +Symbol +Unit +Unaltered +Fabric +Straight Stitch +2x5 mm Zigzag +Shear modulus of network +A +𝜇� +KPa +11.40 +77.95 +0.65 +Locking stretch +𝜆� +- +1.08 +1.02 +1.04 +Bulk modulus +𝜅 +KPa +656.37 +1369.34 +1194.72 +Flow resistance of network +A +𝜏̂� +KPa +127.80 +901.91 +352.31 +Stress exponential of +network A +𝑚� +- +3.83 +11.11 +9.59 +Initial shear modulus of +network B +𝜇�� +KPa +96.46 +15.05 +40.75 +Final shear modulus of +network B +𝜇�� +KPa +96.46 +9.31 +58.99 +Evolution rate of 𝜇� +𝛽 +- +9.69 +10.20 +10.50 +Flow resistance of network +B +𝜏̂� +KPa +348.78 +1226.80 +636.76 +Stress exponential of +network B +𝑚� +- +7.89 +9.65 +10.85 +Shear modulus of network +C +𝜇� +KPa +398.95 +1180.98 +207.47 +Earlier investigation27 on assessing the hyperelastic material model calibrated +parameters, leveraging Mooney-Rivlin, Ogden, neo-Hookean, Arruda Boyce, Gent, Yeoh, +and Blatz-Ko constitutive models. The higher-order Mooney-Rivlin and Yeoh models fitted +the experimental data properly. The Arruda-Boyce model also showed good relation with +the experimental data. Also, we noticed a similarity in the stress-strain behavior from that +investigation that is close to our unaltered fabric behavior shown in Figure 2(b). We want +to compare the parameters we obtained with that literature27. We noted a shear modulus +of 3.8913 KPa, and a limiting locking stretch (𝜆�,���� of 0.65907 from that investigation. +The Cauchy stress acting on any networks in the TNM model is based on the Arruda- +Boyce or eight-chain model.1 The reported shear modulus and the shear modulus of the +Network A of the unaltered fabric are also not significantly different here. As the shear +modulus of the Arruda-Boyce model gets distributed in three networks, we should only +compare the locking stretch directly. The locking stretch is defined as the ratio of the +current chain length and the initial chain length. From the literature, the relation between +the locking stretch (𝜆�� and limited locking stretch can be found,34,35, which is +𝜆� � �1 +3 �𝜆�,��� +� +� +2 +𝜆�,��� +� + +The reported limiting locking stretch converted to 𝜆� will be 1.0753, which is very close to +our reported locking stretch value of the unaltered fabric, 1.08. Additionally, for all the +samples, the locking stretch was close to 1, indicating that the sample did not go through +a significant strain level. The locking stretch values of the straight stitch and the zigzag +stitch are also smaller than the unaltered fabric, indicating less deformation observed in +Figure 2(b). The final calibrated parameters depend significantly on the initially guessed +parameters. It would be easier to compare the parameters between three samples if an +identical set of initial values was used. As we are using the uniaxial tensile testing here, +bulk modulus should not impact the predicted behavior significantly. 36 In the TNM, +network A and B utilize separate energy activation mechanisms to represent the +amorphous and semi-crystalline domains. Network C represents the large strain response +controlled by entropic resistance. The shear modulus and the flow resistance of network +A in the straight stitch are significantly higher than the other two samples indicating higher +resistance by the spring represented in the network. Figure 4(b) also indicates that up to +10% strain straight-stitched fabric is stiffer than the other two matching the observation in +the parameters. Comparatively close initial and final shear modulus of network B and +almost similar evolution rates indicate a similar effective shear modulus for all the +samples. The flow resistance of network B and the shear modulus of network C of the +straight-stitched sample are also higher, indicating higher stiffness of the materials. +Conclusion +This work determined that altering the parameters of the stitching when sewing +with cotton thread into a single layer of jersey-knit cotton fabric impacts the strain-energy +density, hysteresis, and stress softening of the sample. When examined with optical and +scanning electron microscopes, the stitched samples did not show damage to the fabric +from the sewing process. The stitch type and parameters of a zigzag stitch were shown +to directly impact the sample's behavior under uniaxial tensile loading. Depending on the +stitch type, the fabric can be altered to have a higher or lower strain energy density at +certain strains. We also note that stitches capable of less elongation than the fabric will +increase the strain energy density at lower strains and result in failure at a lower strain. +Stitches that can match or exceed the elongation may have minimal impact on the strain +energy density of the sample at the same strains as a sample without stitches but will fail +at higher strains, resulting in a higher strain energy density at failure. Stitches will also +impact the hysteresis and stress softening of the sample. Also, stitches capable of less +elongation than the fabric will be subjected to higher stress during loading, resulting in +plastic deformation and more significant hysteresis and stress softening during cyclic +loading. The tensile and cyclic tests reveal that the mechanical behavior of samples +composed of fabric with stitches varies greatly depending on the relationships between +the property of the materials and their structure. When data from tensile tests were +calibrated with the PolyUMod TNM, the materials presented in this work matched well +with the calibrated model; therefore, materials calibration provides an opportunity to aid +the selection of materials and structure by offering insight into hidden parameters that +allow for a data-driven approach to design. + +Limitations of this work include the number of materials and structures investigated, as +the behavior observed may differ from samples with different compositions and +structures. Furthermore, many other properties may be impacted by the presence of +sewing stitches that were not investigated in this paper, such as abrasive strength, +bursting strength, torsional properties, ability to withstand washing and drying, and many +other characteristics. Future works may investigate the impact of additional types of +stitches on fabrics of different materials and structures and analyze additional properties +of the samples. +Acknowledgments +MRK acknowledges the funding support from VPRI's startup account. HW +acknowledges the Nevada undergraduate research award (NURA) fund from the +Undergraduate Research Office, and KZH acknowledges funding from the College of +Engineering Dean's Office at the University of Nevada, Reno. HW acknowledges +contributions from Sydney Fields, Jake Kattelman, Thomas Kaps, and Braden Norris for +the MSE 470 (Polymer Engineering instructed by MRK) in-class project. KZH +acknowledges the opportunity to train and mentor all the groups in CHE/MSE 470 and +Brian Perdue in CHE 495 using the concepts from this article. MRK acknowledges the +support received from Dean's Office to purchase Instron 5982 with Dr. Jefferey Lacombe, +Dr. Bin Li, and Zachary Karmiol. + + +References +1. Bergstrom JS, Bischoff JE. An Advanced Thermomechanical Constitutive Model for +UHMWPE. Int J Struct Chang Solids 2010; 2: 31–39. +2. PolyUMod +Three +Network +(TN) +Model. +PolymerFEM.com, +https://polymerfem.com/three-network-model/ (2020, accessed 21 February 2022). +3. Penava Ž, Penava DŠ, Miloš L. Experimental and analytical analyses of the knitted +fabric off-axes tensile test. Text Res J 2021; 91: 62–72. +4. Mohamed A, Messiry ME. Analysis Of The Effect Of Cyclic Loading On Cotton- +Spandex Knitted Fabric. pp. 1–6. +5. Dusserre G. Modelling the hysteretic wale-wise stretching behaviour of technical +plain knits. Eur J Mech - ASolids 2015; 51: 160–171. +6. Li Q, Wang Y, Jiang S, et al. Investigation into tensile hysteresis of polyurethane- +containing textile substrates for coated strain sensors. Mater Des 2020; 188: 108451. + +7. Andrews BAK, McSherry WF, Frick JG, et al. Recovery from Tensile Strain in Knitted +Cotton Fabric after Cross-Linking. Text Res J 1971; 41: 387–391. +8. Choi M-S, Ashdown SP. Effect of Changes in Knit Structure and Density on the +Mechanical and Hand Properties of Weft-Knitted Fabrics for Outerwear. Text Res J +2000; 70: 1033–1045. +9. Liu R, Lao TT, Wang SX. Impact of Weft Laid-in Structural Knitting Design on Fabric +Tension Behavior and Interfacial Pressure Performance of Circular Knits. J Eng +Fibers Fabr 2013; 8: 155892501300800420. +10. Abdessalem SB, Abdelkader YB, Mokhtar S, et al. Influence of Elastane +Consumption on Plated Plain Knitted Fabric Characteristics. J Eng Fibers Fabr 2009; +4: 155892500900400420. +11. Midha VK, Mukhopadhyay A, Chatopadhyay R, et al. Studies on the Changes in +Tensile Properties of Sewing Thread at Different Sewing Stages. Text Res J 2009; +79: 1155–1167. +12. Midha VK, Mukhopadhyay A, Chattopadhyay R, et al. Effect of Process and Machine +Parameters on Changes in Tensile Properties of Threads during High-speed +Industrial Sewing. Text Res J 2010; 80: 491–507. +13. Sundaresan G, Salhotra KR, Hari PK. Strength reduction in sewing threads during +high speed sewing in industrial lockstitch machine: Part II: Effect of thread and fabric +properties. Int J Cloth Sci Technol 1998; 10: 64–79. +14. Sundaresan G, Hari PK, Salhotra KR. Strength reduction of sewing threads during +high speed sewing in an industrial lockstitch machine: Part I - mechanism of thread +strength reduction. Int J Cloth Sci Technol 1997; 9: 334–345. +15. Rengasamy RS, Wesley S. Tensile Behavior of Different Types of Sewing Threads +Observed under Simple-Tensile, Loop and Knot Tests. J Text Appar Technol Manag; +7, https://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/1390 (2011, accessed 9 +September 2022). +16. Abrishami S, Ezazshahabi N, Mousazadegan F. Analysis of the stress relaxation +behaviour of sewing threads in the straight and loop form. J Text Inst 2021; 112: +596–609. +17. Villanueva R, Ganta D, Guzman C. Mechanical, in-situ electrical and thermal +properties of wearable conductive textile yarn coated with polypyrrole/carbon black +composite. Mater Res Express 2018; 6: 016307. +18. Ardalan S, Hosseinifard M, Vosough M, et al. Towards smart personalized +perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch + +for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens Bioelectron +2020; 168: 112450. +19. Ukponmwan JO, Mukhopadhyay A, Chatterjee KN. Sewing Threads. Text Prog +2000; 30: 1–91. +20. Yıldız EZ, Pamuk O. The parameters affecting seam quality: a comprehensive +review. Res J Text Appar 2021; 25: 309–329. +21. Sülar V, Meşegül C, Kefsiz H, et al. A comparative study on seam performance of +cotton and polyester woven fabrics. J Text Inst 2015; 106: 19–30. +22. Rogina-Car B, Schwarz I, Kovačević S. Analysis of Woven Fabric at the Place of the +Sewn Seam. AUTEX Res J 2018; 18: 216–220. +23. Akter M, Khan MR. The effect of stitch types and sewing thread types on seam +strength for cotton apparel. Int J Sci Eng Res; 6. +24. Wang L, Chan LK, Hu X. INFLUENCE OF STITCH DENSITY TO STITCHES +PROPERTIES OF KNITTED PRODUCTS. Res J Text Appar 2001; 5: 46–53. +25. Admassu Y, Edae A, Getahun G, et al. Experimental analysis on the effect of fabric +structures and seam performance characteristics of weft knitted cotton apparels. J +Eng Fibers Fabr 2022; 17: 15589250221113480. +26. Qi HJ, Boyce MC. Constitutive model for stretch-induced softening of the stress– +stretch behavior of elastomeric materials. J Mech Phys Solids 2004; 52: 2187–2205. +27. Julio García Ruíz M, Yarime Suárez González L. Comparison of hyperelastic +material models in the analysis of fabrics. Int J Cloth Sci Technol 2006; 18: 314–325. +28. Khiêm VN, Krieger H, Itskov M, et al. An averaging based hyperelastic modeling and +experimental analysis of non-crimp fabrics. Int J Solids Struct 2018; 154: 43–54. +29. Gong Y, Peng X, Yao Y, et al. An anisotropic hyperelastic constitutive model for +thermoplastic woven composite prepregs. Compos Sci Technol 2016; 128: 17–24. +30. Peng X, Guo Z, Du T, et al. A simple anisotropic hyperelastic constitutive model for +textile fabrics with application to forming simulation. Compos Part B Eng 2013; 52: +275–281. +31. Peng XQ, Guo ZY, Zia-Ur-Rehman, et al. A Simple Anisotropic Fiber Reinforced +Hyperelastic Constitutive Model for Woven Composite Fabrics. Int J Mater Form +2010; 3: 723–726. + +32. MCalibration. PolymerFEM.com, https://polymerfem.com/mcalibration/ (accessed +21 February 2022). +33. Geršak J, Knez B. REDUCTION IN THREAD STRENGTH AS A CAUSE OF +LOADING IN THE SEWING PROCESS. Int J Cloth Sci Technol 1991; 3: 6–12. +34. Bergstrom JS. Mechanics of Solid Polymers: Theory and Computational Modeling. +William Andrew, 2015. +35. Nguyen H-D, Huang S-C. The Uniaxial Stress–Strain Relationship of Hyperelastic +Material Models of Rubber Cracks in the Platens of Papermaking Machines Based +on Nonlinear Strain and Stress Measurements with the Finite Element Method. +Materials 2021; 14: 7534. +36. Jorgen. How Important is the Bulk Modulus in FEA? PolymerFEM.com, +https://polymerfem.com/how-important-is-the-bulk-modulus/ (2021, accessed 17 +November 2022). + + + diff --git a/BNFQT4oBgHgl3EQfNDZv/content/tmp_files/load_file.txt b/BNFQT4oBgHgl3EQfNDZv/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d35fb713c6939cd9752675521ac55d634492be30 --- /dev/null +++ b/BNFQT4oBgHgl3EQfNDZv/content/tmp_files/load_file.txt @@ -0,0 +1,554 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf,len=553 +page_content='Revealing Rheological Parameters of Cotton-stitch-modified Cotton Fabrics by Three-Network Modeling (TNM) of Materials Harmony Werth1, #, Kazi Zihan Hossain1, #, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Rashed Khan1,* 1Department of Chemical and Materials Engineering, University of Nevada, Reno #contributed equally Corresponding author: mrkhan@unr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='edu Abstract Cotton threads and fabrics are the most used textile materials and have garnered widespread interest for smart textiles to capture human-centered cyber-physical and human-health-related bioanalytical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Cotton threads are sewn (manually or digitally) into fabrics to achieve functional and fashion stitches that soften or stiffen the base fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' There has been limited investigation into the influence of a single stitch on the mechanical properties of knitted cotton fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Such understanding may become critical to producing optimized textile-based composites/smart materials involving sewing operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' While stitching operations are investigated in numerous ways to produce a range of smart wearables, herein, we demonstrate the rheological modification of base cotton fabric induced by two types of singular stitches (straight and zigzag).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We have sewn simple straight and zigzag cotton stitches to investigate the rheological modification of the base cotton fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Uniaxial stress-strain experimental data, combined with constitutive modeling (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=', three-network model, TNM) obtained from the calibration software (MCalibration), revealed the feasibility of a data-driven approach to investigate the rheological parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Our experimental analyses, combined with the calibrated data, suggest a 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='99% confidence in assessing the influence of a single stitch on knitted cotton fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We have also used distributed strain energy to analyze the mechanics and failure of the base and stitched fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Our study may enable the design and study of integrating smart threads in cotton fabrics to produce smart wearables, e-textile, biomedical and e- fashion textiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Introduction Knitted cotton fabrics have been utilized in everyday garment materials and emerged as one of the popular base materials to generate smart wearables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In this article, we reveal rheological parameters- also known as phenomenological parameters, of cotton-stitch-modified cotton fabrics, harnessing Three Network Models (TNM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='1,2 We produce two types of stitches for demonstrations to modify the mechanical behavior of knitted cotton fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' While the utility of cotton fabrics is ubiquitous, and numerous demonstrations are currently published in the literature, our study focuses on understanding the tuned mechanics of cotton fabrics by sewn stitches and unravels data that we often overlook through stress-strain analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Anisotropy of knitted cotton fabric and its modified structural properties exhibited deformations during mechanical performance analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='3 Several studies focused on understanding knit fabrics, fabric elongation, deformation, and failures at critical applied stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='4–10 Advanced applications on knitted fabrics are approached mainly by trial and error methods where in-plane stitches are randomly generated, leaving a knowledge gap in understanding the impact of final sewn stitches on fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Sewing- one of the ancient fabric manufacturing techniques, loops a thread into fabrics, leveraging an analog or computerized sewing machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Different sewing stages,11 sewing parameters,12, and sewing machines13,14 have also been reported to alter the properties of the sewing thread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The looping process integrates different threads and produces entanglements with aesthetic colors, body shapes, and on-demand geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Different stitch patterns have also been reported to change the rheological behavior of the sewing thread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='15,16 However, the rheological impact on the fabric due to stitching has not been adequately investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' While the original purpose of sewing has been joining two pieces of fabric together, the most advanced applications integrate smart threads so that biomedical, biochemical, and biological analyses can be performed in situ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='17,18 From the design of fashion to human- centered smart wearables, state-of-sewing leverages many stitch patterns;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" however, a data-informed approach to dissect the role of sewn stitches in manipulating the final fabrics' properties is currently lacking in the literature." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Using a sewing machine, sewn stitches create entanglements between two threads- an upper and a bobbin thread, the bottom thread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' During the entanglement, the sewing needle loops the upper thread between the bottom thread through the fabric, and the threads entangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' When the tension of both threads matches, the entanglement lays in-plane of the fabric on both sides with minimal damage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='19 The resulting stitch can be varied in numerous ways to create functional and non-functional patterns based on the types of sewing threads, fabric types, or choice of materials for the final composite structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='20 Concurrently, stitches are used to bind two or more layers of fabric together, which is known as a seam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' To determine the impact of stitches on the mechanical behavior of fabrics, a few research groups have tested seams in woven cotton fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='21– 23 A few investigations on the mechanical behavior of seams in knitted fabrics are also available in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='24,25 However, studies involving a single stitch thread to modify the mechanical behavior of cotton fabric are currently lacking for a single layer of fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Such studies, we believe, will become significantly crucial for future applications, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=', electronic textiles- because reducing materials consumption at an optimum number of trials and errors seems crucial to pursue robust design configurations during the development of smart threads and electronic fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The base fabric and thread used in this work are made from cotton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We assume both as an elastomeric network for modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Elastomers having 3,000 to 10,000 repeating units exhibit structural flexibility and experience stretch-induced softening/hardening (also known as Mullins damage) under applied loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='26 For data calibration, we use TNM in MCalibration software which maps the entire stress-strain spectra from the uniaxial test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The TNM is also knowns as a phenomenological model to describe deformation-induced structural evolution (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=', the transition between soft to stiff network) and how strain-energy density becomes redistributed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=', hysteresis) throughout the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Different hyperelastic models have been utilized in the literature to represent the rheological behavior of fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='27–31 However, according to our knowledge, this work presents the constitutive modeling of stitched fabrics with TNM for the first time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The data-calibration process in MCalibration can start using default or user- induced settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' For this study, we have chosen to start calibration using default settings in MCalibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The kinematics of the TNM consists of three parallel molecular networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We have assumed spring-dashpot domains connected in parallel for the first two, and the third one is only a spring depicting the hyperelasticity of the first two networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The semi- crystalline domains are captured through the spring dashpots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' While a single network can be used to evaluate the property of the entire composite structure, we have chosen TNM to capture effective viscoplasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='1 Here, we have chosen two types of sewing stitches: straight and zigzag, to establish and reveal rheological parameters of cotton-stitch modified cotton fabrics, harnessing TNM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' These stitches are common in sewn garments and are pre-programmed into the default settings of modern sewing machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Also, we investigate several variations of the zigzag stitch that has varying stitch length and width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' A commercial sewing machine creates stitches with 100% cotton materials (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=', threads and fabrics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' For our analyses, we investigate the surface topography of the fabric and samples with sewn stitches using optical and scanning electron microscope (SEM) images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We perform (a) uniaxial stress-strain and (b) repeated cyclic tests in an Instron to dissect the mechanical behaviors of the (a) base fabric, (b) base threads, and (c) threads-laid-fabric structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The uniaxial stress-strain analyses have revealed three regions of interest (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=', elastic, yield, and viscoplastic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Also, we have investigated the permanent failure of the entire composite (fracture) to find the extremities of experimental analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The cyclic tests provide information about hysteresis, which we leverage to understand distributed strain-energy density and the loss due to hysteresis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We outline calibration using TNM in MCalibration to provide a simple route to test the impact of specific sewing patterns on the mechanical behavior of the final fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" We hypothesize that the thread, which has significantly denser strain energy, shifts the fabric's macroscale stress-strain behavior after stitching." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We proved our hypothesis through the uniaxial test and then altered the stitch length to investigate the factors that cause specific changes in the stress-strain behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The understanding developed by investigating the changes in mechanical behavior can be used to optimize the mechanical properties of a composite made with cotton thread and fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Materials and Methods Our experiments were performed to determine a constitutive equation to represent the behavior of cotton fabric with different types of stitches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' This was accomplished by analyzing uniaxial stress-strain curves for each component (cotton fabric and cotton thread) and different variations of the overall composite (straight stitched fabric, zigzag stitch, and fabric with stitching holes but no thread).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Materials The fabric used in this experiment was 100% cotton jersey knit with a unit weight of 427 g/m2 obtained from Hobby Lobby Stores, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The measured thickness of the fabric was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='45 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Similarly, the thread used in this experiment was a 50-weight, 4-ply, 100% cotton thread of Sew-Ology Brand from Hobby Lobby Stores, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=', produced for machine quilting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The measured outer diameter of the thread was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='30 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The same thread was used for the top and bobbin threads for all samples prepared and presented in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Sample Preparation We used a Brother SE600 sewing machine from Amazon to create stitches of manually adjustable length and width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The tension was selected so that the tension on the bobbin thread and the upper thread were equal, preventing the bottom thread from showing on the top or vice-versa, as is common sewing practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' A swatch of fabric approximately 20 cm in length was cut with scissors and then sewn wale-wise with the appropriate type of stitch for the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Two samples were prepared with stitching: straight stitched and zigzag stitched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The straight stitch was 2 mm in length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The zigzag stitches were (listed as stitch length x stitch width): 2x5 mm, 1x5 mm, 3x5 mm, 2x3 mm, and 2x4 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Several samples without any sewn stitches were also prepared for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The fabric samples were then cut to the same size with a Cricut Maker fabric cutter bought from Amazon, allowing for accurate and reproducible sample cutting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' For every sample, the fabric was cut to the dimensions of 6 cm in length by 2 cm in width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Sample cutting was done carefully to keep the stitching in the center of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Damaged or samples with uncentered stitches were discarded without any analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Image Acquisition Olympus SZ61 Stereo-microscope loaded with an Amscope MU1000-HS camera was used to capture the optical microscopic images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Secondary electron images of the samples were captured using a Thermo Scientific Scios 2 SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' For SEM imaging, small representative samples were cut and loaded on the sample holder with double-sided carbon tape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Attention was given to keeping the stitch undamaged while loading on the holder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Since the samples were nonconductive, samples were sputter-coated with Gold (Au) to create a ~10 nm layer on the surface of the sample before imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Further optical images were captured with the camera on an iPhone 13 mini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Experimental Methods The data was collected using an Instron 5982 test machine for uniaxial tensile testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The tested area was 4 cm by 2 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The extra centimeter on each side allowed the grip to hold the sample during testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Each sample type was examined with tensile testing to determine the stress and strain until failure at a 40 mm/min strain rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Cyclic testing of four cycles was then conducted for specific samples up to a sustainable strain level for that sample type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Samples with straight stitches could only withstand slightly more than 10% strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Therefore, cyclic tests with straight stitches were conducted up to 10% strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' For comparison, cyclic testing up to 10% strain was also conducted for unaltered fabric samples and the 2x5 mm zigzag stitch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Strain-energy Density Calculation Using the trapezoidal rule, we calculated strain-energy density from the time-dependent force and stress data at varying strain rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The area under the stress-strain or force- strain curve is divided into equal-time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Each small area under the curve is added until we reach the last data point to get the total area under the curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The reported energy density from different observations is the total after each experimental stress-strain observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Constitutive Modeling of Different Fabrics An initial prediction of the strain energy density of the straight stitched sample was obtained based on the data collected from the unaltered fabric and thread samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In order to obtain the prediction, the strain energy density of the straight stitch sample and the unaltered fabric was obtained by finding the area under the stress-strain curve of the sample with the trapezoidal rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The strain energy density was calculated up to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5% strain because the thread samples failed around 5% strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The strain energy of the samples was calculated by multiplying the strain energy density by the volume of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" The volume of the fabric was calculated using the sample's length, width, and thickness." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The thread volume was calculated from the measured diameter and length of the thread sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The straight stitch sample can be approximated by one sample of fabric and two samples of thread, so the volume of the straight stitch sample was calculated by adding the volume of the unaltered fabric and two threads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Similarly, the predicted strain energy of the straight stitch sample was calculated by adding the strain energy of the unaltered fabric and two threads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The prediction for the strain energy density of the straight stitched sample could then be obtained by dividing the predicted stored energy by the calculated volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' MCalibration, from PolymerFEM,32 was used to obtain parameters for a material model capable of representing the mechanical behavior of the fabric samples prepared in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' MCalibration fits the experimentally collected uniaxial stress-strain data to the PolyUMod Three Network model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='2 An average of the stress-strain behavior of each sample type was obtained first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' This set of averaged data was then processed using the MCalibration software tools to prepare the data for calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The default settings were used for the calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The calibrated parameters were exported and analyzed after the automatic convergence of the calibration process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Results and Discussion Surface Topography We formed two different types of stitches on the base fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figures 1a and 1b are top- down optical microscope images of the base and sewn fabrics for visual inspection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figure 1b is a zoomed-in visual inspection of Figure 1a to identify differences between a straight stitch and a zigzag stitch on the in-laid fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' These images show that the straight and zigzag stitches went through the fabric without significant internal damage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The straight stitch shown in Figures 1a(ii) and 1b(ii) do not have significant bunching due to the stitch compared with the only fabric shown in Figures 1a(i) and 1b(i);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' However, a meandering network of the zigzag stitches caused the fabric within the stitch to significantly bunch together, as shown in Figures 1 a(iii) and 1b(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The fabric is unable to maintain its shape during sewing and is pulled into the stitch instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The structural stiffness and flexibility of the fabric may have contributed to the bunching, as observed within the stitch dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" Figure 1c is the sewn fabric's SEM images to investigate the surface topography of the stitches and fabric." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' SEM images in Figure 1c(i) and Figure 1c(ii) reveal the undamaged fabric by fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' From these visual inspections, we assume the fabric remains structurally robust during the sewing and stitches only alter the mechanical behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figure 1: (a) Images were taken of samples under normal lighting conditions for visual inspection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (b) A stereoscope was used to examine the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (c) Secondary electron SEM images were taken of the fabric and sewn stitches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Uniaxial Tensile Behavior We investigated plain thread, plain fabric, and stitched fabrics using Instron for mechanical behavior analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The uniaxial tensile test behavior of plain thread is shown a(i) b(i) c(i) Cotton Fabric a(ii) b(i) 500μm Straight Fabric< Stich Stitch c(ii) b(ili) Zigzag Stitch 5 mm 2 mm 500 μmin Figure 2a, and the plain fabric is shown in Figure 2b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' For comparison, Figure 2b also shows the behaviors of straight and zigzag (2x5mm) stitched fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" Four other zigzag stitched fabrics' behavior is shown in Figure 2c." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figures 2d and 2e show the side view of a zigzag stitched fabric loaded into Intron during tensile testing and at the end of failure analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" We tested two samples of the plain threads, and both samples' behavior is shown in Figure 2a." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The plain thread failed at 5% strain but exhibited the highest strain energy density compared to other samples tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In contrast to the plain thread, the cotton fabric in Figure 2b exhibited reproducible stretchability of up to 70% strain in two samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The inclusion of straight stitches into the plain fabric induced failure at ~12% strain, and the zigzag stitched sample failed at ~32% strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The unaltered fabric had the highest stain at the point of failure, shown in Figure 2b, between 60-80%, with a strain energy density of around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='0 MJ/m3 at failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In comparison, the thread samples had a strain energy density of approximately 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='0 MJ/m3 at failure, which occurred at around 5% strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The strain energy density of the unaltered fabric and thread at 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5% were 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='19x10-4 MJ/m3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='64 MJ/m3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Examining the stress-strain data for the cotton fabric and the cotton thread individually, we conclude that combining these materials would result in a sample with a strain energy density that falls between the different materials at a given strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The samples with sewn straight stitches of 2mm length failed between 10-15% strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' At a strain of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5%, the straight stitched samples exhibited an average strain energy density of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='88x10-3 MJ/m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' A prediction of the strain energy density of the straight stitched samples at 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5% was obtained using the experimental values of the thread and fabric alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The predicted value was 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='2x10-2 MJ/m3, more significant than the measured strain energy density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' This discrepancy is expected as the sewing process exposes the thread to dynamic loads and friction known to reduce the strength of the thread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content="33 Overall, the sample with sewn straight stitches failed at all fabric samples' lowest stress and strain." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The cause of the low stress and strain at failure is suspected to be the structure of the stitches, which cannot withstand as much strain as the fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The fabric, with a higher elongation at failure than the thread, can deform under the load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Therefore, the thread in the straight stitch withstands the load for the entire sample until the thread breaks, equivalent to sample failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' It was observed that the thread failed before the fabric in all samples with straight stitches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Samples with zigzag stitches of 2mm length and 5mm width also failed at stress and strain lower than the unaltered fabric but higher strain than the straight stitched sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' An analysis of the strain energy density of the 2x5mm zigzag sample reveals aspects of the mechanical behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' At strains below 20%, the strain energy density of the 2x5mm zigzag sample is indistinguishable from the strain energy density of the fabric;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" Therefore, the fabric's mechanical properties dominate the thread's properties in the 2x5mm zigzag sample at strains under 20%." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' At 30% strain, the strain energy density of the zigzag sample is nearly double that of the fabric sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The departure of the 2x5mm zigzag sample from the mechanical behavior of the fabric indicates that at strains above 20%, the thread is the dominant influence on the mechanical behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' This behavior is investigated further in zigzag samples with varying stitch lengths and widths, as indicated in Figure 2c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figure 2: (a) The graph of the stress-strain curve for the samples of the cotton thread indicates maximum stress of approximately 100MPa at a strain of approximately 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5% before failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (b) The graph shows the stress-strain curves of the unaltered fabric, fabric with straight stitches of 2mm length, and fabric with zigzag stitches of a length of 2mm and a width of 5mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (c) The stress- strain graph shows the impact of varying the properties of zigzag stitches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (d) An image of a sample with 1x5mm zigzag stitches shows the condition of the sample before uniaxial tensile loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (e) An image of a sample with 1x5mm zigzag stitches shows the condition of the sample after uniaxial tensile loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Notably, the fabric has failed while the sewn thread is intact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' During uniaxial tensile testing, it was revealed that stitch length and width are both critical factors that influence the tensile behavior of the samples with zigzag stitches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figure 2 (c) shows stress-strain curves for samples with zigzag stitches of varying length and width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The fabric samples with 2x5mm, 2x4mm, and 3x5mm zigzag stitches failed at a higher strain than those with straight stitches but at a similar stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' As with the 2x5mm sample, the 2x4mm and 3x5mm had similar strain energy densities at low strain until the thread became a dominant influence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The 1x5mm zigzag sample exhibited drastically (a) 25 Thread Sample 1 b FabricOnly 1 ThreadSample2 ★—FabricOnly2 Straight Stitch 1 100 8 - Straight Stitch 2 —2x5mm Zigzag Stitch 1 Stress (MPa) Stress (MPa) 75 2x5mm Zigzag Stitch 2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 50- 4 25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 0 2 6 8 10 0 20 40 60 80 100 Strain (%) Strain (%) (c) 10 (d) 2x4mm e 一1x5mm 2x3mm 8- ★一3x5mm FabricStress (Mpa) 6 Zigzag Stitch Failure 4 Point 2- Sample Grip 0: 0 20 40 60 80 100 Strain (%)different behavior from the other samples with zigzag stitches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The strain energy density of the 1x5mm zigzag samples matched that of the unaltered fabric sample up to approximately 60% strain, indicating that the stitches had little impact on the tensile behavior of the sample overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The 1x5mm samples also had more extended elongation at failure than the unaltered fabric sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The structure of the zigzag stitch contributes to the behavior of all the zigzag samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Since zigzag stitches have both a stitch length and a stitch width, the stitch could change shape as the fabric elongates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figures 2(d) and (e) show a 1x5mm zigzag sample before and after uniaxial tensile testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' After testing, the stitches are longer in the direction parallel to loading and shorter in the direction perpendicular to loading compared to before tensile testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In other words, the stitch could shrink in the direction perpendicular to loading while elongating in the direction of loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' A shorter stitch length results in more threads in the sample, which allows the stitches to deform enough to match the elongation of the fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The consequence of the stitch deformation is that the fabric withstands the load while the stitch can deform, but the stitch bears the load when it is no longer able to match the elongation of the fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Eventually, the load exhausts the ability of the stitch to deform, which is when the strain energy density of the zigzag sample deviates from that of the unaltered fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' It was observed that the sewn thread had snapped in all samples after the sample had failed during tensile testing, except for the 1x5mm zigzag sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The 1x5mm zigzag sample in Figure 2(c) had a shorter stitch length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Another point of interest is shown in Figure 2(e), which shows that the thread was intact after the fabric failed, which is the opposite of all other samples that contained sewn stitches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" Therefore, it is possible to alter stitch properties to alter the fabric's tensile behavior, and the properties determine the extent of the influence from the thread and the fabric at particular strains." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Repeated Cycling Behavior The unaltered fabric sample, straight stitch sample, and 2x5mm zigzag stitch sample were examined under cyclic loading to analyze stress softening and hysteresis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Any fabrics are subjected to cyclic loading during use from body movements such as the expansion of the chest during breathing or the movement of joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' An analysis of the behavior of the fabric samples during cyclic loading provides information that can inform design decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' All samples were strained up to 10% because the straight stitch samples failed at approximately 12% strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Hysteresis, the change in behavior from the loading to the unloading cycle, was observed in all samples, as shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Across all samples, the most extensive hysteresis occurred during the first cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Additionally, all samples had the highest strain energy density during the loading of the first cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" The hysteresis between the loading and unloading cycle of the overall sample is impacted by the relationship between the yarns' properties and the fabric's structure." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The plastic deformation of the yarns, which relates to the slippage and viscoelasticity of the fibers within the yarn, influences hysteresis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='10 The structure dictates the number and nature of the contact points between loops of thread, which impacts the friction during loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Friction is the main factor determining the amount of hysteresis that will occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 In the samples with stitches, the causes of tensile hysteresis are further complicated by the presence the stitched threads, which impact the overall properties and structure of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In Figure 3b, the straight stitch sample showed more hysteresis than the zigzag stitched sample shown in Figure 3c, indicating that the straight stitched threads experienced more plastic deformation than the zigzag stitched threads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The difference in the plastic deformation experienced in the threads relates to the behavior observed in the uniaxial tensile testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The straight-stitched thread sustains more of the load for the entire sample than the zigzag stitch;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' the thread in the straight-stitched sample experiences more plastic deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Repeated cycles allow for an investigation of the hysteresis in additional cycles and an analysis of the stress-softening behavior of the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The second cycle revealed that stress softening occurred in all samples between the first and second cycles, which can be observed in whole Figure 3 as a reduction in the strain energy density of the loading curve between the first and second cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The unaltered fabric sample in Figure 3a showed a minor stress softening, which can be attributed to the significant difference between the maximum strain during cyclic loading and the strain required to cause failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Since the unaltered fabric sample has minor unrecoverable deformation at the 10% strain tested in this experiment, minimal stress softening occurred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In additional cycles after the second cycle, hysteresis in the fabric sample and the zigzag sample remained the same;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' however, hysteresis decreased slightly in the straight stitched sample from the second to the third cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The decrease in hysteresis is attributable to the stress softening in the straight stitch sample between the second and the third cycles, which indicates that further unrecoverable deformation occurred during each cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' In comparison, the fabric and the zigzag stitch samples do not experience significant unrecoverable deformation in cycles after the second cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figure 2: (a) The unaltered fabric sample showed less stress softening than the 2x5mm zigzag stitch sample but still showed hysteresis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (b) The straight stitch sample had the most stress softening and also showed hysteresis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (c) The cyclic loading of the 2x5mm zigzag stitch sample showed stress softening after the first cycle and hysteresis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='06 OnlyFabricCycle1 OnlyFabricCycle2 OnlyFabric Cycle3 ★一 Only Fabric Cycle 4 Stress (Mpa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='04 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='00+ 0 10 5 Strain (%) (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='0 StraightStitchCycle1 Straight StitchCycle2 Straight Stitch Cycle3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='8 - ★一 Straight Stitch Cycle 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='2 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='0 + 5 10 Strain (%) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='06 2x5mmZigzagCycle1 —2x5mmZigzagCycle2 2x5mmZigzagCycle3 ★一 2x5mmZigzagCycle4 Stress (Mpa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='00 0 5 10 Strain (%)Revealing rheological parameters of Fabric and Composite Systems The TNM is a powerful constitutive model capturing the flow and deformation (rheology) behaviors of materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Bergstrom and Bischoff explained the mathematical details of the TNM in their work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='1 While the stress-strain analysis directly measures the mechanical behavior, the rheological parameters we often overlook in stress-strain analyses can be revealed through constitutive models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Studies on such parameters also enable data- informed design decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We used MCalibration software to perform rheological analyses using TNM and calibrate the TNM parameters to assess unaltered and altered fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' MCalibration software begins calibration with a set of initially estimated parameter values by observing the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' It tries to reduce the deviation between the predicted and the experimental behavior by continuously updating the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' This process is also known as data calibration and rheological parameter identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' When the coefficient of determination or the R2 value stops changing significantly by reaching convergence, the software reveals the rheological parameters in its user interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The experimental data and MCalibration predicted data with their respective R2 fitness are shown in Figure 4, indicating that the TNM model effectively captures the uniaxial tensile behavior of unaltered, straight- and zigzag-stitched fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The predicted data fits closely with the experimental data for all investigated samples with this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The prediction of the 2x5mm zigzag sample in Figure 4a matched with an R2 fitness of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='999, which was a closer fit than the unaltered fabric sample or the straight stitch sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The reason for the closer match indicates that the 2x5mm zigzag sample had behavior closest to that of a thermoplastic polymer, which is the material on which the TNM is based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Furthermore, the calibration calculates the material model parameters, revealing information about the behavior of the samples that cannot be determined from an analysis of the experimental data alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Table 1 shows several such parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figure 3: The material calibration with the PolyUMod TNM resulted in a good prediction for (a) the unaltered fabric sample, (b) the 2mm straight stitch sample, and (c) the 2x5mm zigzag sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' (a) 3 ExperimentalFabricData Predicted Fabric Data 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 Stress 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 R2Fitness=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='997 0 0 10 20 3040 50 6070 Strain (%) (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 ExperimentalStraightStitchData Predicted Straight StitchData 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='25 (MPa) 1 stress 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='25 R2Fitness=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='99 0 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 10 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 Strain (%) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='7 Experimental2x5mmZigzagData Predicted2x5mmZigzagData 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='5 (edw) : 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='1 R2Fitness=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='999 0 0 5 10 15 520 25 30 Strain (%)Table 1: The Three-Network Model (TNM) parameters of unaltered fabric, straight stitch, and the 2x5 mm Zigzag stitch Description Symbol Unit Unaltered Fabric Straight Stitch 2x5 mm Zigzag Shear modulus of network A 𝜇� KPa 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='40 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='65 Locking stretch 𝜆� 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='08 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='04 Bulk modulus 𝜅 KPa 656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='37 1369.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='34 1194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='72 Flow resistance of network A 𝜏̂� KPa 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='80 901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='91 352.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='31 Stress exponential of network A 𝑚� 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='83 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='11 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='59 Initial shear modulus of network B 𝜇�� KPa 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='46 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='05 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='75 Final shear modulus of network B 𝜇�� KPa 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='46 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='31 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='99 Evolution rate of 𝜇� 𝛽 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='69 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='20 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='50 Flow resistance of network B 𝜏̂� KPa 348.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='78 1226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='80 636.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='76 Stress exponential of network B 𝑚� 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='89 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='65 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='85 Shear modulus of network C 𝜇� KPa 398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='95 1180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='98 207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='47 Earlier investigation27 on assessing the hyperelastic material model calibrated parameters, leveraging Mooney-Rivlin, Ogden, neo-Hookean, Arruda Boyce, Gent, Yeoh, and Blatz-Ko constitutive models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The higher-order Mooney-Rivlin and Yeoh models fitted the experimental data properly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The Arruda-Boyce model also showed good relation with the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Also, we noticed a similarity in the stress-strain behavior from that investigation that is close to our unaltered fabric behavior shown in Figure 2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We want to compare the parameters we obtained with that literature27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We noted a shear modulus of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='8913 KPa, and a limiting locking stretch (𝜆�,���� of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='65907 from that investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The Cauchy stress acting on any networks in the TNM model is based on the Arruda- Boyce or eight-chain model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='1 The reported shear modulus and the shear modulus of the Network A of the unaltered fabric are also not significantly different here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' As the shear modulus of the Arruda-Boyce model gets distributed in three networks, we should only compare the locking stretch directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The locking stretch is defined as the ratio of the current chain length and the initial chain length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' From the literature, the relation between the locking stretch (𝜆�� and limited locking stretch can be found,34,35, which is 𝜆� � �1 3 �𝜆�,��� � � 2 𝜆�,��� � The reported limiting locking stretch converted to 𝜆� will be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='0753, which is very close to our reported locking stretch value of the unaltered fabric, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Additionally, for all the samples, the locking stretch was close to 1, indicating that the sample did not go through a significant strain level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The locking stretch values of the straight stitch and the zigzag stitch are also smaller than the unaltered fabric, indicating less deformation observed in Figure 2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The final calibrated parameters depend significantly on the initially guessed parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' It would be easier to compare the parameters between three samples if an identical set of initial values was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' As we are using the uniaxial tensile testing here, bulk modulus should not impact the predicted behavior significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 36 In the TNM, network A and B utilize separate energy activation mechanisms to represent the amorphous and semi-crystalline domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Network C represents the large strain response controlled by entropic resistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The shear modulus and the flow resistance of network A in the straight stitch are significantly higher than the other two samples indicating higher resistance by the spring represented in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Figure 4(b) also indicates that up to 10% strain straight-stitched fabric is stiffer than the other two matching the observation in the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Comparatively close initial and final shear modulus of network B and almost similar evolution rates indicate a similar effective shear modulus for all the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The flow resistance of network B and the shear modulus of network C of the straight-stitched sample are also higher, indicating higher stiffness of the materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Conclusion This work determined that altering the parameters of the stitching when sewing with cotton thread into a single layer of jersey-knit cotton fabric impacts the strain-energy density, hysteresis, and stress softening of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' When examined with optical and scanning electron microscopes, the stitched samples did not show damage to the fabric from the sewing process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" The stitch type and parameters of a zigzag stitch were shown to directly impact the sample's behavior under uniaxial tensile loading." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Depending on the stitch type, the fabric can be altered to have a higher or lower strain energy density at certain strains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' We also note that stitches capable of less elongation than the fabric will increase the strain energy density at lower strains and result in failure at a lower strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Stitches that can match or exceed the elongation may have minimal impact on the strain energy density of the sample at the same strains as a sample without stitches but will fail at higher strains, resulting in a higher strain energy density at failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Stitches will also impact the hysteresis and stress softening of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Also, stitches capable of less elongation than the fabric will be subjected to higher stress during loading, resulting in plastic deformation and more significant hysteresis and stress softening during cyclic loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The tensile and cyclic tests reveal that the mechanical behavior of samples composed of fabric with stitches varies greatly depending on the relationships between the property of the materials and their structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' When data from tensile tests were calibrated with the PolyUMod TNM, the materials presented in this work matched well with the calibrated model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' therefore, materials calibration provides an opportunity to aid the selection of materials and structure by offering insight into hidden parameters that allow for a data-driven approach to design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Limitations of this work include the number of materials and structures investigated, as the behavior observed may differ from samples with different compositions and structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Furthermore, many other properties may be impacted by the presence of sewing stitches that were not investigated in this paper, such as abrasive strength, bursting strength, torsional properties, ability to withstand washing and drying, and many other characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Future works may investigate the impact of additional types of stitches on fabrics of different materials and structures and analyze additional properties of the samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" Acknowledgments MRK acknowledges the funding support from VPRI's startup account." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" HW acknowledges the Nevada undergraduate research award (NURA) fund from the Undergraduate Research Office, and KZH acknowledges funding from the College of Engineering Dean's Office at the University of Nevada, Reno." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' HW acknowledges contributions from Sydney Fields, Jake Kattelman, Thomas Kaps, and Braden Norris for the MSE 470 (Polymer Engineering instructed by MRK) in-class project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' KZH acknowledges the opportunity to train and mentor all the groups in CHE/MSE 470 and Brian Perdue in CHE 495 using the concepts from this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=" MRK acknowledges the support received from Dean's Office to purchase Instron 5982 with Dr." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Jefferey Lacombe, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Bin Li, and Zachary Karmiol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Bergstrom JS, Bischoff JE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' An Advanced Thermomechanical Constitutive Model for UHMWPE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Struct Chang Solids 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 2: 31–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' PolyUMod Three Network (TN) Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' PolymerFEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='com, https://polymerfem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='com/three-network-model/ (2020, accessed 21 February 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Penava Ž, Penava DŠ, Miloš L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Experimental and analytical analyses of the knitted fabric off-axes tensile test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Text Res J 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 91: 62–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Mohamed A, Messiry ME.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Analysis Of The Effect Of Cyclic Loading On Cotton- Spandex Knitted Fabric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Dusserre G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Modelling the hysteretic wale-wise stretching behaviour of technical plain knits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Eur J Mech - ASolids 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 51: 160–171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Li Q, Wang Y, Jiang S, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Investigation into tensile hysteresis of polyurethane- containing textile substrates for coated strain sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Mater Des 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 188: 108451.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Andrews BAK, McSherry WF, Frick JG, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Recovery from Tensile Strain in Knitted Cotton Fabric after Cross-Linking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Text Res J 1971;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 41: 387–391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Choi M-S, Ashdown SP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Effect of Changes in Knit Structure and Density on the Mechanical and Hand Properties of Weft-Knitted Fabrics for Outerwear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Text Res J 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 70: 1033–1045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Liu R, Lao TT, Wang SX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Impact of Weft Laid-in Structural Knitting Design on Fabric Tension Behavior and Interfacial Pressure Performance of Circular Knits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' J Eng Fibers Fabr 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 8: 155892501300800420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Abdessalem SB, Abdelkader YB, Mokhtar S, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Influence of Elastane Consumption on Plated Plain Knitted Fabric Characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' J Eng Fibers Fabr 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 4: 155892500900400420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Midha VK, Mukhopadhyay A, Chatopadhyay R, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Studies on the Changes in Tensile Properties of Sewing Thread at Different Sewing Stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Text Res J 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 79: 1155–1167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Midha VK, Mukhopadhyay A, Chattopadhyay R, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Effect of Process and Machine Parameters on Changes in Tensile Properties of Threads during High-speed Industrial Sewing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Text Res J 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 80: 491–507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Sundaresan G, Salhotra KR, Hari PK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Strength reduction in sewing threads during high speed sewing in industrial lockstitch machine: Part II: Effect of thread and fabric properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Cloth Sci Technol 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 10: 64–79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Sundaresan G, Hari PK, Salhotra KR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Strength reduction of sewing threads during high speed sewing in an industrial lockstitch machine: Part I - mechanism of thread strength reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Cloth Sci Technol 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 9: 334–345.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Rengasamy RS, Wesley S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Tensile Behavior of Different Types of Sewing Threads Observed under Simple-Tensile, Loop and Knot Tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' J Text Appar Technol Manag;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 7, https://ojs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='cnr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='ncsu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='edu/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='php/JTATM/article/view/1390 (2011, accessed 9 September 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Abrishami S, Ezazshahabi N, Mousazadegan F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Analysis of the stress relaxation behaviour of sewing threads in the straight and loop form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' J Text Inst 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 112: 596–609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Villanueva R, Ganta D, Guzman C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Mechanical, in-situ electrical and thermal properties of wearable conductive textile yarn coated with polypyrrole/carbon black composite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Mater Res Express 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 6: 016307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Ardalan S, Hosseinifard M, Vosough M, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Biosens Bioelectron 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 168: 112450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Ukponmwan JO, Mukhopadhyay A, Chatterjee KN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Sewing Threads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Text Prog 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 30: 1–91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Yıldız EZ, Pamuk O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The parameters affecting seam quality: a comprehensive review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Res J Text Appar 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 25: 309–329.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Sülar V, Meşegül C, Kefsiz H, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' A comparative study on seam performance of cotton and polyester woven fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' J Text Inst 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 106: 19–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Rogina-Car B, Schwarz I, Kovačević S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Analysis of Woven Fabric at the Place of the Sewn Seam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' AUTEX Res J 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 18: 216–220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Akter M, Khan MR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The effect of stitch types and sewing thread types on seam strength for cotton apparel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Sci Eng Res;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Wang L, Chan LK, Hu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' INFLUENCE OF STITCH DENSITY TO STITCHES PROPERTIES OF KNITTED PRODUCTS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Res J Text Appar 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 5: 46–53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Admassu Y, Edae A, Getahun G, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Experimental analysis on the effect of fabric structures and seam performance characteristics of weft knitted cotton apparels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' J Eng Fibers Fabr 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 17: 15589250221113480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Qi HJ, Boyce MC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Constitutive model for stretch-induced softening of the stress– stretch behavior of elastomeric materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' J Mech Phys Solids 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 52: 2187–2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Julio García Ruíz M, Yarime Suárez González L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Comparison of hyperelastic material models in the analysis of fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Cloth Sci Technol 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 18: 314–325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Khiêm VN, Krieger H, Itskov M, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' An averaging based hyperelastic modeling and experimental analysis of non-crimp fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Solids Struct 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 154: 43–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Gong Y, Peng X, Yao Y, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' An anisotropic hyperelastic constitutive model for thermoplastic woven composite prepregs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Compos Sci Technol 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 128: 17–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Peng X, Guo Z, Du T, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Compos Part B Eng 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 52: 275–281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Peng XQ, Guo ZY, Zia-Ur-Rehman, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' A Simple Anisotropic Fiber Reinforced Hyperelastic Constitutive Model for Woven Composite Fabrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Mater Form 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 3: 723–726.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' MCalibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' PolymerFEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='com, https://polymerfem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='com/mcalibration/ (accessed 21 February 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Geršak J, Knez B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' REDUCTION IN THREAD STRENGTH AS A CAUSE OF LOADING IN THE SEWING PROCESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Int J Cloth Sci Technol 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 3: 6–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Bergstrom JS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Mechanics of Solid Polymers: Theory and Computational Modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' William Andrew, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Nguyen H-D, Huang S-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' The Uniaxial Stress–Strain Relationship of Hyperelastic Material Models of Rubber Cracks in the Platens of Papermaking Machines Based on Nonlinear Strain and Stress Measurements with the Finite Element Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Materials 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 14: 7534.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' Jorgen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' How Important is the Bulk Modulus in FEA?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content=' PolymerFEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='com, https://polymerfem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} +page_content='com/how-important-is-the-bulk-modulus/ (2021, accessed 17 November 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf'} diff --git a/CdAyT4oBgHgl3EQfePjS/content/tmp_files/2301.00319v1.pdf.txt b/CdAyT4oBgHgl3EQfePjS/content/tmp_files/2301.00319v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..406a49bb4007f3d8d464dd11a46c8f9b733983e9 --- /dev/null +++ b/CdAyT4oBgHgl3EQfePjS/content/tmp_files/2301.00319v1.pdf.txt @@ -0,0 +1,938 @@ +Quantum Hairy Black Hole Formation and Horizon Quantum Mechanics +R. T. Cavalcanti∗ and J. M. Hoff da Silva† +Departamento de F´ısica, Universidade Estadual Paulista (Unesp), Guaratinguet´a 12516-410, Brazil +After introducing the gravitational decoupling method and the hairy black hole recently derived +from it, we investigate the formation of quantum hairy black holes by applying the horizon quan- +tum mechanics formalism. It enables us to determine how external fields, characterized by hairy +parameters, affect the probability of spherically symmetric black hole formation and the generalized +uncertainty principle. +I. +INTRODUCTION +Given their intrinsic connection with intense gravitational fields, solid theoretical basis [1–3], and several observa- +tional results corroborating their existences, black holes play a central role in contemporary high-energy physics and +astrophysics [4–7]. Despite the characterization of the horizon of stationary black hole solutions being well-known +within general relativity [3, 8], the nature of the horizons of non-stationary or stationary solutions beyond general +relativity is still a source of extensive research [9–12]. The investigation of black holes is not restricted to astrophysical +objects; they are also expected to be formed whenever a high concentration of energy is confined to a small region of +spacetime, producing so-called quantum black holes [7, 13–17]. However, the precise formation mechanism of classical +and quantum black holes is still unknown. Although we do not have a theory of quantum gravity, phenomenology +suggests that some features of quantum black holes are expected to be model-independent [7]. From a certain scale, +candidate theories should modify the results of general relativity, giving birth to some alternatives to Einsteins’s +theory of gravity [18, 19]. Examples could allow for the presence of non-minimal coupled fundamental fields or higher +derivative terms during the action, which directly affects the uniqueness theorems of black holes in general relativity. +The famous no-hair theorem is not preserved outside the general relativity realm. These solutions lead to effects that +are potentially detectable near the horizon of astrophysical black holes [20–22], or in quantum black holes’ formation +[23, 24], and may provide hints for the quantum path. +One of the major challenges in general relativity is finding physically relevant solutions to Einstein’s field equations. +On the other hand, deriving new solutions from other previously known ones is a widespread technique. This approach +is precisely what the so-called gravitational decoupling (GD) method intends to achieve. It has recently commanded +the community’s attention due to its simplicity and effectiveness [25–27] in generating new, exact analytical solutions +by considering additional sources to the stress-energy tensor. The recent description of anisotropic stellar distribu- +tions [28, 29], whose predictions might be tested in astrophysical observations [30–33], as well as the hairy black hole +solutions by gravitational decoupling, are particularly interesting. The latter describes a black hole with hair sourced +by generic fields, possibly of quantum nature, surrounding the vacuum Schwarzschild solution [27]. Exciting results +have been found during investigation of this solution [34–36]. +From the quantum side, one of the key features of quantum gravity phenomenology is the generalized uncertainty +principle (GUP), which modifies the Heisenberg uncertainty principle accordingly +∆x∆p ≳ ℏ +� +1 + ϵ(∆p)2� +. +(1) +This expression of the GUP, which stems from different approaches to quantum gravity [37–46], characterizes a +minimum scale length ∆x. This feature emerges quite naturally in the horizon quantum mechanics formalism (HQM) +[16, 47]. In addition to the GUP, HQM also provides an estimation of the probability of quantum black hole formation. +In a scenario of extra-dimensional spacetimes, the HQM gave an explanation for the null results of quantum black +hole formation in current colliders [23, 24]. Could it also tell us something about a mechanism for decreasing the +fundamental scale to something near the scale of current colliders? Our aim is to investigate the quantitative and +qualitative effects of black hole hair, regarding the probability of black hole formation and the GUP by applying the +horizon quantum mechanics formalism. +This paper is organized as follows: Section II is dedicated to reviewing the gravitational decoupling procedure, the +metric for GD hairy black holes, and an approximation for the horizon radius. In Section III, we apply the horizon +∗Electronic address: rogerio.cavalcanti@unesp.br +†Electronic address: julio.hoff@unesp.br +arXiv:2301.00319v1 [gr-qc] 1 Jan 2023 + +2 +quantum mechanics formalism to the hairy black hole solution of the previous section. We compare the probability of +quantum black hole formation and the GUPs of hairy black holes for a range of hair parameters, unveiling the effects +of the hair fields. Finally, Section IV is dedicated to conclusions and discussion. +II. +HAIRY BLACK HOLES AND HORIZON RADIUS +Starting from Einstein’s field equations +Gµν = 8π ˇTµν, +(2) +where Gµν = Rµν − 1 +2Rgµν denotes the Einstein tensor, the gravitational decoupling (GD) [25] method takes the +energy–momentum tensor decomposed as +ˇTµν = Tµν + Θµν. +(3) +Here, Tµν is the source of a known solution to general relativity, while Θµν introduces a new field or extension of the +gravitational sector. From ∇µ Gµν = 0, we also have ∇µ ˇT µν = 0. The effective density and the tangential and radial +pressures can be determined by examining the field equations +ˇρ = ρ + Θ 0 +0 , +(4a) +ˇpt = p − Θ 2 +2 , +(4b) +ˇpr = p − Θ 1 +1 . +(4c) +The idea is to deform a known solution to split the field equations in a sector containing the known solution with +source Tµν and a decoupled one governing the deformation, encompassing Θµν. In fact, assuming a known spherically +symmetric metric, +ds2 = −eκ(r)dt2 + eζ(r)dr2 + r2dΩ2, +(5) +and deforming κ(r) and ζ(r) as +κ(r) �→ κ(r) + αf2(r), +(6a) +e−ζ(r) �→ e−ζ(r) + αf1(r), +(6b) +the resulting decoupled field equations read +8π Θ 0 +0 += α +�f1 +r2 + f ′ +1 +r +� +, +(7a) +8π Θ 1 +1 − α e−ζ f ′ +2 +r += α f1 +� 1 +r2 + κ′(r) + αf ′ +2(r) +r +� +, +(7b) +8πΘ 2 +2 −αf1Z1(r) =αf ′ +1 +4 +� +κ′(r) + αf ′ +2(r)+ 2 +r +� ++αZ2(r), +(7c) +where [25] +Z1(r) = α2f ′ +2 (r)2 + 2 α +� +f ′ +2 (r) κ′ (r) + f ′ +2 (r) +r ++ f ′′ +2 (r) +� ++ κ′ (r)2 + 2 κ′ (r) +r ++ 2 κ′′ (r) , +(8a) +Z2(r) = αe−ζ +� +2f ′′ +2 + f 2′ +2 + 2f ′ +2 +r ++ 2κ′f ′ +2 − ζ′f ′ +2 +� +. +(8b) +The above equations state that if the deformation parameter α goes to zero, then Θµν must go to zero. It is worth +mentioning that for extended geometric deformation, that is, for f2 ̸= 0, the sources are not individually conserved +in general. However, as discussed in [26], in this case, the decoupling of the field equations without an exchange of +energy is allowed in two scenarios: (a) when Tµν is a barotropic fluid whose equation of state is T00 = T11 or (b) for +vacuum regions of the first system Tµν = 0. When minimal geometric deformation is applied, on the other hand, the +sources are shown to be individually conserved [25, 26]. +Assuming the Schwarzschild solution to be the known one and requiring a well-defined horizon structure [27], from +grr = − 1 +gtt follows +� +1 − 2M +r +� � +eαf2(r) − 1 +� += αf1(r). +(9) + +3 +Therefore, one is able to write +ds2 = − +� +1 − 2M +r +� +eαf2(r)dt2+ +� +1 − 2M +r +�−1 +e−α f2(r)dr2 + r2 dΩ2. +(10) +Further, assuming strong energy conditions, +ˇρ + ˇpr + 2 ˇpt ≥ 0, +(11a) +ˇρ + ˇpr ≥ 0, +(11b) +ˇρ + ˇpt ≥ 0, +(11c) +and managing the field equations, a new hairy black hole solution was found [27] +ds2 = −f(r)dt2 + +1 +f(r)dr2 + r2dΩ2, +(12) +where +f(r) = 1 − 2GM + αℓ +r ++ αe− +r +GM . +(13) +The dimensionless parameter 0 ≤ α ≤ 1 tracks the deformation of the Schwarzschild black hole, e is the Euler constant, +and ℓ is the direct effect of the nonvanishing additional font Θµν. Notice that by taking α = 0, the Schwarzschild +solution is restored. Further, the ℓ parameter is limited to 2GM/e2 ≤ ℓ ≤ 1 due to the assumption of a strong energy +condition. In extreme cases, ℓ = 2GM/e2 and +fe(r) = 1 − 2GM +r ++ α +� +e− +r +GM − 2GM +e2 r +� +. +(14) +The hairy black hole has a single horizon, located at r = rH, such that +� +1 + αe− rH +GM +� +rH = 2GM + αℓ. +(15) +Such an equation has no analytical solution. Nevertheless, a very accurate analytical approximation is found by Taylor +expanding it around the Schwarzschild horizon radius rS = 2GM, +rH +GM ≈ 4 +� +αℓe2/GM − 3 α + e2� +αℓe2/GM − 4 α + 2 e2 . +(16) +Figure 1 shows a comparison between the exact and approximated horizon radii for different values of the hairy +parameters. In the following section, we are going to use Equation (16) for the analytical expression of the hairy black +hole’s horizon radius. +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +ℓ +GM +2.0 +2.1 +2.2 +2.3 +2.4 +2.5 +2.6 +2.7 +2.8 +rH +GM +α = 0.00 +α = 0.20 +α = 0.40 +α = 0.60 +α = 0.80 +α = 1.0 +Exact +FIG. 1: The radius of the hairy black hole horizon rH as a function of ℓ for different values of the parameter α. The colored +dashed lines represent the approximated radius, and the gray lines are the exact ones. It shows how the hairy horizon deviates +from the Schwarzschild horizon for an increasing α and ℓ. The ranges for α and ℓ were fixed due to the assumption of a strong +energy condition [27]. + +4 +III. +THE HORIZON QUANTUM MECHANICS FORMALISM +Horizon quantum mechanics (also known as horizon wave function formalism) is an effective approach capable of +providing the signatures of black hole physics to the Planck scale [48–51] (see [47] for a comprehensive review). The +main idea is to extend quantum mechanics and gravity further than the current experimental limits. In such an +approach, we face the conceptual challenge of consistently describing classical and quantum mechanical objects, such +as horizons and particles. This is achieved by assigning wave functions to the quantum black hole horizon. This +association allows the use of quantum mechanical machinery to distinguish between particles and quantum black +holes and to estimate the GUPs. Nevertheless, first, we must choose a model describing the particle wave function to +derive the results. Due to the previous results’ simplicity and efficiency, we shall use the Gaussian model. +From classical general relativity, we know that the horizons of black holes are described by trapping surfaces, whose +locations are determined by +gij∇ir∇jr = 0 , +(17) +where ∇ir is orthogonal to the surfaces of the constant area A = 4πr2. A trapping surface then exists if there are +values of r and t such that the gravitational radius RH satisfies +RH(r, t) ≥ r . +(18) +Considering a spinless point-particle of mass m, an uncertainty in the spatial particle localization of the same order +of the Compton scale λm ≃ ℏ/m = lp mp/m follows from the uncertainty principle, where lp and mp are the Planck +length and mass, respectively. Arguing that quantum mechanics gives a more precise description of physics, RH makes +sense only if it is larger than the Compton wavelength associated with the same mass, namely RH ≳ λm. Thus, for +the Schwarzschild radius RS = 2Gm = 2 lp +mp m, +lp m/mp ≳ lp mp/m +=⇒ +m ≳ mp . +(19) +This suggests that the Planck mass is the minimum mass such that the Schwarzchild radius can be defined. +From quantum mechanics, the spectral decomposition of a spherically symmetric matter distribution is given by +the expression +|ψS⟩ = +� +E +C(E) |ψE⟩ , +(20) +with the usual eigenfunction equation +ˆH |ψE⟩ = E |ψE⟩ , +(21) +regardless of the specific form of the actual Hamiltonian operator ˆH. Using the energy spectrum and inverting the +expression of the Schwarzschild radius, we have +E = mp +rH +2lp +. +(22) +Putting it back into the wave function, one can define the (unnormalized) horizon wave function as +ψH(rH) = C +� +mp +rH +2lp +� +(23) +whose normalization is fixed, as usual, by the inner product +⟨ψH | φH⟩ = 4π +� ∞ +0 +ψ∗ +H(rH)φH(rH)r2 +HdrH. +(24) +However, the classical radius RH is thus replaced by the expected value of the operator ˆRH. From the uncertainty +of the expectation value, it follows that the radius will necessarily be “fuzzy”, similar to the position of the source +itself. The next aspect one has to approach to establish a criterion for deciding if a mass distribution does or does +not form a black hole is if it lies inside its horizon of radius r = rH. From quantum mechanics, one finds that it is +given by the product +P<(r < rH) = PS(r < rH)PH(rH), +(25) + +5 +where the first term, +PS(r < rH) = 4π +� rH +0 +|ψS(r)|2r2dr, +(26) +is the probability that the particle resides inside the sphere of radius r = rH, while the second term, +PH(rH) = 4πr2 +H|ψH(rH)|2 +(27) +is the probability density that the value of the gravitational radius is rH. Finally, the probability that the particle +described by the wave function ψS is a BH will be given by the integral of (25) over all possible values of the horizon +radius rH. Namely, +PBH = +� ∞ +0 +P<(r < rH)drH, +(28) +which is one of the main outcomes of the formalism. +A. +Gaussian Sources +The previous construction can be made explicit by applying the Gaussian model for the wave function. To implement +this idea, let us recall that spectral decomposition is also assumed to be valid for momentum. Therefore, from (20), +⟨p |ψS⟩ = C(p) ≡ ψH(p). The Gaussian wave function for ψS scales as r2 in the position space and leads to a Gaussian +wave function in the momentum space, scaling as p2, naturally. Finally, since the dispersion relation relates p2 with +energy, we are able to have ⟨p |ψS⟩ = ψH(rH) via (22). Hence, starting with a Gaussian wave function, we can describe +a spherically symmetric massive particle at rest, such as +ψS(r) = +e− r2 +2 l2 +(l √π)3/2 . +(29) +The corresponding function in momentum space is thus given by +˜ψS(p) = 4π +� ∞ +0 +sin(rp) +√ +8π3rp +e− r2 +2 l2 +(l √π)3/2 r2dr += +e− +p2 +2 ∆2 +(∆ √π)3/2 , +(30) +where ∆ = mp lp/l is the spread of the wave packet in momentum space, whose width l the Compton length of the +particle should diminish, +l ≥ λm ∼ mp lp +m +. +(31) +In addition to the straightforward handling of a Gaussian wave packet, it is also relevant to recall that the Gaussian +wave function leads to a minimal uncertainty for the expected values computed with it. Had we used another wave +function, it would certainly imply a worsening uncertainty, eventually leading to unnecessary extra difficulties relating +to the HQM and GUP (see next section). Back to our problem, assuming the relativistic mass-shell relation in flat +space [48] +p2 = E2 − m2 , +(32) +the energy E of the particle is expressed in terms of the related horizon radius rH = RH(E), following from Equation +(16), +E = αmpℓe2 + +� +α − e2� +mprH +2 (2 α − e2)lp +. +(33) + +6 +Thus, from Equations (30) and (33), one finds the the horizon wave function of the hairy black hole +ψH(rH) = NHΘ(rH − RH) e(C2r2 +H+C1rH+C0), +where +C0 = − α2l2m2 +pℓ2e4 +8 (2 α − e2)2l2p +, +C1 = − +� +α − e2� +αl2m2 +pℓe2 +4 (2 α − e2)2l2p +, +C2 = − +� +α − e2�2l2m2 +p +8 (2 α − e2)2l2p +. +(34) +The Heaviside step function Θ appears above due to the imposition E ≥ m. The normalisation factor NH is fixed +according to +N −2 +H += 4π +� ∞ +0 +|ψH(rH)|2 r2 +H drH. +The normalized horizon wave function is thus given as follows +ψH(rH) = − +2 C +3 +2 +2 e +A(rH ) +2 +√π +� +4 C1C2eA(RH) − +� +2 +√ +2C2Γ +� 3 +2 , −A(RH) +� ++ +√ +2πC2 +1 +� +erf +� √ +2(2 C2RH+C1) +2 √−C2 +� +− 1 +��√−C2 +, +(35) +A(x) = 4 C2 +2x2 + 4 C1C2x + C2 +1 +2 C2 +. +Here, Γ(s, x) denotes the upper incomplete Euler–Gamma function and erf(x) the error function. The expression above +has two classes of parameters. Two of these, α and ℓ, are related to the hairy black hole, and two are non-fixed a priori: +the particle mass m, encoded in RH, and the Gaussian width l. The resulting probability PBH = PBH(l, m, ℓ, α) will +also depend on the same parameters. +According to the previous discussion, before finding the probability distribution, we have first to find the probability +that the particle resides inside a sphere with the radius r = rH. From Equations (26) and (29), one obtains +PS(r < rH) = 4π +� rH +0 +|ψS(r)|2r2dr = +2 +√π γ +�3 +2, r2 +H +l2 +� +, +with γ(s, x) = Γ(s) − Γ(s, x), the lower incomplete Gamma function. +Equations (27) and (35) yield PH(rH), as +depicted in Figure 2. +0 +1 +2 +3 +4 +5 +mprH +lpm +0 +1 +PH(rH) +l = 0.50 +l = 1.0 +l = 1.5 +l = 2.0 +FIG. 2: The probability density for the value of the gravitational radius is rH for α = ℓ/(GM) = 0.5 and different values of +the Gaussian width. +Combining the previous results, one finds that the probability density for the particle resides within its own +gravitational radius +P<(r < rH) = 8√πγ +�3 +2, r2 +H +l2 +� +r2 +H|ψH(rH)|2. + +7 +The probability of the particle described by the Gaussian to be a black hole is finally given by +PBH(l, m, ℓ, α) = 8√π +� ∞ +RH +γ +�3 +2, r2 +H +l2 +� +r2 +H|ψH(rH)|2, +(36) +which has to be calculated numerically. Assuming the Gaussian width has the same order as the particle Compton +length, we could set l ∼ m−1 on Equation (36) and find the probability depending on either l or m. On the other +hand, by departing again from Equation (31), we may set values for m in terms of the Planck mass and find the +probability in this scenario. Applying l ∼ m−1 yields +PBH(l, ℓ, α) = 8√π +� ∞ +RH +γ +�3 +2, r2 +H +l2 +� +r2 +H|ψH(rH)|2, +(37) +or +PBH(m, ℓ, α) = 8√π +� ∞ +RH +γ +�3 +2, r2 +Hm2 +� +r2 +H|ψH(rH)|2. +(38) +The resulting probabilities are shown in Figure 3 below. Figure 4 displays the probability for m given as a fraction of +the Planck mass. +0 +1 +2 +3 +4 +5 +l +lp +0 +1 +PBH +ℓmp +lpm = α = 0.00 +ℓmp +lpm = α = 0.30 +ℓmp +lpm = α = 0.60 +ℓmp +lpm = α = 0.90 +1 +2 +m +mp +0 +1 +PBH +ℓmp +lpm = α = 0.00 +ℓmp +lpm = α = 0.30 +ℓmp +lpm = α = 0.60 +ℓmp +lpm = α = 0.90 +FIG. 3: The probability of a ”particle” being a black hole depending on the Gaussian width or mass, assuming l ∼ m−1. +1 +2 +3 +4 +5 +l +lp +0 +1 +PBH +ℓmp +lpm = α = 0.00 +ℓmp +lpm = α = 0.30 +ℓmp +lpm = α = 0.60 +ℓmp +lpm = α = 0.90 +FIG. 4: The probability of a ”particle” being a black hole depending on the Gaussian width and mass m given as a fraction of +the Planck mass, with m = mp (solid), m = 3mp/4 (dashed), and m = mp/2 (dotted). + +8 +B. +HQM and GUP +Since the horizon quantum mechanics formalism applies the standard wave function description for particles, a +natural question is whether it affects the Heisenberg uncertainty principle. As mentioned, it produces a GUP similar +to that produced by Equation (1). In quantum mechanics, the uncertainty principle may be derived by calculating +the uncertainty associated with the wave function. Here, we start from the same point. From the Gaussian wave +function (29), the particle size uncertainty is given by +∆r2 +0 = ⟨r2⟩ − ⟨r⟩2 += 4π +� ∞ +0 +|ψS(r)|2r4dr − +� +4π +� ∞ +0 +|ψS(r)|2r3dr +�2 += 3π − 8 +2π +l2. +(39) +One might find the uncertainty of the horizon radius in an analogous way,1 +∆r2 +H = ⟨r2 +H⟩ − ⟨rH⟩2. +(40) +The total radial uncertainty can now be taken as a linear combination of the quantities calculated above, ∆r = +∆r0 + ϵ∆rH. For the uncertainty in momentum, we have +∆p2 = ⟨p2⟩ − ⟨p⟩2 = 3π − 8 +2π +m2 +pl2 +p +l2 +. +Note that the momentum uncertainty and the width l are related such that ∆p ∼ 1/l. Using this fact in ∆r = +∆r0 + ϵ∆rH, one is able to find +∆r +lp += 3π − 8 +2π +mp +∆p + ϵ∆H +�∆p +mp +� +, +(41) +which is similar to the GUP discussed previously. The function ∆H also depends on the wave function and hairy black +hole parameters. Figure 5 shows the behavior of the GUP as a function of the momentum uncertainty, taking ϵ = 1. +There, we can see a minimum ∆r placed around the Planck scale. From the GUP expression, it is straightforward +to see that a larger ϵ means significant correction to the quantum mechanics’ uncertainty. The hairy parameters, +however, have a small qualitative effect on fixing the minimum scale. As shown in Figure 5, their effects become +prominent for a large ∆p. +1 +2 +∆p +mp +1 +2 +∆r +lp +ℓmp +lpm = α = 0.00 +ℓmp +lpm = α = 0.30 +ℓmp +lpm = α = 0.60 +ℓmp +lpm = α = 0.90 +FIG. 5: GUP profile emerged from the horizon wave function formalism for ϵ = 1. The dotted line represents the particle size +uncertainty ∆r0, the dashed line represents the uncertainty of the horizon radius ∆rH, and the solid lines describe the GUP. +1 The analytical expression of ∆r2 +H is huge and little enlightening. + +9 +IV. +DISCUSSION +A few years ago, effective theories suggested lowering the scale of quantum black hole formation to TeV. Thus, in +principle, it became experimentally accessible. In spite of no quantum black holes being detected, solid theoretical +results point out that such objects should exist in nature [7, 14]. They could give us valuable hints about quantum +gravity features [7, 13, 14]. One of this paper’s motivating questions was whether a generic black hole hair could +significantly change the scale of quantum black hole formation. However, regarding the analysis carried out here, the +hairy black holes look qualitatively similar to the Schwarzschild one, with a probability PBH of a similar shape and a +related GUP, leading to the existence of a minimum length scale. Nevertheless, one of the main results of the present +paper is that the existence of hair increases the probability PBH. This is indeed a point to be stressed. Its explanation +rests upon the fact that the hairy black hole radius is slightly larger than the one for Schwarzschild. This implies +that, although the scale of quantum black hole formation is still beyond the current experimental scale, additional +fields may lower such scale. Those results might impact future colliders’ estimations of quantum black holes coming +from alternative theories of gravity and potentially stimulate investigations of specific models of quantum hairy black +holes [17]. +Acknowledgements +R.T.C. thanks Unesp—AGRUP for the financial support. J.M.H.d.S. thanks CNPq (grant No. 303561/2018-1) for +the financial support. +[1] Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics, +Cambridge University Press: Cambridge, UK, 2011. https://doi.org/10.1017/CBO9780511524646. +[2] Chandrasekhar, +S. +The +Mathematical +Theory +of +Black +Holes. +Fundam. +Theor. +Phys. +1984, +9, +5–26. +https://doi.org/10.1007/978-94-009-6469-3 2. +[3] Frolov, V.P.; Novikov, I.D., Eds. Black Hole Physics: Basic Concepts and New Developments; Kluwer Academic Publishers: +Dordrecht, The Netherlands, 1998. https://doi.org/10.1007/978-94-011-5139-9. +[4] Abbott, B.P.; et al. +Observation of Gravitational Waves from a Binary Black Hole Merger. +Phys. Rev. Lett. 2016, +116, 061102, https://doi.org/10.1103/PhysRevLett.116.061102. +[5] Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. Living Rev. Relativ. 2019, 22, 4, +https://doi.org/10.1007/s41114-019-0020-4. +[6] Barack, L.; et al. Black holes, gravitational waves and fundamental physics: A roadmap. Class. Quant. Grav. 2019, +36, 143001, https://doi.org/10.1088/1361-6382/ab0587. +[7] Calmet, +X., +Ed. +Quantum +Aspects +of +Black +Holes; +Springer: +Berlin/Heidelberg, +Germany, +2015. +https://doi.org/10.1007/978-3-319-10852-0. +[8] Wald, +R.M. +General +Relativity; +Chicago +Univ. +Pr.: +Chicago, +IL, +USA, +1984. +https://doi.org/10.7208/chicago/9780226870373.001.0001. +[9] Faraoni, V. Cosmological and Black Hole Apparent Horizons; Springer: Berlin/Heidelberg, Germany, 2015; Volume 907. +https://doi.org/10.1007/978-3-319-19240-6. +[10] Ashtekar, +A.; +Krishnan, +B. +Dynamical +horizons +and +their +properties. +Phys. Rev. D +2003, +68, +104030, +https://doi.org/10.1103/ PhysRevD.68.104030. +[11] Ashtekar, A.; Galloway, G.J. Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 2005, 9, 1–30, +https://doi.org/10.4310/ATMP.2005.v9.n1.a1. +[12] Gourgoulhon, E.; Jaramillo, J.L. +New theoretical approaches to black holes. +New Astron. Rev. 2008, 51, 791–798, +https://doi.org/10.1016/j.newar.2008.03.026. +[13] Calmet, X.; Casadio, R. +What is the final state of a black hole merger? +Mod. Phys. Lett. A 2018, 33, 1850124, +https://doi.org/10.1142/S0217732318501249. +[14] Calmet, X.; Kuipers, F. Black holes in quantum gravity. Nuovo Cim. C 2022, 45, 37, https://doi.org/10.1393/ncc/i2022- +22037-4. +[15] Casadio, +R.; +Orlandi, +A. +Quantum +Harmonic +Black +Holes. +JHEP +2013, +08, +025, +https://doi.org/10.1007/JHEP08(2013)025. +[16] Casadio, R.; Giugno, A.; Micu, O.; Orlandi, A. Black holes as self-sustained quantum states, and Hawking radiation. +Phys. Rev. D 2014, 90, 084040, https://doi.org/10.1103/PhysRevD.90.084040. +[17] Calmet, X.; Casadio, R.; Hsu, S.D.H.; Kuipers, F. Quantum Hair from Gravity. Phys. Rev. Lett. 2022, 128, 111301, +https://doi.org/10.1103/PhysRevLett.128.111301. +[18] Will, C.M. +The Confrontation between General Relativity and Experiment. +Living Rev. Relativ. 2014, 17, 4, +https://doi.org/ 10.12942/lrr-2014-4. + +10 +[19] Berti, E.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav. +2015, 32, 243001, https://doi.org/10.1088/0264-9381/32/24/243001. +[20] Kanti, P.; Bakopoulos, A.; Pappas, N. Scalar-Gauss-Bonnet Theories: Evasion of No-Hair Theorems and novel black-hole +solutions. PoS 2019, CORFU2018, 091. https://doi.org/10.22323/1.347.0091. +[21] Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity: An explicit example. Phys. Rev. D 2014, +90, 124063, https://doi.org/10.1103/PhysRevD.90.124063. +[22] Cavalcanti, R.T.; Alves, K.d.S.; Hoff da Silva, J.M. Near-Horizon Thermodynamics of Hairy Black Holes from Gravitational +Decoupling. Universe 2022, 8, 363, https://doi.org/10.3390/universe8070363. +[23] Casadio, R.; Cavalcanti, R.T.; Giugno, A.; Mureika, J. Horizon of quantum black holes in various dimensions. Phys. Lett. +B 2016, 760, 36–44, https://doi.org/10.1016/j.physletb.2016.06.042. +[24] Arsene, N.; Casadio, R.; Micu, O. +Quantum production of black holes at colliders. +Eur. Phys. J. C 2016, 76, 384, +https://doi.org/10.1140/epjc/s10052-016-4228-0. +[25] Ovalle, J. Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids. Phys. Rev. D 2017, +95, 104019, https://doi.org/10.1103/PhysRevD.95.104019. +[26] Ovalle, J. Decoupling gravitational sources in general relativity: The extended case. Phys. Lett. B 2019, 788, 213–218, +https://doi.org/10.1016/j.physletb.2018.11.029. +[27] Ovalle, J.; Casadio, R.; Contreras, E.; Sotomayor, A. Hairy black holes by gravitational decoupling. Phys. Dark Univ. +2021, 31, 100744, https://doi.org/10.1016/j.dark.2020.100744. +[28] da Rocha, R.a. MGD Dirac stars. Symmetry 2020, 12, 508, https://doi.org/10.3390/sym12040508. +[29] Tello-Ortiz, F.; Malaver, M.; Rinc´on, A.; Gomez-Leyton, Y. Relativistic anisotropic fluid spheres satisfying a non-linear +equation of state. Eur. Phys. J. C 2020, 80, 371, https://doi.org/10.1140/epjc/s10052-020-7956-0. +[30] da Rocha, R. Minimal geometric deformation of Yang-Mills-Dirac stellar configurations. Phys. Rev. D 2020, 102, 024011, +https://doi.org/10.1103/PhysRevD.102.024011. +[31] Fernandes-Silva, A.; Ferreira-Martins, A.J.; da Rocha, R. Extended quantum portrait of MGD black holes and information +entropy. Phys. Lett. B 2019, 791, 323–330, https://doi.org/10.1016/j.physletb.2019.03.010. +[32] da +Rocha, +R. +Dark +SU(N) +glueball +stars +on +fluid +branes. +Phys. +Rev. +D +2017, +95, +124017, +https://doi.org/10.1103/PhysRevD.95.124017. +[33] Da Rocha, R.; Tomaz, A.A. Holographic entanglement entropy under the minimal geometric deformation and extensions. +Eur. Phys. J. C 2019, 79, 1035, https://doi.org/10.1140/epjc/s10052-019-7558-x. +[34] Ovalle, J.; Contreras, E.; Stuchlik, Z. +Kerr–de Sitter black hole revisited. +Phys. Rev. D 2021, 103, 084016, +https://doi.org/10.1103/ PhysRevD.103.084016. +[35] Meert, P.; da Rocha, R. Gravitational decoupling, hairy black holes and conformal anomalies. Eur. Phys. J. C 2022, +82, 175, https://doi.org/10.1140/epjc/s10052-022-10121-6. +[36] Cavalcanti, R.T.; de Paiva, R.C.; da Rocha, R. Echoes of the gravitational decoupling: Scalar perturbations and quasinor- +mal modes of hairy black holes. Eur. Phys. J. Plus 2022, 137, 1185, https://doi.org/10.1140/epjp/s13360-022-03407-x. +[37] Gross, +D.J.; +Mende, +P.F. +String Theory Beyond the Planck Scale. +Nucl. Phys. B 1988, +303, 407–454. +https://doi.org/10.1016/0550-3213(88)90390-2. +[38] Konishi, K.; Paffuti, G.; Provero, P. +Minimum Physical Length and the Generalized Uncertainty Principle in String +Theory. Phys. Lett. B 1990, 234, 276–284. https://doi.org/10.1016/0370-2693(90)91927-4. +[39] Amati, D.; Ciafaloni, M.; Veneziano, G. Can Space-Time Be Probed Below the String Size? Phys. Lett. B 1989, 216, 41–47. +https://doi.org/10.1016/0370-2693(89)91366-X. +[40] Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, 442, 593–622; Erratum +in Nucl. Phys. B 1995, 456, 753–754, https://doi.org/10.1016/0550-3213(95)00150-Q. +[41] Scardigli, F. Generalized uncertainty principle in quantum gravity from micro - black hole Gedanken experiment. Phys. +Lett. B 1999, 452, 39–44, https://doi.org/10.1016/S0370-2693(99)00167-7. +[42] Maggiore, +M. +A Generalized uncertainty principle in quantum gravity. +Phys. Lett. B 1993, +304, 65–69, +https://doi.org/10.1016/0370-2693(93)91401-8. +[43] Hossenfelder, +S. +Minimal Length Scale Scenarios for Quantum Gravity. +Living Rev. Relativ. 2013, +16, 2, +https://doi.org/10.12942/lrr-2013-2. +[44] Casadio, R.; Micu, O.; Nicolini, P. Minimum length effects in black hole physics. Fundam. Theor. Phys. 2015, 178, 293–322, +https://doi.org/10.1007/978-3-319-10852-0 10. +[45] Sprenger, M.; Nicolini, P.; Bleicher, M. Physics on Smallest Scales—An Introduction to Minimal Length Phenomenology. +Eur. J. Phys. 2012, 33, 853–862, https://doi.org/10.1088/0143-0807/33/4/853. +[46] Tawfik, A.N.; Diab, A.M. +Review on Generalized Uncertainty Principle. +Rept. Prog. Phys. 2015, 78, 126001, +https://doi.org/ 10.1088/0034-4885/78/12/126001. +[47] Casadio, R.; Giugno, A.; Micu, O. Horizon quantum mechanics: A hitchhiker’s guide to quantum black holes. Int. J. Mod. +Phys. D 2016, 25, 1630006, https://doi.org/10.1142/S0218271816300068. +[48] Casadio, R. Localised particles and fuzzy horizons: A tool for probing Quantum Black Holes. arXiv 2013, arXiv:1305.3195. +[49] Casadio, R.; Giugno, A.; Giusti, A.; Lenzi, M. Quantum Formation of Primordial Black holes. Gen. Relativ. Grav. 2019, +51, 103, https://doi.org/10.1007/s10714-019-2587-1. +[50] Casadio, +R.; +Micu, +O. +Horizon Quantum Mechanics of collapsing shells. +Eur. Phys. J. C 2018, +78, 852, +https://doi.org/10.1140/ epjc/s10052-018-6326-7. +[51] Casadio, R.; Giugno, A.; Giusti, A. Global and Local Horizon Quantum Mechanics. Gen. Relativ. Grav. 2017, 49, 32, +https://doi.org/10.1007/s10714-017-2198-7. + diff --git a/CdAyT4oBgHgl3EQfePjS/content/tmp_files/load_file.txt b/CdAyT4oBgHgl3EQfePjS/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c3dc0ef8cd60d0be8da3407cb7a39eab3b64e36e --- /dev/null +++ b/CdAyT4oBgHgl3EQfePjS/content/tmp_files/load_file.txt @@ -0,0 +1,793 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf,len=792 +page_content='Quantum Hairy Black Hole Formation and Horizon Quantum Mechanics R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Cavalcanti∗ and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Hoff da Silva† Departamento de F´ısica, Universidade Estadual Paulista (Unesp), Guaratinguet´a 12516-410, Brazil After introducing the gravitational decoupling method and the hairy black hole recently derived from it, we investigate the formation of quantum hairy black holes by applying the horizon quan- tum mechanics formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' It enables us to determine how external fields, characterized by hairy parameters, affect the probability of spherically symmetric black hole formation and the generalized uncertainty principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' INTRODUCTION Given their intrinsic connection with intense gravitational fields, solid theoretical basis [1–3], and several observa- tional results corroborating their existences, black holes play a central role in contemporary high-energy physics and astrophysics [4–7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Despite the characterization of the horizon of stationary black hole solutions being well-known within general relativity [3, 8], the nature of the horizons of non-stationary or stationary solutions beyond general relativity is still a source of extensive research [9–12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The investigation of black holes is not restricted to astrophysical objects;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' they are also expected to be formed whenever a high concentration of energy is confined to a small region of spacetime, producing so-called quantum black holes [7, 13–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' However, the precise formation mechanism of classical and quantum black holes is still unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Although we do not have a theory of quantum gravity, phenomenology suggests that some features of quantum black holes are expected to be model-independent [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From a certain scale, candidate theories should modify the results of general relativity, giving birth to some alternatives to Einsteins’s theory of gravity [18, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Examples could allow for the presence of non-minimal coupled fundamental fields or higher derivative terms during the action, which directly affects the uniqueness theorems of black holes in general relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The famous no-hair theorem is not preserved outside the general relativity realm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' These solutions lead to effects that are potentially detectable near the horizon of astrophysical black holes [20–22], or in quantum black holes’ formation [23, 24], and may provide hints for the quantum path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' One of the major challenges in general relativity is finding physically relevant solutions to Einstein’s field equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' On the other hand, deriving new solutions from other previously known ones is a widespread technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' This approach is precisely what the so-called gravitational decoupling (GD) method intends to achieve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' It has recently commanded the community’s attention due to its simplicity and effectiveness [25–27] in generating new, exact analytical solutions by considering additional sources to the stress-energy tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The recent description of anisotropic stellar distribu- tions [28, 29], whose predictions might be tested in astrophysical observations [30–33], as well as the hairy black hole solutions by gravitational decoupling, are particularly interesting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The latter describes a black hole with hair sourced by generic fields, possibly of quantum nature, surrounding the vacuum Schwarzschild solution [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Exciting results have been found during investigation of this solution [34–36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From the quantum side, one of the key features of quantum gravity phenomenology is the generalized uncertainty principle (GUP), which modifies the Heisenberg uncertainty principle accordingly ∆x∆p ≳ ℏ � 1 + ϵ(∆p)2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (1) This expression of the GUP, which stems from different approaches to quantum gravity [37–46], characterizes a minimum scale length ∆x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' This feature emerges quite naturally in the horizon quantum mechanics formalism (HQM) [16, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In addition to the GUP, HQM also provides an estimation of the probability of quantum black hole formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In a scenario of extra-dimensional spacetimes, the HQM gave an explanation for the null results of quantum black hole formation in current colliders [23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Could it also tell us something about a mechanism for decreasing the fundamental scale to something near the scale of current colliders?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Our aim is to investigate the quantitative and qualitative effects of black hole hair, regarding the probability of black hole formation and the GUP by applying the horizon quantum mechanics formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' This paper is organized as follows: Section II is dedicated to reviewing the gravitational decoupling procedure, the metric for GD hairy black holes, and an approximation for the horizon radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In Section III, we apply the horizon ∗Electronic address: rogerio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='cavalcanti@unesp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='br †Electronic address: julio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='hoff@unesp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='br arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='00319v1 [gr-qc] 1 Jan 2023 2 quantum mechanics formalism to the hairy black hole solution of the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' We compare the probability of quantum black hole formation and the GUPs of hairy black holes for a range of hair parameters, unveiling the effects of the hair fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Finally, Section IV is dedicated to conclusions and discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' HAIRY BLACK HOLES AND HORIZON RADIUS Starting from Einstein’s field equations Gµν = 8π ˇTµν, (2) where Gµν = Rµν − 1 2Rgµν denotes the Einstein tensor, the gravitational decoupling (GD) [25] method takes the energy–momentum tensor decomposed as ˇTµν = Tµν + Θµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (3) Here, Tµν is the source of a known solution to general relativity, while Θµν introduces a new field or extension of the gravitational sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From ∇µ Gµν = 0, we also have ∇µ ˇT µν = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The effective density and the tangential and radial pressures can be determined by examining the field equations ˇρ = ρ + Θ 0 0 , (4a) ˇpt = p − Θ 2 2 , (4b) ˇpr = p − Θ 1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (4c) The idea is to deform a known solution to split the field equations in a sector containing the known solution with source Tµν and a decoupled one governing the deformation, encompassing Θµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In fact,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' assuming a known spherically symmetric metric,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ds2 = −eκ(r)dt2 + eζ(r)dr2 + r2dΩ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (5) and deforming κ(r) and ζ(r) as κ(r) �→ κ(r) + αf2(r),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (6a) e−ζ(r) �→ e−ζ(r) + αf1(r),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (6b) the resulting decoupled field equations read 8π Θ 0 0 = α �f1 r2 + f ′ 1 r � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (7a) 8π Θ 1 1 − α e−ζ f ′ 2 r = α f1 � 1 r2 + κ′(r) + αf ′ 2(r) r � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (7b) 8πΘ 2 2 −αf1Z1(r) =αf ′ 1 4 � κ′(r) + αf ′ 2(r)+ 2 r � +αZ2(r),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (7c) where [25] Z1(r) = α2f ′ 2 (r)2 + 2 α � f ′ 2 (r) κ′ (r) + f ′ 2 (r) r + f ′′ 2 (r) � + κ′ (r)2 + 2 κ′ (r) r + 2 κ′′ (r) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (8a) Z2(r) = αe−ζ � 2f ′′ 2 + f 2′ 2 + 2f ′ 2 r + 2κ′f ′ 2 − ζ′f ′ 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (8b) The above equations state that if the deformation parameter α goes to zero, then Θµν must go to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' It is worth mentioning that for extended geometric deformation, that is, for f2 ̸= 0, the sources are not individually conserved in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' However, as discussed in [26], in this case, the decoupling of the field equations without an exchange of energy is allowed in two scenarios: (a) when Tµν is a barotropic fluid whose equation of state is T00 = T11 or (b) for vacuum regions of the first system Tµν = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' When minimal geometric deformation is applied, on the other hand, the sources are shown to be individually conserved [25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Assuming the Schwarzschild solution to be the known one and requiring a well-defined horizon structure [27], from grr = − 1 gtt follows � 1 − 2M r � � eαf2(r) − 1 � = αf1(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (9) 3 Therefore, one is able to write ds2 = − � 1 − 2M r � eαf2(r)dt2+ � 1 − 2M r �−1 e−α f2(r)dr2 + r2 dΩ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (10) Further, assuming strong energy conditions, ˇρ + ˇpr + 2 ˇpt ≥ 0, (11a) ˇρ + ˇpr ≥ 0, (11b) ˇρ + ˇpt ≥ 0, (11c) and managing the field equations, a new hairy black hole solution was found [27] ds2 = −f(r)dt2 + 1 f(r)dr2 + r2dΩ2, (12) where f(r) = 1 − 2GM + αℓ r + αe− r GM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (13) The dimensionless parameter 0 ≤ α ≤ 1 tracks the deformation of the Schwarzschild black hole, e is the Euler constant, and ℓ is the direct effect of the nonvanishing additional font Θµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Notice that by taking α = 0, the Schwarzschild solution is restored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Further, the ℓ parameter is limited to 2GM/e2 ≤ ℓ ≤ 1 due to the assumption of a strong energy condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In extreme cases, ℓ = 2GM/e2 and fe(r) = 1 − 2GM r + α � e− r GM − 2GM e2 r � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (14) The hairy black hole has a single horizon, located at r = rH, such that � 1 + αe− rH GM � rH = 2GM + αℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (15) Such an equation has no analytical solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nevertheless, a very accurate analytical approximation is found by Taylor expanding it around the Schwarzschild horizon radius rS = 2GM, rH GM ≈ 4 � αℓe2/GM − 3 α + e2� αℓe2/GM − 4 α + 2 e2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (16) Figure 1 shows a comparison between the exact and approximated horizon radii for different values of the hairy parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In the following section, we are going to use Equation (16) for the analytical expression of the hairy black hole’s horizon radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='0 ℓ GM 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='8 rH GM α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='00 α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='20 α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='40 α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='60 α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='80 α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='0 Exact FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 1: The radius of the hairy black hole horizon rH as a function of ℓ for different values of the parameter α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The colored dashed lines represent the approximated radius, and the gray lines are the exact ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' It shows how the hairy horizon deviates from the Schwarzschild horizon for an increasing α and ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The ranges for α and ℓ were fixed due to the assumption of a strong energy condition [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 4 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' THE HORIZON QUANTUM MECHANICS FORMALISM Horizon quantum mechanics (also known as horizon wave function formalism) is an effective approach capable of providing the signatures of black hole physics to the Planck scale [48–51] (see [47] for a comprehensive review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The main idea is to extend quantum mechanics and gravity further than the current experimental limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In such an approach, we face the conceptual challenge of consistently describing classical and quantum mechanical objects, such as horizons and particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' This is achieved by assigning wave functions to the quantum black hole horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' This association allows the use of quantum mechanical machinery to distinguish between particles and quantum black holes and to estimate the GUPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nevertheless, first, we must choose a model describing the particle wave function to derive the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Due to the previous results’ simplicity and efficiency, we shall use the Gaussian model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From classical general relativity, we know that the horizons of black holes are described by trapping surfaces, whose locations are determined by gij∇ir∇jr = 0 , (17) where ∇ir is orthogonal to the surfaces of the constant area A = 4πr2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' A trapping surface then exists if there are values of r and t such that the gravitational radius RH satisfies RH(r, t) ≥ r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (18) Considering a spinless point-particle of mass m, an uncertainty in the spatial particle localization of the same order of the Compton scale λm ≃ ℏ/m = lp mp/m follows from the uncertainty principle, where lp and mp are the Planck length and mass, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Arguing that quantum mechanics gives a more precise description of physics, RH makes sense only if it is larger than the Compton wavelength associated with the same mass, namely RH ≳ λm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Thus, for the Schwarzschild radius RS = 2Gm = 2 lp mp m, lp m/mp ≳ lp mp/m =⇒ m ≳ mp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (19) This suggests that the Planck mass is the minimum mass such that the Schwarzchild radius can be defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From quantum mechanics, the spectral decomposition of a spherically symmetric matter distribution is given by the expression |ψS⟩ = � E C(E) |ψE⟩ , (20) with the usual eigenfunction equation ˆH |ψE⟩ = E |ψE⟩ , (21) regardless of the specific form of the actual Hamiltonian operator ˆH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Using the energy spectrum and inverting the expression of the Schwarzschild radius, we have E = mp rH 2lp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (22) Putting it back into the wave function, one can define the (unnormalized) horizon wave function as ψH(rH) = C � mp rH 2lp � (23) whose normalization is fixed, as usual, by the inner product ⟨ψH | φH⟩ = 4π � ∞ 0 ψ∗ H(rH)φH(rH)r2 HdrH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (24) However, the classical radius RH is thus replaced by the expected value of the operator ˆRH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From the uncertainty of the expectation value, it follows that the radius will necessarily be “fuzzy”, similar to the position of the source itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The next aspect one has to approach to establish a criterion for deciding if a mass distribution does or does not form a black hole is if it lies inside its horizon of radius r = rH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From quantum mechanics, one finds that it is given by the product P<(r < rH) = PS(r < rH)PH(rH), (25) 5 where the first term, PS(r < rH) = 4π � rH 0 |ψS(r)|2r2dr, (26) is the probability that the particle resides inside the sphere of radius r = rH, while the second term, PH(rH) = 4πr2 H|ψH(rH)|2 (27) is the probability density that the value of the gravitational radius is rH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Finally, the probability that the particle described by the wave function ψS is a BH will be given by the integral of (25) over all possible values of the horizon radius rH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Namely, PBH = � ∞ 0 P<(r < rH)drH, (28) which is one of the main outcomes of the formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Gaussian Sources The previous construction can be made explicit by applying the Gaussian model for the wave function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' To implement this idea, let us recall that spectral decomposition is also assumed to be valid for momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Therefore, from (20), ⟨p |ψS⟩ = C(p) ≡ ψH(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The Gaussian wave function for ψS scales as r2 in the position space and leads to a Gaussian wave function in the momentum space, scaling as p2, naturally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Finally, since the dispersion relation relates p2 with energy, we are able to have ⟨p |ψS⟩ = ψH(rH) via (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Hence, starting with a Gaussian wave function, we can describe a spherically symmetric massive particle at rest, such as ψS(r) = e− r2 2 l2 (l √π)3/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (29) The corresponding function in momentum space is thus given by ˜ψS(p) = 4π � ∞ 0 sin(rp) √ 8π3rp e− r2 2 l2 (l √π)3/2 r2dr = e− p2 2 ∆2 (∆ √π)3/2 , (30) where ∆ = mp lp/l is the spread of the wave packet in momentum space, whose width l the Compton length of the particle should diminish, l ≥ λm ∼ mp lp m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (31) In addition to the straightforward handling of a Gaussian wave packet, it is also relevant to recall that the Gaussian wave function leads to a minimal uncertainty for the expected values computed with it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Had we used another wave function, it would certainly imply a worsening uncertainty, eventually leading to unnecessary extra difficulties relating to the HQM and GUP (see next section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Back to our problem, assuming the relativistic mass-shell relation in flat space [48] p2 = E2 − m2 , (32) the energy E of the particle is expressed in terms of the related horizon radius rH = RH(E), following from Equation (16), E = αmpℓe2 + � α − e2� mprH 2 (2 α − e2)lp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (33) 6 Thus, from Equations (30) and (33), one finds the the horizon wave function of the hairy black hole ψH(rH) = NHΘ(rH − RH) e(C2r2 H+C1rH+C0), where C0 = − α2l2m2 pℓ2e4 8 (2 α − e2)2l2p , C1 = − � α − e2� αl2m2 pℓe2 4 (2 α − e2)2l2p , C2 = − � α − e2�2l2m2 p 8 (2 α − e2)2l2p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (34) The Heaviside step function Θ appears above due to the imposition E ≥ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The normalisation factor NH is fixed according to N −2 H = 4π � ∞ 0 |ψH(rH)|2 r2 H drH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The normalized horizon wave function is thus given as follows ψH(rH) = − 2 C 3 2 2 e A(rH ) 2 √π � 4 C1C2eA(RH) − � 2 √ 2C2Γ � 3 2 , −A(RH) � + √ 2πC2 1 � erf � √ 2(2 C2RH+C1) 2 √−C2 � − 1 ��√−C2 , (35) A(x) = 4 C2 2x2 + 4 C1C2x + C2 1 2 C2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Here, Γ(s, x) denotes the upper incomplete Euler–Gamma function and erf(x) the error function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The expression above has two classes of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Two of these, α and ℓ, are related to the hairy black hole, and two are non-fixed a priori: the particle mass m, encoded in RH, and the Gaussian width l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The resulting probability PBH = PBH(l, m, ℓ, α) will also depend on the same parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' According to the previous discussion, before finding the probability distribution, we have first to find the probability that the particle resides inside a sphere with the radius r = rH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From Equations (26) and (29), one obtains PS(r < rH) = 4π � rH 0 |ψS(r)|2r2dr = 2 √π γ �3 2, r2 H l2 � , with γ(s, x) = Γ(s) − Γ(s, x), the lower incomplete Gamma function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Equations (27) and (35) yield PH(rH), as depicted in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 0 1 2 3 4 5 mprH lpm 0 1 PH(rH) l = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='50 l = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='0 l = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='5 l = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='0 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2: The probability density for the value of the gravitational radius is rH for α = ℓ/(GM) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='5 and different values of the Gaussian width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Combining the previous results, one finds that the probability density for the particle resides within its own gravitational radius P<(r < rH) = 8√πγ �3 2, r2 H l2 � r2 H|ψH(rH)|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 7 The probability of the particle described by the Gaussian to be a black hole is finally given by PBH(l, m, ℓ, α) = 8√π � ∞ RH γ �3 2, r2 H l2 � r2 H|ψH(rH)|2, (36) which has to be calculated numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Assuming the Gaussian width has the same order as the particle Compton length, we could set l ∼ m−1 on Equation (36) and find the probability depending on either l or m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' On the other hand, by departing again from Equation (31), we may set values for m in terms of the Planck mass and find the probability in this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Applying l ∼ m−1 yields PBH(l, ℓ, α) = 8√π � ∞ RH γ �3 2, r2 H l2 � r2 H|ψH(rH)|2, (37) or PBH(m, ℓ, α) = 8√π � ∞ RH γ �3 2, r2 Hm2 � r2 H|ψH(rH)|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (38) The resulting probabilities are shown in Figure 3 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Figure 4 displays the probability for m given as a fraction of the Planck mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 0 1 2 3 4 5 l lp 0 1 PBH ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='00 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='30 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='60 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='90 1 2 m mp 0 1 PBH ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='00 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='30 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='60 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='90 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 3: The probability of a ”particle” being a black hole depending on the Gaussian width or mass, assuming l ∼ m−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 1 2 3 4 5 l lp 0 1 PBH ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='00 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='30 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='60 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='90 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 4: The probability of a ”particle” being a black hole depending on the Gaussian width and mass m given as a fraction of the Planck mass, with m = mp (solid), m = 3mp/4 (dashed), and m = mp/2 (dotted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 8 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' HQM and GUP Since the horizon quantum mechanics formalism applies the standard wave function description for particles, a natural question is whether it affects the Heisenberg uncertainty principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' As mentioned, it produces a GUP similar to that produced by Equation (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In quantum mechanics, the uncertainty principle may be derived by calculating the uncertainty associated with the wave function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Here, we start from the same point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From the Gaussian wave function (29), the particle size uncertainty is given by ∆r2 0 = ⟨r2⟩ − ⟨r⟩2 = 4π � ∞ 0 |ψS(r)|2r4dr − � 4π � ∞ 0 |ψS(r)|2r3dr �2 = 3π − 8 2π l2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (39) One might find the uncertainty of the horizon radius in an analogous way,1 ∆r2 H = ⟨r2 H⟩ − ⟨rH⟩2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' (40) The total radial uncertainty can now be taken as a linear combination of the quantities calculated above, ∆r = ∆r0 + ϵ∆rH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' For the uncertainty in momentum, we have ∆p2 = ⟨p2⟩ − ⟨p⟩2 = 3π − 8 2π m2 pl2 p l2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Note that the momentum uncertainty and the width l are related such that ∆p ∼ 1/l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Using this fact in ∆r = ∆r0 + ϵ∆rH, one is able to find ∆r lp = 3π − 8 2π mp ∆p + ϵ∆H �∆p mp � , (41) which is similar to the GUP discussed previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The function ∆H also depends on the wave function and hairy black hole parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Figure 5 shows the behavior of the GUP as a function of the momentum uncertainty, taking ϵ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' There, we can see a minimum ∆r placed around the Planck scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' From the GUP expression, it is straightforward to see that a larger ϵ means significant correction to the quantum mechanics’ uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The hairy parameters, however, have a small qualitative effect on fixing the minimum scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' As shown in Figure 5, their effects become prominent for a large ∆p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 1 2 ∆p mp 1 2 ∆r lp ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='00 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='30 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='60 ℓmp lpm = α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='90 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 5: GUP profile emerged from the horizon wave function formalism for ϵ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The dotted line represents the particle size uncertainty ∆r0, the dashed line represents the uncertainty of the horizon radius ∆rH, and the solid lines describe the GUP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 1 The analytical expression of ∆r2 H is huge and little enlightening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 9 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' DISCUSSION A few years ago, effective theories suggested lowering the scale of quantum black hole formation to TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Thus, in principle, it became experimentally accessible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' In spite of no quantum black holes being detected, solid theoretical results point out that such objects should exist in nature [7, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' They could give us valuable hints about quantum gravity features [7, 13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' One of this paper’s motivating questions was whether a generic black hole hair could significantly change the scale of quantum black hole formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' However, regarding the analysis carried out here, the hairy black holes look qualitatively similar to the Schwarzschild one, with a probability PBH of a similar shape and a related GUP, leading to the existence of a minimum length scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nevertheless, one of the main results of the present paper is that the existence of hair increases the probability PBH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' This is indeed a point to be stressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Its explanation rests upon the fact that the hairy black hole radius is slightly larger than the one for Schwarzschild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' This implies that, although the scale of quantum black hole formation is still beyond the current experimental scale, additional fields may lower such scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Those results might impact future colliders’ estimations of quantum black holes coming from alternative theories of gravity and potentially stimulate investigations of specific models of quantum hairy black holes [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Acknowledgements R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' thanks Unesp—AGRUP for the financial support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' thanks CNPq (grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 303561/2018-1) for the financial support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [1] Hawking, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Ellis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The Large Scale Structure of Space-Time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1017/CBO9780511524646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [2] Chandrasekhar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The Mathematical Theory of Black Holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Fundam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 1984, 9, 5–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/978-94-009-6469-3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [3] Frolov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Novikov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=', Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Black Hole Physics: Basic Concepts and New Developments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/978-94-011-5139-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [4] Abbott, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Observation of Gravitational Waves from a Binary Black Hole Merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2016, 116, 061102, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='061102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [5] Cardoso, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Pani, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Testing the nature of dark compact objects: A status report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2019, 22, 4, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/s41114-019-0020-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [6] Barack, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Black holes, gravitational waves and fundamental physics: A roadmap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2019, 36, 143001, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1088/1361-6382/ab0587.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [7] Calmet, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=', Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Quantum Aspects of Black Holes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Springer: Berlin/Heidelberg, Germany, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/978-3-319-10852-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [8] Wald, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' General Relativity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Chicago Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Pr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' : Chicago, IL, USA, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='7208/chicago/9780226870373.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [9] Faraoni, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Cosmological and Black Hole Apparent Horizons;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Springer: Berlin/Heidelberg, Germany, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Volume 907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/978-3-319-19240-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [10] Ashtekar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Krishnan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Dynamical horizons and their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2003, 68, 104030, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/ PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='104030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [11] Ashtekar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Galloway, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Some uniqueness results for dynamical horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2005, 9, 1–30, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='4310/ATMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='v9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='n1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='a1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [12] Gourgoulhon, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Jaramillo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' New theoretical approaches to black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' New Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2008, 51, 791–798, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='newar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [13] Calmet, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' What is the final state of a black hole merger?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' A 2018, 33, 1850124, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1142/S0217732318501249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [14] Calmet, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Kuipers, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Black holes in quantum gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nuovo Cim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' C 2022, 45, 37, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1393/ncc/i2022- 22037-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [15] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Orlandi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Quantum Harmonic Black Holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' JHEP 2013, 08, 025, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/JHEP08(2013)025.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [16] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Giugno, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Micu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Orlandi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Black holes as self-sustained quantum states, and Hawking radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2014, 90, 084040, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='084040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [17] Calmet, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Hsu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Kuipers, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Quantum Hair from Gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2022, 128, 111301, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='111301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [18] Will, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' The Confrontation between General Relativity and Experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2014, 17, 4, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='12942/lrr-2014-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 10 [19] Berti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Testing General Relativity with Present and Future Astrophysical Observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2015, 32, 243001, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1088/0264-9381/32/24/243001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [20] Kanti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Bakopoulos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Pappas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Scalar-Gauss-Bonnet Theories: Evasion of No-Hair Theorems and novel black-hole solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' PoS 2019, CORFU2018, 091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='22323/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='0091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [21] Sotiriou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Black hole hair in generalized scalar-tensor gravity: An explicit example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2014, 90, 124063, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='124063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [22] Cavalcanti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Alves, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Hoff da Silva, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Near-Horizon Thermodynamics of Hairy Black Holes from Gravitational Decoupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Universe 2022, 8, 363, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='3390/universe8070363.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [23] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Cavalcanti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Giugno, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Mureika, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Horizon of quantum black holes in various dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 2016, 760, 36–44, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [24] Arsene, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Micu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Quantum production of black holes at colliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' C 2016, 76, 384, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1140/epjc/s10052-016-4228-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [25] Ovalle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2017, 95, 104019, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='104019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [26] Ovalle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Decoupling gravitational sources in general relativity: The extended case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 2019, 788, 213–218, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [27] Ovalle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Contreras, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Sotomayor, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Hairy black holes by gravitational decoupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Dark Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2021, 31, 100744, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='dark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='100744.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [28] da Rocha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' MGD Dirac stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Symmetry 2020, 12, 508, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='3390/sym12040508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [29] Tello-Ortiz, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Malaver, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rinc´on, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Gomez-Leyton, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Relativistic anisotropic fluid spheres satisfying a non-linear equation of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' C 2020, 80, 371, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1140/epjc/s10052-020-7956-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [30] da Rocha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Minimal geometric deformation of Yang-Mills-Dirac stellar configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2020, 102, 024011, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='024011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [31] Fernandes-Silva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Ferreira-Martins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' da Rocha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Extended quantum portrait of MGD black holes and information entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 2019, 791, 323–330, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [32] da Rocha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Dark SU(N) glueball stars on fluid branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2017, 95, 124017, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='124017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [33] Da Rocha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Tomaz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Holographic entanglement entropy under the minimal geometric deformation and extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' C 2019, 79, 1035, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1140/epjc/s10052-019-7558-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [34] Ovalle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Contreras, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Stuchlik, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Kerr–de Sitter black hole revisited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2021, 103, 084016, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1103/ PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='084016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [35] Meert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' da Rocha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Gravitational decoupling, hairy black holes and conformal anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' C 2022, 82, 175, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1140/epjc/s10052-022-10121-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [36] Cavalcanti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' de Paiva, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' da Rocha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Echoes of the gravitational decoupling: Scalar perturbations and quasinor- mal modes of hairy black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Plus 2022, 137, 1185, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1140/epjp/s13360-022-03407-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [37] Gross, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Mende, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' String Theory Beyond the Planck Scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 1988, 303, 407–454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/0550-3213(88)90390-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [38] Konishi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Paffuti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Provero, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Minimum Physical Length and the Generalized Uncertainty Principle in String Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 1990, 234, 276–284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/0370-2693(90)91927-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [39] Amati, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Ciafaloni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Veneziano, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Can Space-Time Be Probed Below the String Size?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 1989, 216, 41–47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/0370-2693(89)91366-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [40] Rovelli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Smolin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Discreteness of area and volume in quantum gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 1995, 442, 593–622;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Erratum in Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 1995, 456, 753–754, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/0550-3213(95)00150-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [41] Scardigli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Generalized uncertainty principle in quantum gravity from micro - black hole Gedanken experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 1999, 452, 39–44, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/S0370-2693(99)00167-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [42] Maggiore, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' A Generalized uncertainty principle in quantum gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' B 1993, 304, 65–69, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1016/0370-2693(93)91401-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [43] Hossenfelder, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Minimal Length Scale Scenarios for Quantum Gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2013, 16, 2, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='12942/lrr-2013-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [44] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Micu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nicolini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Minimum length effects in black hole physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Fundam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2015, 178, 293–322, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/978-3-319-10852-0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [45] Sprenger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Nicolini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Bleicher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Physics on Smallest Scales—An Introduction to Minimal Length Phenomenology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2012, 33, 853–862, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1088/0143-0807/33/4/853.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [46] Tawfik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Diab, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Review on Generalized Uncertainty Principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2015, 78, 126001, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1088/0034-4885/78/12/126001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [47] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Giugno, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Micu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Horizon quantum mechanics: A hitchhiker’s guide to quantum black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' D 2016, 25, 1630006, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1142/S0218271816300068.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [48] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Localised particles and fuzzy horizons: A tool for probing Quantum Black Holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' arXiv 2013, arXiv:1305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='3195.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [49] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Giugno, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Giusti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Lenzi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Quantum Formation of Primordial Black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2019, 51, 103, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/s10714-019-2587-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [50] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Micu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Horizon Quantum Mechanics of collapsing shells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' C 2018, 78, 852, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1140/ epjc/s10052-018-6326-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' [51] Casadio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Giugno, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Giusti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Global and Local Horizon Quantum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Relativ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content=' 2017, 49, 32, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} +page_content='1007/s10714-017-2198-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CdAyT4oBgHgl3EQfePjS/content/2301.00319v1.pdf'} diff --git a/DNE1T4oBgHgl3EQfWQQt/content/tmp_files/2301.03111v1.pdf.txt b/DNE1T4oBgHgl3EQfWQQt/content/tmp_files/2301.03111v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca65f0da0b85e62703b45074d6c3a5a4dacd66a1 --- /dev/null +++ b/DNE1T4oBgHgl3EQfWQQt/content/tmp_files/2301.03111v1.pdf.txt @@ -0,0 +1,701 @@ +arXiv:2301.03111v1 [math.PR] 8 Jan 2023 +Stochastic Reservoir Calculations +Steven Finch +January 8, 2023 +Abstract. +Prabhu (1958) obtained the stationary distribution of storage +level Zt in a reservoir of finite volume v, given an inflow Xt and an outflow +Yt. +Time t is assumed to be discrete, Xt ∼ Gamma(p, µ) are independent +and p is a positive integer. +The mean inflow is p/µ; the target outflow is +m (constant). +We attempt to clarify intricate details, often omitted in the +literature, by working through several examples. +Of special interest are the +probabilities of depletion (Zt = 0) and spillage (Zt = v). +For prescribed +{v, p, µ}, what value of m minimizes both of these? +Let v > 0, p be a positive integer, µ > 0 and m > 0. At each time t = 1, 2, 3, . . ., +a reservoir of volume v absorbs an inflow Xt ∼ Gamma(p, µ) and simultaneously +releases an outflow 0 ≤ Yt ≤ m, depending on availablity. More precisely, +Yt = min {Xt + Zt, m} +where 0 ≤ Zt ≤ v is the storage level. +Independence across time is assumed. +Our +interest is in the probability density function of Zt in the limit as t → ∞. We need +not explicitly refer to Yt again, as Zt+1 can be defined recursively without it: +Zt+1 = max {0, min {Xt + Zt − m, v}} , +Z1 = v/2. +Let n = ⌊v/m⌋ and δ = v − m n. +In words, δ is 0 if and only if v is an integer +multiple of m, and δ is otherwise > 0. Let +λ = (−1)p−1µp exp(−µ m). +The graph of the PDF for Zt is piecewise smooth and contains at most n + 1 arcs, as +well as point masses at z = 0 and z = v. The arcs are identified by j = 0, 1, 2, . . ., n +from left to right, and correspond to open subintervals +max {(j − 1)m + δ, 0} < z < min {j m + δ, v} +of 0 < z < v. Prabhu [1] impressively obtained the cumulative distribution function +F(z) = 1 − exp [µ(v − z)] +p−1 +� +r=0 +αr +n−j +� +q=0 +(−λ)q (v − q m − z)q p+r +(q p + r)! +0Copyright © 2023 by Steven R. Finch. All rights reserved. +1 + +Stochastic Reservoir Calculations +2 +that shall occupy us for the remainder of this paper. +The αr coefficients are found +by solving a system of p linear equations with coefficients drs for r, s = 0, 1, . . . , p−1. +These will be defined shortly. +Special considerations apply to endpoints. +Let κ = n − 1 if δ = 0 and κ = n +otherwise. The depletion probability, i.e., odds for the reservoir to be dry, is +F(0) = 1 − exp(µ v) +p−1 +� +r=0 +αr +κ +� +q=0 +(−λ)q (v − q m)q p+r +(q p + r)! +. +In contrast, the spillage probability, i.e., odds for the reservoir to be full, is just +1 − F(v) = α0. +Minimizing the chance of both zero supply (harmful) and oversupply (wasteful) is +clearly important. Other quantities of interest include the total deficit, i.e., unsatis- +fied demand, over a specified time duration; and total surplus, i.e., unwanted supply +(because v < ∞) that necessarily leaks into the environment. +For r = 0, 1, . . . , p − 1, the linear system +αr − λ +p−1 +� +s=0 +drs αs = (−µ)r exp [−µ(v + m)] +p−r−1 +� +s=0 +[µ(v + m)]s +s! +requires solution, where +drs = (−1)p+r−1 +n +� +q=0 +(−λ)q +v +� +q m +(t − q m)q p+s(t + m)p−r−1 +(q p + s)!(p − r − 1)! +dt. +The integral can be easily expressed in closed-form. +Prabhu’s CDF formula, given gamma-distributed inflow, extends a PDF formula +discovered earlier by Moran [2], given exponentially distributed inflow (p = 1). +We +have not studied [2] in depth. +More discussion of [1] appears in [3, 4, 5, 6]. +The +treatment in [7, 8] is, however, most pragmatic and useful for our purposes. +Henceforth we fix v = 1 and explore results for selected {p, µ, m}. It is surprising, +more than fifty years after the publication of Prabhu’s work, that greater attention +has not been paid to this research [7]. +We can only imagine that intricate details, +often lost in theoretical summaries, have conspired to prevent greater understanding +and widespread recognition. +Our hope is that working through a few examples will +help to improve matters. + +Stochastic Reservoir Calculations +3 +1. +{p, µ, m} = +� +1, 2, 1 +2 +� +The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2. +Clearly n = +⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.e., there is no offset. +The arcs j = 0, 1, 2 +correspond to intervals +0 < z < 0, +0 < z < 1/2, +1/2 < z < 1 +and thus j = 0 can be ignored (being empty). Prabhu’s formula gives F(z) as +1 − 1 +2 exp [µ(1 − z)] [2 − (1 − 2z) λ] α0 +for j = 1 and +1 − exp [µ(1 − z)] α0 +for j = 2. The linear equation +(1 − λ d00)α0 = exp +� +−3 +2µ +� +coupled with +d00 = 1 − 1 +8λ +and λ = 2e−1 give +α0 = +8 +8 − 8λ + λ2 exp +� +−3 +2µ +� += 0.15000227... +as the spillage probability. Because κ = n − 1 = 1, +F(0) = 1 − 1 +2 exp(µ) (2 − λ) α0 = 0.29937324... +is the depletion probability. +One may have expected these two probabilities to be +almost equal (since 1/µ = 1/2 = m and by a certain symmetry), but this is not true. +The derivative f(z) of F(z) is plotted in Figure 1. +2. +{p, µ, m} = +� +1, 2, 1 +3 +� +The mean inflow is p/µ = 1/2 and the target outflow is m = 1/3. +Clearly n = +⌊1/m⌋ = 3 and δ = 1 − m n = 0, i.e., there is no offset. +The arcs j = 0, 1, 2, 3 +correspond to intervals +0 < z < 0, +0 < z < 1/3, +1/3 < z < 2/3, +2/3 < z < 1 + +Stochastic Reservoir Calculations +4 +and thus j = 0 can be ignored (being empty). Prabhu’s formula gives F(z) as +1 − 1 +18 exp [µ(1 − z)] +� +18 − 6 (2 − 3z) λ + (1 − 3z)2λ2� +α0 +for j = 1, +1 − 1 +3 exp [µ(1 − z)] [3 − (2 − 3z) λ] α0 +for j = 2 and +1 − exp [µ(1 − z)] α0 +for j = 3. The linear equation +(1 − λ d00)α0 = exp +� +−4 +3µ +� +coupled with +d00 = 1 − 2 +9λ + +1 +162λ2 +and λ = 2e−2/3 give +α0 = +162 +162 − 162λ + 36λ2 − λ3 exp +� +−4 +3µ +� += 0.34604845... +as the spillage probability. Because κ = n − 1 = 1, +F(0) = 1 − 1 +18 exp(µ) +� +18 − 12λ + λ2� +α0 = 0.04363903... +is the depletion probability. While α0 < F(0) in Section 1, we have α0 > F(0) here. +This outcome suggests examining a value of m between 1/3 and 1/2. The derivative +f(z) of F(z) is plotted in Figure 2. +3. +{p, µ, m} = +� +1, 2, 2 +5 +� +The mean inflow is p/µ = 1/2 and the target outflow is m = 2/5. +Clearly n = +⌊1/m⌋ = 2 and δ = 1 − m n = 1/5, i.e., the offset is nonzero. +The arcs j = 0, 1, 2 +correspond to intervals +0 < z < 1/5, +1/5 < z < 3/5, +3/5 < z < 1; +note that j = 0 has length only 1/5. Prabhu’s formula gives F(z) as +1 − 1 +50 exp [µ(1 − z)] +� +50 − 10 (3 − 5z) λ + (1 − 5z)2λ2� +α0 + +Stochastic Reservoir Calculations +5 +for j = 0, +1 − 1 +5 exp [µ(1 − z)] [5 − (3 − 5z) λ] α0 +for j = 1 and +1 − exp [µ(1 − z)] α0 +for j = 2. The linear equation +(1 − λ d00)α0 = exp +� +−7 +5µ +� +coupled with +d00 = 1 − 9 +50λ + +1 +750λ2 +and λ = 2e−4/5 give +α0 = +750 +750 − 750λ + 135λ2 − λ3 exp +� +−7 +5µ +� += 0.24745701... +as the spillage probability. Because κ = n = 2, +F(0) = 1 − 1 +50 exp(µ) +� +50 − 30λ + λ2� +α0 = 0.12789671... +is the depletion probability. The values α0 and F(0) are closer than in the previous +two sections; a choice of m that is intermediate to 2/5 and 1/2 should make these +coincident. +We estimate that m = 0.44276 meets this objective (with 0.199 as the +common probability). On the other hand, if our goal is to minimize the unweighted +combination α0 + F(0), then m = 0.38 achieves the goal (with sum 0.372). +The +derivative f(z) of F(z) is plotted in Figure 3. +4. +{p, µ, m} = +� +2, 4, 1 +2 +� +The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2. +Clearly n = +⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.e., there is no offset. +The arcs j = 0, 1, 2 +correspond to intervals +0 < z < 0, +0 < z < 1/2, +1/2 < z < 1 +and thus j = 0 can be ignored (being empty). Prabhu’s formula gives F(z) as +1 − 1 +48 exp [µ(1 − z)] +�� +48 − 6 (1 − 2z)2 λ +� +α0 + +� +48 − 48z − (1 − 2z)3 λ +� +α1 +� +for j = 1 and +1 − exp [µ(1 − z)] {α0 + (1 − z)α1} + +Stochastic Reservoir Calculations +6 +for j = 2. The linear equations +(1 − λ d00)α0 − λ d01α1 = exp +� +−3 +2µ +� � +1 + 3 +2µ +� +, +λ d10α0 − (1 − λ d11)α1 = exp +� +−3 +2µ +� +µ +coupled with +d00 = −1 + 11 +384λ, +d01 = − 7 +12 + +7 +1920λ, +d10 = 1 − 1 +48λ, +d11 = 1 +2 − +1 +384λ +and λ = −16e−2 give +α0 = 1 +2 +2 + 3µ − 2λ µ d01 − λ (2 + 3µ) d11 +1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp +� +−3 +2µ +� +, +α1 = 1 +2 +−2µ + 2λ µ d00 + λ (2 + 3µ) d10 +1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp +� +−3 +2µ +� +; +the spillage probability is hence α0 = 0.13554701.... Because κ = n − 1 = 1, +F(0) = 1 − 1 +48 exp(µ) [(48 − 6λ) α0 + (48 − λ)α1] = 0.22163253... +is the depletion probability. The mode of Gamma(2, µ) is 1/µ > 0 whereas the mode +of Gamma(1, µ) is 0; a small inflow is less likely for p = 2 than for p = 1, thus F(0) +is noticeably smaller than in Section 1. +The tail of Gamma(2, µ) is fatter than the +tail of Gamma(1, µ); a large inflow is more likely for p = 2 than for p = 1, however +α0 is paradoxically smaller than in Section 1 (but only slightly). The derivative f(z) +of F(z) is plotted in Figure 4. +5. +Invariance +One verification of Prabhu’s formula is based on simulation (easily programmed, since +the recurrence for Zt is straightforward). +Another verification is more esoteric: to +confirm that the formula is invariant under the transformation +� +v, p +µ, m +� +�−→ +� +˜v, p +˜µ, ˜m +� += +� v +m, +p +m µ, 1 +� +in the sense that spillage & depletion probabilities should remain constant and storage +level CDF arguments should simply scale by m. First, +˜n = +� ˜v +˜m +� += +� v +m +� += n, + +Stochastic Reservoir Calculations +7 +˜λ = (−1)p−1˜µp exp[−˜µ ˜m] = (−1)p−1(m µ)p exp[−m µ · 1] = mpλ +and +˜drs = (−1)p+r−1 +n +� +q=0 +(−˜λ)q +˜v +� +q ˜m +(t − q ˜m)q p+s(t + ˜m)p−r−1 +(q p + s)!(p − r − 1)! +dt += (−1)p+r−1 +n +� +q=0 +mp q(−λ)q +v/m +� +q +(t − q)q p+s(t + 1)p−r−1 +(q p + s)!(p − r − 1)! dt += (−1)p+r−1 +n +� +q=0 +mp q(−λ)q +v +� +q m +( u +m − q)q p+s( u +m + 1)p−r−1 +(q p + s)!(p − r − 1)! +du +m +upon setting u = m t, du = m dt; thus +˜drs = (−1)p+r−1 +n +� +q=0 +mp q(−λ)q +mp q+s+p−r−1+1 +v +� +q m +(u − q m)q p+s(u + m)p−r−1 +(q p + s)!(p − r − 1)! +du += m−(p−r+s)drs. +Second, +˜αr − ˜λ +p−1 +� +s=0 +˜drs ˜αs = (−˜µ)r exp [−˜µ(˜v + ˜m)] +p−r−1 +� +s=0 +[˜µ(˜v + ˜m)]s +s! +implies +˜αr − mpλ +p−1 +� +s=0 +m−(p−r+s)drs ˜αs = mr(−µ)r exp [−µ(v + m)] +p−r−1 +� +s=0 +[µ(v + m)]s +s! +because ˜µ(˜v + ˜m) = m µ +� v +m + 1 +� += µ(v + m); therefore +m−r ˜αr − λ +p−1 +� +s=0 +m−sdrs ˜αs = (−µ)r exp [−µ(v + m)] +p−r−1 +� +s=0 +[µ(v + m)]s +s! +which is immediately satisfied by ˜αr = mrαr. In particular, ˜α0 = α0. Third, +˜δ = ˜v − ˜m n = v − m n +m += δ +m. + +Stochastic Reservoir Calculations +8 +Figure 1: Plot of storage level density w = f(z) for {p, µ, m} = +� +1, 2, 1 +2 +� +. +Finally, given j, +˜F(z) = 1 − exp [˜µ(˜v − z)] +p−1 +� +r=0 +˜αr +n−j +� +q=0 +(−˜λ)q (˜v − q ˜m − z)q p+r +(q p + r)! += 1 − exp +� +(m µ) +� v +m − z +�� p−1 +� +r=0 +mrαr +n−j +� +q=0 +mp q(−λ)q ( v +m − q − z)q p+r +(q p + r)! += 1 − exp [µ(v − m z)] +p−1 +� +r=0 +mrαr +n−j +� +q=0 +mp q(−λ)q +mp q+r +(v − q m − m z)q p+r +(q p + r)! += F(m z) +for (j − 1) ˜m + ˜δ < z < j ˜m + ˜δ, i.e., (j − 1)m + δ < m z < j m + δ. In the same way, +˜F(0) = F(0), with the upper summation limit n − j replaced by ˜κ = κ. +6. +Inquiry +Moran [9, 10] introduced a different model – in continuous time – for an infinite +volume reservoir. Let X(t) ∼ Gamma(t, 1/ρ) denote the total inflow over the interval +(0, t], assumed to be a nonnegative stochastic process with stationary independent +increments, where 0 < ρ < 1 is constant. +In particular, E(X(T)) = ρ t. +Let the + +M +8'0 +0.6 +0.4 +0.2 +0.0 +0.2 +0.4 +0.6 +8:0 +1.0Stochastic Reservoir Calculations +9 +Figure 2: Plot of storage level density w = f(z) for {p, µ, m} = +� +1, 2, 1 +3 +� +. +Figure 3: Plot of storage level density w = f(z) for {p, µ, m} = +� +1, 2, 2 +5 +� +. + +w +1.2 +1.0 +0.8 +0.6 +0.4 +0.2 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0M +1.2 +1.0 +0.8 +0.6 +0.4 +0.2 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0Stochastic Reservoir Calculations +10 +Figure 4: Plot of storage level density w = f(z) for {p, µ, m} = +� +2, 4, 1 +2 +� +. +outflow be continuous and at unit rate except when the reservoir is empty. We have +Z(t) = Z(0) + X(t) − t + +t +� +0 +1{Z(τ)=0} dτ +where 1Ω is the indicator function of Ω ⊆ R. By a limiting argument (from discrete +to continuous), the PDF of Z(t) as t → ∞ has Laplace transform [11] +(1 − ρ)θ +θ − ln (1 + ρ θ), +Re(θ) > 0 +which Daniels [12] inverted to yield +f(z) = −(1 − ρ) +∞ +� +0 +d +dz +(z + w)w−1 exp [−(z + w)/ρ] +ρwΓ(w) +dw, +z > 0 +with a point mass 1 − ρ at z = 0. +We seek an experimental approach to verify +this PDF. +How might one efficiently simulate Z(t) for suitably large t? +Offers of +assistance would be most appreciated. +We wonder too if Prabhu’s formula could +possibly be reconfigured to play a role in this inquiry. +The fact that v < ∞ earlier +but v = ∞ here is an issue; the fact that Xt was the precise inflow at time t whereas +X(t) is an accumulated inflow over (0, t] is another issue. + +0.8 +0.6 +0.4 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0Stochastic Reservoir Calculations +11 +7. +Acknowledgements +Khaled Hamed was so kind to answer several questions of mine; this paper would not +have been possible without his very helpful articles [7, 8]. In particular, he appears +to be the first author to specify the role of the offset δ when v is not an integer +multiple of m. +I am grateful to innumerable software developers. +The symbolic +manipulations described here are tailor-made for Mathematica, and the simulations +employed here to check predictions are ideal for R. +References +[1] N. U. Prabhu, On the integral equation for the finite dam, Quart. J. Math. 9 +(1958) 183–188; MR0099726. +[2] P. A. P. Moran, A probability theory of dams and storage systems: modifications +of the release rules, Austral. J. Appl. Sci. 6 (1955) 117–130; MR0077807. +[3] P. A. P. Moran, The Theory of Storage, Wiley, 1959, pp. 39–51; MR0114254. +[4] N. U. Prabhu, Queues and Inventories, Wiley, 1965, pp. 209–213; MR0211494. +[5] P. Lochert and R. M. Phatarfod, On the problem of discretization in dam theory, +Water Resources Research 15 (1979) 1593-1597. +[6] E. H. Lloyd, The stochastic reservoir: exact and approximate evaluations of +storage distribution, J. Hydrology 151 (1993) 65–107. +[7] K. H. Hamed, On the implementation of Prabhu’s exact solution of the stochastic +reservoir equation, Adv. in Water Resources 32 (2009) 594–606. +[8] K. H. Hamed, Stochastic reservoir analysis, from Handbook of Engineering Hy- +drology, ed. S. Eslamian, CRC Press, 2014, pp. 531–548. +[9] P. A. P. Moran, A probability theory of a dam with a continuous release, Quart. +J. Math. 7 (1956) 130–137; MR0101573. +[10] J. Gani, Problems in the probability theory of storage systems, J. Royal Statist. +Soc. Ser. B 19 (1957) 181–206; MR0092289. +[11] D. G. Kendall, Some problems in the theory of dams, J. Royal Statist. Soc. Ser. +B 19 (1957) 207–212. +[12] H. E. Daniels, Discussion on the papers by Dr. Gani and Mr. Kendall, J. Royal +Statist. Soc. Ser. B 19 (1957) 224–225. + +Stochastic Reservoir Calculations +12 +Steven Finch +MIT Sloan School of Management +Cambridge, MA, USA +steven finch@harvard.edu + diff --git a/DNE1T4oBgHgl3EQfWQQt/content/tmp_files/load_file.txt b/DNE1T4oBgHgl3EQfWQQt/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c7fed11f3143883222f3b4d064f8cd3bed0e19ba --- /dev/null +++ b/DNE1T4oBgHgl3EQfWQQt/content/tmp_files/load_file.txt @@ -0,0 +1,319 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf,len=318 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='03111v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='PR] 8 Jan 2023 Stochastic Reservoir Calculations Steven Finch January 8, 2023 Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu (1958) obtained the stationary distribution of storage level Zt in a reservoir of finite volume v, given an inflow Xt and an outflow Yt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Time t is assumed to be discrete, Xt ∼ Gamma(p, µ) are independent and p is a positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The mean inflow is p/µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' the target outflow is m (constant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We attempt to clarify intricate details, often omitted in the literature, by working through several examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Of special interest are the probabilities of depletion (Zt = 0) and spillage (Zt = v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' For prescribed {v, p, µ}, what value of m minimizes both of these?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Let v > 0, p be a positive integer, µ > 0 and m > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' At each time t = 1, 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', a reservoir of volume v absorbs an inflow Xt ∼ Gamma(p, µ) and simultaneously releases an outflow 0 ≤ Yt ≤ m, depending on availablity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' More precisely, Yt = min {Xt + Zt, m} where 0 ≤ Zt ≤ v is the storage level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Independence across time is assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Our interest is in the probability density function of Zt in the limit as t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We need not explicitly refer to Yt again, as Zt+1 can be defined recursively without it: Zt+1 = max {0, min {Xt + Zt − m, v}} , Z1 = v/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Let n = ⌊v/m⌋ and δ = v − m n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' In words, δ is 0 if and only if v is an integer multiple of m, and δ is otherwise > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Let λ = (−1)p−1µp exp(−µ m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The graph of the PDF for Zt is piecewise smooth and contains at most n + 1 arcs, as well as point masses at z = 0 and z = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The arcs are identified by j = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', n from left to right, and correspond to open subintervals max {(j − 1)m + δ, 0} < z < min {j m + δ, v} of 0 < z < v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu [1] impressively obtained the cumulative distribution function F(z) = 1 − exp [µ(v − z)] p−1 � r=0 αr n−j � q=0 (−λ)q (v − q m − z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 0Copyright © 2023 by Steven R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Finch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' All rights reserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 1 Stochastic Reservoir Calculations 2 that shall occupy us for the remainder of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The αr coefficients are found by solving a system of p linear equations with coefficients drs for r, s = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' , p−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' These will be defined shortly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Special considerations apply to endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Let κ = n − 1 if δ = 0 and κ = n otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The depletion probability, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', odds for the reservoir to be dry, is F(0) = 1 − exp(µ v) p−1 � r=0 αr κ � q=0 (−λ)q (v − q m)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' In contrast, the spillage probability, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', odds for the reservoir to be full, is just 1 − F(v) = α0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Minimizing the chance of both zero supply (harmful) and oversupply (wasteful) is clearly important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Other quantities of interest include the total deficit, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', unsatis- fied demand, over a specified time duration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' and total surplus, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', unwanted supply (because v < ∞) that necessarily leaks into the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' For r = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' , p − 1, the linear system αr − λ p−1 � s=0 drs αs = (−µ)r exp [−µ(v + m)] p−r−1 � s=0 [µ(v + m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' requires solution, where drs = (−1)p+r−1 n � q=0 (−λ)q v � q m (t − q m)q p+s(t + m)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The integral can be easily expressed in closed-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu’s CDF formula, given gamma-distributed inflow, extends a PDF formula discovered earlier by Moran [2], given exponentially distributed inflow (p = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We have not studied [2] in depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' More discussion of [1] appears in [3, 4, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The treatment in [7, 8] is, however, most pragmatic and useful for our purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Henceforth we fix v = 1 and explore results for selected {p, µ, m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' It is surprising, more than fifty years after the publication of Prabhu’s work, that greater attention has not been paid to this research [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We can only imagine that intricate details, often lost in theoretical summaries, have conspired to prevent greater understanding and widespread recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Our hope is that working through a few examples will help to improve matters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Stochastic Reservoir Calculations 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' {p, µ, m} = � 1, 2, 1 2 � The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Clearly n = ⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', there is no offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The arcs j = 0, 1, 2 correspond to intervals 0 < z < 0, 0 < z < 1/2, 1/2 < z < 1 and thus j = 0 can be ignored (being empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu’s formula gives F(z) as 1 − 1 2 exp [µ(1 − z)] [2 − (1 − 2z) λ] α0 for j = 1 and 1 − exp [µ(1 − z)] α0 for j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The linear equation (1 − λ d00)α0 = exp � −3 2µ � coupled with d00 = 1 − 1 8λ and λ = 2e−1 give α0 = 8 8 − 8λ + λ2 exp � −3 2µ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='15000227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' as the spillage probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Because κ = n − 1 = 1, F(0) = 1 − 1 2 exp(µ) (2 − λ) α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='29937324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' One may have expected these two probabilities to be almost equal (since 1/µ = 1/2 = m and by a certain symmetry), but this is not true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The derivative f(z) of F(z) is plotted in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' {p, µ, m} = � 1, 2, 1 3 � The mean inflow is p/µ = 1/2 and the target outflow is m = 1/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Clearly n = ⌊1/m⌋ = 3 and δ = 1 − m n = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', there is no offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The arcs j = 0, 1, 2, 3 correspond to intervals 0 < z < 0, 0 < z < 1/3, 1/3 < z < 2/3, 2/3 < z < 1 Stochastic Reservoir Calculations 4 and thus j = 0 can be ignored (being empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu’s formula gives F(z) as 1 − 1 18 exp [µ(1 − z)] � 18 − 6 (2 − 3z) λ + (1 − 3z)2λ2� α0 for j = 1, 1 − 1 3 exp [µ(1 − z)] [3 − (2 − 3z) λ] α0 for j = 2 and 1 − exp [µ(1 − z)] α0 for j = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The linear equation (1 − λ d00)α0 = exp � −4 3µ � coupled with d00 = 1 − 2 9λ + 1 162λ2 and λ = 2e−2/3 give α0 = 162 162 − 162λ + 36λ2 − λ3 exp � −4 3µ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='34604845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' as the spillage probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Because κ = n − 1 = 1, F(0) = 1 − 1 18 exp(µ) � 18 − 12λ + λ2� α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='04363903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' While α0 < F(0) in Section 1, we have α0 > F(0) here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' This outcome suggests examining a value of m between 1/3 and 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The derivative f(z) of F(z) is plotted in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' {p, µ, m} = � 1, 2, 2 5 � The mean inflow is p/µ = 1/2 and the target outflow is m = 2/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Clearly n = ⌊1/m⌋ = 2 and δ = 1 − m n = 1/5, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', the offset is nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The arcs j = 0, 1, 2 correspond to intervals 0 < z < 1/5, 1/5 < z < 3/5, 3/5 < z < 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' note that j = 0 has length only 1/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu’s formula gives F(z) as 1 − 1 50 exp [µ(1 − z)] � 50 − 10 (3 − 5z) λ + (1 − 5z)2λ2� α0 Stochastic Reservoir Calculations 5 for j = 0, 1 − 1 5 exp [µ(1 − z)] [5 − (3 − 5z) λ] α0 for j = 1 and 1 − exp [µ(1 − z)] α0 for j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The linear equation (1 − λ d00)α0 = exp � −7 5µ � coupled with d00 = 1 − 9 50λ + 1 750λ2 and λ = 2e−4/5 give α0 = 750 750 − 750λ + 135λ2 − λ3 exp � −7 5µ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='24745701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' as the spillage probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Because κ = n = 2, F(0) = 1 − 1 50 exp(µ) � 50 − 30λ + λ2� α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='12789671.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The values α0 and F(0) are closer than in the previous two sections;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' a choice of m that is intermediate to 2/5 and 1/2 should make these coincident.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We estimate that m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='44276 meets this objective (with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='199 as the common probability).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' On the other hand, if our goal is to minimize the unweighted combination α0 + F(0), then m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='38 achieves the goal (with sum 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='372).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The derivative f(z) of F(z) is plotted in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' {p, µ, m} = � 2, 4, 1 2 � The mean inflow is p/µ = 1/2 and the target outflow is m = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Clearly n = ⌊1/m⌋ = 2 and δ = 1 − m n = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', there is no offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The arcs j = 0, 1, 2 correspond to intervals 0 < z < 0, 0 < z < 1/2, 1/2 < z < 1 and thus j = 0 can be ignored (being empty).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu’s formula gives F(z) as 1 − 1 48 exp [µ(1 − z)] �� 48 − 6 (1 − 2z)2 λ � α0 + � 48 − 48z − (1 − 2z)3 λ � α1 � for j = 1 and 1 − exp [µ(1 − z)] {α0 + (1 − z)α1} Stochastic Reservoir Calculations 6 for j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The linear equations (1 − λ d00)α0 − λ d01α1 = exp � −3 2µ � � 1 + 3 2µ � , λ d10α0 − (1 − λ d11)α1 = exp � −3 2µ � µ coupled with d00 = −1 + 11 384λ, d01 = − 7 12 + 7 1920λ, d10 = 1 − 1 48λ, d11 = 1 2 − 1 384λ and λ = −16e−2 give α0 = 1 2 2 + 3µ − 2λ µ d01 − λ (2 + 3µ) d11 1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp � −3 2µ � , α1 = 1 2 −2µ + 2λ µ d00 + λ (2 + 3µ) d10 1 − λ (d00 + d11) + λ2 (d00d11 − d01d10) exp � −3 2µ � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' the spillage probability is hence α0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='13554701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='. Because κ = n − 1 = 1, F(0) = 1 − 1 48 exp(µ) [(48 − 6λ) α0 + (48 − λ)α1] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='22163253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' is the depletion probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The mode of Gamma(2, µ) is 1/µ > 0 whereas the mode of Gamma(1, µ) is 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' a small inflow is less likely for p = 2 than for p = 1, thus F(0) is noticeably smaller than in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The tail of Gamma(2, µ) is fatter than the tail of Gamma(1, µ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' a large inflow is more likely for p = 2 than for p = 1, however α0 is paradoxically smaller than in Section 1 (but only slightly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The derivative f(z) of F(z) is plotted in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Invariance One verification of Prabhu’s formula is based on simulation (easily programmed, since the recurrence for Zt is straightforward).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Another verification is more esoteric: to confirm that the formula is invariant under the transformation � v, p µ, m � �−→ � ˜v, p ˜µ, ˜m � = � v m, p m µ, 1 � in the sense that spillage & depletion probabilities should remain constant and storage level CDF arguments should simply scale by m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' First, ˜n = � ˜v ˜m � = � v m � = n, Stochastic Reservoir Calculations 7 ˜λ = (−1)p−1˜µp exp[−˜µ ˜m] = (−1)p−1(m µ)p exp[−m µ · 1] = mpλ and ˜drs = (−1)p+r−1 n � q=0 (−˜λ)q ˜v � q ˜m (t − q ˜m)q p+s(t + ˜m)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' dt = (−1)p+r−1 n � q=0 mp q(−λ)q v/m � q (t − q)q p+s(t + 1)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' dt = (−1)p+r−1 n � q=0 mp q(−λ)q v � q m ( u m − q)q p+s( u m + 1)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' du m upon setting u = m t, du = m dt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' thus ˜drs = (−1)p+r−1 n � q=0 mp q(−λ)q mp q+s+p−r−1+1 v � q m (u − q m)q p+s(u + m)p−r−1 (q p + s)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' (p − r − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' du = m−(p−r+s)drs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Second, ˜αr − ˜λ p−1 � s=0 ˜drs ˜αs = (−˜µ)r exp [−˜µ(˜v + ˜m)] p−r−1 � s=0 [˜µ(˜v + ˜m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' implies ˜αr − mpλ p−1 � s=0 m−(p−r+s)drs ˜αs = mr(−µ)r exp [−µ(v + m)] p−r−1 � s=0 [µ(v + m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' because ˜µ(˜v + ˜m) = m µ � v m + 1 � = µ(v + m);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' therefore m−r ˜αr − λ p−1 � s=0 m−sdrs ˜αs = (−µ)r exp [−µ(v + m)] p−r−1 � s=0 [µ(v + m)]s s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' which is immediately satisfied by ˜αr = mrαr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' In particular, ˜α0 = α0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Third, ˜δ = ˜v − ˜m n = v − m n m = δ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Stochastic Reservoir Calculations 8 Figure 1: Plot of storage level density w = f(z) for {p, µ, m} = � 1, 2, 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Finally, given j, ˜F(z) = 1 − exp [˜µ(˜v − z)] p−1 � r=0 ˜αr n−j � q=0 (−˜λ)q (˜v − q ˜m − z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' = 1 − exp � (m µ) � v m − z �� p−1 � r=0 mrαr n−j � q=0 mp q(−λ)q ( v m − q − z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' = 1 − exp [µ(v − m z)] p−1 � r=0 mrαr n−j � q=0 mp q(−λ)q mp q+r (v − q m − m z)q p+r (q p + r)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' = F(m z) for (j − 1) ˜m + ˜δ < z < j ˜m + ˜δ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=', (j − 1)m + δ < m z < j m + δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' In the same way, ˜F(0) = F(0), with the upper summation limit n − j replaced by ˜κ = κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Inquiry Moran [9, 10] introduced a different model – in continuous time – for an infinite volume reservoir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Let X(t) ∼ Gamma(t, 1/ρ) denote the total inflow over the interval (0, t], assumed to be a nonnegative stochastic process with stationary independent increments, where 0 < ρ < 1 is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' In particular, E(X(T)) = ρ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=" Let the M 8'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 8:0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0Stochastic Reservoir Calculations 9 Figure 2: Plot of storage level density w = f(z) for {p, µ, m} = � 1, 2, 1 3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Figure 3: Plot of storage level density w = f(z) for {p, µ, m} = � 1, 2, 2 5 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' w 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0M 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0Stochastic Reservoir Calculations 10 Figure 4: Plot of storage level density w = f(z) for {p, µ, m} = � 2, 4, 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' outflow be continuous and at unit rate except when the reservoir is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We have Z(t) = Z(0) + X(t) − t + t � 0 1{Z(τ)=0} dτ where 1Ω is the indicator function of Ω ⊆ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' By a limiting argument (from discrete to continuous), the PDF of Z(t) as t → ∞ has Laplace transform [11] (1 − ρ)θ θ − ln (1 + ρ θ), Re(θ) > 0 which Daniels [12] inverted to yield f(z) = −(1 − ρ) ∞ � 0 d dz (z + w)w−1 exp [−(z + w)/ρ] ρwΓ(w) dw, z > 0 with a point mass 1 − ρ at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We seek an experimental approach to verify this PDF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' How might one efficiently simulate Z(t) for suitably large t?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Offers of assistance would be most appreciated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' We wonder too if Prabhu’s formula could possibly be reconfigured to play a role in this inquiry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The fact that v < ∞ earlier but v = ∞ here is an issue;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' the fact that Xt was the precise inflow at time t whereas X(t) is an accumulated inflow over (0, t] is another issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='0Stochastic Reservoir Calculations 11 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Acknowledgements Khaled Hamed was so kind to answer several questions of mine;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' this paper would not have been possible without his very helpful articles [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' In particular, he appears to be the first author to specify the role of the offset δ when v is not an integer multiple of m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' I am grateful to innumerable software developers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' The symbolic manipulations described here are tailor-made for Mathematica, and the simulations employed here to check predictions are ideal for R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu, On the integral equation for the finite dam, Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 9 (1958) 183–188;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' MR0099726.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Moran, A probability theory of dams and storage systems: modifications of the release rules, Austral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 6 (1955) 117–130;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' MR0077807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Moran, The Theory of Storage, Wiley, 1959, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 39–51;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' MR0114254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Prabhu, Queues and Inventories, Wiley, 1965, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 209–213;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' MR0211494.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Lochert and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Phatarfod, On the problem of discretization in dam theory, Water Resources Research 15 (1979) 1593-1597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Lloyd, The stochastic reservoir: exact and approximate evaluations of storage distribution, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Hydrology 151 (1993) 65–107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Hamed, On the implementation of Prabhu’s exact solution of the stochastic reservoir equation, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' in Water Resources 32 (2009) 594–606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Hamed, Stochastic reservoir analysis, from Handbook of Engineering Hy- drology, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Eslamian, CRC Press, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 531–548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Moran, A probability theory of a dam with a continuous release, Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' 7 (1956) 130–137;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' MR0101573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Gani, Problems in the probability theory of storage systems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Royal Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' B 19 (1957) 181–206;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' MR0092289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Kendall, Some problems in the theory of dams, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Royal Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' B 19 (1957) 207–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Daniels, Discussion on the papers by Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Gani and Mr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Kendall, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Royal Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' B 19 (1957) 224–225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content=' Stochastic Reservoir Calculations 12 Steven Finch MIT Sloan School of Management Cambridge, MA, USA steven finch@harvard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} +page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNE1T4oBgHgl3EQfWQQt/content/2301.03111v1.pdf'} diff --git a/DtFJT4oBgHgl3EQfBiw4/vector_store/index.pkl b/DtFJT4oBgHgl3EQfBiw4/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..bb6fb00352a2e8133016e63c52d7947cc1d879e9 --- /dev/null +++ b/DtFJT4oBgHgl3EQfBiw4/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4a886ceb0ed3995abdd7e7f542bf601e8c5762152e54542b903e63735d16a73b +size 79177 diff --git a/H9AzT4oBgHgl3EQfHvt9/content/tmp_files/2301.01050v1.pdf.txt b/H9AzT4oBgHgl3EQfHvt9/content/tmp_files/2301.01050v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..74b990ae411980bd22d4220865b593d4848d1b76 --- /dev/null +++ b/H9AzT4oBgHgl3EQfHvt9/content/tmp_files/2301.01050v1.pdf.txt @@ -0,0 +1,2044 @@ +Geometric theory of topological defects: methodological +developments and new trends +Sébastien Fumeron‡, Bertrand Berche‡, and Fernando Moraes† +‡Laboratoire de Physique et Chimie Théoriques, +UMR Université de Lorraine - CNRS 7019, 54000 Nancy, France and +†Departamento de Física, Universidade Federal Rural +de Pernambuco, 52171-900, Recife, PE, Brazil +Abstract +Liquid crystals generally support orientational singularities of the director field known as topo- +logical defects. These latter modifiy transport properties in their vicinity as if the geometry was +non-Euclidean. We present a state of the art of the differential geometry of nematic liquid crystals, +with a special emphasis on linear defects. We then discuss unexpected but deep connections with +cosmology and high-energy-physics, and conclude with a review on defect engineering for transport +phenomena. +1 +arXiv:2301.01050v1 [cond-mat.soft] 3 Jan 2023 + +I. +INTRODUCTION +One of Pierre-Gilles de Gennes’s greatest breakthrough was to realize that methods and +concepts borrowed from superconductivity also apply to describe smectic-A phases [1]. His +work is a striking example of cross-fertilization between different areas of physics and it +highlights how progress arises at the crossroads of various scientific fields. In an article +that has not been translated in English [2], he took the example of line singularities as a +common denominator between liquid crystals, quark physics and superconductors [3]. The +same observation was also made by William Brinkman and Patricia Cladis [4], and most +notably by the two-Nobel-Prize winner John Bardeen in a review written as a plea for +interdisciplinarity: “Line defects in three-dimensional systems, quantized vortex lines or flux +lines, and dislocations account for similarities of behavior in superconductors, liquid crystals, +and, it is hoped, color confinement of quarks“[5]. +In this spirit, the objective of this paper is to perform an in-depth survey of geometrical +methods useful for investigating topological defects and to describe some of its modern +applications, either as a playground to test fundamental ideas in high-energy physics or +gravitational physics, or as high-performance tools to taylor transport phenomena from soft +matter devices. We will be mainly concerned with nematic liquid crystals and topological +line defects. +In section II, we provide a self-contained introduction to phase transitions, geometry, +topology and optics in such systems. We show how a metric description of defect lines in +terms of Riemann manifolds naturally arises in nematics, before addressing the question of +analogue gravity which may be less familiar to the liquid crystals community. +Section III is an introduction to some of the ideas borrowed to cosmology which can +be dealt with liquid crystals, such as the Kibble mechanism, which rules the formation of +defects in the early universe but also in nematics. We review several outstanding problems +involving line singularities, such as cosmic strings, wormholes and bouncing cosmologies, +and discuss their connections with disclinations in liquid crystals. +Section IV eventually discusses applications of the geometric formalism previously in- +troduced for the description of acoustics, optics and heat transfer in the presence of such +defects. The main idea is to show how the curvature carried by the topological defects +can be used to design specific propagation patterns, a possible step forward towards the +2 + +defect-engineering of transport phenomena. +II. +TOPOLOGICAL DEFECTS IN NEMATIC LIQUID CRYSTALS +A. +Basics of the isotropic-nematic phase transition +a. +Historical milestones +The story of liquid crystal has met with a shaky start. The +first observations reported of what is today understood as a liquid crystal belong to the +realm of biology. Georges-Louis Buffon (1707-1788) and later Rudolf Virchow (1854) and +Carl Mettenheimer (1855) reported about the strange behavior of lecithins, a family of +phospholipid substances contained in plants (wheat, rye...) and in animals (yolks, myelin +- the insulating coating of nerve fibres - ...) [6]. When suspended in water, lecithins form +birefringent tubular structures like a Iceland spar but that writhed like eels. Julius Planer +in 1861 [7] and most importantly Friedrich Reinitzer in 1888 discovered similar optical +behaviors with cholesterol compounds. Reinitzer extracted cholesteryl esters from carrots +and made an unanticipated observation: contrary to what was known in crystallography, +cholesteryl benzoate displays two melting points [8]. The lower one occurs at about 145.5◦C +and correspond to the melting of the solid phase into a turbid fluid. The higher melting +point corresponds to the clarification of the milky liquid beyond 178.5◦C. +Such behavior left Reinitzer skeptical: had he discovered a genuinely new behavior of +matter or was this simply the result of impure and incompletely melted crystals? Reinitzer +wrote to Otto Lehmann, a leading physicist known for designing the first “crystallization +microscope”: this latter consists in a microscope equipped with crossed polarizers and a +thermal deck (a small Bunsen burner and two cooling blasts) to observe how crystals behave +when the temperature varies. Lehmann reproduced and improved Reinitzer’s observations, +and promoted these substances as new forms of matter, half-between liquids and crystals. In +1889, he coined the term “liquid crystals” to account for his discovery (somehow pulling the +sheet back towards him as he even claimed priority over Reinitzer [9]). Soon afterwards, he +kept changing its name (including “flowing crystals”, “crystalline liquids”...), which reveals +his difficulties to grasp the real nature of what he found. +The years that followed Lehmann’s breakthrough have been critical. On one hand, the +subject became more and more discussed in the scientific community, even drawing the +3 + +attention of future Nobel Prize laureates such as Max Born (in 1916, he conceived the +first molecular theory of liquid crystals but predicted a generic ferroelectric behavior that +turned out to be incorrect [10]), Jacobus Henricus van’t Hoff and Walther Nernst (Lehmann +himself was an unlucky nominee from 1913 to 1922). On the other hand, the subject became +highly controversial: partly because Nernst and most especially Gustav Tammann led a +vivid opposition against liquid crystals (suspecting them of being nothing more than poorly +prepared colloidal mixtures), partly because of Lehmann’s personality (a sparkling mix of +pretentiousness and mysticism [9]). +Liquid crystals have stayed a controversial subject, since the decisive contributions of +Rudolf Schenk (1905), Daniel Vorländer (1907) and George Friedel (1922) to get a clear view +on this subject. Schenk led a thorough study of the clearing point and unambiguously showed +the observed properties (density, viscosity) could not be related to mixtures. +Vorländer +elucidated the mysterious anisotropic behavior exibited by the fluid: from a microscopic +standpoint, liquid crystals consist in self-organized assemblies of rod-like molecules. +As +such, they exibit both the birefringence property expected from anisotropic uniaxial media +and the ability to flow. Finally, Friedel realized that such substances should properly be +understood as new full-blown phases of matter, that he named mesophases. Initially divided +into three broad families (nematic, cholesteric and smectic), liquid crystals have now been +enriched by many new mesophases, including columnar phases, cubatic phases, blue phases +I, II and III... +b. +Mesogenic behavior +The recipe for a molecule to be nematogenic (i.e. to have the +ability to organize into a nematic phase) is rather simple: take a rod-like molecule and deck +it with 1) a flexible outer part (an aliphatic chain), 2) a rigid core (phenyl groups most +generally) and 3) a chemical group bearing a permanent dipole (for instance, a carbonitrile +group as in 5CB). The resulting substance is a thermotropic nematic, a sensitive compromise +between the attractive Van der Waals interactions that align rigid cores on average along the +same direction (anisotropy) and the thermal agitation of the aliphatic chains increasing the +mean steric hindrance (fluidity). Nematics can also be lyotropic: the nematogens display +an amphiphilic structure (they have both hydrophilic and hydrophobic parts), the control +parameter being the concentration of molecules in a solvent such as water. The frontier +between thermotropic and lyotropic liquid crystalline behavior being not strict, nematogens +can also behave as amphotropic media. +4 + +In the perspective of section III, let us focus on thermotropic nematics. In that case, there +are different models accounting adequately for the phase transition. The Lebwohl-Lasher +model [11] is the paradigmatic model in this context, in a sense the liquid crystal analogue +of the Ising model [12]: the nematogen molecules are represented only by their direction and +they occupy fixed positions on the sites of a cubic lattice. The different sites of the lattice +interact only between nearest neighbors through a potential that favors configurations where +the neighboring molecules point in the same direction. On the contrary, the Maier-Saupe +approach is a mean-field theory: interactions between particles are replaced by an effective +field experienced by all particles at the same time. This model considers only London forces +between instantaneous molecular dipoles and ignores repulsive interactions [13]. This also +favors alignment of the molecules in the same direction. We will briefly mention that for +lyotropic nematics, Lars Onsager described the phase transition of an assembly of rod-like +sticks as an entropic process driven [14]: due to purely steric effects, orientational entropy +loss is more than offset by positional entropy gain which triggers the transition. +Depending on the temperature range, three (or more) phases can be observed. At low +temperatures, the steric hindrance of aliphatic chains is minimal and the nematogens get +close enough for attractive forces to drive the system. As the dipole-dipole interactions +prevail over thermal agitation, the assembly of rod-like molecules organize into a molecular +crystal. This latter displays both a positional and rotational order for each molecule. On +the contrary, at high temperatures, Van der Waals interactions are dominated by thermal +effects and the nematogens form an isotropic fluid phase: both positional and orientational +order are lost. Within the intermediate range of temperature, the two effects are of the same +order and different kinds of mesophases may appear. In the nematic mesophase, only the +orientational order is preserved: locally, the nematogens tend to align on average along a +common direction, which defines the director field n. In usual nematics, the orientational +order is preserved at long distance, as the correlation length is typically about a few µm, +compared to the nematogen length around a few nanometers. +As the phase transition +involves nucleation, these domains wherein nematogens share a common orientation form +submicronic bubbles (or spherulites). Then they grow in size and eventually they meet and +mingle, sometimes leaving relics in the form of long threads. +c. +Order parameter +Within a nematic, a particular molecule does generally not point +exactly in the direction n and the degree of orientational ordering of the mesophase can thus +5 + +be assessed by looking how well the nematogens are aligned along the director field. The +quadrupolar scalar order parameter S defined by Tsvetkov (1942) provides a quantitative +criterion to characterize the nematic order: it is normalized (S = 0 in the isotropic fluid phase +and S = 1 for perfectly aligned rods), and ranges from 0.3 < S < 0.8 in usual nematics (in +practice, 0.3 < S < 0.4 for thermotropic liquid crystals, whereas 0.6 < S < 0.8 for lyotropic +ones). The order parameter can be refined to include informations on the local orientation +of n (Landau – de Gennes tensorial order parameter) or to encompass phase involving more +complex-shaped mesogens (higher-order mutipole-multipole correlation functions). +For thermotropic nematics, S can be taken as a function depending only on the temper- +ature. The behavior of S at the transition can essentially discriminate between two main +families of phase transitions (in the sense defined by Lev Landau in 1937 [15]): first-order +phase transitions, for which the order parameter displays a jump at the transition control +parameter (this class also involves latent heats and nucleation processes), and second-order +phase transitions, for which the order parameter varies continuously at the transition (this +class involves pretransitional effects and scaling behaviors). Experimentally, for most com- +pounds (5CB, MBBA, 5CN...), the isotropic-nematic phase transition is identified as weakly +first-order phase transition in three dimensions. It combines small discontinuities of S [16], +nucleation [17] and low latent heats [18], but pretransitional effects of the dielectric proper- +ties [18]. +B. +From symmetry to topology +a. +Homotopy theory +The existence of orientational and/or positional orders impart +each phase about the transition with a specific set of symmetries. As a rule, the higher- +temperature phase is generally the less-ordered one and its symmetry group is larger. In +the isotropic-nematic case, the isotropic fluid phase and the nematic liquid crystal are both +statistically invariant under any translation in space. But for the orientational part, the +two phases do not share the same symmetry group. Indeed, the isotropic fluid phase is +statistically invariant under any rotation in three dimensions, that is, under the elements of +the group SO(3), while in the mesophase the director field plays the role of a symmetry axis, +restricting the symmetry to statistical invariance under the elements of the group SO(2). +But for energetic reasons, the dipoles borne by the nematogens tend to align anticollinear, +6 + +such that the assembly of rods is unchanged when inverting heads and tails (this dimeric +structure was confirmed early by X-ray diffraction experiments in 5CB and 7CB [19]). Hence, +the full symmetry group of the nematic phase is O(2). +Many important features of a phase transition with a spontaneous symmetry-breaking +are encompassed within the topology of an abstract object, called the order parameter space +M. For a phase transition with a symmetry-breaking pattern G → H, the order parameter +space is a manifold defined from the coset M = G/H. The toolbox of algebraic topology +(Poincaré’s former analysis situs) can then be used to seek the algebraic invariants (numbers, +groups, rings. . . ) of M and to classify this space into equivalence classes. +Among the many entry points, homotopy theory is of particular interest to determine the +presence of singularities. Two topological spaces are homotopic if they can be mapped into +each other by a continuous deformation where bijectivity is not necessarily preserved (i.e. +gluing, shrinking or fattening the space is allowed). Homotopy groups, denoted generically +as πk(M), have been extensively studied in condensed matter physics, mainly in the pio- +neering works of Kleman, Lavrentovich, Michel, Toulouse and Volovik [20–26] and they are +associated to different kinds of topological properties for M. For instance, π1(M) tests the +simple-connectedness of the order parameter space. Indeed, consider first M = R × R. It +is simply-connected as all closed loops (dimension 1) are homotopic to a point (dimension +0): therefore π1(M) = I and the order parameter space is simply connected. Conversely, +for M = R∗ × R∗, there are two equivalence classes of closed loops: those not encircling +the origin, which are homotopic to a point, and those encircling the origin which cannot be +shrunk into a point. Therefore π1(M) ̸= I and the order parameter space is not simply con- +nected. The 0D-hole has thus changed the homotopy content of π1(M). Interestingly, the +dimensionality of the manifold is crucial here: a loop trying to lasso a 0D-hole can succeed in +2D but will always fail in 3D. In its most general form, the fundamental result of homotopy +analysis states that in dimension n, if the k th homotopy group πk(M) ̸= I, then holes of +dimension n − 1 − k appear: such singularities are called topological defects. Strictly speak- +ing, a defect is topological when the singular configuration of the order parameter cannot +be transformed continuously into a uniform configuration. This process depends not only +on the order parameter configuration but also on the dimensionality of the order parameter +space (due to the possibility to “escape in the third dimension”). Therefore, there is also a +more flexible use for the terminology “topological defect”, referring to the singularity asso- +7 + +ciated to any non-trivial homotopy content of the order parameter manifold, whatever its +topological stability is. In the remainder of this article, we will stick to that latter meaning. +b. +Zoology of topological defects in nematics +For the isotropic-nematic phase, the order +parameter space is given by M = SO(3)/O(2) ≡ S2/Z2: the resulting space, called the real +projective plane RP 2, can be pictured as a 2-sphere having its antipodal points identified. +The manifold corresponding to an immersion of the real projective plane in 3D space is +called a Boy surface and its topology is encompassed into its first four homotopy groups: for +uniaxial nematics in 3D, these are π0(RP 2) = I (no domain wall), π1(RP 2) = Z2 (existence +of linear defects), π2(RP 2) = Z (existence of point defects) and π3(RP 2) = Z (existence of +textures). +FIG. 1. Left: Class N = 0 of closed loops homotopic to a point in the order parameter space. +Right: Class N = 1 of closed loops consisting of paths connecting two antipodal points, which are +not homotopic to a point. +Linear defects (or “disclinations” in Frank’s terminology) come from a breaking of the ro- +tational symmetry group and they are probably the most widespread singularities observed +in nematics. In optical microscopy, they appear as thread-like structures used by Friedel to +coin the term nematic (from the greek νηµα="thread"). In polarizing microscopy, disclina- +tions give rise to the beautiful Schlieren patterns, where dark brushes connect at singular +8 + +A'=A +O +T,(RP2)=Z2=[0,1) +unstable +stablepoints corresponding to the line defects viewed end on. The content of the first homotopy +group (or Poincaré group) is Z2 = 0, 1, which means that there are two equivalence classes +for closed loops. The trivial class N = 0 corresponds to defects that are not topologically +stable (they can relax into a uniform configuration), whereas the second non-trivial class +N = 1 corresponds to defects that cannot be removed (see Fig. 1). For reasons we will +clarify later, we retain the terminology of wedge disclinations to the trivial class and the +terminology of Mœbius disclinations to the non-trivial class. A disclination can stay almost +straight or form loops. It is generally associated to other disclinations within dipoles (edge +dislocations), amorphous networks (blue phases), etc. In that case, they have the possibility +to interconnect [27] and they combine according to the algebra of Z2, that is 0 + 0 = 0, +0 + 1 = 1 and 1 + 1 = 0. An extensive review on linear defects in the general context of ill- +ordered condensed matter can be found in [28]. Since our main concern here is disclinations +we refer the reader interested in point defects and textures (including the exotic skyrmions +and hopfions) to the the very complete reviews [17] and [29], respectively. +C. +Optics in the presence of linear defects +a. +Director field of axial disclinations +A region characterized by a given director field +can undergo orientational distorsions as a result of external constraints. As n is a unit +(headless) vector, the distorsions always occur in a plane orthogonal to the director field, +i.e. δn.n = 0. From a Taylor expansion, one can rewrite the deformed state as the sum of +three main elastic modes: a splay term in ∇.n, a twist term in n.(∇ × n) and a bend term +in |n × (∇ × n)|. The Frank-Oseen free energy density is the elastic cost of orientational +oscillations around n: +fV = 1 +2K1(∇.n)2 + 1 +2K2(n.(∇ × n))2 + 1 +2K3(n × (∇ × n))2. +(1) +Equilibrium state corresponds to configurations such that fV is extremal. Elastic constants +are of order E0/L, with the interaction energy about E0 ≈ 0.1 eV and L ≈ 1 nm, it is +customary to perform the one-constant approximation for which K1 ≈ K2 ≈ K3 = K = +10−11 N. This assumption is fair for most ordinary nematics: for instance, in the case of +5CB at 298 K, one measures K1 = 6.2 pN, K2 = 6 pN and K3 = 8.2 pN [30, 31]. +The simplest class of linear defects consists in axial disclinations and they were firsly +9 + +considered by Oseen [32] and Frank [33] (for the class of perpendicular disclinations, proposed +by de Gennes, see for instance [34]). Orientation of the director field is ill-defined along a +line (say the z−axis) and n lies in a plane orthogonal to the defect axis (in our example, +the x − y plane). In cylindral coordinates, let ψ(r, θ) be the angle between the director field +and the radial unit vector. Then the Euler-Lagrange equations corresponding to a minimum +of fV simply writes as ∆ψ = 0. The solutions representing disclination lines are given by +ψ(θ) = mθ + ψ0, where m is the defect strength or topological charge (a priori in R) and ψ0 +a constant phase term. Around a closed loop, the total change in ψ is thus 2mπ. For the +director field to be well-valued, this variation is tied by the hodograph rule coming from the +Z2 symmetry of the nematic phase: +� +θ=2π +dψ = 2mπ = kπ +(2) +where k ∈ Z. Hence, the director field writes as +n = +� +� +� +� +� +cos(mθ + ψ0) +sin(mθ + ψ0) +0 +� +� +� +� +� , +(3) +with the topological charge constrained to be integer and half-integer, i.e. m = ±1/2, ±1, +±3/2,. . . +Disclinations with integer strengths are topologically removable and belong to the N = 0 +homotopy class: defects m = +1 and m = −1 are topologically equivalent and can be trans- +formed into one another by continuous deformations. They appear in optical microscopy +as thick lines and their core is not singular (possibility to escape into the third dimension). +Disclinations with half-integer strengths are not topologically removable and belong to the +N = 1 homotopy class. In this latter case, fibring over a circle about the defect line by +a line segment containing the director which is met at that point, gives a Mœbius ribbon +which twists along the loop an odd number of times [26] (on the contrary, for the N = 0 +disclination, one gets an ordinary ribbon with two sides). They appear in optical microscopy +as thin lines and they display a singular core structure. As the free energy density varies in +m2 and therefore, it is energetically more favorable for a wedge disclination to decay into two +Mœbius disclinations, as prescribed by the combination 0 = 1+1. It must be remarked that +besides |m|, other topological invariants (such as the self-linking number, Poincaré-Hopf’s +10 + +index...) are needed to characterize the topology of a linear defect, as a disclination can +globally self-connect, entangle with itself... +b. +The secrets of Fermat-Grandjean principle +In the geometrical optics limit, light +propagates along paths that can be traveled within the least time. In the case of isotropic +media, this variational formulation takes the form of the well-known Fermat’s principle, +established by Pierre de Fermat in 1662. In anisotropic uniaxial media, the constitutive re- +lations involve a dielectric tensor that displays two different principal permittivities, namely +ε⊥ and ε∥ (in a nematic, ε∥ corresponds to the permittivity in the direction of the director +field, whereas ε⊥ is the permittivity orthogonally to it). Fresnel’s equation then provides +two modes inside such material: the ordinary mode, behaving similarly as in an isotropic +medium with refractive index n2 = ε⊥, and the extraordinary mode which experiences a +direction-dependent refractive ray index given by [35]: +Ne(r) = +� +ε⊥ cos2 β(r) + ε∥ sin2 β(r) +(4) +where β is the angle between n and the local tangent vector T. In 1919, Grandjean extended +Fermat’s principle to uniaxial media and he showed that the energy carried by extraordinary +light rays propagates along paths obeying [8] +δ +�� +Ne(r)dℓ +� += 0 +(5) +where ℓ is the curvilinear abscissa that parameterizes a ray. +Because the director field changes from point to point, a nematic generally displays a +varying refractive index and hence, extraordinary light beams propagate into the medium +along curves (see Fig. 2). In the case of planar axial disclinations, the direction of n and +consequently β is known at each point. In that case, it can be shown that the integrand in +Fermat-Grandjean’s principle can be generally rewritten as [36, 37] +N 2 +e (r)dℓ2 = +� +ε⊥ cos2 [(m − 1)θ + ψ0] + ε∥ sin2 [(m − 1)θ + ψ0] +� +dr2 ++ +� +ε⊥ sin2 [(m − 1)θ + ψ0] + ε∥ cos2 [(m − 1)θ + ψ0] +� +r2dθ2 +− +� +ε∥ − ε⊥ +� +sin2 [2(m − 1)θ + 2ψ0] rdrdθ + dz2 +(6) +In a seminal work [38], Walter Gordon pointed out the formal analogy between light +propagation inside a moving dielectric and light propagation inside a non-Euclidean geome- +try. This idea was developed by many authors eversince [39–45], as it elegantly replaces the +11 + +FIG. 2. Light paths and director fields in the presence of a planar disclination (Up left: m = +1, ψ0 = π/2. +Down left: m = −1, ψ0 = π/2. +Up right: m = 1/2, ψ0 = π/4. +Down right: +m = −1/2, ψ0 = 0). Taken from [36]. +resolution of Fermat’s principle in a material medium by the search for the minimum-length +lines (or geodesics) of an empty curved space. The main asset of that point of view is that +one can use the toolbox of differential geometry to understand how the defect modifies trans- +port phenomena in its vicinity. To illustrate how this works, let us consider the example of +a (m = 1, ψ0 = π/2)-disclination (see Fig. 2). For this defect, Eq. (6) leads to the following +line element: +ds2 +3d = N 2 +e (r)dℓ2 = dr2 + α2r2dθ2 + dz2, +(7) +where α2 = ε∥/ε⊥. The line element is a fundamental quantity in differential geometry +and it simply consists in a generalization of Pythagoras’ theorem for computing distances in +arbitrary geometries. Here, instead of the familiar Euclidean line element ds2 +3d = dr2+r2dθ2+ +dz2, the term in α2 means that the circumference of a closed unit circle about the defect is no +longer 2π but 2πα instead: in other words, there is a mismatch angle (called Frank angle) +of value 2π(1 − α) compared to flat geometries. It is customary in differential geometry +12 + +to rewrite the line element as ds2 +3d = gijdxidxj, where Einstein’s summation convention on +repeated indices is used. g is called the metric tensor and it corresponds to a positive definite +quadratic form. The curvature scalar [46] as computed from the metric is: +R = 2π(1 − α) +αr +δ2 (r) +(8) +whereas the torsion tensor is identically zero. +An alternate approach to describe the influence of defects in optics, also from differential +geometry, consists in using the formalism introduced by Paul Finsler in his 1918 thesis, +for which there is no quadratic constraint on the geometry as in the Riemannian case [47]. +As a matter of fact, the arc length is given by a Finsler function F such that ds3d = +F (x, y, z, dx, dy, dz) instead of ds3d = +� +gijdxidxj. In the case of anisotropic media, F(r) = +Ne(r)dℓ and the metric corresponds to the Hessian of the ray index [48]. Ought to the +particularly simple dependency of the ray index with respect to coordinates, this formalism +turns out to be fully equivalent to Riemann’s approach (see discussion at the end of [36]). +A line element of exactly the same form as (7) appears in the geometric theory of defects +in elastic media [49], related to the strain field associated to wedge disclinations as will be +described in Section II D. Such line defects can be formed by either inserting or removing +a wedge of material of angle 2π(1 − α) with subsequent identification of the edges. In the +case of a removal wedge disclination of axis z (α < 1), the geometry surrounding the defect +is conical and can be easily pictured from the Volterra cut-and-weld process of Fig. 3. In +other words, a disclination can be pictured as a Riemann manifold, for which curvature is +only located on the disclination axis and vanishes everywhere else. +c. +Discussion +From the elasticity point of view (as opposed to optics) the description +of an axial wedge disclination by the geometry (7), or more generally by (6), calls for +several remarks (it is important to stress here that ε∥ and ε⊥ now are related to elastic, not +optical, anisotropy). First, a liquid crystal consists in an assembly of rod-like molecules and +modeling it as a continuous medium is not self-explanatory. Rigorously, the continuum limit +for nematoelasticity should come as a coarse grained approximation of molecular dynamics +and it should fail at the atomic scale. n(r) is defined statistically, as the average common +direction of the nematogens at each “point” in space. The “point” actually refers to a small +volume of space that includes enough molecules for the averaging process to be physically +significant. Hence, in practice, it means that the “point-volume” has to be large enough +13 + +FIG. 3. Volterra cut-and-weld process for a (wedge) disclination along z. +compared to the molecular scale a (typically a ≈ 20 Å) and that the variations of the +director field must occur at much larger scales than a. +Only then, the distorted liquid +crystal can be described as a continuous medium, as discussed by Oseen [32], Zöcher [50] +and Frank [33]. +A second caveat is related to the status of (7), which obviously possesses non-vanishing +curvature as in three-dimensional gravity. +Yet, the nematic actually lives in a three- +dimensional Euclidean space, which means that the background geometry is flat. How to +reconcile these two standpoints? Following the analysis from De Wit [51], the state described +by (7) does exist in the flat space, but only in an imaginary space where the medium is +relaxed: gij comes from the projection of this imaginary space onto the physical flat space, +in a similar way as a stereographic map projection transfers the geometric properties on +a 2-sphere (the Earth, with its meridians and parallels) onto a flat plane while deforming +them (Wulff net). It turns out that the geometric description of defects thus requires two +metrics: 1) The physical flat metric, δij, will be used to perform operations on tensors such +as raising/lowering indices... 2) The effective metric gij, which contains the elastic informa- +tion, will be used to determine the kinematics of low energy perturbations (geodesics, first +14 + +disclination axis +Frank angle +2=2元(1-α) +(α<1: removal)integrals...). +Third, one may naturally wonder what really happens on the defect axis and how to +refine our zero-width model. +In soft matter and more especially nematics, defect cores +are very narrow as well but they still belong to the realm of continuum mechanics. As +discussed in [8], a disclination line can accurately be described by a “two-phase model”: the +core consists in a tubular region, filled with the nematogens in isotropic phase (vanishing +order-parameter), and surrounded by the nematic phase (non-zero order parameter). This +approach is consistent with exact solutions obtained from the minimization of the Landau +– Ginzburg – de Gennes free energy. Yet, the last word has probably not been said about +disclination cores: observations made on lyotropic chromonic liquid crystals revealed that +the core region has several unexpected features (asymmetric non-circular interfaces between +the nematic and the isotropic phases, azimuthal and radial dependencies for the phase and +amplitude of the order parameter...) compared to classic two-phase models [52]. +D. +Analogue gravity: lessons and pitfalls +a. +Physics as geometry +The geometric description of transport near linear defects does +not restrict to optics near axial disclinations. Since the pioneering works by Bilby [53] and +Kröner [54] in the 1950s, this approach has been extended to elasticity theory as well [55, 56]. +In the noteworthy set of works [49, 57, 58], Katanaev proposed a general framework based +on Riemann-Cartan manifolds for dislocations and disclinations in elastic media but only +considered the strain tensor field as the relevant degree of freedom. An expression of the +effective metric gij in the medium rest frame can be obtained in the case of linear elasticity +as +gij = δij + 2εij +(9) +where εij denotes the strain tensor. Compared to ordinary elasticity theory (OET), the +geometric theory of defects is in principle more accurate (ordinary elasticity only reproduces +the first-order approximation of the geometric theory of defects [49]) and it is more versatile +(changing the kind of defect only requires changing the metric, instead of a complicated set +of boundary conditions in ordinary elasticity theory). Moreover, the geometric approach +is also likely to encompass many other kinds of linear defects of interest in liquid crystals +physics, such as screw dislocations in smectic A and C [59, 60] (in that case, the defect +15 + +must be described in terms of a Riemann-Cartan manifold, for which torsion is only located +on the dislocation axis and vanishes everywhere else [61]), dispirations in antiferroelectric +SmCA and the dimeric SmC2 [61, 62], edge dislocations in smectics [63, 64] (which are merely +disclination dipoles)... +The preceding examples testify that in many condensed matter systems, the effective +degrees of freedom are represented by specific field excitations that propagate over effective +Riemann-Cartan manifolds. Geometrization of physics is not a new idea. In Plato’s Timaeus, +an attempt was made to describe the world in terms of only five regular polyhedra and ever +since, geometrization of physics has been a dream pursued by many figures in science, +including René Descartes, Bernhard Riemann, William K. Clifford [65] (for an updated +account, see [66])... The most successful step forward in merging geometry and physics was +made in the twentieth century by Albert Einstein with the theory of general relativity: the +gravitational interaction turns out to be nothing more than a manifestation of the spacetime +curvature. The possible implications of that theory did not escape the attention of influencial +physicists such as Hermann Weyl [67], Arthur Stanley Eddington [68] and more especially +John A. Wheeler. In the seminal paper Classical physics as geometry [69], Wheeler and +Charles W. Misner borrow tools from cohomology, differential geometry, exterior algebra and +topology to fully merge gravitation, electrodynamics and geometry. Provided spacetime is +multiply-connected, Misner and Wheeler showed that similarly to mass, classical charge can +also be seen as a byproduct of the spacetime geometry. A particularly meaningful example +is the low-dimensional gravitational model proposed by Gerard ’t Hooft in the context of +quantum gravity [70] (see below III C): in 2+1 dimensions, ’t Hooft showed that gravitating +point particles can elegantly be described as conical point-like singularities of space-time, +each deficit angle being related to the particle’s total energy. Today, this kind of ideas has +spread out to the point where it has become an area of research on its own: analogue gravity +(for an extensive review, see [71] and more recently [72]). +b. +Pitfalls +Despite appealing to classical fields, analogue gravity is tricky and must be +handled with great care. Indeed, it relies simultaneously on two different manifolds: 1) the +background gravitational metric – which is experienced by all fields (generally Minskowski’s) +– is the outcome of Einstein-Cartan equations. It is a tensor, used for instance to raise and +lower indices of tensors, and as such, it is a covariant quantity, and 2) the effective metric – +which is experienced only by the fields coupled to matter – does not obey Einstein-Cartan +16 + +gravitational equations. +Its purpose is limited (for instance, to determine the geodesics +followed by the coupled-fields excitations, as it is not a covariant quantity. +Indeed, the +effective metric is derived from physical quantities which are defined in a privileged frame, +the medium rest-frame, and that are not invariant under Lorentz transformations. +As can be seen from (9), the effective metric superimposes the background Minkowski +metric and a correction taking into account the couplings between field and matter. In the +original experiment led by Hippolyte Fizeau, the changes in the velocity field of water (and +hence of the Gordon metric itself) were obviously ruled by the Navier-Stokes equations (for +the velocity field) instead of Einstein-Cartan equations. In other words, effective spacetimes +are generally stationary. Ref [73] pointed out that textures in nematic liquid crystals can +indeed be described by the space sector of an Einstein-like equation, with the elastic-stress +tensor replacing the energy-momentum tensor. The relevance of the effective metric is there- +fore restricted to calculations of properties related to the kinematic properties of the fields +coupled to matter. This encompasses as we said the geodesics of low-energy excitations +but also the less obvious cases of Unruh effect or Hawking radiation which are purely kine- +matic phenomena [74]. Therefore, the analogy between gravitation and condensed matter +is strictly kinematic but not dynamical. To rephrase Wheeler, analog spacetime tells matter +how to move... but matter does not tell analog spacetime how to curve. +What is the purpose of analogue gravity? In cosmology, putting a theory into test is +always a thorny challenge. In 1992, the great epistemologist Karl Popper already pointed +out that the “major theoretical problem in cosmology is how the theory of gravitation may be +further tested and how unified field theories may be further investigated” [75]. If the plentiful +harvest of low-energy observations (baryonic oscillation spectroscopy, gravitational wave in- +terferometry, mapping of the cosmic background ...) answered many questions, theoretical +models involving (trans)planckian scales bloomed even faster, for which experimental con- +firmations seem almost impossible – even in principle – to reach. A possible way out of this +conundrum is to take advantage of the richness and flexibility of condensed matter. Within +certain limits, analogues of gravity can be used to simulate different types of cosmological +objects (signature transitions events, cosmic strings...) and to investigate the transport of +bosonic and fermionic quasiparticles in nontrivial spacetimes. The next section reviews a +series of works dealing with non-standard cosmological models that can be investigated from +their liquid crystal counterparts. +17 + +III. +UNRAVELING THE UNIVERSE WITH LIQUID CRYSTALS: COSMOLOGY +IN THE LABORATORY +A. +Phase transitions in cosmology +a. +Thermal history of the universe +In many senses, cosmology consists in thermody- +namics applied to the largest expanding closed system: our universe. Our current under- +standing of cosmic history is indeed based on the Standard Hot Big Bang Model and it +originates in the pioneering works of three founding fathers: Albert Einstein, Alexander +Friedman and George Lemaître. In essence, this model states that about 13.8 billion-years +ago, the Universe was in an extremely hot dense state, consisting in a quark-gluon plasma, +and that it has expanded ever since. In the framework of grand unified theory (GUT), the +four fundamental interactions (the gravitational interaction, the electromagnetic interaction +and two lesser known forces, the weak nuclear interaction – responsible for radioactive β de- +cays – and the strong nuclear interaction – which ensures the cohesion of the atomic nuclei) +were then assumed to be unified at energy scales estimated at about 1016 GeV. +Each interaction is associated with internal (or gauge) symmetries: for instance, at today’s +energy scales, the electromagnetic force displays gauge invariance under the elements of U(1), +the unitary group of dimension 1 (for an accessible review on gauge theories see for instance +[76]). Above 1016 GeV, the group G containing the internal symmetries of grand unified +superforce is not known for sure and many candidates with exotic names are considered, +such SU(5), SU(6), SU(7), SU(8), SU(9), SO(10), SO(14), E6... [77] The universe expansion +played the role of a gigantic Joule-Thomson expansion, which caused a large temperature +drop driving cosmological phase transitions. For example, the last of these transitions is +the electroweak phase transition, occurring at energy scales about 102 GeV. It marks the +splitting of the electroweak force into an electromagnetic part, described by Maxwell’s theory +(1865), and the weak nuclear part, the first theory of which being Fermi’s theory (1933). +This transition involves a spontaneous gauge symmetry breaking: the high temperature +gauge symmetry group SU(3)c × SU(2)L × U(1)Y broke into SU(3)c × U(1)em [77]. +Let us now examine the topology of vacuum manifold (that is the set of field configurations +minimizing the free energy modulo gauge transformations), which is the equivalent of the +order parameter space M in condensed matter physics. In [78], Jeannerot et al determined +18 + +the homotopy content corresponding to all eligible groups G likely to decay below 1016GeV +into SU(3)c × SU(2)L × U(1)Y . Their conclusion leaves no doubt concerning the formation +of cosmic strings: +. ..among the SSB schemes which are compatible with high energy physics +and cosmology, we did not find any without strings after inflation. +(if one assumes that the universe is topologically multi-connected, cosmic strings and +monopoles may appear – not single but pairwise –, whereas two-dimensional defects – +domain walls – cannot form at all [79]). +b. +Kibble-Zurek mechanism +Cosmic inflation is a period of extremely fast expansion +of the Universe scale factor (typically a factor 1026 within 10−32 seconds) that presumably +happened at the very beginning of the universe [80]. From the point of view of statistical +physics, inflation is nothing more than a quench and as such, it is likely to favor the formation +of topological defects. In 1976 [81], Tom Kibble introduced a three-step mechanism (later +refined by Zurek [82] who included the sensitivity to the quench speed) to describe the details +of this quench. +Basically, the Kibble-Zurek mechanism (KZM) consists in a nucleation +process very similar to what happens at the isotropic-nematic phase transition, but instead +of having an order locally described by the director field n, it is here described by the phase +of a complex scalar field generically called a Higgs field – or an inflaton, because it needs +not be the Higgs field responsible for the later breaking of electroweak symmetry. First, +ordered protodomains (analog to the nematic spherulites) with no correlation between each +other are formed and at the scale of a whole protodomain, the fast temperature drop due +to inflation causes the Higgs field to locally take a non-vanishing vacuum expectation value +and hence to make a phase choice. Then the protodomains grow in size until they coalesce. +But as they were not correlated, the choices for the Higgs phase (technically, its vacuum +expectation value) do not match in general, and line singularities of the Higgs appear when +the boundaries of protodomains finally meet. These linear singularities are called cosmic +strings. +Besides this qualitative predictions, the KZM also makes quantitative predictions such +as the scaling dynamics of the cosmic string network, the average density of defects, cor- +relations between defects and antidefects... In the 1990s, several works [27, 83–87] showed +that the KZM, originally developped for cosmology, was also perfectly describing line defects +19 + +in nematics with the very same scaling coefficients. For instance, this model predicts that +in 2D the density of strings scales as ρ ∼ (t/τq)α with a critical exponent αth = 0.5, and +measurements done by [27] with 5CB indeed gave αth = 0.51 ± 0.04. To sum up: defects +consist in regions that cannot relax into the new vacuum or equivalently that are unable to +make the transition into the new ordered phase, and they occur during phase transitions +in cosmology and in liquid crystal physics that seem to belong to the same universality +class. But the family resemblance goes further. Networks of cosmic strings and networks of +disclinations also share similar intersection processes: 1) when two line defects intertwine, +they may reconnect the other way as they cross (intercommutation) [27, 88] and 2) when +one line defect self-intersects, it creates a loop [89, 90]. +c. +An almost perfect analogy? +Last but not least of these common points: the geometry. +Nambu-Goto strings, which are the simplest cosmic defects one may expect in cosmology, +consist in linear concentrations of energy and as such, they are considered as infinitely +thin objects (as the thickness of a cosmic string is estimated at 10−28 cm, this is a fair +approximation[91]). As required by thermal field theory and general relativity, the geometry +around a Nambu-Goto string is described by the Vilenkin’s line element [88]: +ds2 = −dt2 + dr2 + (1 − 4Gµ)2 r2dθ2 + dz2 +(10) +where µ is the string energy density estimated at about 10 million billion tons per meter +(we adopt hereafter the customary unit system of cosmology where c = 1). The space part +of this element is identical to (7): it is a conical geometry corresponding to a removed Frank +angle [92] (typically, for a GUT scale string, this angle is a few seconds of arc). The reader +interested in the classical gauge theory of string interactions in curved spacetimes can refer +to Ref.[93]. From the standpoint of the soft-matter physicist, Nambu-Goto strings can be +understood as the cosmic counterparts of wedge disclinations. How to make sense of such +incredible similarity? For the most part, this question is still open, but a noticeable attempt +to address it was done in [73]: in essence, the reason is that equations of nematoelasticity +have the form as the spatial sector of Einstein’s field equations, with the elastic-stress tensor +playing the role of the energy momentum tensor. +As the analogy between gravity and nematoelasticity does not concern time components, +one expects that the dynamics of a cosmic defect cannot be directly mapped with those +of a disclination. There are other discrepancies between cosmic and elastic defects that +20 + +one must bear in mind to avoid fallacies. Obviously, the motion of disclinations is classical +(typically a few µm per second) whereas cosmic strings are ultra-relativistic. Dissipation +mechanisms for cosmic strings are due to radiation of gravitational waves, while those in +liquid crystals are friction-dominated. What is the outcome on the dynamics of the defects? +In cosmology, monopoles annihilate in pairs (Langacker-Pi mechanism), but they do not +annihilate fast and early enough to avoid that the Universe becomes monopole dominated +(which is why inflation is necessary, as it drives monopoles very far away from each other). +On the contrary, elastic hedgehogs in a nematic annihilate rapidly according to a scaling +law. At a more fundamental level, this is linked to the fact that in high energy physics, +broken symmetries are gauged (or internal) whereas in liquid crystals, broken symmetries +are geometrical: in the first case, one is dealing with “gauged defects” and in the second +case, one is dealing with “global defects”. +B. +Beyond cosmic wedge disclinations +a. +The way out of an observational dead-end +Cosmic wedge disclinations exist either as +stable infinite straight lines (their equation of state simply equates the string energy density +to its tension µ = T) or as closed loops that radiate away gravitational waves until they +vanish. When moving, strings happen to distort spacetime such that at all scales, matter +accretes along its wake into sheet-like structures. +They may account for the formation +of large-scale structures in our universe (including the Great Wall) and they have several +expected observable signatures such as the Kaiser-Stebbins effect [94, 95] (an asymmetric +Doppler shift giving rise to anisotropies of the cosmic microwave background), gravitational +lensing [96] (not in the form of an Einstein ring, but as a double image instead), geometric +phase (Aharonov-Bohm effect but with a cosmic string replacing the flux tube [97])... Up to +now, data collected by the PLANCK mission (2014) only settle upper bounds on the string +parameter µ [98] and in 2020, observations of the stochastic gravitational wave background +(NANOGrav experiment) may have provided with first evidences for cosmic strings [99–101]. +The non-conclusive observations of Nambu-Goto strings call for the search of refined mod- +els for linear defects. In fact, the zero-width approximation and the straightness of cosmic +strings are probably too coarse to account for realistic defects. Hiscock [102] and indepen- +dently Gott [103] suggest to smoothen this singularity by introducing two string models with +21 + +a core structure of constant curvature: the flower-pot model (with zero curvature) and the +ballpoint-pen model (with non-vanishing curvature). In the Gott-Hiscock thick cosmic string +spacetime, the metric tensor is piecewise-defined and it must obey matchings conditions at +the core radius [104]: the extrinsic curvature of the boundary should be the same whether +measured in the interior or exterior region (O’Brien-Synge-Lichnerowicz jump condition). +In contrast, thanks to experiments [52, 105] and molecular simulations [106, 107], much is +known about the NLC disclination core. In particular, there is strong evidence for biaxiality +and that strength +1 disclinations are in fact bound pairs of strength +1/2 ones, which +may be manipulated by electrical fields [108]. We note that this rich structure may serve +as an inspiration for novel cosmic string core models. In the same line, instead of being +perfectly straight, linear defects can present cusps, kinks and wiggles: the averaged effect +of these perturbations increases the linear mass density µ and decreases the string tension +T, as prescribed by the equation of state µ T = µ2 +0 [109–111]. Compared to straight string, +the geometry remains conical but the deficit angle is larger than in the straight string case, +which increases polarization anisotropies of the cosmic background radiation [112]. +There are many other ways to dress a Nambu-Goto string such that it may account +for observational results [113]. From an extension of Volterra process to 3+1 dimensions, +Puntingam and Soleng showed that there was only 10 ways to modify a Minkowski spacetime +into different pseudo-Riemann–Cartan geometries with respect to the Poincaré group. For +example, a cosmic linear defect can display chirality [114–119]: in that case, the defect +carries torsion along its axis and one gets the cosmic counterpart of a screw dislocation in +a smectic liquid crystal. Twisted Nambu-Goto strings (or cosmic dispirations), consisting +in spacetimes with delta function-valued curvature and torsion distributions have also been +considered, as they combine both rotational and translational anholonomy [120–123]: as +mentioned earlier, their effects on light could be tested from experiments done with elastic +dispirations SmCA and SmC2. +b. +Going further +Rotating disclinations are not likely to be stable but it is worth +mentioning here that their cosmic counterparts have been long predicted in the literature +[124]. A metamaterial analogue of the rotating cosmic string spacetime has been proposed +[125], as well as a superfluid vortex analogy [126]. One of the most interesting properties of +the spinning string is its association to closed timelike curves which may find applications +in time travel [127]. Incidentally, parallel cosmic strings moving in opposite directions have +22 + +been suggested [128] as a prototype time machine. Related to, but not really a model for +spinning strings, is the case of a hyperbolic nematic-based metamaterial with a disclination +which was addressed in [129]. Along the same line, in [130] it was proposed a disclination +model for the compactified Milne model of a cyclic universe. More details on this model in +Section III C. +Among the gauge strings, a very interesting possibility is the semilocal string [131]. Like +Dirac’s string of magnetic dipoles, semilocal strings end on gauge monopoles. They are +analogous to real disclinations in liquid crystals which, due to the finite size of a liquid +crystalline sample, must end somewhere (hedgehog, 2D disclination on the liquid surface or +on receptacle wall) or else, form a loop. Apropos, disclination loops in active nematics have +very complex dynamics (including chaos) and may present recombination episodes [90]. +Defects in liquid crystals have inspired many other proposals in cosmology. GUT allows +for discrete gauge symmetry groups, the standard Z2 parity and one Z3 parity, which are the +only anomaly free groups that remain unbroken at low energy [96, 132]. The corresponding +cosmic strings are generically called Zn-cosmic strings. +Based on the known physics of +Moebius disclinations, which are commonly observed in nematics, Satiro and Moraes have +investigated some cosmological outcomes of Z2 cosmic strings [133]: in particular, they +showed that Z2-cosmic strings display both positive and negative mass density regions. +Bearing in mind the back and forth interplay between cosmology and soft matter, one +cannot avoid to mention the latest works of Maurice Kleman, who imported homotopy +theory from condensed matter to astrophysics and cosmology [134–136]. In particular, he +conjectured and classified new families of cosmic defects (such as r-cosmic forms) allowed in +a four-dimensional maximally symmetric spacetime [136]. +C. +Black holes and Early universe +a. +Black holes, white holes, wormholes +This is sometimes referred to as the “cosmology +in the laboratory” game plan and it covers topics such as classical black holes [137]-[138], +Hawking radiation [139]-[140], wormholes [141]-[142]... For instance, in Haller’s approxima- +tion, the hydrodynamics of a nematic liquid crystal radially flowing down a drainhole is +23 + +experienced by light beams as the equatorial section of the Schwarzschild’s metric +ds2 = − +� +1 − 2M +r +� +dt2 + +dr2 +� +1 − 2M +r +� + r2(dθ2 + sin2 θdφ2) +(11) +for a specific velocity profile. The ordinary and extraordinary indexes of the NLC depend on +the scalar order parameter of the liquid crystal. So, it was possible to taylor those indexes +to get the proper optical metric. In order to achieve this, the Beris-Edwards hydrodynamic +theory wass used to connect the order parameter with the velocity of the liquid crystal flow +at each point. This was done in Ref. [143]. +More recently, an optical analogue of a wormhole threaded by a cosmic string was de- +scribed in [142]. +Wormholes are solutions of Einstein’s equations that connect different +regions of the spacetime. For instance, a spherically symmetric wormhole can be obtained +by joining two Schwartzschild black hole spacetimes by a spherical hole carved around each +singularity. +Wormholes are usually represented by “embedding diagrams”, which are 2D +slices of the 4D structure immersed in Euclidean 3D space. The embedding diagram of the +notorious Morris-Thorne [144] wormhole is obtained by taking a t = const., θ = π/2 section +of the spherically symmetric spacetime described by the metric +ds2 = −c2dt2 + +dr2 +1 − b2 +0/r2 + r2(dθ2 + sin2 θdφ2). +(12) +The restricted metric, ds2 = +dr2 +1−b2 +0/r2 +r2dφ2, can be embedded in a 3D Euclidean space with +metric ds2 = dz2 + dr2 + r2dφ2 such that z = z(r) is the equation of the embedded surface +of revolution. For metric (12) the result is the catenoid. +A thin nematic film on a catenoid with director field aligned either circularly or radially +(see Fig. 4) has an optical metric given by [142] +ds2 = dτ 2 + α2(τ 2 + b2 +0)dφ2, +(13) +where α = no/ne for the circular case, and α = ne/no for the radial one. The coordinate τ is +the arc length of the catenary that under rotation gives rise to the surface. The parameter +b0 is the radius of the wormhole “throat”. For α = 1, Eq. (13) reduces to the catenoid +metric. It is clear from Eq. (13) that, asymptotically (τ >> b0), the optical metric of the +disclination is recovered. This is also evident from the top view of the catenoids of Fig. 4. +This optical model simulates the conical spacetime of a Morris-Thorne wormhole threaded +by a cosmic string. The geodesics as obtained in [142] are represented in Fig. 5. +24 + +FIG. 4. Director field for circular and radial +1 disclinations on the catenoid, respectively. Taken +from [142]. +(a) +(b) +(c) +FIG. 5. +Assorted geodesics for the circularly decorated catenoid. +The blue lines represent the +isotropic case α = 1. The red and black lines represent, respectively, circular (deficit angle) and +radial (surplus angle) disclinations with α = 0.85 for (a) and (b), and with α = 0.98 for (c). Taken +from [142]. +From Fig. 5 it is clear that the two parts of the wormhole joined by its throat act as a +black hole/white hole pair. +b. +Road to quantum gravity +A major contemporary challenge in physics is to find an +extension of General Relativity able to describe gravity at all energy scales, in particular at +the very beginning of the universe. This is the mission devoted to quantum gravity theories, +which have the daunting task of reconciling Einstein’s general relativity and quantum field +theory. Despite promising attempts including superstring theories, M-theory or quantum +loop gravity, no proposal is entirely satisfactory up to now, and even so, the energy scales +required to test these theories are far beyond our current scientific capabilities. A way out +of this gridlock is to rely on simpler models that capture the essential features of quantum +gravity but remain connected to low-energy-physics systems, i.e. analogue gravity. The +rare pearl was first introduced in a seminal paper by Deser, Jackiw and ’t Hooft [145]: 2+1 +25 + +gravity with point-particle sources. +The main point is that there is no gravitational degrees of freedom in three dimensions +[146], which drastically simplifies general relativity (now an exactly solvable model [147]). +Within this framework, the geometry surrounding a point-particle is a conical singularity, +the mismatch angle being proportional to the particle’s mass. In other words, conical de- +fects represent point particles coupled to gravity in 2+1 spacetimes. After Katanaev [57] +first pointed out that the theory of linear disclinations was isomorphic to the 2+1-gravity, +Kholodenko [148] used the apparatus of quadratic differentials to establish the connection +between Deser, Jackiw and ’t Hooft model and defects in liquid crystals. In essence, the exis- +tence of massive particles considered as field singularities is directly related to the topology of +the underlying manifold (the Euler characteristic) and to the emergence of the induced sad- +dles: this means that 2+1 Einstein’s equations are strictly equivalent to the Poincaré-Hopf +theorem (see section 5.2 in [148]), the Hopf quantization rule making the direct connection +between particles masses Mi and the defect topological charge m, 4GMi = m [149]. +The 2+1 gravity model can therefore be experimentally investigated from a network of +parallel disclinations lines in a 3D nematic sample. Geometry of disclinations networks has +been theoretically investigated in the literature, sometimes allowing for analytical expres- +sions for the metric tensor [150–152]. Several authors have shown the possibility to design +arrays of topological linear defects from photopatterning techniques [153–157] and even to +manipulate them [158, 159]. If this last point opens the possibility to emulate collisions be- +tween particles in the 2+1 model, it is even more interesting for the extension of the Deser, +Jackiw and ’t Hooft model to 3+1 dimensions [70]: matter particles are represented by a +gas of piecewise straight string segments that are likely to collide with a higher frequency. +The strings display both positive and negative mass densities, i.e. they are associated to +α < 1 and α > 1 Frank angles, which makes liquid-crystal-based experiments particularly +promising to investigate such models. This model may also have deep connections with +Regge calculus in quantum gravity, where the smooth curved spacetime is replaced by a +piecewise-flat simplicial manifold. This is like the triangulation of a surface in 3D where the +local curvature is described by the dihedral angle between adjacent triangles (the triangle is +a 2D simplex). The effect of gluing the edges of the simplexes generate a network of cone-like +singularities (Regge cones) which are analogs to wedge disclinations [160, 161] (see Fig. 6). +26 + +FIG. 6. Triangulation of a sphere at the Itapetinga radiotelescope (Brazil). Covering a curved +surface by the triangles generates dihedral angles all around the sphere. +c. +Non-standard cosmology +Cosmology at transplanckian scales is a thorny problem, +both theoretically and of course observationally. For instance has the universe popped up +from a unique singular event, the Big-Bang? And if so, how not to wonder what could have +happened before it and how to design experiments to test these theories? Today, many +high-energy physics theories such as quantum loop gravity and supertring theories entice +the search for cyclic universe models, that is an endless repetition of big crunches followed +by big bounces, along the same line of thought as the Stoics’ concept of palingenesia. A +safe transition has been proposed [162, 163], where the singularity is nothing more than the +temporary collapse of a fifth dimension, the three space dimensions remain large and time +keeps flowing smoothly. A toy model for the geometry of this transition is the compactified +2D Milne universe MC [164, 165]. The Milne universe metric is given by +ds2 = −dt2 + t2dχ2 + t2 sinh2 χ +� +dθ2 + sin2 θdφ2� +(14) +and it was proposed by E.A. Milne in 1933. It represents a homogeneous, isotropic and +expanding model for the universe with a negative curvature. In order to compactify the +27 + +Milne universe on hypersurfaces of fixed solid angle, let the variable χ acquire some period +denoted as 2πκ: here, 0 < κ ∈ R1 is a constant parameter for compactifications. After +reparametrization, the line element corresponding to the compactified Milne universe finally +writes as +ds2 = −dt2 + κ2t2dφ2 +(15) +where t ∈ R1. As can be seen from the disclination line element (7), the presence of κ2 in +the above metric indicates a conical singularity of the curvature at the origin (see Fig. 7). +The passage through the initial singularity has several unusual features [130, 166]: the +singularity acts as a filter for classical particles and a phase-eraser for quantum ones. The +timelike geodesics of (15) reveal that depending on their angular momentum J, particles have +two ways of crossing the singularity: 1) For non-vanishing J, a two-step dynamics consisting +in an inward stable motion before the singularity, followed by outward stable motion on the +other side, with a memory loss of the particle kinematical properties (quantum mechanically, +this effect simply comes from strong oscillations of the phase of the wave function at the +singularity. 2) For J = 0, a one-step dynamics consisting in a straight line through the +collapse: yet such trajectories are very unstable since small perturbations in the value of J +causes large deviations on the trajectories. +Probing how particles behave in MC can be tested in the laboratory from hyperbolic +liquid crystal metamaterials (HLCM): this means that the permittivity along the director +axis ε∥ < 0 and the permittivity perpendicular to the director axis ε⊥ > 0 are of opposite +sign [167]. Such media can be made from a host nematic liquid crystal that includes an +admixture of metallic nanorods [168] or coated core-shell nanospheres [169]. To retrieve the +Kleinian double-cone geometry, the HCLM must be endowed with an hyperbolic disclination: +the line element writes as ds2 = ε⊥dρ2 − ε∥ρ2dφ2 + ε⊥dz2, which after a rescaling becomes +ds2 = −γ2r2φ2 + dr2 + dz2. This line element is relevant only by the extraordinary modes +and for radial injection conditions (planar trajectories z = Cst), the geometry experienced +by extraordinary rays is perfectly identical to that of the compactified Milne universe. +A stable configuration for the director field may be obtained from a cylindrical shell +of HLCM with homeotropic anchoring at the boundaries. In the geometrical optics limit, +extraordinary light paths turn out to be Poinsot’s spirals as for the compactified Milne +universe. The practical realization sets limits to the efficiency of such analog device for +the classical particles. First, the analysis holds only within a limited frequency bandwidth +28 + +FIG. 7. Timelike geodesics with the radial time t given in units of t0 and κ = 1/3. The blue and +green (orange and red) lines are moving away (towards) from (to) the singularity. Furthermore, +particles following the trajectories in the first (third) and second (fourth) quadrants are spinning +clockwise (counterclockwise). The blank point at the origin is just to emphasize that the curves do +not reach the singularity. Taken from [130]. +due to the resonant nature of the used core-shell spheres. Second, as previous phenomena +concern the extraordinary mode, an efficient optical absorber should include a filter to shut +off the ordinary wave. Finally, it should be noticed that the present model concerns optics +inside a bulk hyperbolic material: to design a perfect optical analog, the hyperbolic medium +must be impedance matched to avoid sizable reflections at the interfaces. The analogy was +also extended to quantum particles by investigating light in the scalar wave approximation +in the same device. +29 + +t +3 +f+, J <0 +f+, J > 0. +f-, J >0. +J0 +3 +J=0FIG. 8. Geodesics of the channel of defects in the potential landscape. Taken from [129]. +IV. +TAYLORING TRANSPORT WITH LIQUID CRYSTALS: DEFECT-ENGINEERED +MATERIALS +A. +Acoustics +a. +Ballistic guiding +The geometric description of linear defects revealed wedge discli- +nations carry curvature along their axis: a positive Frank angle corresponds to a conical +geometry that focuses incoming light rays, in similar fashion to what happens with a con- +verging lens. Conversely, a negative Frank angle corresponds to a saddle-like geometry that +scatters geodesics, in the same fashion as a diverging lens. It is worth noticing that the effect +of a disclination does not limit to the eikonal approximation, as it also diffracts incoming +waves: from the present geometric approach, computing the differential scattering cross sec- +tion of a wedge disclination showed good agreements with theoretical results obtained by +Grandjean from standard acoustics [170, 171]. +The effect of a single wedge disclination on rays being clarified, one can legitimately won- +der if a well-suited arrangement of such defects can be used to taylor the propagation of +sound (we recall that photopatterning techniques now allow for the practical realization of +almost any kind of arrays). In [151], a channel of disclination dipoles was considered, con- +30 + +V(x,y) +10sisting in two infinite rows made of alternate disclinations separated by distance 2a (a kind +of von Kármán alley), the distance between the rows being 2b. The positive disclinations +are at points located at (na, (−1)nb), n ∈ Z, while negative disclinations have coordinates +(na, (−1)(n+1)b), n ∈ Z. As always done in geometric models, the bulk medium is consid- +ered in the continuum limit (i.e. limit of a vanishing lattice spacing). The corresponding +background geometry writes as +ds2 = −c2dt2 + e−4V (x,y) � +dx2 + dy2� ++ dz2 = gµνdxµdxν +(16) +where c is the local speed of wave packet and V is the acoustic potential given by [151]: +V (x, y) = +|F| +4π ln +�� +cosh2 � π +2a(y − b) +� +− cos2 � πx +2a +� +cosh2 � π +2a(y − b) +� +− sin2 � πx +2a +� +� � +cosh2 � π +2a(y + b) +� +− sin2 � πx +2a +� +cosh2 � π +2a(y + b) +� +− cos2 � πx +2a +� +�� +(17) +where |F| is the absolute value of the Frank angle that characterizes the ±F defects. The +sound paths are attracted by the positive defects while repelled by the negative ones (see +Fig. 8 and 9). Adjusting the defect strengths along with parameters governing the geometry +of a cell (namely a,b) opens the possibility to taylor material properties of the sheets, but +this will only be achieved numerically considering the complexity of analytical expressions. +Sound paths are yet very sensitive to the shooting angle. Hence, a thorough optimization of +the distribution of defects deserves an additional treatment of chaos involving the statistical +tools of dynamic hamiltonian systems. +b. +Acoustic rectification +Differential geometry models for acoustics originates from +[172] where vorticity effects in isotropic fluids were investigated. In nematics, for a pla- +nar horizontal configuration, the acoustic metric experienced by the extraordinary mode is +formally identical to (6) with the substitutions ε⊥ ↔ ρv2/C33 and ε∥ ↔ ρv2/C11, where ρ +is the mass density, v is the velocity of sound in the isotropic phase, C33 and C11 are elas- +tic constants respectively along the director’s direction and in directions orthogonal to it. +When the nematic medium is confined inside a capillary tube (radius R) with homeotropic +boundary conditions, the director field tends to be radially oriented everywhere but on the +central axis where an orientational singularity lies, but to reduce the elastic energy of this +configuration, the director escapes in the third dimension [63, 173] and the nematic relaxes +31 + +FIG. 9. Different geodesics, shot from the origin, in the channel of disclinations geometry. The +positive disclinations correspond to red contours while negative disclinations correspond to blue +contours. Depending on the shooting angle, the propagation of phonons may be guided by the +street of topological defects. Taken from [129]. +into a funnel-shaped configuration, known as the escaped radial disclination (ERD) where +the delta-distributed Ricci scalar becomes an extended smooth one [174]. +In general, rectification effects come from an asymmetry of the system in the direction +along which the transport phenomenon occurs. Usually, this is generally achieved by relying +on gradients of physical properties (e.g. pore density [175], distribution of compositional +defects [176]...), asymmetric geometries [177, 178]... all examples of situations implying hard +and non-flexible systems. Liquid crystals naturally provide a stable but flexible configuration +corresponding to such asymmetry, the ERD. In the spirit of a low-cost soft-matter-based +solution, satisfying levels of acoustic rectification have been obtained by combining the +asymmetry of the ERD configuration to that of a container consisting in conical frustum +of varying radius R(z) [179]. The inner surface prepared to produce the desired anchoring +angle[180]. The anchoring angle adapted to maintain the ERD configuration. α depends on +the surface geometry (radius), on the liquid crystal nature (elastic constant K, saddle-play +32 + +0.5 +0.5 constant K24) and on the surface treatment. Reference [179] considered acoustic waves in a +frequency range between 20 Hz and 20 kHz (the average human audible range) propagating +in 5CB for the ERD configuration. The rectification parameter used to estimate the acoustic +device’s efficiency is the percent standard deviation of the lowest variation on the acoustic +intensity +Acoustic rectification(%) = +���� +∆Ibt − ∆Itb +min (∆Ibt, ∆Itb) +���� × 100 +(18) +where ∆Ibt = It − Ib is the acoustic intensity variation if the wave comes from the bot- +tom to the top of the conical frustum and ∆Itb = Ib − It is the analogous variation for the +counterpropagating case. Numerical simulations show a rectification effect for a longitudinal +plane wave propagating along the conical frustum axis (see Figure 10). The optimization +of the device parameters (geometry of the conical frustum, anchoring conditions the rectifi- +cation effects...) allows to reach rectification levels up to 1300% for a continuous frequency +bandwidth [181]. +FIG. 10. Left: Conical frustum with an ERD. Middle: Pressure field for the incoming waves from +bottom to top. Right:Pressure field for the incoming waves from top to bottom. Taken from [181]. +33 + +mPa +mPa +7.47237 +0.58721 +7.47236 +0.5872 +7.47235 +7.47234 +0.58719 +a) +20 +Jm +b) +20 +Ars +7.47233 +0.58718 +50 +50 +7.47232 +50 +50 +0.58717 +s) <0 +0 +μm +-50-50 +m +0 +- +Aim +7.47231 +-50-50 +μm +0.58716 +7.4723 +0.58715B. +Optics +a. +Waveguiding and light concentration +Manipulation of light has become a major issue +in a large number of applications ranging from solar energy harvesting to optical sensing. +The beam steering technique relies on a modulation of refractive indices to guide light +in a given direction ([182–185]). More recently, the possibility to continuously deflect in +arbitrary directions and/or to simultaneously focus/defocus an incoming light beam has +been demonstrated from multiple stacked nematic liquid crystal cells—building blocks [186]. +Another possibility to guide light beams is to use optical waveguides with nematic cores +in radial escaped disclination configurations: the defocusing due to natural diffraction is +compensated by the converging lens effect resulting form negative birefringence [187–191]. +Light focusing has long been suspected of suffering severe limitations, the Rayleigh crite- +rion forbidding beam sizes below half of a wavelength. Recently, the advent of metamaterials +provides new hopes for overcoming the diffraction limit using superlenses [192]. Another +promising possibility is to use an hyperbolic liquid crystal metamaterial (HLCM), obtained +from an admixture of metallic nanoobjects to nematics [193]. As seen in the previous sec- +tion, the permittivity along the director axis ε∥ and the permittivity perpendicular to the +director axis ε⊥ have opposite signs. For an orthoradial director field, the effective metric +writes as gij = diag (1, −α2ρ2, 1) and in the eikonal approximation, the light paths are the +aforementioned Poinsot spirals: the hyperbolic defect behaves as a sink for light paths [194]. +The smaller the value of α, the stronger is the spiraling behavior, 1/α corresponding to the +defect vorticity. Concentration of light by an hyperbolic disclination extends beyond the +geometrical optics limit. In the scalar wave approximation, the complex amplitude Φ of the +wave is governed by the generalized form of the d’Alembert equation, involving the Laplace- +Beltrami operator instead of the ordinary Laplace operator. The wave equation writes as +a modified Bessel differential equation of imaginary order iℓ/α and the solutions are linear +combinations of the modified Bessel functions of first and second kind, respectively. The +intensity distribution for the propagating fields shows 1) that the electromagnetic field con- +centrates along the axis of the device, and 2) that the bigger the value of the frequency, the +smaller the light rings are (see Fig. 11). +34 + +FIG. 11. Examples of intensity profiles, representing the transverse field distributions concentrated +in the vicinity of the hyperbolic defect. Taken from [194]. +b. +Optical vorticity +Active beam shaping has also emerged as a major trend in modern +optics. The idea is to taylor the amplitude, the phase or the polarization of an optical +wavefront from real-time driven systems that ideally must be compact enough, highly-flexible +but yet have low manufacturing costs. Ought to their high response functions, liquid crystal- +based devices naturally fulfill all these requirements and have emerged as promising low- +cost and easy-to-manufacture alternatives to MEMS, moving opto-mechanical devices and +photonic crystals [195, 196]. +In nematics, the orbital angular momentum carried by light beams can be tuned from +q-plates. A q-plate consists in an inhomogeneous liquid crystal cell endowed with a discli- +nation of topological charge q (for details regarding the dielectric tensor, see [197]). When +an electromagnetic wave propagates inside the medium, its components acquire designed +phase shifts (Pancharatnam-Berry phase) that trigger spin-to-angular momentum conver- +sions. This results in light beams displaying optical vorticity, i.e. the wavefronts are helical +and the intensities profiles distribute in doghnut-like shapes [198–203]. [204] demonstrated +from FDTD simulations that disclination lines can transform the state of polarization of +beams propagating along their axis. Umbilics ending disclination lines are also identified as +35 + +structures generating optical vortex arrays at predetermined wavelength [205]. +Nematics are not the only contenders in the contest for optical vorticity. In Ref. [206] +the Raman-Nath diffraction was used to generate optical vortices from edge dislocations in +the stripe pattern of a cholesteric liquid crystal (cholesterics are chiral nematics for which +the director whirls around a well-defined direction). Cholesterics were also considered in +[207], where it has been theoretically and experimentally demonstrated that optical vortices +were generated from a Bragg-reflection-based device, therefore likely to operate at multiple +wavelengths. Recently, charged particles crossing a cholesteric plate were reported to radiate +purely twisted photons [208]. Chiral nematics are also likely to generate defect textures of +a more complex kind than that optical dislocations [209]. Beside cholesterics, smectics also +showed their potentialities for optical vorticity. [210] produced an optical vortex from focal +conic domains, whereas in [166], screw dislocations in smectics were shown to imprint their +torsion onto wavefronts (see also [211, 212] for a solid-state-oriented context). +C. +Heat transfer +a. +Principles of thermal design +Manipulation of heat flux raises intensive research ef- +forts because of the abundant wealth of potential applications including thermal shielding or +stealth of objects, concentrated photovoltaics or thermal information processing (heat-flux +modulators, thermal diodes, thermal transistors and thermal memories). These prospects +come from the possibility of designing energy paths in a fashion similar to that of light in +transformation optics. To do so, the first step is to understand the main peculiarities of +heat transfer in the presence of a non-Euclidean geometry. Generally speaking, diffusion of +a passive scalar (for instance the temperature field) can be seen as a collection of Markov +processes obeying the stochastic Fokker-Planck equation. In the case of Brownian motion, +the Fokker-Planck equation reduces to the well-known parabolic heat equation [213]. When +considering diffusion processes in the presence of a non-Euclidean space, the problem is ad- +dressed, as already discussed, by replacing the Laplace operator with the Laplace-Betrami +operator ∆LB [214]: +∂T +∂t = D∆LBT. +(19) +Here, D is the diffusivity and its value depends on the material properties. Ought to the +form of the metric of a wedge disclination, heat conduction locally occurs as in a monoclinic- +36 + +like crystal with no internal source [215]: the heat flux vectors are no longer perpendicular +to the isothermal surfaces, which are bent depending on the value of the Frank angle. In +other words, disclinations in nematics generate thermal lensing effects. +FIG. 12. Top: Temperature field (a) and heat flux field (b) for a radial director field (homeotropic +anchoring) and α = +� +C33/C11 = 0.5 Bottom: Temperature field (a) and heat flux field (b) for an +orthoradial director field (parallel anchoring) such that α = +� +C11/C33 = 2. Taken from [216] +Once the basic effects of single line defects are understood, the next step is to taylor them +to guide heat. To do so, let us consider a hollow cylinder, inside which there is the core region +where one aims at controlling the conductive heat flux. The cylinder is inserted inside a +conducting solid sandwiched between two heated vertical plates. The host material consists +37 + +(a) +(b) +(a) +(b)of a homogenous isotropic medium, whereas the intermediate thick cylinder consists of a +nematic liquid crystal in a disclination-like configuration (no disclination core). For thermal +management, mesophases with low melting and high clearing temperatures are required: a +range of about 100 K can be reached by using eutectic liquid crystal mixtures (or “guest- +host systems”). Numerical simulations [216] confirm the possibility of a strong heat guiding +phenomenon: depending on the value of elastic constants C33 (along the director) and C11 +(along any direction perpendicular to the director), the device can either cloak the core region +from the heat flux or concentrate heat there (see Fig. 12). Switching from the concentrator +to the cloaking device is achieved by an electric-field-driven bistable anchoring with dye- +doped mematics (sufficiently high values of the electrical potential difference between the +two sides of the hollow cylinder were indeed shown to induce stable anchoring transitions +between homeotropic and parallel states [217]). To avoid thermoconvective instabilities in +the annulus domain, the device must be thin enough and the heat flux and temperature levels +must be moderate. For instance, using 5CB and MBBA, if the temperature is about a few +tens of degrees (thermoelectric applications) and the external radius of a few centimeters, +the device handles heat flux that typically varies from 5 W/m2 (repeller) to 103 W/m2 +(concentrator). +b. +Thermal diodes +The previous study is now refined in order to investigate thermal +rectification. Thermal rectification is a very active subject in nanoscience and solid-state +physics, as testified by the abundant litterature dealing with this subject (extensive reviews +treating thermal rectification can be found in [218, 219]. More seldomly is heat conduction +rectification considered from soft-matter-based devices. In liquid crystals, the macroscopic +thermal properties of the nematic phase depend on temperature according to Haller’s ap- +proximation [220]: +λ∥(T) = λ0 + λ1 × (T − TNI) + λ1∥ × (T − TNI)α∥ +(20) +λ⊥(T) = λ0 + λ1 × (T − TNI) + λ1⊥ × (T − TNI)α⊥ +(21) +where λ0, λ1, λ1∥, λ1⊥, α∥ and α⊥ are material-depending constants, whereas TNI and TC +are, respectively, the nematic-to-isotropic temperature and the clearing-point temperature +of the liquid crystal. As discussed before, liquid crystals naturally provide a stable and +flexible configuration corresponding to such asymmetry, the ERD, which already turns out +to provide high levels of acoustic rectification. To achieve high rectification levels, the same +38 + +conical frustum of varying radius R(z) with anchoring conditions can be used. In analogy +with the acoustic case discussed earlier, the rectification parameter used to estimate the +thermal diode efficiency can be defined as +Thermal rectification(%) = +���� +∆Ti − ∆Td +∆Td +���� × 100 +(22) +where ∆Td = Td,h − T0 is the difference between Td,h, the high temperature on one base +produced by the heat pumped in the cylinder when working in the direct setup (i.e. when +the heat is flowing from the narrow region to the wider one, i.e. the −z direction), and +T0, the temperature at the other base, which is also the initial temperature. +Similarly, +∆Ti = Ti,h − T0 when working in the inverse setup. +Numerical simulations show thermal rectification rates around 1266% [221]. On the shape +parameters, alterations on the ratio Rr ∈ [0, 28; 0, 75] produced a percentage variation on +the thermal rectification around 1273%, while modifications of the height h ∈ [50; 75] µm +and on the larger radius Rl ∈ [50; 70] µm produced percentage changes lower than 5%. +This indicates that the anisotropy of the conical frustum tube has a strong influence on the +rectification. Other non-geometrical parameters such as the anchoring angle (in the range +[0; 90◦]) and the inward pumped heat flux (in the range [5; 10] kW/m2) give percentage +variations on the rectification around, respectively, 3, 8 and 1, 7%. +Such characteristics +enable this improved thermal diode to be miniaturized, applied on well-determined areas, +while robust against variations of the inward pumped heat flux. +The identical forms of the geometry experienced by light and by sound strongly suggests +that devices using liquid crystals may be used to manipulate simultaneously optical and +thermodynamical transport. Indeed, Ref. [222] reports the control of both electromagnetic +propagation and heat flow by a liquid crystal device similar to the one depicted in Fig. 12, +while Ref. [223] uses an escaped disclination configuration to rectify at the same time both +heat and light, thus a thermo-optical diode. +V. +CONCLUSION AND PERSPECTIVES +Since their early discovery in the XIXth century, liquid crystals have been the magic bullet +in physics and engineering. Being in-between anisotropic solids and isotropic fluids, they +extended our conception of condensed matter to an area where geometry and topology can +39 + +FIG. 13. Left: Isothermal surfaces of a liquid crystalline thermal diode in (up) inverse thermal +setup and (bottom) direct thermal setup. The frustum diode has larger radius Rl = 70 µm, ratio +between the radii is Rr = Rsm/Rl = 0, 28, the height is h = 50 µm, anchoring is 60◦ and the +inward heat flux is Q = 5 kW/m2 on the base with the higher temperature and T0=296 K. Right: +Rectification rate versus temperature T0 of the base for different larger radii Rl. Taken from [179]. +be almost as useful as in General Relativity. An orientationally ordered fluid, as the nematic +liquid crystal, is a vivid representation of a Riemannian manifold where the director field +can be associated to a local vector basis (triad or dreibein). The relative rotation of the +director/triad associated to neighboring points indicates the presence of curvature. Bound- +ary conditions like vessel shape, immersed objects, anchoring angle, etc., impose restrictions +to the effective geometry whose eventual incompatibility with the nematic order (ground +state or zero curvature everywhere) leads to the appearance of topological defects which +accommodate the incompatibilities. +This geometric view of the elastic distortions in the NLC is complemented by the optical +effective geometry that appears naturally by comparing Fermat’s law of least time to the +geodesic variational principle. Similar effective geometries can be obtained for acoustics +and heat transport as well. In all these cases the defects, besides being the consequence of +40 + +μm + 309 +0 +308.58 +306.77 +307.67 +40 +305.87 +304.97 +304.06 +303.16 +20 +1.270 +301.35 +0 +7 300 +1.260 +-50 +0 +50 +Rectification [%] +1.250 +R, = 50 μm +R; = 57 jm +R; = 63 jm +1.240 - +R=70m +μm + 301 +1.230 +300.64 +300.57 +1.220 +40 +300.5 +300.44 +300.37 +1.210 +300.3 +295 +296 +297 +298 +299 +300 +TOE +20 +300.23 +300.17 +Te [K] +300.1 +0 +300.03 +V 300 +-50 +0 +50the topology (boundary conditions), are the source of the geometry. One might then say +that, as soon as there is real or effective curved geometry to describe a physical system with +orientational order, one can expect defects. And, if there is curved geometry, one can relate +NLC to gravitation and cosmology. In this article we reviewed, not only this relationship, +but also the physical applications obtained with the help of the geometric tools. +Many +open problems both in gravitation and cosmology and in NLC certainly may benefit from +the analogies derived by the (partially) common geometry. For instance, the experimental +knowledge about the inner structure of disclinations may be an inspiration for cosmic string +core models. Active matter, being a dynamic medium, may be described by time-depending +metrics. Furthermore, being a dissipative medium, active matter (or its effective geometry) +might obey a geometric flow like Ricci’s [224] in its way to the equilibrium. +ACKNOWLEDGMENTS +For the purpose of Open Access, a CC-BY public copyright licence, +, has been +applied by the authors to the present document and will be applied to all subsequent versions +up to the Author Accepted Manuscript arising from this submission. +[1] Pierre Gilles de Gennes. An analogy between superconductors and smectics a. Solid State +Communications, 10(9):753–756, 1972. +[2] Pierre Gilles de Gennes. Cinquante ans de recherches et de découvertes en sciences physiques. +Revue du Palais de la découverte. Numéro spécial, (36):43–56, 1989. +[3] The cases of disclination lines in nematics, gluon flux tubes and vortices in superconductors are +discussed pp. 48-49 of [2], where he wrote: “I found quite extraordinary the deep relationship +there is between molecular liquids such as nematics, at one end, and the building block of +matter at the subnuclear scale.“. +[4] PE Cladis and WF Brinkman. Defects in liquid crystals. Physics Today, 35(5):48–54, 1982. +[5] John Bardeen. Unity of concepts in the structure of matter. Annual Review of Materials +Science, 10(1):1–19, 1980. +[6] Peter Palffy-Muhoray. The diverse world of liquid crystals. Physics today, 60:54, 2007. +41 + +BY[7] L Lisetski. What was observed by julius planer in 1861? Condensed Matter Physics, 2010. +[8] Patrick Oswald and Pawel Pieranski. Nematic and cholesteric liquid crystals: concepts and +physical properties illustrated by experiments. CRC press, 2005. +[9] Michel Mitov. +Liquid-crystal science from 1888 to 1922: +Building a revolution. +ChemPhysChem, 15(7):1245–1250, 2014. +[10] M Born. On anisotropic fluids. the test of a theory of fluid crystals and of electrical kerr +effects in fluids. Sitz. d. Phys. Math, 25:614, 1916. +[11] Paul A Lebwohl and Gordon Lasher. Nematic-liquid-crystal order—a monte carlo calculation. +Physical Review A, 6(1):426, 1972. +[12] T Ising, R Folk, R Kenna, B Berche, and Yu Holovatch. The fate of ernst ising and the fate +of his model. Journal of Physical Studies, 21(3), 2017. +[13] Wilhelm Maier and Alfred Saupe. +Eine einfache molekulare theorie des nematischen +kristallinflüssigen zustandes. Zeitschrift für Naturforschung A, 13(7):564–566, 1958. +[14] Lars Onsager. The effects of shape on the interaction of colloidal particles. Annals of the +New York Academy of Sciences, 51(4):627–659, 1949. +[15] Lev Davidovich Landau and EM Lifshitz. Statistical Physics, volume 5. Elsevier, 2013. +[16] Subramanyan Chandrasekhar. Liquid crystals. Cambridge University Press, 1992. +[17] Maurice Kleman and Oleg D Lavrentovich. Topological point defects in nematic liquid crys- +tals. Philosophical Magazine, 86(25-26):4117–4137, 2006. +[18] Bert Van Roie, Jan Leys, Katleen Denolf, Christ Glorieux, Guido Pitsi, and Jan Thoen. +Weakly first-order character of the nematic-isotropic phase transition in liquid crystals. Phys- +ical Review E, 72(4):041702, 2005. +[19] Alan J Leadbetter, RM Richardson, and CN Colling. The structure of a number of nemato- +gens. le Journal de Physique Colloques, 36(C1):C1–37, 1975. +[20] GE Volovik and VP Mineev. Line and point singularities in superfluid 3he. JETP lett, 24(11), +1976. +[21] M Kléman, L Michel, and G Toulouse. Classification of topologically stable defects in ordered +media. Journal de Physique Lettres, 38(10):195–197, 1977. +[22] Louis Michel. Topological classification of symmetry defects in ordered media. In Group +Theoretical Methods in Physics, pages 247–258. Springer, 1978. +[23] Louis Michel. +Symmetry defects and broken symmetry. configurations hidden symmetry. +42 + +Reviews of Modern Physics, 52(3):617, 1980. +[24] GE Volovik and OD Lavrentovich. Topological dynamics of defects: boojums in nematic +drops. Zh Eksp Teor Fiz, 85(6):1997–2010, 1983. +[25] Mikhail V Kurik and OD Lavrentovich. Defects in liquid crystals: homotopy theory and +experimental studies. Soviet Physics Uspekhi, 31(3):196, 1988. +[26] Maurice Kléman. Defects in liquid crystals. Reports on Progress in Physics, 52(5):555, 1989. +[27] Isaac Chuang, Ruth Durrer, Neil Turok, and Bernard Yurke. Cosmology in the laboratory: +Defect dynamics in liquid crystals. Science, 251(4999):1336–1342, 1991. +[28] Maurice Kleman and Jacques Friedel. Disclinations, dislocations, and continuous defects: A +reappraisal. Reviews of Modern Physics, 80(1):61, 2008. +[29] Ivan I Smalyukh. Knots and other new topological effects in liquid crystals and colloids. +Reports on Progress in Physics, 83(10):106601, 2020. +[30] PP Karat and NV Madhusudana. Elasticity and orientational order in some 4’-n-alkyl-4- +cyanobiphenyls: Part ii. Molecular Crystals and Liquid Crystals, 40(1):239–245, 1977. +[31] MJ Bradshaw, EP Raynes, JD Bunning, and TE Faber. The frank constants of some nematic +liquid crystals. Journal de Physique, 46(9):1513–1520, 1985. +[32] CW Oseen. The theory of liquid crystals. Transactions of the Faraday Society, 29(140):883– +899, 1933. +[33] Frederick C Frank. I. liquid crystals. on the theory of liquid crystals. Discussions of the +Faraday Society, 25:19–28, 1958. +[34] Michael J Stephen and Joseph P Straley. +Physics of liquid crystals. +Reviews of Modern +Physics, 46(4):617, 1974. +[35] Lev Davidovich Landau, JS Bell, MJ Kearsley, LP Pitaevskii, EM Lifshitz, and JB Sykes. +Electrodynamics of continuous media, volume 8. Elsevier, 2013. +[36] Caio Sátiro and Fernando Moraes. Lensing effects in a nematic liquid crystal with topological +defects. The European Physical Journal E, 20(2):173–178, 2006. +[37] Caio Sátiro and Fernando Moraes. On the deflection of light by topological defects in nematic +liquid crystals. The European Physical Journal E, 25(4):425–429, 2008. +[38] Walter Gordon. +Zur lichtfortpflanzung nach der relativitätstheorie. +Annalen der Physik, +377(22):421–456, 1923. +[39] Pham Mau Quan. Inductions électromagnétiques en relativité générale et principe de fermat. +43 + +Archive for Rational Mechanics and Analysis, 1(1):54–80, 1957. +[40] Jerzy Plebanski. Electromagnetic waves in gravitational fields. Physical Review, 118(5):1396, +1960. +[41] James Evans and Mark Rosenquist. “f= ma”optics. American Journal of Physics, 54(10):876– +883, 1986. +[42] Kamal K Nandi and Anwarul Islam. On the optical–mechanical analogy in general relativity. +American Journal of Physics, 63(3):251–256, 1995. +[43] James Evans, Kamal K Nandi, and Anwarul Islam. The optical-mechanical analogy in general +relativity: exact newtonian forms for the equations of motion of particles and photons. General +Relativity and Gravitation, 28(4):413–439, 1996. +[44] Paul M Alsing. The optical-mechanical analogy for stationary metrics in general relativity. +American Journal of Physics, 66(9):779–790, 1998. +[45] Ulf Leonhardt and Thomas G Philbin. +General relativity in electrical engineering. +New +Journal of Physics, 8(10):247, 2006. +[46] Mikio Nakahara. Geometry, topology and physics. IOP Publishing Bristol and Philadelphia, +2003. +[47] Shiing-Shen Chern. +Finsler geometry is just riemannian geometry without the quadratic +equation. Notices of the American Mathematical Society, 43(9):959–963, 1996. +[48] A Joets and R Ribotta. A geometrical model for the propagation of rays in an anisotropic +inhomogeneous medium. Optics communications, 107(3-4):200–204, 1994. +[49] Mikhail O Katanaev. Geometric theory of defects. Physics-Uspekhi, 48(7):675, 2005. +[50] H Zocher. The effect of a magnetic field on the nematic state. Transactions of the Faraday +Society, 29(140):945–957, 1933. +[51] Roland De Wit. A view of the relation between the continuum theory of lattice defects and +non-euclidean geometry in the linear approximation. International Journal of Engineering +Science, 19(12):1475–1506, 1981. +[52] Shuang Zhou, Sergij V Shiyanovskii, Heung-Shik Park, and Oleg D Lavrentovich. Fine struc- +ture of the topological defect cores studied for disclinations in lyotropic chromonic liquid +crystals. Nature Communications, 8(1):1–7, 2017. +[53] Bruce Alexander Bilby, R Bullough, and Edwin Smith. Continuous distributions of dislo- +cations: a new application of the methods of non-riemannian geometry. Proceedings of the +44 + +Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1185):263–273, +1955. +[54] Ekkehart Kröner. +Kontinuumstheorie der versetzungen und eigenspannungen, volume 5. +Springer, 1958. +[55] MA Krivoglaz. +Physics of defects edited by r. balian, m. kléman and j.-p. poirier. +Acta +Crystallographica Section A: Foundations of Crystallography, 39(5):821–823, 1983. +[56] Aida Kadić and Dominic GB Edelen. +A gauge theory of dislocations and disclinations. +Springer, 1983. +[57] MO Katanaev and IV Volovich. Theory of defects in solids and three-dimensional gravity. +Annals of Physics, 216(1):1–28, 1992. +[58] MO Katanaev and IV Volovich. Scattering on dislocations and cosmic strings in the geometric +theory of defects. Annals of Physics, 271(2):203–232, 1999. +[59] Peter S Pershan. Dislocation effects in smectic-a liquid crystals. Journal of Applied Physics, +45(4):1590–1604, 1974. +[60] M Kléman and L Lejček. Screw dislocations in the smectic c phase of liquid crystals. Philo- +sophical Magazine A, 42(5):671–682, 1980. +[61] A De Padua, Fernando Parisio-Filho, and Fernando Moraes. Geodesics around line defects +in elastic solids. Physics Letters A, 238(2-3):153–158, 1998. +[62] Yoichi Takanishi, Hideo Takezoe, Atsuo Fukuda, and Junji Watanabe. Visual observation of +dispirations in liquid crystals. Physical Review B, 45(14):7684, 1992. +[63] RB Meyer, B Stebler, and ST Lagerwall. Observation of edge dislocations in smectic liquid +crystals. Physical Review Letters, 41(20):1393, 1978. +[64] Fernando Moraes. Geodesics around a dislocation. Physics Letters A, 214(3-4):189–192, 1996. +[65] William Kingdon Clifford. On the space-theory of matter. In The Concepts of Space and +Time, pages 295–296. Springer, 1976. +[66] Emilio Elizalde. Bernhard riemann, a (rche) typical mathematical-physicist? +Frontiers in +Physics, 1:11, 2013. +[67] Hermann Weyl. +Eine neue erweiterung der relativitätstheorie. +Annalen der Physik, +364(10):101–133, 1919. +[68] Arthur Stanley Eddington. Space, time and gravitation: An outline of the general relativity +theory. Cambridge University Press, 1920. +45 + +[69] Charles W Misner and John A Wheeler. Classical physics as geometry. Annals of physics, +2(6):525–603, 1957. +[70] Gerard t Hooft. A locally finite model for gravity. Foundations of Physics, 38(8):733–757, +2008. +[71] Carlos Barceló, Stefano Liberati, and Matt Visser. +Analogue gravity. +Living reviews in +relativity, 14(1):1–159, 2011. +[72] Maxime J Jacquet, Silke Weinfurtner, and Friedrich König. The next generation of analogue +gravity experiments, 2020. +[73] M Simões and M Pazetti. Liquid-crystals cosmology. EPL (Europhysics Letters), 92(1):14001, +2010. +[74] Matt Visser. Essential and inessential features of hawking radiation. International Journal +of Modern Physics D, 12(04):649–661, 2003. +[75] Karl Raimund Popper. In search of a better world: lectures and essays from thirty years. +Taylor and Francis, 1994. +[76] John David Jackson and Lev Borisovich Okun. Historical roots of gauge invariance. Reviews +of Modern Physics, 73(3):663, 2001. +[77] Patrick Peter and Jean-Philippe Uzan. Primordial cosmology. Oxford University Press, 2009. +[78] Rachel Jeannerot, Jonathan Rocher, and Mairi Sakellariadou. How generic is cosmic string +formation in supersymmetric grand unified theories. Physical Review D, 68(10):103514, 2003. +[79] Jean-Philippe Uzan and Patrick Peter. The no-defect conjecture in cosmic crystallography. +Physics Letters B, 406(1-2):20–25, 1997. +[80] Alan H Guth. Inflationary universe: A possible solution to the horizon and flatness problems. +Physical Review D, 23(2):347, 1981. +[81] Thomas WB Kibble. Topology of cosmic domains and strings. Journal of Physics A: Math- +ematical and General, 9(8):1387, 1976. +[82] Wojciech H Zurek. Cosmological experiments in condensed matter systems. Physics Reports, +276(4):177–221, 1996. +[83] Mark J Bowick, L Chandar, Eric A Schiff, and Ajit M Srivastava. The cosmological kibble +mechanism in the laboratory: string formation in liquid crystals. Science, 263(5149):943–945, +1994. +[84] Sanatan Digal, Rajarshi Ray, and Ajit M Srivastava. Observing correlated production of +46 + +defects and antidefects in liquid crystals. Physical Review Letters, 83(24):5030, 1999. +[85] Tom Kibble. Phase-transition dynamics in the lab and the universe. Physics Today, 60(9):47, +2007. +[86] H Mukai, PRG Fernandes, BF De Oliveira, and GS Dias. Defect-antidefect correlations in a +lyotropic liquid crystal from a cosmological point of view. Physical Review E, 75(6):061704, +2007. +[87] R Repnik, A Ranjkesh, V Simonka, M Ambrozic, Z Bradac, and S Kralj. Symmetry breaking +in nematic liquid crystals: analogy with cosmology and magnetism. +Journal of Physics: +Condensed Matter, 25(40):404201, 2013. +[88] Alexander Vilenkin. Cosmic strings and domain walls. Physics reports, 121(5):263–315, 1985. +[89] Robert H Brandenberger. Topological defects and structure formation. International Journal +of Modern Physics A, 9(13):2117–2189, 1994. +[90] Guillaume Duclos, Raymond Adkins, Debarghya Banerjee, Matthew SE Peterson, Minu +Varghese, Itamar Kolvin, Arvind Baskaran, Robert A Pelcovits, Thomas R Powers, Aparna +Baskaran, et al. Topological structure and dynamics of three-dimensional active nematics. +Science, 367(6482):1120–1124, 2020. +[91] Compare, for instance, with the Bohr radius a0 = 5.29 × 10−9 cm. +[92] However, no isolated cosmic string corresponds to the case of an added Frank angle (saddle- +like geometry). To our knowledge, the existence of a negative-mass cosmic string has been +considered only when the defect is associated to a wormhole [? ? ]. +[93] Bertrand Berche, Sébastien Fumeron, and Fernando Moraes. +Classical kalb-ramond field +theory in curved spacetimes. Phys. Rev. D, 105:105026, May 2022. +[94] Nick Kaiser and Albert Stebbins. +Microwave anisotropy due to cosmic strings. +Nature, +310(5976):391–393, 1984. +[95] Alexander Vilenkin. Looking for cosmic strings. Nature, 322(6080):613–614, 1986. +[96] Alexander Vilenkin and E Paul S Shellard. +Cosmic strings and other topological defects. +Cambridge University Press, 1994. +[97] Valdir B Bezerra. +Gravitational analogue of the aharonov-bohm effect in four and three +dimensions. Physical Review D, 35(6):2031, 1987. +[98] Peter AR Ade, N Aghanim, C Armitage-Caplan, M Arnaud, M Ashdown, F Atrio-Barandela, +J Aumont, C Baccigalupi, AJ Banday, RB Barreiro, et al. Planck 2013 results. xxv. searches +47 + +for cosmic strings and other topological defects. Astronomy & Astrophysics, 571:A25, 2014. +[99] Wilfried Buchmuller, Valerie Domcke, and Kai Schmitz. +From nanograv to ligo with +metastable cosmic strings. Physics Letters B, 811:135914, 2020. +[100] Simone Blasi, Vedran Brdar, and Kai Schmitz. Has nanograv found first evidence for cosmic +strings? Physical Review Letters, 126(4):041305, 2021. +[101] John Ellis and Marek Lewicki. Cosmic string interpretation of nanograv pulsar timing data. +Physical Review Letters, 126(4):041304, 2021. +[102] William A Hiscock. Exact gravitational field of a string. Physical Review D, 31(12):3288, +1985. +[103] J Richard Gott III. +Gravitational lensing effects of vacuum strings-exact solutions. +The +Astrophysical Journal, 288:422–427, 1985. +[104] Bruce Allen and Adrian C Ottewill. Effects of curvature couplings for quantum fields on +cosmic-string space-times. Physical Review D, 42(8):2669, 1990. +[105] Shanju Zhang, Eugene M Terentjev, and Athene M Donald. Nature of disclination cores in +liquid crystals. Liquid Crystals, 32(1):69–75, 2005. +[106] Denis Andrienko and Michael P Allen. Molecular simulation and theory of a liquid crystalline +disclination core. Physical Review E, 61(1):504, 2000. +[107] Saša Harkai, Kaushik Pal, and Samo Kralj. Manipulation of m= 1 topological disclination +line core structure. Journal of Molecular Structure, 1234:130162, 2021. +[108] Adam L Susser, Saša Harkai, Samo Kralj, and Charles Rosenblatt. Transition from escaped +to decomposed nematic defects, and vice versa. Soft matter, 16(20):4814–4822, 2020. +[109] Patrick Peter. Comments on some metric properties of cosmic strings having a non-degenerate +stress–energy tensor. Classical and Quantum Gravity, 11(1):131, 1994. +[110] Brandon Carter. +Transonic elastic model for wiggly goto-nambu string. +Physical review +letters, 74(16):3098, 1995. +[111] Frankbelson dos S. Azevedo, Fernando Moraes, Francisco Mireles, Bertrand Berche, and +Sébastien Fumeron. Wiggly cosmic string as a waveguide for massless and massive fields. +Phys. Rev. D, 96:084047, Oct 2017. +[112] Levon Pogosian and Tanmay Vachaspati. Cosmic microwave background anisotropy from +wiggly strings. Physical Review D, 60(8):083504, 1999. +[113] We will consider here only models likely to have a liquid crystal analog, which -to our +48 + +knowledge- should exclude superconducting cosmic strings. +[114] DV Gal’Tsov and PS Letelier. Spinning strings and cosmic dislocations. Physical Review D, +47(10):4273, 1993. +[115] Laércio Dias and Fernando Moraes. Effects of torsion on electromagnetic fields. Brazilian +Journal of Physics, 35:636–640, 2005. +[116] Jianhua Wang, Kai Ma, Kang Li, and Huawei Fan. Deformations of the spin currents by +topological screw dislocation and cosmic dispiration. Annals of Physics, 362:327–335, 2015. +[117] RLL Vitória and K Bakke. Rotating effects on the scalar field in the cosmic string spacetime, +in the spacetime with space-like dislocation and in the spacetime with a spiral dislocation. +The European Physical Journal C, 78(3):1–6, 2018. +[118] Soroush Zare, Hassan Hassanabadi, and Marc de Montigny. Duffin–kemmer–petiau oscillator +in the presence of a cosmic screw dislocation. International Journal of Modern Physics A, +35(30):2050195, 2020. +[119] Faizuddin Ahmed. Quantum influence of topological defects on a relativistic scalar particle +with cornell-type potential in cosmic string space-time with a spacelike dislocation. Advances +in High Energy Physics, 2020, 2020. +[120] VA De Lorenci and ES Moreira Jr. Renormalized scalar propagator around a dispiration. +Physical Review D, 67(12):124002, 2003. +[121] Huabing Cai, Zhi Wang, and Zhongzhou Ren. Radiative properties of a static two-level atom +in a cosmic dispiration spacetime. Classical and Quantum Gravity, 35(15):155016, 2018. +[122] HF Mota, ER Bezerra de Mello, and K Bakke. Scalar casimir effect in a high-dimensional +cosmic dispiration spacetime. International Journal of Modern Physics D, 27(12):1850107, +2018. +[123] KEL de Farias, EAF Bragança, and HF Santana Mota. Scalar self-interaction in the spacetime +of a cosmic dispiration. Physics Letters B, 822:136660, 2021. +[124] Basilis C Xanthopoulos. A rotating cosmic string. Physics Letters B, 178(2-3):163–166, 1986. +[125] Tom G Mackay and Akhlesh Lakhtakia. Towards a metamaterial simulation of a spinning +cosmic string. Physics Letters A, 374(23):2305–2308, 2010. +[126] Grigorij E Volovik. +Superfluid analogies of cosmological phenomena. +Physics Reports, +351(4):195–348, 2001. +[127] BjOm Jensen. Notes on spinning strings. Classical and Quantum Gravity, 9(1):L7, 1992. +49 + +[128] J Richard Gott III. Closed timelike curves produced by pairs of moving cosmic strings: Exact +solutions. Physical Review Letters, 66(9):1126, 1991. +[129] Sébastien Fumeron, Bertrand Berche, Fernando Santos, Erms Pereira, and Fernando Moraes. +Optics near a hyperbolic defect. Physical Review A, 92(6):063806, 2015. +[130] David Figueiredo, Fernando Moraes, Sébastien Fumeron, and Bertrand Berche. Cosmology +in the laboratory: An analogy between hyperbolic metamaterials and the milne universe. +Physical Review D, 96(10):105012, 2017. +[131] Mark Hindmarsh. Semilocal topological defects. Nuclear Physics B, 392(2):461–489, 1993. +[132] Luis E Ibanez and Graham G Ross. Discrete gauge symmetries and the origin of baryon +and lepton number conservation in supersymmetric versions of the standard model. Nuclear +Physics B, 368(1):3–37, 1992. +[133] Caio Satiro, AM de M. Carvalho, and Fernando Moraes. An asymmetric family of cosmic +strings. Modern Physics Letters A, 24(18):1437–1442, 2009. +[134] Maurice Kleman. Forms of matter and forms of radiation. arXiv preprint arXiv:0905.4643, +2009. +[135] Maurice Kleman and Jonathan M Robbins. Tubes of magnetic flux and electric current in +space physics. Solar physics, 289(4):1173–1192, 2014. +[136] Maurice Kleman. Some aspects of defect theory in spacetime. In THE THIRTEENTH MAR- +CEL GROSSMANN MEETING: On Recent Developments in Theoretical and Experimental +General Relativity, Astrophysics and Relativistic Field Theories, pages 2531–2533. World Sci- +entific, 2015. +[137] Luis Javier Garay, JR Anglin, J Ignacio Cirac, and P Zoller. Sonic black holes in dilute +bose-einstein condensates. Physical Review A, 63(2):023611, 2001. +[138] Yaron Kedem, Emil J Bergholtz, and Frank Wilczek. +Black and white holes at material +junctions. Physical Review Research, 2(4):043285, 2020. +[139] William George Unruh. +Experimental black-hole evaporation? +Physical Review Letters, +46(21):1351, 1981. +[140] Juan Ramón Muñoz de Nova, Katrine Golubkov, Victor I Kolobov, and Jeff Steinhauer. +Observation of thermal hawking radiation and its temperature in an analogue black hole. +Nature, 569(7758):688–691, 2019. +[141] Jordi Prat-Camps, Carles Navau, and Alvaro Sanchez. +A magnetic wormhole. +Scientific +50 + +reports, 5(1):1–5, 2015. +[142] Frankbelson dos S Azevedo, José Diêgo M de Lima, Antônio de Pádua Santos, and Fernando +Moraes. Optical wormhole from hollow disclinations. Physical Review A, 103(2):023516, 2021. +[143] Erms R Pereira and Fernando Moraes. Flowing liquid crystal simulating the schwarzschild +metric. Central European Journal of Physics, 9(4):1100–1105, 2011. +[144] Michael S Morris and Kip S Thorne. Wormholes in spacetime and their use for interstellar +travel: A tool for teaching general relativity. American Journal of Physics, 56(5):395–412, +1988. +[145] Stanley Deser, Roman Jackiw, and G’t Hooft. Three-dimensional einstein gravity: dynamics +of flat space. Annals of Physics, 152(1):220–235, 1984. +[146] Indeed, Einstein tensor and the curvature tensor are equivalent in 2+1 dimensions. This +means that in source-free regions, the curvature tensor simply identifies with the empty space +solution of Einstein’s equations. +[147] Edward Witten. 2+ 1 dimensional gravity as an exactly soluble system. Nuclear Physics B, +311(1):46–78, 1988. +[148] Arkady L Kholodenko. Use of quadratic differentials for description of defects and textures +in liquid crystals and 2+ 1 gravity. Journal of Geometry and Physics, 33(1-2):59–102, 2000. +[149] Arkady L Kholodenko. Use of meanders and train tracks for description of defects and textures +in liquid crystals and 2+ 1 gravity. Journal of Geometry and Physics, 33(1-2):23–58, 2000. +[150] Patricio S Letelier. Spacetime defects: von kármán vortex street like configurations. Classical +and Quantum Gravity, 18(17):3639, 2001. +[151] Sébastien Fumeron, Bertrand Berche, Fernando Moraes, Fernando AN Santos, and Erms +Pereira. +Geometrical optics limit of phonon transport in a channel of disclinations. +The +European Physical Journal B, 90(5):1–8, 2017. +[152] Bertrand Berche, Sébastien Fumeron, and Fernando Moraes. On the energy of topological +defect lattices. Condensed Matter Physics, 23(2):1–7, 2020. +[153] Mengfei Wang, Yannian Li, and Hiroshi Yokoyama. Artificial web of disclination lines in +nematic liquid crystals. Nature communications, 8(1):1–7, 2017. +[154] Yubing Guo, Miao Jiang, Sajedeh Afghah, Chenhui Peng, Robin LB Selinger, Oleg D Lavren- +tovich, and Qi-Huo Wei. Photopatterned designer disclination networks in nematic liquid +crystals. Advanced Optical Materials, 9(16):2100181, 2021. +51 + +[155] Yuji Sasaki, Junnosuke Takahashi, Shunsuke Yokokawa, Takuho Kikkawa, Ryota Mikami, +and Hiroshi Orihara. A general control strategy to micropattern topological defects in ne- +matic liquid crystals using ionically charged dielectric surface. Advanced Materials Interfaces, +8(11):2100379, 2021. +[156] Inge Nys, Brecht Berteloot, Jeroen Beeckman, and Kristiaan Neyts. Nematic liquid crys- +tal disclination lines driven by a photoaligned defect grid. +Advanced Optical Materials, +10(4):2101626, 2022. +[157] Saša Harkai, George Cordoyiannis, Adam L Susser, Bryce S Murray, Andrew J Ferris, Brigita +Rožič, Zdravko Kutnjak, Charles Rosenblatt, and Samo Kralj. Manipulation of mechanically +nanopatterned line defect assemblies in plane-parallel nematic liquid crystals. Liquid Crystals +Reviews, pages 1–25, 2022. +[158] Zongdai Liu, Dan Luo, and Kun-Lin Yang. Flow-driven disclination lines of nematic liquid +crystals inside a rectangular microchannel. Soft Matter, 15(28):5638–5643, 2019. +[159] Jinghua Jiang, Kamal Ranabhat, Xinyu Wang, Hailey Rich, Rui Zhang, and Chenhui Peng. +Active transformations of topological structures in light-driven nematic disclination networks. +Proceedings of the National Academy of Sciences, 119(23):e2122226119, 2022. +[160] Rafael Sorkin. Time-evolution problem in regge calculus. Physical Review D, 12(2):385, 1975. +[161] Rafael Sorkin. +Erratum: time-evolution problem in regge calculus. +Physical Review D, +23(2):565, 1981. +[162] Justin Khoury, Burt A Ovrut, Nathan Seiberg, Paul J Steinhardt, and Neil Turok. From big +crunch to big bang. Physical Review D, 65(8):086007, 2002. +[163] Paul J Steinhardt and Neil Turok. Cosmic evolution in a cyclic universe. Physical Review D, +65(12):126003, 2002. +[164] Gary T Horowitz and Alan R Steif. Singular string solutions with nonsingular initial data. +Physics Letters B, 258(1-2):91–96, 1991. +[165] Przemysław Małkiewicz and Włodzimierz Piechocki. Probing the cosmological singularity +with a particle. Classical and Quantum Gravity, 23(23):7045, 2006. +[166] Sébastien Fumeron, Erms Pereira, and Fernando Moraes. Generation of optical vorticity from +topological defects. Physica B: Condensed Matter, 476:19–23, 2015. +[167] David Figueiredo, Felipe A Gomes, Sébastien Fumeron, Bertrand Berche, and Fernando +Moraes. +Modeling kleinian cosmology with electronic metamaterials. +Physical Review D, +52 + +94(4):044039, 2016. +[168] Jie Xiang and Oleg D Lavrentovich. +Liquid crystal structures for transformation optics. +Molecular Crystals and Liquid Crystals, 559(1):106–114, 2012. +[169] Grzegorz Pawlik, Karol Tarnowski, Wiktor Walasik, Antoni C Mitus, and IC Khoo. Liquid +crystal hyperbolic metamaterial for wide-angle negative–positive refraction and reflection. +Optics letters, 39(7):1744–1747, 2014. +[170] Erms Pereira and Fernando Moraes. +Diffraction of light by topological defects in liquid +crystals. Liquid Crystals, 38(3):295–302, 2011. +[171] Erms Pereira, Sébastien Fumeron, and Fernando Moraes. Metric approach for sound propa- +gation in nematic liquid crystals. Physical Review E, 87(2):022506, 2013. +[172] Uwe R Fischer and Matt Visser. +Riemannian geometry of irrotational vortex acoustics. +Physical review letters, 88(11):110201, 2002. +[173] PE Cladis and M Kleman. Non-singular disclinations of strength s=+ 1 in nematics. Journal +de Physique, 33(5-6):591–598, 1972. +[174] Sébastien Fumeron, Fernando Moraes, and Erms Pereira. Retrieving the saddle-splay elastic +constant k24 of nematic liquid crystals from an algebraic approach. The European Physical +Journal E, 39(9):1–11, 2016. +[175] M Criado-Sancho, FX Alvarez, and D Jou. +Thermal rectification in inhomogeneous +nanoporous si devices. Journal of Applied Physics, 114(5):053512, 2013. +[176] Riccardo Dettori, Claudio Melis, Riccardo Rurali, and Luciano Colombo. Thermal rectifica- +tion in silicon by a graded distribution of defects. Journal of Applied Physics, 119(21):215102, +2016. +[177] D Sawaki, W Kobayashi, Y Moritomo, and I Terasaki. Thermal rectification in bulk materials +with asymmetric shape. Applied Physics Letters, 98(8):081915, 2011. +[178] Zhongwei Zhang, Yuanping Chen, Yuee Xie, and Shengbai Zhang. Transition of thermal +rectification in silicon nanocones. Applied Thermal Engineering, 102:1075–1080, 2016. +[179] José Guilherme Silva, Sébastien Fumeron, Fernando Moraes, and Erms Pereira. High ther- +mal rectifications using liquid crystals confined into a conical frustum. Brazilian Journal of +Physics, 48(4):315–321, 2018. +[180] Whereas homeotropic anchoring of nematics on flat surfaces is well mastered [8], anchor- +ing nematics with an arbitrary angle on a curved surface is generally not trivial and it is +53 + +particularly sensitive to the saddle-splay constant K24 [? ]. +[181] Eduardo Viana, Fernando Moraes, Sebastien Fumeron, and Erms Pereira. High rectification in +a broadband subwavelength acoustic device using liquid crystals. Journal of Applied Physics, +125(20):204503, 2019. +[182] AF Fray and D Jones. Large-angle beam deflector using liquid crystals. Electronics Letters, +11:358, 1975. +[183] A Sasaki and T Ishibashi. Liquid-crystal light deflector. Electronics Letters, 10(15):293–294, +1979. +[184] Shin Masuda, Sounosuke Takahashi, Toshiaki Nose, Susumu Sato, and Hiromasa Ito. Liquid- +crystal microlens with a beam-steering function. Applied optics, 36(20):4772–4778, 1997. +[185] Boris Apter, Eldad Bahat-Treidel, and Uzi Efron. Continuously controllable, wide-angle liquid +crystal beam deflector based on the transversal field effect in a three-electrode cell. Optical +Engineering, 44:054001, 2005. +[186] Urban Mur, Miha Ravnik, and David Seč. Controllable shifting, steering, and expanding of +light beam based on multi-layer liquid-crystal cells. Scientific Reports, 12(1):1–13, 2022. +[187] H Lin, P Palffy-Muhoray, and MA Lee. Liquid crystalline cores for optical fibers. Molecular +Crystals and Liquid Crystals, 204(1):189–200, 1991. +[188] H Lin and Palffy-Muhoray. Te and tm modes in a cylindrical liquid-crystal waveguide. Opt. +Lett., 19:722–724, 1992. +[189] Miha Čančula, Miha Ravnik, and Slobodan Žumer. Liquid microlenses and waveguides from +bulk nematic birefringent profiles. Optics Express, 24(19):22177–22188, 2016. +[190] Miha Čančula, Miha Ravnik, and Slobodan Žumer. Nematic topological line defects as optical +waveguides. In Emerging Liquid Crystal Technologies X, volume 9384, page 938402. SPIE, +2015. +[191] Etienne Brasselet. Singular optics of liquid crystal defects. Liquid Crystals: New Perspectives, +P Pieranki and MH Godinho, Wiley, pages 1–70, 2021. +[192] Xiang Zhang and Zhaowei Liu. Superlenses to overcome the diffraction limit. Nature mate- +rials, 7(6):435–441, 2008. +[193] The losses due to metallic components do not jeopardize the performances of the device, +as they might be offset by using gain media as pointed in [168] (highly doped oxides with +lower dissipation levels have also been considered ). The low-loss limit for metamaterials can +54 + +reached by working within the terahertz waveband. +[194] Frankbelson dos S Azevedo, David Figueiredo, Fernando Moraes, Bertrand Berche, and +Sébastien Fumeron. Optical concentrator from a hyperbolic liquid-crystal metamaterial. EPL +(Europhysics Letters), 124(3):34006, 2018. +[195] Oleg D Lavrentovich. Liquid crystals, photonic crystals, metamaterials, and transformation +optics. Proceedings of the National Academy of Sciences, 108(13):5143–5144, 2011. +[196] Xiaobing Shang, Dieter Cuypers, Tigran Baghdasaryan, Michael Vervaeke, Hugo Thienpont, +Jeroen Beeckman, Kristiaan Neyts, Quan Li, Chao Wu, Hongqiang Li, et al. Active optical +beam shaping based on liquid crystals and polymer micro-structures. Crystals, 10(11):977, +2020. +[197] P Vaveliuk, F Moraes, S Fumeron, O Martinez-Matos, and ML Calvo. +Structure of the +dielectric tensor in nematic liquid crystals with topological charge. +J. Opt. Soc. Am. A, +27(6):1466, 2010. +[198] Lorenzo Marrucci, C Manzo, and D Paparo. Pancharatnam-berry phase optical elements +for wave front shaping in the visible domain: Switchable helical mode generation. Applied +Physics Letters, 88(22):221102, 2006. +[199] Lorenzo Marrucci. Rotating light with light: Generation of helical modes of light by spin-to- +orbital angular momentum conversion in inhomogeneous liquid crystals. In Liquid Crystals +and Applications in Optics, volume 6587, pages 56–66. SPIE, 2007. +[200] Lorenzo Marrucci. Generation of helical modes of light by spin-to-orbital angular momen- +tum conversion in inhomogeneous liquid crystals. Molecular Crystals and Liquid Crystals, +488(1):148–162, 2008. +[201] Sergei Slussarenko, Anatoli Murauski, Tao Du, Vladimir Chigrinov, Lorenzo Marrucci, and +Enrico Santamato. Tunable liquid crystal q-plates with arbitrary topological charge. Optics +express, 19(5):4085–4090, 2011. +[202] Lorenzo Marrucci. The q-plate and its future. Journal of Nanophotonics, 7(1):078598, 2013. +[203] Andrea Rubano, Filippo Cardano, Bruno Piccirillo, and Lorenzo Marrucci. Q-plate technol- +ogy: a progress review. JOSA B, 36(5):D70–D87, 2019. +[204] Miha Čančula, Miha Ravnik, and Slobodan Žumer. Generation of vector beams with liquid +crystal disclination lines. Physical Review E, 90(2):022503, 2014. +[205] Etienne Brasselet. Tunable optical vortex arrays from a single nematic topological defect. +55 + +Physical review letters, 108(8):087801, 2012. +[206] D Voloschenko and OD Lavrentovich. +Optical vortices generated by dislocations in a +cholesteric liquid crystal. Optics Letters, 25(5):317–319, 2000. +[207] Junji Kobashi, Hiroyuki Yoshida, and Masanori Ozaki. Polychromatic optical vortex gen- +eration from patterned cholesteric liquid crystals. Physical review letters, 116(25):253903, +2016. +[208] OV Bogdanov, PO Kazinski, PS Korolev, and G Yu Lazarenko. Generation of hard twisted +photons by charged particles in cholesteric liquid crystals. Physical Review E, 104(2):024701, +2021. +[209] Jin-Sheng Wu and Ivan I Smalyukh. +Hopfions, heliknotons, skyrmions, torons and both +abelian and nonabelian vortices in chiral liquid crystals. Liquid Crystals Reviews, pages 1–35, +2022. +[210] Baeksik Son, Sejeong Kim, Yun Ho Kim, K Käläntär, Hwi-Min Kim, Hyeon-Su Jeong, Siy- +oung Q Choi, Jonghwa Shin, Hee-Tae Jung, and Yong-Hee Lee. Optical vortex arrays from +smectic liquid crystals. Optics express, 22(4):4699–4704, 2014. +[211] V Yu Bazhenov, MV Vasnetsov, and MS Soskin. Laser beams with screw dislocations in their +wavefronts. Jetp Lett, 52(8):429–431, 1990. +[212] Péter Salamon, Nándor Éber, Yuji Sasaki, Hiroshi Orihara, Ágnes Buka, and Fumito Araoka. +Tunable optical vortices generated by self-assembled defect structures in nematics. Physical +Review Applied, 10(4):044008, 2018. +[213] Grigorios A Pavliotis. Stochastic processes and applications: diffusion processes, the Fokker- +Planck and Langevin equations, volume 60. Springer, 2014. +[214] Matteo Smerlak. Tailoring diffusion in analog spacetimes. Physical Review E, 85(4):041134, +2012. +[215] Sébastien Fumeron, Fernando Moraes, and Erms Pereira. Thermal and shape topological +robustness of heat switchers using nematic liquid crystals. The European Physical Journal E, +41(2):1–9, 2018. +[216] Sébastien Fumeron, E Pereira, and F Moraes. Principles of thermal design with nematic +liquid crystals. Physical Review E, 89(2):020501, 2014. +[217] Jin Ki Kim, Khoa Van Le, Surajit Dhara, Fumito Araoka, Ken Ishikawa, and Hideo Takezoe. +Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals. +56 + +Journal of Applied Physics, 107(12):123108, 2010. +[218] Geoff Wehmeyer, Tomohide Yabuki, Christian Monachon, Junqiao Wu, and Chris Dames. +Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. +Applied Physics Reviews, 4(4):041304, 2017. +[219] MY Wong, CY Tso, TC Ho, and HH Lee. A review of state of the art thermal diodes and +their potential applications. International Journal of Heat and Mass Transfer, 164:120607, +2021. +[220] Ivan Haller. Thermodynamic and static properties of liquid crystals. Progress in solid state +chemistry, 10:103–118, 1975. +[221] Djair Melo, Ivna Fernandes, Fernando Moraes, Sébastien Fumeron, and Erms Pereira. Ther- +mal diode made by nematic liquid crystal. Physics Letters A, 380(38):3121–3127, 2016. +[222] Wallysson KP Barros and Erms Pereira. Concurrent guiding of light and heat by transforma- +tion optics and transformation thermodynamics via soft matter. Scientific reports, 8(1):1–11, +2018. +[223] Silvio J Santos Jr, Jair Andrade, and Erms Pereira. Simultaneous rectification of heat and +light using liquid crystal. Journal of Applied Physics, 124(9):094501, 2018. +[224] Bennett Chow and Dan Knopf. The ricci flow: an introduction. Mathematical surveys and +monographs, 110, 2008. +57 + diff --git a/H9AzT4oBgHgl3EQfHvt9/content/tmp_files/load_file.txt b/H9AzT4oBgHgl3EQfHvt9/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e49ec89611182c79f3a1b65bee27a3a3e1d08a3d --- /dev/null +++ b/H9AzT4oBgHgl3EQfHvt9/content/tmp_files/load_file.txt @@ -0,0 +1,1447 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf,len=1446 +page_content='Geometric theory of topological defects: methodological developments and new trends Sébastien Fumeron‡, Bertrand Berche‡, and Fernando Moraes† ‡Laboratoire de Physique et Chimie Théoriques, UMR Université de Lorraine - CNRS 7019, 54000 Nancy, France and †Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil Abstract Liquid crystals generally support orientational singularities of the director field known as topo- logical defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' These latter modifiy transport properties in their vicinity as if the geometry was non-Euclidean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' We present a state of the art of the differential geometry of nematic liquid crystals, with a special emphasis on linear defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' We then discuss unexpected but deep connections with cosmology and high-energy-physics, and conclude with a review on defect engineering for transport phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='01050v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='soft] 3 Jan 2023 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' INTRODUCTION One of Pierre-Gilles de Gennes’s greatest breakthrough was to realize that methods and concepts borrowed from superconductivity also apply to describe smectic-A phases [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' His work is a striking example of cross-fertilization between different areas of physics and it highlights how progress arises at the crossroads of various scientific fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In an article that has not been translated in English [2], he took the example of line singularities as a common denominator between liquid crystals, quark physics and superconductors [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The same observation was also made by William Brinkman and Patricia Cladis [4], and most notably by the two-Nobel-Prize winner John Bardeen in a review written as a plea for interdisciplinarity: “Line defects in three-dimensional systems, quantized vortex lines or flux lines, and dislocations account for similarities of behavior in superconductors, liquid crystals, and, it is hoped, color confinement of quarks“[5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In this spirit, the objective of this paper is to perform an in-depth survey of geometrical methods useful for investigating topological defects and to describe some of its modern applications, either as a playground to test fundamental ideas in high-energy physics or gravitational physics, or as high-performance tools to taylor transport phenomena from soft matter devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' We will be mainly concerned with nematic liquid crystals and topological line defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In section II, we provide a self-contained introduction to phase transitions, geometry, topology and optics in such systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' We show how a metric description of defect lines in terms of Riemann manifolds naturally arises in nematics, before addressing the question of analogue gravity which may be less familiar to the liquid crystals community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Section III is an introduction to some of the ideas borrowed to cosmology which can be dealt with liquid crystals, such as the Kibble mechanism, which rules the formation of defects in the early universe but also in nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' We review several outstanding problems involving line singularities, such as cosmic strings, wormholes and bouncing cosmologies, and discuss their connections with disclinations in liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Section IV eventually discusses applications of the geometric formalism previously in- troduced for the description of acoustics, optics and heat transfer in the presence of such defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The main idea is to show how the curvature carried by the topological defects can be used to design specific propagation patterns, a possible step forward towards the 2 defect-engineering of transport phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' TOPOLOGICAL DEFECTS IN NEMATIC LIQUID CRYSTALS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Basics of the isotropic-nematic phase transition a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Historical milestones The story of liquid crystal has met with a shaky start.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The first observations reported of what is today understood as a liquid crystal belong to the realm of biology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Georges-Louis Buffon (1707-1788) and later Rudolf Virchow (1854) and Carl Mettenheimer (1855) reported about the strange behavior of lecithins, a family of phospholipid substances contained in plants (wheat, rye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=') and in animals (yolks, myelin the insulating coating of nerve fibres - .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=') [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' When suspended in water, lecithins form birefringent tubular structures like a Iceland spar but that writhed like eels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Julius Planer in 1861 [7] and most importantly Friedrich Reinitzer in 1888 discovered similar optical behaviors with cholesterol compounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Reinitzer extracted cholesteryl esters from carrots and made an unanticipated observation: contrary to what was known in crystallography, cholesteryl benzoate displays two melting points [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The lower one occurs at about 145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='5◦C and correspond to the melting of the solid phase into a turbid fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The higher melting point corresponds to the clarification of the milky liquid beyond 178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='5◦C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Such behavior left Reinitzer skeptical: had he discovered a genuinely new behavior of matter or was this simply the result of impure and incompletely melted crystals?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Reinitzer wrote to Otto Lehmann, a leading physicist known for designing the first “crystallization microscope”: this latter consists in a microscope equipped with crossed polarizers and a thermal deck (a small Bunsen burner and two cooling blasts) to observe how crystals behave when the temperature varies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Lehmann reproduced and improved Reinitzer’s observations, and promoted these substances as new forms of matter, half-between liquids and crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In 1889, he coined the term “liquid crystals” to account for his discovery (somehow pulling the sheet back towards him as he even claimed priority over Reinitzer [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Soon afterwards, he kept changing its name (including “flowing crystals”, “crystalline liquids”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='), which reveals his difficulties to grasp the real nature of what he found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The years that followed Lehmann’s breakthrough have been critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' On one hand, the subject became more and more discussed in the scientific community, even drawing the 3 attention of future Nobel Prize laureates such as Max Born (in 1916, he conceived the first molecular theory of liquid crystals but predicted a generic ferroelectric behavior that turned out to be incorrect [10]), Jacobus Henricus van’t Hoff and Walther Nernst (Lehmann himself was an unlucky nominee from 1913 to 1922).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' On the other hand, the subject became highly controversial: partly because Nernst and most especially Gustav Tammann led a vivid opposition against liquid crystals (suspecting them of being nothing more than poorly prepared colloidal mixtures), partly because of Lehmann’s personality (a sparkling mix of pretentiousness and mysticism [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Liquid crystals have stayed a controversial subject, since the decisive contributions of Rudolf Schenk (1905), Daniel Vorländer (1907) and George Friedel (1922) to get a clear view on this subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Schenk led a thorough study of the clearing point and unambiguously showed the observed properties (density, viscosity) could not be related to mixtures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Vorländer elucidated the mysterious anisotropic behavior exibited by the fluid: from a microscopic standpoint, liquid crystals consist in self-organized assemblies of rod-like molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As such, they exibit both the birefringence property expected from anisotropic uniaxial media and the ability to flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Finally, Friedel realized that such substances should properly be understood as new full-blown phases of matter, that he named mesophases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Initially divided into three broad families (nematic, cholesteric and smectic), liquid crystals have now been enriched by many new mesophases, including columnar phases, cubatic phases, blue phases I, II and III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Mesogenic behavior The recipe for a molecule to be nematogenic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' to have the ability to organize into a nematic phase) is rather simple: take a rod-like molecule and deck it with 1) a flexible outer part (an aliphatic chain), 2) a rigid core (phenyl groups most generally) and 3) a chemical group bearing a permanent dipole (for instance, a carbonitrile group as in 5CB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The resulting substance is a thermotropic nematic, a sensitive compromise between the attractive Van der Waals interactions that align rigid cores on average along the same direction (anisotropy) and the thermal agitation of the aliphatic chains increasing the mean steric hindrance (fluidity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Nematics can also be lyotropic: the nematogens display an amphiphilic structure (they have both hydrophilic and hydrophobic parts), the control parameter being the concentration of molecules in a solvent such as water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The frontier between thermotropic and lyotropic liquid crystalline behavior being not strict, nematogens can also behave as amphotropic media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 4 In the perspective of section III, let us focus on thermotropic nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In that case, there are different models accounting adequately for the phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The Lebwohl-Lasher model [11] is the paradigmatic model in this context, in a sense the liquid crystal analogue of the Ising model [12]: the nematogen molecules are represented only by their direction and they occupy fixed positions on the sites of a cubic lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The different sites of the lattice interact only between nearest neighbors through a potential that favors configurations where the neighboring molecules point in the same direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' On the contrary, the Maier-Saupe approach is a mean-field theory: interactions between particles are replaced by an effective field experienced by all particles at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This model considers only London forces between instantaneous molecular dipoles and ignores repulsive interactions [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This also favors alignment of the molecules in the same direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' We will briefly mention that for lyotropic nematics, Lars Onsager described the phase transition of an assembly of rod-like sticks as an entropic process driven [14]: due to purely steric effects, orientational entropy loss is more than offset by positional entropy gain which triggers the transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Depending on the temperature range, three (or more) phases can be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' At low temperatures, the steric hindrance of aliphatic chains is minimal and the nematogens get close enough for attractive forces to drive the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As the dipole-dipole interactions prevail over thermal agitation, the assembly of rod-like molecules organize into a molecular crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This latter displays both a positional and rotational order for each molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' On the contrary, at high temperatures, Van der Waals interactions are dominated by thermal effects and the nematogens form an isotropic fluid phase: both positional and orientational order are lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Within the intermediate range of temperature, the two effects are of the same order and different kinds of mesophases may appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the nematic mesophase, only the orientational order is preserved: locally, the nematogens tend to align on average along a common direction, which defines the director field n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In usual nematics, the orientational order is preserved at long distance, as the correlation length is typically about a few µm, compared to the nematogen length around a few nanometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As the phase transition involves nucleation, these domains wherein nematogens share a common orientation form submicronic bubbles (or spherulites).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Then they grow in size and eventually they meet and mingle, sometimes leaving relics in the form of long threads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Order parameter Within a nematic, a particular molecule does generally not point exactly in the direction n and the degree of orientational ordering of the mesophase can thus 5 be assessed by looking how well the nematogens are aligned along the director field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The quadrupolar scalar order parameter S defined by Tsvetkov (1942) provides a quantitative criterion to characterize the nematic order: it is normalized (S = 0 in the isotropic fluid phase and S = 1 for perfectly aligned rods), and ranges from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='3 < S < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='8 in usual nematics (in practice, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='3 < S < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='4 for thermotropic liquid crystals, whereas 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='6 < S < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='8 for lyotropic ones).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The order parameter can be refined to include informations on the local orientation of n (Landau – de Gennes tensorial order parameter) or to encompass phase involving more complex-shaped mesogens (higher-order mutipole-multipole correlation functions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For thermotropic nematics, S can be taken as a function depending only on the temper- ature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The behavior of S at the transition can essentially discriminate between two main families of phase transitions (in the sense defined by Lev Landau in 1937 [15]): first-order phase transitions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' for which the order parameter displays a jump at the transition control parameter (this class also involves latent heats and nucleation processes),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' and second-order phase transitions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' for which the order parameter varies continuously at the transition (this class involves pretransitional effects and scaling behaviors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Experimentally, for most com- pounds (5CB, MBBA, 5CN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='), the isotropic-nematic phase transition is identified as weakly first-order phase transition in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It combines small discontinuities of S [16], nucleation [17] and low latent heats [18], but pretransitional effects of the dielectric proper- ties [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' From symmetry to topology a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Homotopy theory The existence of orientational and/or positional orders impart each phase about the transition with a specific set of symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As a rule, the higher- temperature phase is generally the less-ordered one and its symmetry group is larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the isotropic-nematic case, the isotropic fluid phase and the nematic liquid crystal are both statistically invariant under any translation in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' But for the orientational part, the two phases do not share the same symmetry group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Indeed, the isotropic fluid phase is statistically invariant under any rotation in three dimensions, that is, under the elements of the group SO(3), while in the mesophase the director field plays the role of a symmetry axis, restricting the symmetry to statistical invariance under the elements of the group SO(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' But for energetic reasons, the dipoles borne by the nematogens tend to align anticollinear, 6 such that the assembly of rods is unchanged when inverting heads and tails (this dimeric structure was confirmed early by X-ray diffraction experiments in 5CB and 7CB [19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Hence, the full symmetry group of the nematic phase is O(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Many important features of a phase transition with a spontaneous symmetry-breaking are encompassed within the topology of an abstract object, called the order parameter space M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For a phase transition with a symmetry-breaking pattern G → H, the order parameter space is a manifold defined from the coset M = G/H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The toolbox of algebraic topology (Poincaré’s former analysis situs) can then be used to seek the algebraic invariants (numbers, groups, rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' ) of M and to classify this space into equivalence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Among the many entry points, homotopy theory is of particular interest to determine the presence of singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Two topological spaces are homotopic if they can be mapped into each other by a continuous deformation where bijectivity is not necessarily preserved (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' gluing, shrinking or fattening the space is allowed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Homotopy groups, denoted generically as πk(M), have been extensively studied in condensed matter physics, mainly in the pio- neering works of Kleman, Lavrentovich, Michel, Toulouse and Volovik [20–26] and they are associated to different kinds of topological properties for M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For instance, π1(M) tests the simple-connectedness of the order parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Indeed, consider first M = R × R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It is simply-connected as all closed loops (dimension 1) are homotopic to a point (dimension 0): therefore π1(M) = I and the order parameter space is simply connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Conversely, for M = R∗ × R∗, there are two equivalence classes of closed loops: those not encircling the origin, which are homotopic to a point, and those encircling the origin which cannot be shrunk into a point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Therefore π1(M) ̸= I and the order parameter space is not simply con- nected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The 0D-hole has thus changed the homotopy content of π1(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Interestingly, the dimensionality of the manifold is crucial here: a loop trying to lasso a 0D-hole can succeed in 2D but will always fail in 3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In its most general form, the fundamental result of homotopy analysis states that in dimension n, if the k th homotopy group πk(M) ̸= I, then holes of dimension n − 1 − k appear: such singularities are called topological defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Strictly speak- ing, a defect is topological when the singular configuration of the order parameter cannot be transformed continuously into a uniform configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This process depends not only on the order parameter configuration but also on the dimensionality of the order parameter space (due to the possibility to “escape in the third dimension”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Therefore, there is also a more flexible use for the terminology “topological defect”, referring to the singularity asso- 7 ciated to any non-trivial homotopy content of the order parameter manifold, whatever its topological stability is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the remainder of this article, we will stick to that latter meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Zoology of topological defects in nematics For the isotropic-nematic phase, the order parameter space is given by M = SO(3)/O(2) ≡ S2/Z2: the resulting space, called the real projective plane RP 2, can be pictured as a 2-sphere having its antipodal points identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The manifold corresponding to an immersion of the real projective plane in 3D space is called a Boy surface and its topology is encompassed into its first four homotopy groups: for uniaxial nematics in 3D, these are π0(RP 2) = I (no domain wall), π1(RP 2) = Z2 (existence of linear defects), π2(RP 2) = Z (existence of point defects) and π3(RP 2) = Z (existence of textures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Left: Class N = 0 of closed loops homotopic to a point in the order parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Right: Class N = 1 of closed loops consisting of paths connecting two antipodal points, which are not homotopic to a point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Linear defects (or “disclinations” in Frank’s terminology) come from a breaking of the ro- tational symmetry group and they are probably the most widespread singularities observed in nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In optical microscopy, they appear as thread-like structures used by Friedel to coin the term nematic (from the greek νηµα="thread").' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=" In polarizing microscopy, disclina- tions give rise to the beautiful Schlieren patterns, where dark brushes connect at singular 8 A'=A O T,(RP2)=Z2=[0,1) unstable stablepoints corresponding to the line defects viewed end on." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The content of the first homotopy group (or Poincaré group) is Z2 = 0, 1, which means that there are two equivalence classes for closed loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The trivial class N = 0 corresponds to defects that are not topologically stable (they can relax into a uniform configuration), whereas the second non-trivial class N = 1 corresponds to defects that cannot be removed (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For reasons we will clarify later, we retain the terminology of wedge disclinations to the trivial class and the terminology of Mœbius disclinations to the non-trivial class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A disclination can stay almost straight or form loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It is generally associated to other disclinations within dipoles (edge dislocations), amorphous networks (blue phases), etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In that case, they have the possibility to interconnect [27] and they combine according to the algebra of Z2, that is 0 + 0 = 0, 0 + 1 = 1 and 1 + 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' An extensive review on linear defects in the general context of ill- ordered condensed matter can be found in [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Since our main concern here is disclinations we refer the reader interested in point defects and textures (including the exotic skyrmions and hopfions) to the the very complete reviews [17] and [29], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Optics in the presence of linear defects a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Director field of axial disclinations A region characterized by a given director field can undergo orientational distorsions as a result of external constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As n is a unit (headless) vector, the distorsions always occur in a plane orthogonal to the director field, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' δn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' From a Taylor expansion, one can rewrite the deformed state as the sum of three main elastic modes: a splay term in ∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='n, a twist term in n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='(∇ × n) and a bend term in |n × (∇ × n)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The Frank-Oseen free energy density is the elastic cost of orientational oscillations around n: fV = 1 2K1(∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='n)2 + 1 2K2(n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='(∇ × n))2 + 1 2K3(n × (∇ × n))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' (1) Equilibrium state corresponds to configurations such that fV is extremal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Elastic constants are of order E0/L, with the interaction energy about E0 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='1 eV and L ≈ 1 nm, it is customary to perform the one-constant approximation for which K1 ≈ K2 ≈ K3 = K = 10−11 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This assumption is fair for most ordinary nematics: for instance, in the case of 5CB at 298 K, one measures K1 = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='2 pN, K2 = 6 pN and K3 = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='2 pN [30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The simplest class of linear defects consists in axial disclinations and they were firsly 9 considered by Oseen [32] and Frank [33] (for the class of perpendicular disclinations, proposed by de Gennes, see for instance [34]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Orientation of the director field is ill-defined along a line (say the z−axis) and n lies in a plane orthogonal to the defect axis (in our example, the x − y plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In cylindral coordinates, let ψ(r, θ) be the angle between the director field and the radial unit vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Then the Euler-Lagrange equations corresponding to a minimum of fV simply writes as ∆ψ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The solutions representing disclination lines are given by ψ(θ) = mθ + ψ0, where m is the defect strength or topological charge (a priori in R) and ψ0 a constant phase term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Around a closed loop, the total change in ψ is thus 2mπ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For the director field to be well-valued, this variation is tied by the hodograph rule coming from the Z2 symmetry of the nematic phase: � θ=2π dψ = 2mπ = kπ (2) where k ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Hence, the director field writes as n = � � � � � cos(mθ + ψ0) sin(mθ + ψ0) 0 � � � � � , (3) with the topological charge constrained to be integer and half-integer, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' m = ±1/2, ±1, ±3/2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Disclinations with integer strengths are topologically removable and belong to the N = 0 homotopy class: defects m = +1 and m = −1 are topologically equivalent and can be trans- formed into one another by continuous deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' They appear in optical microscopy as thick lines and their core is not singular (possibility to escape into the third dimension).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Disclinations with half-integer strengths are not topologically removable and belong to the N = 1 homotopy class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In this latter case, fibring over a circle about the defect line by a line segment containing the director which is met at that point, gives a Mœbius ribbon which twists along the loop an odd number of times [26] (on the contrary, for the N = 0 disclination, one gets an ordinary ribbon with two sides).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' They appear in optical microscopy as thin lines and they display a singular core structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As the free energy density varies in m2 and therefore, it is energetically more favorable for a wedge disclination to decay into two Mœbius disclinations, as prescribed by the combination 0 = 1+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It must be remarked that besides |m|, other topological invariants (such as the self-linking number, Poincaré-Hopf’s 10 index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=') are needed to characterize the topology of a linear defect, as a disclination can globally self-connect, entangle with itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The secrets of Fermat-Grandjean principle In the geometrical optics limit, light propagates along paths that can be traveled within the least time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the case of isotropic media, this variational formulation takes the form of the well-known Fermat’s principle, established by Pierre de Fermat in 1662.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In anisotropic uniaxial media, the constitutive re- lations involve a dielectric tensor that displays two different principal permittivities, namely ε⊥ and ε∥ (in a nematic, ε∥ corresponds to the permittivity in the direction of the director field, whereas ε⊥ is the permittivity orthogonally to it).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Fresnel’s equation then provides two modes inside such material: the ordinary mode, behaving similarly as in an isotropic medium with refractive index n2 = ε⊥, and the extraordinary mode which experiences a direction-dependent refractive ray index given by [35]: Ne(r) = � ε⊥ cos2 β(r) + ε∥ sin2 β(r) (4) where β is the angle between n and the local tangent vector T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In 1919, Grandjean extended Fermat’s principle to uniaxial media and he showed that the energy carried by extraordinary light rays propagates along paths obeying [8] δ �� Ne(r)dℓ � = 0 (5) where ℓ is the curvilinear abscissa that parameterizes a ray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Because the director field changes from point to point, a nematic generally displays a varying refractive index and hence, extraordinary light beams propagate into the medium along curves (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the case of planar axial disclinations, the direction of n and consequently β is known at each point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In that case,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' it can be shown that the integrand in Fermat-Grandjean’s principle can be generally rewritten as [36,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 37] N 2 e (r)dℓ2 = � ε⊥ cos2 [(m − 1)θ + ψ0] + ε∥ sin2 [(m − 1)θ + ψ0] � dr2 + � ε⊥ sin2 [(m − 1)θ + ψ0] + ε∥ cos2 [(m − 1)θ + ψ0] � r2dθ2 − � ε∥ − ε⊥ � sin2 [2(m − 1)θ + 2ψ0] rdrdθ + dz2 (6) In a seminal work [38],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Walter Gordon pointed out the formal analogy between light propagation inside a moving dielectric and light propagation inside a non-Euclidean geome- try.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This idea was developed by many authors eversince [39–45], as it elegantly replaces the 11 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Light paths and director fields in the presence of a planar disclination (Up left: m = 1, ψ0 = π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Down left: m = −1, ψ0 = π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Up right: m = 1/2, ψ0 = π/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Down right: m = −1/2, ψ0 = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Taken from [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' resolution of Fermat’s principle in a material medium by the search for the minimum-length lines (or geodesics) of an empty curved space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The main asset of that point of view is that one can use the toolbox of differential geometry to understand how the defect modifies trans- port phenomena in its vicinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' To illustrate how this works, let us consider the example of a (m = 1, ψ0 = π/2)-disclination (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For this defect, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' (6) leads to the following line element: ds2 3d = N 2 e (r)dℓ2 = dr2 + α2r2dθ2 + dz2, (7) where α2 = ε∥/ε⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The line element is a fundamental quantity in differential geometry and it simply consists in a generalization of Pythagoras’ theorem for computing distances in arbitrary geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Here, instead of the familiar Euclidean line element ds2 3d = dr2+r2dθ2+ dz2, the term in α2 means that the circumference of a closed unit circle about the defect is no longer 2π but 2πα instead: in other words, there is a mismatch angle (called Frank angle) of value 2π(1 − α) compared to flat geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It is customary in differential geometry 12 to rewrite the line element as ds2 3d = gijdxidxj, where Einstein’s summation convention on repeated indices is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' g is called the metric tensor and it corresponds to a positive definite quadratic form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The curvature scalar [46] as computed from the metric is: R = 2π(1 − α) αr δ2 (r) (8) whereas the torsion tensor is identically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' An alternate approach to describe the influence of defects in optics, also from differential geometry, consists in using the formalism introduced by Paul Finsler in his 1918 thesis, for which there is no quadratic constraint on the geometry as in the Riemannian case [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As a matter of fact, the arc length is given by a Finsler function F such that ds3d = F (x, y, z, dx, dy, dz) instead of ds3d = � gijdxidxj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the case of anisotropic media, F(r) = Ne(r)dℓ and the metric corresponds to the Hessian of the ray index [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Ought to the particularly simple dependency of the ray index with respect to coordinates, this formalism turns out to be fully equivalent to Riemann’s approach (see discussion at the end of [36]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A line element of exactly the same form as (7) appears in the geometric theory of defects in elastic media [49], related to the strain field associated to wedge disclinations as will be described in Section II D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Such line defects can be formed by either inserting or removing a wedge of material of angle 2π(1 − α) with subsequent identification of the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the case of a removal wedge disclination of axis z (α < 1), the geometry surrounding the defect is conical and can be easily pictured from the Volterra cut-and-weld process of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In other words, a disclination can be pictured as a Riemann manifold, for which curvature is only located on the disclination axis and vanishes everywhere else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Discussion From the elasticity point of view (as opposed to optics) the description of an axial wedge disclination by the geometry (7), or more generally by (6), calls for several remarks (it is important to stress here that ε∥ and ε⊥ now are related to elastic, not optical, anisotropy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' First, a liquid crystal consists in an assembly of rod-like molecules and modeling it as a continuous medium is not self-explanatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Rigorously, the continuum limit for nematoelasticity should come as a coarse grained approximation of molecular dynamics and it should fail at the atomic scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' n(r) is defined statistically, as the average common direction of the nematogens at each “point” in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The “point” actually refers to a small volume of space that includes enough molecules for the averaging process to be physically significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Hence, in practice, it means that the “point-volume” has to be large enough 13 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Volterra cut-and-weld process for a (wedge) disclination along z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' compared to the molecular scale a (typically a ≈ 20 Å) and that the variations of the director field must occur at much larger scales than a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Only then, the distorted liquid crystal can be described as a continuous medium, as discussed by Oseen [32], Zöcher [50] and Frank [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A second caveat is related to the status of (7), which obviously possesses non-vanishing curvature as in three-dimensional gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Yet, the nematic actually lives in a three- dimensional Euclidean space, which means that the background geometry is flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' How to reconcile these two standpoints?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Following the analysis from De Wit [51], the state described by (7) does exist in the flat space, but only in an imaginary space where the medium is relaxed: gij comes from the projection of this imaginary space onto the physical flat space, in a similar way as a stereographic map projection transfers the geometric properties on a 2-sphere (the Earth, with its meridians and parallels) onto a flat plane while deforming them (Wulff net).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It turns out that the geometric description of defects thus requires two metrics: 1) The physical flat metric, δij, will be used to perform operations on tensors such as raising/lowering indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 2) The effective metric gij, which contains the elastic informa- tion, will be used to determine the kinematics of low energy perturbations (geodesics, first 14 disclination axis Frank angle 2=2元(1-α) (α<1: removal)integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Third, one may naturally wonder what really happens on the defect axis and how to refine our zero-width model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In soft matter and more especially nematics, defect cores are very narrow as well but they still belong to the realm of continuum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As discussed in [8], a disclination line can accurately be described by a “two-phase model”: the core consists in a tubular region, filled with the nematogens in isotropic phase (vanishing order-parameter), and surrounded by the nematic phase (non-zero order parameter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This approach is consistent with exact solutions obtained from the minimization of the Landau – Ginzburg – de Gennes free energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Yet, the last word has probably not been said about disclination cores: observations made on lyotropic chromonic liquid crystals revealed that the core region has several unexpected features (asymmetric non-circular interfaces between the nematic and the isotropic phases, azimuthal and radial dependencies for the phase and amplitude of the order parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=') compared to classic two-phase models [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Analogue gravity: lessons and pitfalls a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Physics as geometry The geometric description of transport near linear defects does not restrict to optics near axial disclinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Since the pioneering works by Bilby [53] and Kröner [54] in the 1950s, this approach has been extended to elasticity theory as well [55, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the noteworthy set of works [49, 57, 58], Katanaev proposed a general framework based on Riemann-Cartan manifolds for dislocations and disclinations in elastic media but only considered the strain tensor field as the relevant degree of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' An expression of the effective metric gij in the medium rest frame can be obtained in the case of linear elasticity as gij = δij + 2εij (9) where εij denotes the strain tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Compared to ordinary elasticity theory (OET), the geometric theory of defects is in principle more accurate (ordinary elasticity only reproduces the first-order approximation of the geometric theory of defects [49]) and it is more versatile (changing the kind of defect only requires changing the metric, instead of a complicated set of boundary conditions in ordinary elasticity theory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Moreover,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' the geometric approach is also likely to encompass many other kinds of linear defects of interest in liquid crystals physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' such as screw dislocations in smectic A and C [59,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 60] (in that case,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' the defect 15 must be described in terms of a Riemann-Cartan manifold,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' for which torsion is only located on the dislocation axis and vanishes everywhere else [61]),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' dispirations in antiferroelectric SmCA and the dimeric SmC2 [61,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 62],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' edge dislocations in smectics [63,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 64] (which are merely disclination dipoles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The preceding examples testify that in many condensed matter systems, the effective degrees of freedom are represented by specific field excitations that propagate over effective Riemann-Cartan manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Geometrization of physics is not a new idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In Plato’s Timaeus, an attempt was made to describe the world in terms of only five regular polyhedra and ever since, geometrization of physics has been a dream pursued by many figures in science, including René Descartes, Bernhard Riemann, William K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Clifford [65] (for an updated account, see [66]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The most successful step forward in merging geometry and physics was made in the twentieth century by Albert Einstein with the theory of general relativity: the gravitational interaction turns out to be nothing more than a manifestation of the spacetime curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The possible implications of that theory did not escape the attention of influencial physicists such as Hermann Weyl [67], Arthur Stanley Eddington [68] and more especially John A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Wheeler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the seminal paper Classical physics as geometry [69], Wheeler and Charles W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Misner borrow tools from cohomology, differential geometry, exterior algebra and topology to fully merge gravitation, electrodynamics and geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Provided spacetime is multiply-connected, Misner and Wheeler showed that similarly to mass, classical charge can also be seen as a byproduct of the spacetime geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A particularly meaningful example is the low-dimensional gravitational model proposed by Gerard ’t Hooft in the context of quantum gravity [70] (see below III C): in 2+1 dimensions, ’t Hooft showed that gravitating point particles can elegantly be described as conical point-like singularities of space-time, each deficit angle being related to the particle’s total energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Today, this kind of ideas has spread out to the point where it has become an area of research on its own: analogue gravity (for an extensive review, see [71] and more recently [72]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Pitfalls Despite appealing to classical fields, analogue gravity is tricky and must be handled with great care.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Indeed, it relies simultaneously on two different manifolds: 1) the background gravitational metric – which is experienced by all fields (generally Minskowski’s) – is the outcome of Einstein-Cartan equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It is a tensor, used for instance to raise and lower indices of tensors, and as such, it is a covariant quantity, and 2) the effective metric – which is experienced only by the fields coupled to matter – does not obey Einstein-Cartan 16 gravitational equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Its purpose is limited (for instance, to determine the geodesics followed by the coupled-fields excitations, as it is not a covariant quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Indeed, the effective metric is derived from physical quantities which are defined in a privileged frame, the medium rest-frame, and that are not invariant under Lorentz transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As can be seen from (9), the effective metric superimposes the background Minkowski metric and a correction taking into account the couplings between field and matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the original experiment led by Hippolyte Fizeau, the changes in the velocity field of water (and hence of the Gordon metric itself) were obviously ruled by the Navier-Stokes equations (for the velocity field) instead of Einstein-Cartan equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In other words, effective spacetimes are generally stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Ref [73] pointed out that textures in nematic liquid crystals can indeed be described by the space sector of an Einstein-like equation, with the elastic-stress tensor replacing the energy-momentum tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The relevance of the effective metric is there- fore restricted to calculations of properties related to the kinematic properties of the fields coupled to matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This encompasses as we said the geodesics of low-energy excitations but also the less obvious cases of Unruh effect or Hawking radiation which are purely kine- matic phenomena [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Therefore, the analogy between gravitation and condensed matter is strictly kinematic but not dynamical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' To rephrase Wheeler, analog spacetime tells matter how to move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' but matter does not tell analog spacetime how to curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' What is the purpose of analogue gravity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In cosmology, putting a theory into test is always a thorny challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In 1992, the great epistemologist Karl Popper already pointed out that the “major theoretical problem in cosmology is how the theory of gravitation may be further tested and how unified field theories may be further investigated” [75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' If the plentiful harvest of low-energy observations (baryonic oscillation spectroscopy, gravitational wave in- terferometry, mapping of the cosmic background .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=') answered many questions, theoretical models involving (trans)planckian scales bloomed even faster, for which experimental con- firmations seem almost impossible – even in principle – to reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A possible way out of this conundrum is to take advantage of the richness and flexibility of condensed matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Within certain limits, analogues of gravity can be used to simulate different types of cosmological objects (signature transitions events, cosmic strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=') and to investigate the transport of bosonic and fermionic quasiparticles in nontrivial spacetimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The next section reviews a series of works dealing with non-standard cosmological models that can be investigated from their liquid crystal counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 17 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' UNRAVELING THE UNIVERSE WITH LIQUID CRYSTALS: COSMOLOGY IN THE LABORATORY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Phase transitions in cosmology a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Thermal history of the universe In many senses, cosmology consists in thermody- namics applied to the largest expanding closed system: our universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Our current under- standing of cosmic history is indeed based on the Standard Hot Big Bang Model and it originates in the pioneering works of three founding fathers: Albert Einstein, Alexander Friedman and George Lemaître.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In essence, this model states that about 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='8 billion-years ago, the Universe was in an extremely hot dense state, consisting in a quark-gluon plasma, and that it has expanded ever since.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the framework of grand unified theory (GUT), the four fundamental interactions (the gravitational interaction, the electromagnetic interaction and two lesser known forces, the weak nuclear interaction – responsible for radioactive β de- cays – and the strong nuclear interaction – which ensures the cohesion of the atomic nuclei) were then assumed to be unified at energy scales estimated at about 1016 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Each interaction is associated with internal (or gauge) symmetries: for instance, at today’s energy scales, the electromagnetic force displays gauge invariance under the elements of U(1), the unitary group of dimension 1 (for an accessible review on gauge theories see for instance [76]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Above 1016 GeV, the group G containing the internal symmetries of grand unified superforce is not known for sure and many candidates with exotic names are considered, such SU(5), SU(6), SU(7), SU(8), SU(9), SO(10), SO(14), E6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' [77] The universe expansion played the role of a gigantic Joule-Thomson expansion, which caused a large temperature drop driving cosmological phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For example, the last of these transitions is the electroweak phase transition, occurring at energy scales about 102 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It marks the splitting of the electroweak force into an electromagnetic part, described by Maxwell’s theory (1865), and the weak nuclear part, the first theory of which being Fermi’s theory (1933).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This transition involves a spontaneous gauge symmetry breaking: the high temperature gauge symmetry group SU(3)c × SU(2)L × U(1)Y broke into SU(3)c × U(1)em [77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Let us now examine the topology of vacuum manifold (that is the set of field configurations minimizing the free energy modulo gauge transformations), which is the equivalent of the order parameter space M in condensed matter physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In [78], Jeannerot et al determined 18 the homotopy content corresponding to all eligible groups G likely to decay below 1016GeV into SU(3)c × SU(2)L × U(1)Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Their conclusion leaves no doubt concerning the formation of cosmic strings: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='.among the SSB schemes which are compatible with high energy physics and cosmology, we did not find any without strings after inflation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' (if one assumes that the universe is topologically multi-connected, cosmic strings and monopoles may appear – not single but pairwise –, whereas two-dimensional defects – domain walls – cannot form at all [79]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Kibble-Zurek mechanism Cosmic inflation is a period of extremely fast expansion of the Universe scale factor (typically a factor 1026 within 10−32 seconds) that presumably happened at the very beginning of the universe [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' From the point of view of statistical physics, inflation is nothing more than a quench and as such, it is likely to favor the formation of topological defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In 1976 [81], Tom Kibble introduced a three-step mechanism (later refined by Zurek [82] who included the sensitivity to the quench speed) to describe the details of this quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Basically, the Kibble-Zurek mechanism (KZM) consists in a nucleation process very similar to what happens at the isotropic-nematic phase transition, but instead of having an order locally described by the director field n, it is here described by the phase of a complex scalar field generically called a Higgs field – or an inflaton, because it needs not be the Higgs field responsible for the later breaking of electroweak symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' First, ordered protodomains (analog to the nematic spherulites) with no correlation between each other are formed and at the scale of a whole protodomain, the fast temperature drop due to inflation causes the Higgs field to locally take a non-vanishing vacuum expectation value and hence to make a phase choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Then the protodomains grow in size until they coalesce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' But as they were not correlated, the choices for the Higgs phase (technically, its vacuum expectation value) do not match in general, and line singularities of the Higgs appear when the boundaries of protodomains finally meet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' These linear singularities are called cosmic strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Besides this qualitative predictions, the KZM also makes quantitative predictions such as the scaling dynamics of the cosmic string network, the average density of defects, cor- relations between defects and antidefects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the 1990s, several works [27, 83–87] showed that the KZM, originally developped for cosmology, was also perfectly describing line defects 19 in nematics with the very same scaling coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For instance, this model predicts that in 2D the density of strings scales as ρ ∼ (t/τq)α with a critical exponent αth = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='5, and measurements done by [27] with 5CB indeed gave αth = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='51 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' To sum up: defects consist in regions that cannot relax into the new vacuum or equivalently that are unable to make the transition into the new ordered phase, and they occur during phase transitions in cosmology and in liquid crystal physics that seem to belong to the same universality class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' But the family resemblance goes further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Networks of cosmic strings and networks of disclinations also share similar intersection processes: 1) when two line defects intertwine, they may reconnect the other way as they cross (intercommutation) [27, 88] and 2) when one line defect self-intersects, it creates a loop [89, 90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' An almost perfect analogy?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Last but not least of these common points: the geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Nambu-Goto strings, which are the simplest cosmic defects one may expect in cosmology, consist in linear concentrations of energy and as such, they are considered as infinitely thin objects (as the thickness of a cosmic string is estimated at 10−28 cm, this is a fair approximation[91]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As required by thermal field theory and general relativity, the geometry around a Nambu-Goto string is described by the Vilenkin’s line element [88]: ds2 = −dt2 + dr2 + (1 − 4Gµ)2 r2dθ2 + dz2 (10) where µ is the string energy density estimated at about 10 million billion tons per meter (we adopt hereafter the customary unit system of cosmology where c = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The space part of this element is identical to (7): it is a conical geometry corresponding to a removed Frank angle [92] (typically, for a GUT scale string, this angle is a few seconds of arc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The reader interested in the classical gauge theory of string interactions in curved spacetimes can refer to Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='[93].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' From the standpoint of the soft-matter physicist, Nambu-Goto strings can be understood as the cosmic counterparts of wedge disclinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' How to make sense of such incredible similarity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For the most part, this question is still open, but a noticeable attempt to address it was done in [73]: in essence, the reason is that equations of nematoelasticity have the form as the spatial sector of Einstein’s field equations, with the elastic-stress tensor playing the role of the energy momentum tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As the analogy between gravity and nematoelasticity does not concern time components, one expects that the dynamics of a cosmic defect cannot be directly mapped with those of a disclination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' There are other discrepancies between cosmic and elastic defects that 20 one must bear in mind to avoid fallacies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Obviously, the motion of disclinations is classical (typically a few µm per second) whereas cosmic strings are ultra-relativistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Dissipation mechanisms for cosmic strings are due to radiation of gravitational waves, while those in liquid crystals are friction-dominated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' What is the outcome on the dynamics of the defects?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In cosmology, monopoles annihilate in pairs (Langacker-Pi mechanism), but they do not annihilate fast and early enough to avoid that the Universe becomes monopole dominated (which is why inflation is necessary, as it drives monopoles very far away from each other).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' On the contrary, elastic hedgehogs in a nematic annihilate rapidly according to a scaling law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' At a more fundamental level, this is linked to the fact that in high energy physics, broken symmetries are gauged (or internal) whereas in liquid crystals, broken symmetries are geometrical: in the first case, one is dealing with “gauged defects” and in the second case, one is dealing with “global defects”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Beyond cosmic wedge disclinations a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The way out of an observational dead-end Cosmic wedge disclinations exist either as stable infinite straight lines (their equation of state simply equates the string energy density to its tension µ = T) or as closed loops that radiate away gravitational waves until they vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' When moving, strings happen to distort spacetime such that at all scales, matter accretes along its wake into sheet-like structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' They may account for the formation of large-scale structures in our universe (including the Great Wall) and they have several expected observable signatures such as the Kaiser-Stebbins effect [94, 95] (an asymmetric Doppler shift giving rise to anisotropies of the cosmic microwave background), gravitational lensing [96] (not in the form of an Einstein ring, but as a double image instead), geometric phase (Aharonov-Bohm effect but with a cosmic string replacing the flux tube [97]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Up to now, data collected by the PLANCK mission (2014) only settle upper bounds on the string parameter µ [98] and in 2020, observations of the stochastic gravitational wave background (NANOGrav experiment) may have provided with first evidences for cosmic strings [99–101].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The non-conclusive observations of Nambu-Goto strings call for the search of refined mod- els for linear defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In fact, the zero-width approximation and the straightness of cosmic strings are probably too coarse to account for realistic defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Hiscock [102] and indepen- dently Gott [103] suggest to smoothen this singularity by introducing two string models with 21 a core structure of constant curvature: the flower-pot model (with zero curvature) and the ballpoint-pen model (with non-vanishing curvature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the Gott-Hiscock thick cosmic string spacetime, the metric tensor is piecewise-defined and it must obey matchings conditions at the core radius [104]: the extrinsic curvature of the boundary should be the same whether measured in the interior or exterior region (O’Brien-Synge-Lichnerowicz jump condition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In contrast, thanks to experiments [52, 105] and molecular simulations [106, 107], much is known about the NLC disclination core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In particular, there is strong evidence for biaxiality and that strength +1 disclinations are in fact bound pairs of strength +1/2 ones, which may be manipulated by electrical fields [108].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' We note that this rich structure may serve as an inspiration for novel cosmic string core models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the same line, instead of being perfectly straight, linear defects can present cusps, kinks and wiggles: the averaged effect of these perturbations increases the linear mass density µ and decreases the string tension T, as prescribed by the equation of state µ T = µ2 0 [109–111].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Compared to straight string, the geometry remains conical but the deficit angle is larger than in the straight string case, which increases polarization anisotropies of the cosmic background radiation [112].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' There are many other ways to dress a Nambu-Goto string such that it may account for observational results [113].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' From an extension of Volterra process to 3+1 dimensions, Puntingam and Soleng showed that there was only 10 ways to modify a Minkowski spacetime into different pseudo-Riemann–Cartan geometries with respect to the Poincaré group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For example, a cosmic linear defect can display chirality [114–119]: in that case, the defect carries torsion along its axis and one gets the cosmic counterpart of a screw dislocation in a smectic liquid crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Twisted Nambu-Goto strings (or cosmic dispirations), consisting in spacetimes with delta function-valued curvature and torsion distributions have also been considered, as they combine both rotational and translational anholonomy [120–123]: as mentioned earlier, their effects on light could be tested from experiments done with elastic dispirations SmCA and SmC2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Going further Rotating disclinations are not likely to be stable but it is worth mentioning here that their cosmic counterparts have been long predicted in the literature [124].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A metamaterial analogue of the rotating cosmic string spacetime has been proposed [125], as well as a superfluid vortex analogy [126].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' One of the most interesting properties of the spinning string is its association to closed timelike curves which may find applications in time travel [127].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Incidentally, parallel cosmic strings moving in opposite directions have 22 been suggested [128] as a prototype time machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Related to, but not really a model for spinning strings, is the case of a hyperbolic nematic-based metamaterial with a disclination which was addressed in [129].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Along the same line, in [130] it was proposed a disclination model for the compactified Milne model of a cyclic universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' More details on this model in Section III C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Among the gauge strings, a very interesting possibility is the semilocal string [131].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Like Dirac’s string of magnetic dipoles, semilocal strings end on gauge monopoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' They are analogous to real disclinations in liquid crystals which, due to the finite size of a liquid crystalline sample, must end somewhere (hedgehog, 2D disclination on the liquid surface or on receptacle wall) or else, form a loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Apropos, disclination loops in active nematics have very complex dynamics (including chaos) and may present recombination episodes [90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Defects in liquid crystals have inspired many other proposals in cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' GUT allows for discrete gauge symmetry groups, the standard Z2 parity and one Z3 parity, which are the only anomaly free groups that remain unbroken at low energy [96, 132].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The corresponding cosmic strings are generically called Zn-cosmic strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Based on the known physics of Moebius disclinations, which are commonly observed in nematics, Satiro and Moraes have investigated some cosmological outcomes of Z2 cosmic strings [133]: in particular, they showed that Z2-cosmic strings display both positive and negative mass density regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Bearing in mind the back and forth interplay between cosmology and soft matter, one cannot avoid to mention the latest works of Maurice Kleman, who imported homotopy theory from condensed matter to astrophysics and cosmology [134–136].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In particular, he conjectured and classified new families of cosmic defects (such as r-cosmic forms) allowed in a four-dimensional maximally symmetric spacetime [136].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Black holes and Early universe a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Black holes, white holes, wormholes This is sometimes referred to as the “cosmology in the laboratory” game plan and it covers topics such as classical black holes [137]-[138], Hawking radiation [139]-[140], wormholes [141]-[142].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For instance, in Haller’s approxima- tion, the hydrodynamics of a nematic liquid crystal radially flowing down a drainhole is 23 experienced by light beams as the equatorial section of the Schwarzschild’s metric ds2 = − � 1 − 2M r � dt2 + dr2 � 1 − 2M r � + r2(dθ2 + sin2 θdφ2) (11) for a specific velocity profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The ordinary and extraordinary indexes of the NLC depend on the scalar order parameter of the liquid crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' So, it was possible to taylor those indexes to get the proper optical metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In order to achieve this, the Beris-Edwards hydrodynamic theory wass used to connect the order parameter with the velocity of the liquid crystal flow at each point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This was done in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' [143].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' More recently, an optical analogue of a wormhole threaded by a cosmic string was de- scribed in [142].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Wormholes are solutions of Einstein’s equations that connect different regions of the spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For instance, a spherically symmetric wormhole can be obtained by joining two Schwartzschild black hole spacetimes by a spherical hole carved around each singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Wormholes are usually represented by “embedding diagrams”, which are 2D slices of the 4D structure immersed in Euclidean 3D space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The embedding diagram of the notorious Morris-Thorne [144] wormhole is obtained by taking a t = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=', θ = π/2 section of the spherically symmetric spacetime described by the metric ds2 = −c2dt2 + dr2 1 − b2 0/r2 + r2(dθ2 + sin2 θdφ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' (12) The restricted metric, ds2 = dr2 1−b2 0/r2 +r2dφ2, can be embedded in a 3D Euclidean space with metric ds2 = dz2 + dr2 + r2dφ2 such that z = z(r) is the equation of the embedded surface of revolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For metric (12) the result is the catenoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A thin nematic film on a catenoid with director field aligned either circularly or radially (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 4) has an optical metric given by [142] ds2 = dτ 2 + α2(τ 2 + b2 0)dφ2, (13) where α = no/ne for the circular case, and α = ne/no for the radial one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The coordinate τ is the arc length of the catenary that under rotation gives rise to the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The parameter b0 is the radius of the wormhole “throat”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For α = 1, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' (13) reduces to the catenoid metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It is clear from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' (13) that, asymptotically (τ >> b0), the optical metric of the disclination is recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This is also evident from the top view of the catenoids of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This optical model simulates the conical spacetime of a Morris-Thorne wormhole threaded by a cosmic string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The geodesics as obtained in [142] are represented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 24 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Director field for circular and radial +1 disclinations on the catenoid, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Taken from [142].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' (a) (b) (c) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Assorted geodesics for the circularly decorated catenoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The blue lines represent the isotropic case α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The red and black lines represent, respectively, circular (deficit angle) and radial (surplus angle) disclinations with α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='85 for (a) and (b), and with α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='98 for (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Taken from [142].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 5 it is clear that the two parts of the wormhole joined by its throat act as a black hole/white hole pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Road to quantum gravity A major contemporary challenge in physics is to find an extension of General Relativity able to describe gravity at all energy scales, in particular at the very beginning of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This is the mission devoted to quantum gravity theories, which have the daunting task of reconciling Einstein’s general relativity and quantum field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Despite promising attempts including superstring theories, M-theory or quantum loop gravity, no proposal is entirely satisfactory up to now, and even so, the energy scales required to test these theories are far beyond our current scientific capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A way out of this gridlock is to rely on simpler models that capture the essential features of quantum gravity but remain connected to low-energy-physics systems, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' analogue gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The rare pearl was first introduced in a seminal paper by Deser, Jackiw and ’t Hooft [145]: 2+1 25 gravity with point-particle sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The main point is that there is no gravitational degrees of freedom in three dimensions [146], which drastically simplifies general relativity (now an exactly solvable model [147]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Within this framework, the geometry surrounding a point-particle is a conical singularity, the mismatch angle being proportional to the particle’s mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In other words, conical de- fects represent point particles coupled to gravity in 2+1 spacetimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' After Katanaev [57] first pointed out that the theory of linear disclinations was isomorphic to the 2+1-gravity, Kholodenko [148] used the apparatus of quadratic differentials to establish the connection between Deser, Jackiw and ’t Hooft model and defects in liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In essence, the exis- tence of massive particles considered as field singularities is directly related to the topology of the underlying manifold (the Euler characteristic) and to the emergence of the induced sad- dles: this means that 2+1 Einstein’s equations are strictly equivalent to the Poincaré-Hopf theorem (see section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='2 in [148]), the Hopf quantization rule making the direct connection between particles masses Mi and the defect topological charge m, 4GMi = m [149].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The 2+1 gravity model can therefore be experimentally investigated from a network of parallel disclinations lines in a 3D nematic sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Geometry of disclinations networks has been theoretically investigated in the literature, sometimes allowing for analytical expres- sions for the metric tensor [150–152].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Several authors have shown the possibility to design arrays of topological linear defects from photopatterning techniques [153–157] and even to manipulate them [158, 159].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' If this last point opens the possibility to emulate collisions be- tween particles in the 2+1 model, it is even more interesting for the extension of the Deser, Jackiw and ’t Hooft model to 3+1 dimensions [70]: matter particles are represented by a gas of piecewise straight string segments that are likely to collide with a higher frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The strings display both positive and negative mass densities, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' they are associated to α < 1 and α > 1 Frank angles, which makes liquid-crystal-based experiments particularly promising to investigate such models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This model may also have deep connections with Regge calculus in quantum gravity, where the smooth curved spacetime is replaced by a piecewise-flat simplicial manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This is like the triangulation of a surface in 3D where the local curvature is described by the dihedral angle between adjacent triangles (the triangle is a 2D simplex).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The effect of gluing the edges of the simplexes generate a network of cone-like singularities (Regge cones) which are analogs to wedge disclinations [160, 161] (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 26 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Triangulation of a sphere at the Itapetinga radiotelescope (Brazil).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Covering a curved surface by the triangles generates dihedral angles all around the sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Non-standard cosmology Cosmology at transplanckian scales is a thorny problem, both theoretically and of course observationally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' For instance has the universe popped up from a unique singular event, the Big-Bang?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' And if so, how not to wonder what could have happened before it and how to design experiments to test these theories?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Today, many high-energy physics theories such as quantum loop gravity and supertring theories entice the search for cyclic universe models, that is an endless repetition of big crunches followed by big bounces, along the same line of thought as the Stoics’ concept of palingenesia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A safe transition has been proposed [162, 163], where the singularity is nothing more than the temporary collapse of a fifth dimension, the three space dimensions remain large and time keeps flowing smoothly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A toy model for the geometry of this transition is the compactified 2D Milne universe MC [164, 165].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The Milne universe metric is given by ds2 = −dt2 + t2dχ2 + t2 sinh2 χ � dθ2 + sin2 θdφ2� (14) and it was proposed by E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Milne in 1933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' It represents a homogeneous, isotropic and expanding model for the universe with a negative curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In order to compactify the 27 Milne universe on hypersurfaces of fixed solid angle, let the variable χ acquire some period denoted as 2πκ: here, 0 < κ ∈ R1 is a constant parameter for compactifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' After reparametrization, the line element corresponding to the compactified Milne universe finally writes as ds2 = −dt2 + κ2t2dφ2 (15) where t ∈ R1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' As can be seen from the disclination line element (7), the presence of κ2 in the above metric indicates a conical singularity of the curvature at the origin (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The passage through the initial singularity has several unusual features [130, 166]: the singularity acts as a filter for classical particles and a phase-eraser for quantum ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The timelike geodesics of (15) reveal that depending on their angular momentum J, particles have two ways of crossing the singularity: 1) For non-vanishing J, a two-step dynamics consisting in an inward stable motion before the singularity, followed by outward stable motion on the other side, with a memory loss of the particle kinematical properties (quantum mechanically, this effect simply comes from strong oscillations of the phase of the wave function at the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 2) For J = 0, a one-step dynamics consisting in a straight line through the collapse: yet such trajectories are very unstable since small perturbations in the value of J causes large deviations on the trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Probing how particles behave in MC can be tested in the laboratory from hyperbolic liquid crystal metamaterials (HLCM): this means that the permittivity along the director axis ε∥ < 0 and the permittivity perpendicular to the director axis ε⊥ > 0 are of opposite sign [167].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Such media can be made from a host nematic liquid crystal that includes an admixture of metallic nanorods [168] or coated core-shell nanospheres [169].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' To retrieve the Kleinian double-cone geometry, the HCLM must be endowed with an hyperbolic disclination: the line element writes as ds2 = ε⊥dρ2 − ε∥ρ2dφ2 + ε⊥dz2, which after a rescaling becomes ds2 = −γ2r2φ2 + dr2 + dz2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' This line element is relevant only by the extraordinary modes and for radial injection conditions (planar trajectories z = Cst), the geometry experienced by extraordinary rays is perfectly identical to that of the compactified Milne universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' A stable configuration for the director field may be obtained from a cylindrical shell of HLCM with homeotropic anchoring at the boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' In the geometrical optics limit, extraordinary light paths turn out to be Poinsot’s spirals as for the compactified Milne universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The practical realization sets limits to the efficiency of such analog device for the classical particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' First, the analysis holds only within a limited frequency bandwidth 28 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Timelike geodesics with the radial time t given in units of t0 and κ = 1/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The blue and green (orange and red) lines are moving away (towards) from (to) the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Furthermore, particles following the trajectories in the first (third) and second (fourth) quadrants are spinning clockwise (counterclockwise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The blank point at the origin is just to emphasize that the curves do not reach the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Taken from [130].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' due to the resonant nature of the used core-shell spheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Second, as previous phenomena concern the extraordinary mode, an efficient optical absorber should include a filter to shut off the ordinary wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' Finally, it should be noticed that the present model concerns optics inside a bulk hyperbolic material: to design a perfect optical analog, the hyperbolic medium must be impedance matched to avoid sizable reflections at the interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' The analogy was also extended to quantum particles by investigating light in the scalar wave approximation in the same device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' 29 t 3 f+, J <0 f+, J > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' f-, J >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf'} +page_content=' J 0 and ϕ1Q ∼ 3π/2 if Ic1 < 0. +Inserting this value into the – small – second term of Eq. (15) +yields +Itot ∼ |Ic1|±Ic2 sin +�π +2 −2(Φ∗ +φ ∗/2) +� +, +(16) +with ± sign depending on the “0−” or “π−” character of +TTJ1. +First, this reconstructs the current-phase relation of +TTJ2, including the sign of Ic2. Second, as V is swept up- +wards from 0, the sign changes of TTJ1 reflect themselves in +π− shifts in the flux dependence of Itot. +As another example, Eq. (14) shows that phase-MARs can +be investigated in TTJ1 only, provided TTJ2 is symmetric in + +5 +(L, R) thus α2 = 0. The relative amplitude of phase-MARs +and quartets in TTJ1 reflects directly in the shift α1 of the +total current vs flux dependence. +Conclusions: In conclusion, we have proposed a quartet- +SQUID generalizing the standard SQUID geometry to make +quartet and phase-sensitive MAR current interfere under con- +trol of a magnetic flux. The periodicity in the flux depen- +dence of the total critical current through the SQUID reflects +the quartet charge 4e. In addition, the distinguishing phase +symmetries of both current components imply a phase lapse +in the flux sensitivity of the critical current of the interferome- +ter, which allows to quantify the phase-MARs with respect to +the quartet current. Finally, phase-MARs are a consequence +of both quartet emission and coherent subgap transport. Thus, +they provide evidence against scenarii based on extrinsic syn- +chronization via the outer circuit of junctions described by an +adiabatic current-phase relation. The principle of the present +quartet-SQUID can obviously be generalized to higher order +multipair transport in MTJs with four or more terminals. +R.M. acknowledges support from the French National Re- +search Agency (ANR) in the framework of the Graphmon +project (ANR-19-CE47-0007). +[1] R. de Bruyn Ouboter and A. Omelyanchouk, Multi-terminal +squid controlled by the transport current, Physica B: Condensed +Matter 205, 153 (1995). +[2] M. Amin, A. Omelyanchouk, and A. Zagoskin, Mesoscopic +multiterminal Josephson structures. i. effects of nonlocal weak +coupling, Low Temperature Physics 27, 616 (2001). +[3] M. Amin, A. Omelyanchouk, and A. Zagoskin, Dc squid based +on the mesoscopic multiterminal Josephson junction, Physica +C: Superconductivity 372, 178 (2002). +[4] M. Amin, A. Omelyanchouk, A. Blais, A. M. van den Brink, G. +Rose, T. Duty, and A. Zagoskin, Multi-terminal superconduct- +ing phase qubit, Physica C: Superconductivity 368, 310 (2002). +[5] B. van Heck, S. Mi, and A.R. Akhmerov, Single fermion manip- +ulation via superconducting phase differences in multiterminal +Josephson junctions, Phys. Rev. B 90, 155450 (2014). +[6] C. Padurariu, T. Jonckheere, J. Rech, R. M´elin, D. Feinberg, +T. Martin, and Yu.V. Nazarov, Closing the proximity gap in +a metallic Josephson junction between three superconductors, +Phys. Rev. B 92, 205409 (2015). +[7] R.-P. Riwar, M. Houzet, J.S. Meyer, and Y.V. Nazarov, Multi- +terminal Josephson junctions as topological materials, Nat. +Commun. 7, 11167 (2016). +[8] E. Eriksson, R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. +Nazarov, Topological transconductance quantization in a four- +terminal Josephson junction, Phys. Rev. B 95, 075417 (2017). +[9] H.-Y. Xie, M.G. Vavilov and A. Levchenko, Topological An- +dreev bands in three-terminal Josephson junctions, Phys. Rev. +B 96, 161406 (2017). +[10] H.-Y. Xie, M.G. Vavilov and A. Levchenko, +Weyl nodes in +Andreev spectra of multiterminal Josephson junctions: Chern +numbers, conductances and supercurrents, Phys. Rev. B 97, +035443 (2018). +[11] O. Deb, K. Sengupta and D. Sen, Josephson junctions of multi- +ple superconducting wires, Phys. Rev. B 97, 174518 (2018). +[12] B. Venitucci, D. Feinberg, R. M´elin, B. Douc¸ot, Nonadiabatic +Josephson current pumping by microwave irradiation, Phys. +Rev. B 97, 195423 (2018). +[13] L.P. Gavensky, G. Usaj, D. Feinberg and C.A. Balseiro, Berry +curvature tomography and realization of topological Haldane +model in driven three-terminal Josephson junctions, Phys. Rev. +B 97, 220505 (2018). +[14] R. L. Klees, G. Rastelli, J. C. Cuevas, and W. Belzig, Mi- +crowave Spectroscopy Reveals the Quantum Geometric Tensor +of Topological Josephson Matter, Phys. Rev. Lett. 124, 197002 +(2020). +[15] B. Douc¸ot, R. Danneau, K. Yang, J.-G. Caputo and R. M´elin, +Berry phase in superconducting multiterminal quantum dots, +Phys. Rev. B 101, 035411 (2020). +[16] V. Fatemi, A.R. Akhmerov and L. Bretheau, Weyl Josepshon +circuits, Phys. Rev. Research 3, 013288 (2021). +[17] L. Peyruchat, J. Griesmar, J.-D. Pillet and C¸ . ¨O Girit, Transcon- +ductance quantization in a topological Josephson tunnel junc- +tion circuit, Phys. Rev. Research 3, 013289 (2021). +[18] H. Weisbrich, R.L. Klees, G. Rastelli and W. Belzig, Second +Chern Number and Non-Abelian Berry Phase in Topological +Superconducting Systems, PRX Quantum 2, 010310 (2021). +[19] Y. Chen and Y.V. Nazarov, Weyl point immersed in a contin- +uous spectrum: an example from superconducting nanostruc- +tures, Phys. Rev. B 104, 104506 (2021). +[20] Y. Chen and Y.V. Nazarov, Spin-Weyl quantum unit: theoretical +proposal, Phys. Rev. B 103, 045410 (2021). +[21] E.V. Repin and Y.V. Nazarov, Weyl points in the multi- +terminal Hybrid Superconductor-Semiconductor Nanowire de- +vices, Phys. Rev. B 105, L041405 (2022) +[22] A. Melo, V. Fatemi and A.R. Akhmerov, Multiplet supercurrent +in Josephson tunneling circuits, SciPost Phys. 12, 017 (2022) +[23] L. Peralta Gavensky, G. Usaj and C.A. Balseiro, Multitermi- +nal Josephson junctions: a road to topological flux networks, +arXiv:2211.12524 (2022). +[24] J. C. Cuevas and H. Pothier, +Voltage-induced Shapiro steps +in a superconducting multiterminal structure, Phys. Rev. B 75, +174513 (2007). +[25] M. Houzet and P. Samuelsson, Multiple Andreev reflections +in hybrid multiterminal junctions, Phys. Rev. B 82, 060517(R) +(2010). +[26] A. Freyn, B. Douc¸ot, D. Feinberg, and R. M´elin, Production of +non-local quartets and phase-sensitive entanglement in a super- +conducting beam splitter, Phys. Rev. Lett. 106, 257005 (2011). +[27] T. Jonckheere, J. Rech, T. Martin, B. Douc¸ot, D. Feinberg, and +R. M´elin, Multipair DC Josephson resonances in a biased allsu- +perconducting bijunction, Phys. Rev. B 87, 214501 (2013). +[28] J. Rech, T. Jonckheere, T. Martin, B. Douc¸ot, D. Feinberg and +R. M´elin, Phys. Rev. B 90, 075419 (2014). +[29] D. Feinberg, T. Jonckheere, J. Rech, T. Martin, B. Douc¸ot and +R. M´elin, Quartets and the current-phase structure of a double +quantum dot superconducting bijunction at equilibrium, Eur. +Phys. J. B 88, 99 (2015). +[30] R. M´elin, D. Feinberg, and B. Douc¸ot, +Partially resummed +perturbation theory for multiple Andreev reflections in a short +three-terminal Josephson junction, Eur. Phys. J. B 89, 67 +(2016). +[31] R. M´elin, M. Sotto, D. Feinberg, J.-G. Caputo and B. Douc¸ot, +Gate-tunable zero-frequency current cross-correlations of the +quartet mode in a voltage-biased three-terminal Josephson junc- +tion, Phys. Rev. B 93, 115436 (2016). +[32] R. M´elin, J.-G. Caputo, K. Yang and B. Douc¸ot, Simple + +6 +Floquet-Wannier-Stark-Andreev viewpoint and emergence of +low-energy scales in a voltage-biased three-terminal Josephson +junction, Phys. Rev. B 95, 085415 (2017). +[33] R. M´elin, R. Danneau, K. Yang, J.-G. Caputo, and B. Douc¸ot, +Engineering the Floquet spectrum of superconducting multiter- +minal quantum dots, Phys. Rev. B 100, 035450 (2019). +[34] Nowak, M. P., Wimmer, M., Akhmerov, A., Supercurrent +carried by nonequilibrium quasiparticles in a multiterminal +Josephson junction, Phys. Rev. B 99, 075516 (2019). +[35] J.D. Pillet, V. Benzoni, J. Griesmar, J.-L. Smirr, and C¸ . ¨O. Girit, +Nonlocal Josephson Effect in Andreev Molecules Nano Lett. +19, 7138 (2019). +[36] V. Kornich, H.S. Barakov, and Yu.V. Nazarov, Fine energy split- +ting of overlapping Andreev bound states in multiterminal su- +perconducting nanostructures, Phys. Rev. Research 1, 033004 +(2019). +[37] R. M´elin, Inversion in a four terminal superconducting device +on the quartet line. I. Two-dimensional metal and the quartet +beam splitter, Phys. Rev. B 102, 245435 (2020). +[38] R. M´elin and B. Douc¸ot, Inversion in a four terminal supercon- +ducting device on the quartet line. II. Quantum dot and Floquet +theory, Phys. Rev. B 102, 245436 (2020). +[39] J.-D. Pillet, V. Benzoni, J. Griesmar, J.-L. Smirr, and C¸ ¨O Girit, +Scattering description of Andreev molecules, SciPost Phys. +Core 2, 009 (2020). +[40] V. Kornich, H. S. Barakov and Yu. V. Nazarov, Overlapping +Andreev states in semiconducting nanowires: competition of +1D and 3D propagation, Phys. Rev. B 101, 195430 (2020). +[41] R. M´elin, Ultralong-distance quantum correlations in three- +terminal Josephson junctions, Phys. Rev. B 104, 075402 (2021). +[42] A.H. Pfeffer, J.E. Duvauchelle, H. Courtois, R. M´elin, D. Fein- +berg, and F. Lefloch, Subgap structure in the conductance of +a three-terminal Josephson junction, Phys. Rev. B 90, 075401 +(2014). +[43] E. Strambini, S. D’Ambrosio, F. Vischi, F.S. Bergeret, Yu.V. +Nazarov, and F. Giazotto, The ω-SQUIPT as a tool to phase- +engineer Josephson topological materials, Nat. Nanotechnol. +11, 1055 (2016). +[44] Y. Cohen, Y. Ronen, J.H. Kang, M. Heiblum, D. Feinberg, R. +M´elin, and H. Strikman, Non-local supercurrent of quartets in a +three-terminal Josephson junction, Proc. Natl. Acad. Sci. U. S. +A. 115, 6991 (2018). +[45] A.W. Draelos, M.-T. Wei, A. Seredinski, H. Li, Y. Mehta, K. +Watanabe, T. Taniguchi, I.V. Borzenets, F. Amet, and G. Finkel- +stein, Supercurrent flow in multiterminal graphene Josephson +junctions, Nano Lett. 19, 1039 (2019). +[46] K.F. Huang, Y. Ronen, R. M´elin, D. Feinberg, K. Watanabe, +T. Taniguchi, and P. Kim, Evidence for 4e charge of Cooper +quartets in a biased multi-terminal graphene-based Josephson +junction, Nat. Comm. 13, 3032 (2022). +[47] N. Pankratova, H. Lee, R. Kuzmin, K. Wickramasinghe, W. +Mayer,J. Yuan,M. Vavilov,J. Shabani and V. Manucharyan, +The multi-terminal Josephson effect, Phys. Rev. X 10, 031051 +(2020). +[48] G.V. Graziano, J.S. Lee, M. Pendharkar, C. Palmstrom and V.S. +Pribiag, Transport Studies in a Gate-Tunable Three-Terminal +Josephson Junction, Phys. Rev. B 101, 054510 (2020). +[49] E.G. Arnault, T. Larson, A. Seredinski, L. Zhao, H. Li, K. +Watanabe, T. Taniguchi, I. Borzenets, F. Amet and G. Finkel- +stein, The multiterminal inverse AC Josephson effect, Nano +Lett. 21, 9668 (2021). +[50] S.A. Khan, L. Stampfer, T. Mutas, J.-H. Kang, P. Krogstrup and +T.S. Jespersen, Multiterminal Quantized Conductance in InSb +Nanocrosses, Advanced Materials 33, 2100078 (2021). +[51] O. K¨urt¨ossy, Z. Scher¨ubl, G. F¨ul¨op, I. E. Luk´acs, T. Kanne, J. +Nygard, P. Makk and S. Csonka, Andreev molecule in parallel +InAs nanowires, Nano Lett. 21, 7929 (2021). +[52] G. V. Graziano, M. Gupta, M. Pendharkar, J. T. Dong, C. P. +Dempsey, C. Palmstrøm and V. S. Pribiag, Selective control of +conductance modes in multi-terminal Josephson junctions, Nat. +Comm. 13, 5933 (2022). +[53] E.G. Arnault, S. Idris, A. McConnell, L. Zhao, T.F.Q. Larson, +K. Watanabe, T. Taniguchi, G. Finkelstein, F. Amet, Dynam- +ical stabilization of multiplet supercurrents in multi-terminal +Josephson junctions, Nano Lett. 22, 7073 (2022). +[54] F. Zhang, A.S. Rashid, M.T. Ahari, W. Zhang, K.M. Anantha- +narayanan, R. Xiao, G.J. de Coster, M.J. Gilbert, N. Samarth +and M. Kayyalha, Andreev processes in mesoscopic multi- +terminal graphene Josephson junctions, arXiv: 2210.04408v2 +(2022). +[55] T. M. Klapwjik, G. E. Blonder, and M. Tinkham, Explanation +of subharmonic energy gap structure in superconducting con- +tacts, Physica B+C 109-110, 1657 (1982); M. Octavio, M. Tin- +kham, G. E. Blonder, and T. M. Klapwijk, Subharmonic energy- +gap structure in superconducting constrictions, Phys. Rev. B 27, +6739 (1983). +[56] T. Jonckheere, J. Rech, C. Padurariu, L. Raymond, T. Martin, +D. Feinberg, in preparation. +[57] B.D. Josephson, Possible new effects in superconductive tun- +nelling, Physics Letters 1, 251 (1962). +[58] Jain, A. K., Likharev, K. K., Lukens J. E., and Sauvageau, J. E., +Mutual Phase-locking in Josephson junction arrays. Phys. Rep. +109, 309-426 (1984). +[59] M. Tinkham, Introduction to Superconductivity, 2nd ed. +(McGraw-Hill, New York, 1996). +[60] J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcc¸uhu, +and M. Monthioux, Carbon Nanotube Superconducting Quan- +tum Interference Device, Nature Nanotech. 1, 53 (2006). +[61] W. Guichard, M. Aprili, O. Bourgeois, T. Kontos, J. Lesueur, +and P. Gandit, Phase Sensitive Experiments in Ferromagnetic- +Based Josephson Junctions, Phys. Rev. Lett. 90, 167001 (2003). + diff --git a/KdFJT4oBgHgl3EQfxC3t/content/tmp_files/load_file.txt b/KdFJT4oBgHgl3EQfxC3t/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..236b77298912703fa157ac7f8488f5259079f936 --- /dev/null +++ b/KdFJT4oBgHgl3EQfxC3t/content/tmp_files/load_file.txt @@ -0,0 +1,703 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf,len=702 +page_content='A quantum interferometer for quartets in superconducting three-terminal Josephson junctions R´egis M´elin1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 2 and Denis Feinberg1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 2 1Universit´e Grenoble-Alpes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Institut N´eel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' BP 166,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' F-38042 Grenoble Cedex 9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' France 2CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Institut N´eel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' BP 166,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' F-38042 Grenoble Cedex 9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' France (Dated: January 30,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 2023) An interferometric device is proposed in order to analyze the quartet mode in biased three-terminal Josephson junctions (TTJs),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' and to provide experimental evidence for emergence of a single stationary phase,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' the so-called quartet phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In such a quartet-Superconducting Quantum Interference Device (quartet-SQUID), the flux sen- sitivity exhibits period hc/4e, which is the fingerprint of a transient intermediate state involving two entangled Cooper pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The quartet-SQUID provides two informations: an amplitude that measures a total “quartet crit- ical current”, and a phase lapse coming from the superposition of the following two current components: the quartet supercurrent that is odd in the quartet phase, and the phase-sensitive multiple Andreev reflection (phase- MAR) quasiparticle current, which occurs in transparent enough TTJs and is even in the quartet phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Evidence for the latter plays against conservative scenarii involving synchronization of AC Josephson currents, based on “adiabatic” phase dynamics and RSJ-like models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Introduction: Multiterminal Josephson junctions (MTJs) [1–4] appear as a very fertile evolution in the field of super- conductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' While unbiased MTJs offer prospects as plat- forms for controllable topological properties [5–23], biased MTJs reveal new channels for both superconducting phase- sensitive and quantum mechanical DC currents, as predicted by theory [22, 24–41] and confirmed in experiments [42– 54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' A paradigm of multiterminal Josephson junction [26] involves three superconductors biased at the opposite volt- ages 0,V,−V, this making the junction host Cooper quartets [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Those transient quartets are made of entangled pairs of Cooper pairs and flowing from the unbiased terminal to- wards the two others simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This voltage configu- ration ensures energy conservation, a necessary condition for having DC Josephson currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The quartet mechanism goes together with emergence of a stationary phase combination for the three terminal phases, the so-called quartet phase ϕQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' At the microscopic level, the minimal process appearing in perturbation theory in the tunnel amplitudes consists of four Andreev reflections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Quartets (as well as higher-order multi- pairs such as sextets, octets, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='.) therefore constitute a genuine quantum mechanical mesoscopic phenomenon, not occurring in simple classical Josephson arrays but instead in truly mul- titerminal junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Besides this quartet supercurrent, another current compo- nent happens to depend on the quartet phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' It is related to multiple Andreev reflections (MAR), which promote quasi- particles across the superconducting gap 2∆ with the help of Cooper pair transfers, each one gaining energy 2eV [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' New channels open in a three-terminal Josephson junction (TTJ) [34], where all pairs of terminals are simultaneously involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Among those, specific processes involve emission of quartets at zero energy but with phase ϕQ: the energy cost for promot- ing a quasiparticle between two terminals, say S1, S0 (with V1 −V0 = V), instead of transferring a pair between termi- nals S1, S0, can be provided by transferring a pair between terminals S0, S2 (with V0 −V2 = V) plus absorbing simulta- neously a quartet from (S1, S2) to S0 (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This quartet carries a phase ϕQ and these MAR processes become phase- dependent subgap quasiparticle currents [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Detailed calcu- lations about the phase and voltage sensitivities of both quar- tet and phase-MAR currents can be found in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 31 and 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' While quartet supercurrents are truly nondissipative, the phase-MAR currents are dissipative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Both of them depend on the control variables (ϕQ,V) but with different symmetries [27, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Owing to time inversion symmetry, the quartet and phase-MAR currents have to be antisymmetric with respect to inverting both variables ϕQ and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The quartet current is anti- symmetric in phase and symmetric in voltage, but the phase- MAR current is instead symmetric in phase and antisymmetric in voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This duality is reminiscent of the tunnel junction treated by Josephson [57] in his seminal work, concerning the DC current and the phase-sensitive quasiparticle current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The latter is AC in a two-terminal junction, but can become DC in a multiterminal one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Regarding experiments, an important question is about the interpretation of transport anomalies observed when a TTJ is biased at the voltages 0,V,−V [42, 44, 46, 52–54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' A conser- vative explanation involves the synchronization of AC Joseph- son currents flowing across each of the junctions polarized at V and −V respectively [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This mechanism is electromag- netic in nature and it involves the impedance (or the photon modes) of the whole circuit including the junction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Minimal models involve an adiabatic dependence of the currents with time-dependent phases, in a way similar to the standard treatment of Shapiro resonances [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This can be done in the presence of an external environment described by a circuit impedance, that includes the resistive part of the junction itself, within RSJ-related models [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This qualita- tively accounts for the DC-current features observed in TTJs [45, 47–49, 52], but is not a proof of the physical relevance of such a description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' For instance, the zero-frequency current- current cross-correlations [44] can hardly receive interpreta- tion in terms of the RSJ model, and quite specific frequency dependence of the device external circuit impedance should be advocated to interpret a recent four-terminal experiment as originating from a RSJ model [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Still, complementary experiments would be important to ascertain the mesoscopic nature of multipair processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' A first requisite is the control over the quartet phase, which can be used to prove coherence of the multipair supercur- rent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Such a phase coherence might be present in an extrin- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='11633v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='supr-con] 27 Jan 2023 2 (a) (b) (c) CP CP AR AR AR CAR CAR AR CAR S1 S0 S2 S1 S0 S2 S1 S0 S2 Q + = V V AR FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Diagram (a) pictures a quasiparticle promoted through the gap and a Cooper pair (CP) transferred from S1 to S0, via two Andreev reflections (AR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Di- agram (b) pictures a quartet (Q) formed of two entan- gled Cooper pairs, transferred from S0 to S1 and S2 si- multaneously, with two AR and two crossed Andreev reflections (CAR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Diagram (c) pictures a quasiparticle promoted through the gap, transferred from S1 to S0, while a Cooper pair is instead transferred from S0 to S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Diagram (c) can be formally obtained by superim- posing the lines of diagrams (a) and (b), showing that phase-dependent MARs involve quartets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' sic synchronization scenario, although hampered by decoher- ence mechanisms due to the environment itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' On the con- trary, phase coherence of the quartets is expected to be much more robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' To go further in the discrimination between ex- trinsic and intrinsic mechanisms, one must take into account the high transparency of the junctions, necessary to produce a mesoscopic multipair transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The consequence is the exis- tence of MAR processes, which in the standard two-terminal case have no explanation but with the help of subgap An- dreev reflections, and thus go well beyond a phenomenolog- ical RSJ modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Specifically, in MTJs, the observation of the phase-sensitive MARs can be taken as evidence for truly mesoscopic processes involving quartets, thus disproving any classical synchronization scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In this work, we propose an interferometric scheme able to control the quartet phase and, at the same time, reveal the phase-MAR component, thus proving both the phase coher- ence of multipair processes and their truly subgap mesoscopic nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Following Josephson’s discovery that a current must flow in an unbiased junction and depends on the phase difference between the contacts [57], Superconducting Quantum Inter- ference Devices (SQUIDs) were invented in order to control and analyze this phase sensitivity [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The flux dependence exhibits period hc/2e that directly proves supercurrents car- ried by Cooper pairs with charge 2e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Similarly, one expects that interferometry also helps elucidating the mechanism of quartets in TTJs, in particular proving that they carry a charge 4e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Yet, this simple expectation meets a difficulty : a TTJ involves three terminals, two of them being biased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This pre- vents from building a trivial generalization of the original two- terminal SQUID which is fully equipotential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Such a device must necessarily be different from those already proposed for multijunctions at equilibrium [28, 43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In this work, we describe a four-terminal scheme building a true quartet-SQUID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The clue is to connect two TTJs in paral- lel by their unbiased as well as their biased terminals, in order to close them in a double-TTJ loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Cooper pairs injected in the quartet-SQUID at voltage V = 0 can cross either TTJ as quartets, picking up the quartet phase of each TTJ, and recom- bine in the common outputs at voltages V and −V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The design encloses two loops instead of one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Generalizing the standard SQUID argument in the presence of magnetic flux shows that this imposes a difference between the quartet phases of the two TTJs, thus achieving a perfect parallel with an ordinary SQUID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This scheme allows analyzing the sensitivity of the quartet mode on voltage, as a new control parameter for a DC super- current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Microscopic models show that it is not monotonous, owing to nonadiabatic transitions between Andreev levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Moreover it can switch from a generic π-junction behavior (perturbative and low voltage case) to a 0-junction one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Such an evidence goes beyond classical synchronization scenarii unless assuming ad hoc an unlikely voltage (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' AC Joseph- son frequency) dependence of the circuit impedance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The proposed quartet-SQUID also allows exploiting the in- terplay between quartets and phase-sensitive MARs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Separa- tion between those two distinct processes could in principle be achieved in ideally symmetrical TJJs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' More generally, the different phase symmetry of quartet and phase-sensitive MAR currents results in a phase lapse in the periodic flux response of the quartet-SQUID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Measuring this phase lapse quantifies the presence of phase-MARs in transparent enough junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Phase-MARs are mesoscopic and they involve quartet excita- tion amplitudes, therefore they bring the necessary proof of a truly new physics being involved in TTJs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Three-terminal junction quartet-SQUID: The principle of the quartet-SQUID is to make two TTJs interfere with each other by joining their biased arms in a secondary circuit, as pictured in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The two TTJs thus enclose a secondary loop with two branches respectively at the voltages V (here- after denoted as “L-branch”), −V (hereafter denoted as “R- branch”), threaded by a flux φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The main loop is threaded by a flux Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Both loops are separated by the L branch (see Fig- ure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The total current is injected as Itot = I1M + I2M where I1M and I2M are the currents entering each of the TTJs from the 3 Ι1M Ι1R Ι2M Ι1L Ι2R Ι2L ΙL ΙR Ιtot V V Φ Φ* + φ*/2 ϕ1L φ ϕ1R 0 ϕ2L ϕ2R FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Scheme of a quartet-SQUID based on two TTJs, with a main loop threaded by a flux Φ and a secondary loop threaded by a flux φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The current is injected into the large loop such as to make the two TTJs interfere with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The current exits through the biased leads at voltages V,−V of the branches L,R of the sec- ondary loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The phases are mentioned in red within a simple gauge convention, see text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Here ϕ1M = 0 and ϕ2M = Φ∗ +φ∗/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' unbiased branch, and eventually exiting in the biased branches (second circuit) as IL and IR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Current conservation reads: Itot = I1M +I2M = IL +IR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (1) Let us define the phases at the unbiased branch of TTJ1 and TTJ2 as ϕ1M,ϕ2M respectively, and the phases at the biased branches of the TTJs as (ϕ1L,ϕ1R) and (ϕ2L,ϕ2R) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' From previous works [26] one knows that the stationary quar- tet phase components are ϕQi = ϕiL +ϕiR −2ϕiM, (2) while the oscillating phase components (at frequency 4eV/¯h) are ϕiL − ϕiR (i = 1,2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Let us define the normalized fluxes between 0 and 2π as Φ∗ = (2π/φ0)Φ and φ ∗ = (2π/φ0)φ, with φ0 = hc/2e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The fluxoid argument is applied to the main loop containing the L branch, then to the main plus secondary loop containing the R branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This is perfectly allowed, in spite of the main loop and the biased branches not being at the same potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In fact, the fluxoid argument takes care of the phase variation inside each superconductor, whatever its po- tential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The supercurrent circulation in the bulk of each super- conductor is assumed to be zero as for a thick superconductor, see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The presence of voltage biases between the dif- ferent superconductors only enters in the phase difference at the junctions, that can depend on time in the present scheme, with frequency 2eV/¯h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The fluxoid argument [59] amounts to equating on both paths the sum of the phase differences at the junctions to the normalized flux in the loop (modulo 2π), which yields: Φ∗ = ϕ1L −ϕ1M +ϕ2M −ϕ2L (3) Φ∗ +φ ∗ = ϕ1R −ϕ1M +ϕ2M −ϕ2R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (4) Taking the difference between these two equations, one ob- tains a relation between the oscillating phases components at the two TTJs: (ϕ1R −ϕ1L)−(ϕ2R −ϕ2L) = φ ∗, (5) expressing that these time-dependent components are per- fectly synchronized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' On the other hand, taking the sum of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (3)-(4) yields a relation between the quartet phases of the two TTJs [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (2)]: ϕ1Q −ϕ2Q = 2(Φ∗ +φ ∗/2) (6) This central result shows that, like an ordinary SQUID, the interferometer imposes a phase difference between the sta- tionary quartet phases at the two TTJs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Because of the (L, R) symmetry of the quartet current, the corresponding flux is the arithmetic mean of the fluxes delimited by the L (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Φ∗) and the R (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Φ∗ +φ ∗) branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Interestingly, if the TTJs are symmetric by exchanging their contacts to branches L,R, the currents I1,2M entering the TTJs are pure quartet currents i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' I1M = I1Q(ϕ1Q),I2M = I2Q(ϕ2Q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In turn, a pure MAR current IL −IR flows between branches L and R thus in the secondary circuit, and one can write: IL = 1 2 � I1Q(ϕ1Q)+I2Q(ϕ2Q) � (7) + I1MAR(ϕ1Q)+I2MAR(ϕ2Q) IR = 1 2 � I1Q(ϕ1Q)+I2Q(ϕ2Q) � (8) − I1MAR(ϕ1Q)−I2MAR(ϕ2Q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In this case, a Cooper pair current circulates in the main loop, while the secondary one contains a superposition of a quartet current – flowing as parallel Cooper pair currents in the L and R branches, thus insensitive to the flux φ ∗ – and a circulating MAR current – sensitive to φ ∗ via its phase-MAR component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In the general case of asymmetric TTJs, all currents I1,2M,IL,R contain components of both quartet and MAR ori- gins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' One can carry the analysis further in the simplifying case of weak transparencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Noting that the quartet and MAR components are respectively odd and even in the quartet phases, and one can write: I1M = IQc1(V)sinϕ1Q + ¯IMAR1(V)+IMARc1(V)cosϕ1Q (9) I2M = IQc2(V)sinϕ2Q + ¯IMAR2(V)+IMARc2(V)cosϕ2Q,(10) 4 where the first terms in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (9)-(10) are the quartet currents, with “critical currents” IQci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The second terms are the phase- averaged MAR components, including the phase-independent two-terminal MAR processes, and the last terms contain the phase-sensitive MAR components, with “critical currents” IMARci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The critical current values defining the amplitude of the phase oscillations of the quartet and MAR currents are voltage-sensitive, and have in general nonmonotonous vari- ations with V [31, 37, 38, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The sine and cosine depen- dences of the respective quartet and MAR currents stem from their symmetry in phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Such expressions can be checked by microscopic calculations in the low transparency case [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' From Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (1), (6), (9) and (10), the total current injected in this quartet-SQUID can be written as (omitting the voltage sensitivities): Itot = ¯IMAR1 + ¯IMAR2 +Ic1 sin(ϕ1Q +α1) (11) + Ic2 sin � ϕ1Q −2(Φ∗ +φ ∗/2)+α2 � , (12) with (i = 1,2): Ici = � I2 Qci +I2 MARci tan(αi) = IMARci/IQci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (13) The total current appears as the sum of (i) a phase- independent MAR current and (ii) a typical SQUID current, which depends on the quartet phase ϕ1Q, and on the effective flux Φ∗ +φ ∗/2, with phase lapses α1,2 that measure the ratio of phase-sensitive MAR currents to quartet currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' As in a usual SQUID, maximizing the total current with respect to the (quartet) phase yields the following expression for the critical current: Itot = ¯IMAR1 + ¯IMAR2 (14) + � I2 c1 +I2 c2 +2Ic1Ic2 cos � 2(Φ∗ +φ ∗/2)+α1 −α2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This relation achieves the goal of building a quartet- SQUID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' As a first result, the factor 2 in the flux sensitivity, that results in a hc/4e periodicity, manifests the fact that quartets are made of two entangled Cooper pairs and carry charge 4e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Second, the phase lapses α1,2 directly contain the information about the presence or not of phase-MARs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' These phase lapses disappear in the case of TTJs with symmetric branches V,−V (α1,2 = 0) or in the unlikely case of identical TTJs (α1 = α2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In experiments performed at low voltage and in incoher- ent diffusive regimes, the MAR currents are negligible, and the quartet-SQUID gives direct access to the pure quartet cur- rents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The above discussion is not restricted to harmonic depen- dences of the quartet and MAR current with phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In reso- nant dot models, nonharmonic behavior is easily obtained and the quartet current can be quite large, actually comparable to the ordinary Josephson current of a two-terminal junction in the same conditions [27, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Exploring the voltage dependence, from “0−” to “π−” junction: Having a quartet-SQUID in hands allows a thorough study of the dependence of the quartet (and phase-MAR) cur- rents with voltage, as a new control parameter for DC Joseph- son currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Focusing on the quartet current, different mod- els, suited to different types of junctions (single or many level quantum dot, or diffusive metallic) lead to the same conclu- sions: the quartet current-phase characteristics changes sign several times with voltage, owing to nonadiabatic transitions between Andreev levels, triggered by the voltage via the run- ning phase (ϕL −ϕR)(t) at frequency 4eV/¯h [31, 37, 38, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This means that, in terms of the quartet current component, a TTJ can be either a “0−” or a “π−” junction, with respect to the quartet phase ϕQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The same occurs with the phase-MAR current component that also changes sign but at different volt- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Superposition of quartet and phase-MAR components actually makes a generic TTJ a “θ-junction”[56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' More generally, the characteristics of a TTJ (transparency, asymmetries between the three contacts, degree of decoher- ence) all conspire to shift or even suppress the sign changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' For instance, if the couplings to the biased terminals are much smaller than the one to the unbiased terminal, and the quar- tet TTJ current keeps a “π−” junction character at low and intermediate voltages [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Focusing on quartets only, in the case where backgates allow to separately control the trans- parency of the different contacts, one can reach a situation where, for a given voltage, the pair of TTJs of the SQUID can be both “0−” (or both “π−”) junctions, or one being a “0−” and the other a “π−” junction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This strongly re- minds the experiments performed with carbon nanotubes [60] (nanoSQUID) where the mechanism for “0−” to “π−” tran- sition is instead the Coulomb interaction and the gate control of the nanotube junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In addition, “0−” to “π−” transi- tions have also been observed in superconductor-ferromagnet- superconductor Josephson junctions [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' To illustrate the possibilities of such a quartet-SQUID, let us assume that TTJ1 is fully symmetric and resonant, with high quartet critical currents and several sign changes as V is increased from 0 to 2∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' On the contrary, TTJ2 couples weakly but equally to the L, R terminals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' This suppresses the MAR component in the SQUID current, and leaves us with a very asymmetric quartet-SQUID, with (neglecting the anharmonic- ity in this example): Itot(V) = Ic1(V)sin(ϕ1Q)+Ic2(V)sin � ϕ1Q −2(Φ∗ +φ ∗/2) � (15) and |Ic1(V)| ≫ |Ic2(V)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' As said above, TTJ2 remains a “π−” junction so that Ic2 < 0, while the sign of Ic1 depends on V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Following the classical argument of an asymmetric SQUID, one first maximizes Itot ∼ Ic1 sin(ϕ1Q) with respect to ϕ1Q, which yields ϕ1Q ∼ π/2 if Ic1 > 0 and ϕ1Q ∼ 3π/2 if Ic1 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Inserting this value into the – small – second term of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (15) yields Itot ∼ |Ic1|±Ic2 sin �π 2 −2(Φ∗ +φ ∗/2) � , (16) with ± sign depending on the “0−” or “π−” character of TTJ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' First, this reconstructs the current-phase relation of TTJ2, including the sign of Ic2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Second, as V is swept up- wards from 0, the sign changes of TTJ1 reflect themselves in π− shifts in the flux dependence of Itot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' As another example, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (14) shows that phase-MARs can be investigated in TTJ1 only, provided TTJ2 is symmetric in 5 (L, R) thus α2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The relative amplitude of phase-MARs and quartets in TTJ1 reflects directly in the shift α1 of the total current vs flux dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Conclusions: In conclusion, we have proposed a quartet- SQUID generalizing the standard SQUID geometry to make quartet and phase-sensitive MAR current interfere under con- trol of a magnetic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The periodicity in the flux depen- dence of the total critical current through the SQUID reflects the quartet charge 4e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' In addition, the distinguishing phase symmetries of both current components imply a phase lapse in the flux sensitivity of the critical current of the interferome- ter, which allows to quantify the phase-MARs with respect to the quartet current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Finally, phase-MARs are a consequence of both quartet emission and coherent subgap transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Thus, they provide evidence against scenarii based on extrinsic syn- chronization via the outer circuit of junctions described by an adiabatic current-phase relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' The principle of the present quartet-SQUID can obviously be generalized to higher order multipair transport in MTJs with four or more terminals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' acknowledges support from the French National Re- search Agency (ANR) in the framework of the Graphmon project (ANR-19-CE47-0007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' de Bruyn Ouboter and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Omelyanchouk, Multi-terminal squid controlled by the transport current, Physica B: Condensed Matter 205, 153 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Amin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Omelyanchouk, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Zagoskin, Mesoscopic multiterminal Josephson structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' effects of nonlocal weak coupling, Low Temperature Physics 27, 616 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Amin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Omelyanchouk, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Zagoskin, Dc squid based on the mesoscopic multiterminal Josephson junction, Physica C: Superconductivity 372, 178 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Amin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Omelyanchouk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Blais, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' van den Brink, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rose, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Duty, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Zagoskin, Multi-terminal superconduct- ing phase qubit, Physica C: Superconductivity 368, 310 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [5] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' van Heck, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Mi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Akhmerov, Single fermion manip- ulation via superconducting phase differences in multiterminal Josephson junctions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 90, 155450 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Padurariu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Jonckheere, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rech, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Martin, and Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Closing the proximity gap in a metallic Josephson junction between three superconductors, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 92, 205409 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Riwar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Houzet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Meyer, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Multi- terminal Josephson junctions as topological materials, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 7, 11167 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [8] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Eriksson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Riwar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Houzet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Meyer, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Topological transconductance quantization in a four- terminal Josephson junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 95, 075417 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Xie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Vavilov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Levchenko, Topological An- dreev bands in three-terminal Josephson junctions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 96, 161406 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Xie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Vavilov and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Levchenko, Weyl nodes in Andreev spectra of multiterminal Josephson junctions: Chern numbers, conductances and supercurrents, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 97, 035443 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [11] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Deb, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Sengupta and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Sen, Josephson junctions of multi- ple superconducting wires, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 97, 174518 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [12] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Venitucci, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, Nonadiabatic Josephson current pumping by microwave irradiation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 97, 195423 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Gavensky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Usaj, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Balseiro, Berry curvature tomography and realization of topological Haldane model in driven three-terminal Josephson junctions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 97, 220505 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Klees, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rastelli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Cuevas, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Belzig, Mi- crowave Spectroscopy Reveals the Quantum Geometric Tensor of Topological Josephson Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 124, 197002 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [15] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Danneau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Caputo and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, Berry phase in superconducting multiterminal quantum dots, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 101, 035411 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [16] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Fatemi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Akhmerov and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Bretheau, Weyl Josepshon circuits, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Research 3, 013288 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [17] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Peyruchat, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Griesmar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pillet and C¸ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' ¨O Girit, Transcon- ductance quantization in a topological Josephson tunnel junc- tion circuit, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Research 3, 013289 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Weisbrich, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Klees, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rastelli and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Belzig, Second Chern Number and Non-Abelian Berry Phase in Topological Superconducting Systems, PRX Quantum 2, 010310 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [19] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Chen and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Weyl point immersed in a contin- uous spectrum: an example from superconducting nanostruc- tures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 104, 104506 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Chen and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Spin-Weyl quantum unit: theoretical proposal, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 103, 045410 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Repin and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Weyl points in the multi- terminal Hybrid Superconductor-Semiconductor Nanowire de- vices, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 105, L041405 (2022) [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Melo, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Fatemi and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Akhmerov, Multiplet supercurrent in Josephson tunneling circuits, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 12, 017 (2022) [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Peralta Gavensky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Usaj and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Balseiro, Multitermi- nal Josephson junctions: a road to topological flux networks, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='12524 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Cuevas and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pothier, Voltage-induced Shapiro steps in a superconducting multiterminal structure, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 75, 174513 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Houzet and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Samuelsson, Multiple Andreev reflections in hybrid multiterminal junctions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 82, 060517(R) (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Freyn, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, Production of non-local quartets and phase-sensitive entanglement in a super- conducting beam splitter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 106, 257005 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [27] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Jonckheere, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rech, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Martin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, Multipair DC Josephson resonances in a biased allsu- perconducting bijunction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 87, 214501 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rech, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Jonckheere, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Martin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 90, 075419 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [29] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Jonckheere, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rech, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Martin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, Quartets and the current-phase structure of a double quantum dot superconducting bijunction at equilibrium, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 88, 99 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, Partially resummed perturbation theory for multiple Andreev reflections in a short three-terminal Josephson junction, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 89, 67 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [31] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Sotto, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Caputo and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, Gate-tunable zero-frequency current cross-correlations of the quartet mode in a voltage-biased three-terminal Josephson junc- tion, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 93, 115436 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [32] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Caputo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Yang and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, Simple 6 Floquet-Wannier-Stark-Andreev viewpoint and emergence of low-energy scales in a voltage-biased three-terminal Josephson junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 95, 085415 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Danneau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Caputo, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, Engineering the Floquet spectrum of superconducting multiter- minal quantum dots, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 100, 035450 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [34] Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=', Wimmer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=', Akhmerov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=', Supercurrent carried by nonequilibrium quasiparticles in a multiterminal Josephson junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 99, 075516 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pillet, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Benzoni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Griesmar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Smirr, and C¸ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' ¨O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Girit, Nonlocal Josephson Effect in Andreev Molecules Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 19, 7138 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [36] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kornich, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Barakov, and Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Fine energy split- ting of overlapping Andreev bound states in multiterminal su- perconducting nanostructures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Research 1, 033004 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [37] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, Inversion in a four terminal superconducting device on the quartet line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Two-dimensional metal and the quartet beam splitter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 102, 245435 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [38] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Douc¸ot, Inversion in a four terminal supercon- ducting device on the quartet line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Quantum dot and Floquet theory, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 102, 245436 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [39] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pillet, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Benzoni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Griesmar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Smirr, and C¸ ¨O Girit, Scattering description of Andreev molecules, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Core 2, 009 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [40] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kornich, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Barakov and Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, Overlapping Andreev states in semiconducting nanowires: competition of 1D and 3D propagation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 101, 195430 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [41] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, Ultralong-distance quantum correlations in three- terminal Josephson junctions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 104, 075402 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [42] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pfeffer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Duvauchelle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Courtois, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Fein- berg, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Lefloch, Subgap structure in the conductance of a three-terminal Josephson junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 90, 075401 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [43] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Strambini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' D’Ambrosio, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Vischi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Bergeret, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nazarov, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Giazotto, The ω-SQUIPT as a tool to phase- engineer Josephson topological materials, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nanotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 11, 1055 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [44] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Cohen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Ronen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Heiblum, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Strikman, Non-local supercurrent of quartets in a three-terminal Josephson junction, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 115, 6991 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [45] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Draelos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Wei, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Seredinski, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Mehta, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Taniguchi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Borzenets, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Amet, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Finkel- stein, Supercurrent flow in multiterminal graphene Josephson junctions, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 19, 1039 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [46] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Ronen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M´elin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Taniguchi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kim, Evidence for 4e charge of Cooper quartets in a biased multi-terminal graphene-based Josephson junction, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 13, 3032 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [47] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pankratova, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Lee, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kuzmin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Wickramasinghe, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Mayer,J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Yuan,M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Vavilov,J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Shabani and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Manucharyan, The multi-terminal Josephson effect, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' X 10, 031051 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [48] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Graziano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pendharkar, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Palmstrom and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pribiag, Transport Studies in a Gate-Tunable Three-Terminal Josephson Junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 101, 054510 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [49] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Arnault, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Larson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Seredinski, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Taniguchi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Borzenets, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Amet and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Finkel- stein, The multiterminal inverse AC Josephson effect, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 21, 9668 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [50] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Khan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Stampfer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Mutas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Krogstrup and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Jespersen, Multiterminal Quantized Conductance in InSb Nanocrosses, Advanced Materials 33, 2100078 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [51] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' K¨urt¨ossy, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Scher¨ubl, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' F¨ul¨op, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Luk´acs, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kanne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Nygard, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Makk and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Csonka, Andreev molecule in parallel InAs nanowires, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 21, 7929 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [52] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Graziano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Gupta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pendharkar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Dong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Dempsey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Palmstrøm and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Pribiag, Selective control of conductance modes in multi-terminal Josephson junctions, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 13, 5933 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [53] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Arnault, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Idris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' McConnell, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Zhao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Larson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Taniguchi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Finkelstein, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Amet, Dynam- ical stabilization of multiplet supercurrents in multi-terminal Josephson junctions, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 22, 7073 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [54] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rashid, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Ahari, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Zhang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Anantha- narayanan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Xiao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' de Coster, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Gilbert, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Samarth and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kayyalha, Andreev processes in mesoscopic multi- terminal graphene Josephson junctions, arXiv: 2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='04408v2 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [55] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Klapwjik, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Blonder, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Tinkham, Explanation of subharmonic energy gap structure in superconducting con- tacts, Physica B+C 109-110, 1657 (1982);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Octavio, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Tin- kham, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Blonder, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Klapwijk, Subharmonic energy- gap structure in superconducting constrictions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' B 27, 6739 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [56] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Jonckheere, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rech, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Padurariu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Raymond, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Martin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Feinberg, in preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [57] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Josephson, Possible new effects in superconductive tun- nelling, Physics Letters 1, 251 (1962).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [58] Jain, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=', Likharev, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=', Lukens J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=', and Sauvageau, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=', Mutual Phase-locking in Josephson junction arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 109, 309-426 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [59] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Tinkham, Introduction to Superconductivity, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' (McGraw-Hill, New York, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [60] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Cleuziou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Wernsdorfer, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Bouchiat, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Ondarcc¸uhu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Monthioux, Carbon Nanotube Superconducting Quan- tum Interference Device, Nature Nanotech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 1, 53 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' [61] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Guichard, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Aprili, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Bourgeois, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Kontos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Lesueur, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Gandit, Phase Sensitive Experiments in Ferromagnetic- Based Josephson Junctions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} +page_content=' 90, 167001 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/KdFJT4oBgHgl3EQfxC3t/content/2301.11633v1.pdf'} diff --git a/LtAyT4oBgHgl3EQfsvmN/content/tmp_files/2301.00582v1.pdf.txt b/LtAyT4oBgHgl3EQfsvmN/content/tmp_files/2301.00582v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c1871d72741a6c20dc7fcc738e70fa4d66ad83ab --- /dev/null +++ b/LtAyT4oBgHgl3EQfsvmN/content/tmp_files/2301.00582v1.pdf.txt @@ -0,0 +1,925 @@ +Sparse neural networks with +skip-connections for nonlinear system +identification ⋆ +Erlend Torje Berg Lundby ∗,∗∗∗ Haakon Robinson ∗,∗∗∗ +Adil Rasheed ∗ Ivar Johan Halvorsen ∗∗ +Jan Tommy Gravdahl ∗ +∗ Department of Engineering Cybernetics, Norwegian University of +Science and Technology, O. S. Bragstads plass 2, Trondheim, NO-7034, +Norway (e-mail: erlend.t.b.lundby@ntnu.no haakon.robinson@ntnu.no, +adil.rasheed@ntnu.no, jan.tommy.gravdahl@ntnu.no). +∗∗ SINTEF Digital, Trondheim, No-7465, Norway +∗∗∗ Equal contribution +Abstract: Data-driven models such as neural networks are being applied more and more to +safety-critical applications, such as the modeling and control of cyber-physical systems. Despite +the flexibility of the approach, there are still concerns about the safety of these models in this +context, as well as the need for large amounts of potentially expensive data. In particular, +when long-term predictions are needed or frequent measurements are not available, the open- +loop stability of the model becomes important. However, it is difficult to make such guarantees +for complex black-box models such as neural networks, and prior work has shown that model +stability is indeed an issue. In this work, we consider an aluminum extraction process where +measurements of the internal state of the reactor are time-consuming and expensive. We model +the process using neural networks and investigate the role of including skip connections in the +network architecture as well as using ℓ1 regularization to induce sparse connection weights. We +demonstrate that these measures can greatly improve both the accuracy and the stability of the +models for datasets of varying sizes. +Keywords: Deep Neural Network, Machine Learning, Timeseries modeling, Modeling and +Simulation +1. INTRODUCTION +There is increasing interest in using machine learning- +based methods to develop predictive models directly from +data. The advantage of this compared to standard sys- +tem identification methods is that it doesn’t require any +assumptions about the system, but all phenomena that +are well represented by the data can often be accurately +captured. One example of such a method that has seen +widespread popularity in recent years is the neural network +(NN), which is known to be a universal function approx- +imator. These are often used in Reinforcement Learning +(RL) to represent a value function or a model for some +dynamical system. However, this approach requires a lot +of data to train effective models, which can be expensive +to obtain in many domains. One hypothesis for this is that +NNs are typically overparameterized, and therefore require +many steps to adjust all of the parameters. However, over- +training on the same limited dataset will cause the model +to overfit to the training data, and perform poorly on +unseen data. While overparameterization has been found +to aid convergence during training (Allen-Zhu et al., 2019), +it also introduces redundant information into the weights. +⋆ This work was supported by the project TAPI: Towards Autonomy +in Process Industries (grant no. 294544), and EXAIGON: Explain- +able AI systems for gradual industry adoption (grant no. 304843) +Recent research has found that using sparser networks +may be the key to training models that can generalize +across many situations. In particular, Frankle and Carbin +(2019) showed empirically that for any dense architecture, +there is a very high probability that there is a sparse +subnetwork which will train faster and generalize better +than the full model. This is known as the Lottery Ticket +Hypothesis, and many methods of sparsification can be +seen as attempts to somehow extract such a “winning +lottery ticket” from an initially dense network. There have +been numerous advances in this field, and we refer to +Hoefler et al. (2021) for a recent and comprehensive review. +In this work we use the well-known ℓ1 regularization for +sparsification of the model. +Another challenge related to the use of NNs is the choice +of architecture and hyperparameters. Typical networks +have multiple layers which are densely connected, although +this can vary between domains. Choosing an appropriate +architecture is an art, generally involving trial and error to +improve performance and avoid overfitting. It is commonly +understood that the early layers of a neural network have +a significant impact on the overall performance of the +network, but deep networks often suffer from the vanishing +or exploding gradient problem which prevents effective +training of these early parameters (Goodfellow et al., +arXiv:2301.00582v1 [eess.SY] 2 Jan 2023 + +2016). Skip-connections were originally proposed by He +et al. (2016) as a way to circumvent this, by introducing a +shorter path between the early layers and the output. They +were not only found to enable the training of significantly +deeper networks, but Li et al. (2017) also demonstrated +that they may help improve training convergence. +In the field of dynamical systems and control, we often +design a model with a purpose in mind, such as the design +of a control system or state observer. Crucially, we are in- +terested in the behavior and performance of the controlled +system in terms of objectives such as energy efficiency or +yield. This implies that the model does not need to be +perfectly accurate for the entire state space, so long as +the resulting closed-loop performance is sufficient (known +as identification for control (I4C)). If high-frequency mea- +surements from the system are available, only the short- +term behavior of the model is important, since any drift +out of the operational space is quickly corrected. However, +if measurements are rarely available, such as in the alu- +minum electrolysis process that we consider, the long-term +model behavior and open-loop stability become much more +important. Stable long-term predictions can be important +for decision-making, meaning that a model with good long- +term stability and accuracy is inherently important. +In this work, we investigate the effects of adding skip +connections and ℓ1 regularization on the accuracy and +stability of these models for short, medium, and long +horizons. We address the following questions: +• How do skip connections affect the stability and +generalization error of neural networks trained on +high-dimensional nonlinear dynamical systems? +• How does sparsity affect stability and generalization +error for neural networks with skip connections that +model nonlinear dynamics? +• How does the amount of training data affect neural +networks with skip connections compared to neural +networks without skip connections? +We make the following contributions: +• We perform a black box system identification of an +aluminum electrolysis cell using different NN archi- +tectures. +• We demonstrate that the accuracy and open-loop +stability of the resulting models is greatly improved +by using ℓ1 weight regularization and incorporating +skip connections into the architecture. +• This advantage is consistent across datasets of vary- +ing sizes. +2. THEORY +2.1 Physics-based model for aluminum extraction +We evaluate NNs for nonlinear system identification by +first training them on synthetic data generated from a +known physics-based models (PBM). The model used in +this work describes the internal dynamics of an aluminum +electrolysis cell based on the Hall-H´eroult process. Figure 1 +shows a diagram of the electrolysis cell. Traditional PBMs +of such systems are generally constructed by studying the +mass/energy balance of the chemical reactions. Lundby +Insulation +Temperature of +side ledge +Alumina feed +Carbon +anode +Carbon +anode +Mass +of +Alumina + Aluminium Fluoride + Molten Cryolite  +Molten Aluminum +Carbon lining +Bath +temperature +Side wall temperature +Alumina +supply +Current bar collector +Current bar collector +Produced aluminum mass +Mass of side ledge +Line current +Anode-cathode distance +Tapped metal +flow rate +Fig. 1. Schematic of the setup +et al. (2022) presents a more detailed exposition of the +model that we use in this work. The system is described +by a set of ordinary differential equations (ODE): +˙x = f(x, u), +(1) +where x ∈ R8 and u ∈ R5 represent the time-varying +states and inputs of the system respectively. The full set +of equations are: +˙x1 = k1(g1 − x7) +x1k0 +− k2(x6 − g1) +(2a) +˙x2 = u1 − k3u2 +(2b) +˙x3 = u3 − k4u1 +(2c) +˙x4 = −k1(g1 − x7) +x1k0 ++ k2(x6 − g1) + k5u1 +(2d) +˙x5 = k6u2 − u4 +(2e) +˙x6 = +α +x2 + x3 + x4 +� +u2g5 + u2 +2u5 +2620g2 +− k7(x6 − g1)2 +(2f) ++ k8 +(x6 − g1)(g1 − x7) +k0x1 +− k9 +x6 − x7 +k10 + k11k0x1 +� +˙x7 = β +x1 +�k9(g1 − x7) +k15k0x1 +− k12(x6 − g1)(g1 − x7) +(2g) ++ k13(g1 − x7)2 +k0x1 +− +x7 − x8 +k14 + k15k0x1 +� +˙x8 = k17k9 +� +x7 − x8 +k14 + k15k0 · x1 +− x8 − k16 +k14 + k18 +� +, +(2h) +where the intrinsic properties gi of the bath mixture are +given as: + +g1 = 991.2 + 112cx3 + 61c1.5 +x3 − 3265.5c2.2 +x3 +(3a) +− +793cx2 +−23cx2cx3 − 17c2x3 + 9.36cx3 + 1 +g2 = exp +� +2.496 − +2068.4 +273 + x6 +− 2.07cx2 +� +(3b) +g3 = 0.531 + 3.06 · 10−18u3 +1 − 2.51 · 10−12u2 +1 +(3c) ++ 6.96 · 10−7u1 − 14.37(cx2 − cx2,crit) − 0.431 +735.3(cx2 − cx2,crit) + 1 +g4 = 0.5517 + 3.8168 · 10−6u2 +1 + 8.271 · 10−6u2 +(3d) +g5 = 3.8168 · 10−6g3g4u2 +g2(1 − g3) +. +(3e) +See Table 1 for a description of these quantities. +The values of these constants can be found in Lundby +et al. (2022). The dynamics of the system are relatively +slow. The control inputs u1, +u3 and u4 are therefore +well modeled as impulses that represent discrete events +involving the addition or removal of substances. This +results in step changes in the linear states x2, x3, x5, which +act as accumulator states for the mass of the corresponding +substance (see Table 1). The control inputs u2 and u5 are +piecewise constant, and always nonzero. The inputs u are +determined by a simple proportional controller π(x). The +simulation model is derived in Lundby et al. (2022), and +we refer to that article for further details. +2.2 Deep neural network with skip connections +A NN with L layers can be compactly written as an +alternating composition of affine transformations Wz + b +and nonlinear activation functions σ : Rn �→ Rn: +ˆf(z) = ˆfL ◦ · · · ◦ ˆf2 ◦ ˆf1 +ˆfi(z) = σi(Wiz + bi), +(4) +where the activation function σi, weight matrix Wi, and +bias vector bi correspond to the ith layer of the network. +The universal approximation property of NNs makes them +very attractive as a flexible model class when a lot of +data is available. The representation capacity is generally +understood to increase with both the depth and the width +(the number of neurons in each layer), although early at- +tempts to train very deep networks found them challenging +to optimize using backpropagation due to the vanishing +gradients problem. One of the major developments that +enabled researchers to train deep NNs with many layers +is the skip connection. A skip connection is simply an +additional inter-layer connection that bypasses some of the +layers of the network. This provides alternate pathways +through which the loss can be backpropagated to the early +layers of the NN, which helps mitigate the issues of vanish- +ing and exploding gradients, which were major hurdles to +training deeper models. In this work, we utilize a modified +DenseNet architecture as proposed by Huang et al. (2017), +where the outputs of earlier layers are concatenated to all +the consecutive layers. We simplify the structure such that +the model only contains skip connections from the input +layer to all consecutive layers. We call this architecture +InputSkip, which has reduced complexity compared to +DenseNet. This design is motivated by the fact that the +output of each layer (including the final output) becomes +a sum of both a linear and a nonlinear transformation of +Table 1. +Ta- +ble +of +states, +in- +puts, +and +other +quan- +ti- +ties +used +to +model +the +elec- +trol- +y- +sis +cell +Variable +Physical meaning +Units +x1 +Mass side ledge +kg +x2 +Mass Al2O3 +kg +x3 +Mass AlF3 +kg +x4 +Mass Na3 AlF6 +kg +x5 +Mass metal +kg +x6 +Temperature bath +°C +x7 +Temperature side ledge +°C +x8 +Temperature wall +°C +u1 +Al2O3 feed +kg/s +u2 +Line current +kA +u3 +AlF3 feed +kg/s +u4 +Aluminum tapping +kg/s +u5 +Anode-cathode distance +cm +cx2 +Al2O3 mass ratio x2/(x2 + x3 + x4) +- +cx3 +AlF3 +mass ratio x3/(x2 + x3 + x4) +- +g1 +Liquidus temperature +°C +g2 +Electrical conductivity +S m +g3 +Bubble coverage +- +g4 +Bubble thickness +cm +g5 +Bubble voltage +V +the initial input x. Hence, the skip connections from the +input layer to consecutive layers facilitate the reuse of the +input features for modeling different linear and nonlinear +relationships more independently of each other. +3. METHOD AND SETUP +In this section, we present all the details of data generation +and its preprocessing, and the methods that are required to +reproduce the work. The steps can be briefly summarized +as follows: +• Use Equation (2) with random initial conditions to +generate 140 trajectories with 5000 timesteps each. +Set aside 40 for training and 100 for testing. Con- +struct 3 datasets by selecting 10,20 and 40 trajectories +respectively. +• For each model class and dataset, train 10 instances +on the training data. +• Repeat all experiments with ℓ1 regularization, see loss +function in Equation (5). + +• Use trained models to generate predicted trajectories +along the test set and compare them to the 100 test +trajectories. +3.1 Data generation +Equation (2) was discretized using the RK4 scheme with +a fixed timestep h = 10 s and numerically integrated +on the interval [0, 5000h]. We used uniformly randomly +sampled initial conditions from the intervals shown in +Table 2 to generate 140 unique trajectories. We set aside +40 trajectories for training and 100 of the trajectories +as a test set. The 40 training trajectories were used +to create 3 datasets of varying sizes (small, medium, +large), namely 10, 20, and 40 trajectories. In total, the +datasets contained 50000, 100000, and 200000 individual +data points respectively. +Equation (2) also depends on the input signal u. In +practice, this is given by a deterministic control policy +u = π(x) that stabilizes the system and keeps the state +x within some region of the state space that is suitable +for safe operation. We found that this was insufficient +to successfully train our models, because the controlled +trajectories showed very little variation after some time, +despite having different initial conditions. This lack of +diversity in the dataset resulted in models that could not +generalize to unseen states, a situation that frequently +arose during evaluation. To inject more variety into the +data and sample states x outside of the standard opera- +tional area, we used a stochastic controller +πs(x) = π(x) + r(t) +that introduced random perturbations r(t) to the input. +These perturbations were sampled using the Amplitude- +modulated Pseudo-Random Binary Signal (APRBS) method +proposed by Winter and Breitsamter (2018) for nonlinear +system identification. +In system identification it is typical to optimize the model +to estimate the function ˙x = f(x, u). However, this is not +feasible for Equation (2) because the inputs u are not +differentiable. Instead, we discretize the trajectories using +the forward Euler difference and use this as the regression +variable: +yk = xk+1 − xk +h +The datasets are then constructed as sets of the pairs +([xk, uk], yk). +3.2 Training setup +We optimize the models by minimizing the following loss +function using stochastic gradient descent: +Jθ = 1 +|B| +� +i∈B +(yi − ˆf(xi, ui))2 + λ +L +� +j=1 +|Wj| +(5) +where B is a batch of randomly sampled subset of indices +from the dataset, L is the number of layers of the NN, and +λ is the regularization parameter. This loss function is the +sum of the mean squared error (MSE) of the model ˆf with +respect to the regression variables y, and the ℓ1 norm of +the connection weight matrices Wi in all layers. We used +a batch size of |B| = 128. We used the popular ADAM +solver proposed by Kingma and Ba (2014) with default +parameters to minimize Equation (5). +Table 2. +Ini- +tial +con- +di- +tions +in- +ter- +vals +for +x +Variable +Initial condition interval +x1 +[2060, 4460] +cx2 +[0.02, 0.05] +cx3 +[0.09, 0.13] +x4 +[11500, 16000] +x5 +[9550, 10600] +x6 +[940, 990] +x7 +[790, 850] +x8 +[555, 610] +3.3 Evaluation of model accuracy +As previously mentioned, we are interested in evaluating +the long-term predictive accuracy of the models. Starting +from a given initial condition x(t0), the model ˆf(x, u) +is used to generate an estimated trajectory using the +recurrence: +ˆxk+1 = ˆxk + hˆf(ˆxk, uk) +(6) +where ˆx0 = x0. Note that the input signal uk is replayed +directly from the test trajectory. Borrowing a term from +the field of time-series analysis, we refer to this as a rolling +forecast. To evaluate the accuracy of a model over multiple +trajectories, we define the Average Normalized Rolling +Forecast Mean Squared Error (AN-RFMSE): +AN-RFMSE = 1 +p +p +� +i=1 +1 +n +n +� +j=1 +� ˆxi(tj) − xi(tj) +std(xi) +�2 +, +(7) +where ˆxi(tj) is the model estimate of the simulated state +variable xi at time step tj, std(xi) is the standard deviation +of variable xi in the training set Strain, p = 8 is the number +of state variables and n is the number of time steps being +averaged over. +3.4 Evaluation of model stability +A symptom of model instability is that its predictions +can blow-up, which is characterized by a rapid (often +exponential) increase in prediction error. More precisely, +we say that a blow-up occurs when the normalized mean +absolute error for all system states exceeds three (this +corresponds to standard deviations). We detect this as +follows: +max +j 3 +(8) +where p = 8 is again the number of state variables and +n is the number of time steps to consider. This is a +conservative estimate. However, this does not lead to any +significant underestimation of the number of blow-ups. +This is because once a model starts to drift rapidly, it +very quickly exceeds the normal error of three standard +deviations. + +4. RESULTS AND DISCUSSIONS +We characterize the different model classes (PlainDense, +PlainSparse, InputSkipDense, InputSkipSparse) by esti- +mating their blow-up frequencies and their rolling forecast +mean squared error (RFMSE) on the validation data. The +blow-up frequency is an interesting measure since it can +indicate how stable the model is in practice. +We perform a Monte Carlo analysis by training 10 in- +stances of each model class and evaluating these on 100 +trajectories randomly generated using the true model, +yielding 1000 data points for each model class. We repeat +the experiments for 3 different dataset sizes to study the +data efficiency of the models. +Figure 2 presents the total number of blow-ups recorded +within each model class after 100h, 2000h, and 5000h +(short, medium, and long term respectively). For simplic- +ity, blow-ups were detected by thresholding the computed +variance of a predicted trajectory and manually inspected. +It is clear that for short time horizons all the models +exhibit robust behavior independently of the size of the +training datasets. However, for medium and long time +horizons, PlainDense, PlainSparse, and InputSkipDense +architectures exhibit a significant number of blow-ups and +therefore instability. Figure 2a - 2c show that PlainDense +is generally the most unstable, with up to 67% of all tra- +jectories resulting in a blow-up. For the smallest amount of +training data (Figure 2a) PlainSparse and InputSkipDense +have similar blow-up frequencies. For larger datasets, the +PlainSparse architecture shows significantly better stabil- +ity than both PlainDense and InputSkipDense. InputSkip- +Dense and PlainDense both show better stability with +increasing amounts of training data in terms of fewer blow- +ups. However, both these dense models still suffer from +significant amounts of blow-ups. +In comparison, almost no blow-ups are recorded when +using the InputSkipSparse architecture, even for the small +training dataset. In Figure 2, the orange bars correspond- +ing to the blow-up frequency of InputSkipSparse models +are not visible for any of the training sets due to the sig- +nificantly lower number of blow-ups. For InputSkipSparse +models trained on the smallest dataset, only 3 out of 1000 +possible blow-ups were reported for the longest horizon. +Apart from that, no blow-ups were reported for the Input- +SkipSparse models. +Only a few blow-ups were recorded after 5000h in the +medium term. +Figure 3 presents a violin plot of the accuracy of each +model class, expressed in terms of RFMSE over different +time horizons. Only the plot for the smallest dataset +(50000 points) is shown, due to the results being very +similar. A larger width of the violin indicates a higher +density of that given RFMSE value, while the error bars +show the minimum and maximum recorded RFMSE val- +ues. The model estimates that blew up (see Figure 2) are +not included. In this way, we estimate the generalization +performance of the models only within their regions of +stability. Note that the violin plots for model classes with +many blow-ups are made using fewer samples, and can be +seen as slightly “cherry-picked”. Nonetheless, the Input- +SkipSparse architecture consistently yields more accurate +100 T +2500 T +5000 T +0 +100 +200 +300 +400 +500 +600 +700 +(a) Trained on smallest dataset with 50000 datapoints +100 T +2500 T +5000 T +0 +50 +100 +150 +200 +250 +(b) Trained on medium sized dataset with 100000 datapoints +100 T +2500 T +5000 T +0 +25 +50 +75 +100 +125 +150 +175 +200 +(c) Trained on largest dataset with 200000 datapoints +PlainDense +PlainSparse +InputSkipDense +InputSkipSparse +Fig. 2. Divergence plot: Number of trajectories that blow- +up over different time horizons. The total number of +trajectories is 1000, so the values can be read as a +permille. +results, up to an order of magnitude better than the others +in the long term. +5. CONCLUSION AND FUTURE WORK +In this work, we compared the performance of two different +model structures trained both with and without sparsity +promoting ℓ1 regularization. The two model types are +standard Multi-Layer Perceptrons (MLP), and a more +specialized architecture that includes skip connections +from the input layer to all consecutive layers. This yields +four different model structures, which we call PlainDense, +PlainSparse, InputSkipDense, and InputSkipSparse. The +main conclusions of the article are as follows: +• NNs with skip connections are more stable for predic- +tions over long time horizons compared to standard +MLPs. Furthermore, the accuracy of NNs with skip + +100 T +2500 T +5000 T +10 +2 +10 +1 +100 +PlainDense +PlainSparse +InputSkipDense +InputSkipSparse +Fig. 3. Model accuracy expressed in terms of RFMSE over +different horizons. Ten models of each of the model +types (PlainDense, PlainSparse, InputSkipDense, In- +putSkipSparse) are trained on the smallest dataset of +50000 data points. The model estimates that blow up +(see Figure 2) are excluded. The error bars for each +model type The plot shows that sparse models with +skip connections (InputSkipSparse) are consistently +more accurate than both sparse and dense models +without skip connections. +connections is consistently higher for all forecasting +horizons. +• The application of sparsity-promoting ℓ1 regulariza- +tion significantly improves the stability of both the +standard MLP and InputSkip architectures. This im- +provement was more apparent for models with the +InputSkip architecture. +• The InputSkipSparse showed satisfactory stability +characteristics even when the amount of training data +was restricted. This suggests that this architecture is +more suitable for system identification tasks than the +standard MLP structure. +The case study shows that both sparsity-promoting regu- +larization and skip connections can result in more stable +NN models for system identification tasks while requiring +less data, as well as improving their multi-step generaliza- +tion for both short, medium, and long prediction horizons. +Despite the encouraging performance of the sparse-skip +networks, we can not guarantee similar performance for +noisy data, as we have only investigated the use of syn- +thetic data devoid of any noise. However, such a study will +be an interesting line of future work. This case study also +has relevance beyond the current setup. In more realistic +situations, we often have a partial understanding of the +system we wish to model (see Equation (2)), and only +wish to use data-driven methods to correct a PBM when +it disagrees with the observations (e.g. due to a faulty as- +sumption). As shown in Robinson et al. (2022), combining +PBMs and data-driven methods in this way also has the +potential to inject instability into the system. Finding new +ways to improve or guarantee out-of-sample behavior for +data-driven methods is therefore of paramount importance +to improve the safety of such systems. +ACKNOWLEDGEMENTS +This work was supported by the industry partners Bor- +regaard, Elkem, Hydro, Yara and the Research Council of +Norway through the projects TAPI: Towards Autonomy in +Process Industries (grant no. 294544) and EXAIGON: Ex- +plainable AI systems for gradual industry adoption (grant +no. 304843) +REFERENCES +Allen-Zhu, Z., Li, Y., and Song, Z. (2019). A convergence +theory for deep learning via over-parameterization. +In +K. +Chaudhuri +and +R. +Salakhutdinov +(eds.), +Proceedings +of +the +36th +International +Conference +on Machine Learning, volume 97 of Proceedings of +Machine Learning Research, 242–252. PMLR. +URL +https://proceedings.mlr.press/v97/allen-zhu19a.html. +Frankle, J. and Carbin, M. (2019). The lottery ticket hy- +pothesis: Finding sparse, trainable neural networks. In +International Conference on Learning Representations. +Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep +learning. MIT press. +He, K., Zhang, X., Ren, S., and Sun, J. (2016). +Deep +residual learning for image recognition. In Proceedings +of the IEEE conference on computer vision and pattern +recognition, 770–778. +Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and +Peste, A. (2021). +Sparsity in deep learning: Pruning +and growth for efficient inference and training in neural +networks. J. Mach. Learn. Res., 22(241), 1–124. +Huang, G., Liu, Z., Van Der Maaten, L., and Wein- +berger, K.Q. (2017). Densely connected convolutional +networks. In 2017 IEEE Conference on Computer Vi- +sion and Pattern Recognition (CVPR), 2261–2269. doi: +10.1109/CVPR.2017.243. +Kingma, +D.P. +and +Ba, +J. +(2014). +Adam: +A +method for stochastic optimization. +arXiv preprint +arXiv:1412.6980. +Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. +(2017). Visualizing the loss landscape of neural nets. +URL https://arxiv.org/abs/1712.09913. +Lundby, E.T.B., Rasheed, A., Halvorsen, I.J., and Grav- +dahl, J.T. (2022). +Sparse deep neural networks for +modeling aluminum electrolysis dynamics. arXiv. doi: +doi.org/10.48550/arXiv.2209.05832. +Robinson, H., Lundby, E., Rasheed, A., and Gravdahl, +J.T. (2022). A novel corrective-source term approach +to modeling unknown physics in aluminum extraction +process. arXiv. doi:10.48550/ARXIV.2209.10861. URL +https://arxiv.org/abs/2209.10861. +Winter, M. and Breitsamter, C. (2018). Nonlinear identifi- +cation via connected neural networks for unsteady aero- +dynamic analysis. +Aerospace Science and Technology, +77, 802–818. + +0 +2 +4 +6 +8 +10 +Time (hours) +2000 +4000 +6000 +Mass (kg) +(a) Side ledge mass x1 +0 +2 +4 +6 +8 +10 +Time (hours) +1000 +0 +1000 +2000 +Mass (kg) +(b) Alumina mass x2 +0 +2 +4 +6 +8 +10 +Time (hours) +1600 +1800 +2000 +2200 +Mass (kg) +(c) Aluminum fluoride x3 +0 +2 +4 +6 +8 +10 +Time (hours) +10000 +12000 +14000 +16000 +Mass (kg) +(d) Molten cryolite x4 +0 +2 +4 +6 +8 +10 +Time (hours) +9000 +9500 +10000 +10500 +Mass (kg) +(e) Produced aluminum x5 +0 +2 +4 +6 +8 +10 +Time (hours) +940 +960 +980 +1000 +Temp ( C) +(f) Bath temperature x6 +0 +2 +4 +6 +8 +10 +Time (hours) +650 +700 +750 +800 +850 +Temp ( C) +(g) Side ledge temperature x7 +0 +2 +4 +6 +8 +10 +Time (hours) +400 +500 +600 +700 +Temp ( C) +(h) Side wall temperature x8 +Truth +InputSkipSparse +PlainSparse +99.7% conf. PlainSparse +99.7% conf. InputSkipSparse +Fig. 4. Rolling forecast of a representative test trajectory + diff --git a/LtAyT4oBgHgl3EQfsvmN/content/tmp_files/load_file.txt b/LtAyT4oBgHgl3EQfsvmN/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7497a8949010b1fd37d5eb5390ddc88a9b45fd14 --- /dev/null +++ b/LtAyT4oBgHgl3EQfsvmN/content/tmp_files/load_file.txt @@ -0,0 +1,574 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf,len=573 +page_content='Sparse neural networks with skip-connections for nonlinear system identification ⋆ Erlend Torje Berg Lundby ∗,∗∗∗ Haakon Robinson ∗,∗∗∗ Adil Rasheed ∗ Ivar Johan Halvorsen ∗∗ Jan Tommy Gravdahl ∗ ∗ Department of Engineering Cybernetics, Norwegian University of Science and Technology, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Bragstads plass 2, Trondheim, NO-7034, Norway (e-mail: erlend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='lundby@ntnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='no haakon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='robinson@ntnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='no, adil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='rasheed@ntnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='no, jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='tommy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='gravdahl@ntnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='no).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' ∗∗ SINTEF Digital, Trondheim, No-7465, Norway ∗∗∗ Equal contribution Abstract: Data-driven models such as neural networks are being applied more and more to safety-critical applications, such as the modeling and control of cyber-physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Despite the flexibility of the approach, there are still concerns about the safety of these models in this context, as well as the need for large amounts of potentially expensive data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In particular, when long-term predictions are needed or frequent measurements are not available, the open- loop stability of the model becomes important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, it is difficult to make such guarantees for complex black-box models such as neural networks, and prior work has shown that model stability is indeed an issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In this work, we consider an aluminum extraction process where measurements of the internal state of the reactor are time-consuming and expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We model the process using neural networks and investigate the role of including skip connections in the network architecture as well as using ℓ1 regularization to induce sparse connection weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We demonstrate that these measures can greatly improve both the accuracy and the stability of the models for datasets of varying sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Keywords: Deep Neural Network, Machine Learning, Timeseries modeling, Modeling and Simulation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' INTRODUCTION There is increasing interest in using machine learning- based methods to develop predictive models directly from data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The advantage of this compared to standard sys- tem identification methods is that it doesn’t require any assumptions about the system, but all phenomena that are well represented by the data can often be accurately captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' One example of such a method that has seen widespread popularity in recent years is the neural network (NN), which is known to be a universal function approx- imator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' These are often used in Reinforcement Learning (RL) to represent a value function or a model for some dynamical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, this approach requires a lot of data to train effective models, which can be expensive to obtain in many domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' One hypothesis for this is that NNs are typically overparameterized, and therefore require many steps to adjust all of the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, over- training on the same limited dataset will cause the model to overfit to the training data, and perform poorly on unseen data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' While overparameterization has been found to aid convergence during training (Allen-Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', 2019), it also introduces redundant information into the weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' ⋆ This work was supported by the project TAPI: Towards Autonomy in Process Industries (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 294544), and EXAIGON: Explain- able AI systems for gradual industry adoption (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 304843) Recent research has found that using sparser networks may be the key to training models that can generalize across many situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In particular, Frankle and Carbin (2019) showed empirically that for any dense architecture, there is a very high probability that there is a sparse subnetwork which will train faster and generalize better than the full model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This is known as the Lottery Ticket Hypothesis, and many methods of sparsification can be seen as attempts to somehow extract such a “winning lottery ticket” from an initially dense network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' There have been numerous advances in this field, and we refer to Hoefler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2021) for a recent and comprehensive review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In this work we use the well-known ℓ1 regularization for sparsification of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Another challenge related to the use of NNs is the choice of architecture and hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Typical networks have multiple layers which are densely connected, although this can vary between domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Choosing an appropriate architecture is an art, generally involving trial and error to improve performance and avoid overfitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' It is commonly understood that the early layers of a neural network have a significant impact on the overall performance of the network, but deep networks often suffer from the vanishing or exploding gradient problem which prevents effective training of these early parameters (Goodfellow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='00582v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='SY] 2 Jan 2023 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Skip-connections were originally proposed by He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2016) as a way to circumvent this, by introducing a shorter path between the early layers and the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' They were not only found to enable the training of significantly deeper networks, but Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2017) also demonstrated that they may help improve training convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In the field of dynamical systems and control, we often design a model with a purpose in mind, such as the design of a control system or state observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Crucially, we are in- terested in the behavior and performance of the controlled system in terms of objectives such as energy efficiency or yield.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This implies that the model does not need to be perfectly accurate for the entire state space, so long as the resulting closed-loop performance is sufficient (known as identification for control (I4C)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' If high-frequency mea- surements from the system are available, only the short- term behavior of the model is important, since any drift out of the operational space is quickly corrected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, if measurements are rarely available, such as in the alu- minum electrolysis process that we consider, the long-term model behavior and open-loop stability become much more important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Stable long-term predictions can be important for decision-making, meaning that a model with good long- term stability and accuracy is inherently important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In this work, we investigate the effects of adding skip connections and ℓ1 regularization on the accuracy and stability of these models for short, medium, and long horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We address the following questions: How do skip connections affect the stability and generalization error of neural networks trained on high-dimensional nonlinear dynamical systems?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' How does sparsity affect stability and generalization error for neural networks with skip connections that model nonlinear dynamics?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' How does the amount of training data affect neural networks with skip connections compared to neural networks without skip connections?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We make the following contributions: We perform a black box system identification of an aluminum electrolysis cell using different NN archi- tectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We demonstrate that the accuracy and open-loop stability of the resulting models is greatly improved by using ℓ1 weight regularization and incorporating skip connections into the architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This advantage is consistent across datasets of vary- ing sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' THEORY 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1 Physics-based model for aluminum extraction We evaluate NNs for nonlinear system identification by first training them on synthetic data generated from a known physics-based models (PBM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The model used in this work describes the internal dynamics of an aluminum electrolysis cell based on the Hall-H´eroult process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Figure 1 shows a diagram of the electrolysis cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Traditional PBMs of such systems are generally constructed by studying the mass/energy balance of the chemical reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Lundby Insulation Temperature of side ledge Alumina feed Carbon anode Carbon anode Mass of Alumina + Aluminium Fluoride + Molten Cryolite Molten Aluminum Carbon lining Bath temperature Side wall temperature Alumina supply Current bar collector Current bar collector Produced aluminum mass Mass of side ledge Line current Anode-cathode distance Tapped metal flow rate Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Schematic of the setup et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2022) presents a more detailed exposition of the model that we use in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The system is described by a set of ordinary differential equations (ODE): ˙x = f(x, u), (1) where x ∈ R8 and u ∈ R5 represent the time-varying states and inputs of the system respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The full set ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='of equations are: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x1 = k1(g1 − x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x1k0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='− k2(x6 − g1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(2a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x2 = u1 − k3u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(2b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x3 = u3 − k4u1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(2c) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x4 = −k1(g1 − x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x1k0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='+ k2(x6 − g1) + k5u1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(2d) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x5 = k6u2 − u4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(2e) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x6 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x2 + x3 + x4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='u2g5 + u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2u5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2620g2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='− k7(x6 − g1)2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(2f) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='+ k8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(x6 − g1)(g1 − x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='k0x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='− k9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x6 − x7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='k10 + k11k0x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x7 = β ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='�k9(g1 − x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='k15k0x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='− k12(x6 − g1)(g1 − x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(2g) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='+ k13(g1 − x7)2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='k0x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x7 − x8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='k14 + k15k0x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='˙x8 = k17k9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x7 − x8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='k14 + k15k0 · x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='− x8 − k16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='k14 + k18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2h) where the intrinsic properties gi of the bath mixture are given as: g1 = 991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 + 112cx3 + 61c1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='5 x3 − 3265.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='5c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 x3 (3a) − 793cx2 −23cx2cx3 − 17c2x3 + 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='36cx3 + 1 g2 = exp � 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='496 − 2068.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 273 + x6 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='07cx2 � (3b) g3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='531 + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='06 · 10−18u3 1 − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='51 · 10−12u2 1 (3c) + 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='96 · 10−7u1 − 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='37(cx2 − cx2,crit) − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='431 735.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='3(cx2 − cx2,crit) + 1 g4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='5517 + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8168 · 10−6u2 1 + 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='271 · 10−6u2 (3d) g5 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8168 · 10−6g3g4u2 g2(1 − g3) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (3e) See Table 1 for a description of these quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The values of these constants can be found in Lundby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The dynamics of the system are relatively slow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The control inputs u1, u3 and u4 are therefore well modeled as impulses that represent discrete events involving the addition or removal of substances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This results in step changes in the linear states x2, x3, x5, which act as accumulator states for the mass of the corresponding substance (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The control inputs u2 and u5 are piecewise constant, and always nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The inputs u are determined by a simple proportional controller π(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The simulation model is derived in Lundby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2022), and we refer to that article for further details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 Deep neural network with skip connections A NN with L layers can be compactly written as an alternating composition of affine transformations Wz + b and nonlinear activation functions σ : Rn �→ Rn: ˆf(z) = ˆfL ◦ · · · ◦ ˆf2 ◦ ˆf1 ˆfi(z) = σi(Wiz + bi), (4) where the activation function σi, weight matrix Wi, and bias vector bi correspond to the ith layer of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The universal approximation property of NNs makes them very attractive as a flexible model class when a lot of data is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The representation capacity is generally understood to increase with both the depth and the width (the number of neurons in each layer), although early at- tempts to train very deep networks found them challenging to optimize using backpropagation due to the vanishing gradients problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' One of the major developments that enabled researchers to train deep NNs with many layers is the skip connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' A skip connection is simply an additional inter-layer connection that bypasses some of the layers of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This provides alternate pathways through which the loss can be backpropagated to the early layers of the NN, which helps mitigate the issues of vanish- ing and exploding gradients, which were major hurdles to training deeper models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In this work, we utilize a modified DenseNet architecture as proposed by Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2017), where the outputs of earlier layers are concatenated to all the consecutive layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We simplify the structure such that the model only contains skip connections from the input layer to all consecutive layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We call this architecture InputSkip, which has reduced complexity compared to DenseNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This design is motivated by the fact that the output of each layer (including the final output) becomes a sum of both a linear and a nonlinear transformation of Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Ta- ble of states,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' in- puts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='other ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='quan- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='ti- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='ties ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='used ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='to ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='elec- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='trol- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='y- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='sis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='cell ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Physical meaning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Units ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass side ledge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass Al2O3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass AlF3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass Na3 AlF6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass metal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Temperature bath ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='°C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Temperature side ledge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='°C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='x8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Temperature wall ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='°C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='u1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Al2O3 feed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg/s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='u2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Line current ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='u3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='AlF3 feed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg/s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='u4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Aluminum tapping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='kg/s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='u5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Anode-cathode distance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='cm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='cx2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Al2O3 mass ratio x2/(x2 + x3 + x4) cx3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='AlF3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='mass ratio x3/(x2 + x3 + x4) g1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Liquidus temperature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='°C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='g2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Electrical conductivity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='S m ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='g3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Bubble coverage g4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Bubble thickness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='cm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='g5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Bubble voltage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='the initial input x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Hence, the skip connections from the input layer to consecutive layers facilitate the reuse of the input features for modeling different linear and nonlinear relationships more independently of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' METHOD AND SETUP In this section, we present all the details of data generation and its preprocessing, and the methods that are required to reproduce the work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The steps can be briefly summarized as follows: Use Equation (2) with random initial conditions to generate 140 trajectories with 5000 timesteps each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Set aside 40 for training and 100 for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Con- struct 3 datasets by selecting 10,20 and 40 trajectories respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' For each model class and dataset, train 10 instances on the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Repeat all experiments with ℓ1 regularization, see loss function in Equation (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Use trained models to generate predicted trajectories along the test set and compare them to the 100 test trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1 Data generation Equation (2) was discretized using the RK4 scheme with a fixed timestep h = 10 s and numerically integrated on the interval [0, 5000h].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We used uniformly randomly sampled initial conditions from the intervals shown in Table 2 to generate 140 unique trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We set aside 40 trajectories for training and 100 of the trajectories as a test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The 40 training trajectories were used to create 3 datasets of varying sizes (small, medium, large), namely 10, 20, and 40 trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In total, the datasets contained 50000, 100000, and 200000 individual data points respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Equation (2) also depends on the input signal u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In practice, this is given by a deterministic control policy u = π(x) that stabilizes the system and keeps the state x within some region of the state space that is suitable for safe operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We found that this was insufficient to successfully train our models, because the controlled trajectories showed very little variation after some time, despite having different initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This lack of diversity in the dataset resulted in models that could not generalize to unseen states, a situation that frequently arose during evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' To inject more variety into the data and sample states x outside of the standard opera- tional area, we used a stochastic controller πs(x) = π(x) + r(t) that introduced random perturbations r(t) to the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' These perturbations were sampled using the Amplitude- modulated Pseudo-Random Binary Signal (APRBS) method proposed by Winter and Breitsamter (2018) for nonlinear system identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In system identification it is typical to optimize the model to estimate the function ˙x = f(x, u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, this is not feasible for Equation (2) because the inputs u are not differentiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Instead, we discretize the trajectories using the forward Euler difference and use this as the regression variable: yk = xk+1 − xk h The datasets are then constructed as sets of the pairs ([xk, uk], yk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 Training setup We optimize the models by minimizing the following loss function using stochastic gradient descent: Jθ = 1 |B| � i∈B (yi − ˆf(xi, ui))2 + λ L � j=1 |Wj| (5) where B is a batch of randomly sampled subset of indices from the dataset, L is the number of layers of the NN, and λ is the regularization parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This loss function is the sum of the mean squared error (MSE) of the model ˆf with respect to the regression variables y, and the ℓ1 norm of the connection weight matrices Wi in all layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We used a batch size of |B| = 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We used the popular ADAM solver proposed by Kingma and Ba (2014) with default parameters to minimize Equation (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Ini- tial con- di- tions in- ter- vals for x Variable Initial condition interval x1 [2060, 4460] cx2 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='02, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='05] cx3 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='09, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='13] x4 [11500, 16000] x5 [9550, 10600] x6 [940, 990] x7 [790, 850] x8 [555, 610] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='3 Evaluation of model accuracy As previously mentioned, we are interested in evaluating the long-term predictive accuracy of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Starting from a given initial condition x(t0), the model ˆf(x, u) is used to generate an estimated trajectory using the recurrence: ˆxk+1 = ˆxk + hˆf(ˆxk, uk) (6) where ˆx0 = x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Note that the input signal uk is replayed directly from the test trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Borrowing a term from the field of time-series analysis, we refer to this as a rolling forecast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' To evaluate the accuracy of a model over multiple trajectories, we define the Average Normalized Rolling Forecast Mean Squared Error (AN-RFMSE): AN-RFMSE = 1 p p � i=1 1 n n � j=1 � ˆxi(tj) − xi(tj) std(xi) �2 , (7) where ˆxi(tj) is the model estimate of the simulated state variable xi at time step tj, std(xi) is the standard deviation of variable xi in the training set Strain, p = 8 is the number of state variables and n is the number of time steps being averaged over.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 Evaluation of model stability A symptom of model instability is that its predictions can blow-up, which is characterized by a rapid (often exponential) increase in prediction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' More precisely, we say that a blow-up occurs when the normalized mean absolute error for all system states exceeds three (this corresponds to standard deviations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We detect this as follows: max j 3 (8) where p = 8 is again the number of state variables and n is the number of time steps to consider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This is a conservative estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, this does not lead to any significant underestimation of the number of blow-ups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This is because once a model starts to drift rapidly, it very quickly exceeds the normal error of three standard deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' RESULTS AND DISCUSSIONS We characterize the different model classes (PlainDense, PlainSparse, InputSkipDense, InputSkipSparse) by esti- mating their blow-up frequencies and their rolling forecast mean squared error (RFMSE) on the validation data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The blow-up frequency is an interesting measure since it can indicate how stable the model is in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We perform a Monte Carlo analysis by training 10 in- stances of each model class and evaluating these on 100 trajectories randomly generated using the true model, yielding 1000 data points for each model class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' We repeat the experiments for 3 different dataset sizes to study the data efficiency of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Figure 2 presents the total number of blow-ups recorded within each model class after 100h, 2000h, and 5000h (short, medium, and long term respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' For simplic- ity, blow-ups were detected by thresholding the computed variance of a predicted trajectory and manually inspected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' It is clear that for short time horizons all the models exhibit robust behavior independently of the size of the training datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, for medium and long time horizons, PlainDense, PlainSparse, and InputSkipDense architectures exhibit a significant number of blow-ups and therefore instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Figure 2a - 2c show that PlainDense is generally the most unstable, with up to 67% of all tra- jectories resulting in a blow-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' For the smallest amount of training data (Figure 2a) PlainSparse and InputSkipDense have similar blow-up frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' For larger datasets, the PlainSparse architecture shows significantly better stabil- ity than both PlainDense and InputSkipDense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' InputSkip- Dense and PlainDense both show better stability with increasing amounts of training data in terms of fewer blow- ups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, both these dense models still suffer from significant amounts of blow-ups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In comparison, almost no blow-ups are recorded when using the InputSkipSparse architecture, even for the small training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In Figure 2, the orange bars correspond- ing to the blow-up frequency of InputSkipSparse models are not visible for any of the training sets due to the sig- nificantly lower number of blow-ups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' For InputSkipSparse models trained on the smallest dataset, only 3 out of 1000 possible blow-ups were reported for the longest horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Apart from that, no blow-ups were reported for the Input- SkipSparse models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Only a few blow-ups were recorded after 5000h in the medium term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Figure 3 presents a violin plot of the accuracy of each model class, expressed in terms of RFMSE over different time horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Only the plot for the smallest dataset (50000 points) is shown, due to the results being very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' A larger width of the violin indicates a higher density of that given RFMSE value, while the error bars show the minimum and maximum recorded RFMSE val- ues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The model estimates that blew up (see Figure 2) are not included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In this way, we estimate the generalization performance of the models only within their regions of stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Note that the violin plots for model classes with many blow-ups are made using fewer samples, and can be seen as slightly “cherry-picked”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Nonetheless, the Input- SkipSparse architecture consistently yields more accurate 100 T 2500 T 5000 T 0 100 200 300 400 500 600 700 (a) Trained on smallest dataset with 50000 datapoints 100 T 2500 T 5000 T 0 50 100 150 200 250 (b) Trained on medium sized dataset with 100000 datapoints 100 T 2500 T 5000 T 0 25 50 75 100 125 150 175 200 (c) Trained on largest dataset with 200000 datapoints PlainDense PlainSparse InputSkipDense InputSkipSparse Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Divergence plot: Number of trajectories that blow- up over different time horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The total number of trajectories is 1000, so the values can be read as a permille.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' results, up to an order of magnitude better than the others in the long term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' CONCLUSION AND FUTURE WORK In this work, we compared the performance of two different model structures trained both with and without sparsity promoting ℓ1 regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The two model types are standard Multi-Layer Perceptrons (MLP), and a more specialized architecture that includes skip connections from the input layer to all consecutive layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This yields four different model structures, which we call PlainDense, PlainSparse, InputSkipDense, and InputSkipSparse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The main conclusions of the article are as follows: NNs with skip connections are more stable for predic- tions over long time horizons compared to standard MLPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Furthermore, the accuracy of NNs with skip 100 T 2500 T 5000 T 10 2 10 1 100 PlainDense PlainSparse InputSkipDense InputSkipSparse Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Model accuracy expressed in terms of RFMSE over different horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Ten models of each of the model types (PlainDense, PlainSparse, InputSkipDense, In- putSkipSparse) are trained on the smallest dataset of 50000 data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The model estimates that blow up (see Figure 2) are excluded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The error bars for each model type The plot shows that sparse models with skip connections (InputSkipSparse) are consistently more accurate than both sparse and dense models without skip connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' connections is consistently higher for all forecasting horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The application of sparsity-promoting ℓ1 regulariza- tion significantly improves the stability of both the standard MLP and InputSkip architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This im- provement was more apparent for models with the InputSkip architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The InputSkipSparse showed satisfactory stability characteristics even when the amount of training data was restricted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This suggests that this architecture is more suitable for system identification tasks than the standard MLP structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The case study shows that both sparsity-promoting regu- larization and skip connections can result in more stable NN models for system identification tasks while requiring less data, as well as improving their multi-step generaliza- tion for both short, medium, and long prediction horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Despite the encouraging performance of the sparse-skip networks, we can not guarantee similar performance for noisy data, as we have only investigated the use of syn- thetic data devoid of any noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' However, such a study will be an interesting line of future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' This case study also has relevance beyond the current setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In more realistic situations, we often have a partial understanding of the system we wish to model (see Equation (2)), and only wish to use data-driven methods to correct a PBM when it disagrees with the observations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' due to a faulty as- sumption).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' As shown in Robinson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2022), combining PBMs and data-driven methods in this way also has the potential to inject instability into the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Finding new ways to improve or guarantee out-of-sample behavior for data-driven methods is therefore of paramount importance to improve the safety of such systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' ACKNOWLEDGEMENTS This work was supported by the industry partners Bor- regaard, Elkem, Hydro, Yara and the Research Council of Norway through the projects TAPI: Towards Autonomy in Process Industries (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 294544) and EXAIGON: Ex- plainable AI systems for gradual industry adoption (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 304843) REFERENCES Allen-Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Song, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' A convergence theory for deep learning via over-parameterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Chaudhuri and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Salakhutdinov (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' ), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, 242–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='press/v97/allen-zhu19a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Frankle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' and Carbin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' The lottery ticket hy- pothesis: Finding sparse, trainable neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In International Conference on Learning Representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Goodfellow, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Bengio, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Courville, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' MIT press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' He, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Ren, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Hoefler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Alistarh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Ben-Nun, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Dryden, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Peste, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', 22(241), 1–124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Huang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Van Der Maaten, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Wein- berger, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Densely connected convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' In 2017 IEEE Conference on Computer Vi- sion and Pattern Recognition (CVPR), 2261–2269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Kingma, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' and Ba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Adam: A method for stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Taylor, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Studer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Goldstein, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Visualizing the loss landscape of neural nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='org/abs/1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='09913.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Lundby, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Rasheed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Halvorsen, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Grav- dahl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Sparse deep neural networks for modeling aluminum electrolysis dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' doi: doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='05832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Robinson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Lundby, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', Rasheed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=', and Gravdahl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' A novel corrective-source term approach to modeling unknown physics in aluminum extraction process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10861.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='org/abs/2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10861.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Winter, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' and Breitsamter, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Nonlinear identifi- cation via connected neural networks for unsteady aero- dynamic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Aerospace Science and Technology, 77, 802–818.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass (kg) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(a) Side ledge mass x1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass (kg) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(b) Alumina mass x2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass (kg) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(c) Aluminum fluoride x3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='12000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='14000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='16000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass (kg) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(d) Molten cryolite x4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='9000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='9500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Mass (kg) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(e) Produced aluminum x5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='940 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='960 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='980 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Temp ( C) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(f) Bath temperature x6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='650 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='750 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='850 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Temp ( C) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(g) Side ledge temperature x7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Time (hours) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Temp ( C) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='(h) Side wall temperature x8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='Truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='InputSkipSparse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='PlainSparse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='7% conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' PlainSparse 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content='7% conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' InputSkipSparse Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} +page_content=' Rolling forecast of a representative test trajectory' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtAyT4oBgHgl3EQfsvmN/content/2301.00582v1.pdf'} diff --git a/LtE1T4oBgHgl3EQfGwPf/content/tmp_files/2301.02919v1.pdf.txt b/LtE1T4oBgHgl3EQfGwPf/content/tmp_files/2301.02919v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..edb32c57d38b774dd4231b027c0dffd061eb0561 --- /dev/null +++ b/LtE1T4oBgHgl3EQfGwPf/content/tmp_files/2301.02919v1.pdf.txt @@ -0,0 +1,1081 @@ +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +Charles Babbage, Ada Lovelace, and the Bernoulli Numbers +Thomas J. Misa +University of Minnesota +ABSTRACT: This chapter assembles the pertinent sources to suggest several corrections to an +unduly negative scholarly view of Ada Lovelace. I suggest that the Lovelace-Babbage question is +not a zero-sum game, where any credit added to Lovelace somehow detracts from Babbage. +Ample evidence indicates Babbage and Lovelace each had important contributions to the 1843 +Sketch and the accompanying Notes. Further, prior claims about her lack of mathematical +background seem doubtful after consulting Lovelace’s detailed correspondence with two highly +accomplished figures in 19th century mathematics, Charles Babbage and Augustus De Morgan. +Babbage and Lovelace’s treatment of the Bernoulli numbers in note “G” spotlights the +mathematical sophistication their collaboration. Finally, acknowledging significant definitional +problems in calling Lovelace the world’s “first computer programmer,” I conclude that Lovelace +created an step-by-step elemental sequence of instructions—that is, an algorithm—for computing +the series of Bernoulli numbers that was intended for Babbage’s Analytical Engine. +Few figures in the long history of computing generate more passion and sometimes more enmity +than Charles Babbage and Ada Lovelace. History has treated Babbage as a brilliant but +temperamental pioneer in a half dozen scientific fields, an “irascible genius” in one biographer’s +persisting image. Histories of mathematics typically praise his efforts to bring the modern +notation of continental calculus to Cambridge University where the long shadow of Isaac +Newton had reigned for more than a century. Babbage was made a Fellow of the Royal Society +in 1816, just two years after leaving Cambridge. In 1820, he founded the Astronomical Society +to standardize observational data and improve positional calculations. Babbage immersed +himself in numerous projects and publications during the next two decades. While histories of +insurance credit a early book on actuarial calculations (1826), histories of science debate his +polemical On the Decline of Science (1830), histories of industry spotlight On the Economy of +Machinery and Manufactures (1832), and histories of religion and science note his Ninth +Bridgewater Treatise (1837). In the midst of this publishing storm, he served as Lucasian +Professor of Mathematics at Cambridge (1828-39), Newton’s old post; inherited a sizable fortune +from his father; married, raised a family, and lost his wife; and embarked upon designing two +mechanical computing machines, the simple but elegant Difference Engine and the complex and +enigmatic Analytical Engine. During these years he hosted a fashionable salon gathering in +Page � of � +1 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +London, twice ran for Parliament, traveled widely, and corresponded energetically. He made +some powerful friends and a few powerful enemies. +In the early 1840s Babbage collaborated closely with Ada Lovelace, and this essay +examines their work as an intellectually intimate “creative couple.” Especially in the popular +1 +mind, Ada Lovelace has recently been on a roll. She is lionized as the founder of scientific +computing and hailed as the world’s first computer programmer. “Readers will recognize Steve +Jobs, Charles Babbage, Bill Gates, and Ada Lovelace as appropriate inclusions in [the young- +adult book] Computer Technology Innovators,” states a 2013 review in School Library Journal. +2 +And in his recent best-selling The Innovators, Walter Isaacson employs Ada Lovelace as +bookends: in chapter 1, “Ada, Countess of Lovelace,” it is she (above Babbage) who is an +engaging founding figure; and in his concluding chapter, “Ada Forever,” he places the promise +of computer innovation in the hands of her “spiritual heirs.” As chapters in this volume amply +attest, Ada’s legacy is wide and deep. There are no other 19th century women who have a +programming language named for them (chapters 3-5) and figure prominently in a contemporary +science-fiction literary genre (chapters 8-10) and serve as inspiration for contemporary +computing reform (chapters 11-13). +Scholarship on these two figures is a something of a puzzlement. A scientific figure like +Babbage should have inspired a full-length biography somewhere along the line, but despite +numerous essays and several books, we still lack a complete life-and-times biography. One +3 +recent effort by David Alan Grier to explore such a biography confronted a daunting mass of +archival materials, some in private hands and difficult to access. Babbage’s published papers +alone run to eleven volumes. Several popular treatments of Ada Lovelace have appeared, in +4 + Helena M. Pycior, Nancy G. Slack, and Pnina G. Abir-Am., eds, Creative Couples in the Sciences +1 +(New Brunswick, NJ: Rutgers University Press, 1996). “There isn’t a hint of romance in any of their +correspondence with one another,” according to Sydney Padua’s The Thrilling Adventures of Lovelace +and Babbage (New York: Pantheon, 2015), quote 38 note 16. Babbage, a widower, was the age of Ada’s +mother. + Vicki Reutter, “Computer Technology Innovators,” School Library Journal (Oct. 2013): 65. +2 + Anthony Hyman’s Charles Babbage: Pioneer of the Computer (Princeton: Princeton University +3 +Press, 1982) treats Babbage’s life in 250 pages. An early study was Maboth Moseley’s Irascible Genius: +A Life of Charles Babbage, Inventor (London: Hutchinson, 1964), which is attacked by Dorothy Stein, in +Ada: A Life and a Legacy (Cambridge: MIT Press, 1985), p. x, as “almost perversely inaccurate, distorted, +and fabricated.” A specialized and valuable study is J. M. Dubbey, The Mathematical Work of Charles +Babbage (Cambridge: Cambridge University Press, 1978). [See also Christopher Hollings, Ursula +Martin, and Adrian Rice’s Ada Lovelace: The Making of a Computer Scientist (Bodleian Libraries, 2018) + David Alan Grier, “The Inconsistent Youth of Charles Babbage,” IEEE Annals of the History of +4 +Computing 32 no. 4 (2010): 18-31; Martin Campbell Kelly, ed., The Works of Charles Babbage (London: +Pickering / New York: New York University Press, 1989; 11 vols.). +Page � of � +2 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +addition to Isaacson’s, but the existing scholarly consensus on her is a dour one, often highly +5 +critical. Allan Bromley, whose research in the Babbage materials inspired Doron Swade and led +to the Science Museum’s project to reconstruct the Difference Engine No. 2, saw the world from +a Babbage-centered perspective. “The [Lovelace] translation has extensive notes, written under +Babbage’s supervision, that give an excellent account of his understanding of the mechanization +of computational processes and the mathematical powers of the machine,” he wrote in 1982 +(emphasis added). Bromley’s dismissal of Lovelace hardened in subsequent years. Dorothy +6 +Stein, in Ada: A Life and a Legacy (1985), sternly cautioned that Lovelace was “a figure whose +achievement turns out not to deserve the recognition accorded it.” Stein’s and Bromley’s +7 +gloomy verdict persists in the scholarly survey Computer: History of the Information Machine +(1996), now in its third edition (2014), where the key critical passage on Lovelace remains: “the +extent of Lovelace’s intellectual contribution to the Sketch has been much exaggerated . . . . Later +scholarship has shown that most of the technical content and all of the programs in the Sketch +were Babbage’s work.” The most strident negative verdict derives from Bruce Collier’s 1970 +8 +Harvard thesis, recently publicized in the Economist magazine on Ada Lovelace day: +Ada was as mad as a hatter, and contributed little more to the “Notes” than trouble . . . . I will +retain an open mind on whether Ada was crazy because of her substance abuse . . . or despite + James Essinger, A Female Genius: How Ada Lovelace Started the Computer Age (London: Gibson +5 +Square, 2013), which appeared in the United States as Ada’s Algorithm (Brooklyn: Melville House, 2014). +Essinger had earlier written Jacquard’s Web: How a Hand-loom Led to the Birth of the Information +Age(Oxford: Oxford University Press, 2004). Contrast Martin Davis and Virginia Davis, “Mistaken +Ancestry: The Jacquard and the Computer,” Textile 3 no. 1 (2005): 76-87. Earlier positive treatments +include Betty Alexandra Toole, ed., Ada, The Enchantress of Numbers: A Selection from the Letters of +Lord Byron’s Daughter (Mill Valley CA: Strawberry Press, 1992) and Doris Langley Moore, Ada, +Countess of Lovelace: Byron’s Legitimate Daughter (New York: Harper & Row, 1977). + Doron D. Swade, “Redeeming Charles Babbage’s Mechanical Computer,” Scientific American +6 +(February 1993): 86-91; Allan Bromley, “Charles Babbage’s Analytical Engine, 1838,” Annals of the +History of Computing 4 no. 3 (1982): 196-217, quote p. 197; Allan Bromley, “Difference and Analytical +Engines,” in William Aspray, ed., Computing before Computers (Ames: Iowa State University Press, +1990), 59-98, on p. 89. + Dorothy Stein, Ada: A Life and a Legacy (Cambridge: MIT Press, 1985), quote xii. Walter +7 +Isaacson’s The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution +(New York: Simon & Schuster, 2014), on p. 493 note 1, praises Stein’s book as “the most scholarly and +balanced.” A later negative view is Jay Belanger and Dorothy Stein, “Shadowy Vision: Spanners in the +Mechanization of Mathematics,” Historia Mathematica 32 (2005): 76-93. Stein strongly criticized +Dorothy L. Moore, Ada, Countess of Lovelace: Bryon’s Legitimate Daughter (London: Murray, 1977). + Martin Campbell-Kelly, William Aspray, Nathan Ensmenger, and Jeffrey R. Yost, Computer: A +8 +History of the Information Machine (Boulder CO: Westview Press, 2014), quote p. 44. Note that Bromley +qualified his claim: that all but one program (Bernoulli numbers) was Babbage’s. Compare Campbell +Kelly and Aspray’s first edition of Computer (p. 57). +Page � of � +3 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +it. I hope nobody feels compelled to write another book on the subject. But, then, I guess +someone has to be the most overrated figure in the history of computing. +9 +In this essay, I assemble the pertinent sources, including correspondence about the Notes +to the Menabrea Sketch (printed in this volume: LINK), and suggest several modest corrections +to the unduly negative scholarly view. First, in contrast to much of the existing literature, the +10 +Lovelace-Babbage question is not a zero-sum game, where some portion of credit added to +Lovelace somehow detracts from Babbage, or vice versa. There is ample evidence that Babbage +and Lovelace each had important contributions to the Sketch and the Notes, and attention to their +intellectual collaboration is revealing. Second, claims about her lack of mathematical +background seem doubtful after consulting Lovelace’s detailed correspondence with Babbage +and Augustus De Morgan, two highly accomplished figures in 19th century mathematics. The +treatment of the Bernoulli numbers in note “G” spotlights the intellectually intimate +collaboration between Babbage and Lovelace and its mathematical sophistication. Finally, while +there may be significant definitional problems in calling Lovelace the world’s “first computer +programmer,” the evidence is reasonably clear that Lovelace created an step-by-step elemental +sequence of instructions—that is, an algorithm—for computing the series of Bernoulli numbers +that was intended for Babbage’s Analytical Engine. The underlying mathematics might well +have been Babbage’s, for he was a distinguished mathematical and scientific figure. Lovelace +transformed an equation for the Bernoulli numbers into a precise series of elemental additions, +multiplications, and substitutions. +The algorithm specified a sequence of calculations, requiring a real-life computer capable +of running a program with a looping structure and conditional testing. Contemporary computer +experts have noted in the large table (representing the Bernoulli number algorithm) in the +Sketch’s Note “G” there was one misplaced minus sign which, when corrected, led to the result +that Ada’s algorithm correctly computed the series of Bernoulli numbers. In “The Babbage +Machine and the Origins of Programming,” the authors reproduce Lovelace’s table for the +Bernoulli numbers and translate the algorithm into a 65-line FORTRAN program that computes + “Ada Lovelace Day: Right Idea. Wrong Woman?” Economist (24 March 2010) at +9 +www.economist.com/node/21005551/print (accessed 2015). I use “derived from” intentionally, since in +the printed copy of Collier’s dissertation I examined (CBI QA75.C634x 1970a) I did not find this +quotation; see also robroy.dyndns.info/collier (Jan. 2015). Doron Swade quotes Collier in The Cogwheel +Brain: Charles Babbage and the Quest to Build the First Computer (London: Little, Brown, 2000), p. +168. + Correspondence in the Toole, Stein, Moore, and Swade volumes as well as the document-centered +10 +accounts in Velma R. Huskey and Harry D. Huskey, “Lady Lovelace and Charles Babbage,” Annals of the +History of Computing 2 no. 4 (1980): 299-329; and John Fuegi and Jo Francis, “Lovelace & Babbage and +the Creation of the 1843 ‘Notes’,” IEEE Annals of the History of Computing 25 no. 4 (2003): 16-26. +Page � of � +4 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +them. The program has eight “if . . . [then] go-to” statements and a simple structure, straight +from Lovelace’s table-algorithm, that builds up algebraic statements one mathematical operation +at a time: for example, computing the expression (2n - 1) / (2n + 1) requires 4 program steps. +11 +In the original 1843 publication of Note “G,” there are clearly two nested loops, embedded in a +larger looping structure (see below). There is direct documentary evidence that Ada Lovelace +created this table (writing it out in pencil). She and Babbage corresponded intensively in the +weeks and days prior to its publication in Taylor’s Scientific Memoirs. This series, published in +London between 1837 and 1852 by Richard Taylor in cooperation with the British Association +for the Advancement of Science (BAAS), printed English translations of prominent European +scientific papers. “Here was to be found . . . such European leaders” as Bessel, Bunsen, Gauss, +Ohm and many others. The Analytical Engine was Babbage’s creation while the Sketch and +12 +Notes are best understood as the product of an intense intellectual collaboration between +Babbage and Lovelace. +Babbage and Lovelace +It is with good reason that computing history scholars have praised the research of Allan G. +Bromley (1947-2002). Bromley, a computer scientist at the University of Sydney, made careful +studies of the Babbage letters and notebooks that led to the Science Museum’s reconstruction of +the Babbage Difference Engine No. 2. In 2000 Tim Bergin, editor-in-chief of IEEE Annals of the +History of Computing, introduced a special issue of the journal dedicated to Bromley’s +scholarship by noting his “fundamental contributions,” former Annals editor-in-chief Michael +Williams called his work “groundbreaking,” and none other than computer pioneer Maurice +Wilkes stated “it is to Bromley that we owe nearly all our present knowledge of Babbage’s work + Campbell Kelly, Works of Charles Babbage, volume 3: 159 note a. Garry J. Tee, in reviewing a +11 +1979 Russian publication by A. K. Petrenko and O. L. Petrenko, wrote this: “The most advanced +illustration given in Lovelace’s paper is an elaborate program for computing the sequence of Bernoulli +numbers, which was written by Babbage but corrected by her. The present authors have transcribed that +program into FORTRAN, detecting thereby a few misprints but only one significant error, with one +variable having the wrong sign. Their transcribed version is easier for a modern reader to understand than +the original program of 1843, and it does compute correctly the sequence of Bernoulli numbers.” See + (accessed 2015) reviewing Petrenko and Petrenko’s +“The Babbage Machine and the Origins of Programming,” [in Russian] Istoriko-matematicheskie +issledovaniíà 24 (1979): 340-360, 389. I examined the FORTRAN program in the Russian original. + W. H. Brock and A. J. Meadows, The Lamp of Learning: Taylor & Francis and Two Centuries Of +12 +Publishing (London: Taylor & Francis, 1998; 2nd edition), esp. chapter 4 “Taylor and the Commercial +Science Journal,” quote p. 105. +Page � of � +5 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +on computing machinery at the detailed mechanical level.” Wilkes noted Bromley’s determined +insistence that “Babbage’s work on the Analytical Engine was completely original.” +13 +By contrast, Bromley’s view on Lovelace was strongly critical. “All but one of the +programs cited in her notes had been prepared by Babbage from three to seven years earlier. The +exception [on Bernoulli numbers] was prepared by Babbage for her, although she did detect a +‘bug’ in it,” he wrote. “Not only is there no evidence that Ada Lovelace ever prepared a program +for the Analytical Engine but her correspondence with Babbage shows that she did not have the +knowledge to do so.” It is Bromley’s viewpoint, slightly modified, that finds its way into the +14 +recent edition of the highly regarded Computer: A History of the Information Machine (2014) +with its undue assertion that “all of the programs in the Sketch were Babbage’s work.” +Reviewing the evidence about Lovelace’s mathematical knowledge and the writing of the notes +to her translation of Menabrea’s sketch might modify these overly negative assertions. In later +correspondence with Wilkes, Bromley did allow, in comparison with fellow Babbage scholar +Doron Swade, “I have been known to express my views more intemperately.” +15 +One must acknowledge that Ada Lovelace in her energetic, imaginative, self-absorbed, +and at times grandiloquent correspondence gives her later-day critics much to aim at. Her self- +regarding statements about her own mathematical abilities can be off-putting. And her pointed +remarks sometimes aimed at Charles Babbage might rub the wrong way anyone who thinks +distinguished scientists should be treated with dignity and respect. Science at the time was +16 +expanding from its strictly male enclaves at Oxford and Cambridge, with the creation of the +BAAS (f. 1831) and other learned societies, but in the new scientific institutions Ada Lovelace +and Mary Somerville were treated at best as “second class members.” One need not make +17 +excuses for her imaginative flights of fancy, but it does need to be borne in mind that Lovelace +was the daughter of an aristocratic Baron (the poet Lord Byron) and married to a highly ranked +Earl. Her mother had schemes drawing on the family’s network that extended into the royal + Tim Bergin, “About this Issue” (quote p. 2); Michael R. Williams, “Allan Bromley,” (quote p. 3); +13 +Maurice V. Wilkes, “Introduction to ‘Babbage’s Analytical Plans 28 and 28a—The Programmer’s +Interface’,” (quote p. 4) in IEEE Annals of the History of Computing 22 no. 4 (2000). + Allan Bromley, “Difference and Analytical Engines,” in William Aspray, ed., Computing before +14 +Computers (Ames: Iowa State University Press, 1990), 59-98, quote p. 89. + See “Appreciating Charles Babbage: Emails between Allan Bromley and Maurice Wilkes,” IEEE +15 +Annals of the History of Computing 26 no. 4 (2004): 62-70, on 62 (intemperately). + In the midst of writing the translation’s notes, when letters and draft manuscripts were passed daily +16 +between them, Ada writes Babbage, somewhat curtly: “Now pray attend strictly to my requests; or you +will cause me very serious annoyance,” quoted in Huskey and Huskey, “Lady Lovelace and Charles +Babbage,” p. 313. There is a curious mix of defiance and deference in Ada’s correspondence with +Babbage, Somerville, De Morgan and other prominent figures. + Ruth Watts, Gender, Power and the Unitarians in England, 1760-1860 (New York: Longman, +17 +1998), quote p. 153. +Page � of � +6 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +family itself. Babbage, although he was handsomely wealthy after his banker-father died in 1827 +and a fortune of £100,000 passed down to him, was all the same a commoner. Ada sought for +years to land Babbage a knighthood. +18 +The first line of evidence suggesting an intellectual partnership between Charles Babbage +and Ada Lovelace comes from witnesses to their first meeting. She first met Babbage in 1833, a +year after being formally presented to the court, through an introduction by Mary Somerville, the +mathematician, scientific popularizer, and notable English translator of Pierre-Simon Laplace’s +Mécanique Céleste; the two women kept up a scientific correspondence for many years. Two +19 +years after she met Babbage, Ada married William King, already a Baron, who was within three +years created the first Earl of Lovelace, and so it is a convenience to refer to her as Ada Lovelace +rather than the more precise but ponderous Augusta Ada King, Right Honourable the Countess of +Lovelace. +There is eyewitness evidence that, when she saw it, Ada grasped the principles and +significance of Babbage’s prototype Difference Engine. Babbage had started work on it in 1822, +and it was in an advanced state of development in 1833; fatefully, the following year Babbage set +the Difference Engine aside and focused instead on the conceptually elaborate Analytical Engine, +which remained a “brilliant obsession” nearly to the end of his life. In June 1833 Ada’s mother, +20 +Lady Byron, described a visit along with her daughter and a friend to inspect Babbage’s machine +in some detail and with great wonder while admitting herself only “faint glimpses of the +principles by which it worked.” The Difference Engine was at the time able to compute +polynomial expressions, extract roots to quadratic equations, and count to 10,000. Ada saw its +significance. “I well remember accompanying her to see Mr. Babbage’s wonderful analytical +engine,” wrote Sophia De Morgan, the wife of mathematician Augustus De Morgan and, like +Mary Somerville, a long-term correspondent with Ada herself. “While other visitors gazed at the +working of this beautiful instrument with the sort of expression . . . that some savages are said to +have shown on first seeing a looking-glass or hearing a gun . . . Miss Byron, young as she was, +understood its working and saw the great beauty of the invention. She had read the Differential +Calculus to some extent, and after her marriage she pursued the study and translated a small + Doron Swade, s.v. Babbage, Charles (1791-1871), Oxford Dictionary of National Biography +18 +(Oxford University Press, 2004); online edition, May 2009 at www.oxforddnb.com/view/article/962. +Babbage died in 1871 with a fortune “under” £40,000. + Elizabeth Chambers Patterson, Mary Somerville and the Cultivation of Science, 1815-1840 +19 +(Boston: Nijhoff, 1983); and Kathryn A. Neeley, Mary Somerville: Science, Illumination, and the Female +Mind (Cambridge: Cambridge University Press, 2001). + See “Appreciating Charles Babbage: Emails between Allan Bromley and Maurice Wilkes,” IEEE +20 +Annals of the History of Computing 26 no. 4 (2004): 62-70, quote p. 63 (obsession). +Page � of � +7 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +work of the Italian mathematician Menabrea, in which the mathematical principles of its +construction [were] explained.” +21 +Babbage invited Ada with a friend or chaperone to attend his series of “Saturday +evenings” where his London home became a fashionable salon, filled with celebrities from the +political, cultural, and scientific world. Charles Dickens and Charles Darwin, among hundreds +of others, were happy to mix with the well-cultured crowd. “One of three qualifications were +necessary for those who sought to be invited—intellect, beauty, or rank—without one of these, +you might be rich as Croesus—and yet be told, you cannot enter here,” recalled one society +figure. “His calculating machine was an endless subject of monologue.” Some were deeply +22 +impressed by its ability to generate a list of prime numbers. Since it could solve any second- +degree polynomial equation, Babbage set it to compute a series of 40 prime numbers by +evaluating the expression x2 + x + 41 for the first 40 integers. A few months after the invitation, +she wrote to Mary Somerville asking her to convey to Babbage’s son “how exceedingly obliged I +am . . . for his unexpected kindness in sending me the plates & account of the Machine, which is +exactly what I was in want of; & is a very great help to me.” Ada was at the time 19 years old. +23 +A significant line of evidence bearing on Bromley’s claim that “she did not have the +knowledge” to prepare a program for the Analytical Engine is the substantial depth of Ada’s +mathematical studies beginning in the 1830s, which predated her contact with the Menabrea +manuscript and the translation project of the early 1840s. “Ada was much attached to me, and +often came to stay with me. It was by my advice that she studied mathematics,” recalled Mary +Somerville. “She always wrote to me for an explanation when she met with any difficulty. +Among my papers I lately found many of her notes, asking mathematical questions.” +24 +During these years Ada had three tutors in mathematics, in addition to intellectual +interchange with Somerville, Babbage, and her scientifically minded husband, who was made a +Fellow of the Royal Society in 1841; two of them were distinguished figures. Her first +mathematics tutor was the elderly William Frend, the notable social reformer who had authored + Lady Byron quoted in Moore, Ada, p. 44; Sophia De Morgan, Memoir of Augustus De Morgan +21 +(London: Longmans, Green, 1882), quote p. 89 (accompanying her). + “John Kenyon and His Friends,” Temple Bar: A London Magazine for Town and Country Readers +22 +88 (1890): quote p. 490 (three qualifications); AAL to Mary Somerville 19 March 1834 in Toole, Ada, p. +57 (Babbage’s invitation). + AAL to Mary Somerville 8 November 1834 quoted Huskey and Huskey, “Lady Lovelace and +23 +Charles Babbage,” quote p. 303 (account of the Machine). + Martha Somerville, ed., Personal Recollections from early life to old age of Mary Somerville +24 +(Boston: Roberts Brothers, 1874), quote p. 154. [See also, two subsequent publications: Hollings et al +“The Lovelace-De Morgan Mathematical Correspondence: A Critical Re-Appraisal,” Historia +Mathematica 2017 at https://doi.org/10.1016/j.hm. 2017.04.001 and “The early mathematical education +of Ada Lovelace” BSHM Bulletin (2017) at https://doi.org/10.1080/17498430.2017.1325297 +Page � of � +8 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +Principles of Algebra (1796) along with many other tracts; among his students had been Ada’s +own mother. It seems likely that Frend introduced Ada to Mary Somerville, connecting her +25 +with Babbage. Ada and Babbage corresponded on mathematical topics following their 1833 +meeting, again years prior to the translation project. Perhaps her most important mathematical +tutor was her friend Sophia’s husband and William Frend’s son-in-law, Augustus De Morgan. He +gave Ada Lovelace, as Sophia later wrote, “much help in her mathematical studies, which were +carried farther than her mother’s had been.” Even the severely critical study by Dorothy Stein +26 +acknowledges the De Morgan-Lovelace letters as “a correspondence course in calculus.” +27 +Augustus De Morgan was like Babbage a graduate of Cambridge, a disbeliever in the +traditional Church of England, and a distinguished mathematician. He was named founding +professor of mathematics at London University (now University College London), shortly after +its founding in 1826, at the age of 22. It was a secular university, unlike Cambridge and Oxford, +and admitted women as regular students. De Morgan published books on trigonometry, +arithmetic, algebra, probability, and logic. In the early 1840s while exchanging regular letters +with De Morgan on the topic, Ada reported that she was “drowning in Calculus.” During these +years De Morgan was working on a book project for the London-based Society for the Diffusion +of Useful Knowledge (1826-48), published in 1842 as an 800-page textbook on Differential and +Integral Calculus. Her letters to De Morgan are filled with specific questions about differential +28 +calculus, limits, Leibnitz’s notation, three-dimensional geometry, notation of functions, and +standards of reasoning and proof. On 21 November 1841, in the context of her mathematical +exercises, she asked him about the “numbers of Bernoulli.” Ada’s awareness of the Bernoulli +29 +numbers thus predated her work on the Menabrea translation and the writing of Note G +describing an algorithm for their computation. Whereas Ada’s first tutor, the elder William + Judith S. Lewis, “Princess of Parallelograms and Her Daughter: Math and Gender in the +25 +Nineteenth Century English Aristocracy,” Women’s Studies International Forum 18 no. 4 (1995): +387-394. + Sophia De Morgan, Memoir of Augustus De Morgan (London: Longmans, Green, 1882), quote p. +26 +89 (much help) + Stein, Ada, quote pp. xii (correspondence course) +27 + Toole, Ada, quote p. 169 (drowning in Calculus). See Augustus De Morgan, The Differential and +28 +Integral Calculus: Containing Differentiation, Integration, Development, Series, Differential Equations, +Differences, Summation, Equations of Differences, Calculus of Variations, Definite Integrals (London: +Baldwin & Cradock, 1842). For further testimony on her mathematical work with De Morgan, see +Huskey and Huskey, “Lady Lovelace and Charles Babbage,” quotes p. 309: AAL to her mother “I go on +most delightfully with Mr De Morgan. What can I ever do to repay him?”; AAL to Babbage “I am now +studying the Finite Differences . . . And in this I have more particular interest, because I know it bears +directly on some of your business”; and AAL to her mother “The Mathematics & Mr. De Morgan going +on very well indeed. You would be much pleased to see the heap of papers of my writing.” + Toole, Ada, quote p. 173 (numbers of Bernoulli). +29 +Page � of � +9 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +Frend, doubted the existence of negative numbers, De Morgan was a modern mathematician of +the first rank. In his book Trigonometry and Double Algebra (1849) he presented a geometrical +interpretation of complex numbers, those with real and imaginary parts. +In January 1844 De Morgan wrote a lengthy and detailed confidential letter to Ada’s +mother, Lady Byron, making an acute assessment of Ada’s unusual facility with mathematics. “I +never expressed to Lady Lovelace my opinion of her as a student in these matters,” De Morgan +began. “The power of thinking on these matters which Lady L[ovelace] has always shown from +the beginning of my correspondence with her, has been something so utterly out of the common +way for any beginner, man or woman, that this power must be duly considered by her friends . . . +whether they should urge or check her obvious determination . . . to get beyond the present +bounds of knowledge.” De Morgan rated Ada favorably with Maria Agnesi, the Italian author of +a pioneering calculus textbook (1748), and far more highly than Mary Somerville. +30 +During the same years as his correspondence with Ada, De Morgan also facilitated the +mathematical work of George Boole, later author of the landmark Investigation of the Laws of +Thought (1854) and today widely hailed as the father of Boolean algebra. In his Treatise on the +Calculus of Finite Differences, Boole suggests a useful historical insight relating the character of +mid-nineteenth century mathematics to the capabilities of Babbage’s analytical engine. +31 +Originally the Bernoulli numbers were discovered in 1712-13 (by the Swiss mathematician Jacob +Bernoulli and by the Japanese mathematician Seki Kōwa), to aid in such calculations as the +summation of powers (1n + 2n + 3n + 4n . . .). With their assistance Bernoulli computed the sum +of the first 1,000 integers, each raised to the tenth power, a immense number +91,409,924,241,424,243,424,241,924,242,500, in (as he claimed) “less than half of a quarter of +an hour.” +32 +Subsequent work by the Swiss and Scottish mathematicians Euler and Maclaurin +connected the mathematics of integral calculus to the summation of polynomial expressions +(which are essentially sums of powers each multiplied by some coefficient). Transcendental +mathematical functions as well as integral calculus could be expressed by polynomial +expressions; the Bernoulli numbers appeared as coefficients in some of these polynomial series. + Velma R. Huskey and Harry D. Huskey, “Lady Lovelace and Charles Babbage,” Annals of the +30 +History of Computing 2 no. 4 (1980): 299-329, De Morgan quoted p. 326; and Massimo Mazzotti, “Maria +Gaetana Agnesi: Mathematics and the Making of the Catholic Enlightenment,” Isis 92 no. 4 (2001): +657-683. + Originally published in 1860, George Boole’s Treatise on the Calculus of Finite Differences (New +31 +York: Dover, 1960) deals with Bernoulli numbers in chapter 6. + Jacques [Jacob] Bernoulli, “On the ‘Bernoulli numbers’,” in David Eugene Smith, A Source Book +32 +in Mathematics (New York: McGraw-Hill, 1929), 85-90, quote p. 90. In modern notation, the Bernoulli +numbers are defined as the coefficients (Bn) for the series expression for an exponential generating +function, as follows (see ) +Page � + of � +10 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +Thus, by summing up the correct polynomial (using repeated multiplications, squaring, cubing, +et seq.) Babbage’s analytical engine could calculate transcendental mathematical functions (such +as sine and cosine) as well as evaluate integral-calculus expressions, so long as they could be +expanded into polynomial series. The Bernoulli numbers could be used to simplify the notation +and computation of certain polynomial series, and thus were a powerful aid to computing. +Bernoulli achieved his remarkable computation by transforming the extensive summation of +powers (110 + 210 + 310 . . . 100010) into a straightforward seven-term polynomial equation using +the Bernoulli numbers (up to B10 in the series). +33 +Since Ada’s calculus studies with De Morgan likely drew on the calculus textbook he was +writing during these years, it is relevant to review its treatment of the Bernoulli numbers. De +Morgan used the Bernoulli numbers in treating polynomial series expansions for ex, tangent, and +cotangent; in the calculus of operations; and in convergent series for definite integrals. One +34 +exercise (page 307 §163) presents a general expression for directly computing a specific +Bernoulli number, in terms of its predecessors. +� + +So for n = 7, the expression for Bn+1 or B8 is as follows (where the fractional terms are +computations on earlier instances in the series): +� + +So, with Ada Lovelace’s interest in Babbage’s machines, her mathematical studies with +Babbage, Somerville, and De Morgan, and her relentless curiosity, she was surprisingly well + Sum of the first 1000 integers raised to the tenth power = 1/11x11 + B1x10 + 5B2x9 + 30B4x7 + +33 +42B6x5 + 15B8x3 + B10x, where x = 1000 and Bn are the Bernoulli numbers, viz., B1 = 1/2, B2 = 1/6, B4 = +-1/30, B6 = 1/42, B8 = -1/30, B10 = 5/66. + See De Morgan, The Differential and Integral Calculus, pp. 247, 248, 308, 553, 581. +34 +Page � + of � +11 +20 + +n+1 +1 +n+1 +10* +AO* +*0* +△*0" +Ba+1= +.0*= ++ +2*+1 +2+△ +2*+1 +2 +4 +8 +2*+1For thc value of B, (n=7) we have +8 +1 +126 +1806 +8400 +16600 +15120 +5040) +1 +255 +4 +8 +16 +32 +64 +128 +256 +30published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +exposed to the advanced mathematics of the period and had ample background and motivation to +delve into the computations that appeared in the Notes to the Sketch. +35 +Steps to the Sketch +Babbage conceived a general computing machine around 1834, setting aside his still- +uncompleted work on the Difference Engine to take up the challenges of what became known as +the Analytical Engine. Whereas it was necessary to mechanically set up the Difference Engine to +do each calculation, such as the prime-number generating polynomial x2 + x + 41, Babbage’s +inspiration for the Analytical Engine was a computing machine able to re-configure itself—if not +precisely “programmable” in the modern sense of the term. Babbage’s mature design while +36 +remaining a mechanical-age technology had several features in common with modern computers: +separating the computation of numbers from their storage (he used the terms ‘mill’ and ‘store’ in +an analogy with the industrial factory); adopting a mechanism to do conditional testing on +intermediate results and hence permitting the branching of calculations; and using punched cards +loosely inspired by the Jacquard loom. +37 +Babbage took one of his sets of evolving plans for the Analytical Engine to present at a +conference in Turin in 1840. In the audience was a future prime minister of Italy. At the time +Luigi Menabrea was a professor of mechanics and construction at the university of Turin; he +subsequently served as a military engineer, naval minister, and eventually prime minister of Italy + See also Imogen Forbes-Macphail’s chapter in this volume [Ada’s Legacy] exploring the “poetical” +35 +nature of mathematics. + Babbage spent years working out a notation for expressing how its computations might be +36 +expressed. See Allan G. Bromley, “Charles Babbage’s Analytical Engine, 1838,” IEEE Annals of the +History of Computing 20 no. 4 (1998): 29-45; and Allan G.Bromley, “Babbage’s Analytical Engine Plans +28 and 28a: The Programmer’s Interface,” IEEE Annals of the History of Computing 22 no. 4 (2000): +5-19. + The easy one-to-one correspondence between Jacquard looms and Babbage’s cards, posited by +37 +such authors as James Essinger (author of popular works on Jacquard and Lovelace), is critically +scrutinized by Martin Davis and Virginia Davis, “Mistaken Ancestry: The Jacquard and the Computer,” +Textile 3 no. 1 (2005): 76-87. After years of close study, Allan Bromley felt that the Analytical Engine +fell somewhat short of a modern computer, as he wrote (privately) to Wilkes: “Perhaps my +disappointment comes from being forced to accept that Babbage did NOT devise a COMPUTER but only +a very sophisticated CALCULATOR after the style of the Harvard Mark I or the NCR accounting +machines. He did not cross the watershed that marked off the [stored-program computers] EDVAC/ +EDSAC, although many of his technical innovations in implementation were astounding. It is a little +difficult to admit this conclusion after expending so many years studying Babbage’s designs. Perhaps it is +why I ‘took a break from Babbage’ in the late 1980s and never really came back.” See “Appreciating +Charles Babbage: Emails between Allan Bromley and Maurice Wilkes,” IEEE Annals of the History of +Computing 26 no. 4 (2004): 62-70. +Page � + of � +12 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +(1867-69). In October 1842, Menabrea published a short description of Babbage’s Analytical +38 +Engine in a Swiss journal (written in French). By this time, Babbage was well on the way to +ruining whatever chance might have remained for support from the British government, +especially after a disastrous meeting in November of that year with prime minister Robert Peel. +“What shall we do to get rid of Mr. Babbage and his calculating Machine? Surely if completed it +would be worthless as far as science is concerned,” he wrote. Peel, signaling his displeasure, +soon dispatched Babbage’s prime-number-calculating Difference Engine to the King’s College +Museum. +39 +It was not initially Babbage who encouraged Ada Lovelace to examine the Menabrea +manuscript and translate it into English. Rather the prompting came from the notable scientist +and sometime telegraph inventor Charles Wheatstone, who knew both Babbage and Lovelace +and recruited contributions for Taylor’s Scientific Memoirs. Wheatstone had gained fame in +1837 with the patenting of a multiple-wire electric telegraph system using the positioning of +magnetic needles to encode individual letters, rather than the Morse code system of dots and +dashes. He, too, was intrigued with using electromechanical apparatus for computation. +“Yesterday saw Wheatstone’s model for telegraph and his drawings for Multiplication Engine,” +wrote Babbage after a visit in 1839. In 1843, the publication year of the Menabrea translation, +40 +Wheatstone improved on and publicized the famous “Wheatstone bridge” used to precisely +measure electrical resistances. +Over the winter of 1842-43 Lovelace worked on translating the Menabrea manuscript, +around 8,000 words, and first showed her results to Babbage in the spring of 1843. In his +memoir, Passages from the Life of a Philosopher, Babbage recalled encouraging Ada to add +descriptive notes to her translation. +We discussed together the various illustrations that might be introduced: I suggested several, +but the selection was entirely her own. So also was the algebraic working out of the different +problems, except, indeed, that relating to the numbers of Bernoulli, which I had offered to do +to save Lady Lovelace the trouble. This she sent back to me for an amendment, having +detected a grave mistake which I had made in the process. +The notes of the Countess of Lovelace extend to about three times the length of the original +memoir. Their author has entered fully into almost all the very difficult and abstract +questions connected with the subject. +41 + See “Luigi Federico Menabrea” at . + Fuegi and Francis, “Lovelace & Babbage,” quote p. 16 (Peel on Babbage). +39 + Fuegi and Francis, “Lovelace & Babbage,” quote p. 18 (Babbage on Wheatstone); Stein, Ada, 88. +40 + Charles Babbage, Passages from the Life of a Philosopher (London: Longman, Green, 1864), +41 +quote p. 136. +Page � + of � +13 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +By this time in his life, while he was certainly writing for posterity and obviously keen on +memorializing his computing engines, Babbage had no particular reason to exaggerate Ada’s +achievements. She had died years earlier, at age 36, and left Babbage a modest legacy of £600. I +think we can take him at his word when he admits a “grave mistake” in deriving the Bernoulli +numbers (which Bromley labels anachronistically as a “bug”). This passage, along with the +Babbage-Lovelace letters, clearly describes a collaboration where Babbage and Lovelace are +working together on the Notes. It’s also clear from the context that “their author” here refers to +Lovelace (rather than Menabrea) and that it is certain praise that she “has entered fully into . . . +difficult and abstract questions.” At the very least, Babbage’s statement challenges the assertion +that the notes “give an excellent account of his [that is, Babbage’s alone] understanding of the +mechanization of computational processes and the mathematical powers of the machine.” +Letters from the exact weeks in the summer of 1843 when Babbage and Lovelace were +working on the Notes provide additional detail on their collaboration. This documentary +evidence—from the British Library, the Science Museum, and the Oxford Bodleian Library—has +been analyzed by Velma Huskey and Harry Huskey as well as John Fuegi and Jo Francis and +published in Annals of the History of Computing. The picture is clearly of a collaboration +42 +where both Babbage and Lovelace are making important contributions. Lovelace wrote the +Notes and most of her letters to Babbage at her Ockham Park estate an hour’s south of London; +Babbage received her letters and responded from his London house on Dorset Street; and from +time to time they met in person at Lovelace’s London house on aristocratic St. James Square. +Again, I emphasize that to point out Lovelace’s knowledge, achievements, and contributions is +not to belittle Babbage’s. +It is not easy to support the conjecture that the notes are Babbage’s alone or that he +directed Lovelace to write them. Bromley is not the only critic who has aimed to reduce +Lovelace to a low-level clerk-assistant to Babbage. In Ada: A Life and a Legacy, Dorothy Stein, +for instance, seized on a misprint that Lovelace, Babbage, and Menabrea before them all failed to +spot—supposedly highlighting “the significance of her curiously ignored translation of a +printer’s error”—and contrives an argument that Lovelace had only a tenuous grasp of +mathematics and a “dubious” understanding of the Analytical Engine’s mechanical and logical +operations. Stein contends, on this line of conjecture, that Lovelace was “completely dependent + Velma R. Huskey and Harry D. Huskey, “Lady Lovelace and Charles Babbage,” Annals of the +42 +History of Computing 2 no. 4 (1980): 299-329; and John Fuegi and Jo Francis, “Lovelace & Babbage and +the Creation of the 1843 ‘Notes’,” IEEE Annals of the History of Computing 25 no. 4 (2003): 16-26. +Page � + of � +14 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +on [Babbage] for information and claims about the Analytical Engine.” Stein’s use of evidence +43 +is rather thin and highly selective. In their analysis, Fuegi and Francis point to contemporaneous +letters from Babbage, Lovelace, Wheatstone, the editors of Taylor’s Scientific Memoirs and other +scientific colleagues, concluding “all contemporaries of Lovelace and Babbage, having first-hand +knowledge of how the ‘Notes’ came into being, acknowledged Lovelace at the time as the +primary author.” +44 +The evidence from Babbage’s letters points to a collaboration between them, while their +informal manner of addressing each other indicates a degree of collegiality. Ada writes to “My +Dear Babbage” while he responds to “My Dear Lady Lovelace.” On 30 June 1843 he writes: +I am delighted with Note D. It is in your usual clear style and required only one trifling +alteration which I will make. This arises from our not having yet had time to examine the +outline of the mechanical part . . . I enclose a copy of the integration. I am still working at +some most entangled notations of Division but see my way through them at the expense of +heavy labour . . . . Your latest information was the most agreeable. +45 +Let us turn to Note G on the computation of the Bernoulli numbers. Recall that they were +a common topic in 19th century mathematics, and that Lovelace herself had previously inquired +about them to De Morgan. The topic first appears in the correspondence when Ada wrote to +Babbage, in a letter dated simply “Monday,” as follows: +I am working very hard for you . . . . I think you will be pleased. I have made what appears +to me some very important extensions & improvements . . . . +I want to put something about Bernoulli’s Numbers, in one of my Notes, as an example of +how an implicit function may be worked out by the engine, without having been worked our +by human head & hands first [as the Difference Engine required]. Give me the necessary +data & formulae. +46 +Even if Babbage provided Ada with the mathematical expressions for the Bernoulli +numbers, and assisted with the derivation of a general formula, the transformation of the general +formula into a step-by-step algorithm remains Ada’s achievement, as the letters clearly indicate. +The mathematics is somewhat involved, beginning with the basic equation where the Bernoulli + Stein, Ada, quote pp. xi (printer’s error) 90-91 (tenuousness, dubious, completely dependent). The +43 +printer’s error was made in Menabrea’s original publication where the French word cas (as in the case +where N goes to infinity in a math expression) was mistakenly printed as cos. (as in the abbreviation for +cosine). + Fuegi and Francis, p. 26 note 29. +44 + Babbage to AAL 30 June 1843, quoted in Huskey and Huskey, pp. 312-313. +45 + AAL to Babbage, “Monday,” quoted in Huskey and Huskey, pp. 311. +46 +Page � + of � +15 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +numbers (note the odd-numbered notation B1, B3, B5) appear as coefficients for the exponential +function: +� + +and then involving expansion, division, derivation, rounds of intricate multiplication, and finally +writing the equation in general form: +� + +This equation (as note G explains, introducing the odd-numbered notation) “enables us to +find . . . any nth Number of Bernoulli B2n-1, in terms of all the preceding ones, if we but know the +values of B1, B3 . . . B2n-3.” If n = 1, then the numerators for each of the higher terms (B3 et seq.) +contain a zero (2n-2) and so they drop out, permitting the direct calculation of B1. Similarly, for +n = 2 one substitutes the already computed value for B1 while the higher terms (B5 et seq.) again +drop out and permit the direct computation of B3. With n = 3, the process is repeated to compute +B5. The Notes explicitly make the general argument: “And so on, to any extent.” +Ada was determined to get the advanced mathematics correct. The two often exchanged +letters daily, and sometimes even more frequently, as when a servant came into London and then +waited for Babbage’s reply. “I am doggedly attacking . . . all the ways of deducing the Bernoulli +Numbers,” she wrote at one moment. On the mathematics Ada wrote to Babbage (in a letter +dated simply Tuesday morning) “the few lines I enclosed you last night about the connexion of +(8) [the Bernoulli number equation in general form] with the famous Integral, I by no means +intend you to insert, unless you fully approve the doing so.” +47 +The table and diagram that contained and expressed the algorithm were of special +concern. Ada wrote Babbage (Saturday 6 o’clock), in connection with the note on the Bernoulli +numbers, “Think of my horror then at just discovering that the Table & Diagram, (over which I +have been spending infinite patience and pains) are seriously wrong, in one or two points. I have +done them however in a beautiful manner, much improved upon our first edition of a Table and + Toole, Ada, quote 204 (doggedly attacking); AAL to Babbage, “Tuesday morng,” quoted in +47 +Huskey and Huskey, pp. 314. +Page � + of � +16 +20 + +2n-1 ++ B1 +2n ++ B3 +2n-(2n +21 +2 +2n+ +2.3.4 ++B5 +2n(2n-1) +2.3.4.5.6published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +Diagram. But unluckily I have made some errors. I send you this final note [G] excepting the +Table & Diagrams.” As a postscript, Ada adds: “Let me know how you like my finishing up of +[G]. Mind you scrutinise all the n’s very carefully. I mean those of Sheets 4 and 5.” Then, after +a full day’s work on Sunday, “you will admire the Table & Diagram extremely. They have been +made out with extreme care & and all the indices most minutely & scrupulously attended to. +Lord L[ovelace] is at this moment inking it all over for me. I had to do it in pencil.” +48 +Ada tackled the question of the looping structure with some care. In a letter dated simply +Tuesday, she writes to Babbage: “I hope you will approve of what I send. I have taken much +pains with it. I have explained that there would be, in this instance & in many others, a recurring +group or cycle of Variable as well as of Operation cards . . . .” She specifically identifies the +main or outer loop as the “repetitions of (13 . . . 23),” and explains “as the variations follow a +regular rule, they would be easily provided for.” +49 +In his correspondence with Ada, Babbage directly admires her work on the Notes. His +praise of Note D, “in your usual clear style,” was cited earlier. In response to the Saturday letter +quoted in the above paragraph, and clearly written before he received the Sunday letter, Babbage +wrote: “I like much the improved form of the Bernoulli Note but can judge of it better when I +have the diagram and Notation. I am very reluctant to return the admirable and philosophic view +of the Anal. Engine contained in Note A. Pray do not alter it and do let me have it returned on +Monday.” (Babbage was assembling the entire set of Notes in preparation for handing them to +50 +Charles Wheatstone for publication.) +As the final versions were going to the printer, Lovelace and Babbage were still revising +the Notes’ treatments of the variable cards and the operation cards, which specified the elemental +arithmetical operators (+ - x ÷). Ada made clear that handling the operations cards was at the +center of the Analytical Engine’s capability for looping, even while the mechanical apparatus for +effecting conditional tests was at the time not entirely clear. Note D presents a straightforward +51 +computation—similar to one that Menabrea had presented in the original essay, also in tabular +form—with six variable cards (for constants), nine working variables (for intermediate results), +and two variables for results. There were 11 sequential steps (no looping structures), and the +entirety fits onto the page (figure 1). + Huskey and Huskey, pp. 313-14. In the earlier [Saturday] letter, Lovelace mistakenly labeled the +48 +final note “H” rather than “G,” which was corrected in the later Sunday letter. + Huskey and Huskey, pp. 316 (recurring group). +49 + Huskey and Huskey, pp. 313 (Babbage on improved form of the Bernoulli note). +50 + For a mechanical visualization of the Analytical Engine’s “Logic and Loops,” see Sydney Padua’s +51 +The Thrilling Adventures of Lovelace and Babbage, pp. 306-308. +Page � + of � +17 +20 + +published in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +Figure 1: Table-algorithm derived from Menabrea original (Note D) +� + +For Note G on the Bernoulli numbers, the table–algorithm has ten data variables, three +working variables, and four result variables. The computation has just 25 operations, but there +are in addition two nested loops: an outer loop consisting of steps 13-23, and two inner loops +consisting of steps 13-16 and 17-20. This form of calculation could not possibly have been +completed with Babbage’s Difference Engine, since it entirely lacked the ability to do +conditional tests and create looping or branching structures. Nothing like it appeared in +Menabrea’s original. Lady Lovelace chose well when she identified the Bernoulli numbers as a +means to show “how an implicit function may be worked out by the engine.” +Page � + of � +18 +20 + +Variables +forData +Working +Variables +Variablesfor Results +Number of Operations +Nature of Operations +0V12 +0V13 +0V14 +0V15 +0V16 ++ ++ ++ ++ ++ ++ ++ +U +0 +0 +U +0 +0 +0 +0 +0 +0 +0 +U +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +U +0 +0 +U +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +U +0 +0 +U +U +0 +0 +0 +0 +0 +m2 +u +dn"d'n +d +mn'm'n +1 +2 +... +uu +L +dn +up +b +u,p +6 +dm" +7 +m'n +8 +9 +0 +10 +0 +mn'-m'n +11 +0 +0 +-dmpublished in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +Figure 2: Original table-algorithm for Bernoulli numbers (Note G) +� + +Oversize table representing Ada Lovelace’s algorithm for computing Bernoulli numbers. The +nested looping structure—“here follows a repetition of operations thirteen to twenty-three”—is +clearly visible at lower left (outer loop steps 13-23 and inner loops steps 13-16 and 17-20). +Printed oversize and interleaved in Taylor’s Scientific Memoirs (high-res image here and here). +This essay assesses Ada Lovelace’s contribution to computing. It points out her mathematical +studies with Babbage and De Morgan, her translation of Menabrea’s Sketch, and her joint +authorship with Babbage of the explanatory Notes. One element, the table-algorithm for +computing the series of Bernoulli numbers, is by available evidence her work (written in pencil +and inked in by her husband). Her correspondence with Babbage evinces a direct collegiality; +the two figures were jointly grappling with how to communicate the details of a computing +machine that did not physically exist. For this reason, the claim that Ada Lovelace was the +world’s first computer programmer might need to be carefully qualified. At the least, we can +grant her primary authorship of the first algorithm intended for a computing machine. +52 + See ACM’s Collected Algorithms at . +52 +Page � + of � +19 +20 + +Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.) +Working Variables +Data +Variable +Nature of Operation. +10000 +0000 +10000 +10000 +MO0O +10000 +30000 +10000 +10000 +000 +F0000 +000 +Indication of +Tariables +Variables +receiving +change in the +value on any +Statement of Results. +upon. +results. +Variable. +2n ++IV +2n+1 +21 +.2n- +21 +2n+ +2n-1 +0 +A. +2n+1 +02 +一 +10 +B, += B, Al +-B,A1 +21 +5 +2n+1 +2(-2) ++V +2V +2n2n-1 +V +2n +BV +4V +a Variable-card. +Variablepublished in Hammerman and Russell, eds., Ada’s Legacy (ACM Books 2015) DOI +It is surprising how widely and warmly she was recognized among early figures in +computing. Alan Turing for instance felt obliged to deal with “Lady Lovelace’s objection” to +artificial intelligence since (in Turing’s quotation) she had maintained “The Analytical Engine +has no pretensions to originate anything. It can do whatever we know how to order it to +perform.” A pioneering conference volume, Faster Than Thought: A Symposium of Digital +53 +Computing Machines (1953) was the source, according to the History of Programming +Languages chapter on the Ada computer language, “from which we all learned about Lady +Lovelace.” “Lady Lovelace had undoubtedly a profound understanding of the principles of the +54 +machine, and she added greatly to the value of her translation by some comprehensive notes +about the machine . . . including what we should now call a programme for computing the +Bernoulli numbers by a very sophisticated method,” wrote a computer pioneer in 1953. The +statement accords well with my assessment, after several decades of possibly fanciful writing +about Ada Lovelace as well as unjustifiably critical blasts against her. Perhaps in the coming +generation, we can come back to the measured appreciation of her achievements that originated, +like the computer age itself, in the early 1950s. After all, as Ada Lovelace put it, “we may +consider the [analytical] engine as the material and mechanical representative of analysis.” +55 + Andrew Hodges, “Turing: A Natural Philosopher,” (1997) at https://www.turing.org.uk/ +53 +publications/philobook.html ; and Darren Abramson, “Turing’s Responses to Two Objections,” Minds and +Machines 18, no. 2 (2008): 147-167. + Thomas J. Bergin, Jr. and Richard G. Gibson, Jr., eds., History of Programming Languages---II +54 +(New York ACM, 1996), “Ada Session,” quote p. 207; B. V. Bowden, ed., Faster Than Thought: A +Symposium of Digital Computing Machines (London: Isaac Pitman, 1953). + B. V. Bowden, ed., Faster Than Thought: A Symposium of Digital Computing Machines (London: +55 +Isaac Pitman, 1953), 18-22, 70-75, 341-408, quote p. 18 (profound understanding); Lovelace, +“Translator’s Notes,” quote p. 696 (representative of analysis). Compare Larry Owens, “Vannevar Bush +and the Differential Analyzer: The Text and Context of an Early Computer,” Technology and Culture 27 +no. 1 (1986): 63-95. +Page � + of � +20 +20 + diff --git a/LtE1T4oBgHgl3EQfGwPf/content/tmp_files/load_file.txt b/LtE1T4oBgHgl3EQfGwPf/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..28c397ff7aeaaf1443459c85acdaedd0515a214e --- /dev/null +++ b/LtE1T4oBgHgl3EQfGwPf/content/tmp_files/load_file.txt @@ -0,0 +1,642 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf,len=641 +page_content='published in Hammerman and Russell, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', Ada’s Legacy (ACM Books 2015) DOI Charles Babbage, Ada Lovelace, and the Bernoulli Numbers Thomas J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Misa University of Minnesota ABSTRACT: This chapter assembles the pertinent sources to suggest several corrections to an unduly negative scholarly view of Ada Lovelace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' I suggest that the Lovelace-Babbage question is not a zero-sum game, where any credit added to Lovelace somehow detracts from Babbage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Ample evidence indicates Babbage and Lovelace each had important contributions to the 1843 Sketch and the accompanying Notes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Further, prior claims about her lack of mathematical background seem doubtful after consulting Lovelace’s detailed correspondence with two highly accomplished figures in 19th century mathematics, Charles Babbage and Augustus De Morgan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Babbage and Lovelace’s treatment of the Bernoulli numbers in note “G” spotlights the mathematical sophistication their collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Finally, acknowledging significant definitional problems in calling Lovelace the world’s “first computer programmer,” I conclude that Lovelace created an step-by-step elemental sequence of instructions—that is, an algorithm—for computing the series of Bernoulli numbers that was intended for Babbage’s Analytical Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Few figures in the long history of computing generate more passion and sometimes more enmity than Charles Babbage and Ada Lovelace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' History has treated Babbage as a brilliant but temperamental pioneer in a half dozen scientific fields, an “irascible genius” in one biographer’s persisting image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Histories of mathematics typically praise his efforts to bring the modern notation of continental calculus to Cambridge University where the long shadow of Isaac Newton had reigned for more than a century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Babbage was made a Fellow of the Royal Society in 1816, just two years after leaving Cambridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' In 1820, he founded the Astronomical Society to standardize observational data and improve positional calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Babbage immersed himself in numerous projects and publications during the next two decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' While histories of insurance credit a early book on actuarial calculations (1826), histories of science debate his polemical On the Decline of Science (1830), histories of industry spotlight On the Economy of Machinery and Manufactures (1832), and histories of religion and science note his Ninth Bridgewater Treatise (1837).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' In the midst of this publishing storm, he served as Lucasian Professor of Mathematics at Cambridge (1828-39), Newton’s old post;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' inherited a sizable fortune from his father;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' married, raised a family, and lost his wife;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' and embarked upon designing two mechanical computing machines, the simple but elegant Difference Engine and the complex and enigmatic Analytical Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' During these years he hosted a fashionable salon gathering in Page � of � 1 20 published in Hammerman and Russell, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', Ada’s Legacy (ACM Books 2015) DOI London, twice ran for Parliament, traveled widely, and corresponded energetically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' He made some powerful friends and a few powerful enemies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' In the early 1840s Babbage collaborated closely with Ada Lovelace, and this essay examines their work as an intellectually intimate “creative couple.” Especially in the popular 1 mind, Ada Lovelace has recently been on a roll.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' She is lionized as the founder of scientific computing and hailed as the world’s first computer programmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' “Readers will recognize Steve Jobs, Charles Babbage, Bill Gates, and Ada Lovelace as appropriate inclusions in [the young- adult book] Computer Technology Innovators,” states a 2013 review in School Library Journal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 2 And in his recent best-selling The Innovators, Walter Isaacson employs Ada Lovelace as bookends: in chapter 1, “Ada, Countess of Lovelace,” it is she (above Babbage) who is an engaging founding figure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' and in his concluding chapter, “Ada Forever,” he places the promise of computer innovation in the hands of her “spiritual heirs.” As chapters in this volume amply attest, Ada’s legacy is wide and deep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' There are no other 19th century women who have a programming language named for them (chapters 3-5) and figure prominently in a contemporary science-fiction literary genre (chapters 8-10) and serve as inspiration for contemporary computing reform (chapters 11-13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Scholarship on these two figures is a something of a puzzlement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' A scientific figure like Babbage should have inspired a full-length biography somewhere along the line, but despite numerous essays and several books, we still lack a complete life-and-times biography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' One 3 recent effort by David Alan Grier to explore such a biography confronted a daunting mass of archival materials, some in private hands and difficult to access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Babbage’s published papers alone run to eleven volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Several popular treatments of Ada Lovelace have appeared, in 4 Helena M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Pycior, Nancy G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Slack, and Pnina G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Abir-Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', eds, Creative Couples in the Sciences 1 (New Brunswick, NJ: Rutgers University Press, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' “There isn’t a hint of romance in any of their correspondence with one another,” according to Sydney Padua’s The Thrilling Adventures of Lovelace and Babbage (New York: Pantheon, 2015), quote 38 note 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Babbage, a widower, was the age of Ada’s mother.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Vicki Reutter, “Computer Technology Innovators,” School Library Journal (Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 2013): 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 2 Anthony Hyman’s Charles Babbage: Pioneer of the Computer (Princeton: Princeton University 3 Press, 1982) treats Babbage’s life in 250 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' An early study was Maboth Moseley’s Irascible Genius: A Life of Charles Babbage, Inventor (London: Hutchinson, 1964), which is attacked by Dorothy Stein, in Ada: A Life and a Legacy (Cambridge: MIT Press, 1985), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' x, as “almost perversely inaccurate, distorted, and fabricated.” A specialized and valuable study is J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Dubbey, The Mathematical Work of Charles Babbage (Cambridge: Cambridge University Press, 1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' [See also Christopher Hollings, Ursula Martin, and Adrian Rice’s Ada Lovelace: The Making of a Computer Scientist (Bodleian Libraries, 2018) David Alan Grier, “The Inconsistent Youth of Charles Babbage,” IEEE Annals of the History of 4 Computing 32 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 4 (2010): 18-31;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Martin Campbell Kelly, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', The Works of Charles Babbage (London: Pickering / New York: New York University Press, 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 11 vols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Page � of � 2 20 published in Hammerman and Russell, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', Ada’s Legacy (ACM Books 2015) DOI addition to Isaacson’s, but the existing scholarly consensus on her is a dour one, often highly 5 critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Allan Bromley, whose research in the Babbage materials inspired Doron Swade and led to the Science Museum’s project to reconstruct the Difference Engine No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 2, saw the world from a Babbage-centered perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' “The [Lovelace] translation has extensive notes, written under Babbage’s supervision, that give an excellent account of his understanding of the mechanization of computational processes and the mathematical powers of the machine,” he wrote in 1982 (emphasis added).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Bromley’s dismissal of Lovelace hardened in subsequent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Dorothy 6 Stein, in Ada: A Life and a Legacy (1985), sternly cautioned that Lovelace was “a figure whose achievement turns out not to deserve the recognition accorded it.” Stein’s and Bromley’s 7 gloomy verdict persists in the scholarly survey Computer: History of the Information Machine (1996), now in its third edition (2014), where the key critical passage on Lovelace remains: “the extent of Lovelace’s intellectual contribution to the Sketch has been much exaggerated .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Later scholarship has shown that most of the technical content and all of the programs in the Sketch were Babbage’s work.” The most strident negative verdict derives from Bruce Collier’s 1970 8 Harvard thesis, recently publicized in the Economist magazine on Ada Lovelace day: Ada was as mad as a hatter, and contributed little more to the “Notes” than trouble .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' I will retain an open mind on whether Ada was crazy because of her substance abuse .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' or despite James Essinger, A Female Genius: How Ada Lovelace Started the Computer Age (London: Gibson 5 Square, 2013), which appeared in the United States as Ada’s Algorithm (Brooklyn: Melville House, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Essinger had earlier written Jacquard’s Web: How a Hand-loom Led to the Birth of the Information Age(Oxford: Oxford University Press, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Contrast Martin Davis and Virginia Davis, “Mistaken Ancestry: The Jacquard and the Computer,” Textile 3 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 1 (2005): 76-87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Earlier positive treatments include Betty Alexandra Toole, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', Ada, The Enchantress of Numbers: A Selection from the Letters of Lord Byron’s Daughter (Mill Valley CA: Strawberry Press, 1992) and Doris Langley Moore, Ada, Countess of Lovelace: Byron’s Legitimate Daughter (New York: Harper & Row, 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Doron D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Swade, “Redeeming Charles Babbage’s Mechanical Computer,” Scientific American 6 (February 1993): 86-91;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Allan Bromley, “Charles Babbage’s Analytical Engine, 1838,” Annals of the History of Computing 4 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 3 (1982): 196-217, quote p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 197;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Allan Bromley, “Difference and Analytical Engines,” in William Aspray, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', Computing before Computers (Ames: Iowa State University Press, 1990), 59-98, on p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Dorothy Stein, Ada: A Life and a Legacy (Cambridge: MIT Press, 1985), quote xii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Walter 7 Isaacson’s The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution (New York: Simon & Schuster, 2014), on p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 493 note 1, praises Stein’s book as “the most scholarly and balanced.” A later negative view is Jay Belanger and Dorothy Stein, “Shadowy Vision: Spanners in the Mechanization of Mathematics,” Historia Mathematica 32 (2005): 76-93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Stein strongly criticized Dorothy L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Moore, Ada, Countess of Lovelace: Bryon’s Legitimate Daughter (London: Murray, 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Martin Campbell-Kelly, William Aspray, Nathan Ensmenger, and Jeffrey R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Yost, Computer: A 8 History of the Information Machine (Boulder CO: Westview Press, 2014), quote p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Note that Bromley qualified his claim: that all but one program (Bernoulli numbers) was Babbage’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Compare Campbell Kelly and Aspray’s first edition of Computer (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 57).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Page � of � 3 20 published in Hammerman and Russell, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', Ada’s Legacy (ACM Books 2015) DOI it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' I hope nobody feels compelled to write another book on the subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' But, then, I guess someone has to be the most overrated figure in the history of computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 9 In this essay, I assemble the pertinent sources, including correspondence about the Notes to the Menabrea Sketch (printed in this volume: LINK), and suggest several modest corrections to the unduly negative scholarly view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' First, in contrast to much of the existing literature, the 10 Lovelace-Babbage question is not a zero-sum game, where some portion of credit added to Lovelace somehow detracts from Babbage, or vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' There is ample evidence that Babbage and Lovelace each had important contributions to the Sketch and the Notes, and attention to their intellectual collaboration is revealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Second, claims about her lack of mathematical background seem doubtful after consulting Lovelace’s detailed correspondence with Babbage and Augustus De Morgan, two highly accomplished figures in 19th century mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' The treatment of the Bernoulli numbers in note “G” spotlights the intellectually intimate collaboration between Babbage and Lovelace and its mathematical sophistication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Finally, while there may be significant definitional problems in calling Lovelace the world’s “first computer programmer,” the evidence is reasonably clear that Lovelace created an step-by-step elemental sequence of instructions—that is, an algorithm—for computing the series of Bernoulli numbers that was intended for Babbage’s Analytical Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' The underlying mathematics might well have been Babbage’s, for he was a distinguished mathematical and scientific figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Lovelace transformed an equation for the Bernoulli numbers into a precise series of elemental additions, multiplications, and substitutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' The algorithm specified a sequence of calculations, requiring a real-life computer capable of running a program with a looping structure and conditional testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Contemporary computer experts have noted in the large table (representing the Bernoulli number algorithm) in the Sketch’s Note “G” there was one misplaced minus sign which, when corrected, led to the result that Ada’s algorithm correctly computed the series of Bernoulli numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' In “The Babbage Machine and the Origins of Programming,” the authors reproduce Lovelace’s table for the Bernoulli numbers and translate the algorithm into a 65-line FORTRAN program that computes “Ada Lovelace Day: Right Idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Wrong Woman?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Economist (24 March 2010) at 9 www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content='economist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content='com/node/21005551/print (accessed 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' I use “derived from” intentionally, since in the printed copy of Collier’s dissertation I examined (CBI QA75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content='C634x 1970a) I did not find this quotation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' see also robroy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content='dyndns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content='info/collier (Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Doron Swade quotes Collier in The Cogwheel Brain: Charles Babbage and the Quest to Build the First Computer (London: Little, Brown, 2000), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Correspondence in the Toole, Stein, Moore, and Swade volumes as well as the document-centered 10 accounts in Velma R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Huskey and Harry D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Huskey, “Lady Lovelace and Charles Babbage,” Annals of the History of Computing 2 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 4 (1980): 299-329;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' and John Fuegi and Jo Francis, “Lovelace & Babbage and the Creation of the 1843 ‘Notes’,” IEEE Annals of the History of Computing 25 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 4 (2003): 16-26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Page � of � 4 20 published in Hammerman and Russell, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=', Ada’s Legacy (ACM Books 2015) DOI them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' The program has eight “if .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' [then] go-to” statements and a simple structure, straight from Lovelace’s table-algorithm, that builds up algebraic statements one mathematical operation at a time: for example, computing the expression (2n - 1) / (2n + 1) requires 4 program steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 11 In the original 1843 publication of Note “G,” there are clearly two nested loops, embedded in a larger looping structure (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' There is direct documentary evidence that Ada Lovelace created this table (writing it out in pencil).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' She and Babbage corresponded intensively in the weeks and days prior to its publication in Taylor’s Scientific Memoirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' This series, published in London between 1837 and 1852 by Richard Taylor in cooperation with the British Association for the Advancement of Science (BAAS), printed English translations of prominent European scientific papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' “Here was to be found .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' such European leaders” as Bessel, Bunsen, Gauss, Ohm and many others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' The Analytical Engine was Babbage’s creation while the Sketch and 12 Notes are best understood as the product of an intense intellectual collaboration between Babbage and Lovelace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Babbage and Lovelace It is with good reason that computing history scholars have praised the research of Allan G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Bromley (1947-2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Bromley, a computer scientist at the University of Sydney, made careful studies of the Babbage letters and notebooks that led to the Science Museum’s reconstruction of the Babbage Difference Engine No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' In 2000 Tim Bergin, editor-in-chief of IEEE Annals of the History of Computing, introduced a special issue of the journal dedicated to Bromley’s scholarship by noting his “fundamental contributions,” former Annals editor-in-chief Michael Williams called his work “groundbreaking,” and none other than computer pioneer Maurice Wilkes stated “it is to Bromley that we owe nearly all our present knowledge of Babbage’s work Campbell Kelly, Works of Charles Babbage, volume 3: 159 note a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Garry J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Tee, in reviewing a 11 1979 Russian publication by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Petrenko and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Petrenko, wrote this: “The most advanced illustration given in Lovelace’s paper is an elaborate program for computing the sequence of Bernoulli numbers, which was written by Babbage but corrected by her.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' The present authors have transcribed that program into FORTRAN, detecting thereby a few misprints but only one significant error, with one variable having the wrong sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfGwPf/content/2301.02919v1.pdf'} +page_content=' Their transcribed version is easier for a modern reader to understand than the original program of 1843, and it does compute correctly the sequence of Bernoulli numbers.” See SINRt−1; rt = −1, +otherwise. +Deep Reinforcement Learning Architecture: Given the re- +inforcement learning formulation above for the interference- +aware beam learning problem, we adopt an actor-critic based +deep reinforcement learning architecture. This follows the +learning framework that we proposed earlier in [8]. In sum- +mary, both the actor and critic networks are implemented using +elegant fully-connected (FC) feed-forward neural networks. +The input of the actor network is the state and the output +3It is important to note that the proposed interference-aware beam learning +approach can be straightforwardly extended to learning a codebook with +multiple beams by, for example, using the user clustering and assignment +algorithm proposed in [8]. + +is the action, while the critic network takes in the state-action +pair and outputs the predicted Q value.4 Moreover, to respect +the discrete phase shifter hardware constraint (7), we perform +an element-wise quantization to make the predicted action a +valid one. To be more specific, assume that �at is the predicted +action from the actor network at time t. Then, the action that +finally gets implemented to the system is given by +[at]m = arg min +θ∈Ψ +|[�at]m − θ| , ∀m = 1, . . . , M. +(8) +It is worth emphasizing that such quantization operation is +only activated when the system is actually implementing the +predicted action by the actor network to obtain reward. It is +not involved in the training process of the actor network due +to its non-differentiability. +Despite its full compatibility with the considered system, +the proposed interference-aware beam learning solution still +has two drawbacks. First, it requires a relatively large number +of iterations to find a qualified beam pattern, especially when +the number of antennas is large. As a result, this incurs a large +beam learning overhead, since these iterations are done over +the air. Second, as indicated by the objective function of (5), +the SINR performance of a given beam is determined by two +factors: (i) The desired beamforming gain and (ii) The effec- +tiveness of suppressing the undesired interference. However, +the proposed solution does not fully leverage this information +as it only focuses on the overall SINR performance. It turns out +that the decomposition of these two factors, as will be further +discussed in the next section, makes the data sharing among +the learning processes of different beams possible, which has +the potential of improving the convergence behavior of the +beam/codebook learning algorithm. +V. DIGITAL TWIN ASSISTED BEAM LEARNING +FRAMEWORK +In this section, we describe in detail the proposed dig- +ital twin assisted interference-aware beam pattern learning +framework. The motivations of introducing the digital twin +are mainly two-folds. First, it has the potential of improving +the sample efficiency (i.e., reducing the number of interac- +tions with the actual environment) of the learning process +[9]. Second, it facilitates other more complex tasks (than +learning a single beamforming vector), such as data sharing +(which can be very useful in learning interference-aware beam +codebooks) and cooperative learning5 (among multiple BSs to +avoid interfering each other). +A. Digital Twin for Beam Pattern Learning +In this subsection, we introduce the proposed digital twin +that assists the learning of interference-aware beams. As men- +tioned before, in order to acquire the reward signal that is used +4The detailed architectures and the parameters of the adopted neural +networks are provided in Section VI-A. +5For instance, as the system has full knowledge of its simulated environ- +ment, it can assign accurate reward to each agent. This has the potential of +mitigating the non-stationary environment problem that exists in most of the +multi-agent learning tasks. +for training the RL agent, the system needs to estimate two +quantities, i.e., the signal power, PS = +��wHh +��2 Px, and the in- +terference plus noise power, PI+N = �K +k=1 +��wHhk +��2 Px+σ2. +Therefore, correspondingly, there are two major components +in the considered digital twin that provide the agent with +such information, i.e., an interference predictor and a signal +predictor, as will be discussed in this subsection. +1) The key idea of digital twin: The machine learning +model that virtually interacts with the agent can be considered +as a digital twin. This model is used to imitate the behavior +of the actual environment, aiming to reduce the expensive +(sometimes, even impossible) actual evaluations of the design. +In this paper, we design the digital twin with a particular +emphasis on two important aspects. First, a digital twin should +be able to accurately model the behavior of the actual envi- +ronment, i.e., having accurate predictions. Second, training +a digital twin should, in general, require less actual data +samples than directly interacting with the actual environment, +which yields a high sample efficiency. With these important +criterions in mind, we next describe the adopted digital twin. +As mentioned before, the considered digital twin consists of +two major components, i.e., an interference prediction model +and a signal prediction model. Formally, the interference +prediction model predicts the interference plus noise power +based on the configuration of the receive combining vector, +which can be expressed as +�PI+N = fin(w; Θin), +(9) +where w ∈ CM×1 is the input of the model, representing +the designed receive combining vector, and the output is the +predicted interference plus noise power, i.e., �PI+N ∈ R. The +model is parameterized by Θin. Similarly, the signal prediction +model predicts the signal power of a given receive combining +vector, which can be written as +�PS = fs(w; Θs), +(10) +where �PS ∈ R is the predicted signal power value and Θs +denotes the model parameters. It is worth mentioning that the +architecture of fin and fs is not unique and is a design choice. +Next, we present two candidates that could be used in the +considered beam learning task. +2) Digital twin architecture: In this paper, we study two +specific designs: (i) A model-based prediction architecture, +and (ii) a fully-connected neural network based prediction +architecture. +Model-based architecture: The model-based architecture, as +its name suggests, is inspired by the underlying signal model. +For instance, as can be seen from the expression of the interfer- +ence plus noise power, i.e., PI+N = �K +k=1 +��wHhk +��2 Px + σ2, +it takes a quadratic form of the receive combining vector w. +To see this, by defining H = [h1, h2, . . . , hK], PI+N can be + +expressed as +PI+N = +��HHw +��2 +2 Px + σ2, +(11) += wH � +PxHHH + σ2I +� +w, +(12) += wHAw, +(13) +where A = PxHHH+σ2I. The signal power can be expressed +in the similar form, i.e., PS = wHPxhhHw. Therefore, +the interference prediction network is essentially leveraged +to learn the relationship (13). Inspired by this, we design +the interference prediction network with a focus on imitating +the “behavior” of A. Specifically, the interference prediction +network is chosen to take the following form +fin(w) = wHQinQH +inw, +(14) +where Qin +∈ CM×rin with rin being a hyperparameter. +Therefore, the parameter of the interference prediction network +is essentially Qin, i.e., Θin = {Qin}. The signal prediction +network takes the similar form, i.e., fs(w) = wHQsQH +s w, +where Qs ∈ CM×rs with rs being a hyperparameter as well, +which makes Θs = {Qs}. +Fully-connected neural network based architecture: De- +spite being lightweight and a better fit to the signal model, +the model-based architecture, fundamentally, suffers from any +mismatch between the assumed signal model and the actual +signal relationship. For instance, there are normally unknown +non-linearities in the practical hardware that undermine the +validity of the assumed relationship between the receive com- +bining vector and the interference plus noise power (similarly +for the signal power). As a result, the signal model cannot +always be met and the model-based architecture will show up +certain level of residual prediction errors that are very hard +to be eliminated given the less powerful expressive capability +of its architecture. Motivated by this, we also investigate a +more general architecture, which is built upon fully-connected +neural network, given its powerful universal approximation +capability [10]. Specifically, both fin and fs are modeled with +feed-forward fully-connected neural networks. The detailed +network parameters will be provided in Section VI-A. +3) Training dataset and loss function: We denote the train- +ing dataset of the interference prediction network as +Din = +�� +w(n), P (n) +I+N +�Nin +n=1 +� +, +(15) +where each data sample is comprised of a combining vector +and its corresponding interference plus noise power value +obtained from the actual environment, i.e., from the real +measurement. Nin is the total number of data samples in the +dataset, i.e., |Din| = Nin. And the dataset used for training +the signal prediction network can be similarly denoted as +Ds = +�� +w(n), P (n) +S +�Ns +n=1 +� +, +(16) +with Ns being its size. Since the target of these two networks +is to predict the power values, we pose the learning problem +as a regression problem conducted in a supervised fashion. +RF +Chain +RL +Agent +Actual Environment +RF Frontend +Beam +Reward +Measurement +Module +Calculate SINR +Dataset +Store +Measurements +Interference dataset +can be shared among agents +Interference link +Switching +Control +Training +Control +Digital Twin +Fig. 1. An illustration of the proposed digital twin-assisted interference-aware +beam pattern learning framework. +Furthermore, we employ mean squared error (MSE) as the +training loss function. Using the interference prediction net- +work as an example, for the n-th data sample in Din, the loss +function is defined as +L +� +P (n) +I+N, �P (n) +I+N +� += +���P (n) +I+N − �P (n) +I+N +��� +2 +, +(17) += +���P (n) +I+N − fin(w(n); Θin) +��� +2 +. +(18) +The loss function used for the signal prediction network is +identical. +B. Digital Twin Assisted Learning +In this subsection, we discuss how to integrate the digital +twin with the proposed RL based beam learning framework. +Since the digital twin is essentially used to provide the RL +agent with a simulated environment to interact with, it plays +the same role as the actual environment. However, in order +to provide high quality synthetic feedback, it requires training +process that relies on the authentic data collected from the +actual environment. Based on the trained digital twin, the +system can virtually evaluate its designed beams without +measuring the physical signals. Moreover, the system might +require constantly switching between the digital twin and the +actual environment, triggered by the demand for the authentic +data. Next, we summarize the key components of the proposed +digital twin assisted beam learning. +Initial interaction and data acquisition: The system starts +with the normal interaction between the RL agent and the +actual environment. To be more specific, upon forming a new +beam ˜w, the BS estimates the interference plus noise power +PI+N and the signal power PS. The reward signal used for RL +agent learning will then be generated. Moreover, these authen- +tic power measurements together with the beam will be stored +in the two datasets, i.e., Din and Ds, respectively. During this +interaction process, two initial datasets are established. +Digital twin training: Based on the collected initial datasets +Din and Ds, the two sub-networks of the digital twin, i.e., the +interference prediction network fin and the signal prediction +network fs, are trained in a supervised manner. After the +training process saturates, the digital twin is ready to interact +with the RL agent. + +Environment switching and virtual interaction: The switch- +ing from the actual environment to the digital twin is triggered +based on multiple factors, for example, when the interferers are +not transmitting signal or when the digital twin can provide +accurate predictions, etc. As a result, after the switching is +finished, the reward signal required by the RL agent will +be provided by the trained digital twin instead of the actual +environment. The agent keeps interacting with the digital twin +until it does not improve, which marks the saturation of the +agent learning and the end of the virtual interaction process. +Demand based switching and active data acquisition: The +system might require executing the above steps multiple times, +based on the achieved performance. The motivation of such +repetition can be summarized as follows. From the model +training perspective, the quality of the collected datasets, +i.e., Din and Ds, has significant influence on the prediction +accuracy of the trained digital twin. To be more specific, during +the initial interaction process, most of the beams tried out by +the agent are relatively random and hence have relatively poor +quality in terms of SINR performance. This means that the +datasets are, intuitively speaking, biased towards the “poor- +quality” beams. As a result, the trained digital twin will have +relatively inaccurate predictions on the beams that actually +have better performance. The incurred residual prediction error +will in turn influence the learning of the agent, leading to +unsatisfactory performance. +However, as the policy of the RL agent gets improved over +time, the actions performed by the agent, i.e., the beams, +are more likely to be in the beam space where the achieved +SINR is high. Therefore, it is advisable to switching back +to the actual environment to re-collect data (through agent- +environment interaction). Such active data acquisition can +enhance the training datasets with “high-quality” beams. Using +those better data samples to refine the parameters of the +digital twin can help achieve higher prediction accuracy in the +interested beam space, which further helps the learning of the +agent. By alternatingly performing these steps, the system has +higher chance to collect data samples that are more useful for +the agent learning, which has the potential of further enhancing +both sample efficiency and learning convergence. We show +such interplay between the RL agent, actual environment and +the digital twin in Fig. 1. +VI. SIMULATION RESULTS +A. Deep Learning Models and Training Procedures +1) DRL agent architecture: Since the input of the actor +network is the state and the output is the action, the size of +both the input and output of the actor network is M, i.e., +the number of antennas. The critic network takes in the state- +action pair and outputs the predicted Q value and hence it has +an input size of 2M and an output size of 1. Both the actor +and critic networks have two hidden layers in our proposed +architecture, with the size of the first hidden layer being 16 +times of the input size and the size of the second hidden layer +being 16 times of the output size in both networks. All the +hidden layers are followed by the batch normalization layer +TABLE I +HYPER-PARAMETERS FOR DIGITAL TWIN TRAINING +Parameter +Model-based +FC-based +Batch size +512 +512 +Number of epochs +500 +500 +Optimizer +Adam +Adam +Initial learning rate +1 × 10−1 +1 × 10−2 +Learning rate schedule +0.1@[50, 300, 400] +0.1@[100, 300, 400] +for an efficient training experience and the Rectified Linear +Unit (ReLU) activation layer. The output layer of the actor +network is followed by a Tanh activation layer scaled by π +to make sure that the predicted phases are within (−π, π] +interval. The output layer of the critic network is a linear +layer. Moreover, we adopt the same DRL architecture for both +solutions, regardless of having digital twin or not. +2) Digital twin architecture: We describe the two different +architectures of the digital twin studied in this paper. Also, +as the signal prediction network and the interference pre- +diction network have identical architecture in both solutions +(i.e., model-based solution and fully-connected neural network +based solution), for brevity, we only use the interference +prediction network as an example. +Signal model-based prediction network: As mentioned be- +fore in (14), the interference prediction network is essentially +devised to take a quadratic form of the combining vector +determined by a positive semi-definite matrix QinQH +in, leaving +the matrix Qin to be the model parameter. Moreover, Qin has +a shape of M ×rin with M being the number of antennas and +rin being a hyper-parameter. The choice of rin is empirically +guided by the following rules: (i) rin should not be too large as +it will increase the model complexity and hence the required +amount of training data; (ii) rin should not be too small as +it will limit the expressive capability of the model, leading to +unsatisfactory prediction accuracy. +Fully-connected neural network based prediction network: +We adopt the fully-connected neural network with two hidden +layers to be the interference prediction network. The input +layer of the network has M neurons, which is equal to the +number of antennas. The output layer of the network has only +one neuron with linear activation. Both hidden layers have +M ′ neurons. Similar to rin in the model-based architecture, +the selection of M ′ needs to strike a balance between model +complexity and model expressive capability. Moreover, all the +hidden layers are followed by the batch normalization layer +and ReLU activation layer. +3) Training parameters: As mentioned before, the digital +twin is trained in a supervised fashion, based on the collected +power datasets, i.e., Din and Ds. Moreover, the interference +prediction network and the signal prediction network are inde- +pendently trained. However, for the same type of digital twin, +i.e., either model-based or fully-connected neural network +based, we adopt the same training parameters for interference +and signal prediction networks. We summarize the detailed +hyper-parameters used for training the digital twins in Table I. + +10 +20 +30 +40 +50 +60 +70 +80 +90 +100 +Number of training samples +10-3 +10-2 +10-1 +100 +101 +102 +MSE +FC-based network with 10k training samples (signal) +Signal model based network (signal) +FC-based network with 10k training samples (interference) +Signal model based network (interference) +(a) Signal and interference prediction (M = 8) +0 +2000 +4000 +6000 +8000 +10000 +Number of iteration +15 +10 +5 +0 +5 +10 +15 +20 +25 +SIR (dB) +Actual environment based +(b) Interaction with the actual environment +0 +2000 +4000 +6000 +8000 +10000 +Number of iteration +15 +10 +5 +0 +5 +10 +15 +20 +25 +SIR (dB) +Digital twin based +(c) Interaction with the digital twin +Fig. 2. The performance of the proposed digital twin-assisted beam learning framework. In (a), we compare the proposed signal model-based digital twin +design with the FC-based design to show the significant reduction on the required real measurements. In (b) and (c), we show the learning experience of the +DRL agent when interacting with the actual environment and the trained digital twin, to highlight the efficacy of such “virtual” environment. +B. Numerical Results +In this subsection, we provide the simulation results of +the proposed digital twin-assisted interference-aware beam +learning solutions. We first evaluate the prediction accuracy +of the two proposed prediction network architectures, which +provides insight on how much data samples are required +in order to have a reasonable performance as well as the +practicality of the solutions. We show the prediction accuracy +of both the signal power and the interference power. As can be +seen, the signal model-based architecture requires much less +data samples to achieve higher prediction accuracy than the +FC-based architecture trained with much more data samples. +For instance, as indicated in Fig. 2(a), with only 50 samples, +the signal model-based prediction architecture can achieve +even more accurate interference prediction than the FC-based +architecture trained with 10, 000 samples. This saves almost +99.5% of the measurements, yielding a more sample- +efficient solution for the practical system deployment. +Moreover, as there are more data samples, the prediction +accuracy of the signal model-based architecture also gets +improved quite significantly. Such performance is achieved by +better leveraging the underlying signal relationships and hence +the model parameters are essentially searched over a much +smaller space. The trained digital twin is utilized to interact +with the DRL agent, aiming to reduce the expensive actual +measurements conducted by the hardware. In Fig. 2, we show +the performance of the DRL agent when interacting with the +actual environment as well as the digital twin. The training +of the DRL agent is repeated for 100 times and the average +performance as well as the standard deviation are reported in +Fig. 2. We test the performance of a system with 8 antennas, +and the digital twin is trained using 1, 000 data samples, i.e., +|Din| = |Ds| = 1000. As can be seen, the learning experience +based on the digital twin is quite similar to that of the one +based on the actual environment. This empirically shows the +effectiveness of using the digital twin in training the DRL +agent. As a result, although the DRL agent requires almost +a total number of 5, 000 interactions with the environment to +converge, in the digital twin assisted learning framework, +all these interactions are with the digital twin and hence +the expensive evaluations on the real hardware are avoided. +VII. CONCLUSION +In this paper, we developed a sample-efficient digital twin- +assisted online interference-aware beam design framework. +The proposed solution learns how to design beam patterns that +can effectively manage interference, relying only on the power +measurements and without any channel knowledge. The design +of the digital twin leverages the underlying signal relationship, +leading to a significant reduction on the required interactions +with the actual environment. Moreover, it also facilitates other +tasks such as interference-aware codebook learning, where the +data sharing among different beam learning agents/engines +becomes possible. The results highlight the efficacy of the +trained digital twin in guiding the beam learning process. +REFERENCES +[1] R. Lorenz and S. Boyd, “Robust minimum variance beamforming,” IEEE +Transactions on Signal Processing, vol. 53, no. 5, pp. 1684–1696, 2005. +[2] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, and +W. Yu, “Multi-Cell MIMO Cooperative Networks: A New Look at +Interference,” IEEE Journal on Selected Areas in Communications, +vol. 28, no. 9, pp. 1380–1408, 2010. +[3] H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell +multi-antenna wireless system,” IEEE Transactions on Wireless Com- +munications, vol. 9, no. 5, pp. 1748–1759, 2010. +[4] S. Smith, “Optimum phase-only adaptive nulling,” IEEE Transactions +on Signal Processing, vol. 47, no. 7, pp. 1835–1843, 1999. +[5] T. Van Luyen and T. Vu Bang Giang, “Interference Suppression of ULA +Antennas by Phase-Only Control Using Bat Algorithm,” IEEE Antennas +and Wireless Propagation Letters, vol. 16, pp. 3038–3042, 2017. +[6] H. Steyskal, “Simple method for pattern nulling by phase perturbation,” +IEEE Transactions on Antennas and Propagation, vol. 31, no. 1, pp. +163–166, 1983. +[7] R. Davis, “Phase-only LMS and perturbation adaptive algorithms,” IEEE +Transactions on Aerospace and Electronic Systems, vol. 34, no. 1, pp. +169–178, 1998. +[8] Y. Zhang, M. Alrabeiah, and A. Alkhateeb, “Reinforcement Learning of +Beam Codebooks in Millimeter Wave and Terahertz MIMO Systems,” +IEEE Trans. on Communications, vol. 70, no. 2, pp. 904–919, 2022. +[9] A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision +and research directions for 6g and beyond,” 2023. [Online]. Available: +https://arxiv.org/abs/2301.11283 +[10] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward +networks are universal approximators,” Neural networks, vol. 2, no. 5, +pp. 359–366, 1989. + diff --git a/PNFQT4oBgHgl3EQfYTZl/content/tmp_files/load_file.txt b/PNFQT4oBgHgl3EQfYTZl/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..58ef90d4a5e51bb282c76dfc52be1dac12cd3d50 --- /dev/null +++ b/PNFQT4oBgHgl3EQfYTZl/content/tmp_files/load_file.txt @@ -0,0 +1,436 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf,len=435 +page_content='A Digital Twin Assisted Framework for Interference Nulling in Millimeter Wave MIMO Systems Yu Zhang, Tawfik Osman, and Ahmed Alkhateeb Abstract—Millimeter wave (mmWave) and terahertz MIMO systems rely on pre-defined beamforming codebooks for both initial access and data transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' However, most of the existing codebooks adopt pre-defined beams that focus mainly on improving the gain of their target users, without taking interference into account, which could incur critical performance degradation in the dense networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' To address this problem, in this paper, we propose a sample-efficient digital twin-assisted beam pattern design framework that learns how to form the beam pattern to reject the signals from the interfering directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The proposed approach does not require any explicit channel knowledge or any coordination with the interferers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The adoption of the digital twin improves the sample efficiency by better leveraging the underlying signal relationship and by incorporat- ing a demand-based data acquisition strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Simulation results show that the developed signal model-based learning framework can significantly reduce the actual interaction with the radio environment (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', number of measurements) compared to the model-unaware design, leading to a more practical and efficient interference-aware beam design approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' INTRODUCTION Rejecting in-band interference in the RF domain of the hybrid or fully analog MIMO systems is possible owing to the extra degree of freedom brought by multiple antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' However, realizing its full potential is challenging in practical systems due to the lack of channel knowledge as well as the additional hardware constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As a result, the existing approaches normally require large beam learning overhead in order to form well-shaped analog beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, when the codebook design problem is considered, such learning overhead gets magnified and increases linearly with respect to the codebook size, since the learning experience of one beam is not transferable to the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Such prohibitive over- head downplays the potential of the system, and it motivates the development of sample efficient interference-aware beam codebook design framework, which is the focus of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Contributions: In this paper, we develop a model-based digital twin-assisted learning framework that achieves higher sample efficiency by better leveraging the underlying signal model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The improvement on the sample efficiency has the potential of reducing the beam learning overhead as well as shortening the convergence time of the proposed solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The proposed digital twin-assisted learning framework also provides flexibility to the practical deployment in terms of enabling data sharing and cooperation (hence better learning) Yu Zhang, Tawfik Osman, and Ahmed Alkhateeb are with Arizona State University (Email: y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='zhang, tmosman, alkhateeb@asu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This work is sup- ported in part by the National Science Foundation under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1923676 and by a U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Army research program under contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' W911NF21C0015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' in complex scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' We extensively evaluate the proposed interference-aware beam learning framework using numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This provides a comprehensive assessment of the capability of the proposed approach in nulling interference without requiring any knowledge about the channel, array geometry, or user location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The role of the digital twin model is also tested which empirically shows its efficacy in guiding the beam learning process and highlights its potential gain of reducing the overall learning overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Prior work: The prior work of interference nulling beam- forming design either focuses on MIMO transceivers with fully-digital architectures [1]–[3], or assumes some kind of channel information, such as covariance, of both the target and interferers [4], [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Some other approaches that do not rely on channel information are also proposed in the past [6], [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' But they, in general, do not leverage underlying signal relationship which leads to large beam learning overhead and are not robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' SYSTEM AND CHANNEL MODELS We consider the communication system where a mmWave MIMO base station (BS), equipped with M antennas, is communicating with a single-antenna user equipment (UE) in an uplink mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, we assume that there exist K (≥ 1) non-cooperative interference transmitters1 in the vicinity of the BS, operating at the same frequency bands and hence causing interference to the BS receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, if the UE transmits a symbol x ∈ C to the BS, and the other K interference transmitters also transmit symbols xk ∈ C, k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' , K at the same time and frequency slot, such that all the transmit- ted symbols satisfy the same average power constraint, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', E[|x|2] = Px and E[|xk|2] = Px, ∀k, the received signal at the BS after combining can then be expressed as y = wHhx + K � k=1 wHhkxk + wHn, (1) where h ∈ CM×1 is the channel between the BS and the UE, hk ∈ CM×1 is the channel between the BS and the k-th interference transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' It is worth pointing out here that for clarity, we subsume the factors such as path-loss and transmission power into the channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' n ∼ CN(0, σ2I) is the receive noise vector at the BS with σ2 being the noise power and w ∈ CM×1 is the combining vector used by the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1For ease of exposition, each interference transmitter is also assumed to have a single antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This means that the interference signals are being transmitted omni-directionally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='13311v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='IT] 30 Jan 2023 Furthermore, given the high cost and power consumption of the mixed-signal components, we consider a practical system where the BS has only one radio frequency (RF) chain2 and employs analog-only beamforming/combining using a network of r-bit quantized phase shifters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, the combining vector at the BS can be written as w = 1 √ M � ejθ1, ejθ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' , ejθM �T , (2) where each phase shift θm, ∀m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' , M is selected from a finite set Ψ with 2r possible discrete values drawn uniformly from (−π, π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The normalization factor M −1/2 is to make sure the combiner has unit power, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', ∥w∥2 2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' We adopt a geometric channel model for the channel between BS and UE, as well as the interference channels be- tween BS and any interfering transmitters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Hence, the channel between BS and its served UE takes the following form (the channel between BS and any interference transmitter takes similar form) h = L � ℓ=1 αℓa(φℓ, ϑℓ), (3) where L is the number of multi-paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Each path ℓ has a complex gain αℓ, which includes the path-loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The angles φℓ and ϑℓ represent the ℓ-th path’s azimuth and elevation angles of arrival respectively, and a(φℓ, ϑℓ) is the BS array response vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The exact expression of a(φℓ, ϑℓ) depends on the array geometry and possible hardware impairments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' PROBLEM FORMULATION In this paper, we investigate the design of the analog com- bining/precoding that achieves interference awareness (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', at- tempts to address the interference) without explicitly knowing any channel state information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Given the receive signal (1) at the BS, the achievable rate of its target user can be written as R = log2 � 1 + |wHh|2Px �K k=1 |wHhk|2Px + σ2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' (4) The objective is to design the combining vector w such that the achievable rate of the target user, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', (4), can be maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Given the monotonicity of the logarithm function, this is equivalent to maximize the SINR term in (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, the problem can be cast as w⋆ = arg max w |wHh|2Px �K k=1 |wHhk|2Px + σ2 , (5) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' wm = 1 √ M ejθm, ∀m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', M, (6) θm ∈ Ψ, ∀m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', M, (7) 2It is very important to note that the RF precoder in a system with hybrid architecture is normally constructed using pre-defined codebooks that have pre-determined beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, the learned beams in this paper can be included in such codebooks and be used in the hybrid analog/digital architectures as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' where wm is the m-th element of the combining vector w 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Solving the interference-aware beam pattern design problem formulated in (5) is challenging due to the non-convex and discrete hardware constraints (6) and (7), as well as the unknown channels in the objective function (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, it is hard to solve (5) using the conventional optimization methods [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' An important observation, however, is that for a given combining beam w, evaluating the SINR requires only the power values (after combining) of the desired and interference signals, and does not require explicit knowledge about the channel vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' With this observation, we cast our problem as developing an online machine learning approach that learns how to design an interference-aware beam pat- tern w that optimizes (5), given only the receive power measurements for the signal plus interference and noise, ��wHh ��2 Px + �K k=1 ��wHhk ��2 Px + σ2, and the interference plus noise, �K k=1 ��wHhk ��2 Px + σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' ONLINE LEARNING OF INTERFERENCE AWARE BEAM PATTERN DESIGN In this section, we present the proposed online reinforce- ment learning based interference-aware beam pattern learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' To solve the problem with reinforcement learning, we first fit all the ingredients of problem (5) into a general reinforcement learning framework as follows: State: We define the state st as a vector that consists of the phases of all the phase shifters at the t-th iteration, that is, st = [θ1, θ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' , θM]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Action: We define the action at as the element-wise changes to all the phases in st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Since the phases can only take values in Ψ, a change of a phase represents the action that a phase shifter selects a value from Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, the action is directly specified as the next state, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', at = st+1, which can be viewed as a deterministic transition in the Markov Decision Process (MDP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Reward: We define a binary reward mechanism, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', the reward rt takes values from {+1, −1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Since the objective of (5) is to maximize the SINR performance, we compare the SINR achieved by the current combining vector, denoted as SINRt, with the previous one, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', SINRt−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The reward is determined according to the following rule: rt = +1, if SINRt > SINRt−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' rt = −1, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Deep Reinforcement Learning Architecture: Given the re- inforcement learning formulation above for the interference- aware beam learning problem, we adopt an actor-critic based deep reinforcement learning architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This follows the learning framework that we proposed earlier in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' In sum- mary, both the actor and critic networks are implemented using elegant fully-connected (FC) feed-forward neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The input of the actor network is the state and the output 3It is important to note that the proposed interference-aware beam learning approach can be straightforwardly extended to learning a codebook with multiple beams by, for example, using the user clustering and assignment algorithm proposed in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' is the action, while the critic network takes in the state-action pair and outputs the predicted Q value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='4 Moreover, to respect the discrete phase shifter hardware constraint (7), we perform an element-wise quantization to make the predicted action a valid one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' To be more specific, assume that �at is the predicted action from the actor network at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Then, the action that finally gets implemented to the system is given by [at]m = arg min θ∈Ψ |[�at]m − θ| , ∀m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' , M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' (8) It is worth emphasizing that such quantization operation is only activated when the system is actually implementing the predicted action by the actor network to obtain reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' It is not involved in the training process of the actor network due to its non-differentiability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Despite its full compatibility with the considered system, the proposed interference-aware beam learning solution still has two drawbacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' First, it requires a relatively large number of iterations to find a qualified beam pattern, especially when the number of antennas is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As a result, this incurs a large beam learning overhead, since these iterations are done over the air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Second, as indicated by the objective function of (5), the SINR performance of a given beam is determined by two factors: (i) The desired beamforming gain and (ii) The effec- tiveness of suppressing the undesired interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' However, the proposed solution does not fully leverage this information as it only focuses on the overall SINR performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' It turns out that the decomposition of these two factors, as will be further discussed in the next section, makes the data sharing among the learning processes of different beams possible, which has the potential of improving the convergence behavior of the beam/codebook learning algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' DIGITAL TWIN ASSISTED BEAM LEARNING FRAMEWORK In this section, we describe in detail the proposed dig- ital twin assisted interference-aware beam pattern learning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The motivations of introducing the digital twin are mainly two-folds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' First, it has the potential of improving the sample efficiency (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', reducing the number of interac- tions with the actual environment) of the learning process [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Second, it facilitates other more complex tasks (than learning a single beamforming vector), such as data sharing (which can be very useful in learning interference-aware beam codebooks) and cooperative learning5 (among multiple BSs to avoid interfering each other).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Digital Twin for Beam Pattern Learning In this subsection, we introduce the proposed digital twin that assists the learning of interference-aware beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As men- tioned before, in order to acquire the reward signal that is used 4The detailed architectures and the parameters of the adopted neural networks are provided in Section VI-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 5For instance, as the system has full knowledge of its simulated environ- ment, it can assign accurate reward to each agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This has the potential of mitigating the non-stationary environment problem that exists in most of the multi-agent learning tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' for training the RL agent, the system needs to estimate two quantities, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', the signal power, PS = ��wHh ��2 Px, and the in- terference plus noise power, PI+N = �K k=1 ��wHhk ��2 Px+σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, correspondingly, there are two major components in the considered digital twin that provide the agent with such information, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', an interference predictor and a signal predictor, as will be discussed in this subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1) The key idea of digital twin: The machine learning model that virtually interacts with the agent can be considered as a digital twin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This model is used to imitate the behavior of the actual environment, aiming to reduce the expensive (sometimes, even impossible) actual evaluations of the design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' In this paper, we design the digital twin with a particular emphasis on two important aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' First, a digital twin should be able to accurately model the behavior of the actual envi- ronment, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', having accurate predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Second, training a digital twin should, in general, require less actual data samples than directly interacting with the actual environment, which yields a high sample efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' With these important criterions in mind, we next describe the adopted digital twin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As mentioned before, the considered digital twin consists of two major components, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', an interference prediction model and a signal prediction model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Formally, the interference prediction model predicts the interference plus noise power based on the configuration of the receive combining vector, which can be expressed as �PI+N = fin(w;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Θin), (9) where w ∈ CM×1 is the input of the model, representing the designed receive combining vector, and the output is the predicted interference plus noise power, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', �PI+N ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The model is parameterized by Θin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Similarly, the signal prediction model predicts the signal power of a given receive combining vector, which can be written as �PS = fs(w;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Θs), (10) where �PS ∈ R is the predicted signal power value and Θs denotes the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' It is worth mentioning that the architecture of fin and fs is not unique and is a design choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Next, we present two candidates that could be used in the considered beam learning task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2) Digital twin architecture: In this paper, we study two specific designs: (i) A model-based prediction architecture, and (ii) a fully-connected neural network based prediction architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Model-based architecture: The model-based architecture, as its name suggests, is inspired by the underlying signal model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' For instance, as can be seen from the expression of the interfer- ence plus noise power, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', PI+N = �K k=1 ��wHhk ��2 Px + σ2, it takes a quadratic form of the receive combining vector w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' To see this, by defining H = [h1, h2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' , hK], PI+N can be expressed as PI+N = ��HHw ��2 2 Px + σ2, (11) = wH � PxHHH + σ2I � w, (12) = wHAw, (13) where A = PxHHH+σ2I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The signal power can be expressed in the similar form, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', PS = wHPxhhHw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, the interference prediction network is essentially leveraged to learn the relationship (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Inspired by this, we design the interference prediction network with a focus on imitating the “behavior” of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Specifically, the interference prediction network is chosen to take the following form fin(w) = wHQinQH inw, (14) where Qin ∈ CM×rin with rin being a hyperparameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, the parameter of the interference prediction network is essentially Qin, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', Θin = {Qin}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The signal prediction network takes the similar form, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', fs(w) = wHQsQH s w, where Qs ∈ CM×rs with rs being a hyperparameter as well, which makes Θs = {Qs}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Fully-connected neural network based architecture: De- spite being lightweight and a better fit to the signal model, the model-based architecture, fundamentally, suffers from any mismatch between the assumed signal model and the actual signal relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' For instance, there are normally unknown non-linearities in the practical hardware that undermine the validity of the assumed relationship between the receive com- bining vector and the interference plus noise power (similarly for the signal power).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As a result, the signal model cannot always be met and the model-based architecture will show up certain level of residual prediction errors that are very hard to be eliminated given the less powerful expressive capability of its architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Motivated by this, we also investigate a more general architecture, which is built upon fully-connected neural network, given its powerful universal approximation capability [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Specifically, both fin and fs are modeled with feed-forward fully-connected neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The detailed network parameters will be provided in Section VI-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 3) Training dataset and loss function: We denote the train- ing dataset of the interference prediction network as Din = �� w(n), P (n) I+N �Nin n=1 � , (15) where each data sample is comprised of a combining vector and its corresponding interference plus noise power value obtained from the actual environment, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', from the real measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Nin is the total number of data samples in the dataset, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', |Din| = Nin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' And the dataset used for training the signal prediction network can be similarly denoted as Ds = �� w(n), P (n) S �Ns n=1 � , (16) with Ns being its size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Since the target of these two networks is to predict the power values, we pose the learning problem as a regression problem conducted in a supervised fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' RF Chain RL Agent Actual Environment RF Frontend Beam Reward Measurement Module Calculate SINR Dataset Store Measurements Interference dataset can be shared among agents Interference link Switching Control Training Control Digital Twin Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' An illustration of the proposed digital twin-assisted interference-aware beam pattern learning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Furthermore, we employ mean squared error (MSE) as the training loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Using the interference prediction net- work as an example, for the n-th data sample in Din, the loss function is defined as L � P (n) I+N, �P (n) I+N � = ���P (n) I+N − �P (n) I+N ��� 2 , (17) = ���P (n) I+N − fin(w(n);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Θin) ��� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' (18) The loss function used for the signal prediction network is identical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Digital Twin Assisted Learning In this subsection, we discuss how to integrate the digital twin with the proposed RL based beam learning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Since the digital twin is essentially used to provide the RL agent with a simulated environment to interact with, it plays the same role as the actual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' However, in order to provide high quality synthetic feedback, it requires training process that relies on the authentic data collected from the actual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Based on the trained digital twin, the system can virtually evaluate its designed beams without measuring the physical signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, the system might require constantly switching between the digital twin and the actual environment, triggered by the demand for the authentic data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Next, we summarize the key components of the proposed digital twin assisted beam learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Initial interaction and data acquisition: The system starts with the normal interaction between the RL agent and the actual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' To be more specific, upon forming a new beam ˜w, the BS estimates the interference plus noise power PI+N and the signal power PS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The reward signal used for RL agent learning will then be generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, these authen- tic power measurements together with the beam will be stored in the two datasets, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', Din and Ds, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' During this interaction process, two initial datasets are established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Digital twin training: Based on the collected initial datasets Din and Ds, the two sub-networks of the digital twin, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', the interference prediction network fin and the signal prediction network fs, are trained in a supervised manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' After the training process saturates, the digital twin is ready to interact with the RL agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Environment switching and virtual interaction: The switch- ing from the actual environment to the digital twin is triggered based on multiple factors, for example, when the interferers are not transmitting signal or when the digital twin can provide accurate predictions, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As a result, after the switching is finished, the reward signal required by the RL agent will be provided by the trained digital twin instead of the actual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The agent keeps interacting with the digital twin until it does not improve, which marks the saturation of the agent learning and the end of the virtual interaction process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Demand based switching and active data acquisition: The system might require executing the above steps multiple times, based on the achieved performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The motivation of such repetition can be summarized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' From the model training perspective, the quality of the collected datasets, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', Din and Ds, has significant influence on the prediction accuracy of the trained digital twin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' To be more specific, during the initial interaction process, most of the beams tried out by the agent are relatively random and hence have relatively poor quality in terms of SINR performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This means that the datasets are, intuitively speaking, biased towards the “poor- quality” beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As a result, the trained digital twin will have relatively inaccurate predictions on the beams that actually have better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The incurred residual prediction error will in turn influence the learning of the agent, leading to unsatisfactory performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' However, as the policy of the RL agent gets improved over time, the actions performed by the agent, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', the beams, are more likely to be in the beam space where the achieved SINR is high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Therefore, it is advisable to switching back to the actual environment to re-collect data (through agent- environment interaction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Such active data acquisition can enhance the training datasets with “high-quality” beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Using those better data samples to refine the parameters of the digital twin can help achieve higher prediction accuracy in the interested beam space, which further helps the learning of the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' By alternatingly performing these steps, the system has higher chance to collect data samples that are more useful for the agent learning, which has the potential of further enhancing both sample efficiency and learning convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' We show such interplay between the RL agent, actual environment and the digital twin in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' SIMULATION RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Deep Learning Models and Training Procedures 1) DRL agent architecture: Since the input of the actor network is the state and the output is the action, the size of both the input and output of the actor network is M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', the number of antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The critic network takes in the state- action pair and outputs the predicted Q value and hence it has an input size of 2M and an output size of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Both the actor and critic networks have two hidden layers in our proposed architecture, with the size of the first hidden layer being 16 times of the input size and the size of the second hidden layer being 16 times of the output size in both networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' All the hidden layers are followed by the batch normalization layer TABLE I HYPER-PARAMETERS FOR DIGITAL TWIN TRAINING Parameter Model-based FC-based Batch size 512 512 Number of epochs 500 500 Optimizer Adam Adam Initial learning rate 1 × 10−1 1 × 10−2 Learning rate schedule 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='1@[50, 300, 400] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='1@[100, 300, 400] for an efficient training experience and the Rectified Linear Unit (ReLU) activation layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The output layer of the actor network is followed by a Tanh activation layer scaled by π to make sure that the predicted phases are within (−π, π] interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The output layer of the critic network is a linear layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, we adopt the same DRL architecture for both solutions, regardless of having digital twin or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2) Digital twin architecture: We describe the two different architectures of the digital twin studied in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Also, as the signal prediction network and the interference pre- diction network have identical architecture in both solutions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', model-based solution and fully-connected neural network based solution), for brevity, we only use the interference prediction network as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Signal model-based prediction network: As mentioned be- fore in (14), the interference prediction network is essentially devised to take a quadratic form of the combining vector determined by a positive semi-definite matrix QinQH in, leaving the matrix Qin to be the model parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, Qin has a shape of M ×rin with M being the number of antennas and rin being a hyper-parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The choice of rin is empirically guided by the following rules: (i) rin should not be too large as it will increase the model complexity and hence the required amount of training data;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' (ii) rin should not be too small as it will limit the expressive capability of the model, leading to unsatisfactory prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Fully-connected neural network based prediction network: We adopt the fully-connected neural network with two hidden layers to be the interference prediction network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The input layer of the network has M neurons, which is equal to the number of antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The output layer of the network has only one neuron with linear activation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Both hidden layers have M ′ neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Similar to rin in the model-based architecture, the selection of M ′ needs to strike a balance between model complexity and model expressive capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, all the hidden layers are followed by the batch normalization layer and ReLU activation layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 3) Training parameters: As mentioned before, the digital twin is trained in a supervised fashion, based on the collected power datasets, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', Din and Ds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, the interference prediction network and the signal prediction network are inde- pendently trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' However, for the same type of digital twin, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', either model-based or fully-connected neural network based, we adopt the same training parameters for interference and signal prediction networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' We summarize the detailed hyper-parameters used for training the digital twins in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Number of training samples ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10-3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10-2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10-1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='102 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='MSE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='FC-based network with 10k training samples (signal) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Signal model based network (signal) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='FC-based network with 10k training samples (interference) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Signal model based network (interference) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='(a) Signal and interference prediction (M = 8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='6000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='8000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Number of iteration ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='SIR (dB) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Actual environment based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='(b) Interaction with the actual environment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='4000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='6000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='8000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Number of iteration ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='SIR (dB) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Digital twin based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='(c) Interaction with the digital twin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The performance of the proposed digital twin-assisted beam learning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' In (a), we compare the proposed signal model-based digital twin design with the FC-based design to show the significant reduction on the required real measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' In (b) and (c), we show the learning experience of the DRL agent when interacting with the actual environment and the trained digital twin, to highlight the efficacy of such “virtual” environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Numerical Results In this subsection, we provide the simulation results of the proposed digital twin-assisted interference-aware beam learning solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' We first evaluate the prediction accuracy of the two proposed prediction network architectures, which provides insight on how much data samples are required in order to have a reasonable performance as well as the practicality of the solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' We show the prediction accuracy of both the signal power and the interference power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As can be seen, the signal model-based architecture requires much less data samples to achieve higher prediction accuracy than the FC-based architecture trained with much more data samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' For instance, as indicated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2(a), with only 50 samples, the signal model-based prediction architecture can achieve even more accurate interference prediction than the FC-based architecture trained with 10, 000 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This saves almost 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='5% of the measurements, yielding a more sample- efficient solution for the practical system deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, as there are more data samples, the prediction accuracy of the signal model-based architecture also gets improved quite significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Such performance is achieved by better leveraging the underlying signal relationships and hence the model parameters are essentially searched over a much smaller space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The trained digital twin is utilized to interact with the DRL agent, aiming to reduce the expensive actual measurements conducted by the hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2, we show the performance of the DRL agent when interacting with the actual environment as well as the digital twin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The training of the DRL agent is repeated for 100 times and the average performance as well as the standard deviation are reported in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' We test the performance of a system with 8 antennas, and the digital twin is trained using 1, 000 data samples, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=', |Din| = |Ds| = 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As can be seen, the learning experience based on the digital twin is quite similar to that of the one based on the actual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' This empirically shows the effectiveness of using the digital twin in training the DRL agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' As a result, although the DRL agent requires almost a total number of 5, 000 interactions with the environment to converge, in the digital twin assisted learning framework, all these interactions are with the digital twin and hence the expensive evaluations on the real hardware are avoided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' CONCLUSION In this paper, we developed a sample-efficient digital twin- assisted online interference-aware beam design framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The proposed solution learns how to design beam patterns that can effectively manage interference, relying only on the power measurements and without any channel knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The design of the digital twin leverages the underlying signal relationship, leading to a significant reduction on the required interactions with the actual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Moreover, it also facilitates other tasks such as interference-aware codebook learning, where the data sharing among different beam learning agents/engines becomes possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' The results highlight the efficacy of the trained digital twin in guiding the beam learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' REFERENCES [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Lorenz and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Boyd, “Robust minimum variance beamforming,” IEEE Transactions on Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 53, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1684–1696, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Gesbert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Hanly, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Shamai Shitz, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Simeone, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Yu, “Multi-Cell MIMO Cooperative Networks: A New Look at Interference,” IEEE Journal on Selected Areas in Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1380–1408, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Dahrouj and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Yu, “Coordinated beamforming for the multicell multi-antenna wireless system,” IEEE Transactions on Wireless Com- munications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1748–1759, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Smith, “Optimum phase-only adaptive nulling,” IEEE Transactions on Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 47, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1835–1843, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Van Luyen and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Vu Bang Giang, “Interference Suppression of ULA Antennas by Phase-Only Control Using Bat Algorithm,” IEEE Antennas and Wireless Propagation Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 16, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 3038–3042, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Steyskal, “Simple method for pattern nulling by phase perturbation,” IEEE Transactions on Antennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 163–166, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Davis, “Phase-only LMS and perturbation adaptive algorithms,” IEEE Transactions on Aerospace and Electronic Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 169–178, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Alrabeiah, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Alkhateeb, “Reinforcement Learning of Beam Codebooks in Millimeter Wave and Terahertz MIMO Systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' on Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 904–919, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Alkhateeb, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Jiang, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Charan, “Real-time digital twins: Vision and research directions for 6g and beyond,” 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='org/abs/2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content='11283 [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Hornik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' Stinchcombe, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} +page_content=' 359–366, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PNFQT4oBgHgl3EQfYTZl/content/2301.13311v1.pdf'} diff --git a/PtFOT4oBgHgl3EQf4zQ-/content/2301.12951v1.pdf b/PtFOT4oBgHgl3EQf4zQ-/content/2301.12951v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c7bc84634d4fb1a58fac158969e23dc05b9e93fd --- /dev/null +++ b/PtFOT4oBgHgl3EQf4zQ-/content/2301.12951v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2e197a63bfdec9aef582036c53e882efcb9ebf782f50aa7d8c6f474ce7fe809 +size 406395 diff --git a/PtFOT4oBgHgl3EQf4zQ-/vector_store/index.faiss b/PtFOT4oBgHgl3EQf4zQ-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..7a843507775b5089a9a89fd8a82ef88ceadbfc23 --- /dev/null +++ b/PtFOT4oBgHgl3EQf4zQ-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c1d2be18eefb68cfd32371f72c152e19d5a61a9a056957a2e05ff33080977bf8 +size 2752557 diff --git a/PtFOT4oBgHgl3EQf4zQ-/vector_store/index.pkl b/PtFOT4oBgHgl3EQf4zQ-/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..632487e1b94d20119f0ee9843ccd69722c8f73d9 --- /dev/null +++ b/PtFOT4oBgHgl3EQf4zQ-/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a1f96b640918e8d5c02854044f1da3567470622a246b7d7395036223cdeed7bd +size 104731 diff --git a/RNFJT4oBgHgl3EQf3S0N/content/tmp_files/2301.11660v1.pdf.txt b/RNFJT4oBgHgl3EQf3S0N/content/tmp_files/2301.11660v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e485981cdc8980c57fd2d0d0defb9d36a520b1ca --- /dev/null +++ b/RNFJT4oBgHgl3EQf3S0N/content/tmp_files/2301.11660v1.pdf.txt @@ -0,0 +1,1254 @@ +Probing Out-of-Distribution Robustness of Language Models with +Parameter-Efficient Transfer Learning Methods +Hyunsoo Cho†, Choonghyun Park†, Junyeop Kim†, Hyuhng Joon Kim†, +Kang Min Yoo†‡, and Sang-goo Lee† +† Seoul National University, ‡ NAVER +{johyunsoo,pch330,juny116,heyjoonkim,sglee}@europa.snu.ac.kr +{kangmin.yoo}@navercorp.com +Abstract +As the size of the pre-trained language +model (PLM) continues to increase, numer- +ous parameter-efficient transfer learning meth- +ods have been proposed recently to compen- +sate for the tremendous cost of fine-tuning. +Despite the impressive results achieved by +large pre-trained language models (PLMs) and +various parameter-efficient transfer learning +(PETL) methods on sundry benchmarks, it re- +mains unclear if they can handle inputs that +have been distributionally shifted effectively. +In this study, we systematically explore how +the ability to detect out-of-distribution (OOD) +changes as the size of the PLM grows or the +transfer methods are altered. Specifically, we +evaluated various PETL techniques, including +fine-tuning, Adapter, LoRA, and prefix-tuning, +on three different intention classification tasks, +each utilizing various language models with +different scales. +1 +Introduction +Pre-trained language models (PLM), which are pre- +trained on large-scale corpora using transformer- +based architectures (Vaswani et al., 2017), have +achieved groundbreaking success on sundry bench- +marks (Wang et al., 2019b; Rajpurkar et al., 2016; +Wang et al., 2019a), establishing themselves as the +standard neural model in countless applications. +Moreover, language models pre-trained with larger +parameters on a rich volume of corpora tend to ex- +hibit more intriguing potentials, such as the ability +to capture world knowledge (Petroni et al., 2019), +generate codes (Poesia et al., 2022), and even solve +mathematical problems (Henighan et al., 2020), on +top of understanding linguistic knowledge (e.g., +semantic or syntactic). To explore the apex of pre- +trained language models (PLMs), the size of PLMs +is growing exponentially and has reached billions +to a trillion (Brown et al., 2020; Chowdhery et al., +2022; Fedus et al., 2022; Hoffmann et al., 2022). +Under these circumstances, the conventional +method for transferring PLMs to a target task +(i.e., fine-tuning) is now infeasible as it entails +prohibitive costs to train and store the entire pa- +rameters of large PLMs for every desired task. +To mitigate this issue, several recent parameter- +efficient transfer learning (PETL) methods have +been proposed to improve task scalability. For in- +stance, adapter-based (Houlsby et al., 2019; Hu +et al., 2022) approaches insert small neural mod- +ules into each layer of the PLM and update those +lightweight modules in the training phase. Inspired +by the recent success of textual prompts (Brown +et al., 2020), prompt-based methods (Li and Liang, +2021; Lester et al., 2021; Shin et al., 2020) concate- +nate extra tunable tokens to the front of the input or +hidden layers and update prepended soft prompts +in the training phase. +Despite these breakthroughs in NLP, even very +recent anomaly detection studies (Cho et al., 2022; +Shen et al., 2021) are still limited to relatively small +bi-directional PLMs (e.g., BERT, RoBERTa). Thus, +how large-scale PLMs or auto-regressive PLMs +cope with outliers is uncharted territory, naturally +begging the following questions: +• Q1: Does increasing model size improve OOD +detection performance without model parameters? +• Q2: If so, does scaling the size of PLM makes +the model robust enough to utilize them without +any additional process? +• Q3: Do fine-tuning and various PETL method- +ologies display differences in OOD detection per- +formance according to the size of PLMs? +• Q4: Can the OOD detection methods from previ- +ous works (usually for the bi-directional PLMs) be +transferred to auto-regressive PLMs (GPT)? +To resolve these questions, this paper investi- +gates the capability of large PLMs as outlier de- +tectors from various perspectives. Specifically, we +compare the robustness to outliers with various +transfer learning techniques on several OOD bench- +arXiv:2301.11660v1 [cs.CL] 27 Jan 2023 + +marks: Full fine-tuning, LoRA (Hu et al., 2022), +Adapter (Houlsby et al., 2019), and prefix-tuning +(Li and Liang, 2021) on various auto-regressive +PLMs with different sizes, i.e., GPT2-S, M, L, XL +(Radford et al., 2019), GPT-Neo (Black et al., 2021) +and GPT-J (Wang and Komatsuzaki, 2021). From +in-depth investigations, we share several intriguing +observations: (1) As the size of the PLM increases, +the performance improves without any update of +model parameters. However, it is still challeng- +ing to use it without supervision since their perfor- +mances still lag far behind compared to the fine- +tuned small PLM (i.e., BERT-base). (2) PETLs out- +perform fine-tuning with sufficiently large PLMs +in both IND and OOD metrics. (3) Lastly, lever- +aging the information of the last hidden represen- +tation, which is the most prevailing method for +bi-directional PLM in recent OOD detection, does +not transfer well in auto-regressive PLM, requiring +a novel representation extracting technique. We +believe that these findings will help future anomaly +detection studies. +2 +Related Work +Parameter-Efficient Transfer Learning is draw- +ing considerable attention lately, emerging as an +alternative strategy to fine-tuning. Compared to +fine-tuning, parameter-efficient transfer methods +show superiority in the number of trainable param- +eter usage while achieving performance analogous +to fine-tuning. Depending on the characteristics of +the methods, parameter-efficient transfer methods +can be categorized into Adapter-based and Prompt- +Engineering approaches. +Adapter (Houlsby et al., 2019; Pfeiffer et al., +2021) refers to a lightweight neural module in- +jected within each layer of PLM. The structure of +the adapter generally consists of a bottleneck layer +(down-projection and up-projection), a nonlinear +function, a normalization layer, and a residual con- +nection. The adapter has many different variants +due to numerous design choices, such as the order +or specifics of each component (e.g., which nor- +malization technique will be used) and where the +adapter will be attached. For example, LoRA (Hu +et al., 2022) inserts low-rank decomposition matri- +ces in each weight in self-attention (Vaswani et al., +2017) (i.e., query, key, and value). +Another line of work, prompt engineering, casts +the existing task as a text generation problem to +fully leverage the capability of PLMs to predict +the appropriate word in the given sentence. This +approach requires an empirical endeavor of opti- +mizing the prompt to maximize a PLM’s perfor- +mance. Earlier works exploit handcrafted manual +prompts (Schick and Schütze, 2021; Jiang et al., +2020) or by providing demonstrations to PLM 1 +(Brown et al., 2020; Raffel et al., 2020; Gao et al., +2021; Zhao et al., 2021). More recent work re- +places the manual prompt with a soft prompt (Li +and Liang, 2021; Lester et al., 2021; Shin et al., +2020; Liu et al., 2021), a machine trainable contin- +uous vector. The soft prompt is a more modular +and versatile method that evades additional latency +in the inference phase because it detaches the ad- +ditionally trained parameters and solely employs +the final output of the trained parameters as the +prompt. +While former parameter-efficient transfer meth- +ods showed noticeable achievements, their evalu- +ations generally assume the train and test distribu- +tions are identical (i.e., i.i.d. assumption); however, +this condition is rarely satisfied in real-world sce- +narios due to the diversity and volatility of user +input. Consequently, if the model can not correctly +handle distribution-shifted malicious input and mis- +conceives it as an in-distribution (IND) example, it +may lead to fatal accidents. +Despite its practical importance, how large +PLMs or parameter-efficient transfer learning cope +with unknown input is poorly understood. This +work aims to understand language models’ capabil- +ities to detect outliers through parameter-efficient +transfer learning methods. +3 +Probing OOD Robustness +3.1 +Backbones and Models +To investigate the trend of OOD performance under +varying scales of PLM, we consider three factors +during backbone selection. They should be (1) +publicly available, (2) reasonably large, and (3) +share identical structures to eliminate factors other +than size. Since recent large PLMs utilize auto- +regressive objectives due to their computational +complexity, we adopt six auto-regressive PLMs +as the backbone of our experiments accordingly: +GPT2 (S,M,L,XL), GPT-Neo, and GPT-J. +For the parameter-efficient transfer methods, +we selected two methods: two adapter-based and +one prompt engineering-based. Namely, Adapter +(Houlsby et al., 2019), LoRA (Hu et al., 2022), and +1also termed as in-context learning. + +Prefix-tuning (Li and Liang, 2021) are selected +for the adapter approach, which is compatible with +classification tasks, for the prompt approach. We +also report the performance of linear evaluation, +i.e., single layer perceptron (SLP) on top of PLMs, +and fine-tuning, which act like a lower-bound and +upper-bound, respectively. +3.2 +Dataset and Metrics +Dataset. We evaluate our model on two datasets, +CLINC150 and Banking77, widely used in OOD +detection. CLINC150 dataset (Larson et al., 2019) +contains 150 class labels (15 intents for 10 do- +mains), while Banking77 dataset (Casanueva et al., +2020) consists of fine-grained 77 bank-related in- +tents. Following the experimental settings from pre- +vious works (Cho et al., 2022; Zhang et al., 2022; +Shu et al., 2017; Fei and Liu, 2016; Lin and Xu, +2019), we validate our models in two different sce- +narios: far-OOD setting and close-OOD setting. +For CLINC dataset, we train our model with the +whole training dataset and test with an indepen- +dent OOD test split from CLINC dataset, which +does not overlap with 150 classes in the training +dataset. Outliers in CLINC OOD split are distribu- +tionally far from the training distribution (Zhang +et al., 2022), so it is relatively easy to discern. For +Banking77, we partition the dataset into 2 disjoint +datasets (i.e., IND / OOD dataset) based on the +class label. Since both IND and OOD datasets orig- +inated from the equivalent dataset, they share sim- +ilar distributions and properties, making the task +more demanding. Thus, we refer to a CLINC OOD +setting as far-OOD and split settings in Banking as +close-OOD settings, respectively. +Metrics. To evaluate IND performance, we mea- +sured the classification accuracy. And for OOD per- +formance, we adopt two metrics commonly used +in recent OOD detection literature: +• FPR@95. The false-positive rate at the true- +positive rate of 95% (FPR@95) measures the prob- +ability of classifying OOD input as IND input when +the true-positive rate is 95%. +• AUROC. The area under the receiver operating +characteristic curve (AUROC) is a threshold-free +metric that indicates the ability of the model to +discriminate outliers from IND samples. +3.3 +OOD Evaluation Methods +Evaluation in OOD detection is done via a scoring +function, which outputs the appropriateness of the +input into a single scalar value (p). Then we com- +pare p with the pre-set threshold δ to determine +whether the input is an outlier or not: +Iδ(x) = +� IND +p(x) ≥ δ +OOD +p(x) < δ, +(1) +In this paper, we evaluate the performance of +our method in 4 different evaluation methods, +which can be categorized into 2 higher branches: +representation-based and logit-based. +Logit-based approaches exploit the PLM’s predic- +tion result extracted from the classification layer as +their primary information to discern outliers. Logit- +based approaches are simple and have their own +dominance in computational cost since it pursues +OOD detection and general classification nigh si- +multaneously. +• MSP is a baseline method in this branch that +employs the maximum softmax probability to score +the appropriateness of the given input, based on the +idea that the model will output more certain output +(higher probability) to a normal sample (Hendrycks +and Gimpel, 2017): +p(x) = +efi(x) +ΣN +j=1efj(x) , +(2) +where fi(x) refer to as max value from the classifi- +cation layer (max logit value). +• Energy is a variant of MSP, which calibrates logit +value based on energy function (Liu et al., 2020): +p(x) = −E(x; f) = T · log ΣN +i ef(x)/T . +(3) +Representation-based approaches, on the other +hand, employ the hidden representation from PLM +as their primary source. Since the size of the hidden +representation is larger and inheres more copious +information, they generally yield a more precise +decision than logit-based approaches. However, +they require more inference time to derive a final +score. We employed Mahalanobis distance-based +and cosine similarity-based methods in this branch. +• Mahalanobis distance refers to the distance be- +tween the specific distribution and the input. In +OOD detection, we estimate the gaussian distribu- +tion of the training dataset and utilize the minimum +Mahalanobis distance to score the input suitability +(Lee et al., 2018): +p(x) = (h − µk)⊤Σ−1(h − µk), +(4) + +(a) Performance on far-OOD setting. +(b) Performance on close-OOD setting. +Figure 1: OOD detection performance of PLMs without updating the model parameters. +Setting +Backbone +Evaluation Method +MSP +Energy +Mahal. +Cosine +CLINC +Setting +GPT2-S +93.22 +95.79 +77.63 +76.34 +GPT2-M +95.41 +97.63 +82.42 +79.82 +GPT2-L +96.21 +97.77 +96.93 +97.57 +GPT2-XL +96.48 +97.99 +97.28 +97.66 +GPT-Neo +96.04 +97.72 +96.59 +97.64 +GPT-J +97.34 +98.50 +97.91 +98.20 +Banking +Split 25% +GPT2-S +90.12 +91.32 +75.32 +73.11 +GPT2-M +91.74 +92.78 +78.03 +76.56 +GPT2-L +93.02 +93.45 +92.44 +93.41 +GPT2-XL +94.29 +94.95 +93.24 +94.10 +GPT-Neo +93.83 +94.85 +92.79 +93.88 +GPT-J +94.11 +95.10 +93.66 +94.80 +Table 1: AUROC of each PLMs trained with LoRA. Energey function consistently outperforms other methods . +where training distribution is (N(µi, Σ) for i ∈ +i = {1, 2, · · · , |C|}), and k refers to a index of +minimum mahalanobis distance. +• Cosine Similarity method utilizes the cosine dis- +tance between the representation of the given input +(z(x)) and the nearest neighbor z(xnn) (Tack et al., +2020): +p(x) = sim(z(x), z(xnn)) +(5) +4 +Analysis +In this section, we share several intriguing findings +and insights from various settings. +4.1 +OOD Robustness of PLMs without +Supervision. +In this experiment, we investigate the OOD detec- +tion capability of PLMs without parameter tuning. +Precisely, we extract the final layer representation +from each frozen PLM and evaluate their perfor- +mance via representation-based evaluation meth- +ods. (Logit-based evaluation methods are not used +as they require additional training of the classifi- +cation layer.) Figure 1 summarizes the results in +two scenarios (i.e., far-OOD and close-OOD). We +verified the correlation between the size of PLMs +and their OOD detection ability, but utilizing them +without parameter supervision is roughly impossi- +ble since they still lag far behind the small super- +vised methods (i.e., BERT-base with Mahalanobis +evaluation) in a barebone setting. Moreover, perfor- +mance improvement from the scaling saturates in a +more harsh setting (i.e., close-OOD), displaying an +unbridgeable gap with the fine-tuned model. +4.2 +Evaluation methods for auto-regressive +PLMs. +Many recent OOD works (Zhou et al., 2021; Shen +et al., 2021) leverage hidden representation-based + +98 +91 +84 +77 +70 +GPT2-S +GPT2-M +GPT2-L +GPT2-XLGPT-NeO +GPT-J +(117M) +(345M) +(762M) +(1.5B) +(2.7B) +(6B) +Mahalanobis Distance +Cosine Similarity +BERT-base (finetuned)94 +83 +72 +61 +50 +GPT2-S +GPT2-M +GPT2-L +GPT2-XLGPT-Neo +GPT-J +(117M) +(345M) +(762M) +(1.5B) +(2.7B) +(6B) +Mahalanobis Distance +Cosine Similarity +BERT-base (finetuned)Setting +Method +# Params. +Backbone +GPT2 +(S) +GPT2 +(M) +GPT2 +(L) +GPT2 +(XL) +GPT +Neo +GPT-J +CLINC +(far-ood) +Linear (SLP) +0% +83.03 +87.39 +88.47 +89.55 +89.44 +91.94 +Fine-tuning +100% +96.84 +97.71 +98.24 +98.33 +98.01 +98.41 +LoRA +0.1% +95.00 +96.54 +97.66 +97.72 +98.14 +97.79 +0.5% +96.41 +96.04 +97.52 +97.45 +98.12 +97.89 +1% +96.13 +95.89 +97.61 +97.40 +98.11 +98.50 +Adapter +0.1% +96.62 +97.52 +97.74 +97.71 +97.81 +96.80 +0.5% +95.64 +97.07 +97.86 +96.94 +97.98 +98.37 +1% +95.79 +97.63 +97.77 +97.99 +98.12 +98.50 +Prefix +0.1% +95.53 +96.93 +96.38 +97.88 +90.25 +98.55 +0.5% +96.91 +96.96 +97.78 +97.88 +89.81 +97.92 +1% +96.97 +97.50 +97.69 +97.81 +88.98 +98.62 +Banking +split 25% +(close-ood) +Linear (SLP) +0% +72.97 +75.17 +80.46 +77.59 +86.55 +89.12 +Fine-tuning +100% +90.06 +92.06 +93.14 +93.23 +92.54 +93.73 +LoRA +0.1% +91.18 +91.74 +94.65 +94.58 +94.29 +95.82 +0.5% +91.16 +92.98 +94.54 +94.04 +94.55 +94.65 +1% +91.39 +92.39 +93.45 +93.59 +94.81 +95.29 +Adapter +0.1% +91.97 +93.24 +94.90 +94.69 +93.26 +95.59 +0.5% +92.90 +92.63 +95.18 +95.24 +93.61 +95.83 +1% +91.32 +92.78 +95.41 +94.95 +94.41 +95.37 +Prefix +0.1% +91.22 +91.92 +93.96 +93.48 +81.9 +94.93 +0.5% +91.85 +92.55 +93.84 +93.34 +80.82 +93.99 +1% +92.09 +92.65 +94.38 +93.74 +89.66 +94.39 +Table 2: AUROC of various PETL methods with various number of parameters evaluated by the energy function. +evaluation, as they generally surpass logit-based +evaluations (Podolskiy et al., 2021). The reason- +able conjecture behind their success is that hid- +den representations have more copious information +than the logit value. However, in auto-regressive +PLMs, logit-based evaluations (i.e., MSP and En- +ergy) outperform representation-based methods +(i.e., Mahalanobis distance and cosine similarity), +as shown in Table 1. The reasonable conjecture +for this phenomenon is due to the characteristic +of the language model. Unlike bi-directional mod- +els (e.g., BERT, RoBERTa, DeBERTa), decoder +models (e.g., GPT and its variants) do not have +[CLS] embedding, which assembles the token em- +beddings to capture holistic information (Devlin +et al., 2019; Kim et al., 2021). Therefore, auto- +regressive PLMs generally utilize the last token +embedding as a final feature embedding replacing +[CLS] embedding of encoder-based models. While +the last token of GPT is befitted for predicting the +next token, however, it cannot extract the holistic +semantics of the sentence suitably, unlike [CLS] +embedding. We believe extracting a better repre- +sentation through various pooling (Wang and Kuo, +2020) methods might be a possible avenue for auto- +regressive models to improve the OOD robustness +further. +4.3 +PETLs VS. Fine-tuning +In this experiment, we investigate the performance +gap between various PETL methods (i.e., Adapter, +LoRA, prefix-tuning) and model fine-tuning. To +compare the performance of each method under +similar circumstances, we set every PETL method +to utilize a similar number of parameters sufficient +enough to reach maximum accuracy. Moreover, +we utilized the energy function to evaluate each +method as they displayed the best performance +among other evaluation methods, i.e., cosine, Ma- +halanobis, and MSP, in the previous experiments. +Table 2 summarizes the results. +From this experiment, we observed that PETL +methods are more robust than fine-tuning with +reasonably large PLMs (i.e., GPT-J). Specifically, +most PELT methods on GPT-J outperform fine- +tuning with proper tunable parameters. Neverthe- +less, size is not the ultimate answer. While it is +clear that the scale of a model is an essential factor +in OOD robustness, larger models are still vulnera- +ble to close-OOD inputs. The capability to detect +far-OOD inputs (far from the training distribution) + +95 +96 +97 +98 +99 +GPT2-S GPT2-M GPT2-L GPT2-XLGPT-Neo GPT-J +Fine-tuned +LoRA +Adapter +Prefix +(a) Performance on far-OOD setting. +89 +90 +91 +92 +93 +94 +95 +96 +GPT2-S +GPT2-M +GPT2-L +GPT2-XL +GPT-Neo +GPT-J +Fine-tuned +LoRA +Adapter +Prefix +(b) Performance on close-OOD setting. +Figure 2: OOD detection performance of PLMs without updating the model parameters. +improves proportionally as the size grows, while +the ability to identify close-OOD input improves +rather trivially. PLM’s vulnerability to close-OOD +has already been reported in other studies (Zhang +et al., 2022), and this may be related to shortcut +learning (Geirhos et al., 2020) that predicts with +high probability by looking at specific words. Gen- +erating OOD data with particular keywords or uti- +lizing another pretext task, such as (Moon et al., +2021), can be worthy approaches to alleviate such +phenomena. A suitable OOD approach is neces- +sary to alleviate the aforementioned issue, as it +can further boost the robustness. We conduct addi- +tional experiments with PETLs on three different +numbers of tunable parameters: 0.1%, 0.5%, and +1% of the PLM parameters. Figure 2 summarizes +the results. With sufficient parameters to reach +maximum performance, there is no meaningful dif- +ference or improvement within each methodology. +Also, empirically, we confirmed that LoRA is the +most stable during learning and that prefix-tuning +fluctuates severely according to learning. +5 +Conclusion and Future Work +In this study, we showed that the scale of the lan- +guage model is an important factor in OOD ro- +bustness. Moreover, we also showed that various +methodologies outperform fine-tuning when ap- +plied to sufficiently large PLM. Our follow-up work +seeks to create a methodology that allows large +PLMs to be more robust to OOD input. The per- +formance improvement that can be achieved by the +size of PLM and OOD technique is orthogonal. In +line with the growing size of PLM, the OOD tech- +nique needs to be developed in a more parameter- +efficient way. As such, developing a proper OOD +technique compatible with the parameter-efficient +transfer methods is our proper goal. +References +Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin- +ton. 2016. +Layer normalization. +arXiv preprint +arXiv:1607.06450. +Sid Black, Leo Gao, Phil Wang, Connor Leahy, and +Stella Biderman. 2021. +GPT-Neo: +Large Scale +Autoregressive Language Modeling with Mesh- +Tensorflow. +Tom Brown, Benjamin Mann, Nick Ryder, Melanie +Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind +Neelakantan, Pranav Shyam, Girish Sastry, Amanda +Askell, et al. 2020. Language models are few-shot +learners. Advances in neural information processing +systems, 33:1877–1901. +Iñigo Casanueva, +Tadas Temˇcinas, +Daniela Gerz, +Matthew Henderson, and Ivan Vuli´c. 2020. Efficient +intent detection with dual sentence encoders. In Pro- +ceedings of the 2nd Workshop on Natural Language +Processing for Conversational AI. +Hyunsoo Cho, Choonghyun Park, Jaewook Kang, +Kang Min Yoo, Tae-uk Kim, and Sang-goo Lee. +2022. +Enhancing out-of-distribution detection in +natural language understanding via implicit layer en- +semble. In Findings of the Association for Computa- +tional Linguistics: EMNLP. +Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, +Maarten Bosma, Gaurav Mishra, Adam Roberts, +Paul Barham, Hyung Won Chung, Charles Sutton, +Sebastian Gehrmann, et al. 2022. +Palm: Scaling +language modeling with pathways. arXiv preprint +arXiv:2204.02311. +Jacob Devlin, Ming-Wei Chang, Kenton Lee, and +Kristina Toutanova. 2019. +BERT: pre-training of +deep bidirectional transformers for language under- +standing. In Proceedings of the 2019 Conference of +the North American Chapter of the Association for +Computational Linguistics, NAACL. + +William Fedus, Barret Zoph, and Noam Shazeer. 2022. +Switch transformers: Scaling to trillion parameter +models with simple and efficient sparsity. Journal +of Machine Learning Research, 23(120):1–39. +Geli Fei and Bing Liu. 2016. +Breaking the closed +world assumption in text classification. In Proceed- +ings of the 2016 Conference of the North American +Chapter of the Association for Computational Lin- +guistics, NAACL. +Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. +Making pre-trained language models better few-shot +learners. In Proceedings of the 59th Annual Meet- +ing of the Association for Computational Linguistics, +ACL. +Robert +Geirhos, +Jörn-Henrik +Jacobsen, +Claudio +Michaelis, +Richard +Zemel, +Wieland +Brendel, +Matthias Bethge, and Felix A Wichmann. 2020. +Shortcut learning in deep neural networks. Nature +Machine Intelligence, 2(11):665–673. +Dan Hendrycks and Kevin Gimpel. 2017. A baseline +for detecting misclassified and out-of-distribution +examples in neural networks. In 5th International +Conference on Learning Representations, ICLR. +Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, +Christopher Hesse, Jacob Jackson, Heewoo Jun, +Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. +2020. +Scaling laws for autoregressive generative +modeling. arXiv preprint arXiv:2010.14701. +Jordan Hoffmann, Sebastian Borgeaud, Arthur Men- +sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther- +ford, Diego de Las Casas, Lisa Anne Hendricks, +Johannes Welbl, Aidan Clark, et al. 2022. +Train- +ing compute-optimal large language models. arXiv +preprint arXiv:2203.15556. +Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, +Bruna Morrone, Quentin De Laroussilhe, Andrea +Gesmundo, Mona Attariyan, and Sylvain Gelly. +2019. Parameter-efficient transfer learning for nlp. +In International Conference on Machine Learning. +Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan +Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and +Weizhu Chen. 2022. Lora: Low-rank adaptation of +large language models. In The Tenth International +Conference on Learning Representations, ICLR. +Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham +Neubig. 2020. +How can we know what language +models know. Transactions of the Association for +Computational Linguistics. +Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021. +Self-guided contrastive learning for BERT sentence +representations. In Proceedings of the 59th Annual +Meeting of the Association for Computational Lin- +guistics ACL. +Stefan Larson, Anish Mahendran, Joseph J. Peper, +Christopher Clarke, +Andrew Lee, +Parker Hill, +Jonathan K. Kummerfeld, Kevin Leach, Michael A. +Laurenzano, Lingjia Tang, and Jason Mars. 2019. +An evaluation dataset for intent classification and +out-of-scope prediction. In Proceedings of the 2019 +Conference on Empirical Methods in Natural Lan- +guage Processing EMNLP. +Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. +2018. A simple unified framework for detecting out- +of-distribution samples and adversarial attacks. In +Advances in Neural Information Processing Systems, +pages 7167–7177. +Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. +The power of scale for parameter-efficient prompt +tuning. In Proceedings of the 2021 Conference on +Empirical Methods in Natural Language Processing, +EMNLP. +Tian Li, Xiang Chen, Shanghang Zhang, Zhen Dong, +and Kurt Keutzer. 2021. +Cross-domain senti- +ment classification with contrastive learning and mu- +tual information maximization. +In ICASSP 2021- +2021 IEEE International Conference on Acoustics, +Speech and Signal Processing (ICASSP), pages +8203–8207. IEEE. +Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: +Optimizing continuous prompts for generation. In +Proceedings of the 59th Annual Meeting of the Asso- +ciation for Computational Linguistics, ACL. +Ting-En Lin and Hua Xu. 2019. +Deep unknown in- +tent detection with margin loss. In Proceedings of +the 57th Conference of the Association for Computa- +tional Linguistics, ACL. +Weitang Liu, Xiaoyun Wang, John Owens, and Yix- +uan Li. 2020. Energy-based out-of-distribution de- +tection. Advances in Neural Information Processing +Systems, 33:21464–21475. +Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, +Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt +understands, too. arXiv preprint arXiv:2103.10385. +Ilya Loshchilov and Frank Hutter. 2019. +Decoupled +weight decay regularization. +In 7th International +Conference on Learning Representations, ICLR. +Seung Jun Moon, Sangwoo Mo, Kimin Lee, Jaeho Lee, +and Jinwoo Shin. 2021. +MASKER: masked key- +word regularization for reliable text classification. +In Thirty-Fifth AAAI Conference on Artificial Intel- +ligence, AAAI 2021. +Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, +Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, +and Alexander H. Miller. 2019. Language models as +knowledge bases? In Proceedings of the 2019 Con- +ference on Empirical Methods in Natural Language +Processing, EMNLP. + +Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, +Kyunghyun +Cho, +and +Iryna +Gurevych. +2021. +Adapterfusion: +Non-destructive task composition +for transfer learning. +In Proceedings of the 16th +Conference of the European Chapter of the Associ- +ation for Computational Linguistics, EACL. +Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Eka- +terina Artemova, and Irina Piontkovskaya. 2021. Re- +visiting mahalanobis distance for transformer-based +out-of-domain detection. In Thirty-Fifth AAAI Con- +ference on Artificial Intelligence, AAAI 2021. +Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, +Gustavo Soares, Christopher Meek, and Sumit Gul- +wani. 2022. +Synchromesh: Reliable code genera- +tion from pre-trained language models. In The Tenth +International Conference on Learning Representa- +tions, ICLR. +Alec Radford, Jeffrey Wu, Rewon Child, David Luan, +Dario Amodei, Ilya Sutskever, et al. 2019. +Lan- +guage models are unsupervised multitask learners. +OpenAI blog, 1(8):9. +Colin Raffel, Noam Shazeer, Adam Roberts, Katherine +Lee, Sharan Narang, Michael Matena, Yanqi Zhou, +Wei Li, and Peter J. Liu. 2020. Exploring the limits +of transfer learning with a unified text-to-text trans- +former. Journal of Machine Learning Research. +Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, +and Yuxiong He. 2020. +Zero: Memory optimiza- +tions toward training trillion parameter models. In +SC20: International Conference for High Perfor- +mance Computing, Networking, Storage and Anal- +ysis, pages 1–16. +Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and +Percy Liang. 2016. Squad: 100, 000+ questions for +machine comprehension of text. In Proceedings of +the 2016 Conference on Empirical Methods in Natu- +ral Language Processing, EMNLP. +Timo Schick and Hinrich Schütze. 2021. Exploiting +cloze-questions for few-shot text classification and +natural language inference. In Proceedings of the +16th Conference of the European Chapter of the As- +sociation for Computational Linguistics, EACL. +Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia +Jin. 2021. Enhancing the generalization for intent +classification and out-of-domain detection in SLU. +In Proceedings of the 59th Annual Meeting of the +Association for Computational Linguistics ACL. +Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, +Eric Wallace, and Sameer Singh. 2020. Autoprompt: +Eliciting knowledge from language models with au- +tomatically generated prompts. In Proceedings of +the 2020 Conference on Empirical Methods in Natu- +ral Language Processing, EMNLP. +Lei Shu, Hu Xu, and Bing Liu. 2017. DOC: deep open +classification of text documents. In Proceedings of +the 2017 Conference on Empirical Methods in Natu- +ral Language Processing, EMNLP. +Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jin- +woo Shin. 2020. +CSI: novelty detection via con- +trastive learning on distributionally shifted instances. +In Advances in Neural Information Processing Sys- +tems 33, NeurIPS 2020. +Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob +Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz +Kaiser, and Illia Polosukhin. 2017. Attention is all +you need. In Advances in neural information pro- +cessing systems. +Alex Wang, +Yada Pruksachatkun, +Nikita Nangia, +Amanpreet Singh, Julian Michael, Felix Hill, Omer +Levy, and Samuel Bowman. 2019a. Superglue: A +stickier benchmark for general-purpose language un- +derstanding systems. Advances in neural informa- +tion processing systems. +Alex Wang, Amanpreet Singh, Julian Michael, Felix +Hill, Omer Levy, and Samuel R. Bowman. 2019b. +GLUE: A multi-task benchmark and analysis plat- +form for natural language understanding. +In 7th +International Conference on Learning Representa- +tions, ICLR. +Ben Wang and Aran Komatsuzaki. 2021. +GPT- +J-6B: +A +6 +Billion +Parameter +Autoregressive +Language Model. +https://github.com/ +kingoflolz/mesh-transformer-jax. +Bin Wang and C-C Jay Kuo. 2020. Sbert-wk: A sen- +tence embedding method by dissecting bert-based +word models. +IEEE/ACM Transactions on Audio, +Speech, and Language Processing, 28:2146–2157. +Thomas Wolf, Lysandre Debut, Victor Sanh, Julien +Chaumond, Clement Delangue, Anthony Moi, Pier- +ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- +icz, Joe Davison, Sam Shleifer, Patrick von Platen, +Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, +Teven Le Scao, Sylvain Gugger, Mariama Drame, +Quentin Lhoest, and Alexander Rush. 2020. Trans- +formers: State-of-the-art natural language process- +ing. In Proceedings of the 2020 Conference on Em- +pirical Methods in Natural Language Processing: +System Demonstrations, pages 38–45, Online. Asso- +ciation for Computational Linguistics. +Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu, +Yanan Wu, Hong Xu, Huixing Jiang, and Weiran Xu. +2021. Modeling discriminative representations for +out-of-domain detection with supervised contrastive +learning. In Proceedings of the 59th Annual Meet- +ing of the Association for Computational Linguistics, +ACL. +Jianguo Zhang, Kazuma Hashimoto, Yao Wan, Zhiwei +Liu, Ye Liu, Caiming Xiong, and Philip Yu. 2022. +Are pre-trained transformers robust in intent classi- +fication? a missing ingredient in evaluation of out- +of-scope intent detection. In Proceedings of the 4th +Workshop on NLP for Conversational AI. + +Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and +Sameer Singh. 2021. Calibrate before use: Improv- +ing few-shot performance of language models. In +Proceedings of the 38th International Conference on +Machine Learning, ICßML. +Wenxuan Zhou, Fangyu Liu, and Muhao Chen. 2021. +Contrastive out-of-distribution detection for pre- +trained transformers. +In Proceedings of the 2021 +Conference on Empirical Methods in Natural Lan- +guage Processing, EMNLP. + +Appendix +A +Parameter-Efficient Transfer +Learning +Adapter The adapter approach inserts small train- +able adapter modules between transformer layers +while the parameters of the original network remain +fixed. The adapter module uses a bottleneck archi- +tecture which projects the input dimension h to a +lower-dimensional space specified by bottleneck +dimension r, followed by a nonlinear activation +function, and a up-projection to initial dimension +h. In this work, we attach adapter modules in two +places, i.e., after the projection following multi- +head attention and after the two feed-forward lay- +ers, following original implementation in (Houlsby +et al., 2019). Also, we use relu as a nonlinear func- +tion and layer normalization (Ba et al., 2016). +LoRA LoRA injects trainable low-rank matrices +into transformer layers to approximate the weight +updates. For a pre-trained weight matrix W ∈ +Rh×k, LoRA decompose ∆W += WdownWup +where Wdown ∈ Rh×r, Wup ∈ Rr×k are trainable +parameters. Specifically we attach LoRA in weight +matrices in the self attention module. Specifically +we attached LoRA to query and key vector follow- +ing the original implementation. +Prefix-Tuning Prefix tuning prepends l tunable +prefix vectors to the keys and values of the multi- +head attention at every layer. Following the original +implementation, we reparametrize the prefix matrix +of dimension h by a smaller matrix of dimension r +composed with a large feedforward neural network +with tanh as a nonlinear function. +B +Expanded Configuration Details +B.1 +Common Environment +For the experiments, 4 Tesla V100 SXM2 32GB +GPUs are used. The batch size is 8 per GPU. When +the GPU is too small for the batch size, we set +batch size to 4 and the number of gradient accu- +mulation steps to 2. We implemented our model +based on Transformers (Wolf et al., 2020) library +by Huggingface. Additionally, we used deepspeed +(Rajbhandari et al., 2020) to train models. Specifi- +cally, we used ZeRO2 with cpu offload on a 240GB +RAM CPU. In this setting, fine-tuning GPT-J on +CLINC150 full dataset takes about 7.1 GPU hours +per epoch. We used AdamW (Loshchilov and Hut- +ter, 2019) optimizer with epsilon 1e-6 and weight +dataset +#domain +#intent +#data (train/val/test/ood) +CLINC +10 +15 +15000/3000/4500/1000 +Banking +1 +77 +7812 / 1520 / 3040 +Table 3: Dataset statistics. +BERT-base +CLINC150 Full +ACC ↑ +FPR-95 ↓ +AUROC ↑ +Shu et al. (2017) +94.51±0.45 +23.33±1.27 +95.92±0.05 +Li et al. (2021) +96.1±0.37 +10.6±0.26 +97.72±0.03 +Zeng et al. (2021) +94.19±0.28 +23.4±1.97 +95.75±0.2 +Zhou et al. (2021) +95.79±0.13 +10.7±0.95 +97.6±0.11 +Shen et al. (2021) +96.66 +10.88 +97.43 +Cho et al. (2022) +96.96±0.39 +6.67 ±0.51 +98.27 ±0.16 +Table 4: +Results of each model trained on the +CLINC150 dataset. The best performance in each met- +ric is indicated in bold. +decay 0.1. Furthermore, we apply the cosine an- +nealing scheduler. For GPT-neo, the minimum +learning rate is 0. For GPT-J, the minimum learn- +ing rate is the one fifth of maximum learning rate. +B.2 +Number of Trainable-Parameter +For each method, a feed-forward layer is added at +the end of the model. In this section, we will calcu- +late the number of additional trainable parameters +of each training methods discussed in this paper. +Biases are omitted for better readability. +Adapter Adapter method adds four feed-forward +layers per transformer layer in the model. Two of +them are down-projection layers, and the others are +up-projection layers. When the original embedding +size of the model is h, the bottleneck dimension is +r, and the number of transformer layers is L, the +number of the trainable parameters of these layers +is calculated as 4Lhr, excluding the bias of the +added layers. +LoRA Similar to adapter, LoRA also adds feed- +forward layers per transformer layer. Therefore, +the number of the trainable parameters of 4Lhr. +However, the number of parameters are less than +adapter if h and r is the same, since LoRA does +not use bias of the feed-forward layers. +Prefix-Tuning There are two trainable elements +in prefix tuning. The first one is the prefix em- +beddings. When the number of prefixes is l, and +the embedding size is h, lh parameters are used +by the prefixes. Second, the reparametrization ma- +trix is also trained. The down-projection matrix +has hr parameters, when the reduced dimension +for reparametrization is r. The up-projection ma- +trix has 2Lhr parameters. As a result, there are + +Method +Parameters +Values +LoRA +Learning rate +2e-4 (GPT-Neo), 5e-5 (GPT-J) +Bottleneck dim +8 (GPT-Neo / 0.1%), 80 (GPT-Neo / 1%), 12 (GPT-J /0.1%), 128 (GPT-J / 1%) +Location +query, value +Adapter +Learning rate +8e-5 (GPT-Neo / 0.1%), 1e-4 (GPT-Neo / 1%), 5e-5 (GPT-J), 5e-4 (GPT-J / 0.1%), 1e-4 (GPT-J / 1%) +Bottleneck dim +6 (GPT-Neo / 0.1%), 80 (GPT-Neo / 1%), 11 (GPT-J /0.1%), 128 (GPT-J / 1%) +Location +after Multi-head, after Feed-forward, +Prefix-tuning +Learning rate +2E-4 (GPT-Neo), 5E-5 (GPT-J) +Bottleneck dim +12 (GPT-Neo / 0.1%), 160 (GPT-Neo / 1%), 20 (GPT-J /0.1%), 256 (GPT-J / 1%) +Prefix length +5, 10, 20 +Table 5: Hyper-parameter search for each model. +h(2Lr + l) trainable parameters on prefix tuning +approach. +B.3 +Hyper-parameter Search +Tab 5 summarizes hyper parameters for each +model. +C +Selecting SOTA OOD Method. +The Tab.4 summarizes the results with recently +proposed OOD approaches on BERT-base with +CLINC dataset. The best performing model (Cho +et al., 2022) is selected as the baseline. + diff --git a/RNFJT4oBgHgl3EQf3S0N/content/tmp_files/load_file.txt b/RNFJT4oBgHgl3EQf3S0N/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..97e4789663961c288aba7353660a0869b7c1363d --- /dev/null +++ b/RNFJT4oBgHgl3EQf3S0N/content/tmp_files/load_file.txt @@ -0,0 +1,785 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf,len=784 +page_content='Probing Out-of-Distribution Robustness of Language Models with Parameter-Efficient Transfer Learning Methods Hyunsoo Cho†, Choonghyun Park†, Junyeop Kim†, Hyuhng Joon Kim†, Kang Min Yoo†‡, and Sang-goo Lee† † Seoul National University, ‡ NAVER {johyunsoo,pch330,juny116,heyjoonkim,sglee}@europa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='snu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='kr {kangmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='yoo}@navercorp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='com Abstract As the size of the pre-trained language model (PLM) continues to increase, numer- ous parameter-efficient transfer learning meth- ods have been proposed recently to compen- sate for the tremendous cost of fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Despite the impressive results achieved by large pre-trained language models (PLMs) and various parameter-efficient transfer learning (PETL) methods on sundry benchmarks, it re- mains unclear if they can handle inputs that have been distributionally shifted effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In this study, we systematically explore how the ability to detect out-of-distribution (OOD) changes as the size of the PLM grows or the transfer methods are altered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Specifically, we evaluated various PETL techniques, including fine-tuning, Adapter, LoRA, and prefix-tuning, on three different intention classification tasks, each utilizing various language models with different scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 1 Introduction Pre-trained language models (PLM), which are pre- trained on large-scale corpora using transformer- based architectures (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2017), have achieved groundbreaking success on sundry bench- marks (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Rajpurkar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019a), establishing themselves as the standard neural model in countless applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Moreover, language models pre-trained with larger parameters on a rich volume of corpora tend to ex- hibit more intriguing potentials, such as the ability to capture world knowledge (Petroni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019), generate codes (Poesia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022), and even solve mathematical problems (Henighan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020), on top of understanding linguistic knowledge (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', semantic or syntactic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' To explore the apex of pre- trained language models (PLMs), the size of PLMs is growing exponentially and has reached billions to a trillion (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Chowdhery et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Fedus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Hoffmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Under these circumstances, the conventional method for transferring PLMs to a target task (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', fine-tuning) is now infeasible as it entails prohibitive costs to train and store the entire pa- rameters of large PLMs for every desired task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' To mitigate this issue, several recent parameter- efficient transfer learning (PETL) methods have been proposed to improve task scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For in- stance, adapter-based (Houlsby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022) approaches insert small neural mod- ules into each layer of the PLM and update those lightweight modules in the training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Inspired by the recent success of textual prompts (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020), prompt-based methods (Li and Liang, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Lester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Shin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020) concate- nate extra tunable tokens to the front of the input or hidden layers and update prepended soft prompts in the training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Despite these breakthroughs in NLP, even very recent anomaly detection studies (Cho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Shen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021) are still limited to relatively small bi-directional PLMs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', BERT, RoBERTa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Thus, how large-scale PLMs or auto-regressive PLMs cope with outliers is uncharted territory, naturally begging the following questions: Q1: Does increasing model size improve OOD detection performance without model parameters?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Q2: If so, does scaling the size of PLM makes the model robust enough to utilize them without any additional process?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Q3: Do fine-tuning and various PETL method- ologies display differences in OOD detection per- formance according to the size of PLMs?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Q4: Can the OOD detection methods from previ- ous works (usually for the bi-directional PLMs) be transferred to auto-regressive PLMs (GPT)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' To resolve these questions, this paper investi- gates the capability of large PLMs as outlier de- tectors from various perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Specifically, we compare the robustness to outliers with various transfer learning techniques on several OOD bench- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='11660v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='CL] 27 Jan 2023 marks: Full fine-tuning, LoRA (Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022), Adapter (Houlsby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019), and prefix-tuning (Li and Liang, 2021) on various auto-regressive PLMs with different sizes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', GPT2-S, M, L, XL (Radford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019), GPT-Neo (Black et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021) and GPT-J (Wang and Komatsuzaki, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' From in-depth investigations, we share several intriguing observations: (1) As the size of the PLM increases, the performance improves without any update of model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' However, it is still challeng- ing to use it without supervision since their perfor- mances still lag far behind compared to the fine- tuned small PLM (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', BERT-base).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (2) PETLs out- perform fine-tuning with sufficiently large PLMs in both IND and OOD metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (3) Lastly, lever- aging the information of the last hidden represen- tation, which is the most prevailing method for bi-directional PLM in recent OOD detection, does not transfer well in auto-regressive PLM, requiring a novel representation extracting technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We believe that these findings will help future anomaly detection studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2 Related Work Parameter-Efficient Transfer Learning is draw- ing considerable attention lately, emerging as an alternative strategy to fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Compared to fine-tuning, parameter-efficient transfer methods show superiority in the number of trainable param- eter usage while achieving performance analogous to fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Depending on the characteristics of the methods, parameter-efficient transfer methods can be categorized into Adapter-based and Prompt- Engineering approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Adapter (Houlsby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Pfeiffer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021) refers to a lightweight neural module in- jected within each layer of PLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The structure of the adapter generally consists of a bottleneck layer (down-projection and up-projection), a nonlinear function, a normalization layer, and a residual con- nection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The adapter has many different variants due to numerous design choices, such as the order or specifics of each component (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', which nor- malization technique will be used) and where the adapter will be attached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For example, LoRA (Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022) inserts low-rank decomposition matri- ces in each weight in self-attention (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2017) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', query, key, and value).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Another line of work, prompt engineering, casts the existing task as a text generation problem to fully leverage the capability of PLMs to predict the appropriate word in the given sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' This approach requires an empirical endeavor of opti- mizing the prompt to maximize a PLM’s perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Earlier works exploit handcrafted manual prompts (Schick and Schütze, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020) or by providing demonstrations to PLM 1 (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Raffel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' More recent work re- places the manual prompt with a soft prompt (Li and Liang, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Lester et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Shin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021), a machine trainable contin- uous vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The soft prompt is a more modular and versatile method that evades additional latency in the inference phase because it detaches the ad- ditionally trained parameters and solely employs the final output of the trained parameters as the prompt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' While former parameter-efficient transfer meth- ods showed noticeable achievements, their evalu- ations generally assume the train and test distribu- tions are identical (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' assumption);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' however, this condition is rarely satisfied in real-world sce- narios due to the diversity and volatility of user input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Consequently, if the model can not correctly handle distribution-shifted malicious input and mis- conceives it as an in-distribution (IND) example, it may lead to fatal accidents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Despite its practical importance, how large PLMs or parameter-efficient transfer learning cope with unknown input is poorly understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' This work aims to understand language models’ capabil- ities to detect outliers through parameter-efficient transfer learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 3 Probing OOD Robustness 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1 Backbones and Models To investigate the trend of OOD performance under varying scales of PLM, we consider three factors during backbone selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' They should be (1) publicly available, (2) reasonably large, and (3) share identical structures to eliminate factors other than size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Since recent large PLMs utilize auto- regressive objectives due to their computational complexity, we adopt six auto-regressive PLMs as the backbone of our experiments accordingly: GPT2 (S,M,L,XL), GPT-Neo, and GPT-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For the parameter-efficient transfer methods, we selected two methods: two adapter-based and one prompt engineering-based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Namely, Adapter (Houlsby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019), LoRA (Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022), and 1also termed as in-context learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Prefix-tuning (Li and Liang, 2021) are selected for the adapter approach, which is compatible with classification tasks, for the prompt approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We also report the performance of linear evaluation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', single layer perceptron (SLP) on top of PLMs, and fine-tuning, which act like a lower-bound and upper-bound, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='2 Dataset and Metrics Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We evaluate our model on two datasets, CLINC150 and Banking77, widely used in OOD detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' CLINC150 dataset (Larson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019) contains 150 class labels (15 intents for 10 do- mains), while Banking77 dataset (Casanueva et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020) consists of fine-grained 77 bank-related in- tents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Following the experimental settings from pre- vious works (Cho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Shu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Fei and Liu, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Lin and Xu, 2019), we validate our models in two different sce- narios: far-OOD setting and close-OOD setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For CLINC dataset, we train our model with the whole training dataset and test with an indepen- dent OOD test split from CLINC dataset, which does not overlap with 150 classes in the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Outliers in CLINC OOD split are distribu- tionally far from the training distribution (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022), so it is relatively easy to discern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For Banking77, we partition the dataset into 2 disjoint datasets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', IND / OOD dataset) based on the class label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Since both IND and OOD datasets orig- inated from the equivalent dataset, they share sim- ilar distributions and properties, making the task more demanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Thus, we refer to a CLINC OOD setting as far-OOD and split settings in Banking as close-OOD settings, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' To evaluate IND performance, we mea- sured the classification accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' And for OOD per- formance, we adopt two metrics commonly used in recent OOD detection literature: FPR@95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The false-positive rate at the true- positive rate of 95% (FPR@95) measures the prob- ability of classifying OOD input as IND input when the true-positive rate is 95%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' AUROC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The area under the receiver operating characteristic curve (AUROC) is a threshold-free metric that indicates the ability of the model to discriminate outliers from IND samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='3 OOD Evaluation Methods Evaluation in OOD detection is done via a scoring function, which outputs the appropriateness of the input into a single scalar value (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Then we com- pare p with the pre-set threshold δ to determine whether the input is an outlier or not: Iδ(x) = � IND p(x) ≥ δ OOD p(x) < δ, (1) In this paper, we evaluate the performance of our method in 4 different evaluation methods, which can be categorized into 2 higher branches: representation-based and logit-based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Logit-based approaches exploit the PLM’s predic- tion result extracted from the classification layer as their primary information to discern outliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Logit- based approaches are simple and have their own dominance in computational cost since it pursues OOD detection and general classification nigh si- multaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' MSP is a baseline method in this branch that employs the maximum softmax probability to score the appropriateness of the given input, based on the idea that the model will output more certain output (higher probability) to a normal sample (Hendrycks and Gimpel, 2017): p(x) = efi(x) ΣN j=1efj(x) , (2) where fi(x) refer to as max value from the classifi- cation layer (max logit value).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Energy is a variant of MSP, which calibrates logit value based on energy function (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020): p(x) = −E(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' f) = T · log ΣN i ef(x)/T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (3) Representation-based approaches, on the other hand, employ the hidden representation from PLM as their primary source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Since the size of the hidden representation is larger and inheres more copious information, they generally yield a more precise decision than logit-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' However, they require more inference time to derive a final score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We employed Mahalanobis distance-based and cosine similarity-based methods in this branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Mahalanobis distance refers to the distance be- tween the specific distribution and the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In OOD detection, we estimate the gaussian distribu- tion of the training dataset and utilize the minimum Mahalanobis distance to score the input suitability (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2018): p(x) = (h − µk)⊤Σ−1(h − µk), (4) (a) Performance on far-OOD setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (b) Performance on close-OOD setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Figure 1: OOD detection performance of PLMs without updating the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Setting Backbone Evaluation Method MSP Energy Mahal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Cosine CLINC Setting GPT2-S 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='22 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='79 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='63 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='34 GPT2-M 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='41 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='63 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='42 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='82 GPT2-L 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='21 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='77 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='93 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='57 GPT2-XL 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='48 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='99 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='28 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='66 GPT-Neo 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='04 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='72 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='59 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='64 GPT-J 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='34 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='50 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='91 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='20 Banking Split 25% GPT2-S 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='12 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='32 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='32 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='11 GPT2-M 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='74 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='78 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='03 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='56 GPT2-L 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='02 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='45 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='44 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='41 GPT2-XL 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='29 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='95 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='24 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='10 GPT-Neo 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='83 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='85 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='79 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='88 GPT-J 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='11 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='10 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='66 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='80 Table 1: AUROC of each PLMs trained with LoRA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Energey function consistently outperforms other methods .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' where training distribution is (N(µi, Σ) for i ∈ i = {1, 2, · · · , |C|}), and k refers to a index of minimum mahalanobis distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Cosine Similarity method utilizes the cosine dis- tance between the representation of the given input (z(x)) and the nearest neighbor z(xnn) (Tack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020): p(x) = sim(z(x), z(xnn)) (5) 4 Analysis In this section, we share several intriguing findings and insights from various settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1 OOD Robustness of PLMs without Supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In this experiment, we investigate the OOD detec- tion capability of PLMs without parameter tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Precisely, we extract the final layer representation from each frozen PLM and evaluate their perfor- mance via representation-based evaluation meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (Logit-based evaluation methods are not used as they require additional training of the classifi- cation layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=') Figure 1 summarizes the results in two scenarios (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', far-OOD and close-OOD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We verified the correlation between the size of PLMs and their OOD detection ability, but utilizing them without parameter supervision is roughly impossi- ble since they still lag far behind the small super- vised methods (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', BERT-base with Mahalanobis evaluation) in a barebone setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Moreover, perfor- mance improvement from the scaling saturates in a more harsh setting (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', close-OOD), displaying an unbridgeable gap with the fine-tuned model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='2 Evaluation methods for auto-regressive PLMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Many recent OOD works (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Shen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021) leverage hidden representation-based 98 91 84 77 70 GPT2-S GPT2-M GPT2-L GPT2-XLGPT-NeO GPT-J (117M) (345M) (762M) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5B) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='7B) (6B) Mahalanobis Distance Cosine Similarity BERT-base (finetuned)94 83 72 61 50 GPT2-S GPT2-M GPT2-L GPT2-XLGPT-Neo GPT-J (117M) (345M) (762M) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5B) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='7B) (6B) Mahalanobis Distance Cosine Similarity BERT-base (finetuned)Setting Method # Params.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Backbone GPT2 (S) GPT2 (M) GPT2 (L) GPT2 (XL) GPT Neo GPT-J CLINC (far-ood) Linear (SLP) 0% 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='03 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='39 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='47 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='55 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='44 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='94 Fine-tuning 100% 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='84 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='71 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='24 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='33 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='01 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='41 LoRA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1% 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='00 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='54 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='66 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='72 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='14 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5% 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='41 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='04 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='52 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='45 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='12 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='89 1% 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='13 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='89 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='61 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='40 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='11 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='50 Adapter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1% 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='62 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='52 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='74 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='71 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='81 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5% 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='64 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='07 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='86 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='94 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='98 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='37 1% 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='79 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='63 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='77 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='99 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='12 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='50 Prefix 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1% 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='53 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='93 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='38 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='88 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='25 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5% 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='91 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='96 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='78 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='88 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='81 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='92 1% 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='97 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='50 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='69 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='81 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='98 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='62 Banking split 25% (close-ood) Linear (SLP) 0% 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='97 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='17 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='46 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='59 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='55 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='12 Fine-tuning 100% 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='06 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='06 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='14 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='23 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='54 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='73 LoRA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='18 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='74 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='65 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='58 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='29 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='16 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='98 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='54 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='04 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='55 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='65 1% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='39 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='39 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='45 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='59 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='81 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='29 Adapter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='97 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='24 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='90 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='69 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='26 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5% 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='90 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='63 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='18 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='24 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='61 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='83 1% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='32 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='78 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='41 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='95 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='41 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='37 Prefix 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='22 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='92 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='96 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='48 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='9 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='85 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='55 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='84 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='34 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='82 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='99 1% 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='09 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='65 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='38 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='74 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='66 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='39 Table 2: AUROC of various PETL methods with various number of parameters evaluated by the energy function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' evaluation, as they generally surpass logit-based evaluations (Podolskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The reason- able conjecture behind their success is that hid- den representations have more copious information than the logit value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' However, in auto-regressive PLMs, logit-based evaluations (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', MSP and En- ergy) outperform representation-based methods (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', Mahalanobis distance and cosine similarity), as shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The reasonable conjecture for this phenomenon is due to the characteristic of the language model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Unlike bi-directional mod- els (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', BERT, RoBERTa, DeBERTa), decoder models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', GPT and its variants) do not have [CLS] embedding, which assembles the token em- beddings to capture holistic information (Devlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Therefore, auto- regressive PLMs generally utilize the last token embedding as a final feature embedding replacing [CLS] embedding of encoder-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' While the last token of GPT is befitted for predicting the next token, however, it cannot extract the holistic semantics of the sentence suitably, unlike [CLS] embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We believe extracting a better repre- sentation through various pooling (Wang and Kuo, 2020) methods might be a possible avenue for auto- regressive models to improve the OOD robustness further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='3 PETLs VS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Fine-tuning In this experiment, we investigate the performance gap between various PETL methods (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', Adapter, LoRA, prefix-tuning) and model fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' To compare the performance of each method under similar circumstances, we set every PETL method to utilize a similar number of parameters sufficient enough to reach maximum accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Moreover, we utilized the energy function to evaluate each method as they displayed the best performance among other evaluation methods, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', cosine, Ma- halanobis, and MSP, in the previous experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Table 2 summarizes the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' From this experiment, we observed that PETL methods are more robust than fine-tuning with reasonably large PLMs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', GPT-J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Specifically, most PELT methods on GPT-J outperform fine- tuning with proper tunable parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Neverthe- less, size is not the ultimate answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' While it is clear that the scale of a model is an essential factor in OOD robustness, larger models are still vulnera- ble to close-OOD inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The capability to detect far-OOD inputs (far from the training distribution) 95 96 97 98 99 GPT2-S GPT2-M GPT2-L GPT2-XLGPT-Neo GPT-J Fine-tuned LoRA Adapter Prefix (a) Performance on far-OOD setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 89 90 91 92 93 94 95 96 GPT2-S GPT2-M GPT2-L GPT2-XL GPT-Neo GPT-J Fine-tuned LoRA Adapter Prefix (b) Performance on close-OOD setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Figure 2: OOD detection performance of PLMs without updating the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' improves proportionally as the size grows, while the ability to identify close-OOD input improves rather trivially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' PLM’s vulnerability to close-OOD has already been reported in other studies (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022), and this may be related to shortcut learning (Geirhos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020) that predicts with high probability by looking at specific words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Gen- erating OOD data with particular keywords or uti- lizing another pretext task, such as (Moon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2021), can be worthy approaches to alleviate such phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' A suitable OOD approach is neces- sary to alleviate the aforementioned issue, as it can further boost the robustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We conduct addi- tional experiments with PETLs on three different numbers of tunable parameters: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='5%, and 1% of the PLM parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Figure 2 summarizes the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' With sufficient parameters to reach maximum performance, there is no meaningful dif- ference or improvement within each methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Also, empirically, we confirmed that LoRA is the most stable during learning and that prefix-tuning fluctuates severely according to learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 5 Conclusion and Future Work In this study, we showed that the scale of the lan- guage model is an important factor in OOD ro- bustness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Moreover, we also showed that various methodologies outperform fine-tuning when ap- plied to sufficiently large PLM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Our follow-up work seeks to create a methodology that allows large PLMs to be more robust to OOD input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The per- formance improvement that can be achieved by the size of PLM and OOD technique is orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In line with the growing size of PLM, the OOD tech- nique needs to be developed in a more parameter- efficient way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' As such, developing a proper OOD technique compatible with the parameter-efficient transfer methods is our proper goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' References Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin- ton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Layer normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' arXiv preprint arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='06450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh- Tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Language models are few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Advances in neural information processing systems, 33:1877–1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Iñigo Casanueva, Tadas Temˇcinas, Daniela Gerz, Matthew Henderson, and Ivan Vuli´c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Efficient intent detection with dual sentence encoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Pro- ceedings of the 2nd Workshop on Natural Language Processing for Conversational AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Hyunsoo Cho, Choonghyun Park, Jaewook Kang, Kang Min Yoo, Tae-uk Kim, and Sang-goo Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Enhancing out-of-distribution detection in natural language understanding via implicit layer en- semble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Findings of the Association for Computa- tional Linguistics: EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Palm: Scaling language modeling with pathways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' arXiv preprint arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='02311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' BERT: pre-training of deep bidirectional transformers for language under- standing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, NAACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' William Fedus, Barret Zoph, and Noam Shazeer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Journal of Machine Learning Research, 23(120):1–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Geli Fei and Bing Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Breaking the closed world assumption in text classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceed- ings of the 2016 Conference of the North American Chapter of the Association for Computational Lin- guistics, NAACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Tianyu Gao, Adam Fisch, and Danqi Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Making pre-trained language models better few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 59th Annual Meet- ing of the Association for Computational Linguistics, ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Shortcut learning in deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Nature Machine Intelligence, 2(11):665–673.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Dan Hendrycks and Kevin Gimpel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' A baseline for detecting misclassified and out-of-distribution examples in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In 5th International Conference on Learning Representations, ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Scaling laws for autoregressive generative modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='14701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Jordan Hoffmann, Sebastian Borgeaud, Arthur Men- sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther- ford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Train- ing compute-optimal large language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='15556.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Parameter-efficient transfer learning for nlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In International Conference on Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Edward J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Lora: Low-rank adaptation of large language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In The Tenth International Conference on Learning Representations, ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Zhengbao Jiang, Frank F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Xu, Jun Araki, and Graham Neubig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' How can we know what language models know.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Transactions of the Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Taeuk Kim, Kang Min Yoo, and Sang-goo Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Self-guided contrastive learning for BERT sentence representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 59th Annual Meeting of the Association for Computational Lin- guistics ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Stefan Larson, Anish Mahendran, Joseph J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Peper, Christopher Clarke, Andrew Lee, Parker Hill, Jonathan K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Kummerfeld, Kevin Leach, Michael A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Laurenzano, Lingjia Tang, and Jason Mars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' An evaluation dataset for intent classification and out-of-scope prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan- guage Processing EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' A simple unified framework for detecting out- of-distribution samples and adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, pages 7167–7177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Brian Lester, Rami Al-Rfou, and Noah Constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The power of scale for parameter-efficient prompt tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Tian Li, Xiang Chen, Shanghang Zhang, Zhen Dong, and Kurt Keutzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Cross-domain senti- ment classification with contrastive learning and mu- tual information maximization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In ICASSP 2021- 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8203–8207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Xiang Lisa Li and Percy Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Prefix-tuning: Optimizing continuous prompts for generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 59th Annual Meeting of the Asso- ciation for Computational Linguistics, ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Ting-En Lin and Hua Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Deep unknown in- tent detection with margin loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 57th Conference of the Association for Computa- tional Linguistics, ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Weitang Liu, Xiaoyun Wang, John Owens, and Yix- uan Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Energy-based out-of-distribution de- tection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Advances in Neural Information Processing Systems, 33:21464–21475.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Gpt understands, too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='10385.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Ilya Loshchilov and Frank Hutter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Decoupled weight decay regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In 7th International Conference on Learning Representations, ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Seung Jun Moon, Sangwoo Mo, Kimin Lee, Jaeho Lee, and Jinwoo Shin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' MASKER: masked key- word regularization for reliable text classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Thirty-Fifth AAAI Conference on Artificial Intel- ligence, AAAI 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Miller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Language models as knowledge bases?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing, EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Adapterfusion: Non-destructive task composition for transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 16th Conference of the European Chapter of the Associ- ation for Computational Linguistics, EACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Eka- terina Artemova, and Irina Piontkovskaya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Re- visiting mahalanobis distance for transformer-based out-of-domain detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Thirty-Fifth AAAI Con- ference on Artificial Intelligence, AAAI 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gul- wani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Synchromesh: Reliable code genera- tion from pre-trained language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In The Tenth International Conference on Learning Representa- tions, ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Lan- guage models are unsupervised multitask learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' OpenAI blog, 1(8):9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Exploring the limits of transfer learning with a unified text-to-text trans- former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Journal of Machine Learning Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Zero: Memory optimiza- tions toward training trillion parameter models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In SC20: International Conference for High Perfor- mance Computing, Networking, Storage and Anal- ysis, pages 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Squad: 100, 000+ questions for machine comprehension of text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2016 Conference on Empirical Methods in Natu- ral Language Processing, EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Timo Schick and Hinrich Schütze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Exploiting cloze-questions for few-shot text classification and natural language inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 16th Conference of the European Chapter of the As- sociation for Computational Linguistics, EACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia Jin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Enhancing the generalization for intent classification and out-of-domain detection in SLU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Taylor Shin, Yasaman Razeghi, Robert L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Logan IV, Eric Wallace, and Sameer Singh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Autoprompt: Eliciting knowledge from language models with au- tomatically generated prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natu- ral Language Processing, EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Lei Shu, Hu Xu, and Bing Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' DOC: deep open classification of text documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2017 Conference on Empirical Methods in Natu- ral Language Processing, EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jin- woo Shin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' CSI: novelty detection via con- trastive learning on distributionally shifted instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Advances in Neural Information Processing Sys- tems 33, NeurIPS 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Advances in neural information pro- cessing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Superglue: A stickier benchmark for general-purpose language un- derstanding systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Advances in neural informa- tion processing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Bowman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' GLUE: A multi-task benchmark and analysis plat- form for natural language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In 7th International Conference on Learning Representa- tions, ICLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Ben Wang and Aran Komatsuzaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' GPT- J-6B: A 6 Billion Parameter Autoregressive Language Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='com/ kingoflolz/mesh-transformer-jax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Bin Wang and C-C Jay Kuo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Sbert-wk: A sen- tence embedding method by dissecting bert-based word models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:2146–2157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Trans- formers: State-of-the-art natural language process- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2020 Conference on Em- pirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Asso- ciation for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu, Yanan Wu, Hong Xu, Huixing Jiang, and Weiran Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Modeling discriminative representations for out-of-domain detection with supervised contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 59th Annual Meet- ing of the Association for Computational Linguistics, ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Jianguo Zhang, Kazuma Hashimoto, Yao Wan, Zhiwei Liu, Ye Liu, Caiming Xiong, and Philip Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Are pre-trained transformers robust in intent classi- fication?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' a missing ingredient in evaluation of out- of-scope intent detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 4th Workshop on NLP for Conversational AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Calibrate before use: Improv- ing few-shot performance of language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 38th International Conference on Machine Learning, ICßML.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Wenxuan Zhou, Fangyu Liu, and Muhao Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Contrastive out-of-distribution detection for pre- trained transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan- guage Processing, EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Appendix A Parameter-Efficient Transfer Learning Adapter The adapter approach inserts small train- able adapter modules between transformer layers while the parameters of the original network remain fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The adapter module uses a bottleneck archi- tecture which projects the input dimension h to a lower-dimensional space specified by bottleneck dimension r, followed by a nonlinear activation function, and a up-projection to initial dimension h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In this work, we attach adapter modules in two places, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', after the projection following multi- head attention and after the two feed-forward lay- ers, following original implementation in (Houlsby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Also, we use relu as a nonlinear func- tion and layer normalization (Ba et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' LoRA LoRA injects trainable low-rank matrices into transformer layers to approximate the weight updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For a pre-trained weight matrix W ∈ Rh×k, LoRA decompose ∆W = WdownWup where Wdown ∈ Rh×r, Wup ∈ Rr×k are trainable parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Specifically we attach LoRA in weight matrices in the self attention module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Specifically we attached LoRA to query and key vector follow- ing the original implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Prefix-Tuning Prefix tuning prepends l tunable prefix vectors to the keys and values of the multi- head attention at every layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Following the original implementation, we reparametrize the prefix matrix of dimension h by a smaller matrix of dimension r composed with a large feedforward neural network with tanh as a nonlinear function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' B Expanded Configuration Details B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1 Common Environment For the experiments, 4 Tesla V100 SXM2 32GB GPUs are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The batch size is 8 per GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' When the GPU is too small for the batch size, we set batch size to 4 and the number of gradient accu- mulation steps to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We implemented our model based on Transformers (Wolf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020) library by Huggingface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Additionally, we used deepspeed (Rajbhandari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2020) to train models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Specifi- cally, we used ZeRO2 with cpu offload on a 240GB RAM CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In this setting, fine-tuning GPT-J on CLINC150 full dataset takes about 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1 GPU hours per epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' We used AdamW (Loshchilov and Hut- ter, 2019) optimizer with epsilon 1e-6 and weight dataset #domain #intent #data (train/val/test/ood) CLINC 10 15 15000/3000/4500/1000 Banking 1 77 7812 / 1520 / 3040 Table 3: Dataset statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' BERT-base CLINC150 Full ACC ↑ FPR-95 ↓ AUROC ↑ Shu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (2017) 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='51±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='45 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='33±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='27 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='92±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='05 Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (2021) 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='37 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='26 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='72±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='03 Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (2021) 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='19±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='28 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='4±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='97 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='75±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='2 Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (2021) 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='79±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='13 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='95 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='11 Shen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (2021) 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='66 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='88 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='43 Cho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' (2022) 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='96±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='39 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='67 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='51 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='27 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='16 Table 4: Results of each model trained on the CLINC150 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The best performance in each met- ric is indicated in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' decay 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Furthermore, we apply the cosine an- nealing scheduler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For GPT-neo, the minimum learning rate is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' For GPT-J, the minimum learn- ing rate is the one fifth of maximum learning rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='2 Number of Trainable-Parameter For each method, a feed-forward layer is added at the end of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' In this section, we will calcu- late the number of additional trainable parameters of each training methods discussed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Biases are omitted for better readability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Adapter Adapter method adds four feed-forward layers per transformer layer in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Two of them are down-projection layers, and the others are up-projection layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' When the original embedding size of the model is h, the bottleneck dimension is r, and the number of transformer layers is L, the number of the trainable parameters of these layers is calculated as 4Lhr, excluding the bias of the added layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' LoRA Similar to adapter, LoRA also adds feed- forward layers per transformer layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Therefore, the number of the trainable parameters of 4Lhr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' However, the number of parameters are less than adapter if h and r is the same, since LoRA does not use bias of the feed-forward layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Prefix-Tuning There are two trainable elements in prefix tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The first one is the prefix em- beddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' When the number of prefixes is l, and the embedding size is h, lh parameters are used by the prefixes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' Second, the reparametrization ma- trix is also trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The down-projection matrix has hr parameters, when the reduced dimension for reparametrization is r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The up-projection ma- trix has 2Lhr parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' As a result, there are Method Parameters Values LoRA Learning rate 2e-4 (GPT-Neo), 5e-5 (GPT-J) Bottleneck dim 8 (GPT-Neo / 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 80 (GPT-Neo / 1%), 12 (GPT-J /0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 128 (GPT-J / 1%) Location query, value Adapter Learning rate 8e-5 (GPT-Neo / 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 1e-4 (GPT-Neo / 1%), 5e-5 (GPT-J), 5e-4 (GPT-J / 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 1e-4 (GPT-J / 1%) Bottleneck dim 6 (GPT-Neo / 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 80 (GPT-Neo / 1%), 11 (GPT-J /0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 128 (GPT-J / 1%) Location after Multi-head, after Feed-forward, Prefix-tuning Learning rate 2E-4 (GPT-Neo), 5E-5 (GPT-J) Bottleneck dim 12 (GPT-Neo / 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 160 (GPT-Neo / 1%), 20 (GPT-J /0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='1%), 256 (GPT-J / 1%) Prefix length 5, 10, 20 Table 5: Hyper-parameter search for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' h(2Lr + l) trainable parameters on prefix tuning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='3 Hyper-parameter Search Tab 5 summarizes hyper parameters for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' C Selecting SOTA OOD Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content='4 summarizes the results with recently proposed OOD approaches on BERT-base with CLINC dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=' The best performing model (Cho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} +page_content=', 2022) is selected as the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RNFJT4oBgHgl3EQf3S0N/content/2301.11660v1.pdf'} diff --git a/S9E3T4oBgHgl3EQfZwr5/vector_store/index.faiss b/S9E3T4oBgHgl3EQfZwr5/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..5ac3cabc4f5db7e53491e8da3aa86c4da8f42d35 --- /dev/null +++ b/S9E3T4oBgHgl3EQfZwr5/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:de78a76bd184a64067703f87e351ff8517a402fcd39c43891a5f2aca09a85683 +size 4194349 diff --git a/TtE3T4oBgHgl3EQfEAn3/vector_store/index.faiss b/TtE3T4oBgHgl3EQfEAn3/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..466e011a828351fb15d1b23ddaa287f86234f47e --- /dev/null +++ b/TtE3T4oBgHgl3EQfEAn3/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3fe0b03a6bfd11be246877ef878e892fa5b2d69aad6b3324c3b4436048d41ba +size 8585261 diff --git a/U9E_T4oBgHgl3EQfxhwl/vector_store/index.faiss b/U9E_T4oBgHgl3EQfxhwl/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..e320954b9ed679831e73ac13db56213c0d701a71 --- /dev/null +++ b/U9E_T4oBgHgl3EQfxhwl/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f4bcfbe5b76fa7fa03115ac191ec14158c6b0e8b9695cedd3b1a6e9f619421bc +size 2752557 diff --git a/XNFPT4oBgHgl3EQfsDWM/content/tmp_files/2301.13147v1.pdf.txt b/XNFPT4oBgHgl3EQfsDWM/content/tmp_files/2301.13147v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..6ad606beeb80e12f92ccae9faaea7b94e04b99ab --- /dev/null +++ b/XNFPT4oBgHgl3EQfsDWM/content/tmp_files/2301.13147v1.pdf.txt @@ -0,0 +1,808 @@ +arXiv:2301.13147v1 [math.CV] 30 Jan 2023 +NEARGEODESICS IN GROMOV HYPERBOLIC JOHN DOMAINS +IN INFINITE DIMENSIONAL BANACH SPACES +VASUDEVARAO ALLU AND ABHISHEK PANDEY +Abstract. Rasila, Talponen and Zhang in [Proc. Amer. Math. Soc. 146 (2018), +3863–3873] have proposed a general question that which Banach space properties +can be characterized by the corresponding quasihyperbolic metric? A domain D in +a Banach space E is said to be Gromov hyperbolic if it is δ ≥ 0-hyperbolic with +respect to quasihyperbolic metric. In this paper we show that every neargeodesic +in a Gromov hyperbolic John domain in infinite dimensional Banach space is a +cone arc. Thus, our result gives an answer to the above problem in the sense +that it gives a necessary condition for a John domain to be a Gromov hyperbolic +space in infinite dimensional Banach space. Moreover, our main result gives an +improvement of a result of Li [Theorem 1, Int. J. Math. 25 (2014)]. +1. Introduction +Let Ω be an open ball or half space in Rn, we denote hΩ be the hyperbolic metric +in Ω with constant curvature −1. If Ω is an upper half plane then hΩ is defined in +Ω by the means of the density +ρ(z) = +1 +Im z = +1 +d(z, ∂Ω). +This density can be used to introduce an analogue of the hyperbolic metric in an +arbitrary subdomain D in Rn. The quasihyperbolic metric in Rn is a generalization +of hyperbolic metric, which was introduced by Gehring and Palka [3] and they +have studied the characterization of domains D in the one point compactification +of Rn which are quasiconformally equivalent to ball in Rn. Infact such domains are +homogeneous via quasiconformal mappings. Gehring and Palka [3] have proved that +the maximal dilatation of such quasiconformal mappings can be estimated in terms +of quasihyperbolic metric and using these estimates they obtained useful results +related to the homogeneity of domains with respect to quasiconformal family. Thus, +the importance of the quasihyperbolic metric is quite clear as it is well-behaved with +the quasiconformal mappings. The quasihyperbolic metric can be naturally defined +on a wide range of metric spaces, including infinite dimensional Banach spaces. The +study of this concept is known as free quasiconformality which has been introduced +and developed by Väisälä (see [11, 12]). +In this paper, we mainly focus on the geometry of neargeodesics in John domains +in infinite dimensional Banach spaces. +File: QHG-P-1.tex, printed: 2023-1-31, 1.52 +2010 Mathematics Subject Classification. Primary 30C65, 30L10, 30F45. Secondary 30C20. +Key words and phrases. Quasihyperbolic metric, Gromov hyperbolic spaces, John domain, near- +geodesics, quasiconformal mappings, quasihyperbolic geodesic, cone arc. +1 + +2 +Vasudevarao Allu and Abhishek Pandey +2. Preliminaries +In this section we mention some basic as well as advanced concepts and related +results in the literature, which are useful to state and prove our main result. +2.1. Metric Geometry. Let (X, d) be a metric space. A curve is a continuous +function γ : [a, b] → X. If a curve γ : [a, b] → X is an embedding of [a, b], then it is +called an arc. Let P denote set of all partitions a = t0 < t1 < t2 < · · · < tn = b of +the interval [a, b]. The length of the curve γ in the metric space (X, d) is +ld(γ) = sup +P +n−1 +� +k=0 +d(γ(tk), γ(tk+1)). +A curve is said to be rectifiable if ld(γ) < ∞. +A metric space X is said to be +rectifiably connected if every pair of points x, y ∈ X can be joined by a rectifi- +able curve. For a rectifiable curve γ we define arc length s : [a, b] → [0, ld(γ)] by +s(t) = ld(γ|[a,t]). The arc length function is of bounded variation. For any rectifiable +curve γ : [a, b] → X, there is a unique map γs : [0, ld(γ)] → X such that γ = γs ◦ s, +and such a curve γs is called the arclength parametrization of γ. +For x, y ∈ X, the inner length metric λX(x, y) is defined by +λX(x, y) = inf{ld(γ) : γ is a rectifiable arc joining x and y}. +Let ρ : X → [0, ∞] be a Borel function. The ρ-length of a rectifiable curve γ is +� +γ +ρ ds = +� b +a +ρ(γ(t)) ds(t) = +� ld(γ) +0 +ρ ◦ γs(t) dt. +If X is rectifiably connected then ρ induces a distance function which is defined +by +dρ(x, y) = inf +� +γ +ρ ds, +where infimum is taken over all rectifiable curves joining x and y in X. We note +that, in general, dρ need not to be a metric however dρ is a metric if ρ is positive and +continuous. If dρ is a metric, we say (X, dρ) is a conformal deformation of (X, d) by +the conformal factor ρ. +A curve γ : [a, b] → X is said to be geodesic if for all t, t′ ∈ [a, b], +d(γ(t), γ(t′)) = |t − t′|. +A metric space X is said to be a geodesic metric space if every pair of points x, y ∈ X +can be joined by a geodesic, and is said to be proper if every closed ball is compact. +A metric space (X, d) is said to be intrinsic or path metric space/ or length metric +space if for all x, y ∈ X, we have +d(x, y) = λX(x, y). +Definition 2.1. A metric space (X, d) is said to be minimally nice if it is locally +compact, rectifiably connected and non-complete. + +Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces +3 +2.2. Gromov hyperbolicity. Gromov hyperbolicity was introduced by Gromov in +the 1980s. It is often assumed that the under lying space is geodesic metric space +and usually it is a proper metric space. As we will see later that infinite dimensional +Banach space with quasihyperbolic metric need not be geodesic space, therefore we +adapt the definition of Gromov hyperbolicity which works well with the non geodesic +spaces. For this, we refer to the work of Väisälä [16] where the concept of Gromov +product has been used. +Definition 2.2. Let (X, d) be a metric space and let p ∈ X. The Gromov Product +(x|y)p of x, y ∈ X with respect to p is defined by +(x|y)p = 1 +2 +� +d(x, p) + d(y, p) − d(x, y) +� +. +Therefore, (x|y)p measures to what extent the triangle inequality for the triangle +∆xyp is far from being an equality. +Definition 2.3. Let δ ≥ 0. A metric space (X, d) is said to be δ-hyperbolic if for +every x, y, z, p ∈ X, the following inequality holds +(x|z)p ≥ min +� +(x|y)p, (y|z)p +� +− δ. +A metric space (X, d) is said to be Gromov hyperbolic if it is δ-hyperbolic for some +δ ≥ 0. +2.3. Examples. Clearly, R is a 0-hyperbolic. Any tree T is 0-hyperbolic. The unit +disk with hyperbolic metric is Gromov hyperbolic with δ = log 3. The complex +plane is not Gromov hyperbolic. +We shall mention an important result here due to Väisälä [15, 3.7], which is known +as stability theorem. Infact, stability theorem says that in an intrinsic hyperbolic +space any two quasi-isometric paths with same initial and terminal points x, y runs +close to each other even if |x − y| is large. To mention this theorem we first need to +mention the concept of quasi-isometry and Hausdorff distance. +Definition 2.4. Let X and Y be two non-empty subsets of a metric space (M, d). +We define their Hausdorff distance dH(X, Y ) by +dH(X, Y ) = max +� +sup +x∈X +d(x, Y ), sup +y∈Y +d(X, y) +� +, +where d(a, B) = infb∈B d(a, b) denotes the distance from a point a ∈ M to a subset +B ⊂ M. +Definition 2.5. Let λ ≥ 1 and µ ≥ 0 and (X, d) and (Y, d′) be metric spaces. We +say that a map f : X → Y is a (λ, µ)-quasi-isometry if +λ−1d(x, y) − µ ≤ d′(f(x), f(y)) ≤ λd(x, y) + µ +for all x, y ∈ X. In the case where f : I → Y is a map of an real interval I, we say +that such a map (λ, µ)-quasi-isometric path. +Remark 2.1. An arc γ joining x and y in a metric space X is said to be λ- +quasigeodesic, λ ≥ 1, if +l(γ[u, v]) ≤ λd(u, v) + +4 +Vasudevarao Allu and Abhishek Pandey +for all u, v ∈ γ. In such a case the arc length parametrization γs : [0, l(γ)] → γ +satisfies the inequality +λ−1|t − t′| ≤ d(γs(t), γs(t′)) ≤ λ|t − t′|. +Thus γ is (λ, 0)-quasi-isometry. +The following theorem (see [15, 3.7]) is vital to prove our main result. +Theorem A. Suppose that X is an intrinsic δ-hyperbolic space and that γ and α +are (λ, µ)-quasi-isometric path with same initial and terminal points. Then there +exists a constant M such that +dH(γ, α) ≤ M, +where M depends only on δ, λ, µ and dH denote the Hausdorff distance between γ +and α. +Next we mention an important result due to Väisälä (see [16, Theorem 3.18]) +which says that quasi-isometries preserves hyperbolicity. +Theorem 2.1. Let X and Y be intrinsic spaces and let f : X → Y be a (λ, µ)- +quasi-isometry. If Y is δ-hyperbolic, then X is δ′-hyperbolic with δ′ = δ′(δ, λ, µ). +2.4. Quasihyperbolic metric. In view of our frame work, we consider the quasi- +hyperbolic metric in the setting of Banach spaces. +Definition 2.6. Let E be a real Banach space of dimension at least 2 and let D ⊊ E +be a domain (open, connected nonempty set). Let the metric induced by norm on +D is |.|. Define k : D → (0, ∞) by +k(z) = +1 +∆(z) = +1 +d(z, ∂D). +Define the quasihyperbolic length of a rectifiable curve γ in D by +lk(γ) = +� +γ +ρ(z) ds = +� +γ +ds +d(z, ∂D). +Let kD denote the quasihyperbolic metric in D which is defined by +(2.1) +kD(x, y) = inf +γ lk(γ) +where the infimum is taken over all rectifiable curves γ in D joining x to y. +Observe that (D, kD) is always an intrinsic space. For further geometric properties +of hyperbolic metric, we refer to [4] and [21]. Quasihyperbolic metric satisfies the +following properties. +(i) kD = hD when D is a half space in Rn. +(ii) kD ≤ hD ≤ 2kD when D is a ball in Rn. +Remark 2.2. [2, Proposition 2.8] If (X, d) is a locally compact, incomplete and +rectifiably connected metric space then (X, kX) is a complete, proper and geodesic +metric space. + +Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces +5 +Finally, we recall some estimates for the quasihyperbolic metric which have been +first introduced by Gehring and Palka [3, 2.1] in Rn. Later, Väisälä [11, Lemma +2.2] have proved these inequalities in the case of Banach spaces. Let D ⊊ E be a +domain and x, y ∈ D and let γ be a rectifiable curve joining x and y. Then we have +the following: +(2.2) +k(x, y) ≥ log +� +1 + +|x − y| +min{∆(x), ∆(y)} +� +≥ log ∆(y) +∆(x) +and +(2.3) +lk(γ) ≥ log +� +1 + +l(γ) +min{∆(x), ∆(y)} +� +. +We are going to use frequently (2.2) and (2.3) to prove our main results. +2.5. Quasi-hyperbolic geodesic. A rectifiable curve γ from a to b in D is said to +be quasihyperbolic geodesic if kD(a, b) = lk(γ). Obviously each subarc of a quasi- +hyperbolic geodesic is again a geodesic. Observe that quasi-hyperbolic geodesic is +curve γ for which the infimum in (2.1) is attained. +At this juncture, the natural question is does quasi-hyperbolic geodesic always +exists? A result of Gehring and Osgood [4] shows that for a proper subdomain D +in Rn, the answer to this question is affirmative. For important results on quasihy- +perbolic geodesics in domain in Rn, we refer to G. Martin [9]. Moreover, Martin [9] +has proved that quasihyperbolic geodesics in Rn are C1 smooth. It is well known +that a quasihyperbolic geodesic between any two points exists if dim (E) is finite +(see [4, Lemma 1]). Note that the quasihyperbolic geodesic may not exists in an +infinite-dimensional Banach spaces (see [11, Example 2.9] and [13, 3.5]). However, +Väisälä [15, Theorem 2.1] has proved the existence of quasihyperbolic geodesic when +E is reflexive Banach space and D is a convex domain. Furthermore, in 2011, Martio +and Väisälä [10, Theorem 2.11] proved the existence as well as uniqueness of quasi- +hyperbolic geodesic when E is uniformly convex Banach space and D is a convex +domain. +2.6. Some special domains. +2.7. Uniform Domains. +Definition 2.7. Let c ≥ 1. A domain D in E is said to be c-uniform in the norm +metric if for each pair of points x, y ∈ D, there exists a rectifiable arc γ in D joining +x to y such that +(i) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D), for all z ∈ γ, and +(ii) l(γ) ≤ c|x − y|, +where l(γ) denotes the arc length of γ in (D, |. |), where |. | is metric induced by +norm, and γ[x, z] denotes the part of γ between x and z. Also we say that curve γ +is a double c-cone arc. + +6 +Vasudevarao Allu and Abhishek Pandey +2.8. Inner uniform domains. +Definition 2.8. Let c ≥ 1. A domain D is said to be c-inner uniform in the norm +metric if for each pair of points x, y ∈ D, there exists a rectifiable arc γ in D joining +x to y such that +(i) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D), for all z ∈ γ, +(ii) l(γ) ≤ cλD(x, y). +2.9. John Domain. +Definition 2.9. Let c ≥ 1. A domain D is said to be c-John in the norm metric if +for each pair of points x, y ∈ D there exists a rectifiable curve γ in D joining x to y +such that for all z ∈ γ +(2.4) +min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D) +and we say that such a curve γ is a c-cone arc. +Remark 2.3. We mention some of the remarks with regards to the connection +between the aforesaid domains. +(i) c-uniform implies inner c-uniform implies c-John +(ii) R2 \ {(x, 0) : x ≥ 0} is inner uniform but not unifrom. +(iii) R2 \ {(n, 0) : n ∈ N} is a John domain but not inner uniform. +2.10. Gromov hyperbolicity of domains. +Definition 2.10. Let δ ≥ 0. +A domain D in a Banach space E is said to be +δ-hyperbolic if (D, kD) is δ-hyperbolic. +Definition 2.11. A domain D in a Banach space E is said to be Gromov hyperbolic +if (D, kD) is δ-hyperbolic for some δ ≥ 0. +All c- uniform and inner c- uniform domains are Gromov δ = δ(c) hyperbolic. +R2 \ {(n, 0) : n ∈ N} is a John domain which is not hyperbolic. The broken tube +(see [11, 2.12] and for a detailed treatment we refer to [14]) in an infinite dimensional +seperable Hilbert space is a classical example of a domain which is hyperbolic but +not John and hence not uniform. +2.11. Quasihyperbolic geodesic in Uniform Domains in Rn. Gehring and +Osgood [4] have proved that each quasihyperbolic geodesic in a c-uniform domain +D ∈ Rn is a double b-cone arc, where the constant b depends only on c. +2.12. Quasihyperbolic Geodesic in John Domain in Rn. Since John domains +can be thought of one sided uniform domains, it is natural to ask whether the result +also holds for John domains or not? In fact, this problem has been proposed by +Gehring et. al. [5] in the following form. +Problem 2.5. Suppose D ⊂ Rn is a c− John domain and that γ is a quasihyperbolic +geodesic in D. Is γ a b-cone arc for some b = b(c)? +In 1989, Gehring et. al. [5] proved the following result. +Theorem B. [5, Theorem 4.1] If D ⊂ R2 is a simply connected c-John domain +then every quasihyperbolic or hyperbolic geodesic in D is a b-cone arc, where b only +depends on c. + +Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces +7 +Infact, Gehring et. al. [5] have constructed several examples which shows that +a quasihyperbolic geodesic in a c- John domain need not to be a b-cone arc with +b = b(c) unless n = 2 and D is simply connected. Thus, this suggest us that we +need some extra restriction on c-John domain so that the Problem 2.5 holds good. +This raises the following natural question. +Problem 2.6. Determine necessary and/or sufficient conditions for quasihyperbolic +geodesics in a John space to be cone arcs. +In 1989, Heinonen [6, Question 2] posed the following problem. +Problem 2.7. Suppose D ⊂ R2 is a c-John domain which is quasiconformally +equivalent to the unit ball Bn in Rn and γ is a quasihyperbolic geodesic in D. Is γ +a b = b(c)-cone arc for some constant b? +In 2001, Bonk, Heinonen and Koskela [2, Proposition 7.12] gave an affirmative +answer to Probelm 2.7. In particular, they have proved the following result. +Theorem C. [2, Proposition 7.12] If D ⊂ Rn is a bounded a-John domain which +is homeomorphic to inner c-uniform domain via K-quasiconformal map, then each +quasihyperbolic geodesic in D is a b-cone arc with b = b(a, c, K, n) +Since every ball is inner uniform, Theorem C gives an affirmative answer to Prob- +lem 2.7. +3. Metric Space setting +In 2022, Zhou, Li and Rasila [20] consider the Problem 2.6 further and proved the +following. +Theorem 3.1. [20, Theorem 1.1] Let (D, d) be a locally compact, rectifiablly con- +nected and non complete metric space, and k be the quasihyperbolic metric of (D, d). +If (D, d) is a-John and if (D, k) is K-roughly starlike and Gromov δ-hyperbolic. +Then every quasihyperbolic geodesic in D is a b-cone arc, where b depends only on +a, K and δ. +Remark 3.1. Observe that any proper subdomain D in Rn is locally compact, +rectifiablly connected and noncomplete with respect to the usual metric. Theorefore, +Theorem 3.1 gives an improvement of Theorem C. +The next result of Zhou and Ponnusamy [18, 19] shows that the condition of rough +starlikeness is not required in Theorem 3.1. Thus the following results of Zhou and +Ponnusamy [19] give an improvement of Theorem 3.1. +Theorem 3.2. [19, Theorem 1.4] Let (D, d) be a locally compact, rectifiablly con- +nected and non complete metric space, and k be the quasihyperbolic metric of (D, d). +If (D, d) is a-John and if D is Gromov hyperbolic i.e., (D, kD) is δ-hyperbolic. Then +every quasihyperbolic geodesic in D is a b-cone arc with b = b(a, δ). +4. Banach space setting +The main aim of this paper is to study Problem 2.6 by replacing quasihyperbolic +geodesic with neargeodesics in Banach space settings precisely in infinite dimansional + +8 +Vasudevarao Allu and Abhishek Pandey +Banach spaces. Note that the quasihyperbolic geodesic may not exists in the infinite- +dimensional Banach spaces (see [11, Example 2.9] and [13, Remark 3.5]). However, +these examples of domains are in Hilbert spaces such that the complement of these +domains are uncountable. For example of a domain that is not geodesic with respect +to quasihyperbplic metric such that the complement of domain is countable we refer +to [7, Example 4.1]. In order to overcome this shortage, Väisälä [12] introduced the +concept of neargeodesic. We recall the definition of neargeodesic. +Definition 4.1. Let D ⊊ E be a domain and c ≥ 1. An arc γ in D is said to be +c-neargeodesic if for all x, y ∈ γ, we have +lk(γ[x, y]) ≤ ckD(x, y). +Thus an arc γ is a quasihyperbolic geodesic if, and only if, it is a 1-neargeodesic. +In [12] Väisälä proved the following existence theorem for neargeodesics. +Theorem 4.1. [12, Theorem 3.3] Let c > 1. Then for every pair of points z1, z2 ∈ D +there exists a c-neargeodesic joining z1 and z2. +Observe that the constant b in Theorem B depends on n, so it is natural to ask +the following question. +Problem 4.1. Does there exists a dimension free anologue of Theorem B. In other +words does it holds in the setting of Banach spaces or not if we replace quasihyper- +bolic geodesic with neargeodesics? +Li [8, Theorem 1] gave an affirmative answer to Problem 4.1 and proved the +following +Theorem 4.2. If D ⊂ E is an a-John domain which is homeomorphic to c-inner +uniform domain via an (M, C) − CQH. Let z1, z2 ∈ D and γ is a c0-neargeodesic +joining z1 and z2 in D. Then γ is a b-cone arc with b = b(a, c, c0, M, C). +5. Main Result +In this section we state our main result of this paper. We observe that in Theorem +3.1 and 3.2, authors have considered that metric space (X, D) which is minimally +nice. Once you have such metric space, Remark 2.2 immediately tells us that (X, kX) +is a geodesic metric space i.e., for any papir of points quasihyperbolic geodesic exists. +Note that if we consider a domain D in an infinite dimensional Banach space +then D with the metric induced by norm satisfies all the properties of minimally +nice space except locally compact. This motivates us to ask does Theorem 3.1 and +3.2 type results still holds if we consider John domain D in infinite dimensional +Banach space? In such a case we know that (D, kD) need not be geodesic and hence +the natural choice is to consider the neargeodesics at the place of quasihyperbolic +geodesics. +Theorem 5.1. Let E be an infinite dimensional Banach space and D ⊊ E is a +c-John domain and suppose that D is Gromov hyperbolic i.e. (D, kD) is δ-hyperbolic +for some δ ≥ 0. Then every c0-neargeodesic in D is a b-cone arc, where b depends +only on c, c0 and δ. + +Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces +9 +Remark 5.1. +(1) Observe that Theorem 5.1 is different from Theorem 3.1 and +Theorem 3.2. Note that in Theorem 5.1 D is a domain in infinite dimansional +Banach spce therefore D is not locally compact with metric induced by norm. +Hence Remark 2.2 is also no more valid and we can’t use the results of +Gromov hyperbolicity for geodesic metric space. Further, in this paper, we +are considering the neargeodesics rather than quasihyperbolic geodesic. +(2) To prove our main result we need the results on Gromov hyperbolicity for +general metric spaces that are need not to be geodesic. Thanks to the work +of Väisälä [16] where he has established the theory of Gromov hyperbolicity +for domains in Banach spaces which obviously need not to be geodesic (in +quasihyperbolic metric) when the Banach space is infinite dimensional. +(2) In view of Theorem 2.1 and the following two facts: +(i) all inner c-uniform domains are Gromov hyperbolic with respect to +quasihyperbolic metric (see [15, Remark 2.16]) +(ii) every (M, C) − CQH map is (M, C)-quasi-isometry in quasihyperbolic +metric +we conclude that Theorem 5.1 is an improvement of Theorem 4.2 of Li [8, +Theorem 1]. +6. Proof of Main Result +We shall devide the proof of Theorem 5.1 into two theorems. Theorem 6.1 below +gives a sufficient condition for a neargeodesic to be a cone arc and Theorem 6.2 +below says that in Gromov hyperbolic John domains, every neargeodesic satisfies +this sufficient condition. +Therefore, combining these two theorem we obtain the +proof of our main result. +Theorem 6.1. Let γ be a c0- neargeodesic joining x, y such that the following holds: +If z1, z2 ∈ γ such that each w ∈ γ[z1, z2] satisfies ∆(w) ≤ 2 min{∆(z1), ∆(z2)}, then +there exists a constant A ≥ 1 such that +kD(z1, z2) ≤ A. +Then γ is a C-cone arc, where C depends only on A and co. +Proof. Suppose γ is a c0- neargeodesic joining x, y and if z1 and z2 are points on +γ satisfying for each w ∈ γ[z1, z2], ∆(w) ≤ 2 min{∆(z1), ∆(z2)}, then there exists a +constant A ≥ 1 such that +kD(z1, z2) ≤ A. +Since ∆ is continous and γ is compact, choose a point z0 ∈ γ with +∆(z0) = max +z∈γ ∆(z) +Then there exists unique non-negative integer n such that +2n∆(x) ≤ ∆(z0) ≤ 2n+1∆(x). +Let x = x0. For each i = 1, 2, . . . , n, let xi be the first point on γ[x, z0] such that +∆(xi) = 2i∆(x0). +Similarly, there exists m ≥ 0 such that +2m∆(y) ≤ ∆(z0) ≤ 2m+1∆(y). + +10 +Vasudevarao Allu and Abhishek Pandey +Let y = y0. For each j = 1, 2, . . . , m, let yj be the first point on γ[z0, y] such that +∆(yj) = 2j∆(y0). +In this manner we have devided the arc γ into (n + m + 1) subarcs +γ[x0, x1], . . . , γ[xn−1, xn], γ[xn, ym], γ[ym, ym+1], . . . , γ[y1, y0]. +It is easy to observe that all these subarcs are also c0-neargeodesic between their +respective end points. Let u and v be any two adjacent points along γ. That is u +and v are xi, xi+1 or xn, ym or yj+1, yj, 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. By the +construction, it is clear that for each z ∈ γ[u, v], we have +∆(z) = 2 min{∆(u), ∆(v)}. +By assumption, there exists a constant A ≥ 1 such that +kD(u, v) ≤ A. +To show that γ is a C-cone arc for some C, we need to show that +(6.1) +min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) +for all w ∈ γ. +In order to prove (6.1), it is sufficient to prove either l(γ[x, w] ≤ C∆(w) or l(γ[w, y]) ≤ +C∆(w). For this we need to consider three cases depending upon the location of w +on γ. +Case 1. Suppose w ∈ γ[xi, xi+1] for some 0 ≤ i ≤ n − 1. Then in view of (2.2), we +have +log∆(xi) +∆(w) ≤ kD(w, xi) = kD(xi, w) ≤ kD(xi, xi+1) ≤ A. +Therefore, we have +(6.2) +∆(xi) ≤ eA∆(w). +Moreover, we have +(6.3) +l(γ[x, w]) ≤ +i +� +t=0 +l(γ[xs, xs+1]) +In view of (2.3), we have +log +� +1 + +l(γ[xs, xs+1]) +min{∆(xs), ∆(xs+1)} +� +≤ +lk(γ[xs, xs+1]) +≤ +c0 kD(xs, xs+1) +≤ +c0 A +Therefore, this gives us that +logl(γ[xs, xs+1]) +∆(xs) +≤ log +� +1 + l(γ[xs, xs+1]) +∆(xs) +� +≤ c0 A +and hence +(6.4) +l(γ[xs, xs+1]) ≤ ec0 A∆(xs) + +Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces +11 +Using (6.4) in (6.3), we obtain +l(γ[x, w]) +≤ +i +� +t=0 +ec0 A∆(xt) +(6.5) +≤ +2 ec0 A ∆(xi) +≤ +2 eA(c0+1) ∆(w) +and hence we have +l(γ[x, w]) ≤ C ∆(w), +where C = 2eA(c0+1). +Theorefore, we have +(6.6) +min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) +for all w ∈ γ[xi, xi+1]. +Case 2. Suppose w ∈ γ[xn, ym]. Then it is easy to see that +log∆(xn) +∆(w) ≤ kD(w, xn) = kD(xn, w) ≤ kD(xn, ym) ≤ A, +which implies +∆(xn) ≤ eA ∆(w). +An easy computation shows that +l(γ[x, w]) +≤ +n−1 +� +i=0 +l(γ[xi, xi+1]) + l(γ[xn, ym]) +≤ +m−1 +� +i=0 +ec0 A∆(xi) + ec0 A∆(xn) +≤ +3ec0 A∆(xn) +≤ +3 eA(c0+1) ∆(w). +That is, +l(γ[x, w]) ≤ C ∆(w), +where C = 3 eA(c0+1) +and hence we have +(6.7) +min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) +for all w ∈ γ[xn, ym]. +Case 3. Suppose w ∈ γ[yj, yj+1] for some 0 ≤ j ≤ m − 1. Using the same argument +as in earlier, we obtain +l(γ[w, y]) ≤ C ∆(w), +where C = 2 eA(c0+1) +and hence +(6.8) +min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) +for all w ∈ γ[yj, yj+1]. +Thus, combining (6.6), (6.7) and (6.8), we conclude that γ is a C- cone arc, where +C = 3 eA(c0+1). +□ + +12 +Vasudevarao Allu and Abhishek Pandey +Theorem 6.2. Let D be a c- John domain in an infinite dimensional Banach space +E such that (D, kD) is Gromov hyperbolic space. Fix x, y ∈ D and let γ be a c0 +neargeodesic joining x, y ∈ D. Then there exists a constant A ≥ 1 depending only c, +c0 and δ such that the following holds: If there are u, v ∈ γ such that each w ∈ γ[u, v] +satisfies ∆(w) ≤ 2 min{∆(u), ∆(v)}, then +kD(u, v) ≤ A. +Proof. Let D be a c-John domain in a Banach space E such that (D, kD) is Gromov +δ-hyperbolic. By definition (D, kD) is an intrinsic space. Fix x, y ∈ D and c0 > 1. In +view of Theorem 4.1, let γ be a c0-neargeodesic joining x and y. In view of Remark +2.1, it is clear that a c-neargeodesic γ is (c, 0)- quasi-isometry. Since D is a c-John, +there is a c-cone arc α joining x and y. To use Theorem A, we first need to show +that every c-cone arc α is (λ, µ)-quasi-isometry for some λ and µ depending only on +c. Which we will prove in the following lemma +Lemma 6.9. Let c ≥ 1 and α be a c-cone arc. Then its arc length parametrization +αs satisfies the following inequality +1 +3c|t − t′| − 3c log(3c) ≤ kD(αs(t), αs(t′)) ≤ 3c|t − t′| + 3c log(3c) +and hence α is (3c, 3c log(3c))-quasi-isometry. +Proof. Let α be a c-cone arc joining x and y in D and z1, z2 ∈ α. Without loss +of generality we can assume that z1 ∈ α[x, z2]. Since α is a c-cone arc, for each +w ∈ α[z1, z2], we have +l(α[w, z2]) ≤ min{l(α[x, w]), l(α[w, y])} ≤ c∆(w) +and hence +(6.10) +l(α[w, z2]) ≤ c∆(w). +Next, our aim is to show that ∆(z2) ≤ 2c∆(w). To prove this, we consider two +cases: +Case (i) If d(w, z2) < ∆(y)/2, then +∆(w) ≥ ∆(z2) − d(w, z2) ≥ ∆(z2)/2 +and hence, ∆(z2) ≤ 2∆(w). +Case (ii) Since α is a c-cone arc we obtain +c∆(w) ≥ l(α[z2, w]) ≥ d(z2, w) ≥ ∆(z2)/2 +and hence +(6.11) +∆(z2) ≤ 2c∆(w) +By adding (6.10) and (6.11), we obtain +l(α[w, z2]) + ∆(z2) ≤ 3c∆(w) +which gives, +(6.12) +1 +∆(w) ≤ +3c +l(α[w, z2]) + ∆(z2) + +Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces +13 +A simple computation shows that +kD(z1, z2) +≤ +lk(α[z1, z2]) = +� +α[z1,z2] +ds +∆(w) +(6.13) +≤ +� l(α[z1,z2]) +0 +3c +t + ∆(z2) dt. +lk(α[z1, z2]) +≤ +3c(log(l(α[z1, z2]) + ∆(z2)) − log(∆(z2)) +(6.14) +≤ +3c log +� +1 + l(α[z1, z2]) +∆(z2) +� +≤ +3c log +� +1 + c∆(z1) +∆(z2) +� +(6.15) +≤ +3c +� +log +�∆(z1) +∆(z2) +� ++ log3c +� +. +lk(α[z1, z2]) +≤ +3ckD(z1, z2) + 3c log 3c +(6.16) +Theorefore, from (6.16), it is clear that the arc length parametrization of α satisfies +the inequality +1 +3c|t − t′| − 3c log(3c) ≤ kD(αs(t), αs(t′)) ≤ 3c|t − t′| + 3c log(3c) +and hence α is (3c, 3c log(3c))-quasi-isometry. This completes the proof of Lemma +6.9. +□ +Since γ is (c0, 0)-quasi-isometry and α is (3c, 3c log(3c))-quasi-isometry in view of +Theorem A, we have that quasihyperbolic Hausdorff distance satisfies the following +inequality +kDH(γ, α) ≤ R = R(c, c0, δ). +Let u, v ∈ γ such that each w ∈ γ[u, v] satisfies ∆(w) ≤ 2 min{∆(u), ∆(v)}. Our +aim is to show that there exists a constant A ≥ 1 such that kD(u, v) ≤ A. For this +we need to estimate kD(u, v). Since kDH(γ, α) ≤ R i.e., +max +� +sup +x∈γ kD(x, α), sup +y∈α kD(γ, y) +� +≤ R +Theorefore, +sup +x∈γ kD(x, α) ≤ R +In particular, +M1 = kD(u, α) = inf +b∈α kD(u, b) ≤ R +and +M2 = kD(v, α) = inf +b∈α kD(v, b) ≤ R +There exists a sequence bi and bj such that kD(u, bi) converges to M1 and kD(u, bj) +converges to M2. Since α is compact, bi and bj have convergent subsequence which + +14 +Vasudevarao Allu and Abhishek Pandey +converges to say Zu and Zv respectively such that kD(u, Zu) ≤ R and kD(v, Zv) ≤ R. +Therefore, +log ∆(u) +∆(Zu) ≤ kD(u, Zu) ≤ R +implies +(6.17) +∆(Zu) ≤ eR∆(u) +and +log ∆(v) +∆(Zv) ≤ kD(v, Zv) ≤ R +implies +(6.18) +e−R∆(v) ≤ ∆(Zv). +Since each w ∈ γ[u, v] satisfies +(6.19) +∆(w) ≤ 2 min{∆(u), ∆(v)} +by taking w = v in (6.19), we obtain +(6.20) +∆(v) = 2∆(u) +and by taking w = u in (6.19), we obtain +(6.21) +∆(u) ≤ 2∆(v). +Using (6.21) in (6.17), we obtain +(6.22) +∆(Zu) ≤ eR∆(u) ≤ 2eR∆(v). +Using (6.18) in (6.22), we obtain +∆(Zu) ≤ 2e2R∆(Zv) +which implies that +(6.23) +∆(Zu) +∆(Zv) ≤ 2e2R. +In view of (6.15), we have +(6.24) +kD(Zu, Zv) ≤ 3c log +� +1 + c∆(Zu) +∆(Zv) +� +. +Using (6.23) in (6.24), we obtain +(6.25) +kD(Zu, Zv) ≤ 3c log +� +1 + 2ce2R� +. +Therefore, we have +kD(u, v) +≤ +kD(u, Zu) + kD(Zu, Zv) + kD(Zv, v) +≤ +2R + kD(Zu, Zv) +≤ +2R + 3c log(1 + 2ce2R) +(by (6.25) +This completes the proof of Theorem 6.2 by taking A = 2R + 3c log(1 + 2ce2R). +□ +Proof of Theorem 5.1. Let D be a c- John domain such that (D, kD) is δ- +hyperbolic for some δ and let γ be a c0- neargeodesic in D. +Then from Theo- +rem 6.2 we have that if there are u, v ∈ γ such that each w ∈ γ[u, v] satisfies + +Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces +15 +∆(w) ≤ 2 min{∆(u), ∆(v)}, then kD(u, v) ≤ A. Therefore, by Theorem 6.1, we con- +clude that γ is a b-cone arc, where b depends only on c, δ and c0. This completes +the proof of Theorem 5.1. +Acknowledgement: The first named author thanks SERB-CRG, and the second +named author thanks PMRF-MHRD (Id: 1200297), Govt. of India for their support. +References +[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Dimension-free quasiconfor- +mal deformation in n-space, Trans. Amer. Math. Soc. 297 (1986), 687–706. +[2] M. Bonk, J. Heinonen and P. Koskela, Uniformizing Gromov hyperbolic domains, As- +terisque 270 (2001), 1–99 +[3] F. W. Gehring and B. P. Palka, Quasiconformally Homogeneous Domains, J. Anal. Math. +30 (1976), 172–199. +[4] F. W. Gehring and B. G. Osgood, Uniform domains and the Quasi-Hyperbolic Metric, J. +Anal. Math. 36 (1979), 50–74. +[5] F. W. Gehring, K. Hag and O. Martio, Quasihyperbolic geodesics in John domains, Math. +Scand. 65 (1989), 75–92. +[6] J. Heinonen, Quasiconformal mappings onto John domains, Rev. Math. Iber. 5 (1989), 97– +123. +[7] R. Klél, A. Rasila and J. Talponen, On the smoothness of quasihyperbolic balls, Ann. +Acad. Sci. Fenn. Math. 42 (2017), 439–452. +[8] Y. Li, Neargeodesics in John domains in Banach spaces, Int. J. Math. 25, 1450041 (2014), +https://doi.org/10.1142/S0129167X14500414. +[9] G. J. Martin, Quasiconformal and bi-Lipschtiz homeomorphisms, uniform domains and the +quasihyperbolic metric, Trans. Amer. Math. Soc. 292, 1985, 169–191. +[10] Olli Martio and J. Väisälä, Quasihyperbolic geodesic in convex domains II, Pure Appl. +Math. Q. 7 (2011), 395–409. +[11] J. Väisälä, Free quasiconformality in Banach spaces I, Ann. Acad. Sci. Fenn. Ser. A I Math. +15 (1990), 355–379. +[12] J. Väisälä, Free quasiconformality in Banach spaces II, Ann. Acad. Sci. Fenn. Ser. A I Math. +16 (1991), 255–310. +[13] J. Väisälä, The Free quasiworld, Quasiconformal and related maps in Banach spaces, Banach +Center Publ. 48 (1999), 55–118. +[14] J. Väisälä, Broken tube in Hilbert spaces Analysis 24 (2004), 227–238. +[15] J. Väisälä, Quasihyperbolic geodesic in convex domains, Results Math. 48 (2005), 184–195. +[16] J. Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005), 187–231. +[17] J. Väisälä, Hyperbolic and Uniform domains in Banach spaces, Ann. Acad. Sci. Fenn. 30 +(2005), 261–302. +[18] Q. Zhou and S. Ponnusamy, Gromov hyperbolic John is Quasihyperbolic John I, +arXiv:2111.14457v1 +[19] Q. Zhou and S. Ponnusamy, Gromov hyperbolic John is Quasihyperbolic John II, +arXiv:2111.14457v1. +[20] Q. Zhou, Yaxiang Li and Antti Rasila, Gromov hyperbolicity, John Spaces, and Quasihy- +perbolic Geodesics, J. Geom. Anal. 32, 228 (2022) https://doi.org/10.1007/s12220-022-00968- +2. +[21] M. Vourinen, Conformal geometry and Quasiregular mappings, Lecture notes in mathemat- +ics, Vol. 1319 (Springer, 1988). + +16 +Vasudevarao Allu and Abhishek Pandey +Vasudevarao Allu, Discipline of Mathematics, School of Basic Sciences, Indian +Institute of Technology Bhubaneswar, Argul, Bhubaneswar, PIN-752050, Odisha +(State), India. +Email address: avrao@iitbbs.ac.in +Abhishek Pandey, Discipline of Mathematics, School of Basic Sciences, Indian +Institute of Technology Bhubaneswar, Argul, Bhubaneswar, PIN-752050, Odisha +(State), India. +Email address: ap57@iitbbs.ac.in + diff --git a/XNFPT4oBgHgl3EQfsDWM/content/tmp_files/load_file.txt b/XNFPT4oBgHgl3EQfsDWM/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..affd3b2bb56dd4098bf6df2c48dcf69b15017ebd --- /dev/null +++ b/XNFPT4oBgHgl3EQfsDWM/content/tmp_files/load_file.txt @@ -0,0 +1,638 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf,len=637 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='13147v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='CV] 30 Jan 2023 NEARGEODESICS IN GROMOV HYPERBOLIC JOHN DOMAINS IN INFINITE DIMENSIONAL BANACH SPACES VASUDEVARAO ALLU AND ABHISHEK PANDEY Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Rasila, Talponen and Zhang in [Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 146 (2018), 3863–3873] have proposed a general question that which Banach space properties can be characterized by the corresponding quasihyperbolic metric?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A domain D in a Banach space E is said to be Gromov hyperbolic if it is δ ≥ 0-hyperbolic with respect to quasihyperbolic metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In this paper we show that every neargeodesic in a Gromov hyperbolic John domain in infinite dimensional Banach space is a cone arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thus, our result gives an answer to the above problem in the sense that it gives a necessary condition for a John domain to be a Gromov hyperbolic space in infinite dimensional Banach space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Moreover, our main result gives an improvement of a result of Li [Theorem 1, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 25 (2014)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Introduction Let Ω be an open ball or half space in Rn, we denote hΩ be the hyperbolic metric in Ω with constant curvature −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If Ω is an upper half plane then hΩ is defined in Ω by the means of the density ρ(z) = 1 Im z = 1 d(z, ∂Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' This density can be used to introduce an analogue of the hyperbolic metric in an arbitrary subdomain D in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The quasihyperbolic metric in Rn is a generalization of hyperbolic metric, which was introduced by Gehring and Palka [3] and they have studied the characterization of domains D in the one point compactification of Rn which are quasiconformally equivalent to ball in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Infact such domains are homogeneous via quasiconformal mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gehring and Palka [3] have proved that the maximal dilatation of such quasiconformal mappings can be estimated in terms of quasihyperbolic metric and using these estimates they obtained useful results related to the homogeneity of domains with respect to quasiconformal family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thus, the importance of the quasihyperbolic metric is quite clear as it is well-behaved with the quasiconformal mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The quasihyperbolic metric can be naturally defined on a wide range of metric spaces, including infinite dimensional Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The study of this concept is known as free quasiconformality which has been introduced and developed by Väisälä (see [11, 12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In this paper, we mainly focus on the geometry of neargeodesics in John domains in infinite dimensional Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' File: QHG-P-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='tex, printed: 2023-1-31, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='52 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Primary 30C65, 30L10, 30F45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Secondary 30C20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Quasihyperbolic metric, Gromov hyperbolic spaces, John domain, near- geodesics, quasiconformal mappings, quasihyperbolic geodesic, cone arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 1 2 Vasudevarao Allu and Abhishek Pandey 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Preliminaries In this section we mention some basic as well as advanced concepts and related results in the literature, which are useful to state and prove our main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Metric Geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let (X, d) be a metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A curve is a continuous function γ : [a, b] → X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If a curve γ : [a, b] → X is an embedding of [a, b], then it is called an arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let P denote set of all partitions a = t0 < t1 < t2 < · · · < tn = b of the interval [a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The length of the curve γ in the metric space (X, d) is ld(γ) = sup P n−1 � k=0 d(γ(tk), γ(tk+1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A curve is said to be rectifiable if ld(γ) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A metric space X is said to be rectifiably connected if every pair of points x, y ∈ X can be joined by a rectifi- able curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For a rectifiable curve γ we define arc length s : [a, b] → [0, ld(γ)] by s(t) = ld(γ|[a,t]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The arc length function is of bounded variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For any rectifiable curve γ : [a, b] → X, there is a unique map γs : [0, ld(γ)] → X such that γ = γs ◦ s, and such a curve γs is called the arclength parametrization of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For x, y ∈ X, the inner length metric λX(x, y) is defined by λX(x, y) = inf{ld(γ) : γ is a rectifiable arc joining x and y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let ρ : X → [0, ∞] be a Borel function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The ρ-length of a rectifiable curve γ is � γ ρ ds = � b a ρ(γ(t)) ds(t) = � ld(γ) 0 ρ ◦ γs(t) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If X is rectifiably connected then ρ induces a distance function which is defined by dρ(x, y) = inf � γ ρ ds, where infimum is taken over all rectifiable curves joining x and y in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We note that, in general, dρ need not to be a metric however dρ is a metric if ρ is positive and continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If dρ is a metric, we say (X, dρ) is a conformal deformation of (X, d) by the conformal factor ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A curve γ : [a, b] → X is said to be geodesic if for all t, t′ ∈ [a, b], d(γ(t), γ(t′)) = |t − t′|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A metric space X is said to be a geodesic metric space if every pair of points x, y ∈ X can be joined by a geodesic, and is said to be proper if every closed ball is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A metric space (X, d) is said to be intrinsic or path metric space/ or length metric space if for all x, y ∈ X, we have d(x, y) = λX(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A metric space (X, d) is said to be minimally nice if it is locally compact, rectifiably connected and non-complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gromov hyperbolicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gromov hyperbolicity was introduced by Gromov in the 1980s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' It is often assumed that the under lying space is geodesic metric space and usually it is a proper metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' As we will see later that infinite dimensional Banach space with quasihyperbolic metric need not be geodesic space, therefore we adapt the definition of Gromov hyperbolicity which works well with the non geodesic spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For this, we refer to the work of Väisälä [16] where the concept of Gromov product has been used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let (X, d) be a metric space and let p ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The Gromov Product (x|y)p of x, y ∈ X with respect to p is defined by (x|y)p = 1 2 � d(x, p) + d(y, p) − d(x, y) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Therefore, (x|y)p measures to what extent the triangle inequality for the triangle ∆xyp is far from being an equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A metric space (X, d) is said to be δ-hyperbolic if for every x, y, z, p ∈ X, the following inequality holds (x|z)p ≥ min � (x|y)p, (y|z)p � − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A metric space (X, d) is said to be Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Clearly, R is a 0-hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Any tree T is 0-hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The unit disk with hyperbolic metric is Gromov hyperbolic with δ = log 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The complex plane is not Gromov hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We shall mention an important result here due to Väisälä [15, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7], which is known as stability theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Infact, stability theorem says that in an intrinsic hyperbolic space any two quasi-isometric paths with same initial and terminal points x, y runs close to each other even if |x − y| is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' To mention this theorem we first need to mention the concept of quasi-isometry and Hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let X and Y be two non-empty subsets of a metric space (M, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We define their Hausdorff distance dH(X, Y ) by dH(X, Y ) = max � sup x∈X d(x, Y ), sup y∈Y d(X, y) � , where d(a, B) = infb∈B d(a, b) denotes the distance from a point a ∈ M to a subset B ⊂ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let λ ≥ 1 and µ ≥ 0 and (X, d) and (Y, d′) be metric spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We say that a map f : X → Y is a (λ, µ)-quasi-isometry if λ−1d(x, y) − µ ≤ d′(f(x), f(y)) ≤ λd(x, y) + µ for all x, y ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In the case where f : I → Y is a map of an real interval I, we say that such a map (λ, µ)-quasi-isometric path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' An arc γ joining x and y in a metric space X is said to be λ- quasigeodesic, λ ≥ 1, if l(γ[u, v]) ≤ λd(u, v) 4 Vasudevarao Allu and Abhishek Pandey for all u, v ∈ γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In such a case the arc length parametrization γs : [0, l(γ)] → γ satisfies the inequality λ−1|t − t′| ≤ d(γs(t), γs(t′)) ≤ λ|t − t′|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thus γ is (λ, 0)-quasi-isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The following theorem (see [15, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7]) is vital to prove our main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Suppose that X is an intrinsic δ-hyperbolic space and that γ and α are (λ, µ)-quasi-isometric path with same initial and terminal points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then there exists a constant M such that dH(γ, α) ≤ M, where M depends only on δ, λ, µ and dH denote the Hausdorff distance between γ and α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Next we mention an important result due to Väisälä (see [16, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='18]) which says that quasi-isometries preserves hyperbolicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let X and Y be intrinsic spaces and let f : X → Y be a (λ, µ)- quasi-isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If Y is δ-hyperbolic, then X is δ′-hyperbolic with δ′ = δ′(δ, λ, µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Quasihyperbolic metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In view of our frame work, we consider the quasi- hyperbolic metric in the setting of Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let E be a real Banach space of dimension at least 2 and let D ⊊ E be a domain (open, connected nonempty set).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let the metric induced by norm on D is |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Define k : D → (0, ∞) by k(z) = 1 ∆(z) = 1 d(z, ∂D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Define the quasihyperbolic length of a rectifiable curve γ in D by lk(γ) = � γ ρ(z) ds = � γ ds d(z, ∂D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let kD denote the quasihyperbolic metric in D which is defined by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1) kD(x, y) = inf γ lk(γ) where the infimum is taken over all rectifiable curves γ in D joining x to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Observe that (D, kD) is always an intrinsic space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For further geometric properties of hyperbolic metric, we refer to [4] and [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Quasihyperbolic metric satisfies the following properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (i) kD = hD when D is a half space in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (ii) kD ≤ hD ≤ 2kD when D is a ball in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [2, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='8] If (X, d) is a locally compact, incomplete and rectifiably connected metric space then (X, kX) is a complete, proper and geodesic metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces 5 Finally, we recall some estimates for the quasihyperbolic metric which have been first introduced by Gehring and Palka [3, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1] in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Later, Väisälä [11, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2] have proved these inequalities in the case of Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let D ⊊ E be a domain and x, y ∈ D and let γ be a rectifiable curve joining x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then we have the following: (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2) k(x, y) ≥ log � 1 + |x − y| min{∆(x), ∆(y)} � ≥ log ∆(y) ∆(x) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3) lk(γ) ≥ log � 1 + l(γ) min{∆(x), ∆(y)} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We are going to use frequently (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3) to prove our main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Quasi-hyperbolic geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A rectifiable curve γ from a to b in D is said to be quasihyperbolic geodesic if kD(a, b) = lk(γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Obviously each subarc of a quasi- hyperbolic geodesic is again a geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Observe that quasi-hyperbolic geodesic is curve γ for which the infimum in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1) is attained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' At this juncture, the natural question is does quasi-hyperbolic geodesic always exists?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A result of Gehring and Osgood [4] shows that for a proper subdomain D in Rn, the answer to this question is affirmative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For important results on quasihy- perbolic geodesics in domain in Rn, we refer to G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Martin [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Moreover, Martin [9] has proved that quasihyperbolic geodesics in Rn are C1 smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' It is well known that a quasihyperbolic geodesic between any two points exists if dim (E) is finite (see [4, Lemma 1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Note that the quasihyperbolic geodesic may not exists in an infinite-dimensional Banach spaces (see [11, Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='9] and [13, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' However, Väisälä [15, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1] has proved the existence of quasihyperbolic geodesic when E is reflexive Banach space and D is a convex domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Furthermore, in 2011, Martio and Väisälä [10, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='11] proved the existence as well as uniqueness of quasi- hyperbolic geodesic when E is uniformly convex Banach space and D is a convex domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Some special domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Uniform Domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let c ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A domain D in E is said to be c-uniform in the norm metric if for each pair of points x, y ∈ D, there exists a rectifiable arc γ in D joining x to y such that (i) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D), for all z ∈ γ, and (ii) l(γ) ≤ c|x − y|, where l(γ) denotes the arc length of γ in (D, |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' |), where |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' | is metric induced by norm, and γ[x, z] denotes the part of γ between x and z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Also we say that curve γ is a double c-cone arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 6 Vasudevarao Allu and Abhishek Pandey 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Inner uniform domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let c ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A domain D is said to be c-inner uniform in the norm metric if for each pair of points x, y ∈ D, there exists a rectifiable arc γ in D joining x to y such that (i) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D), for all z ∈ γ, (ii) l(γ) ≤ cλD(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' John Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let c ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A domain D is said to be c-John in the norm metric if for each pair of points x, y ∈ D there exists a rectifiable curve γ in D joining x to y such that for all z ∈ γ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='4) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D) and we say that such a curve γ is a c-cone arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We mention some of the remarks with regards to the connection between the aforesaid domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (i) c-uniform implies inner c-uniform implies c-John (ii) R2 \\ {(x, 0) : x ≥ 0} is inner uniform but not unifrom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (iii) R2 \\ {(n, 0) : n ∈ N} is a John domain but not inner uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gromov hyperbolicity of domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A domain D in a Banach space E is said to be δ-hyperbolic if (D, kD) is δ-hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A domain D in a Banach space E is said to be Gromov hyperbolic if (D, kD) is δ-hyperbolic for some δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' All c- uniform and inner c- uniform domains are Gromov δ = δ(c) hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' R2 \\ {(n, 0) : n ∈ N} is a John domain which is not hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The broken tube (see [11, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='12] and for a detailed treatment we refer to [14]) in an infinite dimensional seperable Hilbert space is a classical example of a domain which is hyperbolic but not John and hence not uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Quasihyperbolic geodesic in Uniform Domains in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gehring and Osgood [4] have proved that each quasihyperbolic geodesic in a c-uniform domain D ∈ Rn is a double b-cone arc, where the constant b depends only on c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Quasihyperbolic Geodesic in John Domain in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Since John domains can be thought of one sided uniform domains, it is natural to ask whether the result also holds for John domains or not?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In fact, this problem has been proposed by Gehring et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [5] in the following form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Suppose D ⊂ Rn is a c− John domain and that γ is a quasihyperbolic geodesic in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Is γ a b-cone arc for some b = b(c)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In 1989, Gehring et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [5] proved the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [5, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1] If D ⊂ R2 is a simply connected c-John domain then every quasihyperbolic or hyperbolic geodesic in D is a b-cone arc, where b only depends on c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces 7 Infact, Gehring et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [5] have constructed several examples which shows that a quasihyperbolic geodesic in a c- John domain need not to be a b-cone arc with b = b(c) unless n = 2 and D is simply connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thus, this suggest us that we need some extra restriction on c-John domain so that the Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='5 holds good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' This raises the following natural question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Determine necessary and/or sufficient conditions for quasihyperbolic geodesics in a John space to be cone arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In 1989, Heinonen [6, Question 2] posed the following problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Suppose D ⊂ R2 is a c-John domain which is quasiconformally equivalent to the unit ball Bn in Rn and γ is a quasihyperbolic geodesic in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Is γ a b = b(c)-cone arc for some constant b?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In 2001, Bonk, Heinonen and Koskela [2, Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='12] gave an affirmative answer to Probelm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In particular, they have proved the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [2, Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='12] If D ⊂ Rn is a bounded a-John domain which is homeomorphic to inner c-uniform domain via K-quasiconformal map, then each quasihyperbolic geodesic in D is a b-cone arc with b = b(a, c, K, n) Since every ball is inner uniform, Theorem C gives an affirmative answer to Prob- lem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Metric Space setting In 2022, Zhou, Li and Rasila [20] consider the Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='6 further and proved the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [20, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1] Let (D, d) be a locally compact, rectifiablly con- nected and non complete metric space, and k be the quasihyperbolic metric of (D, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If (D, d) is a-John and if (D, k) is K-roughly starlike and Gromov δ-hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then every quasihyperbolic geodesic in D is a b-cone arc, where b depends only on a, K and δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Observe that any proper subdomain D in Rn is locally compact, rectifiablly connected and noncomplete with respect to the usual metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorefore, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 gives an improvement of Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' The next result of Zhou and Ponnusamy [18, 19] shows that the condition of rough starlikeness is not required in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thus the following results of Zhou and Ponnusamy [19] give an improvement of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [19, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='4] Let (D, d) be a locally compact, rectifiablly con- nected and non complete metric space, and k be the quasihyperbolic metric of (D, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If (D, d) is a-John and if D is Gromov hyperbolic i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=', (D, kD) is δ-hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then every quasihyperbolic geodesic in D is a b-cone arc with b = b(a, δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Banach space setting The main aim of this paper is to study Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='6 by replacing quasihyperbolic geodesic with neargeodesics in Banach space settings precisely in infinite dimansional 8 Vasudevarao Allu and Abhishek Pandey Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Note that the quasihyperbolic geodesic may not exists in the infinite- dimensional Banach spaces (see [11, Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='9] and [13, Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' However, these examples of domains are in Hilbert spaces such that the complement of these domains are uncountable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For example of a domain that is not geodesic with respect to quasihyperbplic metric such that the complement of domain is countable we refer to [7, Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In order to overcome this shortage, Väisälä [12] introduced the concept of neargeodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We recall the definition of neargeodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let D ⊊ E be a domain and c ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' An arc γ in D is said to be c-neargeodesic if for all x, y ∈ γ, we have lk(γ[x, y]) ≤ ckD(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thus an arc γ is a quasihyperbolic geodesic if, and only if, it is a 1-neargeodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In [12] Väisälä proved the following existence theorem for neargeodesics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [12, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3] Let c > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then for every pair of points z1, z2 ∈ D there exists a c-neargeodesic joining z1 and z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Observe that the constant b in Theorem B depends on n, so it is natural to ask the following question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Problem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Does there exists a dimension free anologue of Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In other words does it holds in the setting of Banach spaces or not if we replace quasihyper- bolic geodesic with neargeodesics?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Li [8, Theorem 1] gave an affirmative answer to Problem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 and proved the following Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' If D ⊂ E is an a-John domain which is homeomorphic to c-inner uniform domain via an (M, C) − CQH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let z1, z2 ∈ D and γ is a c0-neargeodesic joining z1 and z2 in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then γ is a b-cone arc with b = b(a, c, c0, M, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Main Result In this section we state our main result of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' We observe that in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2, authors have considered that metric space (X, D) which is minimally nice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Once you have such metric space, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2 immediately tells us that (X, kX) is a geodesic metric space i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=', for any papir of points quasihyperbolic geodesic exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Note that if we consider a domain D in an infinite dimensional Banach space then D with the metric induced by norm satisfies all the properties of minimally nice space except locally compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' This motivates us to ask does Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2 type results still holds if we consider John domain D in infinite dimensional Banach space?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In such a case we know that (D, kD) need not be geodesic and hence the natural choice is to consider the neargeodesics at the place of quasihyperbolic geodesics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let E be an infinite dimensional Banach space and D ⊊ E is a c-John domain and suppose that D is Gromov hyperbolic i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (D, kD) is δ-hyperbolic for some δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then every c0-neargeodesic in D is a b-cone arc, where b depends only on c, c0 and δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces 9 Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (1) Observe that Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 is different from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Note that in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 D is a domain in infinite dimansional Banach spce therefore D is not locally compact with metric induced by norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Hence Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2 is also no more valid and we can’t use the results of Gromov hyperbolicity for geodesic metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Further, in this paper, we are considering the neargeodesics rather than quasihyperbolic geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (2) To prove our main result we need the results on Gromov hyperbolicity for general metric spaces that are need not to be geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thanks to the work of Väisälä [16] where he has established the theory of Gromov hyperbolicity for domains in Banach spaces which obviously need not to be geodesic (in quasihyperbolic metric) when the Banach space is infinite dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' (2) In view of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 and the following two facts: (i) all inner c-uniform domains are Gromov hyperbolic with respect to quasihyperbolic metric (see [15, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='16]) (ii) every (M, C) − CQH map is (M, C)-quasi-isometry in quasihyperbolic metric we conclude that Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 is an improvement of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2 of Li [8, Theorem 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Proof of Main Result We shall devide the proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 into two theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1 below gives a sufficient condition for a neargeodesic to be a cone arc and Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2 below says that in Gromov hyperbolic John domains, every neargeodesic satisfies this sufficient condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Therefore, combining these two theorem we obtain the proof of our main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let γ be a c0- neargeodesic joining x, y such that the following holds: If z1, z2 ∈ γ such that each w ∈ γ[z1, z2] satisfies ∆(w) ≤ 2 min{∆(z1), ∆(z2)}, then there exists a constant A ≥ 1 such that kD(z1, z2) ≤ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then γ is a C-cone arc, where C depends only on A and co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Suppose γ is a c0- neargeodesic joining x, y and if z1 and z2 are points on γ satisfying for each w ∈ γ[z1, z2], ∆(w) ≤ 2 min{∆(z1), ∆(z2)}, then there exists a constant A ≥ 1 such that kD(z1, z2) ≤ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Since ∆ is continous and γ is compact, choose a point z0 ∈ γ with ∆(z0) = max z∈γ ∆(z) Then there exists unique non-negative integer n such that 2n∆(x) ≤ ∆(z0) ≤ 2n+1∆(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let x = x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For each i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' , n, let xi be the first point on γ[x, z0] such that ∆(xi) = 2i∆(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Similarly, there exists m ≥ 0 such that 2m∆(y) ≤ ∆(z0) ≤ 2m+1∆(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 10 Vasudevarao Allu and Abhishek Pandey Let y = y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For each j = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' , m, let yj be the first point on γ[z0, y] such that ∆(yj) = 2j∆(y0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In this manner we have devided the arc γ into (n + m + 1) subarcs γ[x0, x1], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' , γ[xn−1, xn], γ[xn, ym], γ[ym, ym+1], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' , γ[y1, y0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' It is easy to observe that all these subarcs are also c0-neargeodesic between their respective end points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let u and v be any two adjacent points along γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' That is u and v are xi, xi+1 or xn, ym or yj+1, yj, 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' By the construction, it is clear that for each z ∈ γ[u, v], we have ∆(z) = 2 min{∆(u), ∆(v)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' By assumption, there exists a constant A ≥ 1 such that kD(u, v) ≤ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' To show that γ is a C-cone arc for some C, we need to show that (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1) min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) for all w ∈ γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In order to prove (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1), it is sufficient to prove either l(γ[x, w] ≤ C∆(w) or l(γ[w, y]) ≤ C∆(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For this we need to consider three cases depending upon the location of w on γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Suppose w ∈ γ[xi, xi+1] for some 0 ≤ i ≤ n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then in view of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2), we have log∆(xi) ∆(w) ≤ kD(w, xi) = kD(xi, w) ≤ kD(xi, xi+1) ≤ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Therefore, we have (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2) ∆(xi) ≤ eA∆(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Moreover, we have (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3) l(γ[x, w]) ≤ i � t=0 l(γ[xs, xs+1]) In view of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3), we have log � 1 + l(γ[xs, xs+1]) min{∆(xs), ∆(xs+1)} � ≤ lk(γ[xs, xs+1]) ≤ c0 kD(xs, xs+1) ≤ c0 A Therefore, this gives us that logl(γ[xs, xs+1]) ∆(xs) ≤ log � 1 + l(γ[xs, xs+1]) ∆(xs) � ≤ c0 A and hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='4) l(γ[xs, xs+1]) ≤ ec0 A∆(xs) Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces 11 Using (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='4) in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='3), we obtain l(γ[x, w]) ≤ i � t=0 ec0 A∆(xt) (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='5) ≤ 2 ec0 A ∆(xi) ≤ 2 eA(c0+1) ∆(w) and hence we have l(γ[x, w]) ≤ C ∆(w), where C = 2eA(c0+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Theorefore, we have (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='6) min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) for all w ∈ γ[xi, xi+1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Suppose w ∈ γ[xn, ym].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then it is easy to see that log∆(xn) ∆(w) ≤ kD(w, xn) = kD(xn, w) ≤ kD(xn, ym) ≤ A, which implies ∆(xn) ≤ eA ∆(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' An easy computation shows that l(γ[x, w]) ≤ n−1 � i=0 l(γ[xi, xi+1]) + l(γ[xn, ym]) ≤ m−1 � i=0 ec0 A∆(xi) + ec0 A∆(xn) ≤ 3ec0 A∆(xn) ≤ 3 eA(c0+1) ∆(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' That is, l(γ[x, w]) ≤ C ∆(w), where C = 3 eA(c0+1) and hence we have (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7) min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) for all w ∈ γ[xn, ym].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Case 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Suppose w ∈ γ[yj, yj+1] for some 0 ≤ j ≤ m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Using the same argument as in earlier, we obtain l(γ[w, y]) ≤ C ∆(w), where C = 2 eA(c0+1) and hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='8) min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) for all w ∈ γ[yj, yj+1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Thus, combining (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='6), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='7) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='8), we conclude that γ is a C- cone arc, where C = 3 eA(c0+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' □ 12 Vasudevarao Allu and Abhishek Pandey Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let D be a c- John domain in an infinite dimensional Banach space E such that (D, kD) is Gromov hyperbolic space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Fix x, y ∈ D and let γ be a c0 neargeodesic joining x, y ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then there exists a constant A ≥ 1 depending only c, c0 and δ such that the following holds: If there are u, v ∈ γ such that each w ∈ γ[u, v] satisfies ∆(w) ≤ 2 min{∆(u), ∆(v)}, then kD(u, v) ≤ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let D be a c-John domain in a Banach space E such that (D, kD) is Gromov δ-hyperbolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' By definition (D, kD) is an intrinsic space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Fix x, y ∈ D and c0 > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In view of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1, let γ be a c0-neargeodesic joining x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In view of Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1, it is clear that a c-neargeodesic γ is (c, 0)- quasi-isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Since D is a c-John, there is a c-cone arc α joining x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' To use Theorem A, we first need to show that every c-cone arc α is (λ, µ)-quasi-isometry for some λ and µ depending only on c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Which we will prove in the following lemma Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let c ≥ 1 and α be a c-cone arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then its arc length parametrization αs satisfies the following inequality 1 3c|t − t′| − 3c log(3c) ≤ kD(αs(t), αs(t′)) ≤ 3c|t − t′| + 3c log(3c) and hence α is (3c, 3c log(3c))-quasi-isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let α be a c-cone arc joining x and y in D and z1, z2 ∈ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Without loss of generality we can assume that z1 ∈ α[x, z2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Since α is a c-cone arc, for each w ∈ α[z1, z2], we have l(α[w, z2]) ≤ min{l(α[x, w]), l(α[w, y])} ≤ c∆(w) and hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='10) l(α[w, z2]) ≤ c∆(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Next, our aim is to show that ∆(z2) ≤ 2c∆(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' To prove this, we consider two cases: Case (i) If d(w, z2) < ∆(y)/2, then ∆(w) ≥ ∆(z2) − d(w, z2) ≥ ∆(z2)/2 and hence, ∆(z2) ≤ 2∆(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Case (ii) Since α is a c-cone arc we obtain c∆(w) ≥ l(α[z2, w]) ≥ d(z2, w) ≥ ∆(z2)/2 and hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='11) ∆(z2) ≤ 2c∆(w) By adding (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='10) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='11), we obtain l(α[w, z2]) + ∆(z2) ≤ 3c∆(w) which gives, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='12) 1 ∆(w) ≤ 3c l(α[w, z2]) + ∆(z2) Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces 13 A simple computation shows that kD(z1, z2) ≤ lk(α[z1, z2]) = � α[z1,z2] ds ∆(w) (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='13) ≤ � l(α[z1,z2]) 0 3c t + ∆(z2) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' lk(α[z1, z2]) ≤ 3c(log(l(α[z1, z2]) + ∆(z2)) − log(∆(z2)) (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='14) ≤ 3c log � 1 + l(α[z1, z2]) ∆(z2) � ≤ 3c log � 1 + c∆(z1) ∆(z2) � (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='15) ≤ 3c � log �∆(z1) ∆(z2) � + log3c � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' lk(α[z1, z2]) ≤ 3ckD(z1, z2) + 3c log 3c (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='16) Theorefore, from (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='16), it is clear that the arc length parametrization of α satisfies the inequality 1 3c|t − t′| − 3c log(3c) ≤ kD(αs(t), αs(t′)) ≤ 3c|t − t′| + 3c log(3c) and hence α is (3c, 3c log(3c))-quasi-isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' This completes the proof of Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' □ Since γ is (c0, 0)-quasi-isometry and α is (3c, 3c log(3c))-quasi-isometry in view of Theorem A, we have that quasihyperbolic Hausdorff distance satisfies the following inequality kDH(γ, α) ≤ R = R(c, c0, δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let u, v ∈ γ such that each w ∈ γ[u, v] satisfies ∆(w) ≤ 2 min{∆(u), ∆(v)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Our aim is to show that there exists a constant A ≥ 1 such that kD(u, v) ≤ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' For this we need to estimate kD(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Since kDH(γ, α) ≤ R i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=', max � sup x∈γ kD(x, α), sup y∈α kD(γ, y) � ≤ R Theorefore, sup x∈γ kD(x, α) ≤ R In particular, M1 = kD(u, α) = inf b∈α kD(u, b) ≤ R and M2 = kD(v, α) = inf b∈α kD(v, b) ≤ R There exists a sequence bi and bj such that kD(u, bi) converges to M1 and kD(u, bj) converges to M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Since α is compact, bi and bj have convergent subsequence which 14 Vasudevarao Allu and Abhishek Pandey converges to say Zu and Zv respectively such that kD(u, Zu) ≤ R and kD(v, Zv) ≤ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Therefore, log ∆(u) ∆(Zu) ≤ kD(u, Zu) ≤ R implies (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='17) ∆(Zu) ≤ eR∆(u) and log ∆(v) ∆(Zv) ≤ kD(v, Zv) ≤ R implies (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='18) e−R∆(v) ≤ ∆(Zv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Since each w ∈ γ[u, v] satisfies (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='19) ∆(w) ≤ 2 min{∆(u), ∆(v)} by taking w = v in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='19), we obtain (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='20) ∆(v) = 2∆(u) and by taking w = u in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='19), we obtain (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='21) ∆(u) ≤ 2∆(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Using (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='21) in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='17), we obtain (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='22) ∆(Zu) ≤ eR∆(u) ≤ 2eR∆(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Using (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='18) in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='22), we obtain ∆(Zu) ≤ 2e2R∆(Zv) which implies that (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='23) ∆(Zu) ∆(Zv) ≤ 2e2R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' In view of (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='15), we have (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='24) kD(Zu, Zv) ≤ 3c log � 1 + c∆(Zu) ∆(Zv) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Using (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='23) in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='24), we obtain (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='25) kD(Zu, Zv) ≤ 3c log � 1 + 2ce2R� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Therefore, we have kD(u, v) ≤ kD(u, Zu) + kD(Zu, Zv) + kD(Zv, v) ≤ 2R + kD(Zu, Zv) ≤ 2R + 3c log(1 + 2ce2R) (by (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='25) This completes the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2 by taking A = 2R + 3c log(1 + 2ce2R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' □ Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Let D be a c- John domain such that (D, kD) is δ- hyperbolic for some δ and let γ be a c0- neargeodesic in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Then from Theo- rem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='2 we have that if there are u, v ∈ γ such that each w ∈ γ[u, v] satisfies Neargeodesics in Gromov hyperbolic John domains in infinite dimensional Banach spaces 15 ∆(w) ≤ 2 min{∆(u), ∆(v)}, then kD(u, v) ≤ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Therefore, by Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1, we con- clude that γ is a b-cone arc, where b depends only on c, δ and c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' This completes the proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Acknowledgement: The first named author thanks SERB-CRG, and the second named author thanks PMRF-MHRD (Id: 1200297), Govt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' of India for their support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' References [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Anderson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Vamanamurthy and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Vuorinen, Dimension-free quasiconfor- mal deformation in n-space, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 297 (1986), 687–706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Bonk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Heinonen and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Koskela, Uniformizing Gromov hyperbolic domains, As- terisque 270 (2001), 1–99 [3] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gehring and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Palka, Quasiconformally Homogeneous Domains, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 30 (1976), 172–199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [4] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gehring and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Osgood, Uniform domains and the Quasi-Hyperbolic Metric, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 36 (1979), 50–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Gehring, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Hag and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Martio, Quasihyperbolic geodesics in John domains, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Scand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 65 (1989), 75–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Heinonen, Quasiconformal mappings onto John domains, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Iber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 5 (1989), 97– 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Klél, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Rasila and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Talponen, On the smoothness of quasihyperbolic balls, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Fenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 42 (2017), 439–452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Li, Neargeodesics in John domains in Banach spaces, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 25, 1450041 (2014), https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1142/S0129167X14500414.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Martin, Quasiconformal and bi-Lipschtiz homeomorphisms, uniform domains and the quasihyperbolic metric, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 292, 1985, 169–191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [10] Olli Martio and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, Quasihyperbolic geodesic in convex domains II, Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 7 (2011), 395–409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, Free quasiconformality in Banach spaces I, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Fenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A I Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 15 (1990), 355–379.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, Free quasiconformality in Banach spaces II, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Fenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' A I Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 16 (1991), 255–310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, The Free quasiworld, Quasiconformal and related maps in Banach spaces, Banach Center Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 48 (1999), 55–118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, Broken tube in Hilbert spaces Analysis 24 (2004), 227–238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, Quasihyperbolic geodesic in convex domains, Results Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 48 (2005), 184–195.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, Gromov hyperbolic spaces, Expo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 23 (2005), 187–231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Väisälä, Hyperbolic and Uniform domains in Banach spaces, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Fenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 30 (2005), 261–302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [18] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Zhou and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Ponnusamy, Gromov hyperbolic John is Quasihyperbolic John I, arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='14457v1 [19] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Zhou and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Ponnusamy, Gromov hyperbolic John is Quasihyperbolic John II, arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='14457v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [20] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Zhou, Yaxiang Li and Antti Rasila, Gromov hyperbolicity, John Spaces, and Quasihy- perbolic Geodesics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 32, 228 (2022) https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='1007/s12220-022-00968- 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Vourinen, Conformal geometry and Quasiregular mappings, Lecture notes in mathemat- ics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 1319 (Springer, 1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' 16 Vasudevarao Allu and Abhishek Pandey Vasudevarao Allu, Discipline of Mathematics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, PIN-752050, Odisha (State), India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Email address: avrao@iitbbs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='in Abhishek Pandey, Discipline of Mathematics, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, PIN-752050, Odisha (State), India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content=' Email address: ap57@iitbbs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} +page_content='in' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNFPT4oBgHgl3EQfsDWM/content/2301.13147v1.pdf'} diff --git a/XdFRT4oBgHgl3EQfNjdq/content/2301.13510v1.pdf b/XdFRT4oBgHgl3EQfNjdq/content/2301.13510v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e634c7ebd90b16228dac1ad4a6be9c8378279bc4 --- /dev/null +++ b/XdFRT4oBgHgl3EQfNjdq/content/2301.13510v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c0e38252fcc34e4fc8c39540c7bc2f3790ec6d75bd4afb11e75793564727e079 +size 45044974 diff --git a/YdFQT4oBgHgl3EQfeDYW/vector_store/index.faiss b/YdFQT4oBgHgl3EQfeDYW/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..5208f22569fc3e76689f2ba949e20dce7b355e20 --- /dev/null +++ b/YdFQT4oBgHgl3EQfeDYW/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3f062692d8e7b83c0359ce5047af6f5b46f7eb792b77e81bef4dfd4db056957d +size 5111853 diff --git a/YdFQT4oBgHgl3EQfeDYW/vector_store/index.pkl b/YdFQT4oBgHgl3EQfeDYW/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..468b5a0e0dc01a3607c75dd575e6c9e50968e1ac --- /dev/null +++ b/YdFQT4oBgHgl3EQfeDYW/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a59d4370fdb37b0dc383837c8b6d49d1012c72e8ae9c1799c1f7d6ad469c5521 +size 162959 diff --git a/Z9E4T4oBgHgl3EQfnw0i/content/tmp_files/2301.05178v1.pdf.txt b/Z9E4T4oBgHgl3EQfnw0i/content/tmp_files/2301.05178v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3b04a2ddc53cbec7e20d44015505c8c80c0dbc2c --- /dev/null +++ b/Z9E4T4oBgHgl3EQfnw0i/content/tmp_files/2301.05178v1.pdf.txt @@ -0,0 +1,1478 @@ +arXiv:2301.05178v1 [hep-th] 12 Jan 2023 +A guide to frames, 2π’s, scales and corrections +in string compactifications +B. V. Bentoa, D. Chakrabortyb, S. Parameswarana, I. Zavalac +a Department of Mathematical Sciences, +University of Liverpool, Liverpool L69 7ZL +b Department of Physics, Ashoka University, +Plot 2, Rajiv Gandhi Education City, P.O. Rai, Sonipat 131029, Haryana, India +c Department of Physics, Swansea University, +Singleton Park, Swansea, SA2 8PP, UK +Abstract +This note is intended to serve as a reference for conventions used in the literature on +string compactifications, and how to move between them, collected in a single and easy- +to-find place, using type IIB as an illustrative example. We hope it may be useful to +beginners in the field and busy experts. E.g. string constructions proposed to address +the moduli stabilisation problem are generically in regions of parameter space at the +boundaries of control, so that consistent use of 2π’s and frame conventions can be +pivotal when computing their potentially dangerous corrections. +E-mail: Bruno.Bento@liv.ac.uk, dibya.chakraborty@ashoka.edu.in, susha@liv.ac.uk, +e.i.zavalacarrasco@swansea.ac.uk + +1 +Introduction +The idea that this pedagogical note could be a useful contribution to the community came +about after several discussions with colleagues on the robustness of various candidate string +constructions for moduli stabilisation, towards particle physics and cosmology, against po- +tentially dangerous corrections. To scrutinise these constructions, it becomes necessary to +use other people’s conventions (or indeed one’s own in one’s past worldline), and although +there is nothing deep in changing conventions, and a change of frames is simply a field re- +definition1, it is tedious, and possibly tricky unless starting from scratch. We thus present +the various choices most commonly used for 10d and 4d string and Einstein frames in type +IIB compactifications, and 2π’s, together with the map between them. We emphasise how +physical quantities such as mass ratios, which determine the size of leading corrections to +explicit string compactifications, are of course convention-independent. We hope that this +may help both beginners in the field and busy experts to save some time. +In Section 2, we present the 10d type IIB supergravity action in the string frame and the +Einstein frame, using the two main choices of conventions for change of frames, and including +the SL(2, R) manifest action. In Section 3, we dimensionally reduce to 4d using a general +warped compactification, and present the 4d Einstein frame in different conventions which, +however, always allow to recover the unwarped limit from the warped case in an intuitive +way. We identify the (warped) KK scale, presenting a single expression that covers the var- +ious conventions considered. In Section 4 we similarly work out the flux superpotential and +gravitino mass, and show how the mass ratio +m3/2 +mKK – which not only determines whether we +have a consistent supergravity description in 4d, but also controls the higher F-term correc- +tions to KKLT/LVS type compactifications – is of course convention-independent. In Section +5 we give the leading perturbative corrections to the Kähler potential and non-perturbative +corrections to the superpotential in the most common conventions, again showing how the +convention-independence can be made manifest. +1See e.g. [1, 2, 3, 4, 5] and references therein for some interesting discussions on the equivalence of the +Einstein and Jordan frames in cosmology. +1 + +2 +Type IIB supergravity +Our starting point is the type IIB low-energy supergravity action in string frame, which is +given by2 +SS +IIB = 1 +2κ2 +10 +� +d10x +� +−GS +� +e−2Φ +� +R + 4∂µΦ∂µΦ − 1 +2|H3|2 +� +− +�1 +2|F1|2 + 1 +2| ˜F3|2 + 1 +4| ˜F5|2 +� � +− 1 +4κ2 +10 +� +C4 ∧ H3 ∧ F3 , +(1) +where R is the Ricci scalar, Φ is the dilaton, H3 is the field-strength of the NS 2-form B2 +and Fp is the field-strength of the RR (p − 1)-forms Cp−1, and ˜F3, ˜F5 are defined as below: +H3 = dB2 , +˜F3 = F3 − C0H3 , +Fp = dCp−1 , +˜F5 = F5 − 1 +2C2 ∧ H3 + 1 +2B2 ∧ F3 , +|Fp|2 = 1 +p!Fµ1...µpF µ1...µp . +Moreover, the type IIB action must be supplemented with the self-duality condition3 +˜F5 = ⋆ ˜F5 . +The relation between the string scale α′ and the 10d gravitational coupling in string +frame κ10 is +2κ2 +10 = (2π)7α′4 . +(2) +A common convention for the string length4 ls, which we use below, is +(2π)2α′ = l2 +s , +(3) +although sometimes α′ = l2 +s is used instead. +2The action can be found on p.90 of [6], p.314 of [7], p.114 of [8], p.79 of [9] and p.625 of [10], along with +the necessary definitions. There is a different definition of F5, for example in [11], which also contains the +equations of motion. See also [12] for the dilaton dependence of the RR sector. +3Notice the factor of 1 +4 rather than 1 +2 in the kinetic term, which accounts for the fact that only half the +degrees of freedom should be present. +4The string scale (corresponding to the mass of the tower of string states) is Ms = +1 +√ +α′ = 2π +ls for this +choice of conventions. Sometimes the notation ms = +1 +ls is used with this convention, with the relation +Ms = 2πms. +2 + +2.1 +Einstein frame +In the string frame, the gravitational part of the action is not in the canonical Einstein- +Hilbert form. In order to obtain the latter, we perform a conformal transformation of the +metric in 10d, GS → GE = e2ΩGS. +The frame in which the gravitational part of the action takes the canonical Einstein- +Hilbert form – i.e. the Ricci scalar does not couple to anything other than +√ +−GE – is the +Einstein frame. This choice fixes the required conformal transformation up to a constant5 +Ω = −Φ − Φ0 +4 +, +(4) +where the constant Φ0 is a choice of convention, and the two metrics are related by +GE +MN = e− Φ−Φ0 +2 +GS +MN . +(5) +The first term in the action (1), namely the Ricci scalar, in the Einstein frame becomes +SE +grav = 1 +2κ2 +� +d10x +� +−GE +� +RE − 9 +2(GE)µν(∂µΦ)(∂νΦ) +� +, +(6) +where κ ≡ eΦ0κ10 is the rescaled coupling. +Including the contribution from the kinetic +term of Φ, which also transforms under this conformal transformation, the Einstein frame +gravitational plus dilaton action becomes +SE +grav+Φ = +1 +2κ2 +� +d10x +� +−GE +� +RE − 1 +2(∂µΦ)(∂µΦ) +� +. +(7) +Note that the dilaton is canonically normalised in Einstein frame. +The kinetic terms of the NS and RR form fields include an implicit metric associated to +the index contraction of the forms. For a generic p-form η we have +|η|2 +S = 1 +p!(GS)µ1ν1...(GS)µpνpηµ1...µpην1...νp += 1 +p!(e2Ω)p(GE)µ1ν1...(GE)µpνpηµ1...µpην1...νp = e2Ω·p |η|2 +E . +(8) +Putting everything together, with the appropriate choice (4), the action (1) in Einstein frame +5Note that a constant multiplying RE is a simple rescaling of the coupling constant κ, so that one still +obtains the Einstein frame. The constant is a matter of convention. +3 + +becomes +SE +IIB = +1 +2κ2 +� � +d10x +� +−GE +� +RE − 1 +2(∂µΦ)(∂µΦ) − eΦ0 +2 e−Φ|H3|2 +E +� +(9) +− +� +d10x +� +−GE +�e2Φ +2 |F1|2 +E + eΦ0 +2 eΦ| ˜F3|2 +E + e2Φ0 +4 | ˜F5|2 +E +� +− e2Φ0 +2 +� +C4 ∧ H3 ∧ F3 +� +. +Note that the Chern-Simons term in the action does not transform, apart from via the +constant relating κ and κ10, as it is a topological term, independent of the metric. +A common choice of Φ0 is such that the metric in the string frame and the metric in +the Einstein frame are the same at the vacuum, i.e. Φ0 = ⟨Φ⟩ – this allows us to discuss +quantities in a frame-independent way at the vacuum. For that choice the action in Einstein +frame reads +SE +IIB = 1 +2κ2 +� � +d10x +√ +−G +� +R − 1 +2(∂µΦ)(∂µΦ) − gs +2 e−Φ|H3|2 +� +− +� +d10x +√ +−G +�e2Φ +2 |F1|2 + gs +2 eΦ| ˜F3|2 + g2 +s +4 | ˜F5|2 +� +− g2 +s +2 +� +C4 ∧ H3 ∧ F3 +� +, +(10) +where we dropped the E, as all metrics are in Einstein frame. With this choice, the gravita- +tional coupling is related to the string scale as +2κ2 = 2κ2 +10g2 +s = (2π)7g2 +sα′4 +or +2κ2 = g2 +s l8 +s +2π +. +(11) +Another common choice of convention is Φ0 = 0. +In this case, volumes are frame- +dependent in the vacuum (see eq. (46) below) and one needs to be careful in using the right +frame, e.g. when checking whether the α′-expansion is under control for a certain vacuum, +which should be done using the string frame volume. +For this choice the gravitational +coupling is related to the string scale as +2κ2 = 2κ2 +10 = (2π)7α′4 +or +2κ2 = l8 +s +2π . +(12) +2.2 +SL(2, R) manifest action +We now express the Einstein frame action (10) in terms of the fields G3 and τ, such that +the underlying SL(2, R) symmetry becomes manifest, which is sometimes useful when doing +4 + +calculations and it is commonly used in the literature. We define the fields +τ = C0 + ie−Φ , +(13) +G3 = ˜F3 − ie−ΦH3 = F3 − τH3 , +(14) +where τ is known as the axio-dilaton. +In terms of these fields, the action takes the form +SE +IIB = +1 +2κ2 +� +d10x +√ +−G +� +R − (∂µτ)(∂µ¯τ) +2(Im τ)2 +− +eΦ0 +2(Im τ)|G3|2 − e2Φ0 +4 | ˜F5|2 +� +− +1 +2κ2 +ie2Φ0 +4 +� +1 +(Im τ)C4 ∧ G3 ∧ G3 , +(15) +where we recall κ = eΦ0κ10. We can also write the action in differential form language, +SE +IIB = 1 +2κ2 +� � +R ⋆ 1 − dτ ∧ ⋆dτ +2(Im τ)2 − +eΦ0 +2(Im τ)G3 ∧ ⋆G3 − e2Φ0 +4 +˜F5 ∧ ⋆ ˜F5 +− +ie2Φ0 +4(Im τ)C4 ∧ G3 ∧ G3 +� +. +(16) +Written in this form, the SL(2, R) symmetry of the type IIB action becomes manifest — it +leaves the metric and 4-form invariant, and acts on the remaining fields as +τ → aτ + b +cτ + d , +� +C2 +B2 +� += +� +a +b +c +d +� � +C2 +B2 +� +, +with +� +a +b +c +d +� +∈ SL(2, R) , +(17) +that is, ad − bc = 1. +Another occasionally used convention (see e.g. [13, 14, 15, 16]) is to redefine the RR +forms in Einstein frame as CE +p = eΦ0CS +p ; the action then becomes +SE +IIB = +1 +2κ2 +� � +R ⋆ 1 − dτ ∧ ⋆dτ +2(Im τ)2 − G3 ∧ ⋆G3 +2(Im τ) − 1 +4 +˜F5 ∧ ⋆ ˜F5 − +i +4(Im τ)C4 ∧ G3 ∧ G3 +� +, (18) +where the axio-dilaton was also redefined as τ E = eΦ0τ S = eΦ0CS +0 +ie−ϕ, with e−ϕ = e−(Φ−Φ0), +and GE +3 = eΦ0GS +3 = F E +3 − τ EH3. Note that in terms of τ E we have ⟨Im τ E⟩ = 1. With this +field redefinition the action looks the same regardless of the choice of convention, apart from +having a different gravitational coupling κ. +5 + +3 +Dimensional Reduction +In order to obtain a 4d EFT at low energies, we consider a compactification (or dimensional +reduction) of the 10d theory down to 4 dimensions. The 4d theory describes perturbations +around a 10d vacuum solution and is valid for energies much lower than the compactification +scale6. We consider a vacuum solution which corresponds to a warped product spacetime +M10 = R1,3 ×w X6, where R1,3 is a 4d Lorentzian spacetime and X6 is a 6d compact space. +The Einstein frame metric takes the form7 +ds2 +10 = H−1/2(y) e2ω(x)gµνdxµdxν + H1/2(y) V1/3gmndymdyn , +(19) +where xµ (µ = 0, ..., 3) are 4d coordinates and ym (m = 4, ..., 9) are 6d coordinates on the +compact space X6. The metric gmn = (g6)mn is the 6d metric of a Calabi-Yau (Ricci flat) +manifold normalised such that +� +d6y√g6 ≡ l6 +s, +with V = VE(x) keeping track of the physical size of the compact space. We define the warp +factor H as +H(y) ≡ 1 + e−4A0(y) +V2/3 +, +(20) +which is motivated as follows. First, the background warp factor – commonly written as +e−4A(y) – that solves the 10d Einstein equations in the presence of fluxes is only fixed up to +a constant shift, e−4A(y) = e−4A0(y) + c, which becomes a modulus in the 4d EFT [17]. The +fact that gmn → λgmn together with e2A → λe2A is a gauge redundancy of the metric [18, 19] +allows us to choose λ = c1/2 and rewrite e−4A(y) = 1 + e−4A0(y) +c +, which naturally recovers the +unwarped case in the c → ∞ limit – this relates c = V2/3 with the unwarped volume of the +compact space. The factor e2ω(x) is introduced to Weyl rescale to the 4d Einstein frame, +with metric gµν, as we now describe. +Dimensionally reducing the 10d Einstein-Hilbert term (in Einstein frame) +SE +IIB = +1 +2κ2 +� +d10x +√ +−G R10 +(21) +down to 4d using the ansatz (19) gives, among other contributions, the term +S4d ⊃ +1 +2κ2 +� +d4x√−g4 · e2ω(x)� +V +� +d6y√g6 · H(y) +� +R4 . +(22) +6Depending on the details of the compactification, this scale could correspond to e.g. mKK or mw +KK. +7Since we start with Einstein frame metric (19) and action (21), the volumes V and Vw are Einstein frame +volumes. +6 + +Any choice of e2ω(x) that leaves a non-canonical coupling of the volume modulus V to R4 is +said to be in the Jordan frame. Requiring a canonical form for the Einstein-Hilbert term +instead – which defines the 4d Einstein frame – fixes the Weyl rescaling e2ω(x), up to a +constant factor e2ω0, as +e2ω(x) = +e2ω0 · l6 +s +V +� +d6y√g6 · H(y) ≡ e2ω0 · l6 +s +Vw += e2ω0 +Vw +, +(23) +where we defined the warped volume Vw = Vw · l6 +s as8 +Vw ≡ V +� +d6y√g6 · H(y) +� +�� +� +⟨H⟩av· l6s +. +(24) +This definition of Vw only differs from V · l6 +s by the factor ⟨H⟩av, the average of the warp +factor over the compact space. If the integral is dominated by the unwarped bulk, then +⟨H⟩av ≈ 1 and Vw ≈ V · l6 +s. +Note the similarities with the conformal transformation in 10d to go from string frame +to Einstein frame, where we also had some freedom in the form of a constant. There a +convenient choice was the one for which the two metrics matched at the vacuum. Here we +are going from the Jordan frame, in which some scalars couple to the Ricci scalar in the +action, to the 4d Einstein frame, in which we recover the canonical Einstein-Hilbert term. +The two metrics will match at the vacuum if we choose e2ω0 = ⟨Vw⟩. The action in Einstein +frame for general ω0 becomes +SE +4d ⊃ e2ω0 · l6 +s +2κ2 +� +d4x√−g4 · R4 ≡ M2 +Pl +2 +� +d4x√−g4 · R4 , +(25) +which defines the relation between the string scale9 (ms = 1/ls) and the Planck scale as +ms = +eΦ0 +√ +4πe2ω0 MPl . +(26) +8Note that this differs from the volume of the 6d compact space in the ansatz (19), which is +V +� +d6y√g6 H3/2(y) . +9See footnote 4. +7 + +For the convenient choice eΦ0 = gs and e2ω0 = ⟨Vw⟩, this relation becomes +ms = +gs +√4πVw +MPl . +(27) +Note also that in the unwarped limit the warped volume tends to the volume modulus of the +compactification, Vw → V, and – with these choices of convention for the Weyl rescalings – +we recover the common expression for the ratio ms/MPl. If instead we choose conventions +Φ0 = 0 = ω0, then ms = MPl/ +√ +4π. Note that the convention dependence of MPl with +respect to ms makes sense, as MPl measures the coupling strength of the Einstein frame +gravitational field, whose definition depends on the convention chosen. +At the same time, the warped string scale is given by +mw +s ≡ H−1/4(y0) ms , +(28) +and corresponds to the scale perceived by a 4d observer living at some fixed position y0 along +the warping direction of the compact space. +We now determine the Kaluza-Klein (KK) scale at which the towers of massive states +associated with the compact dimensions appear. Considering the simple case of a 10d scalar +field ρ, +S = +� +d10x +√ +−G +� +−1 +2GMN(∂Mρ)(∂Nρ) +� +(29) += +� +d4x +� +d6y · H−1(y)e2ω(x)√−g4 · H3/2(y) V√g6 +� +−1 +2H1/2(y)e−2ω(x)gµν(∂µρ)(∂νρ) − 1 +2H−1/2(y)V−1/3gmn(∂mρ)(∂nρ) +� +(30) += +� +d4x√−g4 V +� +d6y√g6 +� +−1 +2H(y)gµν(∂µρ)(∂νρ) − 1 +2 +e2ω(x) +V1/3 gmn(∂mρ)(∂nρ) +� +(31) += +� +d4x√−g4 V +� +d6y√g6 +� +−1 +2H(y)gµν(∂µρ)(∂νρ) + 1 +2 +e2ω(x) +V1/3 H(y)(∆6ρ) · ρ +� +, +(32) +where in the last step we integrated the second term by parts and defined the internal space +Laplacian operator +∆6ρ ≡ H−1(y) +√g6 +∂m(√g6 gmn∂nρ) . +(33) +Decomposing the field ρ(x, y) in a basis of eigenfunctions of ∆6 (i.e. ∆6ξk = −λ2 +kξk, with no +8 + +sum over k), +ρ(x, y) = +� +k +̺k(x)ξk(y) , +(34) +the action for the 10d scalar ρ becomes an action for infinitely many 4d scalars ̺k(x), +S = +� +d4x√−g4 V +� +d6y√g6 +� +k,l +� +− 1 +2H(y)gµν(∂µ̺k)(∂ν̺l)(ξkξl) +− 1 +2 +e2ω(x) +V1/3 H(y)λ2 +k ̺k̺l (ξkξl) +� +(35) += +� +d4x√−g4 V +� +k,l +� +− 1 +2gµν(∂µ̺k)(∂ν̺l) · +� +d6y√g6 · H(y) ξkξl +− 1 +2 +e2ω(x) +V1/3 λ2 +k̺k̺l · +� +d6y√g6 · H(y) ξkξl +� +. +(36) +Since the eigenmodes ξk satisfy the orthogonality condition +� +d6y√g6 · H(y) ξkξl = c1δkl , +(37) +the KK modes decouple and the action reduces to +S = +� +k +� +d4x√−g4 +� +− 1 +2gµν(∂µ̺k)(∂ν̺k)(c1V) + 1 +2 +e2ω(x) +V1/3 λ2 +k̺2 +k(c1V) +� +(38) += +� +k +� +d4x√−g4 +� +− 1 +2gµν(∂µ̺c +k)(∂ν̺c +k) + 1 +2 · λ2 +k +V1/3 +e2ω0 +Vw +· (̺c +k)2 +� +, +(39) +where in the second line we canonically normalise the fields ̺k. Therefore, the mass of ̺c +k is +mk = λk +V1/6 +�e2ω0 +Vw +�1/2 +=⇒ +mKK = λ1 +V1/6 +�e2ω0 +Vw +�1/2 +, +(40) +where we identify the KK scale, mKK, with the mass of the lightest mode m1. +To determine λk (and the eigenfunctions10) one must solve the eigenvalue equation +1 +√g6 +∂m(√g6 gmn∂nξk) + H(y) · λ2 +k · ξk = 0 , +(41) +10These are commonly referred to as the wavefunctions of the modes ̺k. +9 + +together with appropriate boundary conditions. It is therefore not possible to give a fully +generic expression for λk, and thus mKK, as it depends on the details of the compactification. +If we consider the case of a torus with a single common radius as the prototypical example +of an isotropic compact space11 with characteristic scale ls and constant warp factor12, the +eigenvalue is λ1 = H−1/2 +0 +· (2π) · ms. Then the KK scale becomes +mKK = +�e2ω0 +Vw +�1/2 +H−1/2 +0 +· 2π +V1/6ms = H−1/2 +0 +· 2π +V1/6 · +eΦ0 +√ +4πV1/2 +w +MPl . +(42) +We should note that generally there are two distinct volumes appearing in mKK. +One +usually takes Vw ≈ V, i.e. one assumes that the unwarped region of the compact space +dominates the volume integral, in which case we recover the well-known volume suppression +mKK ∼ MPl/V2/3. For the convenient choice eΦ0 = gs and e2ω0 = ⟨Vw⟩, and approximating +Vw ≈ V, we have +mKK = H−1/2 +0 +· 2π +V1/6 ms = H−1/2 +0 +· +2πgs +√ +4πV2/3MPl , +(43) +while for the common alternative choice Φ0 = 0, the factor of gs will be absent. +One also often finds in the literature another scale +mw +KK ≡ H−1/4(y0) mloc +KK , +(44) +where mloc +KK corresponds to a KK scale associated with modes localised on a subspace at +some fixed y = y0 (e.g. the tower of states associated with fields living on the world-volume +of a brane wrapping an internal cycle at the tip of some warped throat). +It is worth emphasising that volumes measured using a string frame metric may differ from +the ones measured using an Einstein frame metric, depending on the convention used, i.e. on +the choice of Φ0. To see this, recall that the two metrics are related by GE +MN = e− Φ−Φ0 +2 +GS +MN. +11More generically one could consider different scales in different directions, which would result in different +KK scales. +12This is consistent with our normalisation for the coordinates ym, such that +� +d6y√g6 = l6 +s – it corresponds +to an identification of the normalised coordinates ym ∼ ym + 1 (with ds2 +6 = l2 +s dymdym), rather than +ym ∼ ym + 2π. +Moreover, with a constant warp factor, H(y) ≡ H0, the eigenfunctions respecting the +(periodic) boundary conditions on the torus would be ξ⃗k ∝ e2πi ⃗k·⃗y, with a vector of integers ⃗k labeling the +modes, and hence ∆6ξ⃗k = −H−1 +0 +· (2π)2k2 · ms · ξ⃗k, giving λ⃗k = H−1/2 +0 +· (2π|⃗k|) · ms. When the warp factor +is not trivial, its functional form will qualitatively change the eigenvalue equation (41) and the solutions λk +will depend, in particular, on the balance between warped and unwarped regions of the compact space. +10 + +Therefore, a generic d-dimensional volume can be written as +V E +d = +� +ddy +� +gE +d f(y) = +� +ddy +� +gS +d e− d +4 (Φ−Φ0)f(y) , +(45) +where we allow for some function f(y), such as H(y) in the definition of Vw (24). Therefore, +the volumes in the two frames (assuming Φ is stabilised) are related as V S +d = +� +e⟨Φ⟩−Φ0� d +4 V E +d ⇔ +VS = e +3 +2(⟨Φ⟩−Φ0)VE . +(46) +Hence, it is important to note the convention being used for the Einstein frame metric and +how it relates to quantities that are obtained in either string frame or Einstein frame (e.g. +perturbative and non-perturbative corrections). +Finally, it is interesting to note that the ratio mKK/ms is manifestly independent of the +choice for eΦ0, i.e. on the convention used in changing from string frame to Einstein frame, +whereas the ratio mKK/MPl is manifestly independent of the choice for eω0, i.e. +on the +convention used in going to 4d Einstein frame. After taking into account the dependence +of the Einstein frame volume on the frame convention, the ratio mKK/MPl is also actually +independent of the choice for eΦ0, as it must be. Approximating Vw ≈ V and expressing the +ratio in terms of the string-frame volume, the convention-dependent factors fall out: +mKK +MPl += H−1/2 +0 +· +2πgs +√ +4πV2/3 +S +. +(47) +4 +Flux scalar potential +The scalar potential for the moduli fields and the dilaton comes from the terms R, |G3|2 and +| ˜F5|2 in the action (9), after dimensional reduction to 4d. The contributions from the R and +˜F5 terms can be shown to give (see section 5.3 of [20]) +1 +2κ2 +� � +R ⋆ 1 − e2Φ0 +4 +˜F5 ∧ ⋆ ˜F5 +� += eΦ0 +2κ2 +� +d4x√−g4 · e4ω(x) +� +H−1G3 ∧ iG3 +2(Imτ) , +(48) +which we can put together with the G3 ∧ ⋆G3 term to give in total +SE +IIB ⊃ eΦ0 +2κ2 +� +d4x√−g4 · e4ω(x) +� +H−1 +2(Imτ)G3 ∧ (iG3 + ⋆6G3) +(49) += eΦ0 +2κ2 +� +d4x√−g4 · e4ω(x) +� +H−1 +(Imτ)G+ +3 ∧ ⋆6G ++ +3 , +(50) +11 + +with G+ +3 = 1 +2(G3 + i ⋆6 G3) such that ⋆6G+ +3 = −iG+ +3 [20]. Using the metric (19) we can +rewrite this action in terms of gmn, +SE +IIB ⊃ +� +d4x√−g4 +� +eΦ0 +2κ2 e4ω(x) +� +H−1 G+ +3 ∧ ⋆g6G ++ +3 +(Imτ) +� +≡ − +� +d4x√−g4 V , +(51) +which defines the 4d scalar potential V as +V = −i eΦ0 +2κ2 e4ω(x) +� +H (H−1G+ +3 ) ∧ (H−1G ++ +3 ) +(Imτ) +. +(52) +It is now possible to rewrite this potential in an N = 1 supergravity form, by defining +W = 1 +a +� +G3 ∧ Ω , +(53) +where a is a normalisation constant to be determined below, and using that +� +H (H−1G+ +3 ) ∧ (H−1G ++ +3 ) = +a2 +� +H Ω ∧ ΩGα¯β(DαW)(D ¯βW) +(54) +where α, β run over the complex structure moduli and the axio-dilaton. Using this, the +scalar potential becomes +V = −i eΦ0 +2κ2 +e4ω(x) +(Im τ) +a2 +� +H Ω ∧ Ω +� +Gi¯(DiW)(D¯W) − 3|W|2� += eΦ0 +2κ2 +�e2ω0 · l6 +s +Vw +�2 +1 +(Im τ) +a2 +l6 +s +l6 +s +i +� +H Ω ∧ Ω +� +Gi¯(DiW)(D¯W) − 3|W|2� += +2π +eΦ0 · l8s +�e2Φ0M2 +Pl · l2 +s · l6 +s +4πVw +�2 +1 +(Im τ) +a2 +l6s +l6 +s +i +� +H Ω ∧ Ω +� +Gi¯(DiW)(D¯W) − 3|W|2� += e3Φ0 +4π · l4s +M4 +Pl +a2 +l6s +· +� l6 +s +Vw +�2 +1 +2(Im τ) +l6 +s +i +� +H Ω ∧ Ω · M2 +Pl +� Gi¯ +M2 +Pl +(DiW)(D¯W) − +3 +M2 +Pl +|W|2 +� += +� +e3Φ0 +4π · l10 +s +M6 +Pl +� +eK/M2 +Pl +� +Ki¯(DiW)(D¯W) − +3 +M2 +Pl +|W|2 +� +, +(55) +where now i, j run over complex structure moduli, Kähler moduli and the axio-dilaton, the +Kähler potential K is given by +12 + +K/M2 +Pl = −2 log Vw − log(−i(τ − ¯τ)) − log +� i +l6s +� +H Ω ∧ Ω +� +(56) +and Ki¯ is the inverse field space metric that follows from Ki¯ = ∂i∂¯K. +Note that the volume term in K includes not only the overall volume modulus V, but +also the other Kähler moduli. This scalar potential leads to the normalisation +W/M3 +Pl = +e +3 +2 Φ0 +√ +4π · l5s +� +G3 ∧ Ω . +(57) +We can see that the normalisation constant, a, is convention-dependent through the choice +of eΦ0. +This gives for the gravitino mass +m3/2 = e +K +2M2 +Pl |W| +M2 +Pl += +e +1 +2⟨Φ⟩ +Vw ||Ω||w +e +3 +2 Φ0W0 +√ +8π +MPl , +(58) +where e +1 +2⟨Φ⟩ comes from ⟨Im τ⟩, ||Ω||2 +w · l6 +s = i +� +H Ω ∧ Ω and we define +W0/M3 +Pl ≡ +� 1 +l5 +s +� +G3 ∧ Ω +� +. +(59) +It follows from (58) and (42) that the important13 ratio (assuming the bulk dominates +all the integrals, so that Vw ≈ V and ||Ω||w ≈ ||Ω||) +m3/2 +mKK += H1/2 +0 +e +1 +2(⟨Φ⟩+Φ0) +V1/3 +E +W0 +√ +2(2π)||Ω|| , +(60) +where we highlight the fact that the volume being used is the Einstein frame volume, VE. +Note that this mass ratio, as written in terms of the Einstein frame volume, seems to depend +on the convention used for the 10d change of frames, i.e. the choice of Φ0. It is however +convention-independent, as it must be, since the Einstein frame volume also depends on the +choice of Φ0. If we express the mass ratio in terms of the string frame volume instead, which +13Not only is this ratio important because a consistent 4d supergravity description requires that the +gravitino remains in the theory, i.e. its mass is not above the EFT cutoff – typically mKK – and therefore +integrated out, but it was shown that it also serves as a control parameter for certain corrections to the +scalar potential, e.g. from higher F-terms [21]. +13 + +corresponds to the volume perceived by the string itself, using (46) we find +m3/2 +mKK += H1/2 +0 +e⟨Φ⟩ +V1/3 +S +W0 +√ +2(2π)||Ω|| , +(61) +which is manifestly independent of conventions14. +5 +Corrections to the scalar potential +Since the flux superpotential leaves all Kähler moduli unstabilised, either leaving them as +flat directions or generating runaways, one must resort to higher-order corrections to the +EFT in order to stabilise them. Both perturbative and non-perturbative corrections have +been considered in the literature — while the former are computed at the level of the 10d +EFT and in string frame, the latter are obtained directly at the level of the 4d EFT and are +computed in Einstein frame. One must therefore be careful with the conventions being used +to change frames, i.e. the choice of Φ0, in order to remain consistent. +5.1 +Perturbative corrections +In [22], it was shown that α′-corrections to the Type IIB effective action (9) manifest as +corrections to the 4d volume modulus Kähler potential and spoil the no-scale structure +of its scalar potential. These corrections arise from higher-derivative terms at order (α′)3 +appearing in the type IIB effective action, +SS +IIB = +1 +2κ2 +10 +� +d10x +� +−GS e−2Φ� +RS + 4(∂Φ)2 +S + (α′)3 · ζ(3) +3 · 211 · J0 +� +, +(62) +where the higher-order term is schematically given by +J0 ∼ (RMNP Q)4 . +(63) +One must also add a term +δSS +Φ ∼ +� +d10x +� +−GSe−2Φ(α′)3(∇2Φ) Q , +(64) +14Note that we give mass ratios for canonically normalised fields defined in the Einstein frame. Whilst +these mass ratios must be invariant under change of conventions, a change in frame would come with field +redefinitions, and new masses and couplings. In a setup in which all couplings, including the gravitational +coupling, are constant (e.g. assuming that the dilaton and volume modulus are stabilised and integrated +out), the change of frames becomes a change of convention from one Einstein frame to another Einstein +frame, and the mass ratios would be invariant. +14 + +where Q ∼ (RMNP Q)3 is a generalisation of the 6d Euler integrand +� +X6 d6y√g6 Q = χ, with +χ the Euler characteristic of X6 [22]. This term corrects the 10d solution to the equation +of motion for Φ, such that Φ = Φ10 + ζ(3) +16 Q. It is then shown in [22] that this leads to a +correction to the Kähler potential of the form +K = −2 log +� +VS + ξ +2 +� += −2 log +� +VE e +3 +2(Φ−Φ0) + ξ +2 +� +(65) += −2 log +� +VE + ξ +2e− 3 +2(Φ−Φ0)� ++ ... , +(66) +where we have used (46) with d = 6, keeping Φ0 unspecified, and ξ is defined as15 +ξ = − ζ(3)χ +2(2π)3 . +(67) +Note in particular that the correction expressed in Einstein frame depends on the convention +one chooses for Φ0, +Φ0 = 0 =⇒ K = −2 log +� +V + +ξ +2g3/2 +s +� +, +(68) +Φ0 = ⟨Φ⟩ =⇒ K = −2 log +� +V + ξ +2 +� +, +(69) +where we have assumed as usual that the dilaton has been stabilised by fluxes. +5.2 +Non-perturbative corrections +Although the superpotential W does not receive perturbative corrections, it may receive non- +perturbative corrections from either instantons arising from Euclidean D3-branes wrapping +4-cycles or gaugino condensation on the world-volume theory of D7-branes wrapped around +internal 4-cycles. Let us consider the latter case in some detail. In what follows, Tp = +2π +lp+1 +s +is the brane tension. The DBI action for a Dp-brane, in the string frame, is given by [6, 7] +SDBI +Dp = −Tp +� +dp+1σ e−Φ +� +− det +� +gS + B + l2 +s +2πF +� +, +(70) +15In [22], we find the definition ξ = − ζ(3)χ(X6) +2 +. The missing factor of (2π)3 comes from their conventions +for the volume, V[22] = V6/(2πα′)3, whereas we are using V = V6/l6 +s = (2π)−3 V6/(2πα′)3, with the convention +(2π)2α′ = l2 +s. There are also instances in the literature where the factor of 1/2 is absorbed into the definition +of ξ. +15 + +where gS and B refer to the pull-back of the string frame metric (GS)MN and 2-form BMN +onto the world-volume of the brane and F to the field-strength Fab of the brane gauge fields. +Rewriting the action in terms of the Einstein frame metric, +SDBI +Dp = −Tp +� +dp+1σ e−Φ� +− det gS +� +det +� +1 + (gS)−1 +� +B + l2 +s +2πF +�� +(71) +⊃ −Tp +� +dp+1σ e−Φ� +− det gS 1 +4 +� l2 +s +2π +�2 +(gS)ac(gS)bdFabFcd +(72) += −Tp +4 +l4 +s +(2π)2 +� +dp+1σ +� +− det gE e +p−3 +4 (Φ−Φ0)e−ΦFabF ab , +(73) +where the indices in FabF ab are contracted with Einstein frame metrics. This is the kinetic +term for the brane gauge bosons (see Appendix A.2. of [23]) and tells us the gauge coupling +of the corresponding theory, which is a key parameter for gaugino condensation. If the brane +is wrapping a (p − 3)–cycle Σp−3, we find the corresponding 4d term (assuming that Φ is +constant over the cycle) +S4d +Dp ⊃ − +1 +8πlp−3 +s +� +d4x +� +− det gE +4 e +p−3 +4 (Φ−Φ0)e−Φ +�� +dp−3σ +� +gE +p−3 +� +� +�� +� +τ E +Σp−3lp−3 +s +FabF ab +(74) += − +� +d4x +� +− det gE +4 +� +τ E +Σp−3 +8πeΦ e +p−3 +4 (Φ−Φ0) +� +FabF ab , +(75) +and we can read off the gauge coupling gc, +1 +g2 +c += +τ E +Σp−3 +4πe⟨Φ⟩ e +p−3 +4 (⟨Φ⟩−Φ0) , +(76) +where we have assumed as usual that the dilaton has been stabilised by fluxes at some +higher scale. Gaugino condensation on the world-volume theory of D7-branes will then give +a non-perturbative contribution to the superpotential [24],16 +Wnp ∼ e +− 8π2 +g2c +1 +N = e− 2π +N +τE +gs e⟨Φ⟩−Φ0 , +(77) +16Here N is the number of branes stacked on top of each other, responsible for the gauge group. It appears +through the beta-function coefficient [24]. +16 + +where we used e⟨Φ⟩ = gs. Holomorphicity of W then leads to the general contribution +Wnp = +� +i +Aiei ai +gs e⟨Φ⟩−Φ0T E +i +, +(78) +where the sum is over the contributing cycles, ai = 2π +Ni and the fields Ti = bi + iτi are the +complexified Kähler moduli. Hence, we can compare the two most common conventions for +Φ0, +Φ0 = 0 =⇒ Wnp = +� +i +AieiaiT E +i , +(79) +Φ0 = ⟨Φ⟩ =⇒ Wnp = +� +i +Aiei ai +gs T E +i . +(80) +As for the mass ratio m3/2/mKK, the superpotential as written, in terms of Einstein frame +4-cycle volumes, appears to depend on the choice of convention for Φ0, but one should recall +that the 4-cycle volumes also depend on this choice of convention. If we express the 4-cycle +volumes in terms of the string frame metric (46), +τ S +i = e⟨Φ⟩−Φ0τ E +i , +(81) +the convention-independence becomes manifest. +Acknowledgements +IZ is partially supported by STFC, grant ST/P00055X/1. +References +[1] V. Faraoni and E. Gunzig, Einstein frame or Jordan frame?, Int. J. Theor. Phys. 38 +(1999) 217–225, [astro-ph/9910176]. +[2] C. Corda, Gravitational wave astronomy: the definitive test for the ’Einstein frame +versus Jordan frame’ controversy, Astropart. Phys. 34 (2011) 412–419, +[arXiv:1010.2086]. +[3] A. Y. Kamenshchik and C. F. Steinwachs, Question of quantum equivalence between +17 + +Jordan frame and Einstein frame, Phys. Rev. D 91 (2015), no. 8 084033, +[arXiv:1408.5769]. +[4] S. Karamitsos and A. Pilaftsis, On the Cosmological Frame Problem, PoS +CORFU2017 (2018) 036, [arXiv:1801.07151]. +[5] J. Bamber, Fifth forces and frame invariance, [arXiv:2210.06396]. +[6] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge +Monographs on Mathematical Physics. Cambridge University Press, 12, 2007. +[7] K. Becker, M. Becker, and J. H. Schwarz, String theory and M-theory: A modern +introduction. Cambridge University Press, 12, 2006. +[8] L. E. Ibanez and A. M. Uranga, String theory and particle physics: An introduction to +string phenomenology. Cambridge University Press, 2, 2012. +[9] D. Baumann and L. McAllister, Inflation and String Theory. Cambridge Monographs +on Mathematical Physics. Cambridge University Press, 5, 2015. +[10] R. Blumenhagen, D. Lüst, and S. Theisen, Basic concepts of string theory. Theoretical +and Mathematical Physics. Springer, Heidelberg, Germany, 2013. +[11] J. Polchinski and M. J. Strassler, The string dual of a confining four-dimensional +gauge theory, Physical Review D (3, 2000) [hep-th/0003136]. +[12] A. A. Tseytlin, On dilaton dependence of type II superstring action, Class. Quant. +Grav. 13 (1996) L81–L85, [hep-th/9601109]. +[13] F. Tonioni, Fundamental and Phenomenological Aspects of Anti-D-Brane +Supersymmetry Breaking. PhD thesis, U. Liverpool, 2022. +[14] P. McGuirk, G. Shiu, and F. Ye, Soft branes in supersymmetry-breaking backgrounds, +JHEP 07 (2012) 188, [arXiv:1206.0754]. +[15] L. Martucci, J. Rosseel, D. Van den Bleeken, and A. Van Proeyen, Dirac actions for +D-branes on backgrounds with fluxes, Class. Quant. Grav. 22 (2005) 2745–2764, +[hep-th/0504041]. +[16] R. C. Myers, Dielectric branes, JHEP 12 (1999) 022, [hep-th/9910053]. +[17] A. R. Frey, G. Torroba, B. Underwood, and M. R. Douglas, The Universal Kahler +Modulus in Warped Compactifications, JHEP 01 (2009) 036, [arXiv:0810.5768]. +18 + +[18] S. B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape +of the warped landscape, Phys. Rev. D 73 (2006) 126003, [hep-th/0507158]. +[19] L. Aparicio, F. Quevedo, and R. Valandro, Moduli Stabilisation with Nilpotent +Goldstino: Vacuum Structure and SUSY Breaking, JHEP 03 (2016) 036, +[arXiv:1511.08105]. +[20] O. DeWolfe and S. B. Giddings, Scales and hierarchies in warped compactifications +and brane worlds, Physical Review D 67 (2003), no. 6 [hep-th/0208123]. +[21] M. Cicoli, J. P. Conlon, A. Maharana, and F. Quevedo, A Note on the Magnitude of +the Flux Superpotential, JHEP 01 (2014) 027, [arXiv:1310.6694]. +[22] K. Becker, M. Becker, M. Haack, and J. Louis, Supersymmetry breaking and +alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060, +[hep-th/0204254]. +[23] S. Parameswaran and F. Tonioni, Non-supersymmetric String Models from +Anti-D3-/D7-branes in Strongly Warped Throats, JHEP 12 (2020) 174, +[arXiv:2007.11333]. +[24] A. Hebecker, Lectures on Naturalness, String Landscape and Multiverse, +[arXiv:2008.10625]. +19 + diff --git a/Z9E4T4oBgHgl3EQfnw0i/content/tmp_files/load_file.txt b/Z9E4T4oBgHgl3EQfnw0i/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d7bd3b69316da2cb26df5e06fa63adf43d17eef4 --- /dev/null +++ b/Z9E4T4oBgHgl3EQfnw0i/content/tmp_files/load_file.txt @@ -0,0 +1,492 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf,len=491 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='05178v1 [hep-th] 12 Jan 2023 A guide to frames, 2π’s, scales and corrections in string compactifications B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Bentoa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Chakrabortyb, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Parameswarana, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Zavalac a Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL b Department of Physics, Ashoka University, Plot 2, Rajiv Gandhi Education City, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Rai, Sonipat 131029, Haryana, India c Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK Abstract This note is intended to serve as a reference for conventions used in the literature on string compactifications, and how to move between them, collected in a single and easy- to-find place, using type IIB as an illustrative example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We hope it may be useful to beginners in the field and busy experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' string constructions proposed to address the moduli stabilisation problem are generically in regions of parameter space at the boundaries of control, so that consistent use of 2π’s and frame conventions can be pivotal when computing their potentially dangerous corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' E-mail: Bruno.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Bento@liv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='uk, dibya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='chakraborty@ashoka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='in, susha@liv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='uk, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='zavalacarrasco@swansea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='uk 1 Introduction The idea that this pedagogical note could be a useful contribution to the community came about after several discussions with colleagues on the robustness of various candidate string constructions for moduli stabilisation, towards particle physics and cosmology, against po- tentially dangerous corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' To scrutinise these constructions, it becomes necessary to use other people’s conventions (or indeed one’s own in one’s past worldline), and although there is nothing deep in changing conventions, and a change of frames is simply a field re- definition1, it is tedious, and possibly tricky unless starting from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We thus present the various choices most commonly used for 10d and 4d string and Einstein frames in type IIB compactifications, and 2π’s, together with the map between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We emphasise how physical quantities such as mass ratios, which determine the size of leading corrections to explicit string compactifications, are of course convention-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We hope that this may help both beginners in the field and busy experts to save some time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In Section 2, we present the 10d type IIB supergravity action in the string frame and the Einstein frame, using the two main choices of conventions for change of frames, and including the SL(2, R) manifest action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In Section 3, we dimensionally reduce to 4d using a general warped compactification, and present the 4d Einstein frame in different conventions which, however, always allow to recover the unwarped limit from the warped case in an intuitive way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We identify the (warped) KK scale, presenting a single expression that covers the var- ious conventions considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In Section 4 we similarly work out the flux superpotential and gravitino mass, and show how the mass ratio m3/2 mKK – which not only determines whether we have a consistent supergravity description in 4d, but also controls the higher F-term correc- tions to KKLT/LVS type compactifications – is of course convention-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In Section 5 we give the leading perturbative corrections to the Kähler potential and non-perturbative corrections to the superpotential in the most common conventions, again showing how the convention-independence can be made manifest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 1See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [1, 2, 3, 4, 5] and references therein for some interesting discussions on the equivalence of the Einstein and Jordan frames in cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 1 2 Type IIB supergravity Our starting point is the type IIB low-energy supergravity action in string frame,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' which is given by2 SS IIB = 1 2κ2 10 � d10x � −GS � e−2Φ � R + 4∂µΦ∂µΦ − 1 2|H3|2 � − �1 2|F1|2 + 1 2| ˜F3|2 + 1 4| ˜F5|2 � � − 1 4κ2 10 � C4 ∧ H3 ∧ F3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (1) where R is the Ricci scalar,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Φ is the dilaton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' H3 is the field-strength of the NS 2-form B2 and Fp is the field-strength of the RR (p − 1)-forms Cp−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' and ˜F3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' ˜F5 are defined as below: H3 = dB2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' ˜F3 = F3 − C0H3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Fp = dCp−1 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' ˜F5 = F5 − 1 2C2 ∧ H3 + 1 2B2 ∧ F3 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' |Fp|2 = 1 p!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Fµ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='µpF µ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='µp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Moreover, the type IIB action must be supplemented with the self-duality condition3 ˜F5 = ⋆ ˜F5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The relation between the string scale α′ and the 10d gravitational coupling in string frame κ10 is 2κ2 10 = (2π)7α′4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (2) A common convention for the string length4 ls, which we use below, is (2π)2α′ = l2 s , (3) although sometimes α′ = l2 s is used instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 2The action can be found on p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='90 of [6], p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='314 of [7], p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='114 of [8], p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='79 of [9] and p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='625 of [10], along with the necessary definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' There is a different definition of F5, for example in [11], which also contains the equations of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' See also [12] for the dilaton dependence of the RR sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 3Notice the factor of 1 4 rather than 1 2 in the kinetic term, which accounts for the fact that only half the degrees of freedom should be present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 4The string scale (corresponding to the mass of the tower of string states) is Ms = 1 √ α′ = 2π ls for this choice of conventions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Sometimes the notation ms = 1 ls is used with this convention, with the relation Ms = 2πms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='1 Einstein frame In the string frame, the gravitational part of the action is not in the canonical Einstein- Hilbert form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In order to obtain the latter, we perform a conformal transformation of the metric in 10d, GS → GE = e2ΩGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The frame in which the gravitational part of the action takes the canonical Einstein- Hilbert form – i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' the Ricci scalar does not couple to anything other than √ −GE – is the Einstein frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' This choice fixes the required conformal transformation up to a constant5 Ω = −Φ − Φ0 4 , (4) where the constant Φ0 is a choice of convention, and the two metrics are related by GE MN = e− Φ−Φ0 2 GS MN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (5) The first term in the action (1), namely the Ricci scalar, in the Einstein frame becomes SE grav = 1 2κ2 � d10x � −GE � RE − 9 2(GE)µν(∂µΦ)(∂νΦ) � , (6) where κ ≡ eΦ0κ10 is the rescaled coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Including the contribution from the kinetic term of Φ, which also transforms under this conformal transformation, the Einstein frame gravitational plus dilaton action becomes SE grav+Φ = 1 2κ2 � d10x � −GE � RE − 1 2(∂µΦ)(∂µΦ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (7) Note that the dilaton is canonically normalised in Einstein frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The kinetic terms of the NS and RR form fields include an implicit metric associated to the index contraction of the forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' For a generic p-form η we have |η|2 S = 1 p!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='(GS)µ1ν1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (GS)µpνpηµ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='µpην1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='νp = 1 p!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='(e2Ω)p(GE)µ1ν1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (GE)µpνpηµ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='µpην1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='νp = e2Ω·p |η|2 E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (8) Putting everything together, with the appropriate choice (4), the action (1) in Einstein frame 5Note that a constant multiplying RE is a simple rescaling of the coupling constant κ, so that one still obtains the Einstein frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The constant is a matter of convention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 3 becomes SE IIB = 1 2κ2 � � d10x � −GE � RE − 1 2(∂µΦ)(∂µΦ) − eΦ0 2 e−Φ|H3|2 E � (9) − � d10x � −GE �e2Φ 2 |F1|2 E + eΦ0 2 eΦ| ˜F3|2 E + e2Φ0 4 | ˜F5|2 E � − e2Φ0 2 � C4 ∧ H3 ∧ F3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Note that the Chern-Simons term in the action does not transform, apart from via the constant relating κ and κ10, as it is a topological term, independent of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' A common choice of Φ0 is such that the metric in the string frame and the metric in the Einstein frame are the same at the vacuum, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Φ0 = ⟨Φ⟩ – this allows us to discuss quantities in a frame-independent way at the vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' For that choice the action in Einstein frame reads SE IIB = 1 2κ2 � � d10x √ −G � R − 1 2(∂µΦ)(∂µΦ) − gs 2 e−Φ|H3|2 � − � d10x √ −G �e2Φ 2 |F1|2 + gs 2 eΦ| ˜F3|2 + g2 s 4 | ˜F5|2 � − g2 s 2 � C4 ∧ H3 ∧ F3 � , (10) where we dropped the E, as all metrics are in Einstein frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' With this choice, the gravita- tional coupling is related to the string scale as 2κ2 = 2κ2 10g2 s = (2π)7g2 sα′4 or 2κ2 = g2 s l8 s 2π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (11) Another common choice of convention is Φ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In this case, volumes are frame- dependent in the vacuum (see eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (46) below) and one needs to be careful in using the right frame, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' when checking whether the α′-expansion is under control for a certain vacuum, which should be done using the string frame volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' For this choice the gravitational coupling is related to the string scale as 2κ2 = 2κ2 10 = (2π)7α′4 or 2κ2 = l8 s 2π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (12) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2 SL(2, R) manifest action We now express the Einstein frame action (10) in terms of the fields G3 and τ, such that the underlying SL(2, R) symmetry becomes manifest, which is sometimes useful when doing 4 calculations and it is commonly used in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We define the fields τ = C0 + ie−Φ , (13) G3 = ˜F3 − ie−ΦH3 = F3 − τH3 , (14) where τ is known as the axio-dilaton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In terms of these fields, the action takes the form SE IIB = 1 2κ2 � d10x √ −G � R − (∂µτ)(∂µ¯τ) 2(Im τ)2 − eΦ0 2(Im τ)|G3|2 − e2Φ0 4 | ˜F5|2 � − 1 2κ2 ie2Φ0 4 � 1 (Im τ)C4 ∧ G3 ∧ G3 , (15) where we recall κ = eΦ0κ10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We can also write the action in differential form language, SE IIB = 1 2κ2 � � R ⋆ 1 − dτ ∧ ⋆dτ 2(Im τ)2 − eΦ0 2(Im τ)G3 ∧ ⋆G3 − e2Φ0 4 ˜F5 ∧ ⋆ ˜F5 − ie2Φ0 4(Im τ)C4 ∧ G3 ∧ G3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (16) Written in this form, the SL(2, R) symmetry of the type IIB action becomes manifest — it leaves the metric and 4-form invariant, and acts on the remaining fields as τ → aτ + b cτ + d , � C2 B2 � = � a b c d � � C2 B2 � , with � a b c d � ∈ SL(2, R) , (17) that is, ad − bc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Another occasionally used convention (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [13, 14, 15, 16]) is to redefine the RR forms in Einstein frame as CE p = eΦ0CS p ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' the action then becomes SE IIB = 1 2κ2 � � R ⋆ 1 − dτ ∧ ⋆dτ 2(Im τ)2 − G3 ∧ ⋆G3 2(Im τ) − 1 4 ˜F5 ∧ ⋆ ˜F5 − i 4(Im τ)C4 ∧ G3 ∧ G3 � , (18) where the axio-dilaton was also redefined as τ E = eΦ0τ S = eΦ0CS 0 +ie−ϕ, with e−ϕ = e−(Φ−Φ0), and GE 3 = eΦ0GS 3 = F E 3 − τ EH3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Note that in terms of τ E we have ⟨Im τ E⟩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' With this field redefinition the action looks the same regardless of the choice of convention, apart from having a different gravitational coupling κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 5 3 Dimensional Reduction In order to obtain a 4d EFT at low energies, we consider a compactification (or dimensional reduction) of the 10d theory down to 4 dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The 4d theory describes perturbations around a 10d vacuum solution and is valid for energies much lower than the compactification scale6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We consider a vacuum solution which corresponds to a warped product spacetime M10 = R1,3 ×w X6, where R1,3 is a 4d Lorentzian spacetime and X6 is a 6d compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The Einstein frame metric takes the form7 ds2 10 = H−1/2(y) e2ω(x)gµνdxµdxν + H1/2(y) V1/3gmndymdyn , (19) where xµ (µ = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=', 3) are 4d coordinates and ym (m = 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=', 9) are 6d coordinates on the compact space X6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The metric gmn = (g6)mn is the 6d metric of a Calabi-Yau (Ricci flat) manifold normalised such that � d6y√g6 ≡ l6 s, with V = VE(x) keeping track of the physical size of the compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We define the warp factor H as H(y) ≡ 1 + e−4A0(y) V2/3 , (20) which is motivated as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' First, the background warp factor – commonly written as e−4A(y) – that solves the 10d Einstein equations in the presence of fluxes is only fixed up to a constant shift, e−4A(y) = e−4A0(y) + c, which becomes a modulus in the 4d EFT [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The fact that gmn → λgmn together with e2A → λe2A is a gauge redundancy of the metric [18, 19] allows us to choose λ = c1/2 and rewrite e−4A(y) = 1 + e−4A0(y) c , which naturally recovers the unwarped case in the c → ∞ limit – this relates c = V2/3 with the unwarped volume of the compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The factor e2ω(x) is introduced to Weyl rescale to the 4d Einstein frame, with metric gµν, as we now describe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Dimensionally reducing the 10d Einstein-Hilbert term (in Einstein frame) SE IIB = 1 2κ2 � d10x √ −G R10 (21) down to 4d using the ansatz (19) gives, among other contributions, the term S4d ⊃ 1 2κ2 � d4x√−g4 · e2ω(x)� V � d6y√g6 · H(y) � R4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (22) 6Depending on the details of the compactification, this scale could correspond to e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' mKK or mw KK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 7Since we start with Einstein frame metric (19) and action (21), the volumes V and Vw are Einstein frame volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 6 Any choice of e2ω(x) that leaves a non-canonical coupling of the volume modulus V to R4 is said to be in the Jordan frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Requiring a canonical form for the Einstein-Hilbert term instead – which defines the 4d Einstein frame – fixes the Weyl rescaling e2ω(x), up to a constant factor e2ω0, as e2ω(x) = e2ω0 · l6 s V � d6y√g6 · H(y) ≡ e2ω0 · l6 s Vw = e2ω0 Vw , (23) where we defined the warped volume Vw = Vw · l6 s as8 Vw ≡ V � d6y√g6 · H(y) � �� � ⟨H⟩av· l6s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (24) This definition of Vw only differs from V · l6 s by the factor ⟨H⟩av, the average of the warp factor over the compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' If the integral is dominated by the unwarped bulk, then ⟨H⟩av ≈ 1 and Vw ≈ V · l6 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Note the similarities with the conformal transformation in 10d to go from string frame to Einstein frame, where we also had some freedom in the form of a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' There a convenient choice was the one for which the two metrics matched at the vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Here we are going from the Jordan frame, in which some scalars couple to the Ricci scalar in the action, to the 4d Einstein frame, in which we recover the canonical Einstein-Hilbert term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The two metrics will match at the vacuum if we choose e2ω0 = ⟨Vw⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The action in Einstein frame for general ω0 becomes SE 4d ⊃ e2ω0 · l6 s 2κ2 � d4x√−g4 · R4 ≡ M2 Pl 2 � d4x√−g4 · R4 , (25) which defines the relation between the string scale9 (ms = 1/ls) and the Planck scale as ms = eΦ0 √ 4πe2ω0 MPl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (26) 8Note that this differs from the volume of the 6d compact space in the ansatz (19), which is V � d6y√g6 H3/2(y) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 9See footnote 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 7 For the convenient choice eΦ0 = gs and e2ω0 = ⟨Vw⟩, this relation becomes ms = gs √4πVw MPl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (27) Note also that in the unwarped limit the warped volume tends to the volume modulus of the compactification, Vw → V, and – with these choices of convention for the Weyl rescalings – we recover the common expression for the ratio ms/MPl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' If instead we choose conventions Φ0 = 0 = ω0, then ms = MPl/ √ 4π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Note that the convention dependence of MPl with respect to ms makes sense, as MPl measures the coupling strength of the Einstein frame gravitational field, whose definition depends on the convention chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' At the same time, the warped string scale is given by mw s ≡ H−1/4(y0) ms , (28) and corresponds to the scale perceived by a 4d observer living at some fixed position y0 along the warping direction of the compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' We now determine the Kaluza-Klein (KK) scale at which the towers of massive states associated with the compact dimensions appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Considering the simple case of a 10d scalar field ρ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' S = � d10x √ −G � −1 2GMN(∂Mρ)(∂Nρ) � (29) = � d4x � d6y · H−1(y)e2ω(x)√−g4 · H3/2(y) V√g6 � −1 2H1/2(y)e−2ω(x)gµν(∂µρ)(∂νρ) − 1 2H−1/2(y)V−1/3gmn(∂mρ)(∂nρ) � (30) = � d4x√−g4 V � d6y√g6 � −1 2H(y)gµν(∂µρ)(∂νρ) − 1 2 e2ω(x) V1/3 gmn(∂mρ)(∂nρ) � (31) = � d4x√−g4 V � d6y√g6 � −1 2H(y)gµν(∂µρ)(∂νρ) + 1 2 e2ω(x) V1/3 H(y)(∆6ρ) · ρ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (32) where in the last step we integrated the second term by parts and defined the internal space Laplacian operator ∆6ρ ≡ H−1(y) √g6 ∂m(√g6 gmn∂nρ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (33) Decomposing the field ρ(x, y) in a basis of eigenfunctions of ∆6 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' ∆6ξk = −λ2 kξk, with no 8 sum over k), ρ(x, y) = � k ̺k(x)ξk(y) , (34) the action for the 10d scalar ρ becomes an action for infinitely many 4d scalars ̺k(x), S = � d4x√−g4 V � d6y√g6 � k,l � − 1 2H(y)gµν(∂µ̺k)(∂ν̺l)(ξkξl) − 1 2 e2ω(x) V1/3 H(y)λ2 k ̺k̺l (ξkξl) � (35) = � d4x√−g4 V � k,l � − 1 2gµν(∂µ̺k)(∂ν̺l) · � d6y√g6 · H(y) ξkξl − 1 2 e2ω(x) V1/3 λ2 k̺k̺l · � d6y√g6 · H(y) ξkξl � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (36) Since the eigenmodes ξk satisfy the orthogonality condition � d6y√g6 · H(y) ξkξl = c1δkl , (37) the KK modes decouple and the action reduces to S = � k � d4x√−g4 � − 1 2gµν(∂µ̺k)(∂ν̺k)(c1V) + 1 2 e2ω(x) V1/3 λ2 k̺2 k(c1V) � (38) = � k � d4x√−g4 � − 1 2gµν(∂µ̺c k)(∂ν̺c k) + 1 2 · λ2 k V1/3 e2ω0 Vw (̺c k)2 � , (39) where in the second line we canonically normalise the fields ̺k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Therefore, the mass of ̺c k is mk = λk V1/6 �e2ω0 Vw �1/2 =⇒ mKK = λ1 V1/6 �e2ω0 Vw �1/2 , (40) where we identify the KK scale, mKK, with the mass of the lightest mode m1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' To determine λk (and the eigenfunctions10) one must solve the eigenvalue equation 1 √g6 ∂m(√g6 gmn∂nξk) + H(y) · λ2 k · ξk = 0 , (41) 10These are commonly referred to as the wavefunctions of the modes ̺k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 9 together with appropriate boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' It is therefore not possible to give a fully generic expression for λk, and thus mKK, as it depends on the details of the compactification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' If we consider the case of a torus with a single common radius as the prototypical example of an isotropic compact space11 with characteristic scale ls and constant warp factor12, the eigenvalue is λ1 = H−1/2 0 (2π) · ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Then the KK scale becomes mKK = �e2ω0 Vw �1/2 H−1/2 0 2π V1/6ms = H−1/2 0 2π V1/6 · eΦ0 √ 4πV1/2 w MPl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (42) We should note that generally there are two distinct volumes appearing in mKK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' One usually takes Vw ≈ V, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' one assumes that the unwarped region of the compact space dominates the volume integral, in which case we recover the well-known volume suppression mKK ∼ MPl/V2/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' For the convenient choice eΦ0 = gs and e2ω0 = ⟨Vw⟩, and approximating Vw ≈ V, we have mKK = H−1/2 0 2π V1/6 ms = H−1/2 0 2πgs √ 4πV2/3MPl , (43) while for the common alternative choice Φ0 = 0, the factor of gs will be absent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' One also often finds in the literature another scale mw KK ≡ H−1/4(y0) mloc KK , (44) where mloc KK corresponds to a KK scale associated with modes localised on a subspace at some fixed y = y0 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' the tower of states associated with fields living on the world-volume of a brane wrapping an internal cycle at the tip of some warped throat).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' It is worth emphasising that volumes measured using a string frame metric may differ from the ones measured using an Einstein frame metric, depending on the convention used, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' on the choice of Φ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' To see this, recall that the two metrics are related by GE MN = e− Φ−Φ0 2 GS MN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 11More generically one could consider different scales in different directions, which would result in different KK scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 12This is consistent with our normalisation for the coordinates ym, such that � d6y√g6 = l6 s – it corresponds to an identification of the normalised coordinates ym ∼ ym + 1 (with ds2 6 = l2 s dymdym), rather than ym ∼ ym + 2π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Moreover, with a constant warp factor, H(y) ≡ H0, the eigenfunctions respecting the (periodic) boundary conditions on the torus would be ξ⃗k ∝ e2πi ⃗k·⃗y, with a vector of integers ⃗k labeling the modes, and hence ∆6ξ⃗k = −H−1 0 (2π)2k2 · ms · ξ⃗k, giving λ⃗k = H−1/2 0 (2π|⃗k|) · ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' When the warp factor is not trivial, its functional form will qualitatively change the eigenvalue equation (41) and the solutions λk will depend, in particular, on the balance between warped and unwarped regions of the compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 10 Therefore, a generic d-dimensional volume can be written as V E d = � ddy � gE d f(y) = � ddy � gS d e− d 4 (Φ−Φ0)f(y) , (45) where we allow for some function f(y), such as H(y) in the definition of Vw (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Therefore, the volumes in the two frames (assuming Φ is stabilised) are related as V S d = � e⟨Φ⟩−Φ0� d 4 V E d ⇔ VS = e 3 2(⟨Φ⟩−Φ0)VE .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (46) Hence, it is important to note the convention being used for the Einstein frame metric and how it relates to quantities that are obtained in either string frame or Einstein frame (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' perturbative and non-perturbative corrections).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Finally, it is interesting to note that the ratio mKK/ms is manifestly independent of the choice for eΦ0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' on the convention used in changing from string frame to Einstein frame, whereas the ratio mKK/MPl is manifestly independent of the choice for eω0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' on the convention used in going to 4d Einstein frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' After taking into account the dependence of the Einstein frame volume on the frame convention, the ratio mKK/MPl is also actually independent of the choice for eΦ0, as it must be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Approximating Vw ≈ V and expressing the ratio in terms of the string-frame volume, the convention-dependent factors fall out: mKK MPl = H−1/2 0 2πgs √ 4πV2/3 S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (47) 4 Flux scalar potential The scalar potential for the moduli fields and the dilaton comes from the terms R, |G3|2 and | ˜F5|2 in the action (9), after dimensional reduction to 4d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The contributions from the R and ˜F5 terms can be shown to give (see section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='3 of [20]) 1 2κ2 � � R ⋆ 1 − e2Φ0 4 ˜F5 ∧ ⋆ ˜F5 � = eΦ0 2κ2 � d4x√−g4 · e4ω(x) � H−1G3 ∧ iG3 2(Imτ) , (48) which we can put together with the G3 ∧ ⋆G3 term to give in total SE IIB ⊃ eΦ0 2κ2 � d4x√−g4 · e4ω(x) � H−1 2(Imτ)G3 ∧ (iG3 + ⋆6G3) (49) = eΦ0 2κ2 � d4x√−g4 · e4ω(x) � H−1 (Imτ)G+ 3 ∧ ⋆6G + 3 , (50) 11 with G+ 3 = 1 2(G3 + i ⋆6 G3) such that ⋆6G+ 3 = −iG+ 3 [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Using the metric (19) we can rewrite this action in terms of gmn, SE IIB ⊃ � d4x√−g4 � eΦ0 2κ2 e4ω(x) � H−1 G+ 3 ∧ ⋆g6G + 3 (Imτ) � ≡ − � d4x√−g4 V , (51) which defines the 4d scalar potential V as V = −i eΦ0 2κ2 e4ω(x) � H (H−1G+ 3 ) ∧ (H−1G + 3 ) (Imτ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (52) It is now possible to rewrite this potential in an N = 1 supergravity form, by defining W = 1 a � G3 ∧ Ω , (53) where a is a normalisation constant to be determined below, and using that � H (H−1G+ 3 ) ∧ (H−1G + 3 ) = a2 � H Ω ∧ ΩGα¯β(DαW)(D ¯βW) (54) where α, β run over the complex structure moduli and the axio-dilaton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Using this,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='scalar potential becomes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='V = −i eΦ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2κ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e4ω(x) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='(Im τ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='H Ω ∧ Ω ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Gi¯\uf6be(DiW)(D¯\uf6beW) − 3|W|2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='= eΦ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2κ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='�e2ω0 · l6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Vw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='(Im τ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='l6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='l6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='H Ω ∧ Ω ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Gi¯\uf6be(DiW)(D¯\uf6beW) − 3|W|2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2π ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='eΦ0 · l8s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='�e2Φ0M2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl · l2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s · l6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='4πVw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='(Im τ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='l6s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='l6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='H Ω ∧ Ω ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Gi¯\uf6be(DiW)(D¯\uf6beW) − 3|W|2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='= e3Φ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='4π · l4s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='M4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='l6s � l6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Vw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2(Im τ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='l6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='H Ω ∧ Ω · M2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� Gi¯\uf6be ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='M2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='(DiW)(D¯\uf6beW) − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='M2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='|W|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e3Φ0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='4π · l10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='M6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='eK/M2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Ki¯\uf6be(DiW)(D¯\uf6beW) − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='M2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='Pl ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='|W|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (55) where now i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' j run over complex structure moduli,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Kähler moduli and the axio-dilaton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' the Kähler potential K is given by 12 K/M2 Pl = −2 log Vw − log(−i(τ − ¯τ)) − log � i l6s � H Ω ∧ Ω � (56) and Ki¯\uf6be is the inverse field space metric that follows from Ki¯\uf6be = ∂i∂¯\uf6beK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Note that the volume term in K includes not only the overall volume modulus V, but also the other Kähler moduli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' This scalar potential leads to the normalisation W/M3 Pl = e 3 2 Φ0 √ 4π · l5s � G3 ∧ Ω .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (57) We can see that the normalisation constant, a, is convention-dependent through the choice of eΦ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' This gives for the gravitino mass m3/2 = e K 2M2 Pl |W| M2 Pl = e 1 2⟨Φ⟩ Vw ||Ω||w e 3 2 Φ0W0 √ 8π MPl , (58) where e 1 2⟨Φ⟩ comes from ⟨Im τ⟩, ||Ω||2 w · l6 s = i � H Ω ∧ Ω and we define W0/M3 Pl ≡ � 1 l5 s � G3 ∧ Ω � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (59) It follows from (58) and (42) that the important13 ratio (assuming the bulk dominates all the integrals, so that Vw ≈ V and ||Ω||w ≈ ||Ω||) m3/2 mKK = H1/2 0 e 1 2(⟨Φ⟩+Φ0) V1/3 E W0 √ 2(2π)||Ω|| , (60) where we highlight the fact that the volume being used is the Einstein frame volume, VE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Note that this mass ratio, as written in terms of the Einstein frame volume, seems to depend on the convention used for the 10d change of frames, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' the choice of Φ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' It is however convention-independent, as it must be, since the Einstein frame volume also depends on the choice of Φ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' If we express the mass ratio in terms of the string frame volume instead, which 13Not only is this ratio important because a consistent 4d supergravity description requires that the gravitino remains in the theory, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' its mass is not above the EFT cutoff – typically mKK – and therefore integrated out, but it was shown that it also serves as a control parameter for certain corrections to the scalar potential, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' from higher F-terms [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 13 corresponds to the volume perceived by the string itself, using (46) we find m3/2 mKK = H1/2 0 e⟨Φ⟩ V1/3 S W0 √ 2(2π)||Ω|| , (61) which is manifestly independent of conventions14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 5 Corrections to the scalar potential Since the flux superpotential leaves all Kähler moduli unstabilised, either leaving them as flat directions or generating runaways, one must resort to higher-order corrections to the EFT in order to stabilise them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Both perturbative and non-perturbative corrections have been considered in the literature — while the former are computed at the level of the 10d EFT and in string frame, the latter are obtained directly at the level of the 4d EFT and are computed in Einstein frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' One must therefore be careful with the conventions being used to change frames, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' the choice of Φ0, in order to remain consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='1 Perturbative corrections In [22], it was shown that α′-corrections to the Type IIB effective action (9) manifest as corrections to the 4d volume modulus Kähler potential and spoil the no-scale structure of its scalar potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' These corrections arise from higher-derivative terms at order (α′)3 appearing in the type IIB effective action, SS IIB = 1 2κ2 10 � d10x � −GS e−2Φ� RS + 4(∂Φ)2 S + (α′)3 · ζ(3) 3 · 211 · J0 � , (62) where the higher-order term is schematically given by J0 ∼ (RMNP Q)4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (63) One must also add a term δSS Φ ∼ � d10x � −GSe−2Φ(α′)3(∇2Φ) Q , (64) 14Note that we give mass ratios for canonically normalised fields defined in the Einstein frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Whilst these mass ratios must be invariant under change of conventions, a change in frame would come with field redefinitions, and new masses and couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In a setup in which all couplings, including the gravitational coupling, are constant (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' assuming that the dilaton and volume modulus are stabilised and integrated out), the change of frames becomes a change of convention from one Einstein frame to another Einstein frame, and the mass ratios would be invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 14 where Q ∼ (RMNP Q)3 is a generalisation of the 6d Euler integrand � X6 d6y√g6 Q = χ, with χ the Euler characteristic of X6 [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' This term corrects the 10d solution to the equation of motion for Φ, such that Φ = Φ10 + ζ(3) 16 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' It is then shown in [22] that this leads to a correction to the Kähler potential of the form K = −2 log � VS + ξ 2 � = −2 log � VE e 3 2(Φ−Φ0) + ξ 2 � (65) = −2 log � VE + ξ 2e− 3 2(Φ−Φ0)� + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' , (66) where we have used (46) with d = 6, keeping Φ0 unspecified, and ξ is defined as15 ξ = − ζ(3)χ 2(2π)3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (67) Note in particular that the correction expressed in Einstein frame depends on the convention one chooses for Φ0, Φ0 = 0 =⇒ K = −2 log � V + ξ 2g3/2 s � , (68) Φ0 = ⟨Φ⟩ =⇒ K = −2 log � V + ξ 2 � , (69) where we have assumed as usual that the dilaton has been stabilised by fluxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2 Non-perturbative corrections Although the superpotential W does not receive perturbative corrections, it may receive non- perturbative corrections from either instantons arising from Euclidean D3-branes wrapping 4-cycles or gaugino condensation on the world-volume theory of D7-branes wrapped around internal 4-cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Let us consider the latter case in some detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' In what follows, Tp = 2π lp+1 s is the brane tension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The DBI action for a Dp-brane, in the string frame, is given by [6, 7] SDBI Dp = −Tp � dp+1σ e−Φ � − det � gS + B + l2 s 2πF � , (70) 15In [22], we find the definition ξ = − ζ(3)χ(X6) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' The missing factor of (2π)3 comes from their conventions for the volume, V[22] = V6/(2πα′)3, whereas we are using V = V6/l6 s = (2π)−3 V6/(2πα′)3, with the convention (2π)2α′ = l2 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' There are also instances in the literature where the factor of 1/2 is absorbed into the definition of ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 15 where gS and B refer to the pull-back of the string frame metric (GS)MN and 2-form BMN onto the world-volume of the brane and F to the field-strength Fab of the brane gauge fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Rewriting the action in terms of the Einstein frame metric, SDBI Dp = −Tp � dp+1σ e−Φ� − det gS � det � 1 + (gS)−1 � B + l2 s 2πF �� (71) ⊃ −Tp � dp+1σ e−Φ� − det gS 1 4 � l2 s 2π �2 (gS)ac(gS)bdFabFcd (72) = −Tp 4 l4 s (2π)2 � dp+1σ � − det gE e p−3 4 (Φ−Φ0)e−ΦFabF ab , (73) where the indices in FabF ab are contracted with Einstein frame metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' This is the kinetic term for the brane gauge bosons (see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' of [23]) and tells us the gauge coupling of the corresponding theory, which is a key parameter for gaugino condensation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' If the brane is wrapping a (p − 3)–cycle Σp−3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' we find the corresponding 4d term (assuming that Φ is constant over the cycle) S4d Dp ⊃ − 1 8πlp−3 s � d4x � − det gE 4 e p−3 4 (Φ−Φ0)e−Φ �� dp−3σ � gE p−3 � � �� � τ E Σp−3lp−3 s FabF ab (74) = − � d4x � − det gE 4 � τ E Σp−3 8πeΦ e p−3 4 (Φ−Φ0) � FabF ab ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (75) and we can read off the gauge coupling gc,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 1 g2 c = τ E Σp−3 4πe⟨Φ⟩ e p−3 4 (⟨Φ⟩−Φ0) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (76) where we have assumed as usual that the dilaton has been stabilised by fluxes at some higher scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Gaugino condensation on the world-volume theory of D7-branes will then give a non-perturbative contribution to the superpotential [24],16 Wnp ∼ e − 8π2 g2c 1 N = e− 2π N τE gs e⟨Φ⟩−Φ0 , (77) 16Here N is the number of branes stacked on top of each other, responsible for the gauge group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' It appears through the beta-function coefficient [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 16 where we used e⟨Φ⟩ = gs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Holomorphicity of W then leads to the general contribution Wnp = � i Aiei ai gs e⟨Φ⟩−Φ0T E i , (78) where the sum is over the contributing cycles, ai = 2π Ni and the fields Ti = bi + iτi are the complexified Kähler moduli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Hence, we can compare the two most common conventions for Φ0, Φ0 = 0 =⇒ Wnp = � i AieiaiT E i , (79) Φ0 = ⟨Φ⟩ =⇒ Wnp = � i Aiei ai gs T E i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' (80) As for the mass ratio m3/2/mKK, the superpotential as written, in terms of Einstein frame 4-cycle volumes, appears to depend on the choice of convention for Φ0, but one should recall that the 4-cycle volumes also depend on this choice of convention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' If we express the 4-cycle volumes in terms of the string frame metric (46), τ S i = e⟨Φ⟩−Φ0τ E i , (81) the convention-independence becomes manifest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Acknowledgements IZ is partially supported by STFC, grant ST/P00055X/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' References [1] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Faraoni and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Gunzig, Einstein frame or Jordan frame?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=', Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 38 (1999) 217–225, [astro-ph/9910176].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Corda, Gravitational wave astronomy: the definitive test for the ’Einstein frame versus Jordan frame’ controversy, Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 34 (2011) 412–419, [arXiv:1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='2086].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Kamenshchik and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Steinwachs, Question of quantum equivalence between 17 Jordan frame and Einstein frame, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' D 91 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 8 084033, [arXiv:1408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='5769].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Karamitsos and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Pilaftsis, On the Cosmological Frame Problem, PoS CORFU2017 (2018) 036, [arXiv:1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='07151].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Bamber, Fifth forces and frame invariance, [arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='06396].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Polchinski, String theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 2: Superstring theory and beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Cambridge Monographs on Mathematical Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Cambridge University Press, 12, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Becker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Becker, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Schwarz, String theory and M-theory: A modern introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Cambridge University Press, 12, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Ibanez and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Uranga, String theory and particle physics: An introduction to string phenomenology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Cambridge University Press, 2, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Baumann and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' McAllister, Inflation and String Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Cambridge Monographs on Mathematical Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Cambridge University Press, 5, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Blumenhagen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Lüst, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Theisen, Basic concepts of string theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Theoretical and Mathematical Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Springer, Heidelberg, Germany, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Polchinski and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Strassler, The string dual of a confining four-dimensional gauge theory, Physical Review D (3, 2000) [hep-th/0003136].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Tseytlin, On dilaton dependence of type II superstring action, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 13 (1996) L81–L85, [hep-th/9601109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [13] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Tonioni, Fundamental and Phenomenological Aspects of Anti-D-Brane Supersymmetry Breaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' PhD thesis, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Liverpool, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [14] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' McGuirk, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Shiu, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Ye, Soft branes in supersymmetry-breaking backgrounds, JHEP 07 (2012) 188, [arXiv:1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='0754].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Martucci, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Rosseel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Van den Bleeken, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Van Proeyen, Dirac actions for D-branes on backgrounds with fluxes, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 22 (2005) 2745–2764, [hep-th/0504041].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Myers, Dielectric branes, JHEP 12 (1999) 022, [hep-th/9910053].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Frey, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Torroba, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Underwood, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Douglas, The Universal Kahler Modulus in Warped Compactifications, JHEP 01 (2009) 036, [arXiv:0810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='5768].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 18 [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Giddings and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' D 73 (2006) 126003, [hep-th/0507158].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Aparicio, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Quevedo, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Valandro, Moduli Stabilisation with Nilpotent Goldstino: Vacuum Structure and SUSY Breaking, JHEP 03 (2016) 036, [arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='08105].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [20] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' DeWolfe and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Giddings, Scales and hierarchies in warped compactifications and brane worlds, Physical Review D 67 (2003), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 6 [hep-th/0208123].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Cicoli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Conlon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Maharana, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Quevedo, A Note on the Magnitude of the Flux Superpotential, JHEP 01 (2014) 027, [arXiv:1310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='6694].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Becker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Becker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Haack, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060, [hep-th/0204254].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Parameswaran and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Tonioni, Non-supersymmetric String Models from Anti-D3-/D7-branes in Strongly Warped Throats, JHEP 12 (2020) 174, [arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='11333].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' Hebecker, Lectures on Naturalness, String Landscape and Multiverse, [arXiv:2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content='10625].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} +page_content=' 19' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfnw0i/content/2301.05178v1.pdf'} diff --git a/ZNE3T4oBgHgl3EQf2Avb/content/2301.04752v1.pdf b/ZNE3T4oBgHgl3EQf2Avb/content/2301.04752v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8f0fa61e44712ea1aed12c45c3ef6df0c4fa076c --- /dev/null +++ b/ZNE3T4oBgHgl3EQf2Avb/content/2301.04752v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f2ba3c8ef4ca702a85f3964c39e95c267c57c962034b32d63c7c0f19e01d07d1 +size 1090630 diff --git a/ZNE3T4oBgHgl3EQf2Avb/vector_store/index.faiss b/ZNE3T4oBgHgl3EQf2Avb/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..fda262c7280d83644787ee39dcde1ab1a567074f --- /dev/null +++ b/ZNE3T4oBgHgl3EQf2Avb/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a6a07497da6b5141c223d4fc402748fd93b5a4a16819d57bf499fe457c1c8ba5 +size 4456493 diff --git a/ZNE3T4oBgHgl3EQf2Avb/vector_store/index.pkl b/ZNE3T4oBgHgl3EQf2Avb/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a05d35d3631e9eebcde8c05de9f0ab95a77990e1 --- /dev/null +++ b/ZNE3T4oBgHgl3EQf2Avb/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9a83cbcb9911d1b8fb64d631a2613ae4de11621f9dbaf0e6a57a879a77e34337 +size 165009 diff --git a/ZdE0T4oBgHgl3EQfnAFi/vector_store/index.faiss b/ZdE0T4oBgHgl3EQfnAFi/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9ebd7b89fd59c0caf81494e7f0eaccf6fcc0dfce --- /dev/null +++ b/ZdE0T4oBgHgl3EQfnAFi/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:004f0512646dd01ccdc1aff5e0d77c1ac31a4b251a1dd87dc00330cfdd6441f3 +size 3801133 diff --git a/ZdE0T4oBgHgl3EQfnAFi/vector_store/index.pkl b/ZdE0T4oBgHgl3EQfnAFi/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8a837c8e1bc0d11ca95223f3c06728cb95303205 --- /dev/null +++ b/ZdE0T4oBgHgl3EQfnAFi/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:584fc555c3e61022359c6e193cdf1e2945802c4bbdcd5897ca1732cc03114ea1 +size 145173 diff --git a/_9AyT4oBgHgl3EQfqvjk/content/2301.00550v1.pdf b/_9AyT4oBgHgl3EQfqvjk/content/2301.00550v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b02d9c9565d3c30d3b2109156fa0e367e95bfa98 --- /dev/null +++ b/_9AyT4oBgHgl3EQfqvjk/content/2301.00550v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:10f4b22b1222cf5ebb4baf831afc48034a3c6d500daf53d1b0ebe90d597d51a1 +size 769850 diff --git a/_NE5T4oBgHgl3EQfSA5Z/content/2301.05525v1.pdf b/_NE5T4oBgHgl3EQfSA5Z/content/2301.05525v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..65d22384809e1ac9a425fec728d3427a5f647d21 --- /dev/null +++ b/_NE5T4oBgHgl3EQfSA5Z/content/2301.05525v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dfa6994e4cdd4ba2af29be3b95cf03197326a76eaf79b3a143bd54a41bb054a2 +size 6455697 diff --git a/a9E2T4oBgHgl3EQfFQYC/content/2301.03643v1.pdf b/a9E2T4oBgHgl3EQfFQYC/content/2301.03643v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..6cbe37f436cf5c8b15f9f9c809dcea61571ab3c5 --- /dev/null +++ b/a9E2T4oBgHgl3EQfFQYC/content/2301.03643v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9eae177828c41f3cd0eb74bdd9f655973dd38a261efcbe3246afbff3ea2d98f5 +size 3159796 diff --git a/a9E2T4oBgHgl3EQfFQYC/vector_store/index.faiss b/a9E2T4oBgHgl3EQfFQYC/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..ae0e42fa4a5f4b50b6b2a049f8491042343dd5cc --- /dev/null +++ b/a9E2T4oBgHgl3EQfFQYC/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:22adb9cc03e32105bd5dd8b38beffae611e783cec9db85d15955ab73877cbc76 +size 2293805 diff --git a/a9E2T4oBgHgl3EQfFQYC/vector_store/index.pkl b/a9E2T4oBgHgl3EQfFQYC/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..eee7f02d27d8a7ebe1fc54fabfcbb784eecdb62f --- /dev/null +++ b/a9E2T4oBgHgl3EQfFQYC/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:76a2d447acf5dc9806070bfbced694e448364870262daf0209b40bc35f056a83 +size 82636 diff --git a/a9E5T4oBgHgl3EQfew9G/content/2301.05621v1.pdf b/a9E5T4oBgHgl3EQfew9G/content/2301.05621v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e86e0194d536f5f9aa1260f6d197ac601cbf7dd7 --- /dev/null +++ b/a9E5T4oBgHgl3EQfew9G/content/2301.05621v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dae14834b1157a6d94cbdca03f47b610c7a9ae889a2a49358f47cf3ad541ecff +size 274608 diff --git a/a9E5T4oBgHgl3EQfew9G/vector_store/index.pkl b/a9E5T4oBgHgl3EQfew9G/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..46978179c2810b28ea5ec003b83c374c02efa677 --- /dev/null +++ b/a9E5T4oBgHgl3EQfew9G/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f6b6634f42a449eaa592cacbc15388b8657b6718c96f75a97072c8429db6666b +size 123435 diff --git a/btFPT4oBgHgl3EQfxDUf/vector_store/index.faiss b/btFPT4oBgHgl3EQfxDUf/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..70afcac7c364c18d47121645384c954cf792e119 --- /dev/null +++ b/btFPT4oBgHgl3EQfxDUf/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a089aadca662cb22ed2cfbb5f04cb35b96bf507eea8d60c13ff01064775e2c4f +size 18022445 diff --git a/c9E5T4oBgHgl3EQffw9-/content/2301.05629v1.pdf b/c9E5T4oBgHgl3EQffw9-/content/2301.05629v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d5fa8a7aa307625e6864aec2e0cc4eee5f31b6c7 --- /dev/null +++ b/c9E5T4oBgHgl3EQffw9-/content/2301.05629v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f842d0e5cc4dc5045f62f20abc5792038b5f735ec4da979e8f4c7e0fb539c32e +size 499413 diff --git a/c9E5T4oBgHgl3EQffw9-/vector_store/index.faiss b/c9E5T4oBgHgl3EQffw9-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..0b29faed5ca3db0840f225a7de81d87583be93ba --- /dev/null +++ b/c9E5T4oBgHgl3EQffw9-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7dfe1d02cf082e0c14226ad2bb4a1b7d8eaa67a91a740a644299e52d31f246a1 +size 1769517 diff --git a/c9E5T4oBgHgl3EQffw9-/vector_store/index.pkl b/c9E5T4oBgHgl3EQffw9-/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..772d4b12fb18d84cb7b1fcc55a09a83d15f9a3b4 --- /dev/null +++ b/c9E5T4oBgHgl3EQffw9-/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4219c281b05e091e849ae78685f4a44af0593b46f6a8520b81b1271d8381c87a +size 70045 diff --git a/ctE1T4oBgHgl3EQfxgX2/content/2301.03424v1.pdf b/ctE1T4oBgHgl3EQfxgX2/content/2301.03424v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..24f92fadbcc0c449b050da97b0f414e619ae7185 --- /dev/null +++ b/ctE1T4oBgHgl3EQfxgX2/content/2301.03424v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dde17be564e297b808f9b35a89b081a554912c307d2d120c21d4ddf884e71e10 +size 1933344 diff --git a/ctE1T4oBgHgl3EQfxgX2/vector_store/index.pkl b/ctE1T4oBgHgl3EQfxgX2/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9f64a51aecfd28b199b8a3796d68b7a7390d23e4 --- /dev/null +++ b/ctE1T4oBgHgl3EQfxgX2/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:804cdf5ff4502a109c938930793e64cd9f0b70415ff71c60afde4001cdedfdd8 +size 293006 diff --git a/dNFKT4oBgHgl3EQfqS7x/content/tmp_files/2301.11874v1.pdf.txt b/dNFKT4oBgHgl3EQfqS7x/content/tmp_files/2301.11874v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3524f3d6db1de1f1c834f3426e11195e0c70ddf8 --- /dev/null +++ b/dNFKT4oBgHgl3EQfqS7x/content/tmp_files/2301.11874v1.pdf.txt @@ -0,0 +1,2535 @@ +Astronomy & Astrophysics manuscript no. main +©ESO 2023 +January 30, 2023 +Magnetic reconnection plasmoid model for Sagittarius A* flares +N. Aimar1, A. Dmytriiev2, F. H. Vincent1, I. El Mellah3, T. Paumard1, G. Perrin1, and A. Zech4 +1 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 5 place Jules Janssen, 92195 +Meudon, France +e-mail: nicolas.aimar@obspm.fr +2 Centre for Space Research, North-West University, Potchefstroom, 2531, South Africa +3 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France +4 LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France +Received September 09, 2022; accepted January 27, 2023 +ABSTRACT +Context. Sagittarius A*, the supermassive black hole at the center of our galaxy, exhibits episodic near-infrared flares. The recent +monitoring of three such events by the GRAVITY instrument has shown that some flares are associated with orbital motions in the +close environment of the black hole. The GRAVITY data analysis points at super-Keplerian azimuthal velocity, while (sub-)Keplerian +velocity is expected for the hot flow surrounding the black hole. +Aims. We develop a semi-analytic model of Sagittarius A* flares based on an ejected large plasmoid, inspired by recent particle-in- +cell global simulations of black hole magnetospheres. We model the infrared astrometric and photometric signatures associated to this +model. +Methods. We consider a spherical macroscopic hot plasma region, that we call a large plasmoid. This structure is ejected along a +conical orbit in the vicinity of the black hole. This plasmoid is assumed to be formed by successive mergers of smaller plasmoids +produced through magnetic reconnection that we do not model. Non-thermal electrons are injected in the plasmoid. We compute the +evolution of the electron-distribution function under the influence of synchrotron cooling. We solve the radiative transfer problem +associated to this scenario and transport the radiation along null geodesics of the Schwarzschild spacetime. We also take into account +the quiescent radiation of the accretion flow, on top of which the flare evolves. +Results. For the first time, we successfully account for the astrometric and flux variations of the GRAVITY data with a flare model +that incorporates an explicit modeling of the emission mechanism. We find good agreement between the prediction of our model and +the recent data. In particular, the azimuthal velocity of the plasmoid is set by the magnetic field line it belongs to, which is anchored in +the inner parts of the accretion flow, hence the super-Keplerian motion. The astrometric track is also shifted with respect to the center +of mass due to the quiescent radiation, in agreement with the difference measured with the GRAVITY data. +Conclusions. These results support the picture of magnetic reconnection in a black hole magnetosphere as a viable model for Sagit- +tarius A* infrared flares. +Key words. Accretion, accretion disk - Magnetic reconnection - Black hole physics - Relativistic processes - Radiative transfer - +Radiation mechanisms: non-thermal +1. Introduction +The Galactic Center hosts the compact radio source Sagittar- +ius A* (Sgr A*) with an estimated mass of 4.297 million solar +masses at a distance of only 8.277 kpc (GRAVITY Collaboration +et al. 2022). This makes the compact object associated to Sgr A* +the closest supermassive black hole (SMBH) candidate to Earth. +Sgr A* is a low-luminosity accretion flow with an accretion rate +of (5.2 − 9.5) × 10−9M⊙ yr−1 and a bolometric luminosity of +(6.8 − 9.2) × 1035 erg s−1 (Bower et al. 2019; Event Horizon +Telescope Collaboration et al. 2022b) and thus is accreting at a +very sub-Eddington rate. It has been the subject of numerous ob- +serving campaigns over the past two decades in order to test the +massive black hole (MBH) paradigm (see Gravity Collaboration +et al. (2020b)) and study the physics of radiatively inefficient ac- +cretion flows (RIAF) around SMBH. +Sgr A* shows a slow and low amplitude variability in ra- +dio (Lo et al. 1975; Backer 1978; Krichbaum et al. 1998; Falcke +1999; Bower et al. 2006; Michail et al. 2021b), in millimetre +and submillimetre (Mauerhan et al. 2005; Macquart et al. 2006; +Yusef-Zadeh et al. 2006; Marrone et al. 2008; Brinkerink et al. +2015; Wielgus et al. 2022a), but also large amplitude and rapid +variability in near infrared (NIR; Genzel et al. 2003; Ghez et al. +2004; Hornstein et al. 2007; Hora et al. 2014) and in X-rays +(Baganoff et al. 2001; Nowak et al. 2012; Neilsen et al. 2013; +Barrière et al. 2014; Ponti et al. 2015). The flux distribution in +the NIR of Sgr A* has been the subject of numerous studies. +Some claim a single state modeled by rednoise (Witzel et al. +2018; Do et al. 2019) for the variability of Sgr A* while others +claim that there are two states for Sgr A* (Genzel et al. 2003; +Dodds-Eden et al. 2011; Gravity Collaboration et al. 2020a; +Witzel et al. 2021): a continuously low amplitude variable state +called "quiescent state" and the "flare state" described by short +and bright flux with a typical timescale of 30 minutes to 1 hour +with a rate of ∼ 4 a day. Multi-wavelength studies show that +when an X-ray flare is observed, there is a counterpart in NIR +suggesting a common origin but the reverse is not true (Fazio +et al. 2018). Moreover, the flare can also be observed in sub- +mm but with a time lag of several minutes (Eckart et al. 2008, +2009; Dodds-Eden et al. 2009; Michail et al. 2021a; Witzel et al. +Article number, page 1 of 20 +arXiv:2301.11874v1 [astro-ph.HE] 27 Jan 2023 + +A&A proofs: manuscript no. main +2021) following a dimming (Wielgus et al. 2022a; Ripperda et al. +2022). +Recently, the GRAVITY instrument (Gravity Collaboration +et al. 2017; Eisenhauer et al. 2008, 2011; Paumard et al. 2008) +was able to resolve the motion of the NIR centroid during three +bright flare events, showing a clockwise, continuous rotation at +low inclination close to face-on (i ∼ 20◦) consistent with a re- +gion of emission located at a few gravitational radii rg = GM/c2 +from the central black hole (Gravity Collaboration et al. 2018). +These flares are thus powered very close to the event horizon +of the black hole. The exploration of a relativistic accretion re- +gion as close to the event horizon with high-precision astrometry +and imaging techniques like GRAVITY and the Event Horizon +Telescope (EHT) (Event Horizon Telescope Collaboration et al. +2022a) promises important information for physics and astron- +omy, including new tests of the MBH paradigm. +Significant efforts have been made to explain the flares of +Sgr A*: rednoise (Do et al. 2009), hot spot (Hamaus et al. 2009; +Genzel et al. 2003; Broderick & Loeb 2006), ejected blob (Vin- +cent et al. 2014), star-disk interaction (Nayakshin et al. 2004) +and disk instability (Tagger & Melia 2006). The GRAVITY +observations in 2018 (Gravity Collaboration et al. 2018) sup- +port the hot spot model. However, the physical origin of such +hot spots remains an open question. Instabilities in black hole +accretion disks are a candidate, for instance the triggering of +Rossby Waves Instabilities (RWI; Tagger & Melia 2006; Vin- +cent et al. 2014). Alternatively, it could originate from the dis- +sipation of electromagnetic energy through magnetic reconnec- +tion. This modification of the magnetic field topology results +from the inversion of the magnetic field orientation across a cur- +rent sheet which eventually breaks into magnetic islands called +plasmoids (Komissarov 2004, 2005; Komissarov & McKinney +2007; Loureiro et al. 2007; Sironi & Spitkovsky 2014; Parfrey +et al. 2019; Ripperda et al. 2020; Porth et al. 2021). In the past +years, numerical simulations have repeatedly highlighted the +ubiquity of magnetic reconnection in BH magnetospheres, what- +ever the physical point of view adopted: global particle-in-cell +(PIC) simulations in Kerr metrics (El Mellah et al. 2022; ?), re- +sistive general-relativistic magneto-hydrodynamics (GRMHD) +simulations (Ripperda et al. 2020; Dexter et al. 2020a,b) or resis- +tive force-free simulations (Parfrey et al. 2015). PIC simulations +show that magnetic reconnection in the collisionless corona of +spinning BHs can accelerate leptons up to relativistic Lorentz +factors of γ ∼ 103...7 (El Mellah et al. 2022), sufficiently high +to generate the variable IR (and X-ray) emission (Rowan et al. +2017; Werner et al. 2018; Ball et al. 2018; Zhang et al. 2021; +Scepi et al. 2022). +The GRMHD and PIC frameworks each have different lim- +itations. GRMHD simulations describe the evolution of the ac- +cretion flow over long time scales, typically of the order of sev- +eral 100,000 rg/c, but they rely on a fluid representation. Conse- +quently, they cannot self-consistently capture the kinetic effects +which are important to constrain dissipation, particle accelera- +tion and subsequent non-thermal radiation. On the other hand, +PIC simulations provide an accurate description of the micro- +physics but at the cost of simulations which can only span a few +100rg/c in time and with limited scale separation between global +scales and plasma scales. +We develop a semi-analytical model, fed by the knowledge +accumulated by recent GRMHD and GRPIC simulations. The +aim is to condense into a reasonably small set of simple param- +eters the complex physics of GRMHD and GRPIC models, and +thus allow to probe a large parameter space within a reasonable +computing time. We also want to remain as agnostic as possi- +ble regarding the initial conditions of the flow. In this context, +we discuss the interpretation of the Gravity Collaboration et al. +(2018) flare data paying particular attention to the following di- +agnostics: +– the marginally detected shift between the astrometric data +and the center-of-mass location; +– the tension between the data and the hot spot model used +by Gravity Collaboration et al. (2018), which assumes a Ke- +plerian orbit; +– the physical origin of the rising and decaying phases of the +flare light curve in the context of magnetic reconnection. +The first point can be discussed in the context of a very sim- +ple hot-spot model and is the main topic of Sect. 2. Sect. 3 is +the core of our study and focuses on the second and third points +above. It presents a semi-analytical large plasmoid model due to +magnetic reconnection. It highlights in particular the impact of +considering a self-consistent evolution of the electron distribu- +tion function through kinetic modeling. This section shows that +our plasmoid model is able to reasonably account for the Grav- +ity Collaboration et al. (2018) flare data. The limitations of our +plasmoid model are discussed in Sect. 4. The conclusions and +perspectives are given in Sect. 5. +2. Quiescent flow impact on astrometry: shifting +and rotating the orbit +Gravity Collaboration et al. (2018) used a hot spot model in an +equatorial circular orbit to fit the astrometry of three bright flares. +They considered a constant radiation flux from the emitting re- +gion orbiting the black hole to fit the orbital motion. The effect +of out-of-plane motion and orbital shear have also been stud- +ied by Gravity Collaboration et al. (2020c) to model the flares. +However, the impact of the quiescent radiation surrounding the +hot spot was not taken into account. The aim of this section is to +show that taking into account the quiescent radiation can lead to +shifting and rotating the orbit on sky. We note a 1-σ difference +between the center of the orbit of the hot spot and the center of +mass derived from the orbit of S2 in Gravity Collaboration et al. +(2018) which makes this shift marginal. +In this section, we will use a simplified hot spot model that +is sufficient to highlight the main effects of the quiescent radia- +tion. This simple model will also allow us to introduce the most +important relativistic effects at play, that were already studied in +many previous works (Broderick & Loeb 2006; Hamaus et al. +2009). These reminders will be helpful when we turn to a more +complex hot spot model in the Sect. 3, which is the main aim of +this paper. +2.1. Simple hot spot + quiescent model for the flaring Sgr A* +The quiescent radiation of Sgr A* is modeled by means of the +torus-jet model as derived in Vincent et al. (2019), to which we +refer for all details. Figure 1 resumes the main features of the +model. The torus emits thermal synchrotron radiation, while the +flux emitted by the jet follows a κ distribution (i.e. a thermal +core with a power-law tail). The multi-wavelength spectrum of +the quiescent Sgr A* is well fit with this model. The κ distribu- +tion emission from the jets dominates at most wavelength except +at the sub-mm bump where the flux comes mostly from the ther- +mal disk. We summarize the best-fit parameters in Table 1, and +the resulting best-fit quiescent spectrum is given in Fig. 2. More +details on the fitting procedure are given in Appendix A. With +Article number, page 2 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +Fig. 1. Scheme of the torus-jet model for the quiescent state in blue and flares in red. Two trajectories are considered for the flare, which can either +rotate in the torus (hot spot model) or be ejected along the jet sheath (plasmoid model). The jet is parametrized by the angles θ1 and θ2 that describe +the angular opening of the radiation-emitting sheath, by the base height zb, the constant Lorentz factor Γ j, and the temperature power-law index +sT. The jet is symmetrical with respect to the equatorial plane, and axisymmetric. +these parameters, the flux of the torus-jet model at 2.2 µm is 1.1 +mJy. It is in perfect agreement with the median quiescent dered- +dened flux provided by Gravity Collaboration et al. (2020a) of +1.1 ± 0.3 mJy. At this wavelength, the torus is optically thin and +its emission is negligible compared to the jet. In the remainder +of this paper, where we focus only on the infrared band, we will +thus neglect the torus and consider a pure jet quiescent model, +unless otherwise noted. +The only relevant features of our quiescent model for the +rest of this paper are the location of its infrared centroid and +its NIR flux. As depicted in the right panel of Fig. 2, the centroid +of our jet-dominated model lies very close to the mass center. +We have checked that considering a disk-dominated model only +very marginally changes the position of the quiescent centroid +at low inclination (see the blue and green dots in the left panel +of Fig. 3). Our conclusions are thus not biased by our particular +choice of a jet-dominated quiescent model. +The hot spot model is composed of a plasma sphere of radius +1 rg (fixed) with a uniform but time-dependent κ-distribution for +the electrons. The emissivity jν and absorptivity αν coefficients +depend on the density, temperature, and magnetic field which we +considered uniform. We use the fitting formula of Pandya et al. +(2016) to compute these coefficients. The typical light curve of +a flare is characterized by a phase with increasing flux and one +with decreasing flux. We model this behavior by a Gaussian time +modulation on the density and temperature as follows +ne(t) = nhs +e exp +�������−0.5 × +�t − tre f +tσ +�2������� , +(1) +Te(t) = T hs +e exp +�������−0.5 × +�t − tre f +tσ +�2������� +(2) +where tσ is the typical duration of the flare. As ne varies over +time (Eq. 1), the magnetic field strength also varies since we set +a constant magnetization σ = B2/4πmpc2ne. +Contrary to Gravity Collaboration et al. (2020c), we keep the +circular equatorial orbit of Gravity Collaboration et al. (2018) as +we assume that the hot spot is formed in the equatorial plane and +we do not take into account any shearing effect and assume a +constant spherical geometry of the hot spot. We summarize all +the input parameters of the hot spot in Table 2. +2.2. Shifting the orbit on sky +Figure 3 shows the impact of taking into account the quiescent +radiation on the astrometry of the flare, considering the trivial +Article number, page 3 of 20 + +20 +Jet +sheath +[j +Te(z) α (Z/z) +01 +S- +10 +EjectedPlasmoid +(aun w) +Torus +N +Orbiting Hot spot +-10 +-20 +0 +5 +10 +15 +20 +X (M unit)A&A proofs: manuscript no. main +1010 +1012 +1014 +1016 +1018 + [Hz] +1032 +1033 +1034 +1035 +L [erg/s] +150 +100 +50 +0 +50 +100 +150 +X [ as] +150 +100 +50 +0 +50 +100 +150 +Y [ as] +10 +27 +10 +26 +10 +25 +10 +24 +10 +23 +I [erg cm +2 s +1 sr +1 Hz +1] +Fig. 2. Left: Spectrum associated to the best-fit of the torus-jet model (see Table 1) for the quiescent state of Sgr A* (χ2 +red = 0.91 with ndof=27). +The data are taken from Bower et al. (2015) for ν < 50 GHz, Brinkerink et al. (2015) for the 2 points around 100 GHz, Liu et al. (2016) for the +492 GHz point, Marrone et al. (2006) for the 690 GHz point, von Fellenberg et al. (2018) for the far infrared upper limits, Witzel et al. (2018) for +the mid infrared data, and Baganoff et al. (2001) for the X-ray bow-tie. We note that as in Vincent et al. (2019), the X-ray data are not fitted as we +do not take into account bremsstrahlung nor Comptonized emission. Right: Best-fit image at 2.2 µm of the torus-jet model with a field of view +of 150 µas seen with an inclination of 20◦ and a Position Angle of the Line of Nodes (PALN) of π rad. The color bar gives the values of specific +intensity in cgs units in log-scale. The outer region emission comes from the backward jet’s part while the emission close to the center comes from +the forward part of the jet. The centroid of the jet is represented by the blue dot at ∼(0, −2.2). +Parameter +Symbol +Value +Black Hole +mass [M⊙] +M +4.297 × 106 +distance [kpc] +d +8.277 +spin +a +0 +inclination [◦] +i +20 +Torus +angular momentum [rg/c] +l +4 +inner radius [rg] +rin +8 +polytropic index +k +5/3 +central density [cm−3] +nT +e +1.2 × 109 +central temperature [K] +T T +e +7 × 109 +magnetization parameter +σT +0.002 +Jet +inner opening angle [◦] +θ1 +20 +outer opening angle [◦] +θ2 +θ1 + 3.5 +jet base height [rg] +zb +2 +bulk Lorentz factor +Γ j +1.15 +base number density [cm−3] +nJ +e +3.5 × 106 +base temperature [K] +T J +e +3 × 1010 +temperature slope +sT +0.21 +κ index +κJ +5.5 +magnetization parameter +σJ +(fixed) 1 +Table 1. Best fit parameters of the torus+jet quiescent model. We keep +the same geometrical parameters, bulk Lorentz factor and κ-index as +Vincent et al. (2019) and we fit the base number density, base temper- +ature and temperature slope of the jet considering the correction (see +bellow) and the new value of the jet magnetization parameter. The pa- +rameters of the torus are unchanged. +case of a constant-emission hot spot, as well as the varying- +emission hot spot introduced in section 2.1. +Obviously, whether or not the hot spot intrinsic emission +varies, the first effect of adding a quiescent radiation is to shrink +the orbit’s size, because the overall centroid is moved towards +the quiescent radiation’s centroid, which always lies close to the +mass center. +A slightly less obvious effect is that, when the hot spot emis- +sion varies in time, the orbit can shift in the plane of sky, and no +longer be centered at the center-of-mass location. This is clearly +apparent on the solid-red orbit of the left panel of Fig. 3. This is +simply due to the time variation of the intensity ratio between the +quiescent and the hot spot radiation. At early and late times, the +hot spot has a weaker emission than the quiescent component, +and the overall centroid coincides with the quiescent centroid. +As the hot spot emission increases and dominates, the overall +centroid will be driven towards it. Such a shift between the as- +trometric data and the center-of-mass position is visible at 1-σ +significance in the the Gravity Collaboration et al. (2018) data. +We note another non-trivial effect appearing in the varying- +emission hot-spot orbit without any quiescent radiation (red- +dotted orbit in Fig. 3). The orbit is not closing, due to the time +delay between the primary and secondary images. Indeed, at the +end of the simulation, the flux from the secondary image is in- +trinsically higher than the primary (the emission times of the pri- +mary and secondary are different), and is amplified by the beam- +ing effect. When the centroid is computed, the secondary image +has a larger impact at this time than before, resulting in a closer +centroid position relative to the black hole. This astrometric im- +pact of the secondary image was already discussed by Hamaus +et al. (2009). +2.3. Rotating the orbit on sky +It is not an easy task to disentangle the intrinsic time variability +of the hot spot from the variability due to the relativistic beam- +ing effect. Figure 4 illustrates the impact on astrometry and light +curve of playing with the relative influence between the intrin- +sic and beaming-related variability. Here, we simply change the +initial azimuthal coordinate ϕ0 of the hot spot along its orbit, +in order to change the dephasing between the time of the max- +imum intrinsic emission (t = tref) which is fixed, and the time +Article number, page 4 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +100 +75 +50 +25 +0 +25 +50 +75 +100 +X ( as) +100 +75 +50 +25 +0 +25 +50 +75 +100 +Y ( as) +Astrometry +constant emission +Gaussian emission +no quiescent +with quiescent +0 +10 +20 +30 +40 +50 +60 +t (min) +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +F/F(S2) +Light Curve +Fig. 3. Astrometry (left) and light curves (right) of the hot spot - jet model with two values for the quiescent state corresponding to no quiescent +(dashed lines) and the with quiescent state (full lines). In shade of blue, the hot spot has a nearly constant emission (tσ >> torbit). The effect of +beaming is reflected in the light curves. In shade of red, the hot spot has a Gaussian time emission with tσ = 30 min. The parameters of the hot +spot are listed in Table 2. We synchronise the maximum of beaming and the intrinsic maximum of the Gaussian modulation. The black, blue and +green dots in the left panels represent the position of Sgr A*, the jet’s centroid and the disk’s centroid respectively. +Parameter +Symbol +Value +Hot spot +number density max [cm−3] +nhs +e +1.05 × 107 +temperature max [K] +T hs +e +9.03 × 1010 +time Gaussian sigma [min] +tσ +30 +magnetization parameter +σhs +0.01 +κ-distribution index +κhs +5 +orbital radius [rg] +Rhs +9 +initial azimuth angle [◦] +ϕhs +0 +90 +Position Angle of the Line of Nodes [◦] +Ω +160 +Table 2. Summary of parameters of the hot spot model. We note that we +used the maximum number density and temperature of the jet best-fit in +Table 1 as reference and scale them for the hot spot by a factor 3.01. +of the maximum constructive beaming effect (when the hot spot +moves towards the observer). The orbit rotates around the quies- +cent centroid following the variation of ϕ0 (left panel of Fig. 4). +The light curve is also strongly affected, reaching much brighter +levels when the intrinsic emission maximum is in phase with the +constructive beaming effect. +Here we show that the quiescent state of Sgr A* can have +significant impact on the observed astrometry by shrinking the +apparent orbit, creating a shift between the center of the latter +and the position of the mass center. One should have these effects +in mind for the comparison to the flare data at the end of the +following section. +3. Plasmoid model from magnetic reconnection +In this section, we develop a semi-analytical hot-spot-like model +in order to interpret the rise and decay of Sgr A* flares, thus +going one step further with respect to the model we used in sec- +tion 2, where a Gaussian modulation of the emission is enforced +without physical motivation. +Black hole magnetospheres naturally lead to the develop- +ment of equatorial current sheets corresponding to a strong spa- +tial gradient of the magnetic field which changes sign at the +equator (Komissarov 2004; Komissarov & McKinney 2007; Par- +frey et al. 2019; Ripperda et al. 2020). Such a configuration +results in magnetic reconnection, i.e. a change of the topology +of the field lines forming X points (Komissarov 2005; Loureiro +et al. 2007; Sironi & Spitkovsky 2014). This process is intrin- +sically non-ideal and thus can only be captured either by re- +sistive MHD or kinetic simulations. For suitable values of the +magnetic diffusivity, the reconnecting current sheet can break +into chains of plasmoids, i.e. magnetic islands separated by X +points (Loureiro et al. 2007; Parfrey et al. 2019; Ripperda et al. +2020; Porth et al. 2021). +The reconnection rate (i.e. the typical rate at which magnetic +energy is dissipated into particle kinetic energy) is equal to the +ratio vrec/vout with vrec the velocity of matter injected into the +reconnection region, and vout the bulk outflow velocity of parti- +cles accelerated by the reconnection event. The outflow velocity +is of the order of the Alfven speed, vout ≈ vA, which is itself +of the order of the speed of light, vA ≈ c, for strongly magne- +tized environments. The reconnection rate has been shown to be +rather independent of the details of the chosen parameters. For +PIC simulations, it lies around 10%, i.e. vrec,PIC ≈ 0.1vA ≈ 0.1c, +for magnetized collisionless plasmas (Sironi & Spitkovsky 2014; +Werner et al. 2018; Guo et al. 2015), which are the typical +conditions in the inner flow surrounding Sgr A*1. GRRMHD +simulations point towards a slower rate of around 1%, so that +vrec,MHD ≈ 0.01c (see the discussion in Ripperda et al. 2022), +1 It is likely that the accretion flow surrounding Sgr A* is in a Magnet- +ically Arrested Disk (MAD, see Narayan et al. 2003) regime, i.e. with +strong poloidal magnetic fields in the inner regions (Gravity Collabora- +tion et al. 2018; Dexter et al. 2020b). +Article number, page 5 of 20 + +A&A proofs: manuscript no. main +100 +75 +50 +25 +0 +25 +50 +75 +100 +X ( as) +100 +75 +50 +25 +0 +25 +50 +75 +100 +Y ( as) +Astrometry +orbit +0 +5 +10 +15 +20 +25 +30 +t (min) +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +F/F(S2) +Light Curve +0=0.0 +0=90.0 +0=180.0 +0=270.0 +intrinsic +Fig. 4. Astrometry (left) and light curves (right) of the hot spot - jet model for four initial azimuthal angle ϕ0 of 0◦ in blue, 90◦ in orange, 180◦ +in green and 270◦ in red. The dashed black line shows the primary image centroid track with no quiescent jet (clock-wise). The jet dominates the +beginning and the end of the flares. The observed centroids thus start and end close to the one of the jet. The apparent orbits rotate around the latter +with ϕ0 as the maximum of emission occurs at different ϕ. The Gaussian modulation which has a typical duration of tσ = 15 min (grey dashed line; +which is the same for the four the curves) is affected by relativistic effects. For negative X (right part of the astrometry), the beaming, combined +with relativistic Doppler effect, amplify the flux from the hot spot while in the positive X (left part of the figure), they lower it. The black dot in +the left panels represents the position of Sgr A*. +but this applies to collisional environments, thus less similar to +Sgr A* vicinity. +Fresh plasma flows into the current sheet at the reconnec- +tion rate vrec, is accelerated by the electric field generated in +the current sheet, usually giving rise to power-law energy dis- +tributions of electrons (Sironi & Spitkovsky 2014; Werner et al. +2018). Inside the current sheet, the particles get trapped in the +plasmoids which act as particle reservoirs (Sironi & Spitkovsky +2014) which can merge in a macroscopic magnetic island, that +is, a large plasmoid. In Ripperda et al. (2022), magnetic flux dis- +sipation through reconnection last for ∼ 100rg/c ∼ 30 min and +the resulting hot spot orbits for ∼ 500rg/c ∼ 150 min before it +disappears by losing its coherence through interaction with the +surrounding flow. +In the global PIC simulation of El Mellah et al. (2022), the +authors study magnetic reconnection in the sheath of relativis- +tic jet working with magnetic field loops coupling the BH to the +accretion disk. The resulting plasmoids evolve off-plane, propa- +gate away from the BH and are prone to merge with each other to +form macroscopic plasmoids susceptible to radiate high amounts +of energy under the form of non-thermal radiation. The under- +lying mechanism, first described by Uzdensky (2005) and de +Gouveia dal Pino & Lazarian (2005), relies on the accretion of +poloidal magnetic field loops onto a spinning BH. Once the in- +ner footpoint of the loop reaches the BH ergosphere, the mag- +netic field line experiences strong torques due to the frame drag- +ging effect while its other footpoint on the disk rotates at the +local Keplerian speed. Thus, the toroidal component of the mag- +netic field quickly grows in the innermost regions, propagates +upstream along the field line and leads to the opening of the +magnetic loop above a certain magnetic loop size. On the out- +ermost closed magnetic field line (called the separatrix), a Y- +point appears where plasmoids form and flow away along an +inclined current sheet above the disk (Fig. 5). In the PIC sim- +ulations of El Mellah et al. (2022), a cone-shaped reconnecting +current sheet forms where vivid particle acceleration takes place. +Electrons and positrons pile up into outflowing plasmoids where +they cool through synchrotron radiation. This topological con- +figuration where some magnetic field lines anchored in the disk +close within the event horizon is coherent with what is seen in +resistive GRMHD simulations during the short episodes of flux +repulsion which separates different accretion regimes. During +approximately 100 rg/c, these simulations show an essentially +force-free funnel surrounded by merging plasmoids formed in +the jet sheath and in the equatorial plane Ripperda et al. (2022); +Chashkina et al. (2021). +3.1. Plasmoid model from magnetic reconnection +The aim of this section is to develop a semi-analytic large plas- +moid model (which will be named plasmoid model), inspired +from the reconnection literature reviewed above. The interest of +such a model, compared to state-of-the-art GRMHD or GRPIC +modeling, is twofold: +– it allows to remain as agnostic as possible regarding the +physical conditions close to Sgr A* and encapsulate into a +single model a large parameter space; +– it allows to perform simulations within a limited computing +time, allowing to explore the large parameter space and com- +pare to astrometric and photometric data. +Our hope is that such a model can not only be fed with the re- +sults of more elaborated simulations, but also bring constraints to +these simulations by determining what features of the modeling +are important in order to explain the data. +Article number, page 6 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +The main features of our model are illustrated in Fig. 5. in- +spired by the recent GRPIC results of El Mellah et al. (2022). +Here, we consider a single plasmoid, which is modeled as a +sphere of hot plasma with a constant radius. This macroscopic +plasmoid is understood as the end product of a sequence of mi- +croscopic plasmoid mergers. The spherical geometry is chosen +only for simplicity, given that current data are certainly unable +to make a difference between various geometries. +3.1.1. Plasmoid motion +We consider that the magnetic reconnection event occurs close +to the black hole, and the resulting plasmoid is ejected along the +jet sheath (Ripperda et al. 2020; El Mellah et al. 2022). Thus, we +define a conical motion (as in Ball et al. (2021)) defined by a con- +stant polar angle θ = θ0 and the initial conditions r0, θ0, ϕ0, vr0, +and vϕ0 . The subscript 0 reflects the initial value of a given pa- +rameter in Boyer-Lindquist coordinate. As in Ball et al. (2021), +we set a constant radial velocity vr = vr0 and the azimuthal veloc- +ity is defined through the conservation of the Newtonian angular +momentum +vϕ(t) = vϕ0 +r2 +0 +r(t)2 . +(3) +The azimuthal angle is obtained by integrating the previous +Eq. 3 +ϕ(t) = ϕ0 + r2 +0 +vϕ0 +vr +( 1 +r0 +− 1 +r(t)). +(4) +In the GRPIC simulations performed by El Mellah et al. +(2022), the plasmoids are formed in the vicinity of the black hole +at the Y-point and are ejected into the black hole magnetosphere, +we thus restrict our study to vr > 0. +An important feature of our model is the fact that the initial +azimuthal velocity of the plasmoid is naturally super-Keplerian. +Indeed, the Y-point, from which the plasmoid is generated, is an- +chored to the equatorial plane of the accretion flow through the +separatrix field line. So it will typically rotate at the Keplerian +speed corresponding to the foot point of the line, thus at a veloc- +ity higher than the Keplerian velocity corresponding to the initial +cylindrical radius of the plasmoid. +3.1.2. Growth and cooling phases +We consider two phases in the lifetime of the plasmoid that aim +at modeling the ascending and descending phases of the ob- +served flare light curves: +– during the growth phase, which lasts a total time tgrowth, the +plasmoid continuously receives fresh accelerated particles at +a constant rate resulting from the merging of microscopic +plasmoids from reconnection into our large plasmoid which +mix with "old" electrons cooled by synchrotron radiation. +The growth time tgrowth corresponds to the lifetime of the +reconnection engine, i.e. the duration of magnetic flux dis- +sipation; +– after t = tgrowth, the plasmoid enters the cooling phase: we as- +sume that magnetic reconnection is quenched and plasmoids +no longer merge so injection of fresh plasma stops and the +plasmoid cools by emitting synchrotron radiation. We ne- +glect particle escape and adiabatic losses. +The duration of the growth phase is set both by the recon- +nection rate and the speed at which magnetic flux is advected by +the accretion flow into the current sheet. In Parfrey et al. (2015), +the accretion of successive magnetic loops of opposite polarity +activates this process, with typical duration of transition of the +order of 100rg/c. This duration is representative of the dissipa- +tion of the magnetic flux of one magnetic loop which is set by +both the size of the loop and the accretion speed, that the authors +fix to 2rg and c/200 respectively, and the reconnection rate, fixed +by the prescribed resistivity. Resistive GRMHD simulations of +magnetically arrested disks (Narayan et al. 2003) bring support +to these values (e.g. Ripperda et al. 2020) but fail at reaching re- +connection rates realistically high (Bransgrove et al. 2021a). In +the more ab initio PIC simulations of El Mellah et al. (2022), the +reconnection rate is more realistic (∼ 10%, Sironi & Spitkovsky +2014; Werner et al. 2018) but due to the high computational cost +of the simulations, they did not work over duration long enough +to model the inward drift of the magnetic footpoints on the disk. +As a consequence, the reconnection rate is accurate but the fuel- +ing magnetic flux is artificially steady and act as an infinite reser- +voir over the ∼200rg/c covered by the simulation. A coupling +between GRMHD, force-free and PIC simulations to jointly de- +scribe the disk, the corona and the current sheet respectively is +still missing. In this context, we considered duration tgrowth of the +growth phase of the order of 100rg/c, corresponding to a typical +episode of magnetic flux dissipation set by the two rates at which +magnetic flux is advected into the current sheet and dissipated by +magnetic reconnection. +3.1.3. Evolution of the electron distribution +Next, we prescribe the emission/absorption mechanism in the +plasmoid. Most studies use chosen electron distributions, with +analytical prescriptions for their evolution at best. Ball et al. +(2021) use a fixed thermal distribution with a linear increase of +the number density for the rising part of the light curve and a +decrease of the temperature following Eq. D.7 for the cooling. +Scepi et al. (2022) use a kappa distribution with an exponential +cutoff and a synchrotron cooling break for the plasma emission +generating X-ray flares. While their evolution of the plasma pa- +rameters (number density, temperature, magnetic field) is more +elaborate than in our model, their approximation is valid only +while injection and cooling are balanced. When the injection +stops, the shape of the electron distribution changes rapidly (see +Fig. 6). Here, we choose a different approach by evolving the +electron distribution in the plasmoid by solving the kinetic equa- +tion +∂Ne(γ, t) +∂t += ∂ +∂γ +� +−˙γsyn Ne(γ, t) +� ++ Qinj(γ), +(5) +where γ is the Lorentz factor of the electrons, Qinj is the injection +rate and Ne = dne/dγ is the electron number density distribution, +using the EMBLEM code (Dmytriiev et al. 2021). The term +−˙γsynNe = 4σTUB +3mec (γ2 − 1)Ne +(6) +of the right hand side describes the synchrotron cooling of the +plasmoid particles, with UB = B2/(8π). In our approach, we do +not model the details of the magnetic reconnection process but +instead describe the supply of freshly accelerated particles to the +plasmoid by magnetic reconnection. Therefore, for the injection +rate Qinj(γ) in Eq. 5, we use the following expression, assuming +Article number, page 7 of 20 + +A&A proofs: manuscript no. main +Fig. 5. Sketch of magnetic reconnection in the black hole magneto- +sphere as shown by El Mellah et al. (2022) on which our plasmoid +model is built. There are three types of magnetic field lines: the ones +threading the event horizon which goes to infinity, the ones anchored +in the disk which also go to infinity, and the separatrix which link the +disk and the black hole event horizon. The latter form a Y-point and a +current sheet where chain of plasmoids are formed. Here we model a +single plasmoid as the result of multiple mergers. +a constant injection rate: +Qinj(γ) = +��������� +4πNκ +e(γ) +tgrowth +in the growth phase, +0 +in the cooling phase, +(7) +where Nκ +e(γ) is the distribution of the injected particles which +follows the kappa distribution i.e. a thermal core with a power- +law tail following: +Nκ +e(γ) = N +4πγ(γ2 − 1)1/2 +� +1 + γ − 1 +κΘe +�−(κ+1) +(8) +with a normalization factor N = 1/2ne(κ−2)(κ−1)κ−2Θ−3 +e , where +ne and Θe are the density and dimensionless temperature of the +injected plasma. The index κ is defined as +κ = p + 1 = Ap + Bp tanh (Cp βb) + 1 +(9) +where +Ap = 1.8 + 0.7/ √σb, Bp = 3.7 σ−0.19 +b +,Cp = 23.4 σ0.26 +b +, +(10) +following Ball et al. (2018); Werner et al. (2018), where p is +the powerlaw index of the non-thermal part of the distribution, +σb +≫ +1 is the plasma magnetization of the accelerating site +and βb ≪ 1 is the ratio of proton thermal pressure to magnetic +pressure of the accelerating site. If the magnetization at the ac- +celerating site satisfies σb ≥ 100 (Crinquand et al. 2021), then κ +is in the range of [2.8, 4.4] depending on βb. This implies that the +spectral index α (νFν ∝ να) is between −0.5 and 0.5 which is in +perfect agreement with the measured indices for flares (Fig. 32 +in Genzel et al. 2010). We note that realistic values for the mag- +netization in the funnel region of Sgr A* can be orders of mag- +nitude higher than 100 (see Ripperda et al. 2022) which result in +a smaller parameter space for κ, closer to the low boundary. +The bounds of the electron Lorentz factor are chosen to sat- +isfy γmin = 1 and γmax = 106 (Eq.3 of Ripperda et al. 2022). +When solving the kinetic Eq. 5, we assume that the density of +the plasmoid particles follows +ne(t) = +� +nmax +e +× t/tgrowth +in the growth phase, +nmax +e +in the cooling phase. +(11) +Such high maximum Lorentz factor is needed to also power X- +ray flares with only synchrotron. However, Ripperda et al. (2022) +suggest a lower maximum Lorentz factor γmax ∼ 104 in the plas- +moid as electrons cool during their travel time between the accel- +eration site and the later. Such lower value results in a marginally +lower flux in NIR, as most of the emission at this wavelength +comes from lower energy electrons, which can be compensated +with a slightly higher maximum number density. +The temperature of the injected particles remains fixed in the +growth phase, and we define a uniform and time-independent +tangled magnetic field in the plasmoid. This is also a simplifying +assumption, and we intend to consider in future work the impact +of the magnetic field geometry on the polarized observables. +The EMBLEM code does not only solve for the evolu- +tion of the electron distribution, it also provides the associated +synchrotron emission and absorption coefficients of the plas- +moid particles. We can thus compute an image of our plas- +moid scenario by backwards integrating null geodesics in the +Schwarzschild spacetime from a distant observer screen, and in- +tegrate the radiative transfer equation through the plasmoid by +reading the tabulated emission and absorption provided by EM- +BLEM. This step is performed by means of the GYOTO2 ray- +tracing code (see Appendix B for details; Vincent et al. 2011; +Paumard et al. 2019). The input parameters that we used for the +code are listed in Table 3. With these values of density and mag- +netic field strength, we obtain a magnetization inside the plas- +moid of σp ∼ 10−2 from the end of the growth phase since nei- +ther the density nor the magnetic field evolve. +3.2. Importance of evolving the electron distribution +One of the most important aspects of our model is the self- +consistent evolution of the electron distribution function, and +corresponding radiative transfer, in the plasmoid. Here, we il- +lustrate the importance of taking into account the evolution of +the electron distribution by comparing our model with another +reconnection plasmoid model inspired by Ball et al. (2021). +We show in the top-left panel of Fig. 6 the evolution of the +electron distribution in our plasmoid model, for the parameters +listed in Tables 3 and 4 (see Sect. 3.3 for details) and the associ- +ated spectral energy density (SED) in Fig. 7. During the growth +phase (tobs < 10 min), for γ > 103 the distribution is stationary +as the injection is balanced by the cooling. After the end of the +growth phase, the shape of the distribution changes rapidly as +there is only cooling left. We show in the right panel of Fig. 6 +the light curve obtained with our model (in red) and with a model +inspired by Ball et al. (2021) who do not take into account the +2 https://gyoto.obspm.fr +Article number, page 8 of 20 + +Current +sheet +Synchrotron +cooling +Plasmoid +v(rcyl) +yr +Injection of +O +accelerated +electrons +Merging +Y point +magnetic +islands +B lines +L +rcyl +rcyl +footpoint +plasmoid +(depends +on spin)N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +non-thermal electrons, i.e. using a thermal distribution, with a +linear increase of the number density with a fixed temperature +during the growth phase and an analytical prescription for the +temperature decrease during the cooling phase using Eq. D.7 and +assuming Θe = γ/3. While this model gives a similar intrinsic +light curve as our model, the dimensionless temperature required +is twice as high as ours (Θe = 109) with a magnetic field of +B = 20 G to cool faster lower energy electrons. The evolution of +the distribution with this model is shown in the bottom left panel +of Fig. 6. We do not need such high a temperature as most of +the emission comes from high-energy electrons which are non- +thermal in our model as suggested by PIC simulations (Rowan +et al. 2017; Werner et al. 2018; Ball et al. 2018; Zhang et al. +2021). Our temperature could be even lower with a harder (i.e. +lower) κ-index. The cooling of the electron distribution through +synchrotron radiation is difficult to model properly and needs a +kinetic approach as we do in our plasmoid model. +3.3. Comparing GRAVITY 2018 flare data with our plasmoid +model +This paper aims at checking whether we can reproduce with our +plasmoid model the general features of the observed light curve +and astrometry of the July 22, 2018 flare reported by Gravity +Collaboration et al. (2018). We show in Fig. 8 a comparison be- +tween the July 22, 2018 flare data observed by GRAVITY (in +black) and our plasmoid model (red line) with the parameters +listed in Tables 3 and 4. For comparison, we show the intrinsic +light curve (dashed line) obtained by removing all the relativistic +effects (Doppler effect, beaming, secondary image). +This comparison is not the result of a fit and was obtained +by estimating the relevant parameters using simple physical ar- +guments: +– The rise time and slope of the light curve are mainly moni- +tored by (i) the growth time, (ii) our choice of linear evolu- +tion of the electron density (which enters the injection func- +tion), (iii) the relativistic beaming effect, and thus (iv) the +initial azimuthal position of the plasmoid, ϕ0, which has a +strong impact on beaming as illustrated in the right panel of +Fig. 4. +– The decaying part of the light curve is monitored by the syn- +chrotron cooling time, thus by the magnetic field strength, +and by the beaming effect. +– The maximum of the light curve can be estimated by means +of an analytical formula that we derive in Appendix C.2. +This maximum depends mainly on the maximum number +density ne,max, as well as on the temperature and κ-index of +the distribution. These parameters are degenerate and thus +not constrained with only the NIR flare data. Nevertheless, +GRMHD (Dexter et al. 2020b; Ripperda et al. 2022; Scepi +et al. 2022) and GRPIC simulations (El Mellah et al. 2022) +of magnetic reconnection suggest that the density in the plas- +moid is higher than its close environment in the current sheet, +of the order of the density at the base of the jet, close to the +event horizon, but lower than in the disk. Still, the two re- +maining parameters (Θe, κ) which describe the shape of the +distribution are fully degenerate. +– The initial position and velocity of the plasmoid have a +strong impact on the astrometric trace on sky. We guess the +initial azimuthal velocity based on the following reasoning. +The Keplerian velocity of the plasmoid at its initial cylindri- +cal radius is vKep ∼ 0.31c (for our choice of initial cylin- +drical radius given in Table 4, rcyl = 10.6 rg). However, as +Parameter +Symbol +Value +Plasmoid +magnetic field [G] +Bp +15 +plasmoid radius [rg] +Rp +1 +minimal Lorentz factor +γmin +1 +maximum Lorentz factor +γmax +106 +kappa distribution index +κ +4.0 +kappa distribution temperature +Θe +50 +maximum electron number density [cm−3] +ne,max +5 × 106 +growth timescale [rg/c] +tgrowth +120 +Table 3. Input parameters of the EMBLEM code for the simulation of the +electron distribution evolution. These parameters are used for the July +22 flare of Gravity Collaboration et al. (2018). +Parameter +Symbol +July 22 +Plasmoid +time in EMBLEM at zero observing time [min] +temblem +obs,0 +29.6 +initial cylindrical radius [rg] +rcyl,0 +10.6 +polar angle [◦] +θ +135 +initial azimuthal angle [◦] +ϕ0 +280 +initial radial velocity [c] +vr,0 +0.01 +initial azimuthal velocity [c] +vϕ,0 +0.45 +X position of Sgr A* [µas] +x0 +0 +Y position of Sgr A* [µas] +y0 +0 +PALN [◦] +Ω +160 +Table 4. Orbital parameters of the plasmoid model following a conical +motion used for the comparison of the July 22, 2018 flares observed by +Gravity Collaboration et al. (2018). +discussed in Sect. 3.1, our model naturally leads to a super- +Keplerian initial velocity to the plasmoid. Indeed, the plas- +moid initial azimuthal velocity is that of the footpoint of the +separatrix (see Fig. 5). Based on Fig. 8 of El Mellah et al. +(2022), we can determine the radius of the footpoint, rf p, of +a separatrix giving rise to a Y point located at a cylindrical +radius of ≈ 10 rg. We find r f p = (4.7 ± 0.5) rg, which trans- +lates in an orbital velocity vϕ,0 between 0.41c and 0.45c. The +upper bound of this interval compares well with the July 22 +flare data. We note that this estimate of the initial azimuthal +velocity is anchored in the model of El Mellah et al. (2022) +and thus depends on their choice of initial condition, in par- +ticular on the initial profile of their magnetic field. +We note that the fiducial values proposed in Tables 3 and +4 represent a set of parameters with values that are inspired by +numerical simulations of reconnection which reproduce the key +observational features of the July 22 flare data. This setup is not +unique and is not the result of a fit. We let the exploration of the +full parameters space (freeing some fixed/constrained parame- +ters like maximum number density, growth time, inclination) to +a future work. Nevertheless, our model disfavor low growth time +(tgrowth < 50rg/c) for this particular flare. +Overall, our plasmoid model jointly describes the astrom- +etry and the flux variation of the 22 July 2018 flare measured +by (Gravity Collaboration et al. 2018) for the first time, consid- +ering a model with a specific emission prescription. Magnetic +reconnection is thus a viable scenario to explain Sgr A* flares. +Article number, page 9 of 20 + +A&A proofs: manuscript no. main +100 +101 +102 +103 +104 +105 +106 +10 +9 +10 +6 +10 +3 +100 +103 +ne [cm +3] +kappa +Distribution +Thermal +PL (p=3) +100 +101 +102 +103 +104 +105 +106 +10 +9 +10 +6 +10 +3 +100 +103 +ne [cm +3] +tobs=0.71 min +tobs=3.53 min +tobs=6.70 min +tobs=9.17 min +tobs=14.46 min +tobs=16.93 min +tobs=20.46 min +tobs=22.93 min +tobs=26.81 min +tobs=29.28 min +30 +20 +10 +0 +10 +20 +30 +40 +50 +tobs [min] +0 +10 +20 +30 +40 +50 +60 +70 +80 +tintrinsic [min] +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +F [erg.cm +2.s +1] +1e +11 +Observing time +tgrowth +growth phase +cooling phase +EMBLEM intrinsic LC +Thermal model intrinsic LC +Fig. 6. (Top-left) Evolution of the electron distribution in our model with EMBLEM at each observing time of the July 22, 2018 flare. The black +dotted line correspond to the injected κ electron distribution composed of a thermal core with a power law tail. The parameters used are listed in +Table 3. (Bottom-left) Evolution of the electron distribution in the Thermal model inspired by Ball et al. (2021) at each observing time of the July +22, 2018 flare. The parameters used for this distribution are the same as in our model (listed in Table 3) but with the dimensionless temperature of +Θe = 109 and the magnetic field of B = 20 G. (Right) Full intrinsic light curves of the two models. Note that in this panel we plot the light curve +from the beginning of the growth phase while in the left panels we plot the distribution at the observed time of Fig. 8 (tobs = tintrinsic − 29.6 min). +1010 +1012 +1014 +1016 +1018 +1020 +1022 + [Hz] +10 +19 +10 +17 +10 +15 +10 +13 +10 +11 +F [erg.cm +2.s +1] +tobs=0.71 min +tobs=3.53 min +tobs=6.70 min +tobs=9.17 min +tobs=14.46 min +tobs=16.93 min +tobs=20.46 min +tobs=22.93 min +tobs=26.81 min +tobs=29.28 min +Fig. 7. Intrinsic Spectral Energy Density (SED) evolution from radio to X-rays of our plasmoid model with the parameters listed in Table 3. Color +code the time as in Fig. 6. Grey lines are the SED out of the observing time. The SED peak occurs in NIR with this set of parameters, but with a +lower κ-index, i.e. a harder power law tail, the peak could reach X-rays. Here, X-rays flux drops quickly compare to the typical timescale of X-ray +flares as we consider only synchrotron cooling and not Synchrotron-Self Compton (SSC). We note that the flux emitted by our plasmoid at 230 +GHz is ∼ 0.1 Jy which is the good order of magnitude of the variability associated to flares in sub-mm (Wielgus et al. 2022a). +Article number, page 10 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +150 +100 +50 +0 +50 +100 +150 +X ( as) +150 +100 +50 +0 +50 +100 +150 +Y ( as) +Astrometry +0 +5 +10 +15 +20 +25 +30 +t (min) +0.20 +0.25 +0.30 +0.35 +0.40 +0.45 +0.50 +0.55 +0.60 +0.65 +F/F(S2) +Light Curve +observed +intrinsic +data +Fig. 8. Data and plasmoid models of the flares from July 22, 2018. The left panels shows the astrometry of the flare while the right panel shows +the observed (full line) and intrinsic (dashed line) light curves. The parameters of the model are listed in Tables 3 and 4. Note that this is not the +result of a fit. The black dot in the left panels represents the position of Sgr A* in GYOTO and the orange cross represent the position of Sgr A* +measured through the orbit of S2. +4. Limitations of our plasmoid model +Our plasmoid model is vastly simplified with respect to the com- +plexity of realistic magnetic reconnection events in the environ- +ment of black holes. We review here its main limitations: +i. We consider a single plasmoid while the instability of thin +current sheets gives rise to a dynamic flow of merging +magnetic islands. Our argument for this simplification is +that the merging process is certainly very dependent on the +unknown initial conditions, and that the final, bigger and +brighter product of the cascade is likely to dominate the +observed signal; +ii. The initial condition on the plasmoid’s velocity is simply +imposed for the radial motion, and based on a particular +GRPIC model as regards the azimuthal motion; +iii. The evolution of the plasma parameters (density, temper- +ature, magnetic field) are chosen to be either constant or +linear, so very simplified compared to a realistic scenario. +However, we consider that these evolutions are very likely +to be strongly dependent on the initial conditions of the flow, +so that they are weakly constrained; +iv. The values of almost all the parameters except mass and +distance of Sgr A* are poorly constrained. We choose a set +of values which are reasonable according to simulations. +Future work is needed to investigate the details of the +parameter space. +v. We model the plasmoid by a homogeneous sphere for +simplicity from the circle plasmoid seen in 2D GRMHD +(Nathanail et al. 2020; Ripperda et al. 2020; Porth et al. +2021) and PIC simulations (Rowan et al. 2017; Ball et al. +2018; Werner et al. 2018). The 3D aspect of such plasmoid +is cylindrical (flux ropes) both in GRMHD (Bransgrove +et al. 2021b; Nathanail et al. 2022; Ripperda et al. 2022) +and PIC (Nättilä & Beloborodov 2021; Zhang et al. 2021) +simulations. Thus, a realistic geometry of the flare source +is likely more complex than in our model. We note that the +exact geometry of the flare is not relevant as we only track +the centroid position, as much the flare source is not too +extended, and we consider tangled magnetic field. However, +the coherence time of the structure might be shorter in 3D +and might have an impact on the rise time of the light curve. +Further 3D simulations studies are needed to better model +the shape of the flux ropes and their evolution; +vi. We neglect any shearing of the plasmoid and consider +that it remains identical to itself throughout the simulation. +Differential rotation is however likely to stretch the plasmoid +over its orbit and destroy its coherence (Hamaus et al. 2009; +Gravity Collaboration et al. 2020c); +vii. We consider a tangled magnetic field in the plasmoid +and thus do not consider the impact of the magnetic field +geometry on the observable. The magnetic field geometry +of the quiescent flow is likely to be ordered and vertical if +Sgr A* is strongly magnetized. The magnetic field in the +plasmoid, which is our interest here, could be either helical +(plasmoids) or vertical for large flux tubes (Ripperda et al. +2022). +viii. During a flare, the quiescent state can change in a non +axisymmetrical way (Ripperda et al. 2022). This will push +the centroid position of the quiescent further away from +the center-of-mass location which will affect the offset. We +choose to use a static and axisymmetric quiescent model +during flare to avoid adding more degrees of freedom +which would lead to higher degeneracies, rather than clearer +constraints. +Article number, page 11 of 20 + +A&A proofs: manuscript no. main +ix. We choose a high maximum Lorentz factor γmax = 106 to +be able to power X-ray flares (but without any constrain +for this study). However, high energy photons lead to pair- +production and thus increase the number density in the plas- +moid which we do not take into account. +Despite these many limitations, we consider that our model +is very interesting for fitting flare data, because it allows to cover +a much broader set of physical scenarios than more elaborate +simulations that strongly depend on their assumptions regarding +the relevant physics and the initial conditions. +5. Conclusion and perspectives +This paper is mainly focused at developing a new plasmoid +model for Sgr A* flares, inspired by magnetic reconnection in +black hole environments. Our semi-analytic model allows to +study a broad parameter space within a reasonable computing +time, thus being well suited for data analysis. +Our model considers non-thermal electrons accelerated by +magnetic reconnection and injected into a spherical large plas- +moid. We evolve the electron distribution through a kinetic equa- +tion taking into account synchrotron cooling and particle injec- +tion at a constant rate. We show in Appendix C.1 (Fig. C.3) the +importance of taking into account the cooling of the electrons al- +ready in plasmoid during the growth phase. Our model also natu- +rally accounts for a super-Keplerian velocity of the flare source, +through the dynamical coupling between the plasmoid and the +inner regions of the accretion flow through magnetic field lines. +One of the main results of this paper is that for the first time +we model the astrometry and lightcurve of the flares measured +by (Gravity Collaboration et al. 2018) by explicit modeling of +the emission zone. +Our conclusions regarding the three main points raised in the +introduction are the following: +– the marginally detected shift between the astrometric track +of Gravity Collaboration et al. (2018) and the center of mass +might be due to the impact of the quiescent radiation of the +background accretion flow; +– a dynamical coupling between the plasmoid and the inner +accretion flow through closed magnetic field lines might +naturally account for the super-Keplerian speed obtained +by Gravity Collaboration et al. (2018); +– in general, a large plasmoid due to magnetic reconnection in +a thin current sheet in the black hole magnetosphere is a rea- +sonable model to account for the main features of the Gravity +Collaboration et al. (2018) observables. +Sect. 3.3 shows that the temperature, density, and κ param- +eters of the plasmoid are degenerate. This degeneracy might be +removed by simultaneous observations of NIR and X-ray flares. +Moreover, synchrotron cooling leads to a translation of the elec- +trons from the NIR-emitting band to the millimeter-emitting +band, which could explain the sub-mm flare and its time lag with +respect to NIR. We thus intend to consider the multi-wavelength +properties of our plasmoid model in future work, in order to bet- +ter assess its ability to account for the complete flare data set of +Sgr A*. +A crucial recent observable of Sgr A* flares are the polariza- +tion QU loops (Gravity Collaboration et al. 2018, 2020d; Wiel- +gus et al. 2022b). We also intend to study the polarized properties +of our plasmoid model and compare it to these recent constraints. +Acknowledgements. NA and FHV are very grateful to B. Cerutti, B. Crinquand, +S. von Fellenberg, S. Gillessen, S. Masson, B. Ripperda, N. Scepi, and M. Wiel- +gus for fruitful discussions. This work was granted access to the HPC resources +of MesoPSL financed by the Region Ile de France and the project Equip@Meso +(reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir +supervised by the Agence Nationale pour la Recherche. +References +Backer, D. C. 1978, ApJ, 222, L9 +Baganoff, F. K., Bautz, M. W., Brandt, W. N., et al. 2001, Nature, 413, 45 +Ball, D., Özel, F., Christian, P., Chan, C.-K., & Psaltis, D. 2021, ApJ, 917, 8 +Ball, D., Sironi, L., & Özel, F. 2018, ApJ, 862, 80 +Barrière, N. M., Tomsick, J. A., Baganoff, F. K., et al. 2014, ApJ, 786, 46 +Bower, G. C., Dexter, J., Asada, K., et al. 2019, ApJ, 881, L2 +Bower, G. C., Goss, W. M., Falcke, H., Backer, D. C., & Lithwick, Y. 2006, ApJ, +648, L127 +Bower, G. C., Markoff, S., Dexter, J., et al. 2015, ApJ, 802, 69 +Bransgrove, A., Ripperda, B., & Philippov, A. 2021a, Phys. Rev. Lett., 127, +055101 +Bransgrove, A., Ripperda, B., & Philippov, A. 2021b, Phys. Rev. Lett., 127, +055101 +Brinkerink, C. D., Falcke, H., Law, C. J., et al. 2015, A&A, 576, A41 +Broderick, A. E. & Loeb, A. 2006, MNRAS, 367, 905 +Chashkina, A., Bromberg, O., & Levinson, A. 2021, MNRAS, 508, 1241 +Chiaberge, M. & Ghisellini, G. 1999, MNRAS, 306, 551 +Crinquand, B., Cerutti, B., Dubus, G., Parfrey, K., & Philippov, A. 2021, A&A, +650, A163 +Davelaar, J., Mo´scibrodzka, M., Bronzwaer, T., & Falcke, H. 2018, A&A, 612, +A34 +de Gouveia dal Pino, E. M. & Lazarian, A. 2005, A&A, 441, 845 +Dermer, C. D. & Schlickeiser, R. 2002, ApJ, 575, 667 +Dexter, J., Jiménez-Rosales, A., Ressler, S. M., et al. 2020a, MNRAS, 494, 4168 +Dexter, J., Tchekhovskoy, A., Jiménez-Rosales, A., et al. 2020b, MNRAS, 497, +4999 +Dmytriiev, A., Sol, H., & Zech, A. 2021, Monthly Notices of the Royal Astro- +nomical Society, 505, 2712 +Do, T., Ghez, A. M., Morris, M. R., et al. 2009, ApJ, 691, 1021 +Do, T., Witzel, G., Gautam, A. K., et al. 2019, ApJ, 882, L27 +Dodds-Eden, K., Gillessen, S., Fritz, T. K., et al. 2011, ApJ, 728, 37 +Dodds-Eden, K., Porquet, D., Trap, G., et al. 2009, ApJ, 698, 676 +Eckart, A., Baganoff, F. K., Morris, M. R., et al. 2009, A&A, 500, 935 +Eckart, A., Schödel, R., García-Marín, M., et al. 2008, A&A, 492, 337 +Eisenhauer, F., Perrin, G., Brandner, W., et al. 2011, The Messenger, 143, 16 +Eisenhauer, F., Perrin, G., Rabien, S., et al. 2008, in The Power of Optical/IR In- +terferometry: Recent Scientific Results and 2nd Generation, ed. A. Richichi, +F. Delplancke, F. Paresce, & A. Chelli, 431 +El Mellah, I., Cerutti, B., Crinquand, B., & Parfrey, K. 2022, A&A, 663, A169 +Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2022a, +ApJ, 930, L12 +Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2022b, +ApJ, 930, L16 +Falcke, H. 1999, in Astronomical Society of the Pacific Conference Series, Vol. +186, The Central Parsecs of the Galaxy, ed. H. Falcke, A. Cotera, W. J. +Duschl, F. Melia, & M. J. Rieke, 113 +Fazio, G. G., Hora, J. L., Witzel, G., et al. 2018, ApJ, 864, 58 +Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Reviews of Modern Physics, +82, 3121 +Genzel, R., Schödel, R., Ott, T., et al. 2003, Nature, 425, 934 +Ghez, A. M., Wright, S. A., Matthews, K., et al. 2004, ApJ, 601, L159 +Gravity Collaboration, Abuter, R., Accardo, M., et al. 2017, A&A, 602, A94 +GRAVITY Collaboration, Abuter, R., Aimar, N., et al. 2022, A&A, 657, L12 +Gravity Collaboration, Abuter, R., Amorim, A., et al. 2020a, A&A, 638, A2 +Gravity Collaboration, Abuter, R., Amorim, A., et al. 2020b, A&A, 636, L5 +Gravity Collaboration, Abuter, R., Amorim, A., et al. 2018, A&A, 618, L10 +Gravity Collaboration, Bauböck, M., Dexter, J., et al. 2020c, A&A, 635, A143 +Gravity Collaboration, Jiménez-Rosales, A., Dexter, J., et al. 2020d, A&A, 643, +A56 +Guo, F., Liu, Y.-H., Daughton, W., & Li, H. 2015, ApJ, 806, 167 +Hamaus, N., Paumard, T., Müller, T., et al. 2009, ApJ, 692, 902 +Hora, J. L., Witzel, G., Ashby, M. L. N., et al. 2014, ApJ, 793, 120 +Hornstein, S. D., Matthews, K., Ghez, A. M., et al. 2007, ApJ, 667, 900 +Komissarov, S. S. 2004, MNRAS, 350, 427 +Komissarov, S. S. 2005, MNRAS, 359, 801 +Komissarov, S. S. & McKinney, J. C. 2007, MNRAS, 377, L49 +Krichbaum, T. P., Graham, D. A., Witzel, A., et al. 1998, A&A, 335, L106 +Liu, H. B., Wright, M. C. H., Zhao, J.-H., et al. 2016, A&A, 593, A44 +Lo, K. Y., Schilizzi, R. T., Cohen, M. H., & Ross, H. N. 1975, ApJ, 202, L63 +Loureiro, N. F., Schekochihin, A. A., & Cowley, S. C. 2007, Physics of Plasmas, +14, 100703 +Article number, page 12 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +Macquart, J.-P., Bower, G. C., Wright, M. C. H., Backer, D. C., & Falcke, H. +2006, ApJ, 646, L111 +Marrone, D. P., Baganoff, F. K., Morris, M. R., et al. 2008, ApJ, 682, 373 +Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2006, in Journal of Physics +Conference Series, Vol. 54, Journal of Physics Conference Series, 354–362 +Mauerhan, J. C., Morris, M., Walter, F., & Baganoff, F. K. 2005, ApJ, 623, L25 +Michail, J. M., Wardle, M., Yusef-Zadeh, F., & Kunneriath, D. 2021a, ApJ, 923, +54 +Michail, J. M., Yusef-Zadeh, F., & Wardle, M. 2021b, MNRAS, 505, 3616 +Mo´scibrodzka, M. & Falcke, H. 2013, A&A, 559, L3 +Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2003, PASJ, 55, L69 +Nathanail, A., Fromm, C. M., Porth, O., et al. 2020, MNRAS, 495, 1549 +Nathanail, A., Mpisketzis, V., Porth, O., Fromm, C. M., & Rezzolla, L. 2022, +MNRAS, 513, 4267 +Nättilä, J. & Beloborodov, A. M. 2021, ApJ, 921, 87 +Nayakshin, S., Cuadra, J., & Sunyaev, R. 2004, A&A, 413, 173 +Neilsen, J., Nowak, M. A., Gammie, C., et al. 2013, ApJ, 774, 42 +Nowak, M. A., Neilsen, J., Markoff, S. B., et al. 2012, ApJ, 759, 95 +Pandya, A., Zhang, Z., Chandra, M., & Gammie, C. F. 2016, ApJ, 822, 34 +Parfrey, K., Giannios, D., & Beloborodov, A. M. 2015, MNRAS, 446, L61 +Parfrey, K., Philippov, A., & Cerutti, B. 2019, Phys. Rev. Lett., 122, 035101 +Paumard, T., Perrin, G., Eckart, A., et al. 2008, in The Power of Optical/IR In- +terferometry: Recent Scientific Results and 2nd Generation, ed. A. Richichi, +F. Delplancke, F. Paresce, & A. Chelli, 313 +Paumard, T., Vincent, F. H., Straub, O., & Lamy, F. 2019, Gyoto +Ponti, G., De Marco, B., Morris, M. R., et al. 2015, MNRAS, 454, 1525 +Porth, O., Chatterjee, K., Narayan, R., et al. 2019, ApJS, 243, 26 +Porth, O., Mizuno, Y., Younsi, Z., & Fromm, C. M. 2021, MNRAS, 502, 2023 +Ressler, S. M., Tchekhovskoy, A., Quataert, E., & Gammie, C. F. 2017, MNRAS, +467, 3604 +Ripperda, B., Bacchini, F., & Philippov, A. A. 2020, ApJ, 900, 100 +Ripperda, B., Liska, M., Chatterjee, K., et al. 2022, ApJ, 924, L32 +Rowan, M. E., Sironi, L., & Narayan, R. 2017, ApJ, 850, 29 +Rybicki, G. B. & Lightman, A. P. 1979, Radiative processes in astrophysics +Rybicki, G. B. & Lightman, A. P. 1986, Radiative Processes in Astrophysics +Scepi, N., Dexter, J., & Begelman, M. C. 2022, MNRAS, 511, 3536 +Sironi, L. & Spitkovsky, A. 2014, ApJ, 783, L21 +Tagger, M. & Melia, F. 2006, ApJ, 636, L33 +Uzdensky, D. A. 2005, ApJ, 620, 889 +Vincent, F. H., Abramowicz, M. A., Zdziarski, A. A., et al. 2019, A&A, 624, +A52 +Vincent, F. H., Paumard, T., Gourgoulhon, E., & Perrin, G. 2011, Classical and +Quantum Gravity, 28, 225011 +Vincent, F. H., Paumard, T., Perrin, G., et al. 2014, MNRAS, 441, 3477 +von Fellenberg, S. D., Gillessen, S., Graciá-Carpio, J., et al. 2018, ApJ, 862, 129 +Werner, G. R., Uzdensky, D. A., Begelman, M. C., Cerutti, B., & Nalewajko, K. +2018, MNRAS, 473, 4840 +Wielgus, M., Marchili, N., Martí-Vidal, I., et al. 2022a, ApJ, 930, L19 +Wielgus, M., Moscibrodzka, M., Vos, J., et al. 2022b, A&A, 665, L6 +Witzel, G., Martinez, G., Hora, J., et al. 2018, ApJ, 863, 15 +Witzel, G., Martinez, G., Willner, S. P., et al. 2021, ApJ, 917, 73 +Yusef-Zadeh, F., Roberts, D., Wardle, M., Heinke, C. O., & Bower, G. C. 2006, +ApJ, 650, 189 +Zhang, H., Sironi, L., & Giannios, D. 2021, ApJ, 922, 261 +Article number, page 13 of 20 + +A&A proofs: manuscript no. main +Appendix A: Torus - Jet model for the quiescent +state +We used the Torus-jet model of Vincent et al. (2019). Their jet +model is restricted to an emitting sheath with an empty funnel in +agreement with GRMHD simulations (e.g. Mo´scibrodzka & Fal- +cke 2013; Ressler et al. 2017; Davelaar et al. 2018; Porth et al. +2019). In their model, Vincent et al. (2019) define an opening +and closing angle θ1 and θ2 respectively and a base height zb to +define the geometry of the jet. The number density and the tem- +perature are defined by their values at the base height of the jet +(nJ +e and T J +e respectively) and their profiles along the jet. The pro- +file of the number density is fixed (∝ r−2 +cyl with rcyl the projected +radius in the equatorial plane) and the one of the temperature is +set by the temperatures slope sT (∝ z−sT with z the height along +the vertical/spin axis). The jet emits synchrotron radiation from +a κ electron distribution. +The torus is defined by its central density and temperature +(nT +e and T T +e respectively). The profiles of these two quantities in +the torus are governed by the polytropic index k and its geome- +try. The latter is defined by the inner radius rin and the angular +momentum l but also on the metric (see Vincent et al. (2019) for +more details). Contrary to the jet, we consider that the electron +distribution of the torus is purely thermal. +We use the same algorithm as in Vincent et al. (2019) after +the correction of a small technical issue leading to an overestima- +tion of the number density and temperature. However, we change +the choice of the magnetization parameter in the jet sheath. As +illustrated e.g. by Porth et al. (2019), the jet sheath, which cor- +responds to the dominating emission region of the jet, coincides +with the transition between the highly-magnetized (σ ≫ 1) fun- +nel and the less-magnetized (σ ≪ 1) main disk body. Conse- +quently, we fix the magnetization to σ = 1 in the emitting jet +sheath, while Vincent et al. (2019) used a low magnetization both +in the jet and in the torus. Our choice leads to a smaller density +in the jet sheath compared to Vincent et al. (2019). We found a +best-fit with a χ2 +red = 0.91 using the same data points as Vincent +et al. (2019). The values are reported in Table 1 and Fig. 2 shows +the associated spectrum and the image at 2.2 µm. We obtain a +magnetic field strength of 257 G for the jet and 212 G at the +center of the torus.These values are higher than in Bower et al. +(2019) who considers a full thermal electron population with a +higher temperature but are of the same order as in Scepi et al. +(2022). +Appendix B: Ray-tracing setup +We consider a Kerr black hole with dimensionless spin param- +eter a = 0, described in Boyer-Lindquist (t, r, θ, ϕ) coordinates. +We work in units where the gravitational constant and the speed +of light are equal to 1, G = c = 1. Radii are thus expressed in +units of the black hole mass M. +We use the backward ray-tracing code GYOTO3 (Vincent et al. +2011; Paumard et al. 2019) to compute images of our models +at different epochs. Each pixel of our image corresponds to a +direction on sky. For each pixel of the image (i.e. each direction), +a null geodesic is integrated backwards in time from the observer +towards the black hole, integrating along this path the radiative +transfer equation +dIν +ds = −ανIν + jν +(B.1) +3 https://gyoto.obspm.fr +using the synchrotron emissivity jν and absorptivity αν coef- +ficients, considering various electron distribution functions. This +allows us to determine the flux centroid for each epoch and trace +its motion. In addition to astrometry we also determine the total +flux emitted as the sum of the intensity weighted by the element +of solid angle subtended by each pixel, again, for each epoch +which allows us to plot the light curve. +The images produced are 1000x1000 pixels with a field of +view of 300 µas vertically and horizontally which makes a reso- +lution < 0.1 µas2/pixel. This high resolution is needed to resolve +properly the secondary image which has a very important role in +both astrometry and light curve (see Sect. 2). +We model the quiescent state of Sgr A* at 2.2 µm with a jet +(see Sect. 2.1). However, computing an image of the jet is ∼ 200 +times longer than an image of the flare source (i.e. the hot spot or +the plasmoid, Sect. 2 and 3 respectively) because the jet is much +more extended, and integrating the radiative transfer equation is +thus much longer. The absorption in the jet is negligible thus the +flux emitted by the flare which crosses the jet is fully transmit- +ted. We can compute a single image of the jet that we add to +each images of the hot spot a posteriori. We then calculate the +total flux by summing the jet flux with the one of the flare at a +given time. The final centroid position is calculated by a simple +barycenter of the two centroids (jet and flare). +Appendix C: Intrinsic emission of the Plasmoid +Appendix C.1: Tests on the kinetic simulations +In our model, we follow the evolution of the electron distribu- +tion taking into account the injection of accelerated electrons by +the merging of small plasmoids into our large plasmoid and their +cooling through synchrotron radiation. The emissivity jν and ab- +sorptivity αν coefficients, needed to integrate the radiative trans- +fer Eq. B.1, are computed through the formula of Chiaberge & +Ghisellini (1999); Rybicki & Lightman (1986) (with our nota- +tion) +jν(t) = 1 +4π +� γmax +γmin +dγNe(γ, t)Ps(ν, γ), +(C.1) +αν(t) = − +1 +8πmeν2 +� γmax +γmin +Ne(γ, t) +γl +d +dγ[γlPs(ν, γ)] +(C.2) +with +Ps(ν, γ) = 3 +√ +3 +π +σTcUB +νB +x2 +� +K4/3(x)K1/3(x) − 3 +5 x[K2 +4/3(x) − K2 +1/3(x)] +� +(C.3) +where l = (γ2 − 1)1/2 is the electron momentum in units of +mec, x = ν/(3γ2νB), νB = eB/(2πmec) and Ka(t) is the modified +Bessel function of order a. We note that the Eq. C.3, is already +averaged over pitch angle. For standard distributions as thermal, +power-law and κ-distributions, these formulae are equivalent to +the fits of Pandya et al. (2016) (see Appendix D) that we used +for computing the quiescent synchrotron flux. +As electrons start to cool as soon as they are injected in the +plasmoid, the full distribution is no more a κ-distribution. How- +ever, turning off the cooling during the growth phase allows us to +compare the results of EMBLEM to the fitting formulae of Pandya +et al. (2016). As we inject electrons following their definition of +Article number, page 14 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +2 +4 +6 +8 +10 +12 +14 +16 +18 +0 +1 +2 +3 +4 +5 +6 +7 +I , max, erg cm +2 s +1 sr +1 Hz +1 +1e +6 +Pandya+16 +2 +EMBLEM (without cooling) +Fig. C.1. Specific intensity at the end of the growth phase (t = tgrowth = +75 rg/c) of a κ-distribution with ne = 5 × 106 cm−3, B = 10 G, κ = 4 for +a range of Θe computed from the full fitting formulae of Pandya et al. +(2016) (black curve), by the EMBLEM code (red dots) and with the high- +frequency limit analytical expression (dashed blue curve). We overplot +in light blue the range of Θe where Xκ > 2000 i.e. where the relative +error between the high frequency limit and the full formula is lower +than 20%. +the κ-distribution with a linear increase of the number density, +the two approach show similar results (see Appendix D). In our +cases, the absorption is very low, thus we neglect the absorption +in these tests. We can derive an analytical formula for the spe- +cific intensity from the high frequency limit emissivity Eq. D.3 +depending on the number density ne, the electron temperature +Θe and the magnetic field B in case the cooling is switched off +during growth. We find in the case without cooling that, keeping +κ constant +Iν,max ∝ ne,max Θ κ−2 B κ/2, if Xκ > 2000. +(C.4) +We show the relative error of the maximum specific intensity +between the EMBLEM code (red dots) and the formulae of Pandya +et al. (2016) (black curve) depending on the electron tempera- +ture and the magnetic field in Fig. C.1 and C.2. We fix the others +parameters to ne = 5 × 106 cm−3, κ = 4, tgrowth = 75 rg/c. The +values of EMBLEM are in good agreement with the previous ana- +lytical expression (Eq. C.4) for low values of Θe and B. For high +values, we are beyond the validity of our approximations (in the +intermediate frequency regime of the fitting formula, see Ap- +pendix D). Comparing the results of EMBLEM (without cooling) +with the full fitting formula of Pandya et al. (2016) (black curves) +results in an error lower than 5% showing the good agreement +between the two approaches. +Appendix C.2: Analytical estimate of the intrinsic light curve +Next, we compute the light curve emitted by the plasmoid which +will be affected by the relativistic effects. To reproduce a given +light curve, we can estimate the values of the parameters through +characteristic scales. The growth time, which is a "free" param- +eter of the model, can be estimated from the light curve taking +into account the beaming effect and thus, depends on the orbital +parameters. The synchrotron cooling time of an electron with +Lorentz factor γ in a magnetic field B reads +tcool = 3 +4 +mec +σTUBγ +(C.5) +0 +5 +10 +15 +20 +25 +30 +B (in Gauss) +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +I , max, erg cm +2 s +1 sr +1 Hz +1 +1e +5 +Pandya+16 +B2 +EMBLEM (without cooling) +Fig. C.2. Same as in Fig.C.1 for a range of B and with Θe = 10. +with σT the electron Thomson cross section and UB the magnetic +energy density. In a Dirac spectrum approximation, the Lorentz +factor of an electron emitting an IR photon at 2.2 µm is (Rybicki +& Lightman 1979) +¯γ = +�νmec +ηeB +�1/2 +(C.6) +with η = (0.29 × 3)/(2π) a dimensionless numerical factor (see +Appendix E.2). One can thus constrain the magnetic field from +the synchrotron cooling time as +tcool = 19 × +� B +20G +�−1.5 � +λ +2.2µm +�0.5 +min. +(C.7) +Taking into account the cooling of the electrons during the +growth phase leads to a lower flux than what we estimate from +Eq. C.4. Indeed, as electrons start to cool directly after being in- +jected, the integral of the distribution in Eq. C.1 and so the emis- +sivity will always be lower than without cooling. The key param- +eter of synchrotron cooling is the cooling time scale (Eq. C.5), +which depends on the magnetic field strength and the initial en- +ergy of the electrons. It has to be compared to the growth time. +Indeed, with a low growth time, only high-energy electrons have +the time to cool. Increasing the growth time will allow lower en- +ergy electrons to cool and so decrease even more the maximum +flux of the light curve. +With some approximations (see Appendix E for the details), +one can estimate the flux with cooling at t = tgrowth +νFsyn +ν (ν, t) = +neR3 +b ¯γmec2 +12D2tgrowth κθ2 +��Ψ(¯γ) − Ψ(ξ(¯γ, t))� , +for ν < ˜ν(t) +Ψ(¯γ), +for ν ≥ ˜ν(t) +(C.8) +where ˜ν(t) = (ηeB)/(mecb2 +ct2) is the frequency corresponding +to the condition ¯γ = 1/(bct) and +Ψ(x) = +� +1 + x − 1 +κθ +�−κ � +x2(κ − 1) + 2x(κθ − 1) + 2θ(κθ − 2) +� +. +(C.9) +We plot the maximum light curve evolution relative to the +magnetic field with EMBLEM with (blue crosses) and without (red +Article number, page 15 of 20 + +A&A proofs: manuscript no. main +0 +10 +20 +30 +40 +50 +60 +B (in Gauss) +0 +1 +2 +3 +4 +5 +F , max, erg cm +2 s +1 +1e +12 +Analytic +EMBLEM (without cooling) +EMBLEM (with cooling) +Fig. C.3. Evolution of the maximum flux νFν(tgrowth) (at the end of the +growth phase tgrowth = 75 rg/c) as a function of the magnetic field. +We show the results of EMBLEM without cooling (red crosses) as in +Fig. C.2. Allowing the cooling during the growth phase results in a +lower maximum flux (blue crosses). One can estimates the maximum +flux with cooling through Eq. C.8 (see Appendix E for details). This +equation is divided in two regimes, the equilibrium regime where the +magnetic field is strong enough to compensate the injection and creates +a stationary state (B ≥ 16.2 G) and non stationary regime where not all +electrons has cooled at tgrowth (B < 16.2 G). The relative error between +the analytical formula and the results of EMBLEM (with cooling) is +below 30% in the whole domain and below 7% in the non stationary +regime. +crosses) cooling during the growth phase and the previous an- +alytical expression in Fig. C.3 (black line). As expected, the +cooling becomes more significant with a strong magnetic field +until the maximum flux starts to decrease for very high values +(B > 100 G). The two regimes of Eq. C.8 are clearly visible in +Fig. C.3 with a turning point at B = 16.2 G. This approximation +has a maximum relative error lower than 30% compared to the +results of EMBLEM in the stationary regime and below 7% for the +non stationary regime making it a good approximation estimate +the peak light curve flux. +Appendix D: Computation of the synchrotron +coefficients for the Plasmoid +Appendix D.1: Fitting formulae of Pandya et al. (2016) +In the hot spot model and for the test of EMBLEM, we used the +fitting formula of Pandya et al. (2016) to compute the emissivity +jν and absorptivity αν considering a well defined κ-distribution. +This distribution has two regimes, the low and high frequency +regimes. +In the low frequency limit, the emissivity is +jν,low = nee2νB +c +X1/3 +κ +sin(θ) 4πΓ(κ − 4/3) +37/3Γ(κ − 2) +(D.1) +and the absorption coefficient is +αν,low = nee2 +νmec X−2/3 +κ +31/6 10 +41 +2π +(Θe κ)10/3−κ +(κ − 2)(κ − 1)κ +3κ − 1 +× Γ +�5 +3 +� +2 +F1 +� +κ − 1 +3, κ + 1, κ + 2 +3, −Θe κ +� +(D.2) +10 +7 +10 +4 +10 +1 +102 +105 +108 +Xk +0 +1 +2 +3 +4 +5 +6 +7 +Js +Js, lo +Js +0 +1 +2 +3 +4 +5 +6 +7 +Js +Js, hi +Js +Fig. D.1. Relative error between the low frequency regime (in red) - +resp. the high frequency regime (in blue) - fit formulae Js,lo (resp. Js,hi) +of Pandya et al. (2016) and the full fit formula of the emission coefficient +Js in function of Xκ = +ν +νκ with νκ = νB (Θeκ)2. +where 2F1 is the hypergeometric function. +In the high-frequency limit, the emissivity is +jν,high = nee2νB +c +X−(κ−2)/2 +κ +sin(θ) 3(κ−1)/2 +× (κ − 2)(κ − 1) +4 +Γ +�κ +4 − 1 +3 +� +Γ +�κ +4 + 4 +3 +� +(D.3) +and the absorption coefficient is +αν,high = nee2 +νmec X−(1+κ)/2 +κ +π3/2 +3 +(κ − 2)(κ − 1)κ +(Θe κ)3 +× +�2Γ(2 + κ/2) +2 + κ +− 1 +� ������� +�3 +κ +�19/4 ++ 3 +5 +������� . +(D.4) +The final approximations for the emissivity and absorption +coefficient are +jν = +� +j +−xj +ν,low + j +−xj +ν,high +�−1/x j +(D.5) +αν = +� +α−xα +ν,low + α−xα +ν,high +�−1/xα +(D.6) +with x j = 3κ−3/2 and xα = +� +− 7 +4 + 8 +5κ +�−43/50. +The two frequency limits do not have the same dependence +on the parameters. The frequency regime is defined by the di- +mensionless parameter Xκ = ν/νκ, with νκ = νB(Θeκ)2. Fig. D.1 +shows the relative error of the two regimes (the low frequency in +red and the high frequency in blue) compared to the final emis- +sion coefficient. While at very high (respectively very low) Xκ, +the high frequency (resp. low frequency) fitting formulae work +very well, there is a large frequency regime (10−2 ≲ Xκ ≲ 103), +hereafter intermediate regime, where both limits are needed. At +2.2 µm, Xκ > 1, while Θe κ ≲ 103 which correspond to our typ- +ical set of parameters. This is why we used the high frequency +regime for our test our EMBLEM. +Article number, page 16 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +Appendix D.2: Chiaberge & Ghisellini (1999) approximation +Modeling the synchrotron cooling of the electrons with a ther- +mal, power-law or κ distribution is not trivial. Indeed, the evolu- +tion of the energy of an electron which emits synchrotron radia- +tion is (e.g., Rybicki & Lightman (1986)) +γ(t) = γ0(1 + Aγ0t)−1 +(D.7) +with A = 4 +3 +σT B2 +8πmec, +(D.8) +γ the Lorentz factor of the electron at time t, and γ0 the ini- +tial Lorentz factor. The energy evolution strongly depends on +the initial energy. The higher the initial energy of the electron, +the faster it will cool. Thus, the initial distribution we could im- +pose will quickly be deformed (see top-left panel of Fig. 6) and +could not be modeled by one (or more) of the three distribution +of Pandya et al. (2016) (thermal, power-law and/or κ). +In order to properly model the cooling of electrons, we sim- +ulate the evolution of the electron distribution with injection +and synchrotron cooling (Sect. 3). These simulations give us the +electron distribution Ne(γ, t) at different times. We compute the +emissivity jν and the absorptivity αν associated for a range of +frequencies from 106 to 1021 Hz following the formula of Chi- +aberge & Ghisellini (1999) (with our notation) +jν(t) = 1 +4π +� γmax +γmin +dγNe(γ, t)Ps(ν, γ) +(D.9) +and the absorption coefficient follows +αν(t) = − +1 +8πmeν2 +� γmax +γmin +Ne(γ, t) +γp +d +dγ[γpPs(ν, γ)], +(D.10) +where p = (γ2 − 1)1/2 is the electron momentum in units of mec +and Ps is the emissivity of a single electron (see C.3). +In order to obtain the emissivity and absorption coefficient at +any time and any frequency (to account the relativistic Doppler +effect for example), we made a bilinear interpolation. +Appendix E: Analytical approximation for Sgr A* +flare peak flux +Here we derive an analytical expression to compute the time- +dependent flux from Sgr A* flares during the growth phase, and +obtain an analytical formula for the peak flare flux. For that, we +first obtain the approximate analytical form of the varying elec- +tron spectrum during the growth phase by solving the kinetic +equation, and then compute the approximate synchrotron SED +associated to the time-dependent electron spectrum. +Appendix E.1: Deriving time-dependent electron spectrum +during the growth phase +The kinetic equation describing the evolution of the electron +spectrum during the growth phase is given by Eq. 5: +∂Ne(γ, t) +∂t += ∂ +∂γ +� +bcγ2Ne(γ, t) +� ++ Qinj(γ, ne, θ, κ) +(E.1) +with the injection term Qinj(γ) given by Eq. 7 and Eq. 8, and +synchrotron cooling term ˙γsyn = −bc(γ2 − 1) (see Eq. 6), where +bc = (4σTUB)/(3mec). We use here an approximation ˙γsyn ≈ +−bcγ2, as the bulk of the electrons producing the flare emission +are highly relativistic. +We use the method of characteristics to solve the kinetic +equation. We search for characteristic curves in the γ-t space, +along which our differential equation in partial derivatives be- +comes an ordinary differential equation. Let us rewrite the ki- +netic equation in the following form, expanding the derivative +on the Lorentz factor: +∂Ne(γ, t) +∂t ++ (−1)bcγ2 ∂Ne(γ, t) +∂γ += Qinj(γ) + 2γbcNe(γ, t) +(E.2) +When restricting our equation to the characteristic curve +(γ(t),t), the full derivative of the electron spectrum over time, +by the chain rule, is: +dNe(γ, t) +dt += ∂Ne(γ, t) +∂t ++ dγ +dt +∂Ne(γ, t) +∂γ +(E.3) +Comparing this to Eq. E.2, we identify (−1)bcγ2 = dγ +dt , and +therefore along the chosen characteristic curve, our equation is +split into a system of two ordinary differential equations: +�dγ/dt = −bcγ2 +dNe(γ, t)/dt = Qinj(γ) + 2γbcNe(γ, t) +(E.4) +The solution of the first equation is (applying the initial con- +dition that γ(t = 0) = ξ): +γ(t) = +1 +bct + 1/ξ +(E.5) +This equation defines a characteristic curve in the γ-t space. +We have chosen the initial point of the characteristic curve as +(ξ, 0). The physical meaning of ξ is the initial value of the +Lorentz factor of an electron before it starts undergoing the cool- +ing process. Eq. E.5 is equivalent to Eq. D.7, and describes how +the Lorentz factor of an individual electron evolves in time due +to synchrotron cooling. From this equation, the initial Lorentz +factor ξ is: +ξ = ξ(γ, t) = +1 +1/γ − bct +(E.6) +This formula defines the initial Lorentz factor of the char- +acteristic curve that passes through a point (γ,t). We denote the +function Ne(γξ(t), t) = u(t) (electron spectrum along the charac- +teristic curve), and solve the second equation in the system: +du/dt − 2bcγ(t)u = Qinj(γ(t)) +(E.7) +The generic solution of this linear differential equation is: +u(t) = +1 +µ(t) +� t +0 +µ(t′) Qinj(γ(t′)) dt′ + +C +µ(t) +(E.8) +Article number, page 17 of 20 + +A&A proofs: manuscript no. main +with C being the integration constant, and the function µ(t) +being the integration factor, which is equal to: +µ(t) = exp +�� +−2bcγ(t)dt +� += +1 +(bct + 1/ξ)2 +(E.9) +As the electron spectrum at t = 0 is zero, we set the initial +condition u(t = 0) = 0, which results in C = 0. Therefore, the +solution for u(t) is: +u(t) = (bct + 1/ξ)2 +� t +0 +(bct′ + 1/ξ)−2 Qinj(γ(t′)) dt′ +(E.10) +Now we have to return back from u(t) to Ne(γ, t), which is +achieved by substitution of the equation for ξ = ξ(γ, t) (Eq. E.6) +to the expression for u(t). After doing that, we obtain an expres- +sion for the electron spectrum at a moment of time t: +Ne(γ, t) = 1 +γ2 +� t +0 +Γ2 Qinj(Γ) dt′ +(E.11) +with Γ = Γ(γ, t, t′) = �1/γ + bc(t′ − t)�−1. We use here an +approximation for Qinj(Γ), and more specifically, for the kappa +distribution, to enable analytical integration. As we are in the +relativistic regime, and the peak of the injection spectrum in our +case typically occurs at Lorentz factors γ ≫ 1, we can substitute +γ(γ2 − 1)1/2 with γ2 in the Eq. 8. This leads to some inaccu- +racies only at very low Lorentz factors, which virtually do not +contribute to the integral value, and do not contribute to the light +curve flux. We therefore use for the injected spectrum: +Qinj(γ, ne, θ, κ) ≈ +N +tgrowth +γ2 +� +1 + γ − 1 +κθ +�−(κ+1) +(E.12) +Now we can perform the analytical integration. We use the +variable substitution from t′ to Γ(γ, t, t′). In this case, the differ- +ential dt′ = −b−1 +c Γ−2dΓ. Our integral (Eq. E.11) then becomes: +Ne(γ, t) = +N +γ2tgrowth +� t +0 +Γ4 +� +1 + Γ − 1 +κθ +�−(κ+1) +dt′ = += − +N +bcγ2tgrowth +� t +0 +Γ2 +� +1 + Γ − 1 +κθ +�−(κ+1) +dΓ +(E.13) +To solve the integral, we perform integration by parts, and +we obtain: +� t +0 +Γ2 +� +1 + Γ − 1 +κθ +�−(κ+1) +dΓ = − +θκ +(κ − 2)(κ − 1)Ψ(Γ) +����� +t +0 +(E.14) +with +Ψ(x) = +� +1 + x − 1 +κθ +�−κ � +x2(κ − 1) + 2x(κθ − 1) + 2θ(κθ − 2) +� +(E.15) +We substitute the variable back from Γ to t′, with Γ(t′ = +0) = (1/γ − bct)−1 = ξ(γ, t) and Γ(t′ = t) = γ, as well as sub- +stitute the expression for the injection spectrum normalization, +N = (1/2)ne(κ − 2)(κ − 1)κ−2θ−3 (see Eq. 8), and obtain: +Ne(γ, t) = +ne +2κθ2bcγ2tgrowth +�Ψ(γ) − Ψ(ξ(γ, t))� +(E.16) +One has to consider separately a special case when the bct ≥ +1/γ, as this leads to either ξ → ∞ or ξ < 0. Obviously, the latter +situation is non-physical, as the Lorentz factor cannot be less +than unity. Qualitatively, bct ≥ 1/γ → t ≥ 1/(bcγ) means that +the evolution time of an electron is longer than its cooling time- +scale, and in this regime the equilibrium between the injection +and cooling is already reached. Therefore, one can easily see +that the time-dependent electron spectrum in the Lorentz factor +domain γ ≥ 1/(bct) will be “frozen” at the steady-state one. A +steady-state solution corresponds to ξ → ∞, which results in +Ψ(ξ) → 0 (in case κ > 2). Therefore, the final solution for the +time-dependent electron spectrum during the growth phase, is: +Ne(γ, t) = +ne +2κθ2bcγ2tgrowth +��Ψ(γ) − Ψ(ξ(γ, t))� , +for γ < (bct)−1 +Ψ(γ), +for γ ≥ (bct)−1 +(E.17) +It is worth to note, that one can obtain the same steady-state +solution (the case γ ≥ 1/(bct)) by directly solving the kinetic +equation (Eq. E.1) with ∂Ne +∂t = 0. To find the electron spectrum +at the peak of the flare, i.e. at the moment when the injection is +stopped, one simply calculates Ne(γ, t = tgrowth). +Appendix E.2: Deriving time-dependent synchrotron SED +during the growth phase +Now let us proceed to the SED and light curve computation. We +use the so-called δ-approximation for the electron synchrotron +emissivity coefficient. This approximation assumes that a sin- +gle electron with a Lorentz factor γ emits at a single frequency, +rather than a broad spectrum (Rybicki & Lightman 1979): +ωpeak ≃ 0.29ωc +(E.18) +with ωc = 3γ2eB/(mec) (averaged over pitch angles), e being +the electron charge, and B being the magnetic field (CGS units). +From this expression, one obtains: +νpeak = ηeγ2B +mec +(E.19) +where η = (0.29 × 3)/(2π) ≈ 0.14 is a dimensionless numer- +ical factor. For a distribution of electrons, the synchrotron SED +in δ-approximation, is given by (Dermer & Schlickeiser 2002): +νFsyn +ν (λ) = 4 +3πR3 +b +cσTUB +6πD2 ¯γ3Ne(¯γ) +(E.20) +where Rb is the radius of the emitting region, D is the dis- +tance between the observer and the source, and ¯γ is the Lorentz +Article number, page 18 of 20 + +N. Aimar et al.: Magnetic reconnection plasmoid model for Sagittarius A* flares +factor of electrons emitting synchrotron photons with the fre- +quency ν. We obtain this Lorentz factor by expressing it from +Eq. E.19: +¯γ = +�mecν +ηeB +�1/2 +(E.21) +Substituting the expression for Ne(γ, t) (Eq. E.17), and the +expression bc = (4σTUB)/(3mec), into the Eq. E.20, we finally +obtain the time-dependent SED during the growth phase in δ- +approximation: +νFsyn +ν (ν, t) = +neR3 +b ¯γmec2 +12D2tgrowth κθ2 +��Ψ(¯γ) − Ψ(ξ(¯γ, t))� , +for ν < ˜ν(t) +Ψ(¯γ), +for ν ≥ ˜ν(t) +(E.22) +where ˜ν(t) = (ηeB)/(mecb2 +ct2) is the frequency corresponding +to the condition ¯γ = 1/(bct). +Appendix E.3: Evaluating the peak light curve flux +To obtain a light curve during the growth phase at a specific fre- +quency of interest ν∗, one has to compute νFsyn +ν (ν = ν∗, t). To +compute the peak light curve flux, one evaluates the quantity +νFsyn +ν (ν = ν∗, t = tgrowth). +Appendix F: Additional Setup for July 22 flare +We also find another setup which reproduce well the July 22 +flare data. In such scenario, the magnetic reconnection and so +the plasmoid growth phase occurs way before the observing time +and the flare is due to the beaming effect combined to the slow +decrease of the cooling phase. The peak due to the growth phase +occurs during the negative beaming part of the orbit resulting in +a low flux comparable to the quiescent state. +Parameter +Symbol +July 22 bis +Plasmoid +time in EMBLEM at zero observing time [min] +temblem +obs,0 +−53 +initial orbital radius [GM/c2] +r0 +15 +polar angle [◦] +θ +135 +initial azimuthal angle [◦] +ϕ0 +240 +initial radial velocity [c] +vr,0 +0.01 +initial azimuthal velocity [c] +vϕ,0 +0.5 +X position of Sgr A* [µas] +x0 +0 +Y position of Sgr A* [µas] +y0 +0 +PALN [◦] +Ω +160 +Table F.1. Second orbital parameters of the plasmoid model following +a conical motion used for the comparison of the July 22 flares observed +by Gravity Collaboration et al. (2018). +Article number, page 19 of 20 + +A&A proofs: manuscript no. main +Fig. E.1. Time evolution of the electron distribution with EMBLEM (full lines) from t = 0 to t = tgrowth = 75 rg/c injecting a κ-distribution with +Θe = 10 and κ = 4 and ˙ne = 5.106/tgrowth. The magnetic field strength is set to 30 Gauss resulting in a stationary regime for γ > 104 from the very +beginning. This regime extends to lower γ values as time growths. For the estimation of the peak flux, we approximate the whole distribution (at +t = tgrowth) by a simple Dirac at ¯γ represented by the dashed grey line. +150 +100 +50 +0 +50 +100 +150 +X ( as) +150 +100 +50 +0 +50 +100 +150 +Y ( as) +Astrometry +0 +5 +10 +15 +20 +25 +30 +t (min) +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +F/F(S2) +Light Curve +observed +intrinsic +data +Fig. F.1. Data and plasmoid models of the flares from July 22, 2018. The left panels shows the astrometry of the flare while the right panel shows +the light curves. Note that this is not the result of a fit. Contrary to the setup for Fig. 8, the growth time is shorter tgrowth = 50rg/c resulting into a two +peak light curve with the first one occurring at t = −22 min but being mitigate by the negative beaming effect. The secondary peak which match +the observed flare data shown here is due to the positive beaming during the cooling phase (as shown by the intrinsic light curve). The parameter +set for this model is similar to the set of July 22 and is listed in Table F.1 with the same physical parameter as in Table 3 but with tgrowth = 50rg/c, +Θe = 72 and B = 10 G. +Article number, page 20 of 20 + +105 +t = 3.0 GM/c3 +t = 15.0 GM/c3 +t = 27.0 GM/c3 +103 +t = 39.0 GM/c3 +t = 51.0 GM/c3 +t = 63.0 GM/c3 +101 +t = 75.0 GM/c3 +3 +, cm + 10-1 +10-3 +10-5 +10-7 +10-9 +100 +102 +105 +106 +103 +104 +107 +101 +Y \ No newline at end of file diff --git a/dNFKT4oBgHgl3EQfqS7x/content/tmp_files/load_file.txt b/dNFKT4oBgHgl3EQfqS7x/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4dcbf7e134c54efcb51b4e34c94f5c18361964a2 --- /dev/null +++ b/dNFKT4oBgHgl3EQfqS7x/content/tmp_files/load_file.txt @@ -0,0 +1,1712 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf,len=1711 +page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main ©ESO 2023 January 30, 2023 Magnetic reconnection plasmoid model for Sagittarius A* flares N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar1, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Dmytriiev2, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Vincent1, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' El Mellah3, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Paumard1, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Perrin1, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Zech4 1 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: nicolas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='aimar@obspm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='fr 2 Centre for Space Research, North-West University, Potchefstroom, 2531, South Africa 3 Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 4 LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France Received September 09, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' accepted January 27, 2023 ABSTRACT Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sagittarius A*, the supermassive black hole at the center of our galaxy, exhibits episodic near-infrared flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The recent monitoring of three such events by the GRAVITY instrument has shown that some flares are associated with orbital motions in the close environment of the black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The GRAVITY data analysis points at super-Keplerian azimuthal velocity, while (sub-)Keplerian velocity is expected for the hot flow surrounding the black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We develop a semi-analytic model of Sagittarius A* flares based on an ejected large plasmoid, inspired by recent particle-in- cell global simulations of black hole magnetospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We model the infrared astrometric and photometric signatures associated to this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We consider a spherical macroscopic hot plasma region, that we call a large plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This structure is ejected along a conical orbit in the vicinity of the black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This plasmoid is assumed to be formed by successive mergers of smaller plasmoids produced through magnetic reconnection that we do not model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Non-thermal electrons are injected in the plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We compute the evolution of the electron-distribution function under the influence of synchrotron cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We solve the radiative transfer problem associated to this scenario and transport the radiation along null geodesics of the Schwarzschild spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We also take into account the quiescent radiation of the accretion flow, on top of which the flare evolves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For the first time, we successfully account for the astrometric and flux variations of the GRAVITY data with a flare model that incorporates an explicit modeling of the emission mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We find good agreement between the prediction of our model and the recent data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In particular, the azimuthal velocity of the plasmoid is set by the magnetic field line it belongs to, which is anchored in the inner parts of the accretion flow, hence the super-Keplerian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The astrometric track is also shifted with respect to the center of mass due to the quiescent radiation, in agreement with the difference measured with the GRAVITY data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' These results support the picture of magnetic reconnection in a black hole magnetosphere as a viable model for Sagit- tarius A* infrared flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Accretion, accretion disk - Magnetic reconnection - Black hole physics - Relativistic processes - Radiative transfer - Radiation mechanisms: non-thermal 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Introduction The Galactic Center hosts the compact radio source Sagittar- ius A* (Sgr A*) with an estimated mass of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='297 million solar masses at a distance of only 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='277 kpc (GRAVITY Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This makes the compact object associated to Sgr A* the closest supermassive black hole (SMBH) candidate to Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sgr A* is a low-luminosity accretion flow with an accretion rate of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 − 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5) × 10−9M⊙ yr−1 and a bolometric luminosity of (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8 − 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2) × 1035 erg s−1 (Bower et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Event Horizon Telescope Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022b) and thus is accreting at a very sub-Eddington rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' It has been the subject of numerous ob- serving campaigns over the past two decades in order to test the massive black hole (MBH) paradigm (see Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2020b)) and study the physics of radiatively inefficient ac- cretion flows (RIAF) around SMBH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sgr A* shows a slow and low amplitude variability in ra- dio (Lo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1975;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Backer 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Krichbaum et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Falcke 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Bower et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Michail et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021b), in millimetre and submillimetre (Mauerhan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Macquart et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Yusef-Zadeh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Marrone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Brinkerink et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Wielgus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022a), but also large amplitude and rapid variability in near infrared (NIR;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Genzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ghez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Hornstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Hora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014) and in X-rays (Baganoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Nowak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Neilsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Barrière et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ponti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The flux distribution in the NIR of Sgr A* has been the subject of numerous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Some claim a single state modeled by rednoise (Witzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Do et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019) for the variability of Sgr A* while others claim that there are two states for Sgr A* (Genzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Dodds-Eden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Witzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021): a continuously low amplitude variable state called "quiescent state" and the "flare state" described by short and bright flux with a typical timescale of 30 minutes to 1 hour with a rate of ∼ 4 a day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Multi-wavelength studies show that when an X-ray flare is observed, there is a counterpart in NIR suggesting a common origin but the reverse is not true (Fazio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Moreover, the flare can also be observed in sub- mm but with a time lag of several minutes (Eckart et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Dodds-Eden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Michail et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Witzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 1 of 20 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='11874v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='HE] 27 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main 2021) following a dimming (Wielgus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Recently, the GRAVITY instrument (Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Eisenhauer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Paumard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008) was able to resolve the motion of the NIR centroid during three bright flare events, showing a clockwise, continuous rotation at low inclination close to face-on (i ∼ 20◦) consistent with a re- gion of emission located at a few gravitational radii rg = GM/c2 from the central black hole (Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' These flares are thus powered very close to the event horizon of the black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The exploration of a relativistic accretion re- gion as close to the event horizon with high-precision astrometry and imaging techniques like GRAVITY and the Event Horizon Telescope (EHT) (Event Horizon Telescope Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022a) promises important information for physics and astron- omy, including new tests of the MBH paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Significant efforts have been made to explain the flares of Sgr A*: rednoise (Do et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009), hot spot (Hamaus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Genzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Broderick & Loeb 2006), ejected blob (Vin- cent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014), star-disk interaction (Nayakshin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2004) and disk instability (Tagger & Melia 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The GRAVITY observations in 2018 (Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018) sup- port the hot spot model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, the physical origin of such hot spots remains an open question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Instabilities in black hole accretion disks are a candidate, for instance the triggering of Rossby Waves Instabilities (RWI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Tagger & Melia 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Vin- cent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Alternatively, it could originate from the dis- sipation of electromagnetic energy through magnetic reconnec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This modification of the magnetic field topology results from the inversion of the magnetic field orientation across a cur- rent sheet which eventually breaks into magnetic islands called plasmoids (Komissarov 2004, 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Komissarov & McKinney 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Loureiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sironi & Spitkovsky 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Parfrey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Porth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In the past years, numerical simulations have repeatedly highlighted the ubiquity of magnetic reconnection in BH magnetospheres, what- ever the physical point of view adopted: global particle-in-cell (PIC) simulations in Kerr metrics (El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' ), re- sistive general-relativistic magneto-hydrodynamics (GRMHD) simulations (Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Dexter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020a,b) or resis- tive force-free simulations (Parfrey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' PIC simulations show that magnetic reconnection in the collisionless corona of spinning BHs can accelerate leptons up to relativistic Lorentz factors of γ ∼ 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7 (El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022), sufficiently high to generate the variable IR (and X-ray) emission (Rowan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Scepi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The GRMHD and PIC frameworks each have different lim- itations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' GRMHD simulations describe the evolution of the ac- cretion flow over long time scales, typically of the order of sev- eral 100,000 rg/c, but they rely on a fluid representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Conse- quently, they cannot self-consistently capture the kinetic effects which are important to constrain dissipation, particle accelera- tion and subsequent non-thermal radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' On the other hand, PIC simulations provide an accurate description of the micro- physics but at the cost of simulations which can only span a few 100rg/c in time and with limited scale separation between global scales and plasma scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We develop a semi-analytical model, fed by the knowledge accumulated by recent GRMHD and GRPIC simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The aim is to condense into a reasonably small set of simple param- eters the complex physics of GRMHD and GRPIC models, and thus allow to probe a large parameter space within a reasonable computing time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We also want to remain as agnostic as possi- ble regarding the initial conditions of the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In this context, we discuss the interpretation of the Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) flare data paying particular attention to the following di- agnostics: – the marginally detected shift between the astrometric data and the center-of-mass location;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – the tension between the data and the hot spot model used by Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018), which assumes a Ke- plerian orbit;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – the physical origin of the rising and decaying phases of the flare light curve in the context of magnetic reconnection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The first point can be discussed in the context of a very sim- ple hot-spot model and is the main topic of Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3 is the core of our study and focuses on the second and third points above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' It presents a semi-analytical large plasmoid model due to magnetic reconnection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' It highlights in particular the impact of considering a self-consistent evolution of the electron distribu- tion function through kinetic modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This section shows that our plasmoid model is able to reasonably account for the Grav- ity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) flare data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The limitations of our plasmoid model are discussed in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The conclusions and perspectives are given in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Quiescent flow impact on astrometry: shifting and rotating the orbit Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) used a hot spot model in an equatorial circular orbit to fit the astrometry of three bright flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' They considered a constant radiation flux from the emitting re- gion orbiting the black hole to fit the orbital motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The effect of out-of-plane motion and orbital shear have also been stud- ied by Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2020c) to model the flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, the impact of the quiescent radiation surrounding the hot spot was not taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The aim of this section is to show that taking into account the quiescent radiation can lead to shifting and rotating the orbit on sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note a 1-σ difference between the center of the orbit of the hot spot and the center of mass derived from the orbit of S2 in Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) which makes this shift marginal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In this section, we will use a simplified hot spot model that is sufficient to highlight the main effects of the quiescent radia- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This simple model will also allow us to introduce the most important relativistic effects at play, that were already studied in many previous works (Broderick & Loeb 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Hamaus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' These reminders will be helpful when we turn to a more complex hot spot model in the Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3, which is the main aim of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Simple hot spot + quiescent model for the flaring Sgr A* The quiescent radiation of Sgr A* is modeled by means of the torus-jet model as derived in Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019), to which we refer for all details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Figure 1 resumes the main features of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The torus emits thermal synchrotron radiation, while the flux emitted by the jet follows a κ distribution (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' a thermal core with a power-law tail).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The multi-wavelength spectrum of the quiescent Sgr A* is well fit with this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The κ distribu- tion emission from the jets dominates at most wavelength except at the sub-mm bump where the flux comes mostly from the ther- mal disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We summarize the best-fit parameters in Table 1, and the resulting best-fit quiescent spectrum is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' More details on the fitting procedure are given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' With Article number, page 2 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Scheme of the torus-jet model for the quiescent state in blue and flares in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Two trajectories are considered for the flare, which can either rotate in the torus (hot spot model) or be ejected along the jet sheath (plasmoid model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The jet is parametrized by the angles θ1 and θ2 that describe the angular opening of the radiation-emitting sheath, by the base height zb, the constant Lorentz factor Γ j, and the temperature power-law index sT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The jet is symmetrical with respect to the equatorial plane, and axisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' these parameters, the flux of the torus-jet model at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 µm is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 mJy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' It is in perfect agreement with the median quiescent dered- dened flux provided by Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2020a) of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 mJy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' At this wavelength, the torus is optically thin and its emission is negligible compared to the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In the remainder of this paper, where we focus only on the infrared band, we will thus neglect the torus and consider a pure jet quiescent model, unless otherwise noted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The only relevant features of our quiescent model for the rest of this paper are the location of its infrared centroid and its NIR flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As depicted in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2, the centroid of our jet-dominated model lies very close to the mass center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We have checked that considering a disk-dominated model only very marginally changes the position of the quiescent centroid at low inclination (see the blue and green dots in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our conclusions are thus not biased by our particular choice of a jet-dominated quiescent model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The hot spot model is composed of a plasma sphere of radius 1 rg (fixed) with a uniform but time-dependent κ-distribution for the electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The emissivity jν and absorptivity αν coefficients depend on the density, temperature, and magnetic field which we considered uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use the fitting formula of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) to compute these coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The typical light curve of a flare is characterized by a phase with increasing flux and one with decreasing flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We model this behavior by a Gaussian time modulation on the density and temperature as follows ne(t) = nhs e exp �������−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 × �t − tre f tσ �2������� , (1) Te(t) = T hs e exp �������−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 × �t − tre f tσ �2������� (2) where tσ is the typical duration of the flare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As ne varies over time (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1), the magnetic field strength also varies since we set a constant magnetization σ = B2/4πmpc2ne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Contrary to Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2020c), we keep the circular equatorial orbit of Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) as we assume that the hot spot is formed in the equatorial plane and we do not take into account any shearing effect and assume a constant spherical geometry of the hot spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We summarize all the input parameters of the hot spot in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Shifting the orbit on sky Figure 3 shows the impact of taking into account the quiescent radiation on the astrometry of the flare, considering the trivial Article number, page 3 of 20 20 Jet sheath [j Te(z) α (Z/z) 01 S- 10 EjectedPlasmoid (aun w) Torus N Orbiting Hot spot 10 20 0 5 10 15 20 X (M unit)A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main 1010 1012 1014 1016 1018 [Hz] 1032 1033 1034 1035 L [erg/s] 150 100 50 0 50 100 150 X [ as] 150 100 50 0 50 100 150 Y [ as] 10 27 10 26 10 25 10 24 10 23 I [erg cm 2 s 1 sr 1 Hz 1] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Left: Spectrum associated to the best-fit of the torus-jet model (see Table 1) for the quiescent state of Sgr A* (χ2 red = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='91 with ndof=27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The data are taken from Bower et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2015) for ν < 50 GHz, Brinkerink et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2015) for the 2 points around 100 GHz, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) for the 492 GHz point, Marrone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2006) for the 690 GHz point, von Fellenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) for the far infrared upper limits, Witzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) for the mid infrared data, and Baganoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2001) for the X-ray bow-tie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that as in Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019), the X-ray data are not fitted as we do not take into account bremsstrahlung nor Comptonized emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Right: Best-fit image at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 µm of the torus-jet model with a field of view of 150 µas seen with an inclination of 20◦ and a Position Angle of the Line of Nodes (PALN) of π rad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The color bar gives the values of specific intensity in cgs units in log-scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The outer region emission comes from the backward jet’s part while the emission close to the center comes from the forward part of the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The centroid of the jet is represented by the blue dot at ∼(0, −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Parameter Symbol Value Black Hole mass [M⊙] M 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='297 × 106 distance [kpc] d 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='277 spin a 0 inclination [◦] i 20 Torus angular momentum [rg/c] l 4 inner radius [rg] rin 8 polytropic index k 5/3 central density [cm−3] nT e 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 × 109 central temperature [K] T T e 7 × 109 magnetization parameter σT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='002 Jet inner opening angle [◦] θ1 20 outer opening angle [◦] θ2 θ1 + 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 jet base height [rg] zb 2 bulk Lorentz factor Γ j 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='15 base number density [cm−3] nJ e 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 × 106 base temperature [K] T J e 3 × 1010 temperature slope sT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='21 κ index κJ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 magnetization parameter σJ (fixed) 1 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Best fit parameters of the torus+jet quiescent model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We keep the same geometrical parameters, bulk Lorentz factor and κ-index as Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019) and we fit the base number density, base temper- ature and temperature slope of the jet considering the correction (see bellow) and the new value of the jet magnetization parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The pa- rameters of the torus are unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' case of a constant-emission hot spot, as well as the varying- emission hot spot introduced in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Obviously, whether or not the hot spot intrinsic emission varies, the first effect of adding a quiescent radiation is to shrink the orbit’s size, because the overall centroid is moved towards the quiescent radiation’s centroid, which always lies close to the mass center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A slightly less obvious effect is that, when the hot spot emis- sion varies in time, the orbit can shift in the plane of sky, and no longer be centered at the center-of-mass location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This is clearly apparent on the solid-red orbit of the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This is simply due to the time variation of the intensity ratio between the quiescent and the hot spot radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' At early and late times, the hot spot has a weaker emission than the quiescent component, and the overall centroid coincides with the quiescent centroid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As the hot spot emission increases and dominates, the overall centroid will be driven towards it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Such a shift between the as- trometric data and the center-of-mass position is visible at 1-σ significance in the the Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note another non-trivial effect appearing in the varying- emission hot-spot orbit without any quiescent radiation (red- dotted orbit in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The orbit is not closing, due to the time delay between the primary and secondary images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Indeed, at the end of the simulation, the flux from the secondary image is in- trinsically higher than the primary (the emission times of the pri- mary and secondary are different), and is amplified by the beam- ing effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' When the centroid is computed, the secondary image has a larger impact at this time than before, resulting in a closer centroid position relative to the black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This astrometric im- pact of the secondary image was already discussed by Hamaus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Rotating the orbit on sky It is not an easy task to disentangle the intrinsic time variability of the hot spot from the variability due to the relativistic beam- ing effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Figure 4 illustrates the impact on astrometry and light curve of playing with the relative influence between the intrin- sic and beaming-related variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Here, we simply change the initial azimuthal coordinate ϕ0 of the hot spot along its orbit, in order to change the dephasing between the time of the max- imum intrinsic emission (t = tref) which is fixed, and the time Article number, page 4 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares 100 75 50 25 0 25 50 75 100 X ( as) 100 75 50 25 0 25 50 75 100 Y ( as) Astrometry constant emission Gaussian emission no quiescent with quiescent 0 10 20 30 40 50 60 t (min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 F/F(S2) Light Curve Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Astrometry (left) and light curves (right) of the hot spot - jet model with two values for the quiescent state corresponding to no quiescent (dashed lines) and the with quiescent state (full lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In shade of blue, the hot spot has a nearly constant emission (tσ >> torbit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The effect of beaming is reflected in the light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In shade of red, the hot spot has a Gaussian time emission with tσ = 30 min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The parameters of the hot spot are listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We synchronise the maximum of beaming and the intrinsic maximum of the Gaussian modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The black, blue and green dots in the left panels represent the position of Sgr A*, the jet’s centroid and the disk’s centroid respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Parameter Symbol Value Hot spot number density max [cm−3] nhs e 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='05 × 107 temperature max [K] T hs e 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='03 × 1010 time Gaussian sigma [min] tσ 30 magnetization parameter σhs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='01 κ-distribution index κhs 5 orbital radius [rg] Rhs 9 initial azimuth angle [◦] ϕhs 0 90 Position Angle of the Line of Nodes [◦] Ω 160 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Summary of parameters of the hot spot model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that we used the maximum number density and temperature of the jet best-fit in Table 1 as reference and scale them for the hot spot by a factor 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' of the maximum constructive beaming effect (when the hot spot moves towards the observer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The orbit rotates around the quies- cent centroid following the variation of ϕ0 (left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The light curve is also strongly affected, reaching much brighter levels when the intrinsic emission maximum is in phase with the constructive beaming effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Here we show that the quiescent state of Sgr A* can have significant impact on the observed astrometry by shrinking the apparent orbit, creating a shift between the center of the latter and the position of the mass center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' One should have these effects in mind for the comparison to the flare data at the end of the following section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Plasmoid model from magnetic reconnection In this section, we develop a semi-analytical hot-spot-like model in order to interpret the rise and decay of Sgr A* flares, thus going one step further with respect to the model we used in sec- tion 2, where a Gaussian modulation of the emission is enforced without physical motivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Black hole magnetospheres naturally lead to the develop- ment of equatorial current sheets corresponding to a strong spa- tial gradient of the magnetic field which changes sign at the equator (Komissarov 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Komissarov & McKinney 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Par- frey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Such a configuration results in magnetic reconnection, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' a change of the topology of the field lines forming X points (Komissarov 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Loureiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sironi & Spitkovsky 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This process is intrin- sically non-ideal and thus can only be captured either by re- sistive MHD or kinetic simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For suitable values of the magnetic diffusivity, the reconnecting current sheet can break into chains of plasmoids, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' magnetic islands separated by X points (Loureiro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Parfrey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Porth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The reconnection rate (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' the typical rate at which magnetic energy is dissipated into particle kinetic energy) is equal to the ratio vrec/vout with vrec the velocity of matter injected into the reconnection region, and vout the bulk outflow velocity of parti- cles accelerated by the reconnection event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The outflow velocity is of the order of the Alfven speed, vout ≈ vA, which is itself of the order of the speed of light, vA ≈ c, for strongly magne- tized environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The reconnection rate has been shown to be rather independent of the details of the chosen parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For PIC simulations, it lies around 10%, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' vrec,PIC ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1vA ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1c, for magnetized collisionless plasmas (Sironi & Spitkovsky 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015), which are the typical conditions in the inner flow surrounding Sgr A*1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' GRRMHD simulations point towards a slower rate of around 1%, so that vrec,MHD ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='01c (see the discussion in Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022), 1 It is likely that the accretion flow surrounding Sgr A* is in a Magnet- ically Arrested Disk (MAD, see Narayan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2003) regime, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' with strong poloidal magnetic fields in the inner regions (Gravity Collabora- tion et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Dexter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 5 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main 100 75 50 25 0 25 50 75 100 X ( as) 100 75 50 25 0 25 50 75 100 Y ( as) Astrometry orbit 0 5 10 15 20 25 30 t (min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 F/F(S2) Light Curve 0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 0=90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 0=180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 0=270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 intrinsic Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Astrometry (left) and light curves (right) of the hot spot - jet model for four initial azimuthal angle ϕ0 of 0◦ in blue, 90◦ in orange, 180◦ in green and 270◦ in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The dashed black line shows the primary image centroid track with no quiescent jet (clock-wise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The jet dominates the beginning and the end of the flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The observed centroids thus start and end close to the one of the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The apparent orbits rotate around the latter with ϕ0 as the maximum of emission occurs at different ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The Gaussian modulation which has a typical duration of tσ = 15 min (grey dashed line;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' which is the same for the four the curves) is affected by relativistic effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For negative X (right part of the astrometry), the beaming, combined with relativistic Doppler effect, amplify the flux from the hot spot while in the positive X (left part of the figure), they lower it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The black dot in the left panels represents the position of Sgr A*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' but this applies to collisional environments, thus less similar to Sgr A* vicinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Fresh plasma flows into the current sheet at the reconnec- tion rate vrec, is accelerated by the electric field generated in the current sheet, usually giving rise to power-law energy dis- tributions of electrons (Sironi & Spitkovsky 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Inside the current sheet, the particles get trapped in the plasmoids which act as particle reservoirs (Sironi & Spitkovsky 2014) which can merge in a macroscopic magnetic island, that is, a large plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022), magnetic flux dis- sipation through reconnection last for ∼ 100rg/c ∼ 30 min and the resulting hot spot orbits for ∼ 500rg/c ∼ 150 min before it disappears by losing its coherence through interaction with the surrounding flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In the global PIC simulation of El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022), the authors study magnetic reconnection in the sheath of relativis- tic jet working with magnetic field loops coupling the BH to the accretion disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The resulting plasmoids evolve off-plane, propa- gate away from the BH and are prone to merge with each other to form macroscopic plasmoids susceptible to radiate high amounts of energy under the form of non-thermal radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The under- lying mechanism, first described by Uzdensky (2005) and de Gouveia dal Pino & Lazarian (2005), relies on the accretion of poloidal magnetic field loops onto a spinning BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Once the in- ner footpoint of the loop reaches the BH ergosphere, the mag- netic field line experiences strong torques due to the frame drag- ging effect while its other footpoint on the disk rotates at the local Keplerian speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Thus, the toroidal component of the mag- netic field quickly grows in the innermost regions, propagates upstream along the field line and leads to the opening of the magnetic loop above a certain magnetic loop size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' On the out- ermost closed magnetic field line (called the separatrix), a Y- point appears where plasmoids form and flow away along an inclined current sheet above the disk (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In the PIC sim- ulations of El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022), a cone-shaped reconnecting current sheet forms where vivid particle acceleration takes place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Electrons and positrons pile up into outflowing plasmoids where they cool through synchrotron radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This topological con- figuration where some magnetic field lines anchored in the disk close within the event horizon is coherent with what is seen in resistive GRMHD simulations during the short episodes of flux repulsion which separates different accretion regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' During approximately 100 rg/c, these simulations show an essentially force-free funnel surrounded by merging plasmoids formed in the jet sheath and in the equatorial plane Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Chashkina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Plasmoid model from magnetic reconnection The aim of this section is to develop a semi-analytic large plas- moid model (which will be named plasmoid model), inspired from the reconnection literature reviewed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The interest of such a model, compared to state-of-the-art GRMHD or GRPIC modeling, is twofold: – it allows to remain as agnostic as possible regarding the physical conditions close to Sgr A* and encapsulate into a single model a large parameter space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – it allows to perform simulations within a limited computing time, allowing to explore the large parameter space and com- pare to astrometric and photometric data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our hope is that such a model can not only be fed with the re- sults of more elaborated simulations, but also bring constraints to these simulations by determining what features of the modeling are important in order to explain the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 6 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares The main features of our model are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' in- spired by the recent GRPIC results of El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Here, we consider a single plasmoid, which is modeled as a sphere of hot plasma with a constant radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This macroscopic plasmoid is understood as the end product of a sequence of mi- croscopic plasmoid mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The spherical geometry is chosen only for simplicity, given that current data are certainly unable to make a difference between various geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Plasmoid motion We consider that the magnetic reconnection event occurs close to the black hole, and the resulting plasmoid is ejected along the jet sheath (Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Thus, we define a conical motion (as in Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2021)) defined by a con- stant polar angle θ = θ0 and the initial conditions r0, θ0, ϕ0, vr0, and vϕ0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The subscript 0 reflects the initial value of a given pa- rameter in Boyer-Lindquist coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As in Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2021), we set a constant radial velocity vr = vr0 and the azimuthal veloc- ity is defined through the conservation of the Newtonian angular momentum vϕ(t) = vϕ0 r2 0 r(t)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (3) The azimuthal angle is obtained by integrating the previous Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3 ϕ(t) = ϕ0 + r2 0 vϕ0 vr ( 1 r0 − 1 r(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (4) In the GRPIC simulations performed by El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022), the plasmoids are formed in the vicinity of the black hole at the Y-point and are ejected into the black hole magnetosphere, we thus restrict our study to vr > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' An important feature of our model is the fact that the initial azimuthal velocity of the plasmoid is naturally super-Keplerian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Indeed, the Y-point, from which the plasmoid is generated, is an- chored to the equatorial plane of the accretion flow through the separatrix field line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' So it will typically rotate at the Keplerian speed corresponding to the foot point of the line, thus at a veloc- ity higher than the Keplerian velocity corresponding to the initial cylindrical radius of the plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Growth and cooling phases We consider two phases in the lifetime of the plasmoid that aim at modeling the ascending and descending phases of the ob- served flare light curves: – during the growth phase, which lasts a total time tgrowth, the plasmoid continuously receives fresh accelerated particles at a constant rate resulting from the merging of microscopic plasmoids from reconnection into our large plasmoid which mix with "old" electrons cooled by synchrotron radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The growth time tgrowth corresponds to the lifetime of the reconnection engine, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' the duration of magnetic flux dis- sipation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – after t = tgrowth, the plasmoid enters the cooling phase: we as- sume that magnetic reconnection is quenched and plasmoids no longer merge so injection of fresh plasma stops and the plasmoid cools by emitting synchrotron radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We ne- glect particle escape and adiabatic losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The duration of the growth phase is set both by the recon- nection rate and the speed at which magnetic flux is advected by the accretion flow into the current sheet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In Parfrey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2015), the accretion of successive magnetic loops of opposite polarity activates this process, with typical duration of transition of the order of 100rg/c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This duration is representative of the dissipa- tion of the magnetic flux of one magnetic loop which is set by both the size of the loop and the accretion speed, that the authors fix to 2rg and c/200 respectively, and the reconnection rate, fixed by the prescribed resistivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Resistive GRMHD simulations of magnetically arrested disks (Narayan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2003) bring support to these values (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020) but fail at reaching re- connection rates realistically high (Bransgrove et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In the more ab initio PIC simulations of El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022), the reconnection rate is more realistic (∼ 10%, Sironi & Spitkovsky 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018) but due to the high computational cost of the simulations, they did not work over duration long enough to model the inward drift of the magnetic footpoints on the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As a consequence, the reconnection rate is accurate but the fuel- ing magnetic flux is artificially steady and act as an infinite reser- voir over the ∼200rg/c covered by the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A coupling between GRMHD, force-free and PIC simulations to jointly de- scribe the disk, the corona and the current sheet respectively is still missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In this context, we considered duration tgrowth of the growth phase of the order of 100rg/c, corresponding to a typical episode of magnetic flux dissipation set by the two rates at which magnetic flux is advected into the current sheet and dissipated by magnetic reconnection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Evolution of the electron distribution Next, we prescribe the emission/absorption mechanism in the plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Most studies use chosen electron distributions, with analytical prescriptions for their evolution at best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2021) use a fixed thermal distribution with a linear increase of the number density for the rising part of the light curve and a decrease of the temperature following Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7 for the cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Scepi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022) use a kappa distribution with an exponential cutoff and a synchrotron cooling break for the plasma emission generating X-ray flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' While their evolution of the plasma pa- rameters (number density, temperature, magnetic field) is more elaborate than in our model, their approximation is valid only while injection and cooling are balanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' When the injection stops, the shape of the electron distribution changes rapidly (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Here, we choose a different approach by evolving the electron distribution in the plasmoid by solving the kinetic equa- tion ∂Ne(γ, t) ∂t = ∂ ∂γ � −˙γsyn Ne(γ, t) � + Qinj(γ), (5) where γ is the Lorentz factor of the electrons, Qinj is the injection rate and Ne = dne/dγ is the electron number density distribution, using the EMBLEM code (Dmytriiev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The term −˙γsynNe = 4σTUB 3mec (γ2 − 1)Ne (6) of the right hand side describes the synchrotron cooling of the plasmoid particles, with UB = B2/(8π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In our approach, we do not model the details of the magnetic reconnection process but instead describe the supply of freshly accelerated particles to the plasmoid by magnetic reconnection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Therefore, for the injection rate Qinj(γ) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5, we use the following expression, assuming Article number, page 7 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sketch of magnetic reconnection in the black hole magneto- sphere as shown by El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022) on which our plasmoid model is built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' There are three types of magnetic field lines: the ones threading the event horizon which goes to infinity, the ones anchored in the disk which also go to infinity, and the separatrix which link the disk and the black hole event horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The latter form a Y-point and a current sheet where chain of plasmoids are formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Here we model a single plasmoid as the result of multiple mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' a constant injection rate: Qinj(γ) = ��������� 4πNκ e(γ) tgrowth in the growth phase, 0 in the cooling phase, (7) where Nκ e(γ) is the distribution of the injected particles which follows the kappa distribution i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' a thermal core with a power- law tail following: Nκ e(γ) = N 4πγ(γ2 − 1)1/2 � 1 + γ − 1 κΘe �−(κ+1) (8) with a normalization factor N = 1/2ne(κ−2)(κ−1)κ−2Θ−3 e , where ne and Θe are the density and dimensionless temperature of the injected plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The index κ is defined as κ = p + 1 = Ap + Bp tanh (Cp βb) + 1 (9) where Ap = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7/ √σb, Bp = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7 σ−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='19 b ,Cp = 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4 σ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='26 b , (10) following Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018), where p is the powerlaw index of the non-thermal part of the distribution, σb ≫ 1 is the plasma magnetization of the accelerating site and βb ≪ 1 is the ratio of proton thermal pressure to magnetic pressure of the accelerating site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' If the magnetization at the ac- celerating site satisfies σb ≥ 100 (Crinquand et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021), then κ is in the range of [2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4] depending on βb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This implies that the spectral index α (νFν ∝ να) is between −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 which is in perfect agreement with the measured indices for flares (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 32 in Genzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that realistic values for the mag- netization in the funnel region of Sgr A* can be orders of mag- nitude higher than 100 (see Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022) which result in a smaller parameter space for κ, closer to the low boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The bounds of the electron Lorentz factor are chosen to sat- isfy γmin = 1 and γmax = 106 (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 of Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' When solving the kinetic Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5, we assume that the density of the plasmoid particles follows ne(t) = � nmax e × t/tgrowth in the growth phase, nmax e in the cooling phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (11) Such high maximum Lorentz factor is needed to also power X- ray flares with only synchrotron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022) suggest a lower maximum Lorentz factor γmax ∼ 104 in the plas- moid as electrons cool during their travel time between the accel- eration site and the later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Such lower value results in a marginally lower flux in NIR, as most of the emission at this wavelength comes from lower energy electrons, which can be compensated with a slightly higher maximum number density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The temperature of the injected particles remains fixed in the growth phase, and we define a uniform and time-independent tangled magnetic field in the plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This is also a simplifying assumption, and we intend to consider in future work the impact of the magnetic field geometry on the polarized observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The EMBLEM code does not only solve for the evolu- tion of the electron distribution, it also provides the associated synchrotron emission and absorption coefficients of the plas- moid particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We can thus compute an image of our plas- moid scenario by backwards integrating null geodesics in the Schwarzschild spacetime from a distant observer screen, and in- tegrate the radiative transfer equation through the plasmoid by reading the tabulated emission and absorption provided by EM- BLEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This step is performed by means of the GYOTO2 ray- tracing code (see Appendix B for details;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Paumard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The input parameters that we used for the code are listed in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' With these values of density and mag- netic field strength, we obtain a magnetization inside the plas- moid of σp ∼ 10−2 from the end of the growth phase since nei- ther the density nor the magnetic field evolve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Importance of evolving the electron distribution One of the most important aspects of our model is the self- consistent evolution of the electron distribution function, and corresponding radiative transfer, in the plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Here, we il- lustrate the importance of taking into account the evolution of the electron distribution by comparing our model with another reconnection plasmoid model inspired by Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We show in the top-left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6 the evolution of the electron distribution in our plasmoid model, for the parameters listed in Tables 3 and 4 (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 for details) and the associ- ated spectral energy density (SED) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' During the growth phase (tobs < 10 min), for γ > 103 the distribution is stationary as the injection is balanced by the cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' After the end of the growth phase, the shape of the distribution changes rapidly as there is only cooling left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We show in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6 the light curve obtained with our model (in red) and with a model inspired by Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2021) who do not take into account the 2 https://gyoto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='obspm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='fr Article number, page 8 of 20 Current sheet Synchrotron cooling Plasmoid v(rcyl) yr Injection of O accelerated electrons Merging Y point magnetic islands B lines L rcyl rcyl footpoint plasmoid (depends on spin)N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares non-thermal electrons, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' using a thermal distribution, with a linear increase of the number density with a fixed temperature during the growth phase and an analytical prescription for the temperature decrease during the cooling phase using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7 and assuming Θe = γ/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' While this model gives a similar intrinsic light curve as our model, the dimensionless temperature required is twice as high as ours (Θe = 109) with a magnetic field of B = 20 G to cool faster lower energy electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The evolution of the distribution with this model is shown in the bottom left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We do not need such high a temperature as most of the emission comes from high-energy electrons which are non- thermal in our model as suggested by PIC simulations (Rowan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our temperature could be even lower with a harder (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' lower) κ-index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The cooling of the electron distribution through synchrotron radiation is difficult to model properly and needs a kinetic approach as we do in our plasmoid model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Comparing GRAVITY 2018 flare data with our plasmoid model This paper aims at checking whether we can reproduce with our plasmoid model the general features of the observed light curve and astrometry of the July 22, 2018 flare reported by Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8 a comparison be- tween the July 22, 2018 flare data observed by GRAVITY (in black) and our plasmoid model (red line) with the parameters listed in Tables 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For comparison, we show the intrinsic light curve (dashed line) obtained by removing all the relativistic effects (Doppler effect, beaming, secondary image).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This comparison is not the result of a fit and was obtained by estimating the relevant parameters using simple physical ar- guments: – The rise time and slope of the light curve are mainly moni- tored by (i) the growth time,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (ii) our choice of linear evolu- tion of the electron density (which enters the injection func- tion),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (iii) the relativistic beaming effect,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' and thus (iv) the initial azimuthal position of the plasmoid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' ϕ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' which has a strong impact on beaming as illustrated in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – The decaying part of the light curve is monitored by the syn- chrotron cooling time, thus by the magnetic field strength, and by the beaming effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – The maximum of the light curve can be estimated by means of an analytical formula that we derive in Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This maximum depends mainly on the maximum number density ne,max, as well as on the temperature and κ-index of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' These parameters are degenerate and thus not constrained with only the NIR flare data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Nevertheless, GRMHD (Dexter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Scepi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022) and GRPIC simulations (El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022) of magnetic reconnection suggest that the density in the plas- moid is higher than its close environment in the current sheet, of the order of the density at the base of the jet, close to the event horizon, but lower than in the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Still, the two re- maining parameters (Θe, κ) which describe the shape of the distribution are fully degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – The initial position and velocity of the plasmoid have a strong impact on the astrometric trace on sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We guess the initial azimuthal velocity based on the following reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The Keplerian velocity of the plasmoid at its initial cylindri- cal radius is vKep ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='31c (for our choice of initial cylin- drical radius given in Table 4, rcyl = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 rg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, as Parameter Symbol Value Plasmoid magnetic field [G] Bp 15 plasmoid radius [rg] Rp 1 minimal Lorentz factor γmin 1 maximum Lorentz factor γmax 106 kappa distribution index κ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 kappa distribution temperature Θe 50 maximum electron number density [cm−3] ne,max 5 × 106 growth timescale [rg/c] tgrowth 120 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Input parameters of the EMBLEM code for the simulation of the electron distribution evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' These parameters are used for the July 22 flare of Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Parameter Symbol July 22 Plasmoid time in EMBLEM at zero observing time [min] temblem obs,0 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 initial cylindrical radius [rg] rcyl,0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 polar angle [◦] θ 135 initial azimuthal angle [◦] ϕ0 280 initial radial velocity [c] vr,0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='01 initial azimuthal velocity [c] vϕ,0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='45 X position of Sgr A* [µas] x0 0 Y position of Sgr A* [µas] y0 0 PALN [◦] Ω 160 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Orbital parameters of the plasmoid model following a conical motion used for the comparison of the July 22, 2018 flares observed by Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' discussed in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1, our model naturally leads to a super- Keplerian initial velocity to the plasmoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Indeed, the plas- moid initial azimuthal velocity is that of the footpoint of the separatrix (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Based on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8 of El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022), we can determine the radius of the footpoint, rf p, of a separatrix giving rise to a Y point located at a cylindrical radius of ≈ 10 rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We find r f p = (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5) rg, which trans- lates in an orbital velocity vϕ,0 between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='41c and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='45c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The upper bound of this interval compares well with the July 22 flare data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that this estimate of the initial azimuthal velocity is anchored in the model of El Mellah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022) and thus depends on their choice of initial condition, in par- ticular on the initial profile of their magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that the fiducial values proposed in Tables 3 and 4 represent a set of parameters with values that are inspired by numerical simulations of reconnection which reproduce the key observational features of the July 22 flare data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This setup is not unique and is not the result of a fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We let the exploration of the full parameters space (freeing some fixed/constrained parame- ters like maximum number density, growth time, inclination) to a future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Nevertheless, our model disfavor low growth time (tgrowth < 50rg/c) for this particular flare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Overall, our plasmoid model jointly describes the astrom- etry and the flux variation of the 22 July 2018 flare measured by (Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018) for the first time, consid- ering a model with a specific emission prescription.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Magnetic reconnection is thus a viable scenario to explain Sgr A* flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 9 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main 100 101 102 103 104 105 106 10 9 10 6 10 3 100 103 ne [cm 3] kappa Distribution Thermal PL (p=3) 100 101 102 103 104 105 106 10 9 10 6 10 3 100 103 ne [cm 3] tobs=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='71 min tobs=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='53 min tobs=6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='70 min tobs=9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='17 min tobs=14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='46 min tobs=16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='93 min tobs=20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='46 min tobs=22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='93 min tobs=26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='81 min tobs=29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='28 min 30 20 10 0 10 20 30 40 50 tobs [min] 0 10 20 30 40 50 60 70 80 tintrinsic [min] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 F [erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='cm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='s 1] 1e 11 Observing time tgrowth growth phase cooling phase EMBLEM intrinsic LC Thermal model intrinsic LC Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (Top-left) Evolution of the electron distribution in our model with EMBLEM at each observing time of the July 22, 2018 flare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The black dotted line correspond to the injected κ electron distribution composed of a thermal core with a power law tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The parameters used are listed in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (Bottom-left) Evolution of the electron distribution in the Thermal model inspired by Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2021) at each observing time of the July 22, 2018 flare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The parameters used for this distribution are the same as in our model (listed in Table 3) but with the dimensionless temperature of Θe = 109 and the magnetic field of B = 20 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (Right) Full intrinsic light curves of the two models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Note that in this panel we plot the light curve from the beginning of the growth phase while in the left panels we plot the distribution at the observed time of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8 (tobs = tintrinsic − 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 min).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1010 1012 1014 1016 1018 1020 1022 [Hz] 10 19 10 17 10 15 10 13 10 11 F [erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='cm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='s 1] tobs=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='71 min tobs=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='53 min tobs=6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='70 min tobs=9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='17 min tobs=14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='46 min tobs=16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='93 min tobs=20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='46 min tobs=22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='93 min tobs=26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='81 min tobs=29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='28 min Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Intrinsic Spectral Energy Density (SED) evolution from radio to X-rays of our plasmoid model with the parameters listed in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Color code the time as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Grey lines are the SED out of the observing time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The SED peak occurs in NIR with this set of parameters, but with a lower κ-index, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' a harder power law tail, the peak could reach X-rays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Here, X-rays flux drops quickly compare to the typical timescale of X-ray flares as we consider only synchrotron cooling and not Synchrotron-Self Compton (SSC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that the flux emitted by our plasmoid at 230 GHz is ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 Jy which is the good order of magnitude of the variability associated to flares in sub-mm (Wielgus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 10 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares 150 100 50 0 50 100 150 X ( as) 150 100 50 0 50 100 150 Y ( as) Astrometry 0 5 10 15 20 25 30 t (min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='65 F/F(S2) Light Curve observed intrinsic data Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Data and plasmoid models of the flares from July 22, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The left panels shows the astrometry of the flare while the right panel shows the observed (full line) and intrinsic (dashed line) light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The parameters of the model are listed in Tables 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Note that this is not the result of a fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The black dot in the left panels represents the position of Sgr A* in GYOTO and the orange cross represent the position of Sgr A* measured through the orbit of S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Limitations of our plasmoid model Our plasmoid model is vastly simplified with respect to the com- plexity of realistic magnetic reconnection events in the environ- ment of black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We review here its main limitations: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We consider a single plasmoid while the instability of thin current sheets gives rise to a dynamic flow of merging magnetic islands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our argument for this simplification is that the merging process is certainly very dependent on the unknown initial conditions, and that the final, bigger and brighter product of the cascade is likely to dominate the observed signal;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The initial condition on the plasmoid’s velocity is simply imposed for the radial motion, and based on a particular GRPIC model as regards the azimuthal motion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The evolution of the plasma parameters (density, temper- ature, magnetic field) are chosen to be either constant or linear, so very simplified compared to a realistic scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, we consider that these evolutions are very likely to be strongly dependent on the initial conditions of the flow, so that they are weakly constrained;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' iv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The values of almost all the parameters except mass and distance of Sgr A* are poorly constrained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We choose a set of values which are reasonable according to simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Future work is needed to investigate the details of the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We model the plasmoid by a homogeneous sphere for simplicity from the circle plasmoid seen in 2D GRMHD (Nathanail et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Porth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021) and PIC simulations (Rowan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Werner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The 3D aspect of such plasmoid is cylindrical (flux ropes) both in GRMHD (Bransgrove et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Nathanail et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022) and PIC (Nättilä & Beloborodov 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021) simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Thus, a realistic geometry of the flare source is likely more complex than in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that the exact geometry of the flare is not relevant as we only track the centroid position, as much the flare source is not too extended, and we consider tangled magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, the coherence time of the structure might be shorter in 3D and might have an impact on the rise time of the light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Further 3D simulations studies are needed to better model the shape of the flux ropes and their evolution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We neglect any shearing of the plasmoid and consider that it remains identical to itself throughout the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Differential rotation is however likely to stretch the plasmoid over its orbit and destroy its coherence (Hamaus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020c);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' vii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We consider a tangled magnetic field in the plasmoid and thus do not consider the impact of the magnetic field geometry on the observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The magnetic field geometry of the quiescent flow is likely to be ordered and vertical if Sgr A* is strongly magnetized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The magnetic field in the plasmoid, which is our interest here, could be either helical (plasmoids) or vertical for large flux tubes (Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' viii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' During a flare, the quiescent state can change in a non axisymmetrical way (Ripperda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This will push the centroid position of the quiescent further away from the center-of-mass location which will affect the offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We choose to use a static and axisymmetric quiescent model during flare to avoid adding more degrees of freedom which would lead to higher degeneracies, rather than clearer constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 11 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main ix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We choose a high maximum Lorentz factor γmax = 106 to be able to power X-ray flares (but without any constrain for this study).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, high energy photons lead to pair- production and thus increase the number density in the plas- moid which we do not take into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Despite these many limitations, we consider that our model is very interesting for fitting flare data, because it allows to cover a much broader set of physical scenarios than more elaborate simulations that strongly depend on their assumptions regarding the relevant physics and the initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Conclusion and perspectives This paper is mainly focused at developing a new plasmoid model for Sgr A* flares, inspired by magnetic reconnection in black hole environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our semi-analytic model allows to study a broad parameter space within a reasonable computing time, thus being well suited for data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our model considers non-thermal electrons accelerated by magnetic reconnection and injected into a spherical large plas- moid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We evolve the electron distribution through a kinetic equa- tion taking into account synchrotron cooling and particle injec- tion at a constant rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We show in Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3) the importance of taking into account the cooling of the electrons al- ready in plasmoid during the growth phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our model also natu- rally accounts for a super-Keplerian velocity of the flare source, through the dynamical coupling between the plasmoid and the inner regions of the accretion flow through magnetic field lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' One of the main results of this paper is that for the first time we model the astrometry and lightcurve of the flares measured by (Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018) by explicit modeling of the emission zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our conclusions regarding the three main points raised in the introduction are the following: – the marginally detected shift between the astrometric track of Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) and the center of mass might be due to the impact of the quiescent radiation of the background accretion flow;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – a dynamical coupling between the plasmoid and the inner accretion flow through closed magnetic field lines might naturally account for the super-Keplerian speed obtained by Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' – in general, a large plasmoid due to magnetic reconnection in a thin current sheet in the black hole magnetosphere is a rea- sonable model to account for the main features of the Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018) observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 shows that the temperature, density, and κ param- eters of the plasmoid are degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This degeneracy might be removed by simultaneous observations of NIR and X-ray flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Moreover, synchrotron cooling leads to a translation of the elec- trons from the NIR-emitting band to the millimeter-emitting band, which could explain the sub-mm flare and its time lag with respect to NIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We thus intend to consider the multi-wavelength properties of our plasmoid model in future work, in order to bet- ter assess its ability to account for the complete flare data set of Sgr A*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A crucial recent observable of Sgr A* flares are the polariza- tion QU loops (Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, 2020d;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Wiel- gus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We also intend to study the polarized properties of our plasmoid model and compare it to these recent constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' NA and FHV are very grateful to B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Cerutti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Crinquand, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' von Fellenberg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Gillessen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Masson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ripperda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Scepi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Wiel- gus for fruitful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' References Backer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1978, ApJ, 222, L9 Baganoff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Bautz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Brandt, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2001, Nature, 413, 45 Ball, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Özel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Christian, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Chan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Psaltis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, ApJ, 917, 8 Ball, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Sironi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Özel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, ApJ, 862, 80 Barrière, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Tomsick, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Baganoff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014, ApJ, 786, 46 Bower, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Dexter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Asada, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019, ApJ, 881, L2 Bower, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Goss, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Falcke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Backer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Lithwick, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006, ApJ, 648, L127 Bower, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Markoff, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Dexter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015, ApJ, 802, 69 Bransgrove, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Ripperda, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Philippov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021a, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', 127, 055101 Bransgrove, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Ripperda, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Philippov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021b, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', 127, 055101 Brinkerink, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Falcke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Law, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015, A&A, 576, A41 Broderick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Loeb, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006, MNRAS, 367, 905 Chashkina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Bromberg, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Levinson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, MNRAS, 508, 1241 Chiaberge, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Ghisellini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1999, MNRAS, 306, 551 Crinquand, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Cerutti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Dubus, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Parfrey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Philippov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, A&A, 650, A163 Davelaar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Mo´scibrodzka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Bronzwaer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Falcke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, A&A, 612, A34 de Gouveia dal Pino, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Lazarian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2005, A&A, 441, 845 Dermer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Schlickeiser, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2002, ApJ, 575, 667 Dexter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Jiménez-Rosales, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Ressler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020a, MNRAS, 494, 4168 Dexter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Tchekhovskoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Jiménez-Rosales, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020b, MNRAS, 497, 4999 Dmytriiev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Sol, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Zech, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, Monthly Notices of the Royal Astro- nomical Society, 505, 2712 Do, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Ghez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Morris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009, ApJ, 691, 1021 Do, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Witzel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Gautam, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019, ApJ, 882, L27 Dodds-Eden, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Gillessen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Fritz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2011, ApJ, 728, 37 Dodds-Eden, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Porquet, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Trap, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009, ApJ, 698, 676 Eckart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Baganoff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Morris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009, A&A, 500, 935 Eckart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Schödel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', García-Marín, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008, A&A, 492, 337 Eisenhauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Perrin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Brandner, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2011, The Messenger, 143, 16 Eisenhauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Perrin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Rabien, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008, in The Power of Optical/IR In- terferometry: Recent Scientific Results and 2nd Generation, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Richichi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Delplancke, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Paresce, & A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Chelli, 431 El Mellah, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Cerutti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Crinquand, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Parfrey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022, A&A, 663, A169 Event Horizon Telescope Collaboration, Akiyama, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Alberdi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022a, ApJ, 930, L12 Event Horizon Telescope Collaboration, Akiyama, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Alberdi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022b, ApJ, 930, L16 Falcke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1999, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 186, The Central Parsecs of the Galaxy, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Falcke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Cotera, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Duschl, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Melia, & M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Rieke, 113 Fazio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Hora, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Witzel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, ApJ, 864, 58 Genzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Eisenhauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Gillessen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2010, Reviews of Modern Physics, 82, 3121 Genzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Schödel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Ott, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2003, Nature, 425, 934 Ghez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Wright, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Matthews, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2004, ApJ, 601, L159 Gravity Collaboration, Abuter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Accardo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017, A&A, 602, A94 GRAVITY Collaboration, Abuter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Aimar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022, A&A, 657, L12 Gravity Collaboration, Abuter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Amorim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020a, A&A, 638, A2 Gravity Collaboration, Abuter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Amorim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020b, A&A, 636, L5 Gravity Collaboration, Abuter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Amorim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, A&A, 618, L10 Gravity Collaboration, Bauböck, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Dexter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020c, A&A, 635, A143 Gravity Collaboration, Jiménez-Rosales, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Dexter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020d, A&A, 643, A56 Guo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Daughton, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015, ApJ, 806, 167 Hamaus, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Paumard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Müller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2009, ApJ, 692, 902 Hora, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Witzel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Ashby, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014, ApJ, 793, 120 Hornstein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Matthews, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Ghez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2007, ApJ, 667, 900 Komissarov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2004, MNRAS, 350, 427 Komissarov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2005, MNRAS, 359, 801 Komissarov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & McKinney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2007, MNRAS, 377, L49 Krichbaum, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Graham, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Witzel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1998, A&A, 335, L106 Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Wright, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2016, A&A, 593, A44 Lo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Schilizzi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Cohen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Ross, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1975, ApJ, 202, L63 Loureiro, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Schekochihin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Cowley, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2007, Physics of Plasmas, 14, 100703 Article number, page 12 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares Macquart, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Bower, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Wright, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Backer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Falcke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006, ApJ, 646, L111 Marrone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Baganoff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Morris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008, ApJ, 682, 373 Marrone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Moran, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Rao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006, in Journal of Physics Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 54, Journal of Physics Conference Series, 354–362 Mauerhan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Morris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Walter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Baganoff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2005, ApJ, 623, L25 Michail, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Wardle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Yusef-Zadeh, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Kunneriath, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021a, ApJ, 923, 54 Michail, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Yusef-Zadeh, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Wardle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021b, MNRAS, 505, 3616 Mo´scibrodzka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Falcke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2013, A&A, 559, L3 Narayan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Igumenshchev, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Abramowicz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2003, PASJ, 55, L69 Nathanail, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Fromm, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Porth, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020, MNRAS, 495, 1549 Nathanail, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Mpisketzis, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Porth, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Fromm, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Rezzolla, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022, MNRAS, 513, 4267 Nättilä, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Beloborodov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, ApJ, 921, 87 Nayakshin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Cuadra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Sunyaev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2004, A&A, 413, 173 Neilsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Gammie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2013, ApJ, 774, 42 Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Neilsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Markoff, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2012, ApJ, 759, 95 Pandya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Chandra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Gammie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2016, ApJ, 822, 34 Parfrey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Giannios, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Beloborodov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015, MNRAS, 446, L61 Parfrey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Philippov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Cerutti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', 122, 035101 Paumard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Perrin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Eckart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2008, in The Power of Optical/IR In- terferometry: Recent Scientific Results and 2nd Generation, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Richichi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Delplancke, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Paresce, & A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Chelli, 313 Paumard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Vincent, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Straub, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Lamy, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019, Gyoto Ponti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', De Marco, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Morris, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2015, MNRAS, 454, 1525 Porth, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Chatterjee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Narayan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019, ApJS, 243, 26 Porth, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Mizuno, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Younsi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Fromm, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, MNRAS, 502, 2023 Ressler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Tchekhovskoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Quataert, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Gammie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017, MNRAS, 467, 3604 Ripperda, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Bacchini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Philippov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2020, ApJ, 900, 100 Ripperda, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Liska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Chatterjee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022, ApJ, 924, L32 Rowan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Sironi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Narayan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017, ApJ, 850, 29 Rybicki, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Lightman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1979, Radiative processes in astrophysics Rybicki, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Lightman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 1986, Radiative Processes in Astrophysics Scepi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Dexter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Begelman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022, MNRAS, 511, 3536 Sironi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Spitkovsky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014, ApJ, 783, L21 Tagger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' & Melia, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006, ApJ, 636, L33 Uzdensky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2005, ApJ, 620, 889 Vincent, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Abramowicz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Zdziarski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019, A&A, 624, A52 Vincent, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Paumard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Gourgoulhon, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Perrin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2011, Classical and Quantum Gravity, 28, 225011 Vincent, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Paumard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Perrin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2014, MNRAS, 441, 3477 von Fellenberg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Gillessen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Graciá-Carpio, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, ApJ, 862, 129 Werner, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Uzdensky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Begelman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Cerutti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Nalewajko, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, MNRAS, 473, 4840 Wielgus, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Marchili, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Martí-Vidal, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022a, ApJ, 930, L19 Wielgus, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Moscibrodzka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Vos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2022b, A&A, 665, L6 Witzel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Martinez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Hora, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018, ApJ, 863, 15 Witzel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Martinez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Willner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, ApJ, 917, 73 Yusef-Zadeh, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Roberts, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Wardle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Heinke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Bower, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2006, ApJ, 650, 189 Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Sironi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', & Giannios, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2021, ApJ, 922, 261 Article number, page 13 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main Appendix A: Torus - Jet model for the quiescent state We used the Torus-jet model of Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Their jet model is restricted to an emitting sheath with an empty funnel in agreement with GRMHD simulations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Mo´scibrodzka & Fal- cke 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Ressler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Davelaar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Porth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In their model, Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019) define an opening and closing angle θ1 and θ2 respectively and a base height zb to define the geometry of the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The number density and the tem- perature are defined by their values at the base height of the jet (nJ e and T J e respectively) and their profiles along the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The pro- file of the number density is fixed (∝ r−2 cyl with rcyl the projected radius in the equatorial plane) and the one of the temperature is set by the temperatures slope sT (∝ z−sT with z the height along the vertical/spin axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The jet emits synchrotron radiation from a κ electron distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The torus is defined by its central density and temperature (nT e and T T e respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The profiles of these two quantities in the torus are governed by the polytropic index k and its geome- try.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The latter is defined by the inner radius rin and the angular momentum l but also on the metric (see Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019) for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Contrary to the jet, we consider that the electron distribution of the torus is purely thermal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use the same algorithm as in Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019) after the correction of a small technical issue leading to an overestima- tion of the number density and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, we change the choice of the magnetization parameter in the jet sheath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As illustrated e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' by Porth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019), the jet sheath, which cor- responds to the dominating emission region of the jet, coincides with the transition between the highly-magnetized (σ ≫ 1) fun- nel and the less-magnetized (σ ≪ 1) main disk body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Conse- quently, we fix the magnetization to σ = 1 in the emitting jet sheath, while Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019) used a low magnetization both in the jet and in the torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our choice leads to a smaller density in the jet sheath compared to Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We found a best-fit with a χ2 red = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='91 using the same data points as Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The values are reported in Table 1 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2 shows the associated spectrum and the image at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We obtain a magnetic field strength of 257 G for the jet and 212 G at the center of the torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='These values are higher than in Bower et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2019) who considers a full thermal electron population with a higher temperature but are of the same order as in Scepi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix B: Ray-tracing setup We consider a Kerr black hole with dimensionless spin param- eter a = 0, described in Boyer-Lindquist (t, r, θ, ϕ) coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We work in units where the gravitational constant and the speed of light are equal to 1, G = c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Radii are thus expressed in units of the black hole mass M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use the backward ray-tracing code GYOTO3 (Vincent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Paumard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2019) to compute images of our models at different epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Each pixel of our image corresponds to a direction on sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For each pixel of the image (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' each direction), a null geodesic is integrated backwards in time from the observer towards the black hole, integrating along this path the radiative transfer equation dIν ds = −ανIν + jν (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1) 3 https://gyoto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='obspm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='fr using the synchrotron emissivity jν and absorptivity αν coef- ficients, considering various electron distribution functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This allows us to determine the flux centroid for each epoch and trace its motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In addition to astrometry we also determine the total flux emitted as the sum of the intensity weighted by the element of solid angle subtended by each pixel, again, for each epoch which allows us to plot the light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The images produced are 1000x1000 pixels with a field of view of 300 µas vertically and horizontally which makes a reso- lution < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 µas2/pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This high resolution is needed to resolve properly the secondary image which has a very important role in both astrometry and light curve (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We model the quiescent state of Sgr A* at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 µm with a jet (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' However, computing an image of the jet is ∼ 200 times longer than an image of the flare source (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' the hot spot or the plasmoid, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 2 and 3 respectively) because the jet is much more extended, and integrating the radiative transfer equation is thus much longer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The absorption in the jet is negligible thus the flux emitted by the flare which crosses the jet is fully transmit- ted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We can compute a single image of the jet that we add to each images of the hot spot a posteriori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We then calculate the total flux by summing the jet flux with the one of the flare at a given time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The final centroid position is calculated by a simple barycenter of the two centroids (jet and flare).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix C: Intrinsic emission of the Plasmoid Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1: Tests on the kinetic simulations In our model, we follow the evolution of the electron distribu- tion taking into account the injection of accelerated electrons by the merging of small plasmoids into our large plasmoid and their cooling through synchrotron radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The emissivity jν and ab- sorptivity αν coefficients, needed to integrate the radiative trans- fer Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1, are computed through the formula of Chiaberge & Ghisellini (1999);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Rybicki & Lightman (1986) (with our nota- tion) jν(t) = 1 4π � γmax γmin dγNe(γ, t)Ps(ν, γ), (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1) αν(t) = − 1 8πmeν2 � γmax γmin Ne(γ, t) γl d dγ[γlPs(ν, γ)] (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2) with Ps(ν, γ) = 3 √ 3 π σTcUB νB x2 � K4/3(x)K1/3(x) − 3 5 x[K2 4/3(x) − K2 1/3(x)] � (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3) where l = (γ2 − 1)1/2 is the electron momentum in units of mec, x = ν/(3γ2νB), νB = eB/(2πmec) and Ka(t) is the modified Bessel function of order a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We note that the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3, is already averaged over pitch angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For standard distributions as thermal, power-law and κ-distributions, these formulae are equivalent to the fits of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) (see Appendix D) that we used for computing the quiescent synchrotron flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As electrons start to cool as soon as they are injected in the plasmoid, the full distribution is no more a κ-distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' How- ever, turning off the cooling during the growth phase allows us to compare the results of EMBLEM to the fitting formulae of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As we inject electrons following their definition of Article number, page 14 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares 2 4 6 8 10 12 14 16 18 0 1 2 3 4 5 6 7 I , max, erg cm 2 s 1 sr 1 Hz 1 1e 6 Pandya+16 2 EMBLEM (without cooling) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Specific intensity at the end of the growth phase (t = tgrowth = 75 rg/c) of a κ-distribution with ne = 5 × 106 cm−3, B = 10 G, κ = 4 for a range of Θe computed from the full fitting formulae of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) (black curve), by the EMBLEM code (red dots) and with the high- frequency limit analytical expression (dashed blue curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We overplot in light blue the range of Θe where Xκ > 2000 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' where the relative error between the high frequency limit and the full formula is lower than 20%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' the κ-distribution with a linear increase of the number density, the two approach show similar results (see Appendix D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In our cases, the absorption is very low, thus we neglect the absorption in these tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We can derive an analytical formula for the spe- cific intensity from the high frequency limit emissivity Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 depending on the number density ne, the electron temperature Θe and the magnetic field B in case the cooling is switched off during growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We find in the case without cooling that, keeping κ constant Iν,max ∝ ne,max Θ κ−2 B κ/2, if Xκ > 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4) We show the relative error of the maximum specific intensity between the EMBLEM code (red dots) and the formulae of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) (black curve) depending on the electron tempera- ture and the magnetic field in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We fix the others parameters to ne = 5 × 106 cm−3, κ = 4, tgrowth = 75 rg/c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The values of EMBLEM are in good agreement with the previous ana- lytical expression (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4) for low values of Θe and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For high values, we are beyond the validity of our approximations (in the intermediate frequency regime of the fitting formula, see Ap- pendix D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Comparing the results of EMBLEM (without cooling) with the full fitting formula of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) (black curves) results in an error lower than 5% showing the good agreement between the two approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2: Analytical estimate of the intrinsic light curve Next, we compute the light curve emitted by the plasmoid which will be affected by the relativistic effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' To reproduce a given light curve, we can estimate the values of the parameters through characteristic scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The growth time, which is a "free" param- eter of the model, can be estimated from the light curve taking into account the beaming effect and thus, depends on the orbital parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The synchrotron cooling time of an electron with Lorentz factor γ in a magnetic field B reads tcool = 3 4 mec σTUBγ (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5) 0 5 10 15 20 25 30 B (in Gauss) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='00 I , max, erg cm 2 s 1 sr 1 Hz 1 1e 5 Pandya+16 B2 EMBLEM (without cooling) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 for a range of B and with Θe = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' with σT the electron Thomson cross section and UB the magnetic energy density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In a Dirac spectrum approximation, the Lorentz factor of an electron emitting an IR photon at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 µm is (Rybicki & Lightman 1979) ¯γ = �νmec ηeB �1/2 (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6) with η = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='29 × 3)/(2π) a dimensionless numerical factor (see Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' One can thus constrain the magnetic field from the synchrotron cooling time as tcool = 19 × � B 20G �−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 � λ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2µm �0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7) Taking into account the cooling of the electrons during the growth phase leads to a lower flux than what we estimate from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Indeed, as electrons start to cool directly after being in- jected, the integral of the distribution in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 and so the emis- sivity will always be lower than without cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The key param- eter of synchrotron cooling is the cooling time scale (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5), which depends on the magnetic field strength and the initial en- ergy of the electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' It has to be compared to the growth time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Indeed, with a low growth time, only high-energy electrons have the time to cool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Increasing the growth time will allow lower en- ergy electrons to cool and so decrease even more the maximum flux of the light curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' With some approximations (see Appendix E for the details), one can estimate the flux with cooling at t = tgrowth νFsyn ν (ν, t) = neR3 b ¯γmec2 12D2tgrowth κθ2 ��Ψ(¯γ) − Ψ(ξ(¯γ, t))� , for ν < ˜ν(t) Ψ(¯γ), for ν ≥ ˜ν(t) (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8) where ˜ν(t) = (ηeB)/(mecb2 ct2) is the frequency corresponding to the condition ¯γ = 1/(bct) and Ψ(x) = � 1 + x − 1 κθ �−κ � x2(κ − 1) + 2x(κθ − 1) + 2θ(κθ − 2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='9) We plot the maximum light curve evolution relative to the magnetic field with EMBLEM with (blue crosses) and without (red Article number, page 15 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main 0 10 20 30 40 50 60 B (in Gauss) 0 1 2 3 4 5 F , max, erg cm 2 s 1 1e 12 Analytic EMBLEM (without cooling) EMBLEM (with cooling) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Evolution of the maximum flux νFν(tgrowth) (at the end of the growth phase tgrowth = 75 rg/c) as a function of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We show the results of EMBLEM without cooling (red crosses) as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Allowing the cooling during the growth phase results in a lower maximum flux (blue crosses).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' One can estimates the maximum flux with cooling through Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8 (see Appendix E for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This equation is divided in two regimes, the equilibrium regime where the magnetic field is strong enough to compensate the injection and creates a stationary state (B ≥ 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 G) and non stationary regime where not all electrons has cooled at tgrowth (B < 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The relative error between the analytical formula and the results of EMBLEM (with cooling) is below 30% in the whole domain and below 7% in the non stationary regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' crosses) cooling during the growth phase and the previous an- alytical expression in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 (black line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As expected, the cooling becomes more significant with a strong magnetic field until the maximum flux starts to decrease for very high values (B > 100 G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The two regimes of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8 are clearly visible in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 with a turning point at B = 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This approximation has a maximum relative error lower than 30% compared to the results of EMBLEM in the stationary regime and below 7% for the non stationary regime making it a good approximation estimate the peak light curve flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix D: Computation of the synchrotron coefficients for the Plasmoid Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1: Fitting formulae of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) In the hot spot model and for the test of EMBLEM, we used the fitting formula of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) to compute the emissivity jν and absorptivity αν considering a well defined κ-distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This distribution has two regimes, the low and high frequency regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In the low frequency limit, the emissivity is jν,low = nee2νB c X1/3 κ sin(θ) 4πΓ(κ − 4/3) 37/3Γ(κ − 2) (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1) and the absorption coefficient is αν,low = nee2 νmec X−2/3 κ 31/6 10 41 2π (Θe κ)10/3−κ (κ − 2)(κ − 1)κ 3κ − 1 × Γ �5 3 � 2 F1 � κ − 1 3, κ + 1, κ + 2 3, −Θe κ � (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2) 10 7 10 4 10 1 102 105 108 Xk 0 1 2 3 4 5 6 7 Js Js, lo Js 0 1 2 3 4 5 6 7 Js Js, hi Js Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Relative error between the low frequency regime (in red) - resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' the high frequency regime (in blue) - fit formulae Js,lo (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Js,hi) of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) and the full fit formula of the emission coefficient Js in function of Xκ = ν νκ with νκ = νB (Θeκ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' where 2F1 is the hypergeometric function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In the high-frequency limit, the emissivity is jν,high = nee2νB c X−(κ−2)/2 κ sin(θ) 3(κ−1)/2 × (κ − 2)(κ − 1) 4 Γ �κ 4 − 1 3 � Γ �κ 4 + 4 3 � (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3) and the absorption coefficient is αν,high = nee2 νmec X−(1+κ)/2 κ π3/2 3 (κ − 2)(κ − 1)κ (Θe κ)3 × �2Γ(2 + κ/2) 2 + κ − 1 � ������� �3 κ �19/4 + 3 5 ������� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4) The final approximations for the emissivity and absorption coefficient are jν = � j −xj ν,low + j −xj ν,high �−1/x j (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5) αν = � α−xα ν,low + α−xα ν,high �−1/xα (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6) with x j = 3κ−3/2 and xα = � − 7 4 + 8 5κ �−43/50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The two frequency limits do not have the same dependence on the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The frequency regime is defined by the di- mensionless parameter Xκ = ν/νκ, with νκ = νB(Θeκ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 shows the relative error of the two regimes (the low frequency in red and the high frequency in blue) compared to the final emis- sion coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' While at very high (respectively very low) Xκ, the high frequency (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' low frequency) fitting formulae work very well, there is a large frequency regime (10−2 ≲ Xκ ≲ 103), hereafter intermediate regime, where both limits are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' At 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 µm, Xκ > 1, while Θe κ ≲ 103 which correspond to our typ- ical set of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This is why we used the high frequency regime for our test our EMBLEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 16 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2: Chiaberge & Ghisellini (1999) approximation Modeling the synchrotron cooling of the electrons with a ther- mal, power-law or κ distribution is not trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Indeed, the evolu- tion of the energy of an electron which emits synchrotron radia- tion is (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=', Rybicki & Lightman (1986)) γ(t) = γ0(1 + Aγ0t)−1 (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7) with A = 4 3 σT B2 8πmec, (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8) γ the Lorentz factor of the electron at time t, and γ0 the ini- tial Lorentz factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The energy evolution strongly depends on the initial energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The higher the initial energy of the electron, the faster it will cool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Thus, the initial distribution we could im- pose will quickly be deformed (see top-left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6) and could not be modeled by one (or more) of the three distribution of Pandya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2016) (thermal, power-law and/or κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In order to properly model the cooling of electrons, we sim- ulate the evolution of the electron distribution with injection and synchrotron cooling (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' These simulations give us the electron distribution Ne(γ, t) at different times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We compute the emissivity jν and the absorptivity αν associated for a range of frequencies from 106 to 1021 Hz following the formula of Chi- aberge & Ghisellini (1999) (with our notation) jν(t) = 1 4π � γmax γmin dγNe(γ, t)Ps(ν, γ) (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='9) and the absorption coefficient follows αν(t) = − 1 8πmeν2 � γmax γmin Ne(γ, t) γp d dγ[γpPs(ν, γ)], (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='10) where p = (γ2 − 1)1/2 is the electron momentum in units of mec and Ps is the emissivity of a single electron (see C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In order to obtain the emissivity and absorption coefficient at any time and any frequency (to account the relativistic Doppler effect for example), we made a bilinear interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix E: Analytical approximation for Sgr A* flare peak flux Here we derive an analytical expression to compute the time- dependent flux from Sgr A* flares during the growth phase, and obtain an analytical formula for the peak flare flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For that, we first obtain the approximate analytical form of the varying elec- tron spectrum during the growth phase by solving the kinetic equation, and then compute the approximate synchrotron SED associated to the time-dependent electron spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1: Deriving time-dependent electron spectrum during the growth phase The kinetic equation describing the evolution of the electron spectrum during the growth phase is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 5: ∂Ne(γ, t) ∂t = ∂ ∂γ � bcγ2Ne(γ, t) � + Qinj(γ, ne, θ, κ) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1) with the injection term Qinj(γ) given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 7 and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8, and synchrotron cooling term ˙γsyn = −bc(γ2 − 1) (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 6), where bc = (4σTUB)/(3mec).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use here an approximation ˙γsyn ≈ −bcγ2, as the bulk of the electrons producing the flare emission are highly relativistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use the method of characteristics to solve the kinetic equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We search for characteristic curves in the γ-t space, along which our differential equation in partial derivatives be- comes an ordinary differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Let us rewrite the ki- netic equation in the following form, expanding the derivative on the Lorentz factor: ∂Ne(γ, t) ∂t + (−1)bcγ2 ∂Ne(γ, t) ∂γ = Qinj(γ) + 2γbcNe(γ, t) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2) When restricting our equation to the characteristic curve (γ(t),t), the full derivative of the electron spectrum over time, by the chain rule, is: dNe(γ, t) dt = ∂Ne(γ, t) ∂t + dγ dt ∂Ne(γ, t) ∂γ (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3) Comparing this to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2, we identify (−1)bcγ2 = dγ dt , and therefore along the chosen characteristic curve, our equation is split into a system of two ordinary differential equations: �dγ/dt = −bcγ2 dNe(γ, t)/dt = Qinj(γ) + 2γbcNe(γ, t) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4) The solution of the first equation is (applying the initial con- dition that γ(t = 0) = ξ): γ(t) = 1 bct + 1/ξ (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5) This equation defines a characteristic curve in the γ-t space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We have chosen the initial point of the characteristic curve as (ξ, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The physical meaning of ξ is the initial value of the Lorentz factor of an electron before it starts undergoing the cool- ing process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 is equivalent to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7, and describes how the Lorentz factor of an individual electron evolves in time due to synchrotron cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' From this equation, the initial Lorentz factor ξ is: ξ = ξ(γ, t) = 1 1/γ − bct (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6) This formula defines the initial Lorentz factor of the char- acteristic curve that passes through a point (γ,t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We denote the function Ne(γξ(t), t) = u(t) (electron spectrum along the charac- teristic curve), and solve the second equation in the system: du/dt − 2bcγ(t)u = Qinj(γ(t)) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7) The generic solution of this linear differential equation is: u(t) = 1 µ(t) � t 0 µ(t′) Qinj(γ(t′)) dt′ + C µ(t) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='8) Article number, page 17 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main with C being the integration constant, and the function µ(t) being the integration factor, which is equal to: µ(t) = exp �� −2bcγ(t)dt � = 1 (bct + 1/ξ)2 (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='9) As the electron spectrum at t = 0 is zero, we set the initial condition u(t = 0) = 0, which results in C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Therefore, the solution for u(t) is: u(t) = (bct + 1/ξ)2 � t 0 (bct′ + 1/ξ)−2 Qinj(γ(t′)) dt′ (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='10) Now we have to return back from u(t) to Ne(γ, t), which is achieved by substitution of the equation for ξ = ξ(γ, t) (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6) to the expression for u(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' After doing that, we obtain an expres- sion for the electron spectrum at a moment of time t: Ne(γ, t) = 1 γ2 � t 0 Γ2 Qinj(Γ) dt′ (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='11) with Γ = Γ(γ, t, t′) = �1/γ + bc(t′ − t)�−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use here an approximation for Qinj(Γ), and more specifically, for the kappa distribution, to enable analytical integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' As we are in the relativistic regime, and the peak of the injection spectrum in our case typically occurs at Lorentz factors γ ≫ 1, we can substitute γ(γ2 − 1)1/2 with γ2 in the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This leads to some inaccu- racies only at very low Lorentz factors, which virtually do not contribute to the integral value, and do not contribute to the light curve flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We therefore use for the injected spectrum: Qinj(γ, ne, θ, κ) ≈ N tgrowth γ2 � 1 + γ − 1 κθ �−(κ+1) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='12) Now we can perform the analytical integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use the variable substitution from t′ to Γ(γ, t, t′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In this case, the differ- ential dt′ = −b−1 c Γ−2dΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Our integral (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='11) then becomes: Ne(γ, t) = N γ2tgrowth � t 0 Γ4 � 1 + Γ − 1 κθ �−(κ+1) dt′ = = − N bcγ2tgrowth � t 0 Γ2 � 1 + Γ − 1 κθ �−(κ+1) dΓ (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='13) To solve the integral, we perform integration by parts, and we obtain: � t 0 Γ2 � 1 + Γ − 1 κθ �−(κ+1) dΓ = − θκ (κ − 2)(κ − 1)Ψ(Γ) ����� t 0 (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='14) with Ψ(x) = � 1 + x − 1 κθ �−κ � x2(κ − 1) + 2x(κθ − 1) + 2θ(κθ − 2) � (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='15) We substitute the variable back from Γ to t′, with Γ(t′ = 0) = (1/γ − bct)−1 = ξ(γ, t) and Γ(t′ = t) = γ, as well as sub- stitute the expression for the injection spectrum normalization, N = (1/2)ne(κ − 2)(κ − 1)κ−2θ−3 (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8), and obtain: Ne(γ, t) = ne 2κθ2bcγ2tgrowth �Ψ(γ) − Ψ(ξ(γ, t))� (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='16) One has to consider separately a special case when the bct ≥ 1/γ, as this leads to either ξ → ∞ or ξ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Obviously, the latter situation is non-physical, as the Lorentz factor cannot be less than unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Qualitatively, bct ≥ 1/γ → t ≥ 1/(bcγ) means that the evolution time of an electron is longer than its cooling time- scale, and in this regime the equilibrium between the injection and cooling is already reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Therefore, one can easily see that the time-dependent electron spectrum in the Lorentz factor domain γ ≥ 1/(bct) will be “frozen” at the steady-state one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' A steady-state solution corresponds to ξ → ∞, which results in Ψ(ξ) → 0 (in case κ > 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Therefore, the final solution for the time-dependent electron spectrum during the growth phase, is: Ne(γ, t) = ne 2κθ2bcγ2tgrowth ��Ψ(γ) − Ψ(ξ(γ, t))� , for γ < (bct)−1 Ψ(γ), for γ ≥ (bct)−1 (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='17) It is worth to note, that one can obtain the same steady-state solution (the case γ ≥ 1/(bct)) by directly solving the kinetic equation (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1) with ∂Ne ∂t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' To find the electron spectrum at the peak of the flare, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' at the moment when the injection is stopped, one simply calculates Ne(γ, t = tgrowth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2: Deriving time-dependent synchrotron SED during the growth phase Now let us proceed to the SED and light curve computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We use the so-called δ-approximation for the electron synchrotron emissivity coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This approximation assumes that a sin- gle electron with a Lorentz factor γ emits at a single frequency, rather than a broad spectrum (Rybicki & Lightman 1979): ωpeak ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='29ωc (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='18) with ωc = 3γ2eB/(mec) (averaged over pitch angles), e being the electron charge, and B being the magnetic field (CGS units).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' From this expression, one obtains: νpeak = ηeγ2B mec (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='19) where η = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='29 × 3)/(2π) ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='14 is a dimensionless numer- ical factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For a distribution of electrons, the synchrotron SED in δ-approximation, is given by (Dermer & Schlickeiser 2002): νFsyn ν (λ) = 4 3πR3 b cσTUB 6πD2 ¯γ3Ne(¯γ) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='20) where Rb is the radius of the emitting region, D is the dis- tance between the observer and the source, and ¯γ is the Lorentz Article number, page 18 of 20 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Aimar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' : Magnetic reconnection plasmoid model for Sagittarius A* flares factor of electrons emitting synchrotron photons with the fre- quency ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' We obtain this Lorentz factor by expressing it from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='19: ¯γ = �mecν ηeB �1/2 (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='21) Substituting the expression for Ne(γ, t) (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='17), and the expression bc = (4σTUB)/(3mec), into the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='20, we finally obtain the time-dependent SED during the growth phase in δ- approximation: νFsyn ν (ν, t) = neR3 b ¯γmec2 12D2tgrowth κθ2 ��Ψ(¯γ) − Ψ(ξ(¯γ, t))� , for ν < ˜ν(t) Ψ(¯γ), for ν ≥ ˜ν(t) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='22) where ˜ν(t) = (ηeB)/(mecb2 ct2) is the frequency corresponding to the condition ¯γ = 1/(bct).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3: Evaluating the peak light curve flux To obtain a light curve during the growth phase at a specific fre- quency of interest ν∗, one has to compute νFsyn ν (ν = ν∗, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' To compute the peak light curve flux, one evaluates the quantity νFsyn ν (ν = ν∗, t = tgrowth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Appendix F: Additional Setup for July 22 flare We also find another setup which reproduce well the July 22 flare data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' In such scenario, the magnetic reconnection and so the plasmoid growth phase occurs way before the observing time and the flare is due to the beaming effect combined to the slow decrease of the cooling phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The peak due to the growth phase occurs during the negative beaming part of the orbit resulting in a low flux comparable to the quiescent state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Parameter Symbol July 22 bis Plasmoid time in EMBLEM at zero observing time [min] temblem obs,0 −53 initial orbital radius [GM/c2] r0 15 polar angle [◦] θ 135 initial azimuthal angle [◦] ϕ0 240 initial radial velocity [c] vr,0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='01 initial azimuthal velocity [c] vϕ,0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 X position of Sgr A* [µas] x0 0 Y position of Sgr A* [µas] y0 0 PALN [◦] Ω 160 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Second orbital parameters of the plasmoid model following a conical motion used for the comparison of the July 22 flares observed by Gravity Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 19 of 20 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' main Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Time evolution of the electron distribution with EMBLEM (full lines) from t = 0 to t = tgrowth = 75 rg/c injecting a κ-distribution with Θe = 10 and κ = 4 and ˙ne = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='106/tgrowth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The magnetic field strength is set to 30 Gauss resulting in a stationary regime for γ > 104 from the very beginning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' This regime extends to lower γ values as time growths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' For the estimation of the peak flux, we approximate the whole distribution (at t = tgrowth) by a simple Dirac at ¯γ represented by the dashed grey line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 150 100 50 0 50 100 150 X ( as) 150 100 50 0 50 100 150 Y ( as) Astrometry 0 5 10 15 20 25 30 t (min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='7 F/F(S2) Light Curve observed intrinsic data Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Data and plasmoid models of the flares from July 22, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The left panels shows the astrometry of the flare while the right panel shows the light curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Note that this is not the result of a fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Contrary to the setup for Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' 8, the growth time is shorter tgrowth = 50rg/c resulting into a two peak light curve with the first one occurring at t = −22 min but being mitigate by the negative beaming effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The secondary peak which match the observed flare data shown here is due to the positive beaming during the cooling phase (as shown by the intrinsic light curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' The parameter set for this model is similar to the set of July 22 and is listed in Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='1 with the same physical parameter as in Table 3 but with tgrowth = 50rg/c, Θe = 72 and B = 10 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content=' Article number, page 20 of 20 105 t = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 GM/c3 t = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 GM/c3 t = 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 GM/c3 103 t = 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 GM/c3 t = 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 GM/c3 t = 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 GM/c3 101 t = 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} +page_content='0 GM/c3 3 , cm 10-1 10-3 10-5 10-7 10-9 100 102 105 106 103 104 107 101 Y' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dNFKT4oBgHgl3EQfqS7x/content/2301.11874v1.pdf'} diff --git a/ddFAT4oBgHgl3EQf6h5C/vector_store/index.faiss b/ddFAT4oBgHgl3EQf6h5C/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..e628df92fa4fdf5d7f6b30479b8d5584787a415a --- /dev/null +++ b/ddFAT4oBgHgl3EQf6h5C/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c9336c0b7732ca3ac8d5163cb7faa501963677a8b391366f4037d6d162d99ea +size 4259885 diff --git a/e9AzT4oBgHgl3EQfafwj/content/2301.01368v1.pdf b/e9AzT4oBgHgl3EQfafwj/content/2301.01368v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9c47e4d4cbe968a0e1b109e0089b5e5b02d3e4d6 --- /dev/null +++ b/e9AzT4oBgHgl3EQfafwj/content/2301.01368v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a2322864116d9e753ba1c21ab6553ed586d0fd0478b18762a734ca6222b6f50d +size 4826392 diff --git a/e9AzT4oBgHgl3EQfafwj/vector_store/index.pkl b/e9AzT4oBgHgl3EQfafwj/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..7d2b1c9b85ef3239a1a53eb97946f2959f4968ae --- /dev/null +++ b/e9AzT4oBgHgl3EQfafwj/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:602333fbb8a71f9d8a34a4f8c22298f1a5d23d41672e7153e5fc932a527b3913 +size 177816 diff --git a/e9FKT4oBgHgl3EQfAy1w/content/2301.11700v1.pdf b/e9FKT4oBgHgl3EQfAy1w/content/2301.11700v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..789b0260b4c28fd013a667932dc6f9fad2351542 --- /dev/null +++ b/e9FKT4oBgHgl3EQfAy1w/content/2301.11700v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f15e2c28ff826683fe1c18994f5ae1891bf4a5a041c98aa6ef2e6a794c53e10f +size 515126 diff --git a/e9FKT4oBgHgl3EQfAy1w/vector_store/index.faiss b/e9FKT4oBgHgl3EQfAy1w/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..56786f6a39e9c8ad3ead41220ecc2604cdedcb9b --- /dev/null +++ b/e9FKT4oBgHgl3EQfAy1w/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:de402448ec494935126d43eacbb765dc08bd382b16443fc06d02dca3f7a6bb2a +size 2818093 diff --git a/e9FKT4oBgHgl3EQfAy1w/vector_store/index.pkl b/e9FKT4oBgHgl3EQfAy1w/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..0faef30dbcb3239bcae828e166908e3448c66b4a --- /dev/null +++ b/e9FKT4oBgHgl3EQfAy1w/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d968e6d5c3656acdbfaeed779aabd715cbd98f8eb5178d9a9dcd1329046a4226 +size 116115 diff --git a/eNAzT4oBgHgl3EQfn_3n/content/tmp_files/2301.01591v1.pdf.txt b/eNAzT4oBgHgl3EQfn_3n/content/tmp_files/2301.01591v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f67c0a5f3c06ec2549efe2b2d2fe010ac24d5ee --- /dev/null +++ b/eNAzT4oBgHgl3EQfn_3n/content/tmp_files/2301.01591v1.pdf.txt @@ -0,0 +1,1179 @@ +arXiv:2301.01591v1 [math.CA] 4 Jan 2023 +Extremal polynomials on the n-grid +Arno B.J. Kuijlaars +January 5, 2023 +Abstract +The n-grid En consists of n equally spaced points in [−1, 1] includ- +ing the endpoints ±1. The extremal polynomial p∗ +n is the polynomial +that maximizes the uniform norm ∥p∥[−1,1] among polynomials p of +degree ≤ αn that are bounded by one on En. For every α ∈ (0, 1), +we determine the limit of 1 +n log ∥p∗ +n∥[−1,1] as n → ∞. The interest in +this limit comes from a connection with an impossibility theorem on +stable approximation on the n-grid. +1 +Statement of result +The n-grid from the title refers to n equally spaced points in [−1, 1] +En = {ξk,n = 2k−n−1 +n−1 +| k = 1, . . . , n}, +(1.1) +ranging from −1 to 1. Let 0 < α < 1. This paper is about the determination +of the limit of the expression +1 +n log +sup +deg p≤αn +∥p∥[−1,1] +∥p∥En +(1.2) +as n → ∞, where the norms are uniform norms over the indicated sets, and +the supremum is over univariate polynomials p of degrees at most αn that do +not vanish identically. The result was already announced in the paper [12] +from 2011. Renewed interest in it is due to [9]. +1 + +Theorem 1.1. For every α ∈ (0, 1) the limit +lim +n→∞ +1 +n log +sup +deg p≤αn +∥p∥[−1,1] +∥p∥En += C(α) +(1.3) +exists and is equal to +C(α) = (1 + α) log(1 + α) + (1 − α) log(1 − α) +2 +. +(1.4) +The limit C(α) is positive and strictly increasing with α. There is a nice +Taylor expansion +C(α) = +∞ +� +k=1 +α2k +2k(2k − 1). +The odd Taylor coefficients vanish since the power series defines an odd +function. The even Taylor coefficients are positive and therefore C(α) ≥ 1 +2α2. +It is also worth noticing that C(α) → log 2 as α → 1−. For α = 1 however, +we have that the limit in (1.3) is +∞, since for each n, there is a non-zero +polynomial of degree n that vanishes on the n-grid. +Discussion +The limit (1.3) shows that a polynomial of degree ≤ αn that is +bounded on En can be exponentially large somewhere in the interval [−1, 1]. +Namely, if |p(ξk,n)| ≤ 1 for each k = 1, . . . , n, then |p(x)| at some x ∈ [−1, 1] +can be as large as en(C(α)+o(1)) as n → ∞, and the constant C(α) is sharp. The +result is related to earlier work of Coppersmith and Rivlin [5] who showed +that there exist universal constants C2 > C1 > 1 such that for n large enough, +and for every d ≤ n − 1, +Cd2/n +1 +≤ sup +deg p≤d +∥p∥[−1,1] +∥p∥En +≤ Cd2/n +2 +. +(1.5) +The inequalities (1.5) show that polynomials of degree d ≤ c√n that are +bounded by one on En are uniformly bounded on [−1, 1] with a constant +that only depends on c. However, if d grows proportionally with n then (1.5) +shows that polynomials that are bounded by one on En may be exponentially +large on [−1, 1], and this behavior is made more precise in the limit (1.3). +The comparisons of the two uniform norms ∥ · ∥En and ∥ · ∥[−1,1] arises +naturally when studying approximation or interpolation methods for analytic +functions based on function values on the n-grid. There is a trade-off between +2 + +convergence and stability properties that was made precise in the impossi- +bility theorem of [12, Theorem 3.1]. For example, exponential convergence +as n → ∞ comes together with exponential instability. The proof of the +impossibility theorem in [12] relies on the Coppersmith-Rivlin inequalities +(1.5). For recent work in this direction we refer to [1, 9]. +It was observed in [12, section 4] that the phenomenon that polynomials of +degree d ≈ αn can be much larger on [−1, 1] than on En may be understood +in terms of potential theory. Here one thinks of a polynomial in terms of +its zeros. A polynomial may be small at certain gridpoints in En by simply +having a zero very close to these gridpoints. However, since there are more +gridpoints than zeros this cannot happen for every gridpoint. The extremal +polynomial p∗ +n for (1.2) will place a certain fraction of its zeros extremely +close to gridpoints lying in a subset S of [−1, 1] (with S depending on α). +Then p∗ +n is small at the gridpoints in S but not necessarily in between, and +in fact it has high oscillations in S. Following [2, 7] we call S the saturated +region. The non-saturated region [−1, 1]\S has considerably fewer zeros than +gridpoints. The extremal polynomial p∗ +n is not only small at the gridpoints +in [−1, 1] \ S but it is of comparable size over the full set [−1, 1] \ S, see [14] +for very precise estimates. +This phenomenon was first described by Rakhmanov [13] for orthogonal +polynomials on the n-grid, or more generally, for polynomials that minimize +a discrete Lp norm on En. These polynomials have their zeros in [−1, 1] and +they are separated by the gridpoints, in the sense that in between any two +distinct zeros there is at least one gridpoint. In the limit n → ∞ the zeros of +the extremal polynomials of degree ⌊αn⌋ considered in [13] have a limiting +distribution µα (depending only on α) that is characterized by a constrained +equilibrium problem from potential theory. The measure µα has a density +with respect to Lebesgue measure on [−1, 1] with dµα +dx ≤ 1 +2 where 1 +2 is the +limiting density of the gridpoints as n → ∞. +The saturated region S is +where the equality dµα +dx = 1 +2. holds. We give details in section 2.2 below. The +extremal polynomials p∗ +n for the extremal problem in (1.3) have the same +limiting zero distribution µα as n → ∞, as we will show in this paper. Also +in other aspects they behave similarly to the Lp-extremal polynomials on the +n-grid, and this will be the clue to the proof of Theorem 1.1. +3 + +Outline of the proof +The extremal polynomial for (1.2) is a polynomial +p∗ +n of degree ≤ αn such that +∥p∗ +n∥[−1,1] +∥p∗ +n∥En += +sup +deg p≤αn +∥p∥[−1,1] +∥p∥En +. +(1.6) +The proof of (1.3) then naturally comes in two steps. In the first step we +prove the lower bound +lim inf +n→∞ +1 +n log ∥p∗ +n∥[−1,1] +∥p∗ +n∥En +≥ C(α) +(1.7) +and in the second step the corresponding upper bound +lim sup +n→∞ +1 +n log ∥p∗ +n∥[−1,1] +∥p∗ +n∥En +≤ C(α). +(1.8) +The lower bound comes from considering the L∞-extremal polynomials P ∗ +n +on En, where P ∗ +n is the monic polynomial of degree ⌊αn⌋ that minimizes the +uniform norm ∥ · ∥En. Using the results from [7, 13] and some additional +calculations we prove in section 2 that +lim +n→∞ +1 +n log ∥P ∗ +n∥[−1,1] +∥P ∗n∥En += C(α), +(1.9) +and this implies the lower bound (1.7). +The upper bound (1.8) is proved in section 3. It comes from a study +of the zeros of the extremal polynomials p∗ +n satisfying (1.6). We show in +Lemma 3.1 that the zeros are real and simple and at least ⌊αn⌋ − 1 zeros +are in [−1, 1] where they are separated by the gridpoints. Note that one zero +could be in R \ [−1, 1]. We then use potential theoretic arguments to show +that the limiting distribution of the zeros of p∗ +n is equal to the constrained +equilibrium measure µα. Along the way we prove that µα is the maximizer +of a functional J that we define in (3.5) with J(µα) = C(α), which leads to +the upper bound (1.8). +We finally note that discrete orthogonal polynomials and the constrained +equilibrium problem also play a role in the analysis of iterative methods from +numerical linear algebra [3, 10, 11], and the asymptotic analysis of integrable +systems [6], random matrices and random tiling models [2, 4]. +4 + +2 +Proof of the lower bound +2.1 +Extremal polynomials on the n-grid +As explained above, we are going to consider the monic polynomial P ∗ +n of +degree ⌊αn⌋ such that +∥P ∗ +n∥En = +min +deg P = ⌊αn⌋ +P is monic +∥P∥En. +(2.1) +We are going to show that the limit (1.9) holds. +Rakhmanov [13] considered polynomials P of degree n that are monic +(leading coefficient equal to 1) and that minimize either the uniform norm +∥P∥EN, or a discrete p-norm on EN among all such polynomials. The interest +is in their asymptotic behavior as both n, N → ∞ with n/N → c < 1. The +equispaced n-grid (1.1) is actually only a special case of far more general +discrete sets that are considered in [13]. Compared to [13] we change N �→ n, +n �→ ⌊αn⌋, c �→ α. +2.2 +Limiting behavior of zeros +The zeros of P ∗ +n are real and simple. They belong to the interval (−1, 1), +where they are separated by the nodes in En, see [7, 13]. To P ∗ +n we associate +the normalized zero counting measure +νn = 1 +n +⌊αn⌋ +� +k=1 +δxk,n, +where xk,n for k = 1, . . . , ⌊αn⌋, denote the zeros of P ∗ +n. Note that we nor- +malize with the factor 1/n while the degree of P ∗ +n is ⌊αn⌋. Thus νn is not a +probability measure but rather has a total mass ⌊αn⌋ +n +Rakhmanov [13, Theorem 2], see also [7, Theorem 3.3], proved that the +weak∗ limit +νn +∗→ µα +(2.2) +exists, where µα is the measure on [−1, 1] with density [13, Theorem 1] +dµα +dx = + + + + + + + +1 +2, +for x ∈ [−1, −r] ∪ [r, 1], +1 +π arctan +� +α +√ +r2 − x2 +� +, +for x ∈ [−r, r], +(2.3) +5 + +where +r = r(α) = +√ +1 − α2. +(2.4) +The density on [−r, r] can alternatively be written as +dµα +dx = 1 +2 − 1 +π arccos +� +α +√ +1 − x2 +� +, +for x ∈ [−r, r]. +(2.5) +The measure µα belongs to the class +Mα,σ := {µ | ∫ dµ = α, 0 ≤ µ ≤ σ} +(2.6) +where +dσ = 1 +2χ[−1,1](x)dx +(2.7) +denotes the Lebesgue measure restricted to [−1, 1] with normalization such +that +´ +dσ = 1. The upper constraint µα ≤ σ comes from the fact that the +zeros of P ∗ +n are separated by the nodes ξk,n in the equispaced grid En. +Rakhmanov also characterized µα in terms of notions from logarithmic +potential theory [15]. Let +I(µ) = +¨ +log +1 +|x − y|dµ(x)dµ(y) +(2.8) +and +Uµ(x) = +ˆ +log +1 +|x − y|dµ(y) +(2.9) +denote the logarithmic energy and the logarithmic potential of a measure µ, +respectively. Then +I(µα) = +min +µ∈Mα,σ I(µ) +(2.10) +and µα is the unique minimizer within the class (2.6). Furthermore, there is +a constant ℓα such that +Uµα(x) +� += ℓα, +for x ∈ supp(σ − µα), +≤ ℓα, +for x ∈ [−1, 1], +(2.11) +and µα is the only measure µ in Mα,σ such that Uµ(x) = ℓ is constant on +supp(σ − µ) and Uµ(x) ≤ ℓ on [−1, 1] for a certain constant ℓ. +Because of the upper constraint µ ≤ σ, the measure µα is called a con- +strained equilibrium measure, see [2, 7]. The saturated region S is where +dµα +dx = dσ +dx = 1 +2 and in view of (2.3) we have S = [−1, −r] ∪ [r, 1]. The con- +straint is not active in the region where dµα +dx < 1 +2. This is the non-saturated +region and its closure is supp(σ − µα) = [−r, r]. +6 + +2.3 +Two lemmas +The connection between potential theory and the asymptotics theory of poly- +nomials is well-known. If P is a monic polynomial and +ν = 1 +n +� +x:P (x)=0 +δx +is its normalized zero counting measure (each zero is included in the sum +according to its multiplicity), then +1 +n log |P(x)| = −Uν(x). +If (Pn)n is a sequence of monic polynomials, and (νn)n is the corresponding +sequence of normalized zero counting measures then the convergence of (νn)n +contains information on the nth root asymptotic behavior of the polynomials. +We need two such results. +Lemma 2.1. +(a) Let (Pn)n be a sequence of monic polynomials, deg Pn ≤ +αn, having real and simple zeros, such that the zeros of Pn are separated +by the points of En for every n. Suppose that the sequence of normalized +zero counting measures (νn)n where νn = 1 +n +� +x:Pn(x)=0 δx, has a weak∗ +limit µ as n → ∞. Then µ ≤ σ, and +lim inf +n→∞ +1 +n log ∥Pn∥En ≥ − +min +x∈supp(σ−µ) Uµ(x). +(2.12) +(b) If (P ∗ +n)n is the sequence of extremal polynomials satisfying (2.1) then +νn +∗→ µα as n → ∞, and equality holds +lim +n→∞ +1 +n log ∥P ∗ +n∥En = − +min +x∈supp(σ−µ) Uµα(x). +(2.13) +Proof. Part (a) is Lemma 4.2 of [13], where it is stated under the assumption +that the zeros are in [−1, 1]. See Lemma 5.5 in [7] for the statement without +this extra assumption. Part (b) is in [13, Theorem 2] or [7, Theorem 3.3]. +Part (b) of Lemma 2.1 will be used in the proof of the lower bound, +while part (a) will be used in the proof of the upper bound, see the proof of +Proposition 3.2. +7 + +Remark 2.2. Note that the logarithmic potential Uµ of a positive measure +µ is a lower semi-continuous function [15] and therefore its minimum over a +compact (as in (2.12) and (2.13), as well as in (2.14) below) exists. +In the situation of Lemma 2.1, however, the logarithmic potential Uµ +is actually continuous. +This follows from µ ≤ σ and the fact that Uσ is +continuous. +Indeed, Uσ−µ is lower semi-continuous, and therefore Uµ = +Uσ − Uσ−µ is upper semi-continuous as well, hence continuous. +The second lemma is probably well-known, but I could not find an ap- +propriate reference for it. +Lemma 2.3. Suppose (Pn)n is a sequence of monic polynomials, deg Pn ≤ +αn, such that the zeros of all Pn are in a compact set. Suppose that the +sequence of normalized zero counting measures (νn)n has a weak∗ limit µ as +n → ∞. Then +lim +n→∞ +1 +n log ∥Pn∥[−1,1] = − min +x∈[−1,1] Uµ(x). +(2.14) +Proof. By the principle of descent [15] we have +Uµ(x∗) ≤ lim inf +n→∞ Uνn(xn) +whenever xn → x∗. Since |Pn(x)| = e−nUνn(x), this means that +lim sup +n→∞ +1 +n log |Pn(xn)| ≤ −Uµ(x∗) ≤ − min +x∈[−1,1] Uµ(x), +whenever (xn)n is a convergent sequence with a limit x∗ ∈ [−1, 1]. Taking +xn ∈ [−1, 1] with |Pn(xn)| = ∥Pn∥[−1,1] and passing to convergent subse- +quences if necessary, we then find +lim sup +n→∞ +1 +n log ∥Pn∥[−1,1] ≤ − min +x∈[−1,1] Uµ(x). +(2.15) +By the lower envelope theorem [15] we have +Uµ(x) = lim +n→∞ Uνn(x) +q.e. +(2.16) +where q.e. means quasi everywhere, i.e., the exceptional set is a polar set (a +small set for potential theory). The limit (2.16) means +lim +n→∞ +1 +n log |Pn(x)| = −Uµ(x) +q.e. +(2.17) +8 + +Let x0 ∈ [−1, 1] be such that +Uµ(x0) = +min +x∈[−1,1] Uµ(x). +(2.18) +Note that the minimum exists since Uµ is lower semicontinuous. Let ε > 0. +Then we claim that +{x ∈ [−1, 1] | Uµ(x) < Uµ(x0) + ε} +(2.19) +is not a polar set. This is easy to see if Uµ is a continuous function, since +then (2.19) contains a non-empty interval and this is not a polar set, see e.g. +[8, Example 5.2.7]. If Uµ is not continuous, then we can come to the same +conclusion, if we use certain more advanced results from potential theory, in +particular around thinness and the fine topology, which we will not explain +here. The set {x ∈ C | Uµ(x) < Uµ(x0) + ε} is an open neighborhood of x0 +in the fine topology, and [−1, 1] is not thin at x0 ∈ [−1, 1], see [8, Corollary +6.7.8]. Therefore (2.19) is not a polar set. +Knowing that (2.19) is not polar, we conclude from (2.17) that there +exists x1 ∈ [−1, 1] with Uµ(x1) < Uµ(x0) + ε and the limit (2.17) holds for +x = x1. Then by the above and (2.18) +lim inf +n→∞ +1 +n log ∥Pn∥[−1,1] ≥ lim +n→∞ +1 +n log |Pn(x1)| = −Uµ(x1) +> −Uµ(x0) − ε = − min +x∈[−1,1] Uµ(x) − ε. +(2.20) +Then the lemma follows from (2.15) and (2.20), since ε > 0 is arbitrary. +2.4 +Conclusion of the proof of the lower bound +We apply the two lemmas to the extremal polynomials P ∗ +n satisfying (2.1). +By Lemma 2.1 (b) we have +lim +n→∞ +1 +n log ∥P ∗ +n∥En = − min +x∈[−r,r] Uµα(x), +(2.21) +since supp(σ − µα) = [−r, r] by (2.3). From Lemma 2.3 and (2.2) we get +lim +n→∞ +1 +n log ∥P ∗ +n∥[−1,1] = − min +x∈[−1,1] Uµα(x). +(2.22) +9 + +Combining (2.21) and (2.22) we obtain +lim +n→∞ +1 +n log ∥P ∗ +n∥[−1,1] +∥P ∗ +n∥En += min +x∈[−r,r] Uµα(x) − min +x∈[−1,1] Uµα(x). +(2.23) +The limit (1.9) and thereby the lower bound (1.7) follows from (2.23) and +the following proposition. +Proposition 2.4. We have +C(α) = min +x∈[−r,r] Uµα(x) − min +x∈[−1,1] Uµα(x) +(2.24) +with C(α) as in (1.4) above. +Proof. The derivative of Uµα is a principal value integral that can be calcu- +lated explicitly. The result is +d +dxUµα(x) = − + dµα(y) +x − y += 1 +2 log +� +1 − x2� +− log +� +α + +√ +x2 − r2 +� +, +for r < x < 1. +(2.25) +We give the details of the calculations for (2.25) later, after finishing the +main line of the argument. +The derivative (2.25) is negative for r < x < 1. +Therefore (and by +symmetry) the minimum of Uµα(x) over [−1, −r] ∪ [r, 1] is at x = ±1. Also +Uµα is constant on [−r, r] by (2.11). Hence +min +x∈[−r,r]Uµα(x) − min +x∈[−1,1] Uµα(x) = Uµα(r) − Uµα(1). +In view of (2.25) and the fundamental theorem of calculus, we arrive at (2.24) +provided that +C(α) = +ˆ 1 +r +� +log +� +α + +√ +x2 − r2 +� +− 1 +2 log +� +1 − x2�� +dx, +(2.26) +with r = r(α) = +√ +1 − α2. Thus the proof of the proposition is complete up +to the verification of the two identities (2.25) and (2.26) to which we turn +next. +10 + +Proof of the identity (2.25). +By (2.3) and (2.5) the principal value integral +in (2.25) (with x ∈ (r, 1)) splits into two parts + dµα(y) +x − y = 1 +2 + 1 +−1 +1 +x − ydy − 1 +π +ˆ r +−r +1 +x − y arccos +� +α +� +1 − y2 +� +dy += 1 +2 log(1 + x) − 1 +2 log(1 − x) − Iα(x) +(2.27) +where +Iα(x) = 1 +π +ˆ r +−r +1 +x − y arccos +� +α +� +1 − y2 +� +dy +is a usual integral (not a principal value integral) that converges for every +x > r. We integrate by parts +Iα(x) = −α +π +ˆ r +−r +log(x − y) +y +1 − y2 +1 +� +r2 − y2dy, +x > r, +and then compute the derivative +d +dxIα(x) = −α +π +ˆ r +−r +1 +x − y +y +1 − y2 +1 +� +r2 − y2dy += − +αx +1 − x2 +1 +√ +x2 − r2 − 1 +2 +1 +x − 1 + 1 +2 +1 +x + 1 +by first turning the integral into an integral on a contour around the interval +[−r, r] in the complex plane, and then evaluating it by the residue theorem +for the exterior domain. The result can be integrated again to give +Iα(x) = − log +� +α + +√ +x2 − r2 +� ++ log(1 + x), +x > r, +(2.28) +where we note that the constant of integration vanishes since Iα(x) → 0 as +x → +∞. Using this in (2.27) we obtain (2.25). +Proof of the identity (2.26). +Observe that (2.26) holds for α = 0 since then +both sides are equal to 0. Thus it is enough to show that the α-derivatives +of the two sides agree. +For the left-hand side of (2.26) we have by (1.4) +d +dαC(α) = log(1 + α) − log(1 − α) +2 +. +(2.29) +11 + +For the right-hand side we first compute the α-derivative of the integrand. +Using r = r(α) = +√ +1 − α2 we find by direct calculation +d +dα +� +log +� +α + +√ +x2 − r2 +� +− 1 +2 log +� +1 − x2�� += +1 +√ +x2 − r2. +The integrand of (2.26) vanishes at x = r, and thus we obtain the following +derivative of the right hand side of (2.26) +ˆ 1 +r +1 +√ +x2 − r2dx = log +� +x + +√ +x2 − r2 +���� +x=1 +x=r += log +� +1 + +√ +1 − r2 +� +− log r += log +� +1 + α2� +− 1 +2 log(1 − α) +which after simplification agrees with (2.29). +3 +Proof of the upper bound +To prove the upper bound (1.8) we start by showing that the extremal poly- +nomial p∗ +n has only real zeros that are separated by the n-grid En. +3.1 +Zeros of the extremal polynomial +We fix 0 < α < 1. For each n, we take a polynomial p∗ +n of degree ≤ αn as in +(1.6) that we normalize such that +∥p∗ +n∥[−1,1] = 1 = p∗ +n(x∗ +n) +(3.1) +for some x∗ +n ∈ [−1, 1]. It is clear that x∗ +n ̸∈ En since otherwise ∥pn∥En = 1, +and the polynomial would not maximize the ratio. +Lemma 3.1. +(a) The polynomial p∗ +n minimizes ∥p∥En among all polyno- +mials p of degree ≤ αn with p(x∗ +n) = 1. +(b) The polynomial q∗ +n defined by +q∗ +n(x) = x⌊αn⌋p∗ +n +� +x∗ +n + 1 +x +� +(3.2) +12 + +is a monic polynomial of degree ⌊αn⌋ that minimizes the weighted uni- +form norm +max +x∈Σn +��x−⌊αn⌋q(x) +�� , +(3.3) +among all monic polynomials of degree ⌊αn⌋, where Σn is the trans- +formed grid, +Σn = {(x − x∗ +n)−1 | x ∈ En}. +(3.4) +(c) p∗ +n has only simple real zeros with at least ⌊αn⌋ − 1 zeros in [−1, 1], +(d) The zeros of p∗ +n are separated by the points in the n-grid En. +Proof. (a) Suppose p is a polynomial of degree αn with p(x∗ +n) = 1 and +∥p∥En < ∥p∗ +n∥En. Since x∗ +n ∈ [−1, 1] and p(x∗ +n) = 1, we then have ∥p∥[−1,1] ≥ +1 = ∥p∗ +n∥[−1,1], and therefore +∥p∥[−1,1] +∥p∥En +> ∥p∗ +n∥[−1,1] +∥p∗ +n∥En +which contradicts the extremal property (1.6) of p∗ +n. +(b) It is easy to see that (3.2) is indeed a polynomial of degree ⌊αn⌋ and +it is monic because p∗ +n(x∗ +n) = 1. +Likewise, we associate to any polynomial p of degree ≤ αn with p(x∗ +n) = 1 +the monic polynomial q(x) = x⌊αn⌋p(x∗ +n + 1 +x) of degree ⌊αn⌋. Then +p(x) = (x − x∗ +n)⌊αn⌋q +� +1 +x−x∗n +� +and, with Σn as in (3.3) +∥p∥En = max +x∈En +���(x − x∗ +n)⌊αn⌋q +� +1 +x−x∗n +���� = max +x∈Σn |w(x)q(x)| +with +w(x) = |x|−⌊αn⌋. +Because of part (a) we see that q∗ +n minimizes ∥wq∥Σn among monic polyno- +mials of degree ⌊αn⌋. +(c) q∗ +n has only real zeros. Indeed if z0 were a non-real zero of q∗ +n then +q(x) = x − Re z0 +x − z0 +q∗ +n(x) +13 + +would be a monic polynomial of the same degree satisfying |q(x)| < |q∗ +n(x)| +for every real x that is not a zero of q∗ +n. This would lead to a contradiction +with part (b). +Also the zeros of q∗ +n are simple, since if x0 is a higher order real zero then +for small enough ε > 0 the monic polynomial +q(x) = (x − x0 − ε)(x − x0 + ε) +(x − x0)2 +q∗ +n(x) +would have a smaller weighted norm ∥wq∥Σn than q∗ +n. Because of (3.2) it +then follows that p∗ +n has only simple real zeros as well, since any zero x0 ̸= 0 +of q∗ +n corresponds to the zero x∗ +n + 1 +x0 of p∗ +n. +Since q∗ +n has ⌊αn⌋ simple real zeros, at least ⌊αn⌋−1 of them are different +from 0, and thus p∗ +n has at least that number of simple real zeros. In particular +p∗ +n has degree ≥ ⌊αn⌋ − 1. +(d) The zeros of q∗ +n are separated by the points of Σn. Indeed if x1 < x2 +are two zeros of q∗ +n and the interval [x1, x2] would not contain any points of +Σn then +x �→ (x − x1 + ε)(x − x2 − ε) +(x − x1)(x − x2) +q∗ +n(x) +would be a monic polynomial of the same degree with a strictly smaller +weighted norm ∥wqn∥Σn < ∥wq∗ +n∥Σn, provided ε > 0 is small enough, which +would contradict part (b). This in turn implies that in between any two zeros +of p∗ +n there is a gridpoint of En, which gives part (d). +3.2 +The functional J +Recall from (2.10) that µα minimizes I(µ) among measures µ ∈ Mα,σ. We +consider another functional +J(µ) = +min +x∈supp(σ−µ) Uµ(x) − min +x∈[−1,1] Uµ(x) +(3.5) +on measures µ ∈ Mα,σ. Note that by Proposition 2.4 we have +J(µα) = C(α) > 0, +(3.6) +since supp(σ − µα) = [−r, r]. +14 + +Proposition 3.2. We have +lim sup +n→∞ +1 +n log ∥p∗ +n∥[−1,1] +∥p∗ +n∥En +≤ +sup +µ∈Mα,σ +J(µ). +Proof. We start by taking a subsequence N ⊂ N such that +lim +N ∋n→∞ +1 +n log ∥p∗ +n∥[−1,1] +∥p∗ +n∥En += lim sup +n→∞ +1 +n log ∥p∗ +n∥[−1,1] +∥p∗ +n∥En +. +(3.7) +The zeros of p∗ +n may not be uniformly bounded. However, by Lemma +3.1(c), there is at most one zero outside [−2, 2]. If there is such a zero, say +x0, then we set +�pn(x) = κ−1 +n +p∗ +n(x) +x − x0 +, +(3.8) +where κn is the leading coefficient of p∗ +n. Otherwise we set +�pn(x) = κ−1 +n p∗ +n(x). +(3.9) +Then �pn is a monic polynomial of degree ⌊αn⌋ or ⌊αn⌋ − 1. In case (3.9) we +clearly have +∥p∗ +n∥[−1,1] +∥p∗ +n∥En += ∥�pn∥[−1,1] +∥�pn∥En +, +(3.10) +while in case (3.8) we can claim that +1 +3 +∥p∗ +n∥[−1,1] +∥p∗n∥En +≤ ∥�pn∥[−1,1] +∥�pn∥En +≤ 3∥p∗ +n∥[−1,1] +∥p∗n∥En +. +(3.11) +To obtain (3.11) we note that since |x0| > 2 we have |x0| − 1 ≤ |x − x0| ≤ +|x0| + 1 for x ∈ [−1, 1], so that +|κ−1 +n ||pn ∗ (x)| +|x0| + 1 ≤ |�pn(x)| ≤ |κ−1 +n | |p∗ +n(x)| +|x0| − 1, +for x ∈ [−1, 1]. +Taking the supremum over x ∈ [−1, 1] and over x ∈ En, we obtain +|κ−1 +n | +|x0| + 1∥p∗ +n∥[−1,1] ≤ ∥�pn∥[−1,1] ≤ +|κ−1 +n | +|x0| − 1∥p∗ +n∥[−1,1], +|κ−1 +n | +|x0| + 1|κ−1 +n |∥p∗ +n∥En ≤ ∥�pn∥En ≤ +|κ−1 +n | +|x0| − 1∥p∗ +n∥En. +15 + +Taking ratios of these inequalities leads to (3.11) since |x0|+1 +|x0|−1 < 3 for |x0| > 2. +From (3.7) (3.10), (3.11) it then follows that +lim sup +n→∞ +1 +n +∥p∗ +n∥[−1,1] +∥p∗ +n∥En += +lim +N ∋n→∞ +1 +n log ∥�pn∥[−1,1] +∥�pn∥En +. +(3.12) +Next, by taking a further subsequence if necessary, we may also assume +that the sequence (νn)n of normalized zero counting measures, i.e., +νn = 1 +n +� +x:�pn(x)=0 +δx +converges in the weak∗ sense as n → ∞ with n ∈ N . Here we use Helly’s +selection theorem, and Lemma 3.1 (c). By Lemma 3.1 (d) the weak∗ limit, +say µ, belongs to Mα,σ. +Now we apply Lemmas 2.1 and 2.3 to the polynomials �pn. From part (a) +of Lemma 2.1 we get +lim inf +N ∋n→∞ +1 +n log ∥�pn∥En ≥ − +min +x∈supp(σ−µ) Uµ(x) +and from Lemma 2.3 +lim +N ∋n→∞ +1 +n log ∥�pn∥[−1,1] = − min +x∈[−1,1] Uµ(x). +These limits and (3.12) then imply that +lim sup +n→∞ +1 +n log ∥p∗ +n∥[−1,1] +∥p∗n∥En +≤ J(µ) +and the proposition since µ ∈ Mα,σ. +3.3 +Conclusion of the proof of the upper bound +In view of Proposition 3.2 it remains to show that +sup +µ∈Mα,σ +J(µ) = C(α) in +order to obtain (1.8). This is the final result of the paper. +Proposition 3.3. For every µ ∈ Mα,σ with µ ̸= µα we hae +J(µ) < J(µα) = C(α). +(3.13) +16 + +Proof. We already noted in (3.6) that J(µα) = C(α) > 0. +Let µ ∈ Mα,σ with µ ̸= µα. Take x0 ∈ [−1, 1] with +Uµ(x0) = +min +x∈[−1,1] Uµ(x). +(3.14) +If x0 ∈ supp(σ − µ), then the minimimu of Uµ over supp(σ − µ) is also +attained at x0, and it would follow from (3.5) that J(µ) = 0. Then the strict +inequality (3.13) holds. Hence we may assume that x0 ∈ [−1, 1]\supp(σ−µ). +Since µ ≤ σ and µα ≤ σ we see that both Uµ and Uµα are continuous +functions on C, see also Remark 2.2, and they are both harmonic in \[−1, 1]. +Also µ ≥ µα on [−1, 1] \ supp(σ − µ), and therefore Uµ−µα is superharmonic +on C \ supp(σ − µ). It has a finite limit at infinity since µ and µα have the +same total mass. The minimum principle for superharmonic functions [8, 15] +then tells us that the minimum of Uµ−µα is taken on supp(σ − µ) only. In +particular, since x0 ̸∈ supp(σ − µ) +Uµ−µα(x0) > +min +x∈supp(σ−µ) Uµ−µα(x). +(3.15) +Combining (3.15) with the obvious inequality (since supp(σ − µ) ⊂ [−1, 1]) +min +x∈supp(σ−µ) Uµ−µα(x) ≥ +min +x∈supp(σ−µ) Uµ(x) − max +x∈[−1,1] Uµα(x), +we obtain +Uµ(x0) − Uµα(x0) > +min +x∈supp(σ−µ) Uµ(x) − max +x∈[−1,1] Uµα(x), +which leads to +min +x∈supp(σ−µ) Uµ(x) − Uµ(x0) < max +x∈[−1,1] Uµα(x) − Uµα(x0) +≤ max +x∈[−1,1] Uµα(x) − min +x∈[−1,1] Uµα(x). +(3.16) +The left-hand side of (3.16) is equal to J(µ) because of (3.5) and (3.14). For +the right-hand side, we note that by the special property (2.11) of Uµα we +have +max +x∈[−1,1] Uµα(x) = ℓα = +min +x∈supp(σ−µα) Uµα(x), +and therefore the right-hand side of (3.16) is equal to J(µα). Thus J(µ) < +J(µα) and the proposition is proved. +17 + +Remark 3.4. According to Proposition 3.3 the constrained equilibrium mea- +sure µα is the unique maximizer of J(µ) among measures µ ∈ Mα,σ. We may +conclude from this that the sequence of normalized zero counting measures +of the extremal polynomials p∗ +n tends to the constrained equilibrium measure +µα as n → ∞. This follows from the proof of Proposition 3.2, combined with +the proven fact that +lim +n→∞ +1 +n log ∥p∗ +n∥[−1,1] +∥p∗ +n∥En += C(α), +as this gives that the weak∗ limit of any convergent subsequence is a measure +µ ∈ Mα,σ with J(µ) = C(α). Because of (3.13) this limit has to be µα, and +thus by a compactness argument the full sequence tends to µα indeed. +Acknowledgement +I want to thank Daan Huybrechs and Nick Trefethen for their interest in this +work, for useful discussions, and for stimulating me to write the details of +the proof of Theorem 1.1. +The author was supported by the long term structural funding ”Methusalem +grant of the Flemish Government” and by FWO Flanders projects EOS +30889451 and G.0910.20. +References +[1] B. Adcock and A. Shadrin, Fast and stable approximation of an- +alytic functions from equispaced samples via polynomial frames, +arXiv:2110.03755, to appear in Constr. Approx. +[2] J. Baik, T. Kriecherbauer, K. McLaughlin and P. Miller, Discrete Or- +thogonal Polynomials, Asymptotics and Applications, Princeton Uni- +versity Press, Princeton NJ, 2007. +[3] B. Beckermann and A.B.J. Kuijlaars, Superlinear convergence of conju- +gate gradients, SIAM J. Numer. Anal. 39 (2001), 300–329. +[4] P. Bleher and K. Liechty, Random Matrices and the Six-Vertex Model, +Amer. Math. Soc., Providence R.I. 2014. +18 + +[5] D. Coppersmith and T.J. Rivlin, The growth of polynomials bounded +at equally spaced points, SIAM J. Math. Anal. 23 (1992), 970–983. +[6] P. Deift and K.T-R McLaughlin, A continuum limit of the Toda lattice, +Mem. Amer. Math. Soc. 131 (1998), no. 624, 216 pp. +[7] P.D. Dragnev and E.B. Saff, Constrained energy problems with appli- +cations to orthogonal polynomials of a discrete variable, J. Anal. Math. +72 (1997), 223–259. +[8] L.L. Helms, Potential Theory, second edition, Springer, London 2009. +[9] D. Huybrechs and L.N. Trefethen, AAA interpolation of equispaced +data, arXiv:2207.11807. +[10] A.B.J. Kuijlaars, Which eigenvalues are found by the Lanczos method? +SIAM J. Matrix Anal. Appl. 22 (2000), 306–321. +[11] A.B.J. Kuijlaars, Convergence analysis of Krylov subspace iterations +with methods from potential theory, SIAM Review 48 (2006), 3–40. +[12] R.B. Platte, L.N. Trefethen, and A.B.J. Kuijlaars, Impossibility of fast +stable approximation of analytic functions from equispaced samples, +SIAM Review 53 (2011), 308–318. +[13] E.A. Rakhmanov, Equilibrium measure and the distribution of zeros +of the extremal polynomials of a discrete variable, Sbornik Math. 187 +(1996), 1213–1228. +[14] E.A. Rakhmanov, Bounds for polynomials with a unit discrete norm, +Ann. Math. 165 (2007), 55–88. +[15] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields, +Springer-Verlag, Berlin, 1997. +19 + diff --git a/eNAzT4oBgHgl3EQfn_3n/content/tmp_files/load_file.txt b/eNAzT4oBgHgl3EQfn_3n/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f9212e699d3bb3b65f02b37d97c8d2b3daa1f26 --- /dev/null +++ b/eNAzT4oBgHgl3EQfn_3n/content/tmp_files/load_file.txt @@ -0,0 +1,529 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf,len=528 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='01591v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='CA] 4 Jan 2023 Extremal polynomials on the n-grid Arno B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Kuijlaars January 5, 2023 Abstract The n-grid En consists of n equally spaced points in [−1, 1] includ- ing the endpoints ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The extremal polynomial p∗ n is the polynomial that maximizes the uniform norm ∥p∥[−1,1] among polynomials p of degree ≤ αn that are bounded by one on En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For every α ∈ (0, 1), we determine the limit of 1 n log ∥p∗ n∥[−1,1] as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The interest in this limit comes from a connection with an impossibility theorem on stable approximation on the n-grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 1 Statement of result The n-grid from the title refers to n equally spaced points in [−1, 1] En = {ξk,n = 2k−n−1 n−1 | k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' , n}, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1) ranging from −1 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Let 0 < α < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This paper is about the determination of the limit of the expression 1 n log sup deg p≤αn ∥p∥[−1,1] ∥p∥En (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) as n → ∞, where the norms are uniform norms over the indicated sets, and the supremum is over univariate polynomials p of degrees at most αn that do not vanish identically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The result was already announced in the paper [12] from 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Renewed interest in it is due to [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 1 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For every α ∈ (0, 1) the limit lim n→∞ 1 n log sup deg p≤αn ∥p∥[−1,1] ∥p∥En = C(α) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) exists and is equal to C(α) = (1 + α) log(1 + α) + (1 − α) log(1 − α) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4) The limit C(α) is positive and strictly increasing with α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' There is a nice Taylor expansion C(α) = ∞ � k=1 α2k 2k(2k − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The odd Taylor coefficients vanish since the power series defines an odd function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The even Taylor coefficients are positive and therefore C(α) ≥ 1 2α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' It is also worth noticing that C(α) → log 2 as α → 1−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For α = 1 however, we have that the limit in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) is +∞, since for each n, there is a non-zero polynomial of degree n that vanishes on the n-grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Discussion The limit (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) shows that a polynomial of degree ≤ αn that is bounded on En can be exponentially large somewhere in the interval [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Namely, if |p(ξk,n)| ≤ 1 for each k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' , n, then |p(x)| at some x ∈ [−1, 1] can be as large as en(C(α)+o(1)) as n → ∞, and the constant C(α) is sharp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The result is related to earlier work of Coppersmith and Rivlin [5] who showed that there exist universal constants C2 > C1 > 1 such that for n large enough, and for every d ≤ n − 1, Cd2/n 1 ≤ sup deg p≤d ∥p∥[−1,1] ∥p∥En ≤ Cd2/n 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) The inequalities (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) show that polynomials of degree d ≤ c√n that are bounded by one on En are uniformly bounded on [−1, 1] with a constant that only depends on c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' However, if d grows proportionally with n then (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) shows that polynomials that are bounded by one on En may be exponentially large on [−1, 1], and this behavior is made more precise in the limit (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The comparisons of the two uniform norms ∥ · ∥En and ∥ · ∥[−1,1] arises naturally when studying approximation or interpolation methods for analytic functions based on function values on the n-grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' There is a trade-off between 2 convergence and stability properties that was made precise in the impossi- bility theorem of [12, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For example, exponential convergence as n → ∞ comes together with exponential instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The proof of the impossibility theorem in [12] relies on the Coppersmith-Rivlin inequalities (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For recent work in this direction we refer to [1, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' It was observed in [12, section 4] that the phenomenon that polynomials of degree d ≈ αn can be much larger on [−1, 1] than on En may be understood in terms of potential theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Here one thinks of a polynomial in terms of its zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' A polynomial may be small at certain gridpoints in En by simply having a zero very close to these gridpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' However, since there are more gridpoints than zeros this cannot happen for every gridpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The extremal polynomial p∗ n for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) will place a certain fraction of its zeros extremely close to gridpoints lying in a subset S of [−1, 1] (with S depending on α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then p∗ n is small at the gridpoints in S but not necessarily in between, and in fact it has high oscillations in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Following [2, 7] we call S the saturated region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The non-saturated region [−1, 1]\\S has considerably fewer zeros than gridpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The extremal polynomial p∗ n is not only small at the gridpoints in [−1, 1] \\ S but it is of comparable size over the full set [−1, 1] \\ S, see [14] for very precise estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This phenomenon was first described by Rakhmanov [13] for orthogonal polynomials on the n-grid, or more generally, for polynomials that minimize a discrete Lp norm on En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' These polynomials have their zeros in [−1, 1] and they are separated by the gridpoints, in the sense that in between any two distinct zeros there is at least one gridpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' In the limit n → ∞ the zeros of the extremal polynomials of degree ⌊αn⌋ considered in [13] have a limiting distribution µα (depending only on α) that is characterized by a constrained equilibrium problem from potential theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The measure µα has a density with respect to Lebesgue measure on [−1, 1] with dµα dx ≤ 1 2 where 1 2 is the limiting density of the gridpoints as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The saturated region S is where the equality dµα dx = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We give details in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The extremal polynomials p∗ n for the extremal problem in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) have the same limiting zero distribution µα as n → ∞, as we will show in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Also in other aspects they behave similarly to the Lp-extremal polynomials on the n-grid, and this will be the clue to the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 3 Outline of the proof The extremal polynomial for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) is a polynomial p∗ n of degree ≤ αn such that ∥p∗ n∥[−1,1] ∥p∗ n∥En = sup deg p≤αn ∥p∥[−1,1] ∥p∥En .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6) The proof of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) then naturally comes in two steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' In the first step we prove the lower bound lim inf n→∞ 1 n log ∥p∗ n∥[−1,1] ∥p∗ n∥En ≥ C(α) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7) and in the second step the corresponding upper bound lim sup n→∞ 1 n log ∥p∗ n∥[−1,1] ∥p∗ n∥En ≤ C(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8) The lower bound comes from considering the L∞-extremal polynomials P ∗ n on En, where P ∗ n is the monic polynomial of degree ⌊αn⌋ that minimizes the uniform norm ∥ · ∥En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Using the results from [7, 13] and some additional calculations we prove in section 2 that lim n→∞ 1 n log ∥P ∗ n∥[−1,1] ∥P ∗n∥En = C(α), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='9) and this implies the lower bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The upper bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8) is proved in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' It comes from a study of the zeros of the extremal polynomials p∗ n satisfying (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We show in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 that the zeros are real and simple and at least ⌊αn⌋ − 1 zeros are in [−1, 1] where they are separated by the gridpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Note that one zero could be in R \\ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We then use potential theoretic arguments to show that the limiting distribution of the zeros of p∗ n is equal to the constrained equilibrium measure µα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Along the way we prove that µα is the maximizer of a functional J that we define in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) with J(µα) = C(α), which leads to the upper bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We finally note that discrete orthogonal polynomials and the constrained equilibrium problem also play a role in the analysis of iterative methods from numerical linear algebra [3, 10, 11], and the asymptotic analysis of integrable systems [6], random matrices and random tiling models [2, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 4 2 Proof of the lower bound 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 Extremal polynomials on the n-grid As explained above, we are going to consider the monic polynomial P ∗ n of degree ⌊αn⌋ such that ∥P ∗ n∥En = min deg P = ⌊αn⌋ P is monic ∥P∥En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1) We are going to show that the limit (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='9) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Rakhmanov [13] considered polynomials P of degree n that are monic (leading coefficient equal to 1) and that minimize either the uniform norm ∥P∥EN, or a discrete p-norm on EN among all such polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The interest is in their asymptotic behavior as both n, N → ∞ with n/N → c < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The equispaced n-grid (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1) is actually only a special case of far more general discrete sets that are considered in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Compared to [13] we change N �→ n, n �→ ⌊αn⌋, c �→ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2 Limiting behavior of zeros The zeros of P ∗ n are real and simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' They belong to the interval (−1, 1), where they are separated by the nodes in En, see [7, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' To P ∗ n we associate the normalized zero counting measure νn = 1 n ⌊αn⌋ � k=1 δxk,n, where xk,n for k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' , ⌊αn⌋, denote the zeros of P ∗ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Note that we nor- malize with the factor 1/n while the degree of P ∗ n is ⌊αn⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Thus νn is not a probability measure but rather has a total mass ⌊αn⌋ n Rakhmanov [13, Theorem 2], see also [7, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3], proved that the weak∗ limit νn ∗→ µα (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) exists, where µα is the measure on [−1, 1] with density [13, Theorem 1] dµα dx = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 1 2, for x ∈ [−1, −r] ∪ [r, 1], 1 π arctan � α √ r2 − x2 � , for x ∈ [−r, r], (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) 5 where r = r(α) = √ 1 − α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4) The density on [−r, r] can alternatively be written as dµα dx = 1 2 − 1 π arccos � α √ 1 − x2 � , for x ∈ [−r, r].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) The measure µα belongs to the class Mα,σ := {µ | ∫ dµ = α, 0 ≤ µ ≤ σ} (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6) where dσ = 1 2χ[−1,1](x)dx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7) denotes the Lebesgue measure restricted to [−1, 1] with normalization such that ´ dσ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The upper constraint µα ≤ σ comes from the fact that the zeros of P ∗ n are separated by the nodes ξk,n in the equispaced grid En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Rakhmanov also characterized µα in terms of notions from logarithmic potential theory [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Let I(µ) = ¨ log 1 |x − y|dµ(x)dµ(y) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8) and Uµ(x) = ˆ log 1 |x − y|dµ(y) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='9) denote the logarithmic energy and the logarithmic potential of a measure µ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then I(µα) = min µ∈Mα,σ I(µ) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='10) and µα is the unique minimizer within the class (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Furthermore, there is a constant ℓα such that Uµα(x) � = ℓα, for x ∈ supp(σ − µα), ≤ ℓα, for x ∈ [−1, 1], (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11) and µα is the only measure µ in Mα,σ such that Uµ(x) = ℓ is constant on supp(σ − µ) and Uµ(x) ≤ ℓ on [−1, 1] for a certain constant ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Because of the upper constraint µ ≤ σ, the measure µα is called a con- strained equilibrium measure, see [2, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The saturated region S is where dµα dx = dσ dx = 1 2 and in view of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) we have S = [−1, −r] ∪ [r, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The con- straint is not active in the region where dµα dx < 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This is the non-saturated region and its closure is supp(σ − µα) = [−r, r].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3 Two lemmas The connection between potential theory and the asymptotics theory of poly- nomials is well-known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' If P is a monic polynomial and ν = 1 n � x:P (x)=0 δx is its normalized zero counting measure (each zero is included in the sum according to its multiplicity), then 1 n log |P(x)| = −Uν(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' If (Pn)n is a sequence of monic polynomials, and (νn)n is the corresponding sequence of normalized zero counting measures then the convergence of (νn)n contains information on the nth root asymptotic behavior of the polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We need two such results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (a) Let (Pn)n be a sequence of monic polynomials, deg Pn ≤ αn, having real and simple zeros, such that the zeros of Pn are separated by the points of En for every n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Suppose that the sequence of normalized zero counting measures (νn)n where νn = 1 n � x:Pn(x)=0 δx, has a weak∗ limit µ as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then µ ≤ σ, and lim inf n→∞ 1 n log ∥Pn∥En ≥ − min x∈supp(σ−µ) Uµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='12) (b) If (P ∗ n)n is the sequence of extremal polynomials satisfying (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1) then νn ∗→ µα as n → ∞, and equality holds lim n→∞ 1 n log ∥P ∗ n∥En = − min x∈supp(σ−µ) Uµα(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='13) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Part (a) is Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2 of [13], where it is stated under the assumption that the zeros are in [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' See Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5 in [7] for the statement without this extra assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Part (b) is in [13, Theorem 2] or [7, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Part (b) of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 will be used in the proof of the lower bound, while part (a) will be used in the proof of the upper bound, see the proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 7 Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Note that the logarithmic potential Uµ of a positive measure µ is a lower semi-continuous function [15] and therefore its minimum over a compact (as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='12) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='13), as well as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='14) below) exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' In the situation of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1, however, the logarithmic potential Uµ is actually continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This follows from µ ≤ σ and the fact that Uσ is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Indeed, Uσ−µ is lower semi-continuous, and therefore Uµ = Uσ − Uσ−µ is upper semi-continuous as well, hence continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The second lemma is probably well-known, but I could not find an ap- propriate reference for it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Suppose (Pn)n is a sequence of monic polynomials, deg Pn ≤ αn, such that the zeros of all Pn are in a compact set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Suppose that the sequence of normalized zero counting measures (νn)n has a weak∗ limit µ as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then lim n→∞ 1 n log ∥Pn∥[−1,1] = − min x∈[−1,1] Uµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='14) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' By the principle of descent [15] we have Uµ(x∗) ≤ lim inf n→∞ Uνn(xn) whenever xn → x∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Since |Pn(x)| = e−nUνn(x), this means that lim sup n→∞ 1 n log |Pn(xn)| ≤ −Uµ(x∗) ≤ − min x∈[−1,1] Uµ(x), whenever (xn)n is a convergent sequence with a limit x∗ ∈ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Taking xn ∈ [−1, 1] with |Pn(xn)| = ∥Pn∥[−1,1] and passing to convergent subse- quences if necessary, we then find lim sup n→∞ 1 n log ∥Pn∥[−1,1] ≤ − min x∈[−1,1] Uµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='15) By the lower envelope theorem [15] we have Uµ(x) = lim n→∞ Uνn(x) q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='16) where q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' means quasi everywhere, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=', the exceptional set is a polar set (a small set for potential theory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The limit (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='16) means lim n→∞ 1 n log |Pn(x)| = −Uµ(x) q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='17) 8 Let x0 ∈ [−1, 1] be such that Uµ(x0) = min x∈[−1,1] Uµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='18) Note that the minimum exists since Uµ is lower semicontinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then we claim that {x ∈ [−1, 1] | Uµ(x) < Uµ(x0) + ε} (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='19) is not a polar set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This is easy to see if Uµ is a continuous function, since then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='19) contains a non-empty interval and this is not a polar set, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [8, Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' If Uµ is not continuous, then we can come to the same conclusion, if we use certain more advanced results from potential theory, in particular around thinness and the fine topology, which we will not explain here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The set {x ∈ C | Uµ(x) < Uµ(x0) + ε} is an open neighborhood of x0 in the fine topology, and [−1, 1] is not thin at x0 ∈ [−1, 1], see [8, Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Therefore (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='19) is not a polar set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Knowing that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='19) is not polar, we conclude from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='17) that there exists x1 ∈ [−1, 1] with Uµ(x1) < Uµ(x0) + ε and the limit (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='17) holds for x = x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then by the above and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='18) lim inf n→∞ 1 n log ∥Pn∥[−1,1] ≥ lim n→∞ 1 n log |Pn(x1)| = −Uµ(x1) > −Uµ(x0) − ε = − min x∈[−1,1] Uµ(x) − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='20) Then the lemma follows from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='15) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='20), since ε > 0 is arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4 Conclusion of the proof of the lower bound We apply the two lemmas to the extremal polynomials P ∗ n satisfying (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 (b) we have lim n→∞ 1 n log ∥P ∗ n∥En = − min x∈[−r,r] Uµα(x), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='21) since supp(σ − µα) = [−r, r] by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' From Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3 and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) we get lim n→∞ 1 n log ∥P ∗ n∥[−1,1] = − min x∈[−1,1] Uµα(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='22) 9 Combining (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='21) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='22) we obtain lim n→∞ 1 n log ∥P ∗ n∥[−1,1] ∥P ∗ n∥En = min x∈[−r,r] Uµα(x) − min x∈[−1,1] Uµα(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='23) The limit (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='9) and thereby the lower bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7) follows from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='23) and the following proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We have C(α) = min x∈[−r,r] Uµα(x) − min x∈[−1,1] Uµα(x) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='24) with C(α) as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4) above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The derivative of Uµα is a principal value integral that can be calcu- lated explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The result is d dxUµα(x) = − dµα(y) x − y = 1 2 log � 1 − x2� − log � α + √ x2 − r2 � , for r < x < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25) We give the details of the calculations for (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25) later, after finishing the main line of the argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The derivative (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25) is negative for r < x < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Therefore (and by symmetry) the minimum of Uµα(x) over [−1, −r] ∪ [r, 1] is at x = ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Also Uµα is constant on [−r, r] by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Hence min x∈[−r,r]Uµα(x) − min x∈[−1,1] Uµα(x) = Uµα(r) − Uµα(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' In view of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25) and the fundamental theorem of calculus, we arrive at (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='24) provided that C(α) = ˆ 1 r � log � α + √ x2 − r2 � − 1 2 log � 1 − x2�� dx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='26) with r = r(α) = √ 1 − α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Thus the proof of the proposition is complete up to the verification of the two identities (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='26) to which we turn next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 10 Proof of the identity (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' By (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) the principal value integral in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25) (with x ∈ (r, 1)) splits into two parts dµα(y) x − y = 1 2 1 −1 1 x − ydy − 1 π ˆ r −r 1 x − y arccos � α � 1 − y2 � dy = 1 2 log(1 + x) − 1 2 log(1 − x) − Iα(x) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='27) where Iα(x) = 1 π ˆ r −r 1 x − y arccos � α � 1 − y2 � dy is a usual integral (not a principal value integral) that converges for every x > r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We integrate by parts Iα(x) = −α π ˆ r −r log(x − y) y 1 − y2 1 � r2 − y2dy, x > r, and then compute the derivative d dxIα(x) = −α π ˆ r −r 1 x − y y 1 − y2 1 � r2 − y2dy = − αx 1 − x2 1 √ x2 − r2 − 1 2 1 x − 1 + 1 2 1 x + 1 by first turning the integral into an integral on a contour around the interval [−r, r] in the complex plane, and then evaluating it by the residue theorem for the exterior domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The result can be integrated again to give Iα(x) = − log � α + √ x2 − r2 � + log(1 + x), x > r, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='28) where we note that the constant of integration vanishes since Iα(x) → 0 as x → +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Using this in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='27) we obtain (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Proof of the identity (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Observe that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='26) holds for α = 0 since then both sides are equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Thus it is enough to show that the α-derivatives of the two sides agree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For the left-hand side of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='26) we have by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4) d dαC(α) = log(1 + α) − log(1 − α) 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='29) 11 For the right-hand side we first compute the α-derivative of the integrand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Using r = r(α) = √ 1 − α2 we find by direct calculation d dα � log � α + √ x2 − r2 � − 1 2 log � 1 − x2�� = 1 √ x2 − r2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The integrand of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='26) vanishes at x = r, and thus we obtain the following derivative of the right hand side of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='26) ˆ 1 r 1 √ x2 − r2dx = log � x + √ x2 − r2 ���� x=1 x=r = log � 1 + √ 1 − r2 � − log r = log � 1 + α2� − 1 2 log(1 − α) which after simplification agrees with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 3 Proof of the upper bound To prove the upper bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8) we start by showing that the extremal poly- nomial p∗ n has only real zeros that are separated by the n-grid En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 Zeros of the extremal polynomial We fix 0 < α < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For each n, we take a polynomial p∗ n of degree ≤ αn as in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6) that we normalize such that ∥p∗ n∥[−1,1] = 1 = p∗ n(x∗ n) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1) for some x∗ n ∈ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' It is clear that x∗ n ̸∈ En since otherwise ∥pn∥En = 1, and the polynomial would not maximize the ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (a) The polynomial p∗ n minimizes ∥p∥En among all polyno- mials p of degree ≤ αn with p(x∗ n) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (b) The polynomial q∗ n defined by q∗ n(x) = x⌊αn⌋p∗ n � x∗ n + 1 x � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) 12 is a monic polynomial of degree ⌊αn⌋ that minimizes the weighted uni- form norm max x∈Σn ��x−⌊αn⌋q(x) �� , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) among all monic polynomials of degree ⌊αn⌋, where Σn is the trans- formed grid, Σn = {(x − x∗ n)−1 | x ∈ En}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4) (c) p∗ n has only simple real zeros with at least ⌊αn⌋ − 1 zeros in [−1, 1], (d) The zeros of p∗ n are separated by the points in the n-grid En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (a) Suppose p is a polynomial of degree αn with p(x∗ n) = 1 and ∥p∥En < ∥p∗ n∥En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Since x∗ n ∈ [−1, 1] and p(x∗ n) = 1, we then have ∥p∥[−1,1] ≥ 1 = ∥p∗ n∥[−1,1], and therefore ∥p∥[−1,1] ∥p∥En > ∥p∗ n∥[−1,1] ∥p∗ n∥En which contradicts the extremal property (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6) of p∗ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (b) It is easy to see that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) is indeed a polynomial of degree ⌊αn⌋ and it is monic because p∗ n(x∗ n) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Likewise, we associate to any polynomial p of degree ≤ αn with p(x∗ n) = 1 the monic polynomial q(x) = x⌊αn⌋p(x∗ n + 1 x) of degree ⌊αn⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then p(x) = (x − x∗ n)⌊αn⌋q � 1 x−x∗n � and, with Σn as in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3) ∥p∥En = max x∈En ���(x − x∗ n)⌊αn⌋q � 1 x−x∗n ���� = max x∈Σn |w(x)q(x)| with w(x) = |x|−⌊αn⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Because of part (a) we see that q∗ n minimizes ∥wq∥Σn among monic polyno- mials of degree ⌊αn⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (c) q∗ n has only real zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Indeed if z0 were a non-real zero of q∗ n then q(x) = x − Re z0 x − z0 q∗ n(x) 13 would be a monic polynomial of the same degree satisfying |q(x)| < |q∗ n(x)| for every real x that is not a zero of q∗ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This would lead to a contradiction with part (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Also the zeros of q∗ n are simple, since if x0 is a higher order real zero then for small enough ε > 0 the monic polynomial q(x) = (x − x0 − ε)(x − x0 + ε) (x − x0)2 q∗ n(x) would have a smaller weighted norm ∥wq∥Σn than q∗ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Because of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2) it then follows that p∗ n has only simple real zeros as well, since any zero x0 ̸= 0 of q∗ n corresponds to the zero x∗ n + 1 x0 of p∗ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Since q∗ n has ⌊αn⌋ simple real zeros, at least ⌊αn⌋−1 of them are different from 0, and thus p∗ n has at least that number of simple real zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' In particular p∗ n has degree ≥ ⌊αn⌋ − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (d) The zeros of q∗ n are separated by the points of Σn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Indeed if x1 < x2 are two zeros of q∗ n and the interval [x1, x2] would not contain any points of Σn then x �→ (x − x1 + ε)(x − x2 − ε) (x − x1)(x − x2) q∗ n(x) would be a monic polynomial of the same degree with a strictly smaller weighted norm ∥wqn∥Σn < ∥wq∗ n∥Σn, provided ε > 0 is small enough, which would contradict part (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This in turn implies that in between any two zeros of p∗ n there is a gridpoint of En, which gives part (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2 The functional J Recall from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='10) that µα minimizes I(µ) among measures µ ∈ Mα,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We consider another functional J(µ) = min x∈supp(σ−µ) Uµ(x) − min x∈[−1,1] Uµ(x) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) on measures µ ∈ Mα,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Note that by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4 we have J(µα) = C(α) > 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6) since supp(σ − µα) = [−r, r].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 14 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We have lim sup n→∞ 1 n log ∥p∗ n∥[−1,1] ∥p∗ n∥En ≤ sup µ∈Mα,σ J(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We start by taking a subsequence N ⊂ N such that lim N ∋n→∞ 1 n log ∥p∗ n∥[−1,1] ∥p∗ n∥En = lim sup n→∞ 1 n log ∥p∗ n∥[−1,1] ∥p∗ n∥En .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7) The zeros of p∗ n may not be uniformly bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' However, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1(c), there is at most one zero outside [−2, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' If there is such a zero, say x0, then we set �pn(x) = κ−1 n p∗ n(x) x − x0 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8) where κn is the leading coefficient of p∗ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Otherwise we set �pn(x) = κ−1 n p∗ n(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='9) Then �pn is a monic polynomial of degree ⌊αn⌋ or ⌊αn⌋ − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' In case (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='9) we clearly have ∥p∗ n∥[−1,1] ∥p∗ n∥En = ∥�pn∥[−1,1] ∥�pn∥En , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='10) while in case (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8) we can claim that 1 3 ∥p∗ n∥[−1,1] ∥p∗n∥En ≤ ∥�pn∥[−1,1] ∥�pn∥En ≤ 3∥p∗ n∥[−1,1] ∥p∗n∥En .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11) To obtain (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11) we note that since |x0| > 2 we have |x0| − 1 ≤ |x − x0| ≤ |x0| + 1 for x ∈ [−1, 1], so that |κ−1 n ||pn ∗ (x)| |x0| + 1 ≤ |�pn(x)| ≤ |κ−1 n | |p∗ n(x)| |x0| − 1, for x ∈ [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Taking the supremum over x ∈ [−1, 1] and over x ∈ En, we obtain |κ−1 n | |x0| + 1∥p∗ n∥[−1,1] ≤ ∥�pn∥[−1,1] ≤ |κ−1 n | |x0| − 1∥p∗ n∥[−1,1], |κ−1 n | |x0| + 1|κ−1 n |∥p∗ n∥En ≤ ∥�pn∥En ≤ |κ−1 n | |x0| − 1∥p∗ n∥En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 15 Taking ratios of these inequalities leads to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11) since |x0|+1 |x0|−1 < 3 for |x0| > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' From (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='7) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='10), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11) it then follows that lim sup n→∞ 1 n ∥p∗ n∥[−1,1] ∥p∗ n∥En = lim N ∋n→∞ 1 n log ∥�pn∥[−1,1] ∥�pn∥En .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='12) Next, by taking a further subsequence if necessary, we may also assume that the sequence (νn)n of normalized zero counting measures, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=', νn = 1 n � x:�pn(x)=0 δx converges in the weak∗ sense as n → ∞ with n ∈ N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Here we use Helly’s selection theorem, and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 (d) the weak∗ limit, say µ, belongs to Mα,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Now we apply Lemmas 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3 to the polynomials �pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' From part (a) of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1 we get lim inf N ∋n→∞ 1 n log ∥�pn∥En ≥ − min x∈supp(σ−µ) Uµ(x) and from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3 lim N ∋n→∞ 1 n log ∥�pn∥[−1,1] = − min x∈[−1,1] Uµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' These limits and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='12) then imply that lim sup n→∞ 1 n log ∥p∗ n∥[−1,1] ∥p∗n∥En ≤ J(µ) and the proposition since µ ∈ Mα,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3 Conclusion of the proof of the upper bound In view of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2 it remains to show that sup µ∈Mα,σ J(µ) = C(α) in order to obtain (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This is the final result of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For every µ ∈ Mα,σ with µ ̸= µα we hae J(µ) < J(µα) = C(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='13) 16 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We already noted in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='6) that J(µα) = C(α) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Let µ ∈ Mα,σ with µ ̸= µα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Take x0 ∈ [−1, 1] with Uµ(x0) = min x∈[−1,1] Uµ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='14) If x0 ∈ supp(σ − µ), then the minimimu of Uµ over supp(σ − µ) is also attained at x0, and it would follow from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) that J(µ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Then the strict inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='13) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Hence we may assume that x0 ∈ [−1, 1]\\supp(σ−µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Since µ ≤ σ and µα ≤ σ we see that both Uµ and Uµα are continuous functions on C, see also Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2, and they are both harmonic in \\[−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Also µ ≥ µα on [−1, 1] \\ supp(σ − µ), and therefore Uµ−µα is superharmonic on C \\ supp(σ − µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' It has a finite limit at infinity since µ and µα have the same total mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The minimum principle for superharmonic functions [8, 15] then tells us that the minimum of Uµ−µα is taken on supp(σ − µ) only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' In particular, since x0 ̸∈ supp(σ − µ) Uµ−µα(x0) > min x∈supp(σ−µ) Uµ−µα(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='15) Combining (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='15) with the obvious inequality (since supp(σ − µ) ⊂ [−1, 1]) min x∈supp(σ−µ) Uµ−µα(x) ≥ min x∈supp(σ−µ) Uµ(x) − max x∈[−1,1] Uµα(x), we obtain Uµ(x0) − Uµα(x0) > min x∈supp(σ−µ) Uµ(x) − max x∈[−1,1] Uµα(x), which leads to min x∈supp(σ−µ) Uµ(x) − Uµ(x0) < max x∈[−1,1] Uµα(x) − Uµα(x0) ≤ max x∈[−1,1] Uµα(x) − min x∈[−1,1] Uµα(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='16) The left-hand side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='16) is equal to J(µ) because of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='5) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' For the right-hand side, we note that by the special property (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11) of Uµα we have max x∈[−1,1] Uµα(x) = ℓα = min x∈supp(σ−µα) Uµα(x), and therefore the right-hand side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='16) is equal to J(µα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Thus J(µ) < J(µα) and the proposition is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 17 Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' According to Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='3 the constrained equilibrium mea- sure µα is the unique maximizer of J(µ) among measures µ ∈ Mα,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' We may conclude from this that the sequence of normalized zero counting measures of the extremal polynomials p∗ n tends to the constrained equilibrium measure µα as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' This follows from the proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='2, combined with the proven fact that lim n→∞ 1 n log ∥p∗ n∥[−1,1] ∥p∗ n∥En = C(α), as this gives that the weak∗ limit of any convergent subsequence is a measure µ ∈ Mα,σ with J(µ) = C(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Because of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='13) this limit has to be µα, and thus by a compactness argument the full sequence tends to µα indeed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Acknowledgement I want to thank Daan Huybrechs and Nick Trefethen for their interest in this work, for useful discussions, and for stimulating me to write the details of the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' The author was supported by the long term structural funding ”Methusalem grant of the Flemish Government” and by FWO Flanders projects EOS 30889451 and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='0910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' References [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Adcock and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Shadrin, Fast and stable approximation of an- alytic functions from equispaced samples via polynomial frames, arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='03755, to appear in Constr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Baik, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Kriecherbauer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' McLaughlin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Miller, Discrete Or- thogonal Polynomials, Asymptotics and Applications, Princeton Uni- versity Press, Princeton NJ, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [3] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Beckermann and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Kuijlaars, Superlinear convergence of conju- gate gradients, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 39 (2001), 300–329.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [4] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Bleher and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Liechty, Random Matrices and the Six-Vertex Model, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=', Providence R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 18 [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Coppersmith and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Rivlin, The growth of polynomials bounded at equally spaced points, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 23 (1992), 970–983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Deift and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='T-R McLaughlin, A continuum limit of the Toda lattice, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 131 (1998), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 624, 216 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Dragnev and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Saff, Constrained energy problems with appli- cations to orthogonal polynomials of a discrete variable, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 72 (1997), 223–259.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Helms, Potential Theory, second edition, Springer, London 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Huybrechs and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Trefethen, AAA interpolation of equispaced data, arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='11807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Kuijlaars, Which eigenvalues are found by the Lanczos method?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Matrix Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 22 (2000), 306–321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Kuijlaars, Convergence analysis of Krylov subspace iterations with methods from potential theory, SIAM Review 48 (2006), 3–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Platte, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Trefethen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Kuijlaars, Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Review 53 (2011), 308–318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [13] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Rakhmanov, Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable, Sbornik Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 187 (1996), 1213–1228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Rakhmanov, Bounds for polynomials with a unit discrete norm, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 165 (2007), 55–88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' [15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Saff and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} +page_content=' 19' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNAzT4oBgHgl3EQfn_3n/content/2301.01591v1.pdf'} diff --git a/eNE0T4oBgHgl3EQf5gKT/vector_store/index.faiss b/eNE0T4oBgHgl3EQf5gKT/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a26ad81814a51bc6ea98d0c089fbb99f5612c6f4 --- /dev/null +++ b/eNE0T4oBgHgl3EQf5gKT/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7b854a915e686dcdd153a65fd10b62fb51f8cef3bc9e6c5a93c7343fd176be7c +size 2752557 diff --git a/eNFKT4oBgHgl3EQfrS7d/content/tmp_files/2301.11878v1.pdf.txt b/eNFKT4oBgHgl3EQfrS7d/content/tmp_files/2301.11878v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..d5c1a447411a78869c6b403b381f63a8214f384e --- /dev/null +++ b/eNFKT4oBgHgl3EQfrS7d/content/tmp_files/2301.11878v1.pdf.txt @@ -0,0 +1,2153 @@ +Large Low Background kTon-Scale Liquid Argon Time +Projection Chambers +T. Bezerra1, A. Borkum1, E. Church2, C. Cuesta3, Z. Djurcic4, J. Genovesi5, +J. Haiston5, C. M. Jackson2, I. Lazanu6, B. Monreal7, S. Munson2, C. Ortiz8, +M. Parvu6, S. J. M. Peeters1, D. Pershey8, S. S. Poudel2, J. Reichenbacher5, +R. Saldanha2, K. Scholberg8, G. Sinev5, S. Westerdale9, J. Zennamo10 +1University of Sussex, Brighton, BN1 9RH, United Kingdom +2Pacific Northwest National Laboratory, Richland, WA 99352, USA +3CIEMAT, E-28040 Madrid, Spain +4Argonne National Laboratory, Argonne, IL 60439, USA +5South Dakota School of Mines and Technology, Rapid City, SD 57701, USA +6University of Bucharest, Bucharest, Romania +7Case Western Reserve University, Cleveland, Ohio 44106, USA +8Duke University, Durham, NC 27708, USA +9Princeton University, Princeton, NJ 08544, USA +10Fermi National Accelerator Laboratory, Batavia, IL 60510, USA +E-mail: eric.church@pnnl.gov, christopher.jackson@pnnl.gov +Abstract: We find that it is possible to increase sensitivity to low energy physics in a third +or fourth DUNE-like module with careful controls over radiopurity and targeted modifications +to a detector similar to the DUNE Far Detector design. In particular, sensitivity to supernova +and solar neutrinos can be enhanced with improved MeV-scale reach. A neutrinoless double beta +decay search with 136Xe loading appears feasible. Furthermore, sensitivity to Weakly-Interacting +Massive Particle (WIMP) Dark Matter (DM) becomes competitive with the planned world program +in such a detector, offering a unique seasonal variation detection that is characteristic for the nature +of WIMPs. +arXiv:2301.11878v1 [hep-ex] 27 Jan 2023 + +Large Low Background kTon-Scale LArTPCs +2 +1. Introduction +In this study we introduce and discuss a dedicated low background module that would enhance the +physics program of next-generation experiments such as the planned Deep Underground Neutrino +Experiment (DUNE). Such a low background DUNE-like module could be installed as either +module 3 or module 4, the so-called “Module of Opportunity” in DUNE. Such a module would +increase the physics reach of supernova and solar neutrino physics, and could potentially host +a next-generation neutrinoless double beta decay (0νββ) or Weakly Interacting Massive Particle +(WIMP) dark matter search. We refer to this design as the Sanford Underground Low background +Module (SLoMo). +The physics reach would be enhanced by lowering the nominal energy threshold of a DUNE- +like experiment from the anticipated 5-10 MeV to levels necessary to address three potential +physics targets, listed in order of increasing difficulty: +• ∼ 3.5 MeV energy threshold. This threshold is set by the Q-value of the 42K (daughter of +42Ar) in the detector target. By reducing neutron captures, alpha-emitting radon daughters +and pileup events above this threshold, supernova burst neutrino sensitivity could be increased +in distance, energy and time. Sensitivity to solar neutrinos would also be enhanced, allowing +explorations of interesting solar-reactor oscillation tensions and Non-Standard Interactions. +• ∼ 0.5 MeV energy threshold. This threshold is set by the decay Q-value of the 39Ar in the +detector target. With reduction of electron and photon backgrounds in the target, particularly +if the 42Ar content is reduced through use of underground argon (UAr), sensitivity to low +energy solar neutrinos from the CNO process would allow a precision measurement to be +made. Such a detector will be sensitive to 0νββ search with loading of 136Xe,. +• < 100 keV energy threshold. +This threshold could be achieved by enhancing the light +collection within the detector and by lowering the 39Ar background by deploying UAr. With +rejection of electron recoil backgrounds (using timing based pulse shape discrimination), a +sensitive WIMP dark matter search could take place, and interesting phenomena such as +a supernova coherent elastic neutrino-nucleus scattering signal (a CEνNS glow) could be +studied. +These low background targets are achievable due to the unprecedented size and also the increased +radiopurity of the module, allowing significant fiducialization and hence less stringent radioactive +background requirements than current world-leading dark matter searches. The light enhancements +are achievable with current production techniques. As described in Section 2.2.3, production +of UAr at the scale required for a DUNE module is potentially achievable, though it requires a +dedicated effort to identify the potential argon source and work with commercial gas suppliers +In this paper in Section 2 we outline the design of the module and discuss potential paths to +achieve the detector requirements. In Section 3 we present our initial studies of physics reach of +this detector. + +Large Low Background kTon-Scale LArTPCs +3 +Figure 1. Summary of physics targets of this low background module and the primary radiological +backgrounds. +2. Detector Design +This section outlines the proposed design for the low background module and describes in detail +the radioactive background control and photon detection system enhancements required to enable +physics measurements outlined in the introduction. We note this module design is not necessarily +endorsed by the DUNE collaboration, as the so-called “Phase II” process that includes building the +final two far detector modules is in its early stages. +2.1. Module Layout +A low background module and its attendant physics goals are enabled most simply by minimizing +the detector components in the bulk of the argon. The resulting module must still allow for very +good light detection efficiency and for charge detection efficiency similar to existing designs of +large LArTPCs [1, 2, 3]. For the benefit of conforming to the longstanding plans for the Long +Baseline Neutrino Facility (LBNF) far detector complex and cavern layouts, we also want to +use the same commercial cryostat concept and existing module designs to the greatest extent +possible and perturb them only where necessary. Starting with the existing DUNE modules, simple +modifications assure minimal disruption to the main long baseline neutrino oscillation program to +measure remaining parameters in the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. +2.1.1. Single phase +We therefore start with DUNE’s Far Detector Vertical Drift Module (VD) [4], +sometimes referred to as Module 2, and consider design modifications to suit our low background +purposes. We show a working design in Figure 2. +Water in “bricks” which are imagined to be nestled among the I-beam support structure + +WIMPs +Ovβ +Solar Neutrinos +Supernova Neutrinos +39Ar +42 Ar +Internal Alphas/Betas/Gammas +NeutronsLarge Low Background kTon-Scale LArTPCs +4 +Figure 2. Shown is the base design for the proposed low background detector. Blue shows external +water “bricks”. The top and bottom yellow planes are the Charge Readout Panels unchanged from +the Vertical Detector design. The central cathode is in green. The white box of acrylic (full interior +volume) is of thickness 1 inch and has x,y,z extent of 6,12,40 m. The black points are SiPM modules +shown here at a coverage of 10%, while some studies in this paper use up to 80% coverage. A +proposed fiducial volume totaling 2 kTon is shown in the two beige boxes. This paper also considers +a 3 kTon volume. +achieve large external neutron reduction, as discussed in Section 2.2.1. +We keep the Charge +Readout Planes of the VD unaltered. Similarly the central cathode of the VD is preserved with +the exception that the sparse and mostly distant photon detection modules, known as X-Arapucas, +are swapped out for the SiPM modules mounted within the cathode plane – at least on that part +of the cathode in the inner region of this detector. An acrylic box of one inch thickness with +x,y,z extent of 6,12,40 m serves to mount SiPM modules and reflective WLS foils. Here x is the +horizontal dimension, y is the vertical dimension, z is in the beam direction. SiPM modules are +mounted on the inside of the acrylic box at anywhere from 10-80% area coverage. We envision two +1 or 1.5 kTon long skinny fiducial volumes, depending on the study, that have a stand-off of 1.5m +from the central cathode. We also discuss, alternatively, a 3 kTon fiducial volume in this paper in +studies where backgrounds from the central cathode are thought to be small or events from it can +be reconstructed and cut away. +The bulk volume of this module consists mostly of argon, with only small material +contributions such as the slender support structures for the cathode plane panels. As in the VD, +there are two 6 m vertical drifts. + +Large Low Background kTon-Scale LArTPCs +5 +(a) +Figure 3. +Interactions are shown above 100 keV for neutrons emanating from the cold cryostat +stainless steel at 2 · 10−10 neutrons/cm3/sec for a 1.4 yr exposure. We show a possible ∼3kTon +fiducial volume pair, avoiding the cathode, looking down the beam line. (The vertical bands are +interactions in the acrylic.) +2.2. Radioactive Backgrounds +To enable the physics targets for this module, improvements in control of internal and external +radioactive background levels are required. Making a module of this size low background will +require significant quality and materials controls beyond what has been been attempted by previous +experiments, and certainly beyond what is required for the Phase I DUNE program. However, we +note that due to the increased size of this module self-shielding in the argon allows the background +requirements to be less stringent than those expected to be reached by the current Generation 2 +(G2) dark matter experiments. Thus future research and development will need to focus on how to +scale the techniques successfully deployed to low background dark matter or neutrinoless double +beta decay searches to the kTon scale. +A particular concern for this module will be neutron-induced background events, which will +be the main background to the neutrino searches above 3.5 MeV thresholds. A neutron capture in +40Ar produces a 6.1 MeV gamma cascade which can Compton scatter or pair produce electrons +which can mimic the charged current neutrino interactions in the argon. Captures on 36Ar can +produce 8.8 MeV gamma cascades. Neutrons are also the primary backgrounds for the lowest +energy searches for WIMP dark matter, where nuclear recoils can mimic the signal. Below 3.5 +MeV the primary backgrounds will come from alpha, beta and gamma emitting isotopes within +the argon or detector materials. + +6000 +400 +4000 +350 +300 +2000 +250 +y [mm] +200 +150 +-2000 +100 +4000 +50 +-6000 +6000 +4000 +-2000 +2000 +4000 +6000 +x[mm]Large Low Background kTon-Scale LArTPCs +6 +2.2.1. Cavern Neutron Backgrounds +The most significant source of neutrons will likely be those +induced by spontaneous fission or (α, n) interactions from the uranium-238 or thorium-232 decay +chains within the surrounding rock and shotcrete of the detector cavern. As reported in [5], the +external neutron rate at SURF (a likely hosting laboratory for this low background module) is +assumed to be 1.0 × 10−5 n/cm2/s. As proposed in References [6, 7], it is possible to add water +shielding to a DUNE-like cryostat, taking advantage of the space between the structural supports +even when the detector is located within a cavern at SURF with limited space around the detector. +Those references shows that a 40 cm water shield, located within the support structure, is enough +to lower the external neutron rate by three orders of magnitude. We assume this is achievable for +this module. +The strategy to control the radioactive backgrounds from the detector components such as the +cryostat will have three parts: +• improvements to material selection, +• additional internal neutron shielding, +• and advanced event selections and analysis tools, +with the aim of lowering the internal neutron rate within the detector by at least three orders of +magnitude to match the levels of the external rates. +Aside from external neutrons from the cavern, the main source of neutrons in a DUNE-like +detector cryostat is likely to be spontaneous fission or (α, n) interactions from the uranium-238 or +thorium-232 decay chains in the order 1 kTon of stainless steel that makes up the I-beam support +structure. Research and development will be required to lower the internal background rates by +the three orders of magnitude required, for example by careful selection of the raw ingredients +and/or control of the manufacturing process. It should be noted that the “Generation 2” dark +matter experiments expect to reach neutron rates from their steel a further two orders of magnitude +beyond this, so the goal is achievable (even if the scale is much larger than previously attempted). +Another area of R&D required to support this goal is improvements in knowledge of (α, n) cross +sections, as highlighted in a recent IAEA workshop [8]. +Another approach to reduce neutron background from the internal shielding within the +detector would be by adding higher density rigid polyurethane foam (R-PUF) insulation and/or +boron, lithium or gadolinium loaded material layers within the membrane cryostat structure. +Our studies show that this could easily reduce the neutron capture rate in LAr by one order of +magnitude. One approach, as planned by the DarkSide collaboration, would be to use the additional +planes of Gd-doped acrylic to act as a neutron absorber. DarkSide-20k [9] intends to use multiple +layers within a ProtoDUNE-style cryostat for their dark matter search. Another design choice +might be to take advantage of the existing cryostat but replace some materials such as the insulating +foam with a borated version, e.g., to reduce backgrounds from the support structure. +Analysis based cuts can also be used to remove events. For example, with the low threshold +of this planned detector, neutron induced multiple scatters could be tagged and rejected. This + +Large Low Background kTon-Scale LArTPCs +7 +takes advantage of the excellent (∼ 10 mm) position resolution of a TPC. Studies [10] to identify +dark matter nuclear recoil backgrounds show ∼ 30% reduction at 100 keV threshold and ∼ 90% +reduction at 50 keV, due to the increased probability of detecting an additional scatter at lower +thresholds. +2.2.2. Radon and other internal argon backgrounds +Radon is an important background that must +be controlled as it can diffuse throughout the detector, entering the fiducial volume. The radon +decays to a number of daughter isotopes that can be direct backgrounds (for example 214Bi for a +neutrinoless double beta decay search) or that can produce neutrons through (α, n) interactions. +For this low background module we set a radon target level in the liquid argon of 2 µBq/kg. This is +about three orders of magnitude below the expected DUNE radon level of 1 mBq/kg [11, 12, 13]. +2 µBq/kg has been achieved in liquid argon by the DarkSide-50 experiment [14], and exceeded +by DEAP-3600 which achieved a level of 0.2 µBq/kg [15]. It should be noted that the higher +volume-to-(radon-emanating)-surface ratio in a large detector such as DUNE compared to dark +matter detectors will help achieve this target. +To reach this level in a kTon-scale detector will require research and development to +implement a combination of the following techniques: +• Radon removal during purification via an inline radon trap. +No radon removal is +in the current design of the purification system for the baseline DUNE. Dark matter and +neutrinoless double beta decay search experiments typically use cooled, activated charcoal +radon traps to remove radon directly from the recirculating target. The most sensitive dark +matter experiments typically purify the argon in the gaseous phase [16, 17], however such +an approach would be impractical for a kTon-scale experiment. Borexino used a charcoal +radon trap to purify liquid nitrogen [18], and such an approach could be adopted and scaled +appropriately for a low background module. New materials such as Metal-organic frameworks +could improve the capture-potential beyond charcoal, allowing a potential shrinkage of +footprint of a radon-capture facility to fit the existing cavern designs. Recent evidence from +MicroBoone [19] indicates that a copper filter purification system similar to that planned for +DUNE may remove greater than 97% or 99.999% of the radon (depending on whether slowed +or trapped) in the system without the need for additional removal techniques. +• Emanation measurement materials campaign. All materials used in detector construction +are known to emanate radon at some level. +A large-scale emanation assay campaign to +identify materials suitable for construction, similar to the QA/QC campaign described above +will be required to ensure the detector can meet the target. A topic for R&D will be how +to increase throughput of samples, as emanation measurements typically take two weeks per +sample. +• Surface treatments. For large components such as the cryostat where it may be impractical +and costly to make significant improvements to the radiopurity, surface treatments can be +used to lower emanation rates. It is known that acid leaching and electropolishing lowers + +Large Low Background kTon-Scale LArTPCs +8 +emanation rates. Coating the inner surface of the cryostat with a radon barrier could lower +emanation rates from this significant source. +• Dust control. Dust is a significant radon source and cleanliness standards will be higher +in this low background module than the baseline DUNE design. Cleanliness protocols and +requirements R&D will be necessary to develop automated techniques applicable to the +thousands of m2’s of surface area of a DUNE-like cryostat, for example. +• Radon reduction system during installation and operation: The mine air underground +is radon laden up to 1,000 Bq/m3 and radon daughter plate-out during installation, filling +and operation must be controlled. An upscaled vacuum swing system with large charcoal +columns in parallel to remove radon from the ambient air and to provide radon-free air to the +cleanroom and cryostat would be suitable. Vacuum swing systems providing radon-free air +have been successfully employed by e.g. Borexino [20], LZ [21] and SuperCDMS [22]. +• Drifting of charged daughters to cathode. Several daughters in the radon chain are charged +and will drift towards the cathode and out of the fiducial volume. This effect may be countered +by mixing effects of the purification system however. +• Alpha tagging through pulse shape discrimination. Alpha events in the radon chain that +produce neutrons directly in the argon may be taggable, by identifying the alpha track before +the (α,n) event. +Though the amount of light may be relatively small, the timing profile +is distinct and may allow pulse shape discrimination on this module with enhanced optical +systems. +2.2.3. Underground Argon +Atmospheric argon (AAr) consists mostly of 40Ar which is stable. +There are some long-lived radioactive isotopes-39Ar (T1/2=269y, Qβ=565 keV), 37Ar (T1/2=35d, +Q=813 keV), 42Ar (T1/2=32.9y, Qβ=599 keV) [23] which are, in atmosphere, produced primarily +by cosmic ray-induced reactions in 40Ar. The use of atmospheric argon in a low-threshold multi- +ton scale argon detector has limitations due to high 39Ar activity (1 Bq per kg of argon [24]) in +atmospheric argon (AAr). Radiogenic and cosmic-ray muon-induced interactions, especially on K +and Ca isotopes, can produce 39Ar underground. The dominant production channels are negative +muon capture on 39K and (α, n)-induced (n,p) reactions on 39K. 39Ar production underground +decreases significantly with depth[25] as muon flux decreases. DarkSide-50, the only experiment +to use underground argon (UAr), measured the 39Ar activity of 0.73 mBq/kg [26], a factor of +1400 smaller than in AAr. With the ARIA project[27], which is planning for a throughput for +39Ar processing of ∼ 10 kg/day, the DarkSide collaboration is planning to further reduce the 39Ar +present in UAr through large-scale isotopic separation by cryogenic distillation. +42Ar decays in the bulk argon volume will produce 42K isotopes. +While the 42Ar beta- +spectrum has an endpoint of 599 keV, Betas from 42K-decays span a much larger energy range +up to 3.5 MeV, and can be problematic backgrounds. Since UAr should be heavily depleted of +42Ar, significant suppression of 42K decay backgrounds is achievable with UAr. In the atmosphere, +the 42Ar concentration is ∼ 10−20 42Ar per 40Ar atom [28],[29], which is four orders of magnitude + +Large Low Background kTon-Scale LArTPCs +9 +smaller than the concentration of 39Ar. The daughter isotope of 42Ar, 42K (T1/2= 12 h) has two +major decay modes : 1) direct beta-decay to the ground state of 42Ca (Qβ= 3525 keV, BR=81 +%), and 2) Beta-decay (Qβ= 2001 keV) to an excited state of 42Ca followed by a prompt 1524 +keV gamma emission. In the atmosphere 42Ar is primarily produced by 40Ar(α, 2p)42Ar occurring +in the upper atmosphere [29], where energetic alphas are readily available from cosmic-ray muon +interactions. Production through two-step neutron capture is also possible but greatly sub-dominant +due to the short-lived intermediate isotope 41Ar [30]. The 42Ar production rate underground is +not known, but it is expected to be several orders of magnitude smaller than in AAr. Particle +interactions on isotopes of K, Ca, and Ti can produce some 42Ar in the earth’s crust, given the +relatively high abundance of the elements (by mass-fraction[31]:K-2.09%,Ca-4.15%,Ti-0.565%). +However, the reaction thresholds are high, making 42Ar production energetically not possible by +fission, (α,n)-neutrons or alphas from the natural radioactivity chains of 238U, 235U, and 232Th. +Energetic particles from cosmic ray muon-induced interactions can produce 42Ar. +But at the +depths at which underground argon is usually extracted, the cosmic ray muon-flux should be hugely +suppressed, so 42Ar production should be negligible. Based on GERDA’s findings[32], following +42Ar decays, 42K nuclei could retain the positive charge long enough to drift in the influence of +electric field. So, we expect 42K ions to drift and move towards the cathode plane, which suggests +an additional suppression of 42K backgrounds is achievable through fiducialisation. +The 85Kr isotope, predominantly a β-emitter, has a half-life of 10.7 years and Q-value of 687 +keV[23]. Primary modes of 85Kr production are spontaneous fission of uranium and plutonium +isotopes, neutron capture on 84Kr, and human-induced nuclear fissions in nuclear reactors[33]. We +would expect 85Kr to be present at some level in AAr. However, its concentration can vary across +argon extraction sites. Using the UAr data, DarkSide-50 measured 85Kr activity of 2 mBq/kg[26], +a few orders of magnitude smaller than in AAr. +85Kr concentration in UAr should also vary +depending on the location of the gas reservoir and gas origin (mantle-like or crustal-like). DEAP +sees no evidence of 85Kr in its AAr after filtering in a charcoal trap with 3.3 tonnes of LAr [34]. +We expect argon gas extracted from an underground source to be highly depleted of 39Ar, +42Ar and 85Kr. +There is evidence that air infiltration during the UAr extraction could have +contributed to the DarkSide-50’s 39Ar - actual 39Ar content in the UAr could be significantly +smaller (on the order of few tens of µBq/kg)[35]. +85Kr and 42Ar content could also be much +smaller. Unlike stable gas isotopes such as 40Ar, which can collect at gas wells over time, isotopes +such as 39Ar(T1/2=269y), 42Ar (T1/2=32.9y) and 85Kr(T1/2=10.7y) diffusing through rocks and +collecting in a significant number at the underground gas wells is less likely. +However, air- +infiltration and cosmogenic activation in the argon bulk could introduce these isotopes in the +extracted UAr [36, 37]. Greater care, perhaps, is necessary to ensure avoiding contamination of +the UAr during extraction, processing, transport and storage. +While UAr is desirable, it requires a dedicated effort to identify the potential argon source +and procure argon on a large enough scale necessary for this project. The Urania plant [9] in +southwestern Colorado, USA is expected to produce underground argon from CO2 gas wells at + +Large Low Background kTon-Scale LArTPCs +10 +a rate of ∼ 300 kg/day (at full rate) for DarkSide. The argon source and the production rate is +not large enough for a kiloton scale experiment. The authors are in the process of identifying +alternative gas wells with enriched argon streams. Discussions with three potential commercial +suppliers are ongoing, however the underground source samples are not yet tested and low levels +of radioactive isotopes must be proven. Initial gas analysis indicates the mantle origin of this +sample, with suppressed cosmogenic production compared to a crust source. Based on estimates +by the gas suppliers, the production cost could be as low as three times the cost of atmospheric +argon and 5 kTon of argon production per year could be achievable. +2.2.4. Surface storage and spallation issues +During above-ground storage of our UAr, before +placement into the underground module, 39Ar is produced by cosmogenic neutrons in the reactions: +40Ar(n,2n)39Ar and 38Ar(n,γ)39Ar. Production cross sections for 39Ar have been measured in [38]. +42Ar is produced primarily in 40Ar(α, 2p)42Ar reactions [29]. In a previous work [39], to which +we refer the interested reader, the cross sections for these reactions were obtained from nuclear +reaction codes and confronted with data where they exist. An evaluation of cosmogenic 39Ar and +42Ar production in UAr stored on the surface can be found in [40]. A full study of expected +spallation and pileup backgrounds during the detector operation is in reference [6]. +2.3. Light Collection Enhancement +The light collection for this low background module will be enhanced to enable two main goals: +• lower the energy threshold and improve the resolution at these lower neutrino energies; +• improve pulse shape discrimination for radioactive background rejection. +In this section we describe the improvements to the light detection system required to enable this. +2.3.1. Light Collection Efficiency Impacts on Energy Resolution +Charged particles that traverse +the liquid argon deposit energy and excite and ionize the argon atoms. This process results in +the electrons recombining with the ions generating unstable argon dimers, which decay and emit +scintillation light. If an electric field is applied, a fraction of the electrons will drift away before +recombining. These ionization electrons are collected by the anode plane and create the charge +signal by removing electrons that would have recombined yields an anticorrelation between the +light and charge signals observed in LArTPCs. The small number of ionized argon atoms at low +energies means that fluctuations in this recombination process can smear the amount of charge +observed to energy deposits. The Noble Element Simulation Technique (NEST) collaboration has +explored the precision of LArTPC for 1 MeV electrons as a function of charge readout signal- +to-noise ratio and the efficiency of collecting light [41]. They predict that using only the charge +signal in a LArTPC, the most precise one can reconstruct the energy for a 1 MeV electron is 5% + +Large Low Background kTon-Scale LArTPCs +11 +and MicroBooNE has validated this prediction [42]. To improve the energy reconstruction, further +one needs to include measurements of scintillation light. +The NEST collaboration explored the expected energy resolution enhancements that a +LArTPC can achieve by including light signals along with the charge measurement. Ref. [41] +shows that the energy resolution for a 1 MeV electron for LArTPCs with different signal-to-noise +ratios (SNR) and varying light collection efficiency. In particular, we see that a LArTPC with SNR +near 40 needs 50% of the scintillation light to measure energy deposits with 1% precision. +2.3.2. Photosensors +As a baseline design our plan is to use 24 cm2, Darkside-20k style [9], +SiPM tiles. 50% quantum efficiency at visible wavelengths. We assume here another 50% wave +length shifter (WLS) efficiency from, e.g., TPB on the tile surface, for a total efficiency of 25%. +For maximum light detection we envision covering inside the cathode (between the two planes of +cathode wires, as will be done in module 2) and the interior acrylic walls at up to 80% coverage. We +assume the Module 2 power-over-fiber concerns [4] to be solved to allow our SiPM coverage of the +cathode. The resulting number of SiPM modules for 10% coverage – a value which current studies +naively show is sufficient for a dark matter search using pulse shape discrimination – is ∼ 50000, +to be compared to Darkside20k’s planned ∼ 10000. However, as discussed in Section 2.3.1, to +achieve the energy resolution required for a neutrinoless double beta decay search will require +significantly more coverage. It is likely possible to optimize the placement of the tiles around the +fiducial volume, to reduce the total number required, and work is ongoing to study this. +2.3.3. Reflectors +To maximize the light capture in this module the surface of the acrylic box will +be coated with a reflector to create a light-tight inner volume. If a PTFE reflector is used, as in +DarkSide-50, reflectivities of 97% should be possible. +2.3.4. Argon Purity +The baseline requirement for DUNE is < 25 ppm of nitrogen to ensure +that photon propagation in the argon is not attenuated. For our simulation studies we assume +that attenuation (absorption) lengths of order 50 m are achievable, which corresponds to nitrogen +contamination levels of 1-2 ppm [43]. +We note that dedicated dark matter experiments have +achieved ppb levels of purity. +3. Physics Studies +This section outlines key physics goals of this module and describes the studies that have been +performed. + +Large Low Background kTon-Scale LArTPCs +12 +3.1. Argon-39 Studies +Reduction of the rate of 39Ar is desirable for a number of reasons. This 600 keV endpoint beta +emitter decays at a 1 Bq/l rate in ordinary atmospheric argon. It may mask low energy physics by +creating optical signals that confuse the reconstruction process. It also represents a serious hurdle +in the detector triggering considerations. +Trigger primitives, which constitute a 6 PByte/year data source, not necessarily to be stored +into perpetuity, are still an onerous data flow to deal with during steady data-taking. That number +drops to a far more manageable tens of TBytes if the 39Ar is reduced by a factor of 1400. In reality +of course, much of the data budget will perhaps be consumed by low-threshold activity in this +detector. +Perhaps the more pernicious practical problem is that 39Ar beta decays may reconstruct +as optical ”hits” which may, in turn, comprise ”flashes” which then confuse the charge-light +association for reconstructed physics objects – especially at low energy and far from the light +detectors. +(Hits are simply individual light signals over threshold and the parameters that +characterize them, and flashes are collections of hits in narrow ranges of time, hypothesized to be of +the same physical origin.) We have performed a study in a Module 1-like environment, not shown +here, that gives the not very surprising conclusion that supernova flashes become unambiguously +matched with a x1400 39Ar reduction. +Third, the highly desirable property of pulse shape discrimination (PSD) in Argon which +would allow to subtract out the nuisance 39Ar contribution for our, e.g., dark matter search +ambitions, is not practicable if pile-up is too intense. We show in [10] and discuss later in this +paper that a x1400 reduction of 39Ar just allows for a search in our fiducial volume down to 100 +keV thresholds and perhaps lower. +Here we mention that even a x1400 reduction of 39Ar does not allow this detector to get +to arbitrarily low thresholds for searches of physics with electronic signatures – as apposed to +neutron-like interactions. We expect that reductions by this amount will still leave 39Ar as an +overwhelming background to low-rate, low-energy solar processes, for example. +3.2. Simulation +Almost all studies in this paper are carried out in a standalone Geant4[44] simulation. Source +code and build instructions are found at Reference [45]. In that simulation is proper isotope decay +and neutron physics, along with optical physics. The volume is basically a 10 kTon box of liquid +argon, but with a reasonable model of the cryostat walls on all six sides with charge readout planes +(CRPs) made of G10 on the floor and ceiling, as in the VD. Further, there is an acrylic box inside, +open on top and bottom and tiled with 24 cm2 SiPM modules at an 80% coverage. SiPM modules +with that same coverage viewing both upper and lower volumes also tile the central cathode plane. +See Figure 2 for a representation of our simulated geometry. We use an after-the-fact 25% total + +Large Low Background kTon-Scale LArTPCs +13 +quantum efficiency by merely scaling by that fraction of the detected hits. There is no SiPM +electronics response applied. We include a 96% reflectivity of the acrylic surface and a 44% +reflectivity for the CRPs (as the holes in each CRP are about 56% of the surface area), and impose +an argon attenuation (absorption) length of 50m, and a Rayleigh scattering length of 90cm. All +simulations generate their 128 nm photons ab initio from the charge particles which create them +and are propagated on the fly, with no lookup libraries, until their end point on a SiPM where they +are counted or they disappear through absorption. +3.3. Optical Studies +The simulation described in Section 3.2 was used to study the minimal requirements for the +optical system to allow pulse shape discrimination in a dark matter search, including the required +reflectivity of the acrylic box and anode readout surfaces as a function of SiPM tile coverage. +The minimal photon counting requirement for the optical system was set at 400 photons reaching +the SiPM surface, which results in a total of 100 photons being detected due to the assumed 25% +efficiency described in Section 2.3.2. The 400 (100) photon requirement was chosed as the minimal +amount of photons required to perform a pulse shape discrimination analysis such as described in +Section 3.7. +The results of the simulation are shown in Figure 4. The studies were performed varying +acrylic and anode reflectivity between 0 % and 100 % (a realistic 97 % is highlighted) and then +varying the SiPM coverage on the walls and cathode plane to count the accepted photons. Both the +standard acrylic box described above and also a maximally sized box where the walls are moved +out to the edges of the detector were simulated. This large box would be the worst-case optics +scenario, maximising the path length of the photons. The studies show that a relatively modest +amount of SiPM coverage of 10-20 % is required even in the worst-case scenarios to reach the +target. +The effect of attenuation with the liquid argon was also studied. Figure 5 shows the number of +photons detected at the SiPMs as a function of SiPM coverage for a variety of different attenuation +lengths. Assuming the relation between nitrogen contamination of the argon versus attenuation +found in [43], this study shows that the 10-20% SiPM coverage is sufficient to tolerate 0.5-5 ppm +levels of nitrogen within the argon. +3.4. Supernova Neutrino Physics +In this section we present several supernova neutrino burst studies that could be enhanced by this +module. This includes increased sensitivity to lower energies, later times and sources from greater +distances. We also discuss the CEνNS glow sensitivity. + +Large Low Background kTon-Scale LArTPCs +14 +(a) +(b) +(c) +(d) +Figure 4. +Number of photons detected at the SiPMs as a function of coverage, varying both +reflectivity of the surrounding acrylic and anode plane walls, and the size of the acrylic box +containing the inner volume, from Original Size (6x12x20 m3) to Max Size (at fiducial boundaries +at 12x12x60 m3). + +Acrylic Reflectivity (Original Size Acrylic Box) +Mean SiPM Hits on Y-axis +006 +800 +700 +600 +500 +400 +Target +300 +200 ++100% +■97% +≥0% +100 +0 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +% of SiPM CoverageAcrylic Reflectivity (Max Size Acrylic Box) +900 +Mean SiPM Hits on Y-axis +800 +700 +600 +500 +400 +Target +300 +200 ++100% +■97% + 0% +100 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +% of SipM CoverageAnode Reflectivity (Original Size Acrylic Box) +006 +Mean SiPM Hits on Y-axis +800 +700 +600 +500 +Target +300 +200 ++100% +■44% +≥0% +100 +0 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +% of siPM CoverageAnode Reflectivity (Max Size Acrylic Box) +Mean SiPM Hits on Y-axis +900 +800 +700 +600 +009 +Target +000 +200 ++100% +■44% +≥ 0% +100 +0 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +% of SiPM CoverageLarge Low Background kTon-Scale LArTPCs +15 +Figure 5. Number of photons detected as a function of SiPM coverage when varying the attenuation +length within the argon. +3.4.1. Supernova Energy Spectrum +We wish to explore the potential improvement provided by +a low background large LArTPC to that achievable in current DUNE Far Detector designs for +sensitivity to supernova explosion detection. To this end we simulate a ten-second exposure of our +detector to a flux of electron neutrinos from the Livermore [46] supernova model and run them +through the MARLEY [47] event generator to produce the final state particles in liquid argon. +MARLEY considers all candidate νe processes, including coherent, elastic, and charged current +processes. The detector response is provided by the simulation described in previous section 3.2. +Using that simulation we count SiPM hits for an 80% coverage and convert to energy using a +simple conversion. That conversion comes from running 3 MeV electrons uniformly through the +detector and counting SiPM hits in a coarse x,y,z binning of the production point. We emphasize +that this study is simplified and that refinements including TPC charge response as well as better +SIPM energy resolution will result in improvements. Events must originate in the inner 3 kTon +fiducial volume. The result is shown in Figure 6. The most evident feature is that the elastic +scattering component of the νe flux becomes dominant at low energies inaccessible to the baseline +DUNE far detectors – and it does so because neutron rates are required to be low from the cold +cryoskin stainless steel and the 42Ar is at very low levels in UAr. The threshold here can go all the +way down to 600 keV, which is a factor of roughly 18 lower than the baseline DUNE far detector +design. +The low detector threshold allows access to a significant number of elastic scatter events +within the liquid argon. +This opens up the possibility of reconstructing the position of the +supernova with a pointing analysis. Liquid argon TPCs, with the excellent track resolution, are +well suited to making this measurement. With the expected reduction in backgrounds in this +sample, a clean elastic scatter sample will dominate at thresholds below 5 MeV (see Figure 6), +though pointing with these reconstructed tracks is challenging. +3.4.2. Supernova Trigger +The trigger system in a DUNE-like LAr detector relies on the so-called +Trigger Primitives (i.e. hits, TPs) generated from the electronics connected to the wires or photo- + +Ar Attenuation Length (Original Size Acrylic Box) +900 +Mean SiPM Hits on Y-axis +800 +700 +600 +500 +400 +Target +300 +200 +→100m =50m ^20m 10m +100 +0 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +% of SiPM CoverageLarge Low Background kTon-Scale LArTPCs +16 +Figure 6. +Energy deposited from neutrinos from supernova located at 10 kpc, assuming the +Livermore model, during a ten second detector exposure window. Here we presume no Rn222 +contribution and a likely too conservative x500 Ar42 suppression in UAr with respect to that +achievable in atmospheric argon. Reaching 5 MeV SN detection is straightforward in this module. +sensors. They are simple objects constructed from the signal waveform. A stream of TPs arrives +in the trigger module of the DAQ, which will use them to form a Trigger Activity (i.e. a cluster of +hits, TAs), which is an association in time and space done by a trigger algorithm. A TA is related +to each sub-module/component of the detector (e.g. an APA module), and multiple TAs form a +Trigger Candidate (TC). Having a positive TC, the readout system stores the requested data. For +low energy physics, which does not have an external trigger like beam events, it is essential to +understand the detector backgrounds (e.g. radiological and electronics noise), to avoid triggers +issued by undesired data. Thus, a Low Background LAr detector can perform better than the +current designs. +The bottleneck for designing efficient supernova neutrino burst (SNB) trigger algorithms is +the data transfer and storage resources available for the detector. To get the most of an SNB event, +around 100 seconds of full detector readout is desirable, which means about 150 TB of raw data for +a 10 kTon LAr detector. It will take about one hour to transfer the data from this trigger event from + +livCC +livES +103 +.0kTonne-10sec/1.0MeV +Ar39 Bg/L/1500 +Ar42Bq/L/1500/5E8 +neutrons 1e-11/cm3/s +101 +Events +10-5 +0 +5 +10 +15 +20 +25 +Energy [MeV]Large Low Background kTon-Scale LArTPCs +17 +the detector caverns to the storage on the surface and several additional hours to transmit those +data to the primary storage centre. Therefore, while the effective threshold must be set low enough +to satisfy the requirements on SNB detection efficiency, it is crucial to not fire too frequently on +background fluctuations. A requirement on the fake trigger rate of once per month is determined by +these limits on data-handling, for a DUNE-like LAr detector. Additionally, the triggering decision +needs to be made within 10 seconds since this is the typical amount of data buffered in the DAQ. +SNB triggers are likely to be both TPC- and Photon Detection System (PDS)-based in far detector +modules one and two, though at the lower energy thresholds we concern ourselves with in this +paper a PDS-only trigger will be required. +In current studies both TPC and PDS information gives a tagging efficiency of about 20-30% +for a single neutrino interaction [48]. Reducing the estimated neutron capture rate in the LAr +volume by a factor of ten (which is the principal background for SNB triggering, given the higher +de-excitation gamma energy of about 6 MeV when compared to other radiological components), +this efficiency improves to 70%, which translates to a 100% (20%) SNB triggering efficiency +for a Milky Way (Magellanic Clouds) SNB. The trigger strategy described above is a “counting” +method. If we utilise the integrated charge of each TP, it is possible to construct a distribution +of the TAs raw energy (SNB signal with backgrounds) and compare it to the background-only +one. The “shape” triggering method improves the efficiency to tag Magellan Clouds’ SNB. The +efficiency figure for such a SNB producing ten neutrino interactions (see Ref. [48]) shows the +efficiency as 70% in a ten kTons DUNE-like LAr detector using the standard DUNE background +model described in Reference [1] and a shape triggering algorithm that keeps the fake trigger rate +to one per month. +With the Low Background LAr detector, a less stringent selection can be used, increasing +the signal efficiency while keeping the fake trigger rate at the requirement level. Thus, higher +efficiencies will be reached with a lower number of SN events, it then being possible to achieve +100% efficiency to trigger a Magellan Cloud SNB. Identifying Andromeda’s SNBs is more +challenging even with this design since they do not produce enough interactions in the whole +detector volume in a 10 seconds window (see the supernova sensitivity plot in Ref. +[48]), and +lowering the TA requirements would encounter the 39Ar activities. +3.4.3. +Late Time Supernova Neutrinos The neutrino flux from a core-collapse supernova is +expected to cool over a few tens of seconds, with the late time events getting lower and lower +in energy. The tail end of the burst, where a black-hole-formation cutoff may be present, will be +challenging to observe. A lower energy threshold extends the time range with which a large liquid +argon detector can follow the evolution of the supernova burst [49]. +3.4.4. +Pre-supernova Neutrino Signal Another benefit of lowering the threshold is potential +sensitivity to presupernova neutrinos [50, 51, 52, 53, 54, 55, 56]. The final stages (hours to days) +of stellar burning before the core collapse are expected to be associated with an uptick in neutrino + +Large Low Background kTon-Scale LArTPCs +18 +production and energy, and observation of these could provide a true early warning of a core- +collapse supernova. The presupernova flux is expected to be small, and energies are typically +less than 10 MeV; nevertheless they may be observable in a large liquid argon detector with low +threshold [53] for progenitors within a few kpc nearing the ends of their lives. +3.4.5. CEvNS Glow +Coherent elastic neutrino-nucleus scattering (CEvNS) [57, 58] is a process +that occurs when a neutrino interacts coherently with the total weak nuclear charge, causing the +ground state nucleus to recoil elastically. The cross section is large compared to the inelastic +charged- and neutral-current interactions, but resulting nuclear recoil energies are in the few tens +of keV range. CEvNS has now been observed in argon by the COHERENT collaboration using the +stopped-pion neutrino flux from the Spallation Neutron Source [59] with a cross section on order +22 · 10−40cm2 for an incoming average flux of < Eν >≈ 30 MeV from pion decay at rest. +In a large LArTPC there will be a high rate of CEvNS in a core-collapse supernova burst— +approximately 30-100 times more events with respect to νeCC (the dominant inelastic channel), +depending on expected supernova spectrum. However, each event is individually not likely to +produce more than a few detected photons, and sub-50-keV thresholds need to be achieved to find +these events, if they are to be found one by one. Even with depleted argon, the 39Ar rate down in +this range in our proposed detector is by far overwhelming. However, an alternative is to identify +a “CEvNS glow,” [60] in which the excess rate of detected photons can be tracked statistically +above the 39Ar rate as a function of time in a characteristic explosion. Fig. 7 shows that simulated +supernova-induced activity from a burst at 10 kpc over 10 seconds in an inner fiducial 3 kTon gives +three distributions: broadly-distributed-in-time, higher-energy charged-current (CC) component, +a burst of low-hit-multiplicity CEvNS events at about 0.01 sec, and then the absolutely flat 39Ar +activity. In ongoing work, we propose to subtract the reconstructed CC events and fit to the CEvNS +bump above the background. We note that in principle, an excess of collected ionization from +CEvNS events is observable as a “CEvNS buzz” in coincidence with the CEvNS photon glow. +3.5. Solar Neutrino Physics +In this section we present our enhanced sensitivity to solar neutrino searches including lower +energies and enhanced oscillation sensitivity to ∆m2 +21. This allows exploration of solar-reactor +oscillation tensions and Non-Standard Interactions. It also allows a precision CNO solar neutrino +measurement and a measurement of the 3He+p solar flux. A first study of DUNE as the next- +generation solar neutrino experiment is presented in reference [7]. That study is dominantly one +of higher energy 8B CC processes, but in this section we widen the discussion and point out what +a lower threshold would offer to solar neutrino studies. +3.5.1. Low Threshold Gains and Elastic scattering +Figure 8 shows the number of expected ES +interactions over threshold for a 3-kTon·year exposure. One sees that reducing the threshold to 1 + +Large Low Background kTon-Scale LArTPCs +19 +(a) +(b) +Figure 7. The CEvNS glow is the statistically significant increase observed from the low SiPM +hit-count CEvNS Supernova events, shown in bottom population of figure (b) that sits on top of the +rate of 39Ar seen in figure (a). +MeV makes pep and CNO neutrinos observable. A threshold of 0.5 MeV could add 7Be neutrinos, +and 0.1 MeV could allow for detection of pp neutrinos, though this threshold encroaches into +the large 39Ar background, even in UAr. The total number of available neutrinos is important for +possible studies discussed in Section 3.5.3. This amounts to 9,200 neutrinos for a 1-MeV threshold, +130,000 neutrinos for a 0.5-MeV threshold, and 820,000 for a 0.1-MeV threshold. +In addition to the previously discussed methods for reducing backgrounds, we are +investigating directionality with ES for all solar neutrinos and Cherenkov radiation for more +energetic 8B neutrinos as ways to enhance neutrino signal over backgrounds. + +SiPMHitsvs.Time-Ar39 +2500 +1.4 +2000 +1.2 +1.0 +1500 +events/hits/s +SiPM Hits +0.8 +1000 +0.6 +0.4 +500 +0.2 +0.0 +m +4 +8 +time (s)SiPMHits vs.Time -CEvNS + CC +105 +103 +102 +104 +Count +101 +/hits/ +Hit +103 +100 +/ents/ +SiPM I +10-1 +102 +10~2 +101 +10~3 +10~4 +10~3 +10- +10~1 +100 +time (s)Large Low Background kTon-Scale LArTPCs +20 +Figure 8. Number of events over threshold for solar-neutrino ES interactions in argon for a 3- +kTon·year exposure with contributions from different solar fluxes. +3.5.2. +Solar Neutrino Oscillations Current measurements of the neutrino mixing parameter, +∆m2 +21, using solar neutrinos from SNO and Super-Kamiokande are currently discrepant at 1.4 σ +with measurements from KamLAND using neutrinos from nuclear reactors [61]. Differing results +from these two methods would suggest new physics possibly involved with exotic matter effects +as the neutrino passes through the Sun and Earth. Further data from DUNE will further investigate +this discrepancy with high statistical significance. The sensitivity comes from the “day-night” +effect, a partial regeneration of the νe solar flux due to matter effects in Earth which depends on +∆m2 +21, neutrino energy, and nadir angle. This is an advantageous strategy allowing for constraints +of uncertainties using daytime data. +Solar neutrinos are much lower energy than typically observed in DUNE making +reconstruction of these events challenging. Also, at these low energies, radiological backgrounds, +principally neutron capture with a contribution from 40Ar(α, γ), dominate analysis backgrounds. +A low-background DUNE-like module with enhanced light collection will help with both of these +challenges. +Improved energy resolution from increased photodetector coverage would significantly +improve DUNE-like sensitivity to ∆m2 +21. This would both improve reconstruction of the dominant +neutron background around the 6.1 MeV total visible energy of the neutron capture on argon- +40, and better measure the dependence of the νe flux regeneration on neutrino energy. A single +10-kTon, low-background module could discern between SNO/SK and KamLAND best fits at +over 6 σ. Lower neutron background levels would also improve the signal-to-background ratio +for the measurement, which could also lower the energy threshold for detecting and analyzing +solar neutrino events. An estimate of sensitivity to ∆m2 +21 with 100 kTon-yrs of exposure with +a low-background module is compared to DUNE’s sensitivity with 400 kTon-yrs of data from + +107 +106 +105 +104 +103 +102 +101 +hep +17F +150 +7Be +ES +100 +eo +eF +8B +pep +total +eN +13N +7Be +10-1 +10-2 +10-1 +100 +101 +threshold Ethr (MeV)Large Low Background kTon-Scale LArTPCs +21 +nominal, horizontal drift modules in Fig. 9. We use a larger 10-kTon fiducial volume for the +reduced background/threshold curves in that figure, increased from other studies in this paper. +Figure 9. Sensitivity of a low-background module to the neutrino mixing parameter ∆m2 +21 assuming +a true value of the solar best fit, 5.13·10−5 eV2 [61]. +Colored contours show sensitivity after +100 kTon-yrs for various detector configurations compared to 400 kTon-yrs of DUNE data with +horizontal drift design, shown in black and dominated by CC events. +3.5.3. +Non-Standard Neutrino Interactions Non-standard neutrino interactions (NSI) could +modify neutrino oscillations in the Sun and result in a different number of neutrinos observed +compared to the one predicted by the Standard Model [62] (see also studies with different +parameter definitions in [63] and [64]). +The NSI Hamiltonian (for neutral currents only) relevant for solar-neutrino oscillations can +be written in the following form: +HNSI +ν += +√ +2GF(nu + nd) +� −ϵD +ϵN +ϵ∗ +N +ϵD +� +, +(1) +where GF is the Fermi constant, nu and nd are the up- and down-quark densities, respectively, +and ϵD and ϵN are the diagonal and off-diagonal NSI couplings. These couplings affect νe solar +survival probability (see Figure 10). The diagonal coupling can mimic different vacuum ∆m2 +values, resulting in its incorrect measurement when NSI are not taken into account. +Detection of ES in the proposed module (see Section 3.5.1) allows for a great opportunity +to have an almost NSI-independent anchor point in the oscillation probability near 0.1 MeV in +addition to investigating NSI in solar-neutrino oscillations at several MeV energies where changes +in oscillation probability could be large but not much experimental data exists, yet. + +120 +10 kt 2% resolution + lowered +100 +bkg + lowered threshold +80 +10 kt 1% resolution +10 kt 2% resolution ++ lowered bkg +60 +40 +10 kt 2% resolution +20 +40 kt HD design +10-3 +8.04 +0.05 +0.06 +0.07 +0.08 +0.09 +Am2 (eV2)Large Low Background kTon-Scale LArTPCs +22 +Figure 10. 2-flavor electron-neutrino survival probability for solar neutrinos for the Standard Model +and several different NSI couplings. +An example of possible constraints on the NSI couplings is shown in Figure 11. This plot +was obtained with the assumption of no backgrounds or systematic errors, an energy threshold of +1 MeV, and an exposure of 3 kTon·years. For comparison, see the larger constraints using current +neutrino data available in [61]. +3.5.4. Precision Measurement of CNO flux +The CNO flux has been measured [65] recently by +the Borexino collaboration to 3.5σ above 0, though it yields indistinct information about the high +or low metallicity solution. Per [65], the CNO neutrino flux scales with the metal abundance in +the solar core, which probes the initial chemical composition of the Sun at its formation. The metal +abundance in the core is decoupled from the surface by a radiative zone, and CNO neutrinos are +the only probe of the initial condition. +Here we want to investigate if an energy window exists where a precise measurement of +the CNO flux can be performed in our low background module. We use our by-now standard +simulation tools to count true deposited energy for a variety of backgrounds and solar neutrino + +0.60 +0.55 +0.50 +0.45 +solar +0.40 +Standard Model +2-flavor +ED = 0.1, EN = 0 +ED = - 0.1,EN = 0 +0.35 +ED=O,EN=O.1 +ED=0,EN=-0.1 +0.30 +10-1 +100 +101 +true neutrino energy Etrue (MeV)Large Low Background kTon-Scale LArTPCs +23 +Figure 11. Possible NSI constraints for 3 kTon·years obtained with the proposed module. +sources in a 3 kTon fiducial volume. We impose a 2% energy smearing, as is reasonable by +arguments in section 2.3.1. Fluxes come from [66] with a 0.3 survival probability applied, as +appropriate to this low energy range. We use the assumption that the 42Ar content will be at a rate +that is reduced by a further factor 100,000 compared to atmospheric argon. We emphasize again +per section 2.2.3 this is likely very conservative. The result is we see in a window about 0.2 MeV +wide just above the pep cutoff that the CNO signal sticks up above other solar neutrino sources. +This is merely an illustration; a real analysis will likely do a templated fit above the 7Be peak. +Neutrons from the cold cryoskin stainless steel are forced to be low, as usual; radon is taken as +controlled. The 210Bi background which Borexino took exquisite care to control and measure [65] +is yet to be thoroughly investigated here. Nevertheless, there would appear to be a window where +the high and low metallicity solutions are statistically separable. By comparison, CNO sensitivity +in the two-phase LArTPC program, which studies are further along than the current work, can be +seen in [67]. +Triggering for CNO neutrinos +Initial studies into measuring the CNO flux with TPC triggering +are underway, taking into account the full complement of radiological backgrounds predicted in +the DUNE detector. In these early studies, TPC triggering requires sufficiently large, coincident +clusters on the collection plane and at least one induction plane. We expect future work will in fact +lead to a much higher-efficiency, light-based trigger being implemented for most work discussed +in this paper. The dominant background in the 1.4 - 2.0 MeV energy window is radon in this + +2 +1 +0 +1g +90% CL +-1 +2g +99% CL +3g +-2 +minimum x2 +-2 +-1 +0 +1 +2 +EDLarge Low Background kTon-Scale LArTPCs +24 +early TPC triggering study, not in fact solar neutrinos – despite the rate reduction by a factor of +103 predicted in the low background module. In order to perform the true CNO detection there +is clearly much work to be done in offline processing to accurately characterize and implement +rejection by alpha detection, Bi-Po coincidence, disproportionate activity near the cathode from +drifting cation decay products, and emanation properties of the various detector materials. +Figure 12. CNO solar neutrinos with backgrounds taking radon to be solved and negligible and +neutrons constrained. This is 2% smeared true deposited energy in our inner 3 kTon fiducial volume +in a year. Note that a likely, low 42Ar level is shown that reveals that a CNO fit is possible above +the 7Be peak and explicitly by a simple counting experiment in roughly the region shown in yellow. +This is a lower 42Ar level than shown in Fig 1, but still realistic. The inset zooms in on the 1.25- +1.45 above the pep region to show that the signal statistics are large enough to favor either high- or +low-metallicity after a year. +3.5.5. Precision measurement of hep flux +The hep solar neutrino process (3He+p →4 He+e+ + +νe) produces the highest energy neutrinos, though they have the lowest flux and have not yet been +observed. This low background module will be able to measure tens of these neutrinos per year +via CC events, with a significant reduction in background due to radon and neutron interactions +within the liquid argon. + +1010 +CNOhiM +1.25-1.45 MeV region +CNOloM +80 +7Be +60 +MeV +108 +8B +40 +pep +20 +Ar39 Bg/L/1500 +106 +Ar42Bg/L/1500*9.2E-5/1E5 +1.25 +1.30 +1.35 +1.40 +1.45 +Deposited Energy [MeV] +104 +102 +100 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +Deposited Energy[Mev]Large Low Background kTon-Scale LArTPCs +25 +3.6. Neutrinoless Double Beta Decay +A discovery of neutrinoless double beta decay (0ν2β) is the most straightforward way to prove the +Majorana nature of neutrinos. It would be parsimonious to be able to search for 0ν2β in the same +detector we are suggesting to use for the other measurements mentioned in this paper. 136Xe is one +isotope in which much work is being performed worldwide to try to make this discovery [68, 69]. +Loading large LArTPCs with few-percent level Xe and measuring neutrinoless double beta +decay has been suggested in [70] and [71] among other places. In this subsection we show that +naively a discovery is likely possible with a signal 136Xe half-life of 5 · 1028 years, and is quite +apparent at 1·1028 years, provided energy resolution requirements can be met. We imagine, say, a +five-year search campaign for 0ν2β at the end of the prosecution of the baseline physics program +of this module, since any dark matter search requiring PSD would necessarily be compromised by +xenon loading. +We start with a 0ν2β signal calculated using a Gaussian 1.5 (3) % energy resolution at 2.435 +MeV with 1/ +√ +E dependence for top (bottom) plots in Figure 13. Energy resolution ambitions +are consistent [72] with what we may expect in a LArTPC from charge energy collection in +combination with the photon readout system, as well as discussion in section 2.3.1. We similarly +smear the 2ν double-beta true spectrum by these resolutions. +And for the 208Tl background +emanating from the G10 of the charge readout planes we use only the expected rate from the +simulation, creating the actual spectrum by likewise smearing the 2.6 MeV gamma by 1.5 (3)% in +top (bottom) plots. For the solar and 42Ar backgrounds previously discussed, on the other hand, we +use the resolution from the simulation that uses only the poorer light-only collection from the SiPM +hits. These are flat backgrounds which extend to low energy where signal will likely be obscured +in the noise of the charge readout, hence the need to rely on only the SiPMs. For both plots we use +a 3% concentration of 136Xe in our inner volume, using a 2.0 kTon fiducial volume, and propose +to run for five years. We plot a signal corresponding to a (5)1 · 1028 year 0νββ half-life. +Among the assumptions made for our figures is that underground argon can give a 42Ar +suppression of a factor of 10 beyond that in atmospheric Ar. See section 2.2.3 which indicates this +is likely easily achievable, up to processing concerns. We also take in Fig 13 that the irreducible +solar 8B elastic scattering may be suppressed by a factor of two (conservatively down from three +assumed in Reference [73, 74] ) from inspecting Chernkov/Scintillation light ratios in single versus +double electron events. We impose no efficiency hit due to this cut, whereas Reference [73] +uses an efficiency of 0.75. +More careful event reconstruction studies are needed to bear out +the reasonableness of this cut. We assign the 208Tl in the G10 charge collection planes a Th +concentration of 50 mBq/kg. Charged current solar neutrino events, are in principle reducible to +zero, due to the excited state gammas that are emitted. And similarly, neutrons shall be almost +entirely removed using pulse-shape discrimination. We again take the radon issue to be solved for +the sake of this study. A 2σ band to either side of the 0νββ energy of 2.435 MeV is shown. +We take Eres ∼ 1.5 % in the top plot at the Q value, even though, as we have said, it is not + +Large Low Background kTon-Scale LArTPCs +26 +immediately obvious we can achieve that (nor in fact are we currently confident we can reach the +2.5% of the bottom plot) with our charge readout plus 80% SiPM coverage, open as it is at the top +and bottom. That study is beyond the scope of this paper. However, we see that there is sensitivity +in this detector to 0νββ discovery at lifetimes that stretch the reach of coming experiments, despite +the large, irreducible solar 8B neutrinos which elastically scatter off the mostly argon target. +3.7. Dark Matter +It is known that a large amount of dark matter exists within the Universe, that has so far only +been observed by gravitation interactions. One popular candidate for the dark matter is the Weakly +Interacting Massive Particle, or WIMP, that is the focus of several current and future experiments. +The potential of using this low background module to search for WIMP dark matter was studied +in Reference [10]. This study assumed a dual phase TPC design, with a single fiducial volume at +the center of the detector (rather than the split fiducial volumes described above). The criteria for +achieving a sensitive WIMP dark matter search was set as requiring: +• a 50-100 keV nuclear recoil threshold; +• O(10) background events; +• O(100) photons detected per event to allow pulse shape discrimination (PSD). +Assuming that 1250 photons per 100 keV of prompt scintillation light is emitted (as measured +by SCENE for 500 V/cm fields [75]), the studies in Section 3.3 show that reaching 100 photons +per event is realistic. A pseudo-Monte Carlo simulation of the Poisson distributed light output +was performed to determine the width of a typical PSD variable f90, defined as the ratio of light +detector detected in the first 90 ns of an event to the light detected in the second 90 ns of an event, +for the 39Ar decays. The results taken from measurements from the SCENE experiment [75]. +Reference [10] shows PSD is expected to reach the 1010 rejection level for electron/gamma +backgrounds. We also direct the interested reader to the PSD study [76] to suppress the 39Ar +decay background in DEAP. +All other electron/gamma backgrounds are expected to be subdominant to the 39Ar and will +thus be removed by PSD. Neutron backgrounds were managed as described above. The main +background will be from irreducible atmospheric neutrinos at the so-called neutrino floor. A full +background table from the study is shown in Ref. [10]. +The background rates are used to set a 90% C.L. sensitivity to WIMP dark matter Ref. [10] +shows that a three-year search with this detector will have comparable sensitivity to planned +next-generation detectors, which have expected run times of 10 years. This timescale allows a +rapid cross-check of any signals discovered in these detectors, in particular for the liquid argon +experiments such as DarkSide-20k [9] or ARGO [77]. + +Large Low Background kTon-Scale LArTPCs +27 +Figure 13. An optimistic background/resolution scenario for a 136Xe 0νββ half-life of 5·28 years. +Detector energy resolution is 1.5% on top. Backgrounds are as discussed in the text. On the bottom +is the same with a reduced resolution of 3% and for a half-life of 1E28 years. + +140 +Onubb +MeV +2nubb +TI208 50 mBq/kg +Events/0.189kTonneXe136-5yr /0.02[ +120 +8BES +Ar42Bq/L/1500/5E8/10 +100 +pseudo-data +80 +60 +40 +20 +2.30 +2.35 +2.40 +2.45 +2.50 +2.55 +2.60 +Energy [MeV]140 +Onubb +Events /0.189 kTonneXe136-5yr/0.02 MeV +2nubb +Tl20850mBq/kg +120 +8BES +Ar42Bq/L/1500/5E8/10 +100 +pseudo-data +80 +60 +40 +20 +2.30 +2.35 +2.40 +2.45 +2.50 +2.55 +2.60 +Energy [MeV]Large Low Background kTon-Scale LArTPCs +28 +3.7.1. Seasonal Variation of Rate for WIMP Dark Matter +The prominent model for dark matter +(DM) is the so-called Standard Halo Model (SHM) [78] featuring WIMP DM. The SHM describes +a basic isometric spherical distribution of WIMP DM around our galaxy and has been used due to +it being a good trade-off between realism and simplicity. The relative velocity of our solar system +of 233 km/s [79] at which the Sun moves through the gas-like halo of WIMP DM induces as a +”WIMP wind”. Figure 14 illustrates the Sun’s rotation in our galaxy together with Earth’s solar +orbit into and out of the WIMP wind. We modeled the Sun’s rotational and peculiar velocities +into one combined effective velocity of 233 km/s in the galactic plane and accounted for the 60◦ +inclined plane of Earth’s orbit. We were then able to accurately describe the annual modulation of +detectable WIMP rate R on Earth by one simple periodic sinusoidal function with one amplitude +parameter A and a maximal rate on June 1 of each year[79] [80]: +R( [d−1] ) = A [d−1] × cos +� 2π +T[d] × ( t[d] − tJune1[d] ) +� ++ Ravg [d−1] +(2) +The constant term Ravg is the average annual rate. Earth’s period T is 365.2422 days and the phase +corresponding to the maximal rate Rmax observable on June 1 of each year is 2π · tJune1/T = +2π · 0.415. +Galactic WIMPs in the halo are assumed to have a Maxwell-Boltzmann-like velocity +distribution. +The effective WIMP velocity distribution is shifted up when Earth is flowing +maximally into the WIMP wind and shifted down when Earth is flowing maximally with the +WIMP wind. Due to this aspect, an analysis on the annual modulation of the detection rate R +could provide a powerful tool for identifying WIMP DM. Due to the unrivaled large fiducial mass +of 3 kTons and a potentially very long DUNE operation of one decade (or even several), this +concept can offer a unique detection of the seasonal variation of the detectable WIMP rate R at +a sufficient statistical significance for providing a smoking gun signature for the WIMP nature of +DM. This would be particularly of interest in case upcoming generation-2 DM experiments like +LZ [81] and/or XENONnT [82] have evidence for WIMPs near their sensitivity. It would be nearly +impossible for the planned generation-3 DM experiments [83] [84] to make such a smoking gun +detection proving the WIMP nature of DM. +The differential rate of interactions in an arbitrary detector for the SHM is described in +Equation 3: +dR +dER += σSI +N +A2mANTρχ +2mχµ2 +N +F 2(ER) +∞ +� +νmin(ER) +d3−→ν +ν +f⊕(−→ν , −→ +νobs) +(3) +where σSI +N is the spin-independent-nucleon cross-section for WIMPs, A is the atomic number of +argon, mA is the mass of argon, NT is the number of target nuclei, ρχ is the local dark matter +density (0.3 GeV +cm3 ), mχ is the mass of a WIMP, µN is the reduced WIMP-nucleus mass, F(ER) is +the the nuclear form-factor, νmin is minimum WIMP velocity to produce a recoil of energy ER, +ν is WIMP velocity, and νobs is the observer velocity with respect to the galaxy. When Earth is + +Large Low Background kTon-Scale LArTPCs +29 +Figure 14. Galactic WIMP wind as it relates to Earth’s orbital plane employing an illustrative +rendition [79] of our Milky Way galaxy. Our solar system’s velocity in reference to our galaxy +has contributions from both a rotational aspect with a tangential velocity of 220 km/s and from a +minor solar peculiar aspect with velocity components (U, V, W) = (10, 13, 7) km/s [80]. In our +model the combined relative velocity of our solar system is then 233 km/s at which the Sun moves +through a gas-like halo of WIMP dark matter assumed to have a Maxwell-Boltzmann-like velocity +distribution. This induces what we experience as a “WIMP wind”. This WIMP wind is at an angle +compared to Earth rotation around the Sun as pictured in the zoomed in diagram, with the effective +WIMP velocity distribution shifted up when flowing maximally into the wind and shifted down +when flowing maximally with the wind. Due to this aspect, an analysis of the annual modulation of +detectable WIMP rate on Earth could provide a powerful tool for identifying the WIMP nature of +dark matter. +moving into or with the WIMP wind, it affects the differential WIMP rate, which in turn would +affect our −→ +νobs. For ease, we can define: +∞ +� +νmin(ER) +d3−→ν +ν +f⊕(−→ν , −→ +νobs) = ζ(ER), +(4) +where +f(−→ν ) = 1 +N +� +e +−ν2 +ν2 +0 − e +−ν2esc +ν2 +0 +� +, +(5) +and +f⊕(−→ν , −→ +νobs) = f(−→ν + −→ +νobs) +(6) + +OurMilky Way Galaxy +WIMP +max,detectable +wind +WIMP rate +Galactic Center +on Jun. 1 +Earth +UO+U +Galactic +0094 +Plane +1AU +<1 AU +'Sun +TAU +WIMP +Solar Rotational Velocity +wind + = (0, 220, 0) km/s + = (10, 13, 7) km/s +J. Genovesi, J. Reichenbacher 2022 - SD Mines - v02/f 1/22Large Low Background kTon-Scale LArTPCs +30 +ht +Figure 15. Example NEST[85] simulation of the annual modulation for 40 GeV/c2 WIMP dark +matter with a cross section of 4 × 10−48 cm2 for a 10 year measurement time with 3 kTon LAr at +50 keV threshold. On top a Likelihood-fit result for a 10 year period and on bottom the same data +combined into a single annual period starting on January 1 of each year fitted with a χ2-method. +The ideal case without background is assumed in this study. + +[counts / (20 days)] +R +0 +500 +1000 +1500 +2000 +2500 +3000 +3500 +Elapsed Timet (in days since startof experimentAnnualModHist +30 +Integral +277 +x? / ndf +22.37 / 17 +25 +po +3.827 ± 1.144 +p1 +13.53 ± 0.85 +20 +15 +10 +0 +50 +100 +150 +200 +250 +300 +350 +Elapsed Time t (in days since 1st of January of each year)Large Low Background kTon-Scale LArTPCs +31 +with N as a normalization factor, ν0 is the expected WIMP velocity, and νesc is the escape +velocity of the galaxy. Using Equation 5, we can solve for individual cases of WIMPs in certain +speed brackets. +As mentioned earlier, Earth’s orbit can play a crucial role for differential WIMP rate +predictions in the SHM. As the solar system travels through our galaxy, observers on Earth would +observe WIMPs dominantly from a certain direction in a windshield-to-rain like effect. This is +due to the distribution of WIMPs being treated as a gas with a Maxwell-Boltzmann-like velocity +distribution with the stars in our galaxy moving through the dark matter due to their orbits around +the galactic nucleus. In addition to the standard rotational contribution from the solar system, a +minor peculiar velocity exists of our solar system traveling through the galaxy. This WIMP wind +would be at an angle of 60◦ towards Earth’s orbital plane. This means that during June 1, the Earth +will experience a maximum effective flux of WIMPs while on December 1 the Earth will have +experienced the lowest effective WIMP rate, as one can see again in Figure 14. +An example fit using Equation 2 of an annual modulation signal simulated in NEST [85] +without background is shown in Figure 15 on top for a 10 year period, and on bottom the same +data combined into a single annual period starting on January 1 of each year. This is for a 40 GeV/c2 +WIMP with a cross section of 4 × 10−48 cm2, which is very close to the limit of sensitivity of the +upcoming generation-2 xenon dark matter experiments LZ [81] and XENONnT [82]. We further +assumed a 3 kTon × 10 year exposure of our proposed low background LAr module with a 50 keV +threshold resulting in 277 events. The bottom plot of Figure 15 shows a good χ2-fit result for +the amplitude A = 3.827 ± 1.144 from Equation 2. It confirms the possible measurement of the +seasonal variation of the WIMP rate at a sufficient statistical significance for providing a smoking +gun signature for the WIMP nature of DM. This will be uniquely possible with this detector, due +to the unrivaled large mass of 3 kTons vs. only 300 tons of argon for ARGO [84] and 100 tons for +a Gen-3 xenon experiment [83]. Moreover, the annual modulation effect in xenon is significantly +smaller due to the relatively lower energies of nuclear recoils in xenon compared to argon. Last +but not least, the logistics of a decade long operation with this detector can utilize strong synergies +with the DUNE long-baseline physics, including the cavern availability and occupancy. +3.8. Additional Topics +This module, with its unprecedented combination of low background and size, also can explore +several other topics. We describe several examples in this section. +3.8.1. Atmospheric neutrinos +The detector will measure approximately 10 CEνNS events due to +atmospheric neutrinos. These events have not yet been observed and this would allow a cross-check +of background rates from the upcoming generation of dark matter experiments. + +Large Low Background kTon-Scale LArTPCs +32 +3.8.2. +Strangelets Recently, the paper “Can strangelets be detected in a large LAr neutrino +detector?” [86], predicted that a LArTPC detector is able to detect and discriminate light strangelets +with (Z, A) between (2,14) and (7,70) for energies up to 10 GeV in the presence of radioactive +background found at the surface. When operated underground the detection limits are expected +to be extended due to lower background levels and, combined with the increased dimensions of +the detector module, will improve the event rates with a factor of 40. In the case of strangelets +the main uncertainties are due to the estimations of their survival probability deep underground. +The presence of 39Ar masks both ionization and scintillation signals from strangelets and induces +false signals in the collected charge from ionization. The use of underground argon in this module +allows a cleaner detection signal. +3.8.3. Charged micro-black holes and Superheavy dark matter Hawking [87] suggested that +unidentified tracks in the photographs taken in old bubble chamber detectors could be explained +as signals of gravitationally “collapsed objects” (µBH). The small black holes are expected to be +unstable due to Hawking radiation, but the evaporation is not well-understood at masses of the +order of the Planck scale. Certain inflationary models naturally assume the formation of a large +number of small black holes [88] and the generalized uncertainty principle may indeed prevent +total evaporation of small black holes by dynamics and not by symmetry, just like the hydrogen +atom is prevented from collapse by the standard uncertainty principle [89]. Given the profound +nature of the issues addressed, some disagreement and controversy exist. +In principle the direct detection of charged micro black holes with masses around and upward +of the Planck scale (10−5 g), ensuring a classical gravitational treatment of these objects, is possible +in huge LAr detectors. It has been shown that the signals (ionization and scintillation) produced +in LAr enable the discrimination between micro black holes (with masses between 10−5 - 10−4 +grams, and velocities in the range 250 - 1000 km/s) and other particles [90]. It is expected that +the trajectories of these micro black holes will appear as crossing the whole active medium, in any +direction, producing uniform ionization and scintillation on the whole path. +Along these lines, an analysis looking for multiple co-linear nuclear recoils can also probe +ultra heavy dark matter beyond the Plank scale, as described in Ref.[91, 92]. Sensitivity to the +heaviest dark matter candidates is limited by the number density of the dark matter, which is +inversely proportional to the mass, as the ability to detect heavy dark matter with a high cross +section is set by the probability that a dark matter particle enters the detector. As such, sensitivity +to the highest masses scales with the detector’s surface area, and would leverage the large size of +this module compared to DEAP-3600, which has a 1.7 m diameter. +Similarly, in the direct detection of the charged micro-black holes, unlike in traditional WIMP +detection, there will exist both ionization and scintillation signals from direct interactions and from +recoiling nuclei. The capability to perform pulse shape discrimination in this detector will allow +these tracks to be identified. Natural radioactivity is the main source of background in this case +and the reduced number of free electrons (and photons) from beta decays of 39Ar will allow a + +Large Low Background kTon-Scale LArTPCs +33 +significant improvement of the capability of the detector to correctly identify the micro-black hole +signals. +3.8.4. Other topics +This detector would have sensitivity to a small number of CEνNS events +within the neutrino beam. It may have applications to geologic tomography. The improved energy +resolution for low energy could have applications in searches for other exotics and beyond the +standard model physics phenomena. Though the optimal search region for a diffuse supernova +neutrino background is above the energy of the solar neutrinos [93], and thus the radioactive +backgrounds, the improved energy resolution of this detector will again likely improve the search +sensitivity. +4. Conclusion +We have presented a design in this paper for a low background kTon-scale LArTPC to potentially +expand the current physics program for such detectors. The design is based on the vertical drift +detector planned for DUNE’s second far detector module. The module discussed is a candidate for +a third or fourth DUNE “Module of Opportunity.” It is realized by providing additional shielding, +stringent radioactive background control and enhanced light detection to the nominal vertical +drift module. +Energy resolution will benefit in all energy ranges due to event reconstruction +and topology classification improvements from the superior light detection system and the quiet +detector, which will allow to capture more cascade gammas[13] and thereby improve the hadronic +component of neutrino-nucleus interactions. +The physics goals achieved by the SLoMo design extend the capability of large LArTPCs to +search for solar and supernova neutrinos, neutrino-less double beta-decay, and WIMP dark matter. +At the same time the design proposed here, by the nature of its small perturbations to the vertical +drift module, assures continuing strong support to the long-baseline neutrino oscillation program +to measure remaining parameters in the PMNS matrix. +Acknowledgments +Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the United States +Department of Energy (DOE) under Contract no. DE-AC05-76RL01830. Parts of this study at +PNNL were supported by the DOE, USA Office of High Energy Physics Advanced Technology +R&D subprogram and other parts by the Open Call Initiative, under the Laboratory Directed +Research and Development Program. In the United Kingdom this work was supported by STFC. +For IL and MP this work was performed with the financial support of the Romanian Program +PNCDI III, Programme 5, Module CERN-RO, under contract no. 04/2022. KS is supported by +the Department of Energy and the National Science Foundation. ZD acknowledges the support + +Large Low Background kTon-Scale LArTPCs +34 +of U.S. Department of Energy Office of Science under contract number DE- AC02-06CH11357. +South Dakota School of Mines and Technology acknowledges the support of Department of Energy +through award number DE-SC0014223, as well as DE-AC02-07CH11359 through subaward from +Fermi National Accelerator Laboratory subcontract no. 664706. JZ gratefully acknowledges using +the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of +Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, +LLC (FRA), acting under Contract No. DEAC02-07CH11359. +[1] B. Abi et al (DUNE Collaboration). Deep Underground Neutrino Experiment (DUNE), Far Detector Technical +Design Report, Volume IV: Far Detector Single-phase Technology, 2020. arXiv:2002.03010. +[2] A.A.. Abud et al (DUNE Collaboration). Design, construction and operation of the ProtoDUNE-SP Liquid +Argon TPC, 2022. 10.1088/1748-0221/17/01/P01005. +[3] S. Amerio et al (ICARUS Collaboration). Design, construction and tests of the ICARUS T600 detector, 2004. +10.1016/j.nima.2004.02.044. +[4] Xin Qian, et al. Snowmass 2021 Letter of Interest: “Development of LArTPC Vertical Drift Solutions with +PCB Anode Readouts for DUNE”. https://www.snowmass21.org/docs/files/summaries/ +NF/SNOWMASS21-NF10_NF0-IF9_IF8_Xin_Qian-123.pdf. +[5] Andreas Best, Joachim G¨orres, Matthias Junker, Karl-Ludwig Kratz, Matthias Laubenstein, Alexander +Long, Stefano Nisi, Karl Smith, and Michael Wiescher. +Low energy neutron background in deep +underground laboratories. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, +Spectrometers, Detectors and Associated Equipment, 812:1–6, 2016. https://www.sciencedirect. +com/science/article/pii/S0168900215016058. +[6] Guanying Zhu, Shirley Weishi Li, and John F. Beacom. Developing the MeV potential of DUNE: Detailed +considerations of muon-induced spallation and other backgrounds. Phys. Rev. C, 99:055810, May 2019. +[7] Francesco Capozzi, Shirley Weishi Li, Guanying Zhu, and John F. Beacom. DUNE as the Next-Generation Solar +Neutrino Experiment. Phys. Rev. Lett., 123:131803, Sep 2019. +[8] J. Reichenbacher. (alpha, n) Cross Section Data Improvement Needs for Next Generation Low-Background +Neutrino and Dark Matter Experiments, 2021. IAEA Technical Meeting on (alpha,n) nuclear data evaluation +and data needs, Vienna. +[9] Craig E Aalseth, F Acerbi, P Agnes, IFM Albuquerque, T Alexander, A Alici, AK Alton, P Antonioli, S Arcelli, +R Ardito, et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. The +European Physical Journal Plus, 133(3):1–129, 2018. +[10] E. Church, C.M. Jackson, and R. Saldanha. Dark matter detection capabilities of a large multipurpose Liquid +Argon Time Projection Chamber. Journal of Instrumentation, 15(09):P09026, Sep 2020. http://dx. +doi.org/10.1088/1748-0221/15/09/P09026. +[11] J. Stock J. Reichenbacher. Radiopurity Screening and Radiological Model for DUNE, 2017. Conference on +Science at the Sanford Underground Research Facility (CoSSURF), Rapid City, SD. +[12] J. Reichenbacher for the DUNE collaboration. Supernova Neutrinos, Proton Decay and Atmospheric Neutrinos +at DUNE, 2017. 26th International Workshop on Weak Interactions and Neutrinos (WIN 2017). +[13] D. Caratelli, W. Foreman, A. Friedland, S. Gardiner, I. Gil-Botella, G. Karagiorgi, M. Kirby, G. Lehmann Miotto, +B. R. Littlejohn, M. Mooney, J. Reichenbacher, A. Sousa, K. Scholberg, J. Yu, T. Yang, S. Andringa, J. Asaadi, +T. J. C. Bezerra, F. Capozzi, F. Cavanna, E. Church, A. Himmel, T. Junk, J. Klein, I. Lepetic, S. Li, P. Sala, +H. Schellman, M. Sorel, J. Wang, M. H. L. S. Wang, W. Wu, J. Zennamo, M. A. Acero, M. R. Adames, +H. Amar, D. A. Andrade, C. Andreopoulos, A. M. Ankowski, M. A. Arroyave, V. Aushev, M. A. Ayala-Torres, +P. Baldi, C. Backhouse, A. B. Balantekin, W. A. Barkhouse, P. Barham Alzas, J. L. Barrow, J. B. R. Battat, +M. C. Q. Bazetto, J. F. Beacom, B. Behera, G. Bellettini, J. Berger, A. T. Bezerra, J. Bian, B. Bilki, B. Bles, +T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Boran, A. N. Borkum, N. Bostan, D. Brailsford, + +Large Low Background kTon-Scale LArTPCs +35 +A. Branca, G. Brunetti, T. Cai, A. Chappell, N. Charitonidis, P. H. P. Cintra, E. Conley, T. E. Coan, P. Cova, +L. M. Cremaldi, J. I. Crespo-Anadon, C. Cuesta, R. Dallavalle, G. S. Davies, S. De, P. Dedin Neto, M. Delgado, +N. Delmonte, P. B. Denton, A. De Roeck, R. Dharmapalan, Z. Djurcic, F. Dolek, S. Doran, R. Dorrill, K. E. +Duffy, B. Dutta, O. Dvornikov, S. Edayath, J. J. Evans, A. C. Ezeribe, A. Falcone, M. Fani, J. Felix, Y. Feng, +L. Fields, P. Filip, G. Fiorillo, D. Franco, D. Garcia-Gamez, A. Giri, O. Gogota, S. Gollapinni, M. Goodman, +E. Gramellini, R. Gran, P. Granger, C. Grant, S. E. Greenberg, M. Groh, R. Guenette, D. Guffanti, D. A. +Harris, A. Hatzikoutelis, K. M. Heeger, M. Hernandez Morquecho, K. Herner, J. Ho, P C. Holanda, N. Ilic, +C. M. Jackson, W. Jang, H. Th. Janka, J. H. Jo, F. R. Joaquim, R. S. Jones, N. Jovancevic, Y. J. Jwa, +D. Kalra, D. M. Kaplan, I. Katsioulas, E. Kearns, K. J. Kelly, E. Kemp, W. Ketchum, A. Kish, L. W. Koerner, +T. Kosc, K. Kothekar, I. Kreslo, S. Kubota, V. A. Kudryavtsev, P. Kumar, T. Kutter, J. Kvasnicka, I. Lazanu, +T. LeCompte, Y. Li, Y. Liu, M. Lokajicek, W. C. Louis, K. B. Luk, X. Luo, P. A. N. Machado, I. M. Machulin, +K. Mahn, M. Man, R. C. Mandujano, J. Maneira, A. Marchionni, D. Marfatia, F. Marinho, C. Mariani, C. M. +Marshall, F. Martinez Lopez, D. A. Martinez Caicedo, A. Mastbaum, M. Matheny, N. McConkey, P. Mehta, +O. E. B. Messer, A. Minotti, O. G. Miranda, P. Mishra, I. Mocioiu, A. Mogan, R. Mohanta, T. Mohayai, +C. Montanari, L. M. Montano Zetina, A. F. Moor, D. Moretti, C. A. Moura, L. M. Mualem, J. Nachtman, +S. Narita, A. Navrer-Agasson, M. Nebot-Guinot, J. Nikolov, J. A. Nowak, J. P. Ochoa-Ricoux, E. O’Connor, +Y. Onel, Y. Onishchuk, G. D. Orebi Gann, V. Pandey, E. G. Parozzi, S. Parveen, M. Parvu, R. B. Patterson, +L. Paulucci, V. Pec, S. J. M. Peeters, F. Pompa, N. Poonthottathil, S. S. Poudel, F. Psihas, A. Rafique, B. J. +Ramson, J. S. Real, A. Rikalo, M. Ross-Lonergan, B. Russell, S. Sacerdoti, N. Sahu, D. A. Sanders, D. Santoro, +M. V. Santos, C. R. Senise, P. N. Shanahan, H. R Sharma, R. K. Sharma, W. Shi, S. Shin, J. Singh, J. Singh, +L. Singh, P. Singh, V. Singh, M. Soderberg, S. Soldner-Rembold, J. Soto-Oton, K. Spurgeon, A. F. Steklain, +F. Stocker, T. Stokes, J. Strait, M. Strait, T. Strauss, L. Suter, R. Svoboda, A. M. Szelc, M. Szydagis, E. Tarpara, +E. Tatar, F. Terranova, G. Testera, N. Chithirasree, N. Todorovic, A. Tonazzo, M. Torti, F. Tortorici, M. Toups, +D. Q. Tran, M. Travar, Y. D. Tsai, Y. T. Tsai, S. Z. Tu, J. Urheim, H. Utaegbulam, S. Valder, G. A. Valdiviesso, +R. Valentim, S. Vergani, B. Viren, A. Vranicar, B. Wang, D. Waters, P. Weatherly, M. Weber, H. Wei, +S. Westerdale, L. H. Whitehead, D. Whittington, A. Wilkinson, R. J. Wilson, M. Worcester, K. Wresilo, +B. Yaeggy, G. Yang, J. Zalesak, B. Zamorano, and J. Zuklin. Low-Energy Physics in Neutrino LArTPCs. +https://arxiv.org/abs/2203.00740, 2022. +[14] C. E. Aalseth, F. Acerbi, P. Agnes, I. F. M. Albuquerque, T. Alexander, A. Alici, A. K. Alton, P. Antonioli, +S. Arcelli, R. Ardito, I. J. Arnquist, D. M. Asner, M. Ave, H. O. Back, A. I. Barrado Olmedo, G. Batignani, +E. Bertoldo, S. Bettarini, M. G. Bisogni, V. Bocci, A. Bondar, G. Bonfini, W. Bonivento, M. Bossa, B. Bottino, +M. Boulay, R. Bunker, S. Bussino, A. Buzulutskov, M. Cadeddu, M. Cadoni, A. Caminata, N. Canci, +A. Candela, C. Cantini, M. Caravati, M. Cariello, M. Carlini, M. Carpinelli, A. Castellani, S. Catalanotti, +V. Cataudella, P. Cavalcante, S. Cavuoti, R. Cereseto, A. Chepurnov, C. Cical`o, L. Cifarelli, M. Citterio, +A. G. Cocco, M. Colocci, S. Corgiolu, G. Covone, P. Crivelli, I. D’Antone, M. D’Incecco, D. D’Urso, M. D. +Da Rocha Rolo, M. Daniel, S. Davini, A. de Candia, S. De Cecco, M. De Deo, G. De Filippis, G. De Guido, +G. De Rosa, G. Dellacasa, M. Della Valle, P. Demontis, A. Derbin, A. Devoto, F. Di Eusanio, G. Di Pietro, +C. Dionisi, A. Dolgov, I. Dormia, S. Dussoni, A. Empl, M. Fernandez Diaz, A. Ferri, C. Filip, G. Fiorillo, +K. Fomenko, D. Franco, G. E. Froudakis, F. Gabriele, A. Gabrieli, C. Galbiati, P. Garcia Abia, A. Gendotti, +A. Ghisi, S. Giagu, P. Giampa, G. Gibertoni, C. Giganti, M. A. Giorgi, G. K. Giovanetti, M. L. Gligan, A. Gola, +O. Gorchakov, A. M. Goretti, F. Granato, M. Grassi, J. W. Grate, G. Y. Grigoriev, M. Gromov, M. Guan, +M. B. B. Guerra, M. Guerzoni, M. Gulino, R. K. Haaland, A. Hallin, B. Harrop, E. W. Hoppe, S. Horikawa, +B. Hosseini, D. Hughes, P. Humble, E. V. Hungerford, An. Ianni, C. Jillings, T. N. Johnson, K. Keeter, C. L. +Kendziora, S. Kim, G. Koh, D. Korablev, G. Korga, A. Kubankin, M. Kuss, M. Ku´zniak, M. La Commara, +B. Lehnert, X. Li, M. Lissia, G. U. Lodi, B. Loer, G. Longo, P. Loverre, R. Lussana, L. Luzzi, Y. Ma, A. A. +Machado, I. N. Machulin, A. Mandarano, L. Mapelli, M. Marcante, A. Margotti, S. M. Mari, M. Mariani, +J. Maricic, C. J. Martoff, M. Mascia, M. Mayer, A. B. McDonald, A. Messina, P. D. Meyers, R. Milincic, +A. Moggi, S. Moioli, J. Monroe, A. Monte, M. Morrocchi, B. J. Mount, W. Mu, V. N. Muratova, S. Murphy, +P. Musico, R. Nania, A. Navrer Agasson, I. Nikulin, V. Nosov, A. O. Nozdrina, N. N. Nurakhov, A. Oleinik, +V. Oleynikov, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, S. Palmas, L. Pandola, E. Pantic, E. Paoloni, + +Large Low Background kTon-Scale LArTPCs +36 +G. Paternoster, V. Pavletcov, F. Pazzona, S. Peeters, K. Pelczar, L. A. Pellegrini, N. Pelliccia, F. Perotti, +R. Perruzza, V. Pesudo, C. Piemonte, F. Pilo, A. Pocar, T. Pollmann, D. Portaluppi, D. A. Pugachev, H. Qian, +B. Radics, F. Raffaelli, F. Ragusa, M. Razeti, A. Razeto, V. Regazzoni, C. Regenfus, B. Reinhold, A. L. +Renshaw, M. Rescigno, F. Reti`ere, Q. Riffard, A. Rivetti, S. Rizzardini, A. Romani, L. Romero, B. Rossi, +N. Rossi, A. Rubbia, D. Sablone, P. Salatino, O. Samoylov, E. S´anchez Garc´ıa, W. Sands, S. Sanfilippo, +M. Sant, R. Santorelli, C. Savarese, E. Scapparone, B. Schlitzer, G. Scioli, E. Segreto, A. Seifert, D. A. +Semenov, A. Shchagin, L. Shekhtman, E. Shemyakina, A. Sheshukov, M. Simeone, P. N. Singh, P. Skensved, +M. D. Skorokhvatov, O. Smirnov, G. Sobrero, A. Sokolov, A. Sotnikov, F. Speziale, R. Stainforth, C. Stanford, +G. B. Suffritti, Y. Suvorov, R. Tartaglia, G. Testera, A. Tonazzo, A. Tosi, P. Trinchese, E. V. Unzhakov, +A. Vacca, E. V´azquez-J´auregui, M. Verducci, T. Viant, F. Villa, A. Vishneva, B. Vogelaar, M. Wada, J. Wahl, +J. Walding, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, R. Williams, M. M. Wojcik, S. Wu, X. Xiang, +X. Xiao, C. Yang, Z. Ye, A. Yllera de Llano, F. Zappa, G. Zappal`a, C. Zhu, A. Zichichi, M. Zullo, A. Zullo, +and G. Zuzel. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. The +European Physical Journal Plus, 133(3):131, 2018. +[15] R. Ajaj, P.-A. Amaudruz, G. R. Araujo, M. Baldwin, M. Batygov, B. Beltran, C. E. Bina, J. Bonatt, M. G. Boulay, +B. Broerman, J. F. Bueno, P. M. Burghardt, A. Butcher, B. Cai, S. Cavuoti, M. Chen, Y. Chen, B. T. Cleveland, +D. Cranshaw, K. Dering, J. DiGioseffo, L. Doria, F. A. Duncan, M. Dunford, A. Erlandson, N. Fatemighomi, +G. Fiorillo, S. Florian, A. Flower, R. J. Ford, R. Gagnon, D. Gallacher, E. A. Garc´es, S. Garg, P. Giampa, +D. Goeldi, V. V. Golovko, P. Gorel, K. Graham, D. R. Grant, A. L. Hallin, M. Hamstra, P. J. Harvey, C. Hearns, +A. Joy, C. J. Jillings, O. Kamaev, G. Kaur, A. Kemp, I. Kochanek, M. Ku´zniak, S. Langrock, F. La Zia, +B. Lehnert, X. Li, J. Lidgard, T. Lindner, O. Litvinov, J. Lock, G. Longo, P. Majewski, A. B. McDonald, +T. McElroy, T. McGinn, J. B. McLaughlin, R. Mehdiyev, C. Mielnichuk, J. Monroe, P. Nadeau, C. Nantais, +C. Ng, A. J. Noble, E. O’Dwyer, C. Ouellet, P. Pasuthip, S. J. M. Peeters, M.-C. Piro, T. R. Pollmann, E. T. +Rand, C. Rethmeier, F. Reti`ere, N. Seeburn, K. Singhrao, P. Skensved, B. Smith, N. J. T. Smith, T. Sonley, +J. Soukup, R. Stainforth, C. Stone, V. Strickland, B. Sur, J. Tang, E. V´azquez-J´auregui, L. Veloce, S. Viel, +J. Walding, M. Waqar, M. Ward, S. Westerdale, J. Willis, and A. Zu˜niga Reyes. Search for dark matter with +a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB. Phys. Rev. D, 100:022004, Jul 2019. +https://link.aps.org/doi/10.1103/PhysRevD.100.022004. +[16] E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, F. D. Amaro, M. Anthony, F. Arneodo, P. Barrow, L. Baudis, +B. Bauermeister, M. L. Benabderrahmane, T. Berger, P. A. Breur, A. Brown, E. Brown, S. Bruenner, G. Bruno, +R. Budnik, L. B¨utikofer, J. Calv´en, J. M. R. Cardoso, M. Cervantes, D. Cichon, D. Coderre, A. P. Colijn, +J. Conrad, J. P. Cussonneau, M. P. Decowski, P. de Perio, P. Di Gangi, A. Di Giovanni, S. Diglio, E. Duchovni, +G. Eurin, J. Fei, A. D. Ferella, A. Fieguth, D. Franco, W. Fulgione, A. Gallo Rosso, M. Galloway, F. Gao, +M. Garbini, C. Geis, L. W. Goetzke, L. Grandi, Z. Greene, C. Grignon, C. Hasterok, E. Hogenbirk, R. Itay, +B. Kaminsky, G. Kessler, A. Kish, H. Landsman, R. F. Lang, D. Lellouch, L. Levinson, M. Le Calloch, Q. Lin, +S. Lindemann, M. Lindner, J. A. M. Lopes, A. Manfredini, I. Maris, T. Marrod´an Undagoitia, J. Masbou, F. V. +Massoli, D. Masson, D. Mayani, Y. Meng, M. Messina, K. Micheneau, B. Miguez, A. Molinario, M. Murra, +J. Naganoma, K. Ni, U. Oberlack, S. E. A. Orrigo, P. Pakarha, B. Pelssers, R. Persiani, F. Piastra, J. Pienaar, +M. C. Piro, V. Pizzella, G. Plante, N. Priel, L. Rauch, S. Reichard, C. Reuter, A. Rizzo, S. Rosendahl, N. Rupp, +R. Saldanha, J. M. F. dos Santos, G. Sartorelli, M. Scheibelhut, S. Schindler, J. Schreiner, M. Schumann, +L. Scotto Lavina, M. Selvi, P. Shagin, E. Shockley, M. Silva, H. Simgen, M. v. Sivers, A. Stein, D. Thers, +A. Tiseni, G. Trinchero, C. Tunnell, N. Upole, H. Wang, Y. Wei, C. Weinheimer, J. Wulf, J. Ye, Y. Zhang, +I. Cristescu, and XENON Collaboration. Online 222Rn removal by cryogenic distillation in the XENON100 +experiment. The European Physical Journal C, 77(6):358, 2017. +[17] K. Pushkin, C. Akerlof, D. Anbajagane, J. Armstrong, M. Arthurs, J. Bringewatt, T. Edberg, C. Hall, M. Lei, +R. Raymond, M. Reh, D. Saini, A. Sander, J. Schaefer, D. Seymour, N. Swanson, Y. Wang, and W. Lorenzon. +Study of radon reduction in gases for rare event search experiments. Nuclear Instruments and Methods in +Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 903:267–276, +2018. https://www.sciencedirect.com/science/article/pii/S0168900218308131. +[18] G Heusser, W Rau, B Freudiger, M Laubenstein, M Balata, and T Kirsten. 222Rn detection at the µBq/m3 + +Large Low Background kTon-Scale LArTPCs +37 +range in nitrogen gas and a new Rn purification technique for liquid nitrogen. +Applied Radiation and +Isotopes, 52(3):691–695, 2000. +https://www.sciencedirect.com/science/article/pii/ +S0969804399002316. +[19] P. Abratenko, J. Anthony, L. Arellano, J. Asaadi, A. Ashkenazi, S. Balasubramanian, B. Baller, C. Barnes, +G. Barr, J. Barrow, V. Basque, L. Bathe-Peters, O. Benevides Rodrigues, S. Berkman, A. Bhanderi, A. Bhat, +M. Bhattacharya, M. Bishai, A. Blake, T. Bolton, J.Y. Book, L. Camilleri, D. Caratelli, I. Caro Terrazas, +F. Cavanna, G. Cerati, Y. Chen, D. Cianci, J.M. Conrad, M. Convery, L. Cooper-Troendle, J.I. Crespo- +Anad ˜A³n, M. Del Tutto, S.R. Dennis, P. Detje, A. Devitt, R. Diurba, R. Dorrill, K. Duffy, S. Dytman, B. Eberly, +A. Ereditato, J.J. Evans, R. Fine, G.A. Fiorentini Aguirre, R.S. Fitzpatrick, B.T. Fleming, N. Foppiani, +D. Franco, A.P. Furmanski, D. Garcia-Gamez, S. Gardiner, G. Ge, S. Gollapinni, O. Goodwin, E. Gramellini, +P. Green, H. Greenlee, W. Gu, R. Guenette, P. Guzowski, L. Hagaman, O. Hen, C. Hilgenberg, G.A. Horton- +Smith, A. Hourlier, R. Itay, C. James, X. Ji, L. Jiang, J.H. Jo, C. Joe, R.A. Johnson, Y.-J. Jwa, D. Kalra, +N. Kamp, N. Kaneshige, G. Karagiorgi, W. Ketchum, M. Kirby, T. Kobilarcik, I. Kreslo, I. Lepetic, J.-Y. +Li, K. Li, Y. Li, K. Lin, B.R. Littlejohn, W.C. Louis, X. Luo, K. Manivannan, C. Mariani, D. Marsden, +J. Marshall, D.A. Martinez Caicedo, K. Mason, A. Mastbaum, N. McConkey, V. Meddage, T. Mettler, +K. Miller, J. Mills, K. Mistry, A. Mogan, T. Mohayai, M. Mooney, A.F. Moor, C.D. Moore, L. Mora Lepin, +J. Mousseau, S. Mulleriababu, D. Naples, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, R.K. Neely, +D.A. Newmark, J. Nowak, M. Nunes, O. Palamara, V. Paolone, A. Papadopoulou, V. Papavassiliou, H.B. +Parkinson, S.F. Pate, N. Patel, A. Paudel, Z. Pavlovic, E. Piasetzky, I.D. Ponce-Pinto, S. Prince, X. Qian, +J.L. Raaf, V. Radeka, A. Rafique, M. Reggiani-Guzzo, L. Ren, L.C.J. Rice, L. Rochester, J. Rodriguez +Rondon, M. Rosenberg, M. Ross-Lonergan, C. Rudolf von Rohr, G. Scanavini, D.W. Schmitz, A. Schukraft, +W. Seligman, M.H. Shaevitz, R. Sharankova, J. Shi, J. Sinclair, A. Smith, E.L. Snider, M. Soderberg, +S. S ˜A¶ldner-Rembold, P. Spentzouris, J. Spitz, M. Stancari, J. St. John, T. Strauss, K. Sutton, S. Sword- +Fehlberg, A.M. Szelc, W. Tang, K. Terao, C. Thorpe, D. Torbunov, D. Totani, M. Toups, Y.-T. Tsai, +M.A. Uchida, T. Usher, B. Viren, M. Weber, H. Wei, A.J. White, Z. Williams, S. Wolbers, T. Wongjirad, +M. Wospakrik, K. Wresilo, N. Wright, W. Wu, E. Yandel, T. Yang, G. Yarbrough, L.E. Yates, H.W. Yu, G.P. +Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot, and The MicroBooNE collaboration. Observation of radon +mitigation in microboone by a liquid argon filtration system. Journal of Instrumentation, 17(11):P11022, nov +2022. https://dx.doi.org/10.1088/1748-0221/17/11/P11022. +[20] Andrea Pocar. +Low background techniques for the Borexino nylon vessels. +AIP Conference Proceedings, +785(1):153–162, 2005. https://aip.scitation.org/doi/abs/10.1063/1.2060466. +[21] D. S. Akerib, C. W. Akerlof, D. Yu. Akimov, A. Alquahtani, S. K. Alsum, T. J. Anderson, N. Angelides, H. M. +Ara´ujo, A. Arbuckle, J. E. Armstrong, M. Arthurs, H. Auyeung, S. Aviles, X. Bai, A. J. Bailey, J. Balajthy, +S. Balashov, J. Bang, M. J. Barry, D. Bauer, P. Bauer, A. Baxter, J. Belle, P. Beltrame, J. Bensinger, T. Benson, +E. P. Bernard, A. Bernstein, A. Bhatti, A. Biekert, T. P. Biesiadzinski, H. J. Birch, B. Birrittella, K. E. Boast, +A. I. Bolozdynya, E. M. Boulton, B. Boxer, R. Bramante, S. Branson, P. Br´as, M. Breidenbach, C. A. J. Brew, +J. H. Buckley, V. V. Bugaev, R. Bunker, S. Burdin, J. K. Busenitz, R. Cabrita, J. S. Campbell, C. Carels, +D. L. Carlsmith, B. Carlson, M. C. Carmona-Benitez, M. Cascella, C. Chan, J. J. Cherwinka, A. A. Chiller, +C. Chiller, N. I. Chott, A. Cole, J. Coleman, D. Colling, R. A. Conley, A. Cottle, R. Coughlen, G. Cox, +W. W. Craddock, D. Curran, A. Currie, J. E. Cutter, J. P. da Cunha, C. E. Dahl, S. Dardin, S. Dasu, J. Davis, +T. J. R. Davison, L. de Viveiros, N. Decheine, A. Dobi, J. E. Y. Dobson, E. Druszkiewicz, A. Dushkin, +T. K. Edberg, W. R. Edwards, B. N. Edwards, J. Edwards, M. M. Elnimr, W. T. Emmet, S. R. Eriksen, +C. H. Faham, A. Fan, S. Fayer, S. Fiorucci, H. Flaecher, I. M. Fogarty Florang, P. Ford, V. B. Francis, E. D. +Fraser, F. Froborg, T. Fruth, R. J. Gaitskell, N. J. Gantos, D. Garcia, V. M. Gehman, R. Gelfand, J. Genovesi, +R. M. Gerhard, C. Ghag, E. Gibson, M. G. D. Gilchriese, S. Gokhale, B. Gomber, T. G. Gonda, A. Greenall, +S. Greenwood, G. Gregerson, M. G. D. van der Grinten, C. B. Gwilliam, C. R. Hall, D. Hamilton, S. Hans, +K. Hanzel, T. Harrington, A. Harrison, J. Harrison, C. Hasselkus, S. J. Haselschwardt, D. Hemer, S. A. Hertel, +J. Heise, S. Hillbrand, O. Hitchcock, C. Hjemfelt, M. D. Hoff, B. Holbrook, E. Holtom, J. Y-K. Hor, M. Horn, +D. Q. Huang, T. W. Hurteau, C. M. Ignarra, M. N. Irving, R. G. Jacobsen, O. Jahangir, S. N. Jeffery, W. Ji, +M. Johnson, J. Johnson, P. Johnson, W. G. Jones, A. C. Kaboth, A. Kamaha, K. Kamdin, V. Kasey, K. Kazkaz, + +Large Low Background kTon-Scale LArTPCs +38 +J. Keefner, D. Khaitan, M. Khaleeq, A. Khazov, A. V. Khromov, I. Khurana, Y. D. Kim, W. T. Kim, C. D. +Kocher, D. Kodroff, A. M. Konovalov, L. Korley, E. V. Korolkova, M. Koyuncu, J. Kras, H. Kraus, S. W. +Kravitz, H. J. Krebs, L. Kreczko, B. Krikler, V. A. Kudryavtsev, A. V. Kumpan, S. Kyre, A. R. Lambert, +B. Landerud, N. A. Larsen, A. Laundrie, E. A. Leason, H. S. Lee, J. Lee, C. Lee, B. G. Lenardo, D. S. Leonard, +R. Leonard, K. T. Lesko, C. Levy, J. Li, Y. Liu, J. Liao, F. T. Liao, J. Lin, A. Lindote, R. Linehan, W. H. +Lippincott, R. Liu, X. Liu, C. Loniewski, M. I. Lopes, E. Lopez-Asamar, B. L´opez Paredes, W. Lorenzon, +D. Lucero, S. Luitz, J. M. Lyle, C. Lynch, P. A. Majewski, J. Makkinje, D. C. Malling, A. Manalaysay, +L. Manenti, R. L. Mannino, N. Marangou, D. J. Markley, P. MarrLaundrie, T. J. Martin, M. F. Marzioni, +C. Maupin, C. T. McConnell, D. N. McKinsey, J. McLaughlin, D. M. Mei, Y. Meng, E. H. Miller, Z. J. +Minaker, E. Mizrachi, J. Mock, D. Molash, A. Monte, M. E. Monzani, J. A. Morad, E. Morrison, B. J. Mount, +A. St. J. Murphy, D. Naim, A. Naylor, C. Nedlik, C. Nehrkorn, H. N. Nelson, J. Nesbit, F. Neves, J. A. Nikkel, +J. A. Nikoleyczik, A. Nilima, J. O’Dell, H. Oh, F. G. O’Neill, K. O’Sullivan, I. Olcina, M. A. Olevitch, K. C. +Oliver-Mallory, L. Oxborough, A. Pagac, D. Pagenkopf, S. Pal, K. J. Palladino, V. M. Palmaccio, J. Palmer, +M. Pangilinan, N. Parveen, S. J. Patton, E. K. Pease, B. P. Penning, G. Pereira, C. Pereira, I. B. Peterson, +A. Piepke, S. Pierson, S. Powell, R. M. Preece, K. Pushkin, Y. Qie, M. Racine, B. N. Ratcliff, J. Reichenbacher, +L. Reichhart, C. A. Rhyne, A. Richards, Q. Riffard, G. R. C. Rischbieter, J. P. Rodrigues, H. J. Rose, R. Rosero, +P. Rossiter, R. Rucinski, G. Rutherford, J. S. Saba, L. Sabarots, D. Santone, M. Sarychev, A. B. M. R. Sazzad, +R. W. Schnee, M. Schubnell, P. R. Scovell, M. Severson, and D. Seymour. The lux-zeplin (lz) radioactivity +and cleanliness control programs. The European Physical Journal C, 80(11):1044, 2020. +[22] J. Street, R. Bunker, E. H. Miller, R. W. Schnee, S. Snyder, and J. So. Radon mitigation for the SuperCDMS +SNOLAB dark matter experiment. AIP Conference Proceedings, 1921(1):050002, 2018. https://aip. +scitation.org/doi/abs/10.1063/1.5018995. +[23] National Nuclear Data Center. https://www.nndc.bnl.gov/nudat3/. +[24] P. Benetti, F. Calaprice, E. Calligarich, M. Cambiaghi, F. Carbonara, F. Cavanna, A.G. Cocco, F. Di Pompeo, +N. Ferrari, G. Fiorillo, C. Galbiati, L. Grandi, G. Mangano, C. Montanari, L. Pandola, A. Rappoldi, +G.L. Raselli, M. Roncadelli, M. Rossella, C. Rubbia, R. Santorelli, A.M. Szelc, C. Vignoli, and Y. Zhao. +Measurement of the specific activity of 39ar in natural argon. Nuclear Instruments and Methods in Physics +Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 574(1):83–88, 2007. +https://www.sciencedirect.com/science/article/pii/S0168900207001672. +[25] D.-M. Mei, Z.-B. Yin, J. Spaans, M. Koppang, A. Hime, C. Keller, and V. M. Gehman. +Prediction of +underground argon content for dark matter experiments. Phys. Rev. C, 81:055802, May 2010. https: +//link.aps.org/doi/10.1103/PhysRevC.81.055802. +[26] P. Agnes, L. Agostino, I. F. M. Albuquerque, T. Alexander, A. K. Alton, K. Arisaka, H. O. Back, B. Baldin, +K. Biery, G. Bonfini, M. Bossa, B. Bottino, A. Brigatti, J. Brodsky, F. Budano, S. Bussino, M. Cadeddu, +L. Cadonati, M. Cadoni, F. Calaprice, N. Canci, A. Candela, H. Cao, M. Cariello, M. Carlini, S. Catalanotti, +P. Cavalcante, A. Chepurnov, A. G. Cocco, G. Covone, L. Crippa, D. D’Angelo, M. D’Incecco, S. Davini, +S. De Cecco, M. De Deo, M. De Vincenzi, A. Derbin, A. Devoto, F. Di Eusanio, G. Di Pietro, E. Edkins, +A. Empl, A. Fan, G. Fiorillo, K. Fomenko, G. Forster, D. Franco, F. Gabriele, C. Galbiati, C. Giganti, A. M. +Goretti, F. Granato, L. Grandi, M. Gromov, M. Guan, Y. Guardincerri, B. R. Hackett, J. Hall, K. Herner, +P. H. Humble, E. V. Hungerford, Al. Ianni, An. Ianni, I. James, C. Jollet, K. Keeter, C. L. Kendziora, +V. Kobychev, G. Koh, D. Korablev, G. Korga, A. Kubankin, X. Li, M. Lissia, P. Lombardi, S. Luitz, +Y. Ma, I. N. Machulin, A. Mandarano, S. M. Mari, J. Maricic, L. Marini, C. J. Martoff, A. Meregaglia, +P. D. Meyers, T. Miletic, R. Milincic, D. Montanari, A. Monte, M. Montuschi, M. Monzani, P. Mosteiro, +B. J. Mount, V. N. Muratova, P. Musico, J. Napolitano, A. Nelson, S. Odrowski, M. Orsini, F. Ortica, +L. Pagani, M. Pallavicini, E. Pantic, S. Parmeggiano, K. Pelczar, N. Pelliccia, S. Perasso, A. Pocar, S. Pordes, +D. A. Pugachev, H. Qian, K. Randle, G. Ranucci, A. Razeto, B. Reinhold, A. L. Renshaw, A. Romani, +B. Rossi, N. Rossi, D. Rountree, D. Sablone, P. Saggese, R. Saldanha, W. Sands, S. Sangiorgio, C. Savarese, +E. Segreto, D. A. Semenov, E. Shields, P. N. Singh, M. D. Skorokhvatov, O. Smirnov, A. Sotnikov, C. Stanford, +Y. Suvorov, R. Tartaglia, J. Tatarowicz, G. Testera, A. Tonazzo, P. Trinchese, E. V. Unzhakov, A. Vishneva, +B. Vogelaar, M. Wada, S. Walker, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, J. Wilhelmi, M. M. + +Large Low Background kTon-Scale LArTPCs +39 +Wojcik, X. Xiang, J. Xu, C. Yang, J. Yoo, S. Zavatarelli, A. Zec, W. Zhong, C. Zhu, and G. Zuzel. Results +from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D, 93:081101, Apr 2016. +https://link.aps.org/doi/10.1103/PhysRevD.93.081101. +[27] J Nowak, Darkside Collaboration, et al. Separating 39ar from 40ar by cryogenic distillation with aria for dark +matter searches. European Physical Journal C: Particles and Fields, 2021. +[28] A S Barabash, R R Saakyan, and V I Umatov. +On concentration of 42ar in liquid argon. +Journal of +Physics: Conference Series, 718:062004, may 2016. +https://doi.org/10.1088/1742-6596/ +718/6/062004. +[29] A.J Peurrung, T.W Bowyer, R.A Craig, and P.L Reeder. +Expected atmospheric concentration of 42ar. +Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors +and Associated Equipment, 396(3):425–426, 1997. https://www.sciencedirect.com/science/ +article/pii/S016890029700819X. +[30] P Cennini, S Cittolin, D Dzialo Giudice, JP Revol, C Rubbia, WH Tian, X Li, P Picchi, F Cavanna, G Piano +Mortari, et al. +On atmospheric 39ar and 42ar abundance. +Nuclear Instruments and Methods in Physics +Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 356(2-3):526–529, +1995. +[31] John R. Rumble. Handbook of Chemistry and Physics. CRC Press, New York, 2020. +[32] A Lubashevskiy, M Agostini, D Budj´aˇs, A Gangapshev, K Gusev, M Heisel, A Klimenko, A Lazzaro, B Lehnert, +Krzysztof Pelczar, et al. +Mitigation of 42Ar/42K background for the GERDA Phase II experiment. +The +European Physical Journal C, 78(1):1–10, 2018. +[33] J Schr¨oder, KO M¨unnich, and DH Ehhalt. +Physical sciences: +krypton-85 in the troposphere. +Nature, +233(5322):614–615, 1971. +[34] collaboration = DEAP Collaboration Adhikari, P. Electromagnetic backgrounds and potassium-42 in the DEAP- +3600 dark matter detector. Phys. Rev. D, 100:072009, Oct 2019. https://link.aps.org/doi/10. +1103/PhysRevD.100.072009. +[35] Andrew Renshaw. Procuring 50 Tonnes of Underground Argon for DS- 20k, May 2018. https://doi.org/ +10.5281/zenodo.1239080. +[36] R. Saldanha, H. O. Back, R. H. M. Tsang, T. Alexander, S. R. Elliott, S. Ferrara, E. Mace, C. Overman, and +M. Zalavadia. Cosmogenic production of 39Ar and 37Ar in argon. Phys. Rev. C, 100:024608, Aug 2019. +https://link.aps.org/doi/10.1103/PhysRevC.100.024608. +[37] Chao Zhang and Dongming Mei. Evaluation of cosmogenic production of 39Ar and 42Ar for rare-event physics +using underground argon, 2022. +[38] R. Saldanha, H. O. Back, R. H. M. Tsang, T. Alexander, S. R. Elliott, S. Ferrara, E. Mace, C. Overman, and +M. Zalavadia. Cosmogenic production of 39Ar and 37Ar in argon. Phys. Rev. C, 100:024608, Aug 2019. +https://link.aps.org/doi/10.1103/PhysRevC.100.024608. +[39] M. Parvu and I. Lazanu. +Radioactive background for ProtoDUNE detector. +Journal of Cosmology and +Astroparticle Physics, 2021(08):042, 2021. +[40] C. Zhang and D.-M. Mei. Evaluation of cosmogenic production of 39Ar and 42Ar for rare-event physics using +underground argon. Astroparticle Physics, 142:102733, 2022. https://www.sciencedirect.com/ +science/article/pii/S0927650522000408. +[41] M. Szydagis et al. +A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon +Detectors for Dark Matter and Neutrino Physics Using NEST. +Instruments, 5:13, 2021. +10.3390/ +instruments5010013. +[42] Avinay Bhat. MeV Scale Physics in MicroBooNE. PhD thesis, Syracuse U., 2021. +[43] B J P Jones, C S Chiu, J M Conrad, C M Ignarra, T Katori, and M Toups. A measurement of the absorption of +liquid argon scintillation light by dissolved nitrogen at the part-per-million level. Journal of Instrumentation, +8(07):P07011–P07011, jul 2013. https://doi.org/10.1088/1748-0221/8/07/p07011. +[44] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, +G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, +J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, + +Large Low Background kTon-Scale LArTPCs +40 +R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, +R. Giannitrapani, D. Gibin, J. J. G´omez Cadenas, I. Gonz´alez, G. Gracia Abril, G. Greeniaus, W. Greiner, +V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, +A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, +M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, +T. Lamp´en, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, +E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, +P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, +M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, +S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, +E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, +W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and +D. Zschiesche. +”geant4—a simulation toolkit”. +Nuclear Instruments and Methods in Physics Research +Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, July 2003. +10.1016/S0168-9002(03)01368-8. +[45] E Church. Large-LArTPC-Optical Monte Carlo Code. https://github.com/echurch/rdecay02/ +tree/liquid_deception, 2020. +[46] T. Totani, K. Sato, H. E. Dalhed, and J. R. Wilson. Future Detection of Supernova Neutrino Burst and Explosion +Mechanism. The Astrophysical Journal, 496(1):216–225, Mar 1998. +[47] Steven Gardiner. Nuclear de-excitations in low-energy charged-current νe scattering on 40Ar. Phys. Rev. C, +103:044604, Apr 2021. https://link.aps.org/doi/10.1103/PhysRevC.103.044604. +[48] B. Abi et al. Supernova neutrino burst detection with the Deep Underground Neutrino Experiment. Eur. Phys. +J. C, 81(5):423, 2021. 10.1140/epjc/s10052-021-09166-w. +[49] Shirley Weishi Li, Luke F. Roberts, and John F. Beacom. +Exciting Prospects for Detecting Late-Time +Neutrinos from Core-Collapse Supernovae. Phys. Rev. D, 103(2):023016, 2021. 10.1103/PhysRevD. +103.023016. +[50] A. Odrzywolek, Marcin Misiaszek, and M. Kutschera. Detection possibility of the pair - annihilation neutrinos +from the neutrino - cooled pre-supernova star. +Astropart. Phys., 21:303–313, 2004. +10.1016/j. +astropartphys.2004.02.002. +[51] Andrzej Odrzywolek, M. Misiaszek, and M. Kutschera. Neutrinos from pre-supernova star. Acta Phys. Polon. +B, 35:1981, 2004. +[52] Andrzej Odrzywolek and Alexander Heger. Neutrino signatures of dying massive stars: From main sequence to +the neutron star. Acta Phys. Polon. B, 41:1611–1628, 2010. +[53] Chinami Kato, Hiroki Nagakura, Shun Furusawa, Koh Takahashi, Hideyuki Umeda, Takashi Yoshida, Koji +Ishidoshiro, and Shoichi Yamada. Neutrino emissions in all flavors up to the pre-bounce of massive stars +and the possibility of their detections. Astrophys. J., 848(1):48, 2017. 10.3847/1538-4357/aa8b72. +[54] Kelly M. Patton, Cecilia Lunardini, and Robert J. Farmer. Presupernova neutrinos: realistic emissivities from +stellar evolution. Astrophys. J., 840(1):2, 2017. 10.3847/1538-4357/aa6ba8. +[55] Kelly M. Patton, Cecilia Lunardini, Robert J. Farmer, and F. X. Timmes. +Neutrinos from Beta Processes +in a Presupernova: Probing the Isotopic Evolution of a Massive Star. Astrophys. J., 851(1):6, Dec 2017. +10.3847/1538-4357/aa95c4. +[56] Mainak Mukhopadhyay, Cecilia Lunardini, F. X. Timmes, and Kai Zuber. Presupernova neutrinos: directional +sensitivity and prospects for progenitor identification. +Astrophys. J., 899(2):153, 2020. +10.3847/ +1538-4357/ab99a6. +[57] Daniel Z. Freedman. +Coherent effects of a weak neutral current. +Phys. Rev. D, 9:1389–1392, Mar 1974. +https://link.aps.org/doi/10.1103/PhysRevD.9.1389. +[58] V B Kopeliovich and L L Frankfurt. Isotopic and chiral structure of neutral current. JETP Lett. (USSR) (Engl. +Transl.), v. 19, no. 4, pp. 145-147, 2 1974. https://www.osti.gov/biblio/4289450. +[59] D. Akimov, J. B. Albert, P. An, C. Awe, P. S. Barbeau, B. Becker, V. Belov, I. Bernardi, M. A. Blackston, +L. Blokland, and et al. +First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon. + +Large Low Background kTon-Scale LArTPCs +41 +Physical Review Letters, 126(1), Jan 2021. http://dx.doi.org/10.1103/PhysRevLett.126. +012002. +[60] Scholberg, Kate. +The CEvNS Glow from a Supernova. +https://doi.org/10.5281/zenodo. +3464639, November 2018. +[61] Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Jordi Salvado. +Updated +constraints on non-standard interactions from global analysis of oscillation data. +JHEP, 08:180, 2018. +[Addendum: JHEP 12, 152 (2020)]. +[62] Juergen Reichenbacher and Gleb Sinev. +NSI Searches with Current and Future Neutrino and Dark-Matter +Experiments. publication in preparation, Dec 2022. +[63] Alexander Friedland, Cecilia Lunardini, and Carlos Pena-Garay. Solar neutrinos as probes of neutrino matter +interactions. Phys. Lett. B, 594:347, 2004. 10.1016/j.physletb.2004.05.047. +[64] Alexander Friedland, Michael L. Graesser, Ian M. Shoemaker, and Luca Vecchi. Probing Nonstandard Standard +Model Backgrounds with LHC Monojets. Phys. Lett. B, 714:267–275, 2012. 10.1016/j.physletb. +2012.06.078. +[65] BOREXINO Collaboration. Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun. +Nature, 587(7835):577–582, Nov 2020. http://dx.doi.org/10.1038/s41586-020-2934-0. +[66] N´uria Vinyoles, Aldo M. Serenelli, Francesco L. Villante, Sarbani Basu, Johannes Bergstr¨om, M. C. Gonzalez- +Garcia, Michele Maltoni, Carlos Pe˜na-Garay, and Ningqiang Song. +A New Generation of Standard +Solar Models. +The Astrophysical Journal, 835(2):202, jan 2017. +https://doi.org/10.3847/ +1538-4357/835/2/202. +[67] D. Franco, C. Giganti, P. Agnes, L. Agostino, B. Bottino, N. Canci, S. Davini, S. De Cecco, A. Fan, +G. Fiorillo, C. Galbiati, A.M. Goretti, E.V. Hungerford, Al. Ianni, An. Ianni, C. Jollet, L. Marini, C.J. Martoff, +A. Meregaglia, L. Pagani, M. Pallavicini, E. Pantic, A. Pocar, M. Razeti, A.L. Renshaw, B. Rossi, N. Rossi, +Y. Suvorov, G. Testera, A. Tonazzo, H. Wang, and S. Zavatarelli. Solar neutrino detection in a large volume +double-phase liquid argon experiment. Journal of Cosmology and Astroparticle Physics, 2016(08):017–017, +aug 2016. https://doi.org/10.1088/1475-7516/2016/08/017. +[68] nEXO Collaboration, S. Al Kharusi, A. Alamre, J. B. Albert, M. Alfaris, G. Anton, I. J. Arnquist, I. Badhrees, +P. S. Barbeau, D. Beck, V. Belov, T. Bhatta, F. Bourque, J. P. Brodsky, E. Brown, T. Brunner, A. Burenkov, +G. F. Cao, L. Cao, W. R. Cen, C. Chambers, S. A. Charlebois, M. Chiu, B. Cleveland, R. Conley, M. Coon, +M. Cˆot´e, A. Craycraft, W. Cree, J. Dalmasson, T. Daniels, D. Danovitch, L. Darroch, S. J. Daugherty, +J. Daughhetee, R. DeVoe, S. Delaquis, A. Der Mesrobian-Kabakian, M. L. Di Vacri, J. Dilling, Y. Y. Ding, M. J. +Dolinski, A. Dragone, J. Echevers, L. Fabris, D. Fairbank, W. Fairbank, J. Farine, S. Ferrara, S. Feyzbakhsh, +P. Fierlinger, R. Fontaine, D. Fudenberg, G. Gallina, G. Giacomini, R. Gornea, G. Gratta, G. Haller, E. V. +Hansen, D. Harris, J. Hasi, M. Heffner, E. W. Hoppe, J. H¨oßl, A. House, P. Hufschmidt, M. Hughes, Y. Ito, +A. Iverson, A. Jamil, C. Jessiman, M. J. Jewell, X. S. Jiang, A. Karelin, L. J. Kaufman, C. Kenney, R. Killick, +D. Kodroff, T. Koffas, S. Kravitz, R. Kr¨ucken, A. Kuchenkov, K. S. Kumar, Y. Lan, A. Larson, B. G. +Lenardo, D. S. Leonard, C. M. Lewis, G. Li, S. Li, Z. Li, C. Licciardi, Y. H. Lin, P. Lv, R. MacLellan, +K. McFarlane, T. Michel, B. Mong, D. C. Moore, K. Murray, R. J. Newby, T. Nguyen, Z. Ning, O. Njoya, +F. Nolet, O. Nusair, K. Odgers, A. Odian, M. Oriunno, J. L. Orrell, G. S. Ortega, I. Ostrovskiy, C. T. Overman, +S. Parent, M. Patel, A. Pe˜na-Perez, A. Piepke, A. Pocar, J. F. Pratte, D. Qiu, V. Radeka, E. Raguzin, T. Rao, +S. Rescia, F. Reti`ere, A. Robinson, T. Rossignol, P. C. Rowson, N. Roy, J. Runge, R. Saldanha, S. Sangiorgio, +S. Schmidt, J. Schneider, A. Schubert, J. Segal, K. Skarpaas VIII, A. K. Soma, K. Spitaels, G. St-Hilaire, +V. Stekhanov, T. Stiegler, X. L. Sun, M. Tarka, J. Todd, T. Tolba, T. I. Totev, R. Tsang, T. Tsang, F. Vachon, +B. Veenstra, V. Veeraraghavan, G. Visser, P. Vogel, J. L. Vuilleumier, M. Wagenpfeil, Q. Wang, M. Ward, +J. Watkins, M. Weber, W. Wei, L. J. Wen, U. Wichoski, G. Wrede, S. X. Wu, W. H. Wu, Q. Xia, L. Yang, Y. R. +Yen, O. Zeldovich, X. Zhang, J. Zhao, Y. Zhou, and T. Ziegler. nEXO Pre-Conceptual Design Report, 2018. +arXiv:1805.11142. +[69] NEXT Collaboration, C. Adams, V. ´Alvarez, L. Arazi, I. J. Arnquist, C. D. R Azevedo, K. Bailey, F. Ballester, +J. M. Benlloch-Rodr´ıguez, F. I. G. M. Borges, N. Byrnes, S. C´arcel, J. V. Carri´on, S. Cebri´an, E. Church, +C. A. N. Conde, T. Contreras, A. A. Denisenko, G. D´ıaz, J. D´ıaz, J. Escada, R. Esteve, R. Felkai, L. M. P. + +Large Low Background kTon-Scale LArTPCs +42 +Fernandes, P. Ferrario, A. L. Ferreira, F. Foss, E. D. C. Freitas, Z. Freixa, J. Generowicz, A. Goldschmidt, J. J. +G´omez-Cadenas, R. Gonz´alez, D. Gonz´alez-D´ıaz, S. Gosh, R. Guenette, R. M. Guti´errez, J. Haefner, K. Hafidi, +J. Hauptman, C. A. O. Henriques, J. A. Hernando Morata, P. Herrero, V. Herrero, J. Ho, Y. Ifergan, B. J. P. +Jones, M. Kekic, L. Labarga, A. Laing, P. Lebrun, N. L´opez-March, M. Losada, R. D. P. Mano, J. Mart´ın-Albo, +A. Mart´ınez, M. Mart´ınez-Vara, G. Mart´ınez-Lema, A. D. McDonald, Z. E. Meziani, F. Monrabal, C. M. B. +Monteiro, F. J. Mora, J. Mu˜noz Vidal, C. Newhouse, P. Novella, D. R. Nygren, E. Oblak, B. Palmeiro, A. Para, +J. P´erez, M. Querol, A. Redwine, J. Renner, L. Ripoll, I. Rivilla, Y. Rodr´ıguez Garc´ıa, J. Rodr´ıguez, C. Rogero, +L. Rogers, B. Romeo, C. Romo-Luque, F. P. Santos, J. M. F. dos Santos, A. Sim´on, M. Sorel, C. Stanford, +J. M. R. Teixeira, P. Thapa, J. F. Toledo, J. Torrent, A. Us´on, J. F. C. A. Veloso, T. T. Vuong, R. Webb, +R. Weiss-Babai, J. T. White, K. Woodruff, and N. Yahlali. Sensitivity of a tonne-scale NEXT detector for +neutrinoless double beta decay searches, 2021. arXiv:2005.06467. +[70] J. Zennamo, F. Psihas, and A. Mastbaum. Snowmass 2021 Letter of Interest: “DUNE-Beta: Searching for +Neutrinoless Double Beta Decay with a Large LArTPC”. https://www.snowmass21.org/docs/ +files/summaries/NF/SNOWMASS21-NF5_NF10-IF8_IF0_Zennamo-175.pdf. +[71] J. Zennamo A. Mastbaum, F. Psihas. Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay +Platform. Physical Review D, 106(9), 2022. https://doi.org/10.1103/PhysRevD.106.092002. +[72] W. Foreman, R. Acciarri, J. A. Asaadi, W. Badgett, F. d. M. Blaszczyk, R. Bouabid, C. Bromberg, R. Carey, +F. Cavanna, J. I. Cevallos Aleman, A. Chatterjee, J. Evans, A. Falcone, W. Flanagan, B. T. Fleming, D. Garcia- +Gamez, B. Gelli, T. Ghosh, R. A. Gomes, E. Gramellini, R. Gran, P. Hamilton, C. Hill, J. Ho, J. Hugon, +E. Iwai, E. Kearns, E. Kemp, T. Kobilarcik, M. Kordosky, P. Kryczy´nski, K. Lang, R. Linehan, A. A. B. +Machado, T. Maruyama, W. Metcalf, C. A. Moura, R. Nichol, M. Nunes, I. Nutini, A. Olivier, O. Palamara, +J. Paley, L. Paulucci, G. Pulliam, J. L. Raaf, B. Rebel, O. Rodrigues, L. Mendes Santos, D. W. Schmitz, +E. Segreto, D. Smith, M. Soderberg, F. Spagliardi, J. M. St. John, M. Stancari, A. M. Szelc, M. Tzanov, +D. Walker, Z. Williams, T. Yang, J. Yu, and S. Zhang. Calorimetry for low-energy electrons using charge and +light in liquid argon. Phys. Rev. D, 101:012010, Jan 2020. https://link.aps.org/doi/10.1103/ +PhysRevD.101.012010. +[73] Jason Philip Brodsky, Samuele Sangiorgio, Michael Heffner, and Tyana Stiegler. Background Discrimination for +Neutrinoless Double Beta Decay in Liquid Xenon Using Cherenkov Light. Nucl. Instrum. Meth. A, 922:76–83, +2019. 10.1016/j.nima.2018.12.057. +[74] A. Avasthi, T. W. Bowyer, C. Bray, T. Brunner, N. Catarineu, E. Church, R. Guenette, S. J. Haselschwardt, J. C. +Hayes, M. Heffner, S. A. Hertel, P. H. Humble, A. Jamil, S. H. Kim, R. F. Lang, K. G. Leach, B. G. Lenardo, +W. H. Lippincott, A. Marino, D. N. McKinsey, E. H. Miller, D. C. Moore, B. Mong, B. Monreal, M. E. +Monzani, I. Olcina, J. L. Orrell, S. Pang, A. Pocar, P. C. Rowson, R. Saldanha, S. Sangiorgio, C. Stanford, and +A. Visser. Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches. +Phys. Rev. D, 104:112007, Dec 2021. https://link.aps.org/doi/10.1103/PhysRevD.104. +112007. +[75] H. Cao, T. Alexander, A. Aprahamian, R. Avetisyan, H. O. Back, A. G. Cocco, F. DeJongh, G. Fiorillo, +C. Galbiati, L. Grandi, Y. Guardincerri, C. Kendziora, W. H. Lippincott, C. Love, S. Lyons, L. Manenti, +C. J. Martoff, Y. Meng, D. Montanari, P. Mosteiro, D. Olvitt, S. Pordes, H. Qian, B. Rossi, R. Saldanha, +S. Sangiorgio, K. Siegl, S. Y. Strauss, W. Tan, J. Tatarowicz, S. Walker, H. Wang, A. W. Watson, S. Westerdale, +and J. Yoo. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils +in liquid argon. Phys. Rev. D, 91:092007, May 2015. +[76] collaboration = DEAP Collaboration Adhikari, P. Pulse-shape discrimination against low-energy Ar-39 beta +decays in liquid argon with 4.5 tonne-years of DEAP-3600 data. European Physical Journal C, 81:823, Sep +2021. https://link.springer.com/article/10.1140/epjc/s10052-021-09514-w. +[77] G. K. Giovanetti and the Global Argon Dark Matter Collaboration. Snowmass 2021 Letter of Interest: “Searching +for Dark Matter with Liquid Argon”. https://www.snowmass21.org/docs/files/summaries/ +CF/SNOWMASS21-CF1_CF0_Giovanetti-172.pdf. +[78] Christopher McCabe. +Astrophysical uncertainties of dark matter direct detection experiments. +Phys- +ical +Review +D, +82(2), +Jul +2010. +http://dx.doi.org/10.1103/PhysRevD.82.023530, + +Large Low Background kTon-Scale LArTPCs +43 +DOI=10.1103/physrevd.82.023530. +[79] J. Reichenbacher J. Genovesi. Illustration and Developed Model of Seasonal Variation of Detection Rate of +WIMP Dark Matter for Simulations Using NEST, 2021. Private Communication. +[80] Chris Savage, Katherine Freese, and Paolo Gondolo. Annual modulation of dark matter in the presence of +streams. +Physical Review D, 74(4), Aug 2006. +http://dx.doi.org/10.1103/PhysRevD.74. +043531, DOI=10.1103/physrevd.74.043531. +[81] D. S. Akerib et al. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. D, +101(5):052002, 2020. 10.1103/PhysRevD.101.052002. +[82] E. Aprile et al. Projected WIMP sensitivity of the XENONnT dark matter experiment. JCAP, 11:031, 2020. +10.1088/1475-7516/2020/11/031. +[83] J. Aalbers et al. A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics, 3 2022. +[84] Bianca Bottino. DarkSide-20k and the Future Liquid Argon Dark Matter Program. PoS, EPS-HEP2021:169, +2022. 10.22323/1.398.0169. +[85] M. Szydagis et al. +A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon +Detectors for Dark Matter and Neutrino Physics Using NEST. +Instruments, 5(1):13, 2021. +10.3390/ +instruments5010013. +[86] Mihaela Parvu and Ionel Lazanu. +Can strangelets be detected in a large LAr neutrino detector? +Journal +of Cosmology and Astroparticle Physics, 2021(11):040, 7 2021. +https://iopscience.iop.org/ +article/10.1088/1475-7516/2021/11/040. +[87] Stephen Hawking. Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc., 152:75, +1971. https://doi.org/10.1093/mnras/152.1.75. +[88] Pisin Chen. Inflation induced Planck-size black hole remnants as dark matter. New Astron. Rev., 49:233–239, +2005. +[89] Ronald J. Adler, Pisin Chen, and David I. Santiago. The Generalized uncertainty principle and black hole +remnants. Gen. Rel. Grav., 33:2101–2108, 2001. +[90] Ionel Lazanu, Sorina Lazanu, and Mihaela Pˆarvu. About detecting very low mass black holes in LAr detectors. +JCAP, 10:046, 2020. 10.1088/1475-7516/2020/10/046. +[91] P. Adhikari, R. Ajaj, M. Alp´ızar-Venegas, D. J. Auty, H. Benmansour, C. E. Bina, W. Bonivento, M. G. +Boulay, M. Cadeddu, B. Cai, M. C´ardenas-Montes, S. Cavuoti, Y. Chen, B. T. Cleveland, J. M. Corning, +S. Daugherty, P. DelGobbo, P. Di Stefano, L. Doria, M. Dunford, E. Ellingwood, A. Erlandson, S. S. Farahani, +N. Fatemighomi, G. Fiorillo, D. Gallacher, P. Garc´ıa Abia, S. Garg, P. Giampa, D. Goeldi, P. Gorel, K. Graham, +A. Grobov, A. L. Hallin, M. Hamstra, T. Hugues, A. Ilyasov, A. Joy, B. Jigmeddorj, C. J. Jillings, O. Kamaev, +G. Kaur, A. Kemp, I. Kochanek, M. Ku´zniak, M. Lai, S. Langrock, B. Lehnert, A. Leonhardt, N. Levashko, +X. Li, M. Lissia, O. Litvinov, J. Lock, G. Longo, I. Machulin, A. B. McDonald, T. McElroy, J. B. McLaughlin, +C. Mielnichuk, L. Mirasola, J. Monroe, G. Olivi´ero, S. Pal, S. J. M. Peeters, M. Perry, V. Pesudo, E. Picciau, +M.-C. Piro, T. R. Pollmann, N. Raj, E. T. Rand, C. Rethmeier, F. Reti`ere, I. Rodr´ıguez-Garc´ıa, L. Roszkowski, +J. B. Ruhland, E. Sanchez Garc´ıa, T. S´anchez-Pastor, R. Santorelli, S. Seth, D. Sinclair, P. Skensved, B. Smith, +N. J. T. Smith, T. Sonley, R. Stainforth, M. Stringer, B. Sur, E. V´azquez-J´auregui, S. Viel, J. Walding, +M. Waqar, M. Ward, S. Westerdale, J. Willis, and A. Zu˜niga Reyes. First Direct Detection Constraints on +Planck-Scale Mass Dark Matter with Multiple-Scatter Signatures Using the DEAP-3600 Detector. +Phys. +Rev. Lett., 128:011801, Jan 2022. https://link.aps.org/doi/10.1103/PhysRevLett.128. +011801. +[92] Daniel Carney, Nirmal Raj, Yang Bai, Joshua Berger, Carlos Blanco, Joseph Bramante, Christopher Cappiello, +Ma´ıra Dutra, Reza Ebadi, Kristi Engel, Edward Kolb, J. Patrick Harding, Jason Kumar, Gordan Krnjaic, +Rafael F. Lang, Rebecca K. Leane, Benjamin V. Lehmann, Shengchao Li, Andrew J. Long, Gopolang +Mohlabeng, Ibles Olcina, Elisa Pueschel, Nicholas L. Rodd, Carsten Rott, Dipan Sengupta, Bibhushan Shakya, +Ronald L. Walsworth, and Shawn Westerdale. Snowmass2021 Cosmic Frontier White Paper: Ultraheavy +Particle Dark Matter. https://arxiv.org/abs/2203.06508, 2022. +[93] Klaes MØller, Anna M. Suliga, Irene Tamborra, and Peter B. Denton. Measuring the supernova unknowns +at the next-generation neutrino telescopes through the diffuse neutrino background. Journal of Cosmology + +Large Low Background kTon-Scale LArTPCs +44 +and Astroparticle Physics, 2018(05):066–066, may 2018. https://doi.org/10.1088/1475-7516/ +2018/05/066. + diff --git a/eNFKT4oBgHgl3EQfrS7d/content/tmp_files/load_file.txt b/eNFKT4oBgHgl3EQfrS7d/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..99a81dd10ed5ed5614f41acfead011dbf3cc80ac --- /dev/null +++ b/eNFKT4oBgHgl3EQfrS7d/content/tmp_files/load_file.txt @@ -0,0 +1,4397 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf,len=4396 +page_content='Large Low Background kTon-Scale Liquid Argon Time Projection Chambers T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bezerra1, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Borkum1, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Church2, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cuesta3, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Djurcic4, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Genovesi5, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Haiston5, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jackson2, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lazanu6, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monreal7, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Munson2, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ortiz8, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parvu6, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Peeters1, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pershey8, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Poudel2, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher5, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha2, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scholberg8, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sinev5, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Westerdale9, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zennamo10 1University of Sussex,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brighton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' BN1 9RH,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' United Kingdom 2Pacific Northwest National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Richland,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' WA 99352,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' USA 3CIEMAT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E-28040 Madrid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Spain 4Argonne National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Argonne,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' IL 60439,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' USA 5South Dakota School of Mines and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rapid City,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' SD 57701,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' USA 6University of Bucharest,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bucharest,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Romania 7Case Western Reserve University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cleveland,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ohio 44106,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' USA 8Duke University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Durham,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' NC 27708,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' USA 9Princeton University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Princeton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' NJ 08544,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' USA 10Fermi National Accelerator Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Batavia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' IL 60510,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' USA E-mail: eric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='church@pnnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='gov, christopher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='jackson@pnnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='gov Abstract: We find that it is possible to increase sensitivity to low energy physics in a third or fourth DUNE-like module with careful controls over radiopurity and targeted modifications to a detector similar to the DUNE Far Detector design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In particular, sensitivity to supernova and solar neutrinos can be enhanced with improved MeV-scale reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A neutrinoless double beta decay search with 136Xe loading appears feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Furthermore, sensitivity to Weakly-Interacting Massive Particle (WIMP) Dark Matter (DM) becomes competitive with the planned world program in such a detector, offering a unique seasonal variation detection that is characteristic for the nature of WIMPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='11878v1 [hep-ex] 27 Jan 2023 Large Low Background kTon-Scale LArTPCs 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Introduction In this study we introduce and discuss a dedicated low background module that would enhance the physics program of next-generation experiments such as the planned Deep Underground Neutrino Experiment (DUNE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Such a low background DUNE-like module could be installed as either module 3 or module 4, the so-called “Module of Opportunity” in DUNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Such a module would increase the physics reach of supernova and solar neutrino physics, and could potentially host a next-generation neutrinoless double beta decay (0νββ) or Weakly Interacting Massive Particle (WIMP) dark matter search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We refer to this design as the Sanford Underground Low background Module (SLoMo).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The physics reach would be enhanced by lowering the nominal energy threshold of a DUNE- like experiment from the anticipated 5-10 MeV to levels necessary to address three potential physics targets, listed in order of increasing difficulty: ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 MeV energy threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This threshold is set by the Q-value of the 42K (daughter of 42Ar) in the detector target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' By reducing neutron captures, alpha-emitting radon daughters and pileup events above this threshold, supernova burst neutrino sensitivity could be increased in distance, energy and time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sensitivity to solar neutrinos would also be enhanced, allowing explorations of interesting solar-reactor oscillation tensions and Non-Standard Interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 MeV energy threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This threshold is set by the decay Q-value of the 39Ar in the detector target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' With reduction of electron and photon backgrounds in the target, particularly if the 42Ar content is reduced through use of underground argon (UAr), sensitivity to low energy solar neutrinos from the CNO process would allow a precision measurement to be made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Such a detector will be sensitive to 0νββ search with loading of 136Xe,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' < 100 keV energy threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This threshold could be achieved by enhancing the light collection within the detector and by lowering the 39Ar background by deploying UAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' With rejection of electron recoil backgrounds (using timing based pulse shape discrimination), a sensitive WIMP dark matter search could take place, and interesting phenomena such as a supernova coherent elastic neutrino-nucleus scattering signal (a CEνNS glow) could be studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' These low background targets are achievable due to the unprecedented size and also the increased radiopurity of the module, allowing significant fiducialization and hence less stringent radioactive background requirements than current world-leading dark matter searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The light enhancements are achievable with current production techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' As described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3, production of UAr at the scale required for a DUNE module is potentially achievable, though it requires a dedicated effort to identify the potential argon source and work with commercial gas suppliers In this paper in Section 2 we outline the design of the module and discuss potential paths to achieve the detector requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In Section 3 we present our initial studies of physics reach of this detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 3 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Summary of physics targets of this low background module and the primary radiological backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Detector Design This section outlines the proposed design for the low background module and describes in detail the radioactive background control and photon detection system enhancements required to enable physics measurements outlined in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We note this module design is not necessarily endorsed by the DUNE collaboration, as the so-called “Phase II” process that includes building the final two far detector modules is in its early stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Module Layout A low background module and its attendant physics goals are enabled most simply by minimizing the detector components in the bulk of the argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The resulting module must still allow for very good light detection efficiency and for charge detection efficiency similar to existing designs of large LArTPCs [1, 2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For the benefit of conforming to the longstanding plans for the Long Baseline Neutrino Facility (LBNF) far detector complex and cavern layouts, we also want to use the same commercial cryostat concept and existing module designs to the greatest extent possible and perturb them only where necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Starting with the existing DUNE modules, simple modifications assure minimal disruption to the main long baseline neutrino oscillation program to measure remaining parameters in the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Single phase We therefore start with DUNE’s Far Detector Vertical Drift Module (VD) [4], sometimes referred to as Module 2, and consider design modifications to suit our low background purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We show a working design in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Water in “bricks” which are imagined to be nestled among the I-beam support structure WIMPs Ovβ Solar Neutrinos Supernova Neutrinos 39Ar 42 Ar Internal Alphas/Betas/Gammas NeutronsLarge Low Background kTon-Scale LArTPCs 4 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shown is the base design for the proposed low background detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Blue shows external water “bricks”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The top and bottom yellow planes are the Charge Readout Panels unchanged from the Vertical Detector design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The central cathode is in green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The white box of acrylic (full interior volume) is of thickness 1 inch and has x,y,z extent of 6,12,40 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The black points are SiPM modules shown here at a coverage of 10%, while some studies in this paper use up to 80% coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A proposed fiducial volume totaling 2 kTon is shown in the two beige boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This paper also considers a 3 kTon volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' achieve large external neutron reduction, as discussed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We keep the Charge Readout Planes of the VD unaltered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Similarly the central cathode of the VD is preserved with the exception that the sparse and mostly distant photon detection modules, known as X-Arapucas, are swapped out for the SiPM modules mounted within the cathode plane – at least on that part of the cathode in the inner region of this detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An acrylic box of one inch thickness with x,y,z extent of 6,12,40 m serves to mount SiPM modules and reflective WLS foils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Here x is the horizontal dimension, y is the vertical dimension, z is in the beam direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' SiPM modules are mounted on the inside of the acrylic box at anywhere from 10-80% area coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We envision two 1 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 kTon long skinny fiducial volumes, depending on the study, that have a stand-off of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5m from the central cathode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We also discuss, alternatively, a 3 kTon fiducial volume in this paper in studies where backgrounds from the central cathode are thought to be small or events from it can be reconstructed and cut away.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The bulk volume of this module consists mostly of argon, with only small material contributions such as the slender support structures for the cathode plane panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' As in the VD, there are two 6 m vertical drifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 5 (a) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Interactions are shown above 100 keV for neutrons emanating from the cold cryostat stainless steel at 2 · 10−10 neutrons/cm3/sec for a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 yr exposure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We show a possible ∼3kTon fiducial volume pair, avoiding the cathode, looking down the beam line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' (The vertical bands are interactions in the acrylic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radioactive Backgrounds To enable the physics targets for this module, improvements in control of internal and external radioactive background levels are required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Making a module of this size low background will require significant quality and materials controls beyond what has been been attempted by previous experiments, and certainly beyond what is required for the Phase I DUNE program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, we note that due to the increased size of this module self-shielding in the argon allows the background requirements to be less stringent than those expected to be reached by the current Generation 2 (G2) dark matter experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Thus future research and development will need to focus on how to scale the techniques successfully deployed to low background dark matter or neutrinoless double beta decay searches to the kTon scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A particular concern for this module will be neutron-induced background events, which will be the main background to the neutrino searches above 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 MeV thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A neutron capture in 40Ar produces a 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1 MeV gamma cascade which can Compton scatter or pair produce electrons which can mimic the charged current neutrino interactions in the argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Captures on 36Ar can produce 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8 MeV gamma cascades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutrons are also the primary backgrounds for the lowest energy searches for WIMP dark matter, where nuclear recoils can mimic the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Below 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 MeV the primary backgrounds will come from alpha, beta and gamma emitting isotopes within the argon or detector materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 6000 400 4000 350 300 2000 250 y [mm] 200 150 2000 100 4000 50 6000 6000 4000 2000 2000 4000 6000 x[mm]Large Low Background kTon-Scale LArTPCs 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavern Neutron Backgrounds The most significant source of neutrons will likely be those induced by spontaneous fission or (α, n) interactions from the uranium-238 or thorium-232 decay chains within the surrounding rock and shotcrete of the detector cavern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' As reported in [5], the external neutron rate at SURF (a likely hosting laboratory for this low background module) is assumed to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 × 10−5 n/cm2/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' As proposed in References [6, 7], it is possible to add water shielding to a DUNE-like cryostat, taking advantage of the space between the structural supports even when the detector is located within a cavern at SURF with limited space around the detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Those references shows that a 40 cm water shield, located within the support structure, is enough to lower the external neutron rate by three orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We assume this is achievable for this module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The strategy to control the radioactive backgrounds from the detector components such as the cryostat will have three parts: improvements to material selection, additional internal neutron shielding, and advanced event selections and analysis tools, with the aim of lowering the internal neutron rate within the detector by at least three orders of magnitude to match the levels of the external rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aside from external neutrons from the cavern, the main source of neutrons in a DUNE-like detector cryostat is likely to be spontaneous fission or (α, n) interactions from the uranium-238 or thorium-232 decay chains in the order 1 kTon of stainless steel that makes up the I-beam support structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Research and development will be required to lower the internal background rates by the three orders of magnitude required, for example by careful selection of the raw ingredients and/or control of the manufacturing process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It should be noted that the “Generation 2” dark matter experiments expect to reach neutron rates from their steel a further two orders of magnitude beyond this, so the goal is achievable (even if the scale is much larger than previously attempted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Another area of R&D required to support this goal is improvements in knowledge of (α, n) cross sections, as highlighted in a recent IAEA workshop [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Another approach to reduce neutron background from the internal shielding within the detector would be by adding higher density rigid polyurethane foam (R-PUF) insulation and/or boron, lithium or gadolinium loaded material layers within the membrane cryostat structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Our studies show that this could easily reduce the neutron capture rate in LAr by one order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' One approach, as planned by the DarkSide collaboration, would be to use the additional planes of Gd-doped acrylic to act as a neutron absorber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DarkSide-20k [9] intends to use multiple layers within a ProtoDUNE-style cryostat for their dark matter search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Another design choice might be to take advantage of the existing cryostat but replace some materials such as the insulating foam with a borated version, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', to reduce backgrounds from the support structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Analysis based cuts can also be used to remove events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For example, with the low threshold of this planned detector, neutron induced multiple scatters could be tagged and rejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This Large Low Background kTon-Scale LArTPCs 7 takes advantage of the excellent (∼ 10 mm) position resolution of a TPC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Studies [10] to identify dark matter nuclear recoil backgrounds show ∼ 30% reduction at 100 keV threshold and ∼ 90% reduction at 50 keV, due to the increased probability of detecting an additional scatter at lower thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radon and other internal argon backgrounds Radon is an important background that must be controlled as it can diffuse throughout the detector, entering the fiducial volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The radon decays to a number of daughter isotopes that can be direct backgrounds (for example 214Bi for a neutrinoless double beta decay search) or that can produce neutrons through (α, n) interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For this low background module we set a radon target level in the liquid argon of 2 µBq/kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This is about three orders of magnitude below the expected DUNE radon level of 1 mBq/kg [11, 12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2 µBq/kg has been achieved in liquid argon by the DarkSide-50 experiment [14], and exceeded by DEAP-3600 which achieved a level of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2 µBq/kg [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It should be noted that the higher volume-to-(radon-emanating)-surface ratio in a large detector such as DUNE compared to dark matter detectors will help achieve this target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' To reach this level in a kTon-scale detector will require research and development to implement a combination of the following techniques: Radon removal during purification via an inline radon trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' No radon removal is in the current design of the purification system for the baseline DUNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dark matter and neutrinoless double beta decay search experiments typically use cooled, activated charcoal radon traps to remove radon directly from the recirculating target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The most sensitive dark matter experiments typically purify the argon in the gaseous phase [16, 17], however such an approach would be impractical for a kTon-scale experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Borexino used a charcoal radon trap to purify liquid nitrogen [18], and such an approach could be adopted and scaled appropriately for a low background module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' New materials such as Metal-organic frameworks could improve the capture-potential beyond charcoal, allowing a potential shrinkage of footprint of a radon-capture facility to fit the existing cavern designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Recent evidence from MicroBoone [19] indicates that a copper filter purification system similar to that planned for DUNE may remove greater than 97% or 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='999% of the radon (depending on whether slowed or trapped) in the system without the need for additional removal techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Emanation measurement materials campaign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' All materials used in detector construction are known to emanate radon at some level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A large-scale emanation assay campaign to identify materials suitable for construction, similar to the QA/QC campaign described above will be required to ensure the detector can meet the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A topic for R&D will be how to increase throughput of samples, as emanation measurements typically take two weeks per sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Surface treatments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For large components such as the cryostat where it may be impractical and costly to make significant improvements to the radiopurity, surface treatments can be used to lower emanation rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It is known that acid leaching and electropolishing lowers Large Low Background kTon-Scale LArTPCs 8 emanation rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Coating the inner surface of the cryostat with a radon barrier could lower emanation rates from this significant source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dust control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dust is a significant radon source and cleanliness standards will be higher in this low background module than the baseline DUNE design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cleanliness protocols and requirements R&D will be necessary to develop automated techniques applicable to the thousands of m2’s of surface area of a DUNE-like cryostat, for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radon reduction system during installation and operation: The mine air underground is radon laden up to 1,000 Bq/m3 and radon daughter plate-out during installation, filling and operation must be controlled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An upscaled vacuum swing system with large charcoal columns in parallel to remove radon from the ambient air and to provide radon-free air to the cleanroom and cryostat would be suitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vacuum swing systems providing radon-free air have been successfully employed by e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Borexino [20], LZ [21] and SuperCDMS [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Drifting of charged daughters to cathode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Several daughters in the radon chain are charged and will drift towards the cathode and out of the fiducial volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This effect may be countered by mixing effects of the purification system however.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alpha tagging through pulse shape discrimination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alpha events in the radon chain that produce neutrons directly in the argon may be taggable, by identifying the alpha track before the (α,n) event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Though the amount of light may be relatively small, the timing profile is distinct and may allow pulse shape discrimination on this module with enhanced optical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Underground Argon Atmospheric argon (AAr) consists mostly of 40Ar which is stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' There are some long-lived radioactive isotopes-39Ar (T1/2=269y, Qβ=565 keV), 37Ar (T1/2=35d, Q=813 keV), 42Ar (T1/2=32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='9y, Qβ=599 keV) [23] which are, in atmosphere, produced primarily by cosmic ray-induced reactions in 40Ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The use of atmospheric argon in a low-threshold multi- ton scale argon detector has limitations due to high 39Ar activity (1 Bq per kg of argon [24]) in atmospheric argon (AAr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radiogenic and cosmic-ray muon-induced interactions, especially on K and Ca isotopes, can produce 39Ar underground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The dominant production channels are negative muon capture on 39K and (α, n)-induced (n,p) reactions on 39K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 39Ar production underground decreases significantly with depth[25] as muon flux decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DarkSide-50, the only experiment to use underground argon (UAr), measured the 39Ar activity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='73 mBq/kg [26], a factor of 1400 smaller than in AAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' With the ARIA project[27], which is planning for a throughput for 39Ar processing of ∼ 10 kg/day, the DarkSide collaboration is planning to further reduce the 39Ar present in UAr through large-scale isotopic separation by cryogenic distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 42Ar decays in the bulk argon volume will produce 42K isotopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' While the 42Ar beta- spectrum has an endpoint of 599 keV, Betas from 42K-decays span a much larger energy range up to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 MeV, and can be problematic backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Since UAr should be heavily depleted of 42Ar, significant suppression of 42K decay backgrounds is achievable with UAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In the atmosphere, the 42Ar concentration is ∼ 10−20 42Ar per 40Ar atom [28],[29], which is four orders of magnitude Large Low Background kTon-Scale LArTPCs 9 smaller than the concentration of 39Ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The daughter isotope of 42Ar, 42K (T1/2= 12 h) has two major decay modes : 1) direct beta-decay to the ground state of 42Ca (Qβ= 3525 keV, BR=81 %), and 2) Beta-decay (Qβ= 2001 keV) to an excited state of 42Ca followed by a prompt 1524 keV gamma emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In the atmosphere 42Ar is primarily produced by 40Ar(α, 2p)42Ar occurring in the upper atmosphere [29], where energetic alphas are readily available from cosmic-ray muon interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Production through two-step neutron capture is also possible but greatly sub-dominant due to the short-lived intermediate isotope 41Ar [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The 42Ar production rate underground is not known, but it is expected to be several orders of magnitude smaller than in AAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Particle interactions on isotopes of K, Ca, and Ti can produce some 42Ar in the earth’s crust, given the relatively high abundance of the elements (by mass-fraction[31]:K-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='09%,Ca-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='15%,Ti-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='565%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, the reaction thresholds are high, making 42Ar production energetically not possible by fission, (α,n)-neutrons or alphas from the natural radioactivity chains of 238U, 235U, and 232Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Energetic particles from cosmic ray muon-induced interactions can produce 42Ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' But at the depths at which underground argon is usually extracted, the cosmic ray muon-flux should be hugely suppressed, so 42Ar production should be negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Based on GERDA’s findings[32], following 42Ar decays, 42K nuclei could retain the positive charge long enough to drift in the influence of electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' So, we expect 42K ions to drift and move towards the cathode plane, which suggests an additional suppression of 42K backgrounds is achievable through fiducialisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The 85Kr isotope, predominantly a β-emitter, has a half-life of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7 years and Q-value of 687 keV[23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Primary modes of 85Kr production are spontaneous fission of uranium and plutonium isotopes, neutron capture on 84Kr, and human-induced nuclear fissions in nuclear reactors[33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We would expect 85Kr to be present at some level in AAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, its concentration can vary across argon extraction sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Using the UAr data, DarkSide-50 measured 85Kr activity of 2 mBq/kg[26], a few orders of magnitude smaller than in AAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 85Kr concentration in UAr should also vary depending on the location of the gas reservoir and gas origin (mantle-like or crustal-like).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DEAP sees no evidence of 85Kr in its AAr after filtering in a charcoal trap with 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3 tonnes of LAr [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We expect argon gas extracted from an underground source to be highly depleted of 39Ar, 42Ar and 85Kr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' There is evidence that air infiltration during the UAr extraction could have contributed to the DarkSide-50’s 39Ar - actual 39Ar content in the UAr could be significantly smaller (on the order of few tens of µBq/kg)[35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 85Kr and 42Ar content could also be much smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Unlike stable gas isotopes such as 40Ar, which can collect at gas wells over time, isotopes such as 39Ar(T1/2=269y), 42Ar (T1/2=32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='9y) and 85Kr(T1/2=10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7y) diffusing through rocks and collecting in a significant number at the underground gas wells is less likely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, air- infiltration and cosmogenic activation in the argon bulk could introduce these isotopes in the extracted UAr [36, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greater care, perhaps, is necessary to ensure avoiding contamination of the UAr during extraction, processing, transport and storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' While UAr is desirable, it requires a dedicated effort to identify the potential argon source and procure argon on a large enough scale necessary for this project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The Urania plant [9] in southwestern Colorado, USA is expected to produce underground argon from CO2 gas wells at Large Low Background kTon-Scale LArTPCs 10 a rate of ∼ 300 kg/day (at full rate) for DarkSide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The argon source and the production rate is not large enough for a kiloton scale experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The authors are in the process of identifying alternative gas wells with enriched argon streams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Discussions with three potential commercial suppliers are ongoing, however the underground source samples are not yet tested and low levels of radioactive isotopes must be proven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Initial gas analysis indicates the mantle origin of this sample, with suppressed cosmogenic production compared to a crust source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Based on estimates by the gas suppliers, the production cost could be as low as three times the cost of atmospheric argon and 5 kTon of argon production per year could be achievable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Surface storage and spallation issues During above-ground storage of our UAr, before placement into the underground module, 39Ar is produced by cosmogenic neutrons in the reactions: 40Ar(n,2n)39Ar and 38Ar(n,γ)39Ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Production cross sections for 39Ar have been measured in [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 42Ar is produced primarily in 40Ar(α, 2p)42Ar reactions [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In a previous work [39], to which we refer the interested reader, the cross sections for these reactions were obtained from nuclear reaction codes and confronted with data where they exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An evaluation of cosmogenic 39Ar and 42Ar production in UAr stored on the surface can be found in [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A full study of expected spallation and pileup backgrounds during the detector operation is in reference [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Light Collection Enhancement The light collection for this low background module will be enhanced to enable two main goals: lower the energy threshold and improve the resolution at these lower neutrino energies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' improve pulse shape discrimination for radioactive background rejection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In this section we describe the improvements to the light detection system required to enable this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Light Collection Efficiency Impacts on Energy Resolution Charged particles that traverse the liquid argon deposit energy and excite and ionize the argon atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This process results in the electrons recombining with the ions generating unstable argon dimers, which decay and emit scintillation light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' If an electric field is applied, a fraction of the electrons will drift away before recombining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' These ionization electrons are collected by the anode plane and create the charge signal by removing electrons that would have recombined yields an anticorrelation between the light and charge signals observed in LArTPCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The small number of ionized argon atoms at low energies means that fluctuations in this recombination process can smear the amount of charge observed to energy deposits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The Noble Element Simulation Technique (NEST) collaboration has explored the precision of LArTPC for 1 MeV electrons as a function of charge readout signal- to-noise ratio and the efficiency of collecting light [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' They predict that using only the charge signal in a LArTPC, the most precise one can reconstruct the energy for a 1 MeV electron is 5% Large Low Background kTon-Scale LArTPCs 11 and MicroBooNE has validated this prediction [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' To improve the energy reconstruction, further one needs to include measurements of scintillation light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The NEST collaboration explored the expected energy resolution enhancements that a LArTPC can achieve by including light signals along with the charge measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [41] shows that the energy resolution for a 1 MeV electron for LArTPCs with different signal-to-noise ratios (SNR) and varying light collection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In particular, we see that a LArTPC with SNR near 40 needs 50% of the scintillation light to measure energy deposits with 1% precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Photosensors As a baseline design our plan is to use 24 cm2, Darkside-20k style [9], SiPM tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 50% quantum efficiency at visible wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We assume here another 50% wave length shifter (WLS) efficiency from, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', TPB on the tile surface, for a total efficiency of 25%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For maximum light detection we envision covering inside the cathode (between the two planes of cathode wires, as will be done in module 2) and the interior acrylic walls at up to 80% coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We assume the Module 2 power-over-fiber concerns [4] to be solved to allow our SiPM coverage of the cathode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The resulting number of SiPM modules for 10% coverage – a value which current studies naively show is sufficient for a dark matter search using pulse shape discrimination – is ∼ 50000, to be compared to Darkside20k’s planned ∼ 10000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, as discussed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1, to achieve the energy resolution required for a neutrinoless double beta decay search will require significantly more coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It is likely possible to optimize the placement of the tiles around the fiducial volume, to reduce the total number required, and work is ongoing to study this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reflectors To maximize the light capture in this module the surface of the acrylic box will be coated with a reflector to create a light-tight inner volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' If a PTFE reflector is used, as in DarkSide-50, reflectivities of 97% should be possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Argon Purity The baseline requirement for DUNE is < 25 ppm of nitrogen to ensure that photon propagation in the argon is not attenuated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For our simulation studies we assume that attenuation (absorption) lengths of order 50 m are achievable, which corresponds to nitrogen contamination levels of 1-2 ppm [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We note that dedicated dark matter experiments have achieved ppb levels of purity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Physics Studies This section outlines key physics goals of this module and describes the studies that have been performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Argon-39 Studies Reduction of the rate of 39Ar is desirable for a number of reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This 600 keV endpoint beta emitter decays at a 1 Bq/l rate in ordinary atmospheric argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It may mask low energy physics by creating optical signals that confuse the reconstruction process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It also represents a serious hurdle in the detector triggering considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Trigger primitives, which constitute a 6 PByte/year data source, not necessarily to be stored into perpetuity, are still an onerous data flow to deal with during steady data-taking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' That number drops to a far more manageable tens of TBytes if the 39Ar is reduced by a factor of 1400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In reality of course, much of the data budget will perhaps be consumed by low-threshold activity in this detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Perhaps the more pernicious practical problem is that 39Ar beta decays may reconstruct as optical ”hits” which may, in turn, comprise ”flashes” which then confuse the charge-light association for reconstructed physics objects – especially at low energy and far from the light detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' (Hits are simply individual light signals over threshold and the parameters that characterize them, and flashes are collections of hits in narrow ranges of time, hypothesized to be of the same physical origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=') We have performed a study in a Module 1-like environment, not shown here, that gives the not very surprising conclusion that supernova flashes become unambiguously matched with a x1400 39Ar reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Third, the highly desirable property of pulse shape discrimination (PSD) in Argon which would allow to subtract out the nuisance 39Ar contribution for our, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', dark matter search ambitions, is not practicable if pile-up is too intense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We show in [10] and discuss later in this paper that a x1400 reduction of 39Ar just allows for a search in our fiducial volume down to 100 keV thresholds and perhaps lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Here we mention that even a x1400 reduction of 39Ar does not allow this detector to get to arbitrarily low thresholds for searches of physics with electronic signatures – as apposed to neutron-like interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We expect that reductions by this amount will still leave 39Ar as an overwhelming background to low-rate, low-energy solar processes, for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Simulation Almost all studies in this paper are carried out in a standalone Geant4[44] simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Source code and build instructions are found at Reference [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In that simulation is proper isotope decay and neutron physics, along with optical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The volume is basically a 10 kTon box of liquid argon, but with a reasonable model of the cryostat walls on all six sides with charge readout planes (CRPs) made of G10 on the floor and ceiling, as in the VD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Further, there is an acrylic box inside, open on top and bottom and tiled with 24 cm2 SiPM modules at an 80% coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' SiPM modules with that same coverage viewing both upper and lower volumes also tile the central cathode plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' See Figure 2 for a representation of our simulated geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We use an after-the-fact 25% total Large Low Background kTon-Scale LArTPCs 13 quantum efficiency by merely scaling by that fraction of the detected hits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' There is no SiPM electronics response applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We include a 96% reflectivity of the acrylic surface and a 44% reflectivity for the CRPs (as the holes in each CRP are about 56% of the surface area), and impose an argon attenuation (absorption) length of 50m, and a Rayleigh scattering length of 90cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' All simulations generate their 128 nm photons ab initio from the charge particles which create them and are propagated on the fly, with no lookup libraries, until their end point on a SiPM where they are counted or they disappear through absorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Optical Studies The simulation described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2 was used to study the minimal requirements for the optical system to allow pulse shape discrimination in a dark matter search, including the required reflectivity of the acrylic box and anode readout surfaces as a function of SiPM tile coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The minimal photon counting requirement for the optical system was set at 400 photons reaching the SiPM surface, which results in a total of 100 photons being detected due to the assumed 25% efficiency described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The 400 (100) photon requirement was chosed as the minimal amount of photons required to perform a pulse shape discrimination analysis such as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The results of the simulation are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The studies were performed varying acrylic and anode reflectivity between 0 % and 100 % (a realistic 97 % is highlighted) and then varying the SiPM coverage on the walls and cathode plane to count the accepted photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Both the standard acrylic box described above and also a maximally sized box where the walls are moved out to the edges of the detector were simulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This large box would be the worst-case optics scenario, maximising the path length of the photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The studies show that a relatively modest amount of SiPM coverage of 10-20 % is required even in the worst-case scenarios to reach the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The effect of attenuation with the liquid argon was also studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Figure 5 shows the number of photons detected at the SiPMs as a function of SiPM coverage for a variety of different attenuation lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Assuming the relation between nitrogen contamination of the argon versus attenuation found in [43], this study shows that the 10-20% SiPM coverage is sufficient to tolerate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5-5 ppm levels of nitrogen within the argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Supernova Neutrino Physics In this section we present several supernova neutrino burst studies that could be enhanced by this module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This includes increased sensitivity to lower energies, later times and sources from greater distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We also discuss the CEνNS glow sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 14 (a) (b) (c) (d) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Number of photons detected at the SiPMs as a function of coverage, varying both reflectivity of the surrounding acrylic and anode plane walls, and the size of the acrylic box containing the inner volume, from Original Size (6x12x20 m3) to Max Size (at fiducial boundaries at 12x12x60 m3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Acrylic Reflectivity (Original Size Acrylic Box) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Mean SiPM Hits on Y-axis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='006 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Target ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='+100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='■97% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='≥0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='% of SiPM CoverageAcrylic Reflectivity (Max Size Acrylic Box) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Mean SiPM Hits on Y-axis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Target ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='+100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='■97% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='% of SipM CoverageAnode Reflectivity (Original Size Acrylic Box) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='006 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Mean SiPM Hits on Y-axis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Target ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='+100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='■44% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='≥0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='% of siPM CoverageAnode Reflectivity (Max Size Acrylic Box) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Mean SiPM Hits on Y-axis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='009 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Target ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='+100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='■44% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='≥ 0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='% of SiPM CoverageLarge Low Background kTon-Scale LArTPCs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Number of photons detected as a function of SiPM coverage when varying the attenuation length within the argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Supernova Energy Spectrum We wish to explore the potential improvement provided by a low background large LArTPC to that achievable in current DUNE Far Detector designs for sensitivity to supernova explosion detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' To this end we simulate a ten-second exposure of our detector to a flux of electron neutrinos from the Livermore [46] supernova model and run them through the MARLEY [47] event generator to produce the final state particles in liquid argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' MARLEY considers all candidate νe processes, including coherent, elastic, and charged current processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The detector response is provided by the simulation described in previous section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Using that simulation we count SiPM hits for an 80% coverage and convert to energy using a simple conversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' That conversion comes from running 3 MeV electrons uniformly through the detector and counting SiPM hits in a coarse x,y,z binning of the production point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We emphasize that this study is simplified and that refinements including TPC charge response as well as better SIPM energy resolution will result in improvements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Events must originate in the inner 3 kTon fiducial volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The result is shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The most evident feature is that the elastic scattering component of the νe flux becomes dominant at low energies inaccessible to the baseline DUNE far detectors – and it does so because neutron rates are required to be low from the cold cryoskin stainless steel and the 42Ar is at very low levels in UAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The threshold here can go all the way down to 600 keV, which is a factor of roughly 18 lower than the baseline DUNE far detector design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The low detector threshold allows access to a significant number of elastic scatter events within the liquid argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This opens up the possibility of reconstructing the position of the supernova with a pointing analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liquid argon TPCs, with the excellent track resolution, are well suited to making this measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' With the expected reduction in backgrounds in this sample, a clean elastic scatter sample will dominate at thresholds below 5 MeV (see Figure 6), though pointing with these reconstructed tracks is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Supernova Trigger The trigger system in a DUNE-like LAr detector relies on the so-called Trigger Primitives (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' hits, TPs) generated from the electronics connected to the wires or photo- Ar Attenuation Length (Original Size Acrylic Box) 900 Mean SiPM Hits on Y-axis 800 700 600 500 400 Target 300 200 →100m =50m ^20m 10m 100 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 % of SiPM CoverageLarge Low Background kTon-Scale LArTPCs 16 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Energy deposited from neutrinos from supernova located at 10 kpc, assuming the Livermore model, during a ten second detector exposure window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Here we presume no Rn222 contribution and a likely too conservative x500 Ar42 suppression in UAr with respect to that achievable in atmospheric argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reaching 5 MeV SN detection is straightforward in this module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' They are simple objects constructed from the signal waveform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A stream of TPs arrives in the trigger module of the DAQ, which will use them to form a Trigger Activity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' a cluster of hits, TAs), which is an association in time and space done by a trigger algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A TA is related to each sub-module/component of the detector (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' an APA module), and multiple TAs form a Trigger Candidate (TC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Having a positive TC, the readout system stores the requested data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For low energy physics, which does not have an external trigger like beam events, it is essential to understand the detector backgrounds (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' radiological and electronics noise), to avoid triggers issued by undesired data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Thus, a Low Background LAr detector can perform better than the current designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The bottleneck for designing efficient supernova neutrino burst (SNB) trigger algorithms is the data transfer and storage resources available for the detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' To get the most of an SNB event, around 100 seconds of full detector readout is desirable, which means about 150 TB of raw data for a 10 kTon LAr detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It will take about one hour to transfer the data from this trigger event from livCC livES 103 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0kTonne-10sec/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0MeV Ar39 Bg/L/1500 Ar42Bq/L/1500/5E8 neutrons 1e-11/cm3/s 101 Events 10-5 0 5 10 15 20 25 Energy [MeV]Large Low Background kTon-Scale LArTPCs 17 the detector caverns to the storage on the surface and several additional hours to transmit those data to the primary storage centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Therefore, while the effective threshold must be set low enough to satisfy the requirements on SNB detection efficiency, it is crucial to not fire too frequently on background fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A requirement on the fake trigger rate of once per month is determined by these limits on data-handling, for a DUNE-like LAr detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Additionally, the triggering decision needs to be made within 10 seconds since this is the typical amount of data buffered in the DAQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' SNB triggers are likely to be both TPC- and Photon Detection System (PDS)-based in far detector modules one and two, though at the lower energy thresholds we concern ourselves with in this paper a PDS-only trigger will be required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In current studies both TPC and PDS information gives a tagging efficiency of about 20-30% for a single neutrino interaction [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reducing the estimated neutron capture rate in the LAr volume by a factor of ten (which is the principal background for SNB triggering, given the higher de-excitation gamma energy of about 6 MeV when compared to other radiological components), this efficiency improves to 70%, which translates to a 100% (20%) SNB triggering efficiency for a Milky Way (Magellanic Clouds) SNB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The trigger strategy described above is a “counting” method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' If we utilise the integrated charge of each TP, it is possible to construct a distribution of the TAs raw energy (SNB signal with backgrounds) and compare it to the background-only one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The “shape” triggering method improves the efficiency to tag Magellan Clouds’ SNB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The efficiency figure for such a SNB producing ten neutrino interactions (see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [48]) shows the efficiency as 70% in a ten kTons DUNE-like LAr detector using the standard DUNE background model described in Reference [1] and a shape triggering algorithm that keeps the fake trigger rate to one per month.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' With the Low Background LAr detector, a less stringent selection can be used, increasing the signal efficiency while keeping the fake trigger rate at the requirement level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Thus, higher efficiencies will be reached with a lower number of SN events, it then being possible to achieve 100% efficiency to trigger a Magellan Cloud SNB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Identifying Andromeda’s SNBs is more challenging even with this design since they do not produce enough interactions in the whole detector volume in a 10 seconds window (see the supernova sensitivity plot in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [48]), and lowering the TA requirements would encounter the 39Ar activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Late Time Supernova Neutrinos The neutrino flux from a core-collapse supernova is expected to cool over a few tens of seconds, with the late time events getting lower and lower in energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The tail end of the burst, where a black-hole-formation cutoff may be present, will be challenging to observe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A lower energy threshold extends the time range with which a large liquid argon detector can follow the evolution of the supernova burst [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pre-supernova Neutrino Signal Another benefit of lowering the threshold is potential sensitivity to presupernova neutrinos [50, 51, 52, 53, 54, 55, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The final stages (hours to days) of stellar burning before the core collapse are expected to be associated with an uptick in neutrino Large Low Background kTon-Scale LArTPCs 18 production and energy, and observation of these could provide a true early warning of a core- collapse supernova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The presupernova flux is expected to be small, and energies are typically less than 10 MeV;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' nevertheless they may be observable in a large liquid argon detector with low threshold [53] for progenitors within a few kpc nearing the ends of their lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' CEvNS Glow Coherent elastic neutrino-nucleus scattering (CEvNS) [57, 58] is a process that occurs when a neutrino interacts coherently with the total weak nuclear charge, causing the ground state nucleus to recoil elastically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The cross section is large compared to the inelastic charged- and neutral-current interactions, but resulting nuclear recoil energies are in the few tens of keV range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' CEvNS has now been observed in argon by the COHERENT collaboration using the stopped-pion neutrino flux from the Spallation Neutron Source [59] with a cross section on order 22 · 10−40cm2 for an incoming average flux of < Eν >≈ 30 MeV from pion decay at rest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In a large LArTPC there will be a high rate of CEvNS in a core-collapse supernova burst— approximately 30-100 times more events with respect to νeCC (the dominant inelastic channel), depending on expected supernova spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, each event is individually not likely to produce more than a few detected photons, and sub-50-keV thresholds need to be achieved to find these events, if they are to be found one by one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Even with depleted argon, the 39Ar rate down in this range in our proposed detector is by far overwhelming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, an alternative is to identify a “CEvNS glow,” [60] in which the excess rate of detected photons can be tracked statistically above the 39Ar rate as a function of time in a characteristic explosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 7 shows that simulated supernova-induced activity from a burst at 10 kpc over 10 seconds in an inner fiducial 3 kTon gives three distributions: broadly-distributed-in-time, higher-energy charged-current (CC) component, a burst of low-hit-multiplicity CEvNS events at about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='01 sec, and then the absolutely flat 39Ar activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In ongoing work, we propose to subtract the reconstructed CC events and fit to the CEvNS bump above the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We note that in principle, an excess of collected ionization from CEvNS events is observable as a “CEvNS buzz” in coincidence with the CEvNS photon glow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Solar Neutrino Physics In this section we present our enhanced sensitivity to solar neutrino searches including lower energies and enhanced oscillation sensitivity to ∆m2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This allows exploration of solar-reactor oscillation tensions and Non-Standard Interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It also allows a precision CNO solar neutrino measurement and a measurement of the 3He+p solar flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A first study of DUNE as the next- generation solar neutrino experiment is presented in reference [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' That study is dominantly one of higher energy 8B CC processes, but in this section we widen the discussion and point out what a lower threshold would offer to solar neutrino studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Low Threshold Gains and Elastic scattering Figure 8 shows the number of expected ES interactions over threshold for a 3-kTon·year exposure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' One sees that reducing the threshold to 1 Large Low Background kTon-Scale LArTPCs 19 (a) (b) Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The CEvNS glow is the statistically significant increase observed from the low SiPM hit-count CEvNS Supernova events, shown in bottom population of figure (b) that sits on top of the rate of 39Ar seen in figure (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' MeV makes pep and CNO neutrinos observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 MeV could add 7Be neutrinos, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1 MeV could allow for detection of pp neutrinos, though this threshold encroaches into the large 39Ar background, even in UAr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The total number of available neutrinos is important for possible studies discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This amounts to 9,200 neutrinos for a 1-MeV threshold, 130,000 neutrinos for a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5-MeV threshold, and 820,000 for a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1-MeV threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In addition to the previously discussed methods for reducing backgrounds, we are investigating directionality with ES for all solar neutrinos and Cherenkov radiation for more energetic 8B neutrinos as ways to enhance neutrino signal over backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' SiPMHitsvs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Time-Ar39 2500 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 2000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 1500 events/hits/s SiPM Hits 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 m 4 8 time (s)SiPMHits vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Time -CEvNS + CC 105 103 102 104 Count 101 /hits/ Hit 103 100 /ents/ SiPM I 10-1 102 10~2 101 10~3 10~4 10~3 10- 10~1 100 time (s)Large Low Background kTon-Scale LArTPCs 20 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Number of events over threshold for solar-neutrino ES interactions in argon for a 3- kTon·year exposure with contributions from different solar fluxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Solar Neutrino Oscillations Current measurements of the neutrino mixing parameter, ∆m2 21, using solar neutrinos from SNO and Super-Kamiokande are currently discrepant at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 σ with measurements from KamLAND using neutrinos from nuclear reactors [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Differing results from these two methods would suggest new physics possibly involved with exotic matter effects as the neutrino passes through the Sun and Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Further data from DUNE will further investigate this discrepancy with high statistical significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The sensitivity comes from the “day-night” effect, a partial regeneration of the νe solar flux due to matter effects in Earth which depends on ∆m2 21, neutrino energy, and nadir angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This is an advantageous strategy allowing for constraints of uncertainties using daytime data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Solar neutrinos are much lower energy than typically observed in DUNE making reconstruction of these events challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Also, at these low energies, radiological backgrounds, principally neutron capture with a contribution from 40Ar(α, γ), dominate analysis backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A low-background DUNE-like module with enhanced light collection will help with both of these challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Improved energy resolution from increased photodetector coverage would significantly improve DUNE-like sensitivity to ∆m2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This would both improve reconstruction of the dominant neutron background around the 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1 MeV total visible energy of the neutron capture on argon- 40, and better measure the dependence of the νe flux regeneration on neutrino energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A single 10-kTon, low-background module could discern between SNO/SK and KamLAND best fits at over 6 σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lower neutron background levels would also improve the signal-to-background ratio for the measurement, which could also lower the energy threshold for detecting and analyzing solar neutrino events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An estimate of sensitivity to ∆m2 21 with 100 kTon-yrs of exposure with a low-background module is compared to DUNE’s sensitivity with 400 kTon-yrs of data from 107 106 105 104 103 102 101 hep 17F 150 7Be ES 100 eo +eF 8B pep total eN 13N 7Be 10-1 10-2 10-1 100 101 threshold Ethr (MeV)Large Low Background kTon-Scale LArTPCs 21 nominal, horizontal drift modules in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We use a larger 10-kTon fiducial volume for the reduced background/threshold curves in that figure, increased from other studies in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sensitivity of a low-background module to the neutrino mixing parameter ∆m2 21 assuming a true value of the solar best fit, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='13·10−5 eV2 [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Colored contours show sensitivity after 100 kTon-yrs for various detector configurations compared to 400 kTon-yrs of DUNE data with horizontal drift design, shown in black and dominated by CC events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Non-Standard Neutrino Interactions Non-standard neutrino interactions (NSI) could modify neutrino oscillations in the Sun and result in a different number of neutrinos observed compared to the one predicted by the Standard Model [62] (see also studies with different parameter definitions in [63] and [64]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The NSI Hamiltonian (for neutral currents only) relevant for solar-neutrino oscillations can be written in the following form: HNSI ν = √ 2GF(nu + nd) � −ϵD ϵN ϵ∗ N ϵD � , (1) where GF is the Fermi constant, nu and nd are the up- and down-quark densities, respectively, and ϵD and ϵN are the diagonal and off-diagonal NSI couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' These couplings affect νe solar survival probability (see Figure 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The diagonal coupling can mimic different vacuum ∆m2 values, resulting in its incorrect measurement when NSI are not taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Detection of ES in the proposed module (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1) allows for a great opportunity to have an almost NSI-independent anchor point in the oscillation probability near 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1 MeV in addition to investigating NSI in solar-neutrino oscillations at several MeV energies where changes in oscillation probability could be large but not much experimental data exists, yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 120 10 kt 2% resolution + lowered 100 bkg + lowered threshold 80 10 kt 1% resolution 10 kt 2% resolution + lowered bkg 60 40 10 kt 2% resolution 20 40 kt HD design 10-3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='09 Am2 (eV2)Large Low Background kTon-Scale LArTPCs 22 Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2-flavor electron-neutrino survival probability for solar neutrinos for the Standard Model and several different NSI couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An example of possible constraints on the NSI couplings is shown in Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This plot was obtained with the assumption of no backgrounds or systematic errors, an energy threshold of 1 MeV, and an exposure of 3 kTon·years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For comparison, see the larger constraints using current neutrino data available in [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Precision Measurement of CNO flux The CNO flux has been measured [65] recently by the Borexino collaboration to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5σ above 0, though it yields indistinct information about the high or low metallicity solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Per [65], the CNO neutrino flux scales with the metal abundance in the solar core, which probes the initial chemical composition of the Sun at its formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The metal abundance in the core is decoupled from the surface by a radiative zone, and CNO neutrinos are the only probe of the initial condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Here we want to investigate if an energy window exists where a precise measurement of the CNO flux can be performed in our low background module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We use our by-now standard simulation tools to count true deposited energy for a variety of backgrounds and solar neutrino 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='45 solar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='40 Standard Model 2-flavor ED = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1, EN = 0 ED = - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1,EN = 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='35 ED=O,EN=O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1 ED=0,EN=-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='30 10-1 100 101 true neutrino energy Etrue (MeV)Large Low Background kTon-Scale LArTPCs 23 Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Possible NSI constraints for 3 kTon·years obtained with the proposed module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' sources in a 3 kTon fiducial volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We impose a 2% energy smearing, as is reasonable by arguments in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fluxes come from [66] with a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3 survival probability applied, as appropriate to this low energy range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We use the assumption that the 42Ar content will be at a rate that is reduced by a further factor 100,000 compared to atmospheric argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We emphasize again per section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3 this is likely very conservative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The result is we see in a window about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2 MeV wide just above the pep cutoff that the CNO signal sticks up above other solar neutrino sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This is merely an illustration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' a real analysis will likely do a templated fit above the 7Be peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutrons from the cold cryoskin stainless steel are forced to be low, as usual;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' radon is taken as controlled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The 210Bi background which Borexino took exquisite care to control and measure [65] is yet to be thoroughly investigated here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nevertheless, there would appear to be a window where the high and low metallicity solutions are statistically separable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' By comparison, CNO sensitivity in the two-phase LArTPC program, which studies are further along than the current work, can be seen in [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Triggering for CNO neutrinos Initial studies into measuring the CNO flux with TPC triggering are underway, taking into account the full complement of radiological backgrounds predicted in the DUNE detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In these early studies, TPC triggering requires sufficiently large, coincident clusters on the collection plane and at least one induction plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We expect future work will in fact lead to a much higher-efficiency, light-based trigger being implemented for most work discussed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The dominant background in the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 MeV energy window is radon in this 2 1 0 1g 90% CL 1 2g 99% CL 3g 2 minimum x2 2 1 0 1 2 EDLarge Low Background kTon-Scale LArTPCs 24 early TPC triggering study, not in fact solar neutrinos – despite the rate reduction by a factor of 103 predicted in the low background module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In order to perform the true CNO detection there is clearly much work to be done in offline processing to accurately characterize and implement rejection by alpha detection, Bi-Po coincidence, disproportionate activity near the cathode from drifting cation decay products, and emanation properties of the various detector materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' CNO solar neutrinos with backgrounds taking radon to be solved and negligible and neutrons constrained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This is 2% smeared true deposited energy in our inner 3 kTon fiducial volume in a year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Note that a likely, low 42Ar level is shown that reveals that a CNO fit is possible above the 7Be peak and explicitly by a simple counting experiment in roughly the region shown in yellow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This is a lower 42Ar level than shown in Fig 1, but still realistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The inset zooms in on the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='25- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='45 above the pep region to show that the signal statistics are large enough to favor either high- or low-metallicity after a year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Precision measurement of hep flux The hep solar neutrino process (3He+p →4 He+e+ + νe) produces the highest energy neutrinos, though they have the lowest flux and have not yet been observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This low background module will be able to measure tens of these neutrinos per year via CC events, with a significant reduction in background due to radon and neutron interactions within the liquid argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 1010 CNOhiM 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='25-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='45 MeV region CNOloM 80 7Be 60 MeV 108 8B 40 pep 20 Ar39 Bg/L/1500 106 Ar42Bg/L/1500*9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2E-5/1E5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='40 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='45 Deposited Energy [MeV] 104 102 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='00 Deposited Energy[Mev]Large Low Background kTon-Scale LArTPCs 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutrinoless Double Beta Decay A discovery of neutrinoless double beta decay (0ν2β) is the most straightforward way to prove the Majorana nature of neutrinos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It would be parsimonious to be able to search for 0ν2β in the same detector we are suggesting to use for the other measurements mentioned in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 136Xe is one isotope in which much work is being performed worldwide to try to make this discovery [68, 69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Loading large LArTPCs with few-percent level Xe and measuring neutrinoless double beta decay has been suggested in [70] and [71] among other places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In this subsection we show that naively a discovery is likely possible with a signal 136Xe half-life of 5 · 1028 years, and is quite apparent at 1·1028 years, provided energy resolution requirements can be met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We imagine, say, a five-year search campaign for 0ν2β at the end of the prosecution of the baseline physics program of this module, since any dark matter search requiring PSD would necessarily be compromised by xenon loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We start with a 0ν2β signal calculated using a Gaussian 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 (3) % energy resolution at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='435 MeV with 1/ √ E dependence for top (bottom) plots in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Energy resolution ambitions are consistent [72] with what we may expect in a LArTPC from charge energy collection in combination with the photon readout system, as well as discussion in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We similarly smear the 2ν double-beta true spectrum by these resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' And for the 208Tl background emanating from the G10 of the charge readout planes we use only the expected rate from the simulation, creating the actual spectrum by likewise smearing the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='6 MeV gamma by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 (3)% in top (bottom) plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For the solar and 42Ar backgrounds previously discussed, on the other hand, we use the resolution from the simulation that uses only the poorer light-only collection from the SiPM hits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' These are flat backgrounds which extend to low energy where signal will likely be obscured in the noise of the charge readout, hence the need to rely on only the SiPMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For both plots we use a 3% concentration of 136Xe in our inner volume, using a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0 kTon fiducial volume, and propose to run for five years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We plot a signal corresponding to a (5)1 · 1028 year 0νββ half-life.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Among the assumptions made for our figures is that underground argon can give a 42Ar suppression of a factor of 10 beyond that in atmospheric Ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' See section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3 which indicates this is likely easily achievable, up to processing concerns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We also take in Fig 13 that the irreducible solar 8B elastic scattering may be suppressed by a factor of two (conservatively down from three assumed in Reference [73, 74] ) from inspecting Chernkov/Scintillation light ratios in single versus double electron events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We impose no efficiency hit due to this cut, whereas Reference [73] uses an efficiency of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' More careful event reconstruction studies are needed to bear out the reasonableness of this cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We assign the 208Tl in the G10 charge collection planes a Th concentration of 50 mBq/kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Charged current solar neutrino events, are in principle reducible to zero, due to the excited state gammas that are emitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' And similarly, neutrons shall be almost entirely removed using pulse-shape discrimination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We again take the radon issue to be solved for the sake of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A 2σ band to either side of the 0νββ energy of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='435 MeV is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We take Eres ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 % in the top plot at the Q value, even though, as we have said, it is not Large Low Background kTon-Scale LArTPCs 26 immediately obvious we can achieve that (nor in fact are we currently confident we can reach the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5% of the bottom plot) with our charge readout plus 80% SiPM coverage, open as it is at the top and bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' That study is beyond the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' However, we see that there is sensitivity in this detector to 0νββ discovery at lifetimes that stretch the reach of coming experiments, despite the large, irreducible solar 8B neutrinos which elastically scatter off the mostly argon target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dark Matter It is known that a large amount of dark matter exists within the Universe, that has so far only been observed by gravitation interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' One popular candidate for the dark matter is the Weakly Interacting Massive Particle, or WIMP, that is the focus of several current and future experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The potential of using this low background module to search for WIMP dark matter was studied in Reference [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This study assumed a dual phase TPC design, with a single fiducial volume at the center of the detector (rather than the split fiducial volumes described above).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The criteria for achieving a sensitive WIMP dark matter search was set as requiring: a 50-100 keV nuclear recoil threshold;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O(10) background events;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O(100) photons detected per event to allow pulse shape discrimination (PSD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Assuming that 1250 photons per 100 keV of prompt scintillation light is emitted (as measured by SCENE for 500 V/cm fields [75]), the studies in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3 show that reaching 100 photons per event is realistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A pseudo-Monte Carlo simulation of the Poisson distributed light output was performed to determine the width of a typical PSD variable f90, defined as the ratio of light detector detected in the first 90 ns of an event to the light detected in the second 90 ns of an event, for the 39Ar decays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The results taken from measurements from the SCENE experiment [75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reference [10] shows PSD is expected to reach the 1010 rejection level for electron/gamma backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We also direct the interested reader to the PSD study [76] to suppress the 39Ar decay background in DEAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' All other electron/gamma backgrounds are expected to be subdominant to the 39Ar and will thus be removed by PSD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutron backgrounds were managed as described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The main background will be from irreducible atmospheric neutrinos at the so-called neutrino floor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A full background table from the study is shown in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The background rates are used to set a 90% C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' sensitivity to WIMP dark matter Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [10] shows that a three-year search with this detector will have comparable sensitivity to planned next-generation detectors, which have expected run times of 10 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This timescale allows a rapid cross-check of any signals discovered in these detectors, in particular for the liquid argon experiments such as DarkSide-20k [9] or ARGO [77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 27 Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An optimistic background/resolution scenario for a 136Xe 0νββ half-life of 5·28 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Detector energy resolution is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5% on top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Backgrounds are as discussed in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' On the bottom is the same with a reduced resolution of 3% and for a half-life of 1E28 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 140 Onubb MeV 2nubb TI208 50 mBq/kg Events/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='189kTonneXe136-5yr /0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='02[ 120 8BES Ar42Bq/L/1500/5E8/10 100 pseudo-data 80 60 40 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='30 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='45 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='50 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='55 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='60 Energy [MeV]140 Onubb Events /0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='189 kTonneXe136-5yr/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='02 MeV 2nubb Tl20850mBq/kg 120 8BES Ar42Bq/L/1500/5E8/10 100 pseudo-data 80 60 40 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='30 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='45 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='50 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='55 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='60 Energy [MeV]Large Low Background kTon-Scale LArTPCs 28 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Seasonal Variation of Rate for WIMP Dark Matter The prominent model for dark matter (DM) is the so-called Standard Halo Model (SHM) [78] featuring WIMP DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The SHM describes a basic isometric spherical distribution of WIMP DM around our galaxy and has been used due to it being a good trade-off between realism and simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The relative velocity of our solar system of 233 km/s [79] at which the Sun moves through the gas-like halo of WIMP DM induces as a ”WIMP wind”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Figure 14 illustrates the Sun’s rotation in our galaxy together with Earth’s solar orbit into and out of the WIMP wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We modeled the Sun’s rotational and peculiar velocities into one combined effective velocity of 233 km/s in the galactic plane and accounted for the 60◦ inclined plane of Earth’s orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We were then able to accurately describe the annual modulation of detectable WIMP rate R on Earth by one simple periodic sinusoidal function with one amplitude parameter A and a maximal rate on June 1 of each year[79] [80]: R( [d−1] ) = A [d−1] × cos � 2π T[d] × ( t[d] − tJune1[d] ) � + Ravg [d−1] (2) The constant term Ravg is the average annual rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Earth’s period T is 365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2422 days and the phase corresponding to the maximal rate Rmax observable on June 1 of each year is 2π · tJune1/T = 2π · 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='415.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galactic WIMPs in the halo are assumed to have a Maxwell-Boltzmann-like velocity distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The effective WIMP velocity distribution is shifted up when Earth is flowing maximally into the WIMP wind and shifted down when Earth is flowing maximally with the WIMP wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Due to this aspect, an analysis on the annual modulation of the detection rate R could provide a powerful tool for identifying WIMP DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Due to the unrivaled large fiducial mass of 3 kTons and a potentially very long DUNE operation of one decade (or even several), this concept can offer a unique detection of the seasonal variation of the detectable WIMP rate R at a sufficient statistical significance for providing a smoking gun signature for the WIMP nature of DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This would be particularly of interest in case upcoming generation-2 DM experiments like LZ [81] and/or XENONnT [82] have evidence for WIMPs near their sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It would be nearly impossible for the planned generation-3 DM experiments [83] [84] to make such a smoking gun detection proving the WIMP nature of DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The differential rate of interactions in an arbitrary detector for the SHM is described in Equation 3: dR dER = σSI N A2mANTρχ 2mχµ2 N F 2(ER) ∞ � νmin(ER) d3−→ν ν f⊕(−→ν , −→ νobs) (3) where σSI N is the spin-independent-nucleon cross-section for WIMPs, A is the atomic number of argon, mA is the mass of argon, NT is the number of target nuclei, ρχ is the local dark matter density (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3 GeV cm3 ), mχ is the mass of a WIMP, µN is the reduced WIMP-nucleus mass, F(ER) is the the nuclear form-factor, νmin is minimum WIMP velocity to produce a recoil of energy ER, ν is WIMP velocity, and νobs is the observer velocity with respect to the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' When Earth is Large Low Background kTon-Scale LArTPCs 29 Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galactic WIMP wind as it relates to Earth’s orbital plane employing an illustrative rendition [79] of our Milky Way galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Our solar system’s velocity in reference to our galaxy has contributions from both a rotational aspect with a tangential velocity of 220 km/s and from a minor solar peculiar aspect with velocity components (U, V, W) = (10, 13, 7) km/s [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In our model the combined relative velocity of our solar system is then 233 km/s at which the Sun moves through a gas-like halo of WIMP dark matter assumed to have a Maxwell-Boltzmann-like velocity distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This induces what we experience as a “WIMP wind”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This WIMP wind is at an angle compared to Earth rotation around the Sun as pictured in the zoomed in diagram, with the effective WIMP velocity distribution shifted up when flowing maximally into the wind and shifted down when flowing maximally with the wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Due to this aspect, an analysis of the annual modulation of detectable WIMP rate on Earth could provide a powerful tool for identifying the WIMP nature of dark matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' moving into or with the WIMP wind, it affects the differential WIMP rate, which in turn would affect our −→ νobs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For ease, we can define: ∞ � νmin(ER) d3−→ν ν f⊕(−→ν , −→ νobs) = ζ(ER), (4) where f(−→ν ) = 1 N � e −ν2 ν2 0 − e −ν2esc ν2 0 � , (5) and f⊕(−→ν , −→ νobs) = f(−→ν + −→ νobs) (6) OurMilky Way Galaxy WIMP max,detectable wind WIMP rate Galactic Center on Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=" 1 Earth UO+U Galactic 0094 Plane 1AU <1 AU 'Sun TAU WIMP Solar Rotational Velocity wind = (0, 220, 0) km/s = (10, 13, 7) km/s J." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Genovesi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher 2022 - SD Mines - v02/f 1/22Large Low Background kTon-Scale LArTPCs 30 ht Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Example NEST[85] simulation of the annual modulation for 40 GeV/c2 WIMP dark matter with a cross section of 4 × 10−48 cm2 for a 10 year measurement time with 3 kTon LAr at 50 keV threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' On top a Likelihood-fit result for a 10 year period and on bottom the same data combined into a single annual period starting on January 1 of each year fitted with a χ2-method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The ideal case without background is assumed in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [counts / (20 days)] R 0 500 1000 1500 2000 2500 3000 3500 Elapsed Timet (in days since startof experimentAnnualModHist 30 Integral 277 x?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' / ndf 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='37 / 17 25 po 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='827 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='144 p1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='53 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='85 20 15 10 0 50 100 150 200 250 300 350 Elapsed Time t (in days since 1st of January of each year)Large Low Background kTon-Scale LArTPCs 31 with N as a normalization factor, ν0 is the expected WIMP velocity, and νesc is the escape velocity of the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Using Equation 5, we can solve for individual cases of WIMPs in certain speed brackets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' As mentioned earlier, Earth’s orbit can play a crucial role for differential WIMP rate predictions in the SHM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' As the solar system travels through our galaxy, observers on Earth would observe WIMPs dominantly from a certain direction in a windshield-to-rain like effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This is due to the distribution of WIMPs being treated as a gas with a Maxwell-Boltzmann-like velocity distribution with the stars in our galaxy moving through the dark matter due to their orbits around the galactic nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In addition to the standard rotational contribution from the solar system, a minor peculiar velocity exists of our solar system traveling through the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This WIMP wind would be at an angle of 60◦ towards Earth’s orbital plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This means that during June 1, the Earth will experience a maximum effective flux of WIMPs while on December 1 the Earth will have experienced the lowest effective WIMP rate, as one can see again in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An example fit using Equation 2 of an annual modulation signal simulated in NEST [85] without background is shown in Figure 15 on top for a 10 year period, and on bottom the same data combined into a single annual period starting on January 1 of each year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This is for a 40 GeV/c2 WIMP with a cross section of 4 × 10−48 cm2, which is very close to the limit of sensitivity of the upcoming generation-2 xenon dark matter experiments LZ [81] and XENONnT [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We further assumed a 3 kTon × 10 year exposure of our proposed low background LAr module with a 50 keV threshold resulting in 277 events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The bottom plot of Figure 15 shows a good χ2-fit result for the amplitude A = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='827 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='144 from Equation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It confirms the possible measurement of the seasonal variation of the WIMP rate at a sufficient statistical significance for providing a smoking gun signature for the WIMP nature of DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' This will be uniquely possible with this detector, due to the unrivaled large mass of 3 kTons vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' only 300 tons of argon for ARGO [84] and 100 tons for a Gen-3 xenon experiment [83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moreover, the annual modulation effect in xenon is significantly smaller due to the relatively lower energies of nuclear recoils in xenon compared to argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Last but not least, the logistics of a decade long operation with this detector can utilize strong synergies with the DUNE long-baseline physics, including the cavern availability and occupancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Additional Topics This module, with its unprecedented combination of low background and size, also can explore several other topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' We describe several examples in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Atmospheric neutrinos The detector will measure approximately 10 CEνNS events due to atmospheric neutrinos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' These events have not yet been observed and this would allow a cross-check of background rates from the upcoming generation of dark matter experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 32 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Strangelets Recently, the paper “Can strangelets be detected in a large LAr neutrino detector?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [86], predicted that a LArTPC detector is able to detect and discriminate light strangelets with (Z, A) between (2,14) and (7,70) for energies up to 10 GeV in the presence of radioactive background found at the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' When operated underground the detection limits are expected to be extended due to lower background levels and, combined with the increased dimensions of the detector module, will improve the event rates with a factor of 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In the case of strangelets the main uncertainties are due to the estimations of their survival probability deep underground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The presence of 39Ar masks both ionization and scintillation signals from strangelets and induces false signals in the collected charge from ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The use of underground argon in this module allows a cleaner detection signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Charged micro-black holes and Superheavy dark matter Hawking [87] suggested that unidentified tracks in the photographs taken in old bubble chamber detectors could be explained as signals of gravitationally “collapsed objects” (µBH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The small black holes are expected to be unstable due to Hawking radiation, but the evaporation is not well-understood at masses of the order of the Planck scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Certain inflationary models naturally assume the formation of a large number of small black holes [88] and the generalized uncertainty principle may indeed prevent total evaporation of small black holes by dynamics and not by symmetry, just like the hydrogen atom is prevented from collapse by the standard uncertainty principle [89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Given the profound nature of the issues addressed, some disagreement and controversy exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In principle the direct detection of charged micro black holes with masses around and upward of the Planck scale (10−5 g), ensuring a classical gravitational treatment of these objects, is possible in huge LAr detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It has been shown that the signals (ionization and scintillation) produced in LAr enable the discrimination between micro black holes (with masses between 10−5 - 10−4 grams, and velocities in the range 250 - 1000 km/s) and other particles [90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It is expected that the trajectories of these micro black holes will appear as crossing the whole active medium, in any direction, producing uniform ionization and scintillation on the whole path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Along these lines, an analysis looking for multiple co-linear nuclear recoils can also probe ultra heavy dark matter beyond the Plank scale, as described in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [91, 92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sensitivity to the heaviest dark matter candidates is limited by the number density of the dark matter, which is inversely proportional to the mass, as the ability to detect heavy dark matter with a high cross section is set by the probability that a dark matter particle enters the detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' As such, sensitivity to the highest masses scales with the detector’s surface area, and would leverage the large size of this module compared to DEAP-3600, which has a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='7 m diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Similarly, in the direct detection of the charged micro-black holes, unlike in traditional WIMP detection, there will exist both ionization and scintillation signals from direct interactions and from recoiling nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The capability to perform pulse shape discrimination in this detector will allow these tracks to be identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Natural radioactivity is the main source of background in this case and the reduced number of free electrons (and photons) from beta decays of 39Ar will allow a Large Low Background kTon-Scale LArTPCs 33 significant improvement of the capability of the detector to correctly identify the micro-black hole signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Other topics This detector would have sensitivity to a small number of CEνNS events within the neutrino beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' It may have applications to geologic tomography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The improved energy resolution for low energy could have applications in searches for other exotics and beyond the standard model physics phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Though the optimal search region for a diffuse supernova neutrino background is above the energy of the solar neutrinos [93], and thus the radioactive backgrounds, the improved energy resolution of this detector will again likely improve the search sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conclusion We have presented a design in this paper for a low background kTon-scale LArTPC to potentially expand the current physics program for such detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The design is based on the vertical drift detector planned for DUNE’s second far detector module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The module discussed is a candidate for a third or fourth DUNE “Module of Opportunity.” It is realized by providing additional shielding, stringent radioactive background control and enhanced light detection to the nominal vertical drift module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Energy resolution will benefit in all energy ranges due to event reconstruction and topology classification improvements from the superior light detection system and the quiet detector, which will allow to capture more cascade gammas[13] and thereby improve the hadronic component of neutrino-nucleus interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The physics goals achieved by the SLoMo design extend the capability of large LArTPCs to search for solar and supernova neutrinos, neutrino-less double beta-decay, and WIMP dark matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' At the same time the design proposed here, by the nature of its small perturbations to the vertical drift module, assures continuing strong support to the long-baseline neutrino oscillation program to measure remaining parameters in the PMNS matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Acknowledgments Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the United States Department of Energy (DOE) under Contract no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DE-AC05-76RL01830.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parts of this study at PNNL were supported by the DOE, USA Office of High Energy Physics Advanced Technology R&D subprogram and other parts by the Open Call Initiative, under the Laboratory Directed Research and Development Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' In the United Kingdom this work was supported by STFC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' For IL and MP this work was performed with the financial support of the Romanian Program PNCDI III, Programme 5, Module CERN-RO, under contract no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 04/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' KS is supported by the Department of Energy and the National Science Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' ZD acknowledges the support Large Low Background kTon-Scale LArTPCs 34 of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Department of Energy Office of Science under contract number DE- AC02-06CH11357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' South Dakota School of Mines and Technology acknowledges the support of Department of Energy through award number DE-SC0014223, as well as DE-AC02-07CH11359 through subaward from Fermi National Accelerator Laboratory subcontract no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 664706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' JZ gratefully acknowledges using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Department of Energy, Office of Science, HEP User Facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DEAC02-07CH11359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Abi et al (DUNE Collaboration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='03010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='. Abud et al (DUNE Collaboration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1748-0221/17/01/P01005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Amerio et al (ICARUS Collaboration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Design, construction and tests of the ICARUS T600 detector, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='nima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [4] Xin Qian, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Snowmass 2021 Letter of Interest: “Development of LArTPC Vertical Drift Solutions with PCB Anode Readouts for DUNE”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='snowmass21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/docs/files/summaries/ NF/SNOWMASS21-NF10_NF0-IF9_IF8_Xin_Qian-123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [5] Andreas Best, Joachim G¨orres, Matthias Junker, Karl-Ludwig Kratz, Matthias Laubenstein, Alexander Long, Stefano Nisi, Karl Smith, and Michael Wiescher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Low energy neutron background in deep underground laboratories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 812:1–6, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' com/science/article/pii/S0168900215016058.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [6] Guanying Zhu, Shirley Weishi Li, and John F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Beacom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C, 99:055810, May 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [7] Francesco Capozzi, Shirley Weishi Li, Guanying Zhu, and John F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Beacom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DUNE as the Next-Generation Solar Neutrino Experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 123:131803, Sep 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' (alpha, n) Cross Section Data Improvement Needs for Next Generation Low-Background Neutrino and Dark Matter Experiments, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' IAEA Technical Meeting on (alpha,n) nuclear data evaluation and data needs, Vienna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [9] Craig E Aalseth, F Acerbi, P Agnes, IFM Albuquerque, T Alexander, A Alici, AK Alton, P Antonioli, S Arcelli, R Ardito, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The European Physical Journal Plus, 133(3):1–129, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [10] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Church, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jackson, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dark matter detection capabilities of a large multipurpose Liquid Argon Time Projection Chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Instrumentation, 15(09):P09026, Sep 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1748-0221/15/09/P09026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stock J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radiopurity Screening and Radiological Model for DUNE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conference on Science at the Sanford Underground Research Facility (CoSSURF), Rapid City, SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher for the DUNE collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Supernova Neutrinos, Proton Decay and Atmospheric Neutrinos at DUNE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 26th International Workshop on Weak Interactions and Neutrinos (WIN 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Caratelli, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Foreman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Friedland, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gardiner, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gil-Botella, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Karagiorgi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kirby, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lehmann Miotto, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Littlejohn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mooney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sousa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scholberg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Andringa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Asaadi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bezerra, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Capozzi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavanna, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Church, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Himmel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Junk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Klein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lepetic, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sala, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schellman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sorel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zennamo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Acero, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Adames, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Amar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Andrade, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Andreopoulos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ankowski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arroyave, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aushev, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ayala-Torres, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Baldi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Backhouse, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Balantekin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barkhouse, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barham Alzas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barrow, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Battat, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bazetto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Beacom, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Behera, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bellettini, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Berger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bezerra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bilki, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bles, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bolton, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bomben, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bonesini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bonilla-Diaz, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Borkum, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bostan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brailsford, Large Low Background kTon-Scale LArTPCs 35 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Branca, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brunetti, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chappell, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Charitonidis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cintra, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conley, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Coan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cova, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cremaldi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Crespo-Anadon, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cuesta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dallavalle, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Davies, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dedin Neto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Delgado, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Delmonte, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Denton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Roeck, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dharmapalan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Djurcic, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dolek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Doran, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dorrill, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Duffy, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dutta, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dvornikov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Edayath, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Evans, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ezeribe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Falcone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Felix, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Feng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fields, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Filip, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Franco, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garcia-Gamez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giri, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gogota, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gollapinni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goodman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gramellini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gran, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Granger, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grant, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greenberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Groh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guenette, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guffanti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Harris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hatzikoutelis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Heeger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hernandez Morquecho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Herner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ho, P C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Holanda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ilic, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jackson, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Janka, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Joaquim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jones, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jovancevic, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jwa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kalra, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kaplan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Katsioulas, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kearns, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kelly, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kemp, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ketchum, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kish, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Koerner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kosc, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kothekar, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kreslo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kubota, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kudryavtsev, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kumar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kutter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kvasnicka, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lazanu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' LeCompte, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lokajicek, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Louis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Luk, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Luo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Machado, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Machulin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mahn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Man, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mandujano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Maneira, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marchionni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marfatia, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marinho, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mariani, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marshall, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martinez Lopez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martinez Caicedo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mastbaum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Matheny, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McConkey, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mehta, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Messer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Minotti, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Miranda, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mishra, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mocioiu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mogan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mohanta, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mohayai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Montanari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Montano Zetina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moor, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moretti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moura, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mualem, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nachtman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Narita, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Navrer-Agasson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nebot-Guinot, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nikolov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nowak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ochoa-Ricoux, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O’Connor, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Onel, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Onishchuk, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Orebi Gann, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pandey, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parozzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parveen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parvu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Patterson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paulucci, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pec, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Peeters, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pompa, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Poonthottathil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Poudel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Psihas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rafique, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ramson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Real, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rikalo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ross-Lonergan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Russell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sacerdoti, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sahu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sanders, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santoro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Senise, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shanahan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R Sharma, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sharma, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singh, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singh, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soderberg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soldner-Rembold, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soto-Oton, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Spurgeon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Steklain, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stocker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stokes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Strait, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Strait, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Strauss, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Suter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Svoboda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Szelc, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Szydagis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tarpara, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tatar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Terranova, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Testera, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chithirasree, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Todorovic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tonazzo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Torti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tortorici, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Toups, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Travar, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tsai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tsai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Urheim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Utaegbulam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Valder, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Valdiviesso, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Valentim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vergani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Viren, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vranicar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Waters, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Weatherly, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Weber, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wei, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Westerdale, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Whitehead, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Whittington, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wilkinson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wilson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Worcester, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wresilo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yaeggy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zalesak, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zamorano, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zuklin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Low-Energy Physics in Neutrino LArTPCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/abs/2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='00740, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [14] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aalseth, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Acerbi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Agnes, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Albuquerque, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alexander, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alici, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alton, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Antonioli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arcelli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ardito, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arnquist, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Asner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ave, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Back, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barrado Olmedo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Batignani, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bertoldo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bettarini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bisogni, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bocci, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bondar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bonfini, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bonivento, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bossa, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bottino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boulay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bunker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bussino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Buzulutskov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cadeddu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cadoni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Caminata, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Canci, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Candela, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cantini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Caravati, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cariello, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carlini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carpinelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Castellani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Catalanotti, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cataudella, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavalcante, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavuoti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cereseto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chepurnov, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cical`o, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cifarelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Citterio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cocco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Colocci, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Corgiolu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Covone, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Crivelli, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D’Antone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D’Incecco, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D’Urso, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Da Rocha Rolo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Daniel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Davini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' de Candia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Cecco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Deo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Filippis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Guido, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Rosa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dellacasa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Della Valle, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Demontis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Derbin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Devoto, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Eusanio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Pietro, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dionisi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dolgov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dormia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dussoni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Empl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fernandez Diaz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Filip, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fomenko, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Franco, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Froudakis, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gabriele, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gabrieli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galbiati, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garcia Abia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gendotti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ghisi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giagu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giampa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gibertoni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giganti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giorgi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giovanetti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gligan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gola, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gorchakov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goretti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Granato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grassi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grate, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grigoriev, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gromov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guerra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guerzoni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gulino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Haaland, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hallin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Harrop, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hoppe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Horikawa, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hosseini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hughes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Humble, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hungerford, An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ianni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jillings, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Johnson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Keeter, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kendziora, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kim, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Koh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Korablev, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Korga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kubankin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kuss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ku´zniak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' La Commara, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lehnert, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lissia, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lodi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Loer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Longo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Loverre, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lussana, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Luzzi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Machado, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Machulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mandarano, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mapelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marcante, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Margotti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mariani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Maricic, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martoff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mascia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mayer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McDonald, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Messina, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meyers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Milincic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moggi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moioli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monroe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Morrocchi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mount, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Muratova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Murphy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Musico, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nania, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Navrer Agasson, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nikulin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nosov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nozdrina, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nurakhov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oleinik, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oleynikov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Orsini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ortica, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pagani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pallavicini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Palmas, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pandola, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pantic, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paoloni, Large Low Background kTon-Scale LArTPCs 36 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paternoster, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pavletcov, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pazzona, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Peeters, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pelczar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pellegrini, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pelliccia, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Perotti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Perruzza, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pesudo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piemonte, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pilo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pocar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pollmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Portaluppi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pugachev, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Qian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radics, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Raffaelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ragusa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Razeti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Razeto, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Regazzoni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Regenfus, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reinhold, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Renshaw, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rescigno, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reti`ere, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Riffard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rivetti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rizzardini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Romani, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Romero, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rubbia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sablone, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Salatino, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Samoylov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S´anchez Garc´ıa, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sands, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sanfilippo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sant, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santorelli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Savarese, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scapparone, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schlitzer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scioli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Segreto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Seifert, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Semenov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shchagin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shekhtman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shemyakina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sheshukov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Simeone, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Skensved, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Skorokhvatov, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smirnov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sobrero, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sokolov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sotnikov, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Speziale, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stainforth, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stanford, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Suffritti, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Suvorov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tartaglia, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Testera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tonazzo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tosi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Trinchese, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Unzhakov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vacca, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V´azquez-J´auregui, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Verducci, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Viant, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Villa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vishneva, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vogelaar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wada, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wahl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walding, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Watson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Westerdale, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Williams, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wojcik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Xiang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Xiao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ye, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yllera de Llano, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zappa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zappal`a, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zichichi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zullo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zullo, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zuzel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The European Physical Journal Plus, 133(3):131, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ajaj, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Amaudruz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Araujo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Baldwin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Batygov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Beltran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bina, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bonatt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boulay, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Broerman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bueno, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Burghardt, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Butcher, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavuoti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cleveland, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cranshaw, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dering, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DiGioseffo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Doria, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Duncan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dunford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Erlandson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fatemighomi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Florian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Flower, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ford, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gagnon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gallacher, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garc´es, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giampa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goeldi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Golovko, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gorel, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Graham, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grant, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hallin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hamstra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Harvey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hearns, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Joy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jillings, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kamaev, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kaur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kemp, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kochanek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ku´zniak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Langrock, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' La Zia, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lehnert, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lidgard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lindner, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Litvinov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lock, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Longo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Majewski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McDonald, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McElroy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McGinn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McLaughlin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mehdiyev, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mielnichuk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monroe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nadeau, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nantais, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Noble, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O’Dwyer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ouellet, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pasuthip, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Peeters, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piro, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pollmann, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rand, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rethmeier, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reti`ere, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Seeburn, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singhrao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Skensved, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smith, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sonley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soukup, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stainforth, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stone, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Strickland, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V´azquez-J´auregui, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Veloce, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Viel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walding, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Waqar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ward, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Westerdale, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Willis, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zu˜niga Reyes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 100:022004, Jul 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='022004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aprile, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aalbers, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Agostini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alfonsi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Amaro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Anthony, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arneodo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barrow, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Baudis, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bauermeister, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Benabderrahmane, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Berger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Breur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brown, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brown, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bruenner, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bruno, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Budnik, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B¨utikofer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Calv´en, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cardoso, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cervantes, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cichon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Coderre, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Colijn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conrad, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cussonneau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Decowski, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' de Perio, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Gangi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Giovanni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Diglio, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Duchovni, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Eurin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fei, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fieguth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Franco, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fulgione, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gallo Rosso, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galloway, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garbini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Geis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goetzke, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grandi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greene, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grignon, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hasterok, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hogenbirk, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Itay, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kaminsky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kessler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kish, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Landsman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lellouch, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Levinson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Le Calloch, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lindemann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lindner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lopes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Manfredini, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Maris, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marrod´an Undagoitia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Masbou, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Massoli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Masson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mayani, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Messina, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Micheneau, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Miguez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Molinario, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Murra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Naganoma, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ni, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oberlack, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Orrigo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pakarha, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pelssers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Persiani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piastra, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pienaar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piro, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pizzella, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Plante, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Priel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rauch, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichard, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reuter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rizzo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rosendahl, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rupp, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' dos Santos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sartorelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scheibelhut, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schindler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schreiner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schumann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scotto Lavina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Selvi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shagin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shockley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Silva, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Simgen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sivers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stein, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Thers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tiseni, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Trinchero, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tunnell, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Upole, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wei, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Weinheimer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wulf, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ye, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhang, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cristescu, and XENON Collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Online 222Rn removal by cryogenic distillation in the XENON100 experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The European Physical Journal C, 77(6):358, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pushkin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Akerlof, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Anbajagane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Armstrong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arthurs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bringewatt, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Edberg, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hall, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lei, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Raymond, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sander, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schaefer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Seymour, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Swanson, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lorenzon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Study of radon reduction in gases for rare event search experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 903:267–276, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='com/science/article/pii/S0168900218308131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [18] G Heusser, W Rau, B Freudiger, M Laubenstein, M Balata, and T Kirsten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 222Rn detection at the µBq/m3 Large Low Background kTon-Scale LArTPCs 37 range in nitrogen gas and a new Rn purification technique for liquid nitrogen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Applied Radiation and Isotopes, 52(3):691–695, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='com/science/article/pii/ S0969804399002316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Abratenko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Anthony, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arellano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Asaadi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ashkenazi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Balasubramanian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Baller, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barnes, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barr, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barrow, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Basque, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bathe-Peters, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Benevides Rodrigues, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Berkman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bhanderi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bhat, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bhattacharya, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bishai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Blake, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bolton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Book, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Camilleri, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Caratelli, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Caro Terrazas, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavanna, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cerati, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cianci, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conrad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Convery, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cooper-Troendle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Crespo- Anad ˜A³n, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Del Tutto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dennis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Detje, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Devitt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Diurba, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dorrill, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Duffy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dytman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Eberly, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ereditato, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Evans, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fine, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorentini Aguirre, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fitzpatrick, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fleming, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Foppiani, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Franco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Furmanski, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garcia-Gamez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gardiner, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ge, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gollapinni, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goodwin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gramellini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Green, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greenlee, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guenette, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guzowski, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hagaman, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hilgenberg, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Horton- Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hourlier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Itay, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' James, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ji, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Joe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Johnson, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jwa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kalra, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kamp, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kaneshige, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Karagiorgi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ketchum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kirby, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kobilarcik, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kreslo, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lepetic, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Littlejohn, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Louis, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Luo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Manivannan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mariani, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marsden, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marshall, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martinez Caicedo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mason, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mastbaum, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McConkey, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meddage, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mettler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Miller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mills, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mistry, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mogan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mohayai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mooney, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moor, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moore, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mora Lepin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mousseau, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mulleriababu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Naples, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Navrer-Agasson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nayak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nebot-Guinot, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neely, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Newmark, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nunes, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Palamara, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paolone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Papadopoulou, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Papavassiliou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parkinson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pate, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Patel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paudel, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pavlovic, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piasetzky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ponce-Pinto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Prince, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Qian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Raaf, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radeka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rafique, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reggiani-Guzzo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ren, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rice, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rochester, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rodriguez Rondon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rosenberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ross-Lonergan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rudolf von Rohr, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scanavini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schmitz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schukraft, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Seligman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shaevitz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sharankova, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sinclair, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smith, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Snider, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soderberg, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S ˜A¶ldner-Rembold, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Spentzouris, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Spitz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stancari, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' John, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Strauss, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sutton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sword- Fehlberg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Szelc, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Terao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Thorpe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Torbunov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Totani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Toups, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tsai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Uchida, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Usher, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Viren, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Weber, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wei, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' White, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Williams, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wolbers, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wongjirad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wospakrik, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wresilo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wright, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yandel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yarbrough, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yates, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zeller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zennamo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zuckerbrot, and The MicroBooNE collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Observation of radon mitigation in microboone by a liquid argon filtration system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Instrumentation, 17(11):P11022, nov 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1748-0221/17/11/P11022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [20] Andrea Pocar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Low background techniques for the Borexino nylon vessels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' AIP Conference Proceedings, 785(1):153–162, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://aip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='scitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2060466.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [21] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Akerib, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Akerlof, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Akimov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alquahtani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alsum, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Anderson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Angelides, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ara´ujo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arbuckle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Armstrong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arthurs, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Auyeung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aviles, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bailey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Balajthy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Balashov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barry, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bauer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Baxter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Belle, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Beltrame, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bensinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Benson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bernard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bernstein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bhatti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Biekert, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Biesiadzinski, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Birch, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Birrittella, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boast, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bolozdynya, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boulton, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boxer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bramante, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Branson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Br´as, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Breidenbach, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brew, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Buckley, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bugaev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bunker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Burdin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Busenitz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cabrita, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Campbell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carels, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carlsmith, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carlson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carmona-Benitez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cascella, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cherwinka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chiller, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chiller, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chott, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cole, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Coleman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Colling, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conley, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cottle, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Coughlen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cox, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Craddock, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Curran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Currie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cutter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' da Cunha, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dahl, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dardin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dasu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Davis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Davison, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' de Viveiros, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Decheine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dobi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dobson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Druszkiewicz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dushkin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Edberg, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Edwards, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Edwards, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Edwards, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Elnimr, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Emmet, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Eriksen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Faham, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fayer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorucci, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Flaecher, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fogarty Florang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ford, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Francis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fraser, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Froborg, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fruth, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gaitskell, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gantos, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garcia, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gehman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gelfand, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Genovesi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gerhard, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ghag, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gibson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gilchriese, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gokhale, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gomber, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gonda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greenall, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greenwood, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gregerson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' van der Grinten, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gwilliam, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hall, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hamilton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hans, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hanzel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Harrington, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Harrison, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Harrison, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hasselkus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Haselschwardt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hemer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hertel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Heise, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hillbrand, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hitchcock, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hjemfelt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hoff, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Holbrook, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Holtom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Y-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Horn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hurteau, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ignarra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Irving, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jacobsen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jahangir, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jeffery, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ji, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Johnson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Johnson, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jones, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kaboth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kamaha, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kamdin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kasey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kazkaz, Large Low Background kTon-Scale LArTPCs 38 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Keefner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Khaitan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Khaleeq, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Khazov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Khromov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Khurana, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kim, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kim, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kocher, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kodroff, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Konovalov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Korley, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Korolkova, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Koyuncu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kras, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kraus, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kravitz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Krebs, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kreczko, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Krikler, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kudryavtsev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kumpan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kyre, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lambert, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Landerud, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Larsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Laundrie, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Leason, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lee, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lenardo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Leonard, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Leonard, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lesko, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Levy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liao, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lindote, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Linehan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lippincott, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Loniewski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lopes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lopez-Asamar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L´opez Paredes, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lorenzon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lucero, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Luitz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lyle, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lynch, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Majewski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Makkinje, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Malling, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Manalaysay, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Manenti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mannino, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marangou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Markley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' MarrLaundrie, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marzioni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Maupin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McConnell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McKinsey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McLaughlin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meng, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Miller, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Minaker, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mizrachi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mock, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Molash, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monzani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Morad, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Morrison, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mount, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Murphy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Naim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Naylor, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nedlik, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nehrkorn, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nelson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nesbit, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neves, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nikkel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nikoleyczik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nilima, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O’Dell, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oh, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O’Neill, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O’Sullivan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Olcina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Olevitch, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oliver-Mallory, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oxborough, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pagac, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pagenkopf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pal, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Palladino, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Palmaccio, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Palmer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pangilinan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parveen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Patton, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pease, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Penning, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pereira, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pereira, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Peterson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piepke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pierson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Powell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Preece, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pushkin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Qie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Racine, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ratcliff, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichhart, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rhyne, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Richards, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Riffard, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rischbieter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rodrigues, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rose, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rosero, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossiter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rucinski, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rutherford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saba, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sabarots, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sarychev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sazzad, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schnee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schubnell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scovell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Severson, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Seymour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The lux-zeplin (lz) radioactivity and cleanliness control programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The European Physical Journal C, 80(11):1044, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Street, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bunker, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Miller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schnee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Snyder, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' So.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radon mitigation for the SuperCDMS SNOLAB dark matter experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' AIP Conference Proceedings, 1921(1):050002, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://aip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' scitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5018995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [23] National Nuclear Data Center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='nndc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='bnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='gov/nudat3/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [24] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Benetti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Calaprice, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Calligarich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cambiaghi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carbonara, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavanna, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cocco, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Pompeo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferrari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galbiati, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grandi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mangano, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Montanari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pandola, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rappoldi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Raselli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Roncadelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossella, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rubbia, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santorelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Szelc, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vignoli, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Measurement of the specific activity of 39ar in natural argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 574(1):83–88, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='com/science/article/pii/S0168900207001672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [25] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mei, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Spaans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Koppang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hime, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Keller, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gehman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Prediction of underground argon content for dark matter experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C, 81:055802, May 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='055802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [26] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Agnes, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Agostino, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Albuquerque, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alexander, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alton, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arisaka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Back, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Baldin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Biery, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bonfini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bossa, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bottino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brigatti, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brodsky, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Budano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bussino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cadeddu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cadonati, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cadoni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Calaprice, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Canci, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Candela, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cariello, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carlini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Catalanotti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavalcante, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chepurnov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cocco, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Covone, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Crippa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D’Angelo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D’Incecco, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Davini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Cecco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Deo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Vincenzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Derbin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Devoto, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Eusanio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Pietro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Edkins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Empl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fomenko, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Forster, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Franco, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gabriele, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galbiati, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giganti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goretti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Granato, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grandi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gromov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guardincerri, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hackett, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hall, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Herner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Humble, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hungerford, Al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ianni, An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ianni, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' James, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jollet, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Keeter, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kendziora, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kobychev, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Koh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Korablev, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Korga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kubankin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lissia, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lombardi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Luitz, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ma, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Machulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mandarano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mari, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Maricic, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martoff, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meregaglia, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meyers, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Miletic, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Milincic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Montanari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monte, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Montuschi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monzani, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mosteiro, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mount, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Muratova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Musico, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Napolitano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nelson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Odrowski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Orsini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ortica, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pagani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pallavicini, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pantic, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parmeggiano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pelczar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pelliccia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Perasso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pocar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pordes, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pugachev, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Qian, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Randle, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ranucci, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Razeto, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reinhold, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Renshaw, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Romani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rountree, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sablone, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saggese, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sands, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sangiorgio, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Savarese, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Segreto, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Semenov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shields, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Singh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Skorokhvatov, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smirnov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sotnikov, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stanford, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Suvorov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tartaglia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tatarowicz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Testera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tonazzo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Trinchese, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Unzhakov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vishneva, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vogelaar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Watson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Westerdale, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wilhelmi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 39 Wojcik, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Xiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yoo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zavatarelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zec, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhu, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zuzel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Results from the first use of low radioactivity argon in a dark matter search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 93:081101, Apr 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='081101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [27] J Nowak, Darkside Collaboration, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Separating 39ar from 40ar by cryogenic distillation with aria for dark matter searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' European Physical Journal C: Particles and Fields, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [28] A S Barabash, R R Saakyan, and V I Umatov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' On concentration of 42ar in liquid argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Physics: Conference Series, 718:062004, may 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1742-6596/ 718/6/062004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='J Peurrung, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='W Bowyer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='A Craig, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='L Reeder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Expected atmospheric concentration of 42ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 396(3):425–426, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='com/science/ article/pii/S016890029700819X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [30] P Cennini, S Cittolin, D Dzialo Giudice, JP Revol, C Rubbia, WH Tian, X Li, P Picchi, F Cavanna, G Piano Mortari, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' On atmospheric 39ar and 42ar abundance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 356(2-3):526–529, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [31] John R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rumble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Handbook of Chemistry and Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' CRC Press, New York, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [32] A Lubashevskiy, M Agostini, D Budj´aˇs, A Gangapshev, K Gusev, M Heisel, A Klimenko, A Lazzaro, B Lehnert, Krzysztof Pelczar, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mitigation of 42Ar/42K background for the GERDA Phase II experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The European Physical Journal C, 78(1):1–10, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [33] J Schr¨oder, KO M¨unnich, and DH Ehhalt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Physical sciences: krypton-85 in the troposphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nature, 233(5322):614–615, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [34] collaboration = DEAP Collaboration Adhikari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Electromagnetic backgrounds and potassium-42 in the DEAP- 3600 dark matter detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 100:072009, Oct 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='072009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [35] Andrew Renshaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Procuring 50 Tonnes of Underground Argon for DS- 20k, May 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1239080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [36] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Back, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tsang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alexander, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Elliott, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferrara, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mace, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Overman, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zalavadia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cosmogenic production of 39Ar and 37Ar in argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C, 100:024608, Aug 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='024608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [37] Chao Zhang and Dongming Mei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Evaluation of cosmogenic production of 39Ar and 42Ar for rare-event physics using underground argon, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [38] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Back, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tsang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alexander, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Elliott, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferrara, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mace, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Overman, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zalavadia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cosmogenic production of 39Ar and 37Ar in argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C, 100:024608, Aug 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='024608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parvu and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lazanu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radioactive background for ProtoDUNE detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Cosmology and Astroparticle Physics, 2021(08):042, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [40] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhang and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Evaluation of cosmogenic production of 39Ar and 42Ar for rare-event physics using underground argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astroparticle Physics, 142:102733, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='com/ science/article/pii/S0927650522000408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [41] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Szydagis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Instruments, 5:13, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3390/ instruments5010013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [42] Avinay Bhat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' MeV Scale Physics in MicroBooNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' PhD thesis, Syracuse U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [43] B J P Jones, C S Chiu, J M Conrad, C M Ignarra, T Katori, and M Toups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Instrumentation, 8(07):P07011–P07011, jul 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1748-0221/8/07/p07011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [44] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Agostinelli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Allison, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Amako, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Apostolakis, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Araujo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arce, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Asai, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Axen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Banerjee, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barrand, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Behner, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bellagamba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boudreau, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Broglia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brunengo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Burkhardt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chauvie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chuma, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chytracek, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cooperman, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cosmo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Degtyarenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dell’Acqua, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Depaola, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dietrich, Large Low Background kTon-Scale LArTPCs 40 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Enami, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Feliciello, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferguson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fesefeldt, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Folger, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Foppiano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Forti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giannitrapani, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gibin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G´omez Cadenas, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gonz´alez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gracia Abril, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greeniaus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Greiner, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grichine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grossheim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guatelli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gumplinger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hamatsu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hashimoto, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hasui, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Heikkinen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Howard, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ivanchenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Johnson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jones, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kallenbach, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kanaya, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kawabata, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kawabata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kawaguti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kelner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kent, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kimura, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kodama, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kokoulin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kossov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kurashige, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lamanna, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lamp´en, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lara, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lefebure, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Liendl, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lockman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Longo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Magni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Maire, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Medernach, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Minamimoto, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mora de Freitas, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Morita, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Murakami, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nagamatu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nartallo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nieminen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nishimura, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ohtsubo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Okamura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O’Neale, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oohata, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paech, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Perl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pfeiffer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pia, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ranjard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rybin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sadilov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Salvo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sasaki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Savvas, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sawada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Scherer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sei, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sirotenko, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Starkov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stoecker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sulkimo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Takahata, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tanaka, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tcherniaev, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Safai Tehrani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tropeano, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Truscott, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Uno, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Urban, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Urban, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Verderi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walkden, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wander, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Weber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wellisch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wenaus, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Williams, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wright, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yamada, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yoshida, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zschiesche.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' ”geant4—a simulation toolkit”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, July 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1016/S0168-9002(03)01368-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [45] E Church.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large-LArTPC-Optical Monte Carlo Code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='com/echurch/rdecay02/ tree/liquid_deception, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [46] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Totani, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sato, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dalhed, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wilson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Future Detection of Supernova Neutrino Burst and Explosion Mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The Astrophysical Journal, 496(1):216–225, Mar 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [47] Steven Gardiner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nuclear de-excitations in low-energy charged-current νe scattering on 40Ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C, 103:044604, Apr 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='044604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [48] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Abi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Supernova neutrino burst detection with the Deep Underground Neutrino Experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C, 81(5):423, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1140/epjc/s10052-021-09166-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [49] Shirley Weishi Li, Luke F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Roberts, and John F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Beacom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Exciting Prospects for Detecting Late-Time Neutrinos from Core-Collapse Supernovae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 103(2):023016, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='023016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [50] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Odrzywolek, Marcin Misiaszek, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kutschera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Detection possibility of the pair - annihilation neutrinos from the neutrino - cooled pre-supernova star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 21:303–313, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' astropartphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [51] Andrzej Odrzywolek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Misiaszek, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kutschera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutrinos from pre-supernova star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Acta Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Polon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B, 35:1981, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [52] Andrzej Odrzywolek and Alexander Heger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutrino signatures of dying massive stars: From main sequence to the neutron star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Acta Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Polon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B, 41:1611–1628, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [53] Chinami Kato, Hiroki Nagakura, Shun Furusawa, Koh Takahashi, Hideyuki Umeda, Takashi Yoshida, Koji Ishidoshiro, and Shoichi Yamada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutrino emissions in all flavors up to the pre-bounce of massive stars and the possibility of their detections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 848(1):48, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3847/1538-4357/aa8b72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [54] Kelly M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Patton, Cecilia Lunardini, and Robert J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Farmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Presupernova neutrinos: realistic emissivities from stellar evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 840(1):2, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3847/1538-4357/aa6ba8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [55] Kelly M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Patton, Cecilia Lunardini, Robert J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Farmer, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Timmes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 851(1):6, Dec 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3847/1538-4357/aa95c4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [56] Mainak Mukhopadhyay, Cecilia Lunardini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Timmes, and Kai Zuber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Presupernova neutrinos: directional sensitivity and prospects for progenitor identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 899(2):153, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3847/ 1538-4357/ab99a6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [57] Daniel Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Freedman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Coherent effects of a weak neutral current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 9:1389–1392, Mar 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [58] V B Kopeliovich and L L Frankfurt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Isotopic and chiral structure of neutral current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' (USSR) (Engl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Transl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' ), v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 145-147, 2 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='osti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='gov/biblio/4289450.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [59] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Akimov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Albert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' An, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Awe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barbeau, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Becker, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Belov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bernardi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Blackston, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Blokland, and et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 41 Physical Review Letters, 126(1), Jan 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 012002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [60] Scholberg, Kate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The CEvNS Glow from a Supernova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 3464639, November 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [61] Ivan Esteban, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Jordi Salvado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Updated constraints on non-standard interactions from global analysis of oscillation data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' JHEP, 08:180, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [Addendum: JHEP 12, 152 (2020)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [62] Juergen Reichenbacher and Gleb Sinev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' NSI Searches with Current and Future Neutrino and Dark-Matter Experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' publication in preparation, Dec 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [63] Alexander Friedland, Cecilia Lunardini, and Carlos Pena-Garay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Solar neutrinos as probes of neutrino matter interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B, 594:347, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [64] Alexander Friedland, Michael L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Graesser, Ian M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Shoemaker, and Luca Vecchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Probing Nonstandard Standard Model Backgrounds with LHC Monojets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B, 714:267–275, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [65] BOREXINO Collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nature, 587(7835):577–582, Nov 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1038/s41586-020-2934-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [66] N´uria Vinyoles, Aldo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Serenelli, Francesco L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Villante, Sarbani Basu, Johannes Bergstr¨om, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gonzalez- Garcia, Michele Maltoni, Carlos Pe˜na-Garay, and Ningqiang Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A New Generation of Standard Solar Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The Astrophysical Journal, 835(2):202, jan 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3847/ 1538-4357/835/2/202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [67] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Franco, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giganti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Agnes, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Agostino, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bottino, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Canci, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Davini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' De Cecco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galbiati, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goretti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hungerford, Al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ianni, An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ianni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jollet, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martoff, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meregaglia, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pagani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pallavicini, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pantic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pocar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Razeti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Renshaw, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Suvorov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Testera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tonazzo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zavatarelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Solar neutrino detection in a large volume double-phase liquid argon experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Cosmology and Astroparticle Physics, 2016(08):017–017, aug 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1475-7516/2016/08/017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [68] nEXO Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Al Kharusi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alamre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Albert, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alfaris, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Anton, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arnquist, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Badhrees, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Barbeau, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Beck, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Belov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bhatta, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bourque, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brodsky, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brown, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brunner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Burenkov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chambers, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Charlebois, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chiu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cleveland, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Coon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cˆot´e, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Craycraft, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cree, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dalmasson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Daniels, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Danovitch, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Darroch, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Daugherty, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Daughhetee, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DeVoe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Delaquis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Der Mesrobian-Kabakian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Vacri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dilling, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ding, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dolinski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dragone, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Echevers, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fabris, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fairbank, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fairbank, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Farine, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferrara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Feyzbakhsh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fierlinger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fontaine, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fudenberg, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gallina, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giacomini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gornea, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gratta, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Haller, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hansen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Harris, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hasi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Heffner, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hoppe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H¨oßl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' House, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hufschmidt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hughes, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ito, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Iverson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jamil, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jessiman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jewell, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jiang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Karelin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kaufman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kenney, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Killick, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kodroff, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Koffas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kravitz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kr¨ucken, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kuchenkov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kumar, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Larson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lenardo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Leonard, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lewis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Licciardi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lv, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' MacLellan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McFarlane, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Michel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moore, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Murray, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Newby, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nguyen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ning, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Njoya, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nolet, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nusair, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Odgers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Odian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oriunno, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Orrell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ortega, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ostrovskiy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Overman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Parent, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Patel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pe˜na-Perez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piepke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pocar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pratte, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Qiu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Radeka, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Raguzin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rescia, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reti`ere, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Robinson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossignol, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rowson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Roy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Runge, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sangiorgio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schmidt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schneider, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schubert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Segal, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Skarpaas VIII, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soma, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Spitaels, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' St-Hilaire, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stekhanov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stiegler, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tarka, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Todd, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tolba, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Totev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tsang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tsang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vachon, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Veenstra, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Veeraraghavan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Visser, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vogel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vuilleumier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wagenpfeil, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ward, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Watkins, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Weber, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wei, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wen, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wichoski, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wrede, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Xia, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zeldovich, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhou, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ziegler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' nEXO Pre-Conceptual Design Report, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='11142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [69] NEXT Collaboration, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Adams, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' ´Alvarez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arazi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Arnquist, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R Azevedo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bailey, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ballester, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Benlloch-Rodr´ıguez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Borges, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Byrnes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C´arcel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carri´on, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cebri´an, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Church, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Conde, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Contreras, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Denisenko, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D´ıaz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D´ıaz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Escada, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Esteve, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Felkai, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Large Low Background kTon-Scale LArTPCs 42 Fernandes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferrario, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ferreira, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Foss, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Freitas, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Freixa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Generowicz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goldschmidt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G´omez-Cadenas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gonz´alez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gonz´alez-D´ıaz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gosh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guenette, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guti´errez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Haefner, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hafidi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hauptman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Henriques, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hernando Morata, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Herrero, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Herrero, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ho, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ifergan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jones, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kekic, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Labarga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Laing, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lebrun, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L´opez-March, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Losada, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mart´ın-Albo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mart´ınez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mart´ınez-Vara, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mart´ınez-Lema, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McDonald, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meziani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monrabal, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monteiro, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mora, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mu˜noz Vidal, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Newhouse, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Novella, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nygren, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Oblak, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Palmeiro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Para, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P´erez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Querol, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Redwine, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Renner, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ripoll, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rivilla, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rodr´ıguez Garc´ıa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rodr´ıguez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rogero, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rogers, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Romeo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Romo-Luque, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' dos Santos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sim´on, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sorel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stanford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Teixeira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Thapa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Toledo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Torrent, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Us´on, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Veloso, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Vuong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Webb, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Weiss-Babai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' White, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Woodruff, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yahlali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='06467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [70] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zennamo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Psihas, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mastbaum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Snowmass 2021 Letter of Interest: “DUNE-Beta: Searching for Neutrinoless Double Beta Decay with a Large LArTPC”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='snowmass21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/docs/ files/summaries/NF/SNOWMASS21-NF5_NF10-IF8_IF0_Zennamo-175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [71] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zennamo A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mastbaum, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Psihas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Physical Review D, 106(9), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='092002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [72] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Foreman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Acciarri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Asaadi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Badgett, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Blaszczyk, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bouabid, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bromberg, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Carey, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavanna, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cevallos Aleman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chatterjee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Evans, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Falcone, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Flanagan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fleming, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garcia- Gamez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gelli, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ghosh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gomes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gramellini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gran, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hamilton, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hill, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hugon, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Iwai, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kearns, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kemp, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kobilarcik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kordosky, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kryczy´nski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Linehan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Machado, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Maruyama, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Metcalf, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moura, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nichol, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nunes, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nutini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Olivier, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Palamara, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Paulucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pulliam, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Raaf, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rebel, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rodrigues, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mendes Santos, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Schmitz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Segreto, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soderberg, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Spagliardi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' John, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stancari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Szelc, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tzanov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walker, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Williams, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Calorimetry for low-energy electrons using charge and light in liquid argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 101:012010, Jan 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/ PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='012010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [73] Jason Philip Brodsky, Samuele Sangiorgio, Michael Heffner, and Tyana Stiegler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Background Discrimination for Neutrinoless Double Beta Decay in Liquid Xenon Using Cherenkov Light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A, 922:76–83, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='nima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='057.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [74] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Avasthi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bowyer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bray, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Brunner, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Catarineu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Church, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guenette, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Haselschwardt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hayes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Heffner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hertel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Humble, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jamil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Leach, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lenardo, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lippincott, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Marino, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McKinsey, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Miller, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Moore, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mong, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monreal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monzani, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Olcina, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Orrell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pocar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rowson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sangiorgio, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stanford, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Visser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 104:112007, Dec 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 112007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [75] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alexander, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aprahamian, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Avetisyan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Back, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cocco, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DeJongh, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Galbiati, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grandi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Guardincerri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kendziora, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lippincott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Love, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lyons, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Manenti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Martoff, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Meng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Montanari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mosteiro, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Olvitt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pordes, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Qian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rossi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Saldanha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sangiorgio, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Siegl, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Strauss, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Tatarowicz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Watson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Westerdale, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Yoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 91:092007, May 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [76] collaboration = DEAP Collaboration Adhikari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pulse-shape discrimination against low-energy Ar-39 beta decays in liquid argon with 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='5 tonne-years of DEAP-3600 data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' European Physical Journal C, 81:823, Sep 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='com/article/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1140/epjc/s10052-021-09514-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [77] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giovanetti and the Global Argon Dark Matter Collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Snowmass 2021 Letter of Interest: “Searching for Dark Matter with Liquid Argon”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='snowmass21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/docs/files/summaries/ CF/SNOWMASS21-CF1_CF0_Giovanetti-172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [78] Christopher McCabe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astrophysical uncertainties of dark matter direct detection experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys- ical Review D, 82(2), Jul 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='023530, Large Low Background kTon-Scale LArTPCs 43 DOI=10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/physrevd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='023530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [79] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reichenbacher J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Genovesi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Illustration and Developed Model of Seasonal Variation of Detection Rate of WIMP Dark Matter for Simulations Using NEST, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Private Communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [80] Chris Savage, Katherine Freese, and Paolo Gondolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Annual modulation of dark matter in the presence of streams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Physical Review D, 74(4), Aug 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 043531, DOI=10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/physrevd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='043531.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [81] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Akerib et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' D, 101(5):052002, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='052002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [82] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aprile et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Projected WIMP sensitivity of the XENONnT dark matter experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' JCAP, 11:031, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1475-7516/2020/11/031.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [83] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Aalbers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics, 3 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [84] Bianca Bottino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DarkSide-20k and the Future Liquid Argon Dark Matter Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' PoS, EPS-HEP2021:169, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='22323/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='0169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [85] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Szydagis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Instruments, 5(1):13, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='3390/ instruments5010013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [86] Mihaela Parvu and Ionel Lazanu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Can strangelets be detected in a large LAr neutrino detector?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Cosmology and Astroparticle Physics, 2021(11):040, 7 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://iopscience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='iop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/ article/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1475-7516/2021/11/040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [87] Stephen Hawking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gravitationally collapsed objects of very low mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 152:75, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1093/mnras/152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [88] Pisin Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Inflation induced Planck-size black hole remnants as dark matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' New Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 49:233–239, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [89] Ronald J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Adler, Pisin Chen, and David I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santiago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' The Generalized uncertainty principle and black hole remnants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 33:2101–2108, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [90] Ionel Lazanu, Sorina Lazanu, and Mihaela Pˆarvu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' About detecting very low mass black holes in LAr detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' JCAP, 10:046, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1475-7516/2020/10/046.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [91] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Adhikari, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ajaj, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Alp´ızar-Venegas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Auty, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Benmansour, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bina, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Bonivento, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Boulay, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cadeddu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' C´ardenas-Montes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cavuoti, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Cleveland, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Corning, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Daugherty, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' DelGobbo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Di Stefano, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Doria, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Dunford, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ellingwood, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Erlandson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Farahani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fatemighomi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Fiorillo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gallacher, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garc´ıa Abia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Garg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Giampa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Goeldi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Gorel, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Graham, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Grobov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hallin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hamstra, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Hugues, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ilyasov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Joy, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jigmeddorj, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Jillings, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kamaev, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kaur, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kemp, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Kochanek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ku´zniak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Langrock, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lehnert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Leonhardt, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Levashko, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lissia, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Litvinov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lock, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Longo, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Machulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McDonald, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McElroy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' McLaughlin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mielnichuk, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Mirasola, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Monroe, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Olivi´ero, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Peeters, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Perry, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pesudo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Picciau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Piro, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Pollmann, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Raj, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rand, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rethmeier, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Reti`ere, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rodr´ıguez-Garc´ıa, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Roszkowski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ruhland, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sanchez Garc´ıa, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' S´anchez-Pastor, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Santorelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Seth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sinclair, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Skensved, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Smith, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sonley, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stainforth, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Stringer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Sur, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' V´azquez-J´auregui, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Viel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walding, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Waqar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Ward, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Westerdale, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Willis, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Zu˜niga Reyes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' First Direct Detection Constraints on Planck-Scale Mass Dark Matter with Multiple-Scatter Signatures Using the DEAP-3600 Detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=', 128:011801, Jan 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' 011801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [92] Daniel Carney, Nirmal Raj, Yang Bai, Joshua Berger, Carlos Blanco, Joseph Bramante, Christopher Cappiello, Ma´ıra Dutra, Reza Ebadi, Kristi Engel, Edward Kolb, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Patrick Harding, Jason Kumar, Gordan Krnjaic, Rafael F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lang, Rebecca K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Leane, Benjamin V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Lehmann, Shengchao Li, Andrew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Long, Gopolang Mohlabeng, Ibles Olcina, Elisa Pueschel, Nicholas L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Rodd, Carsten Rott, Dipan Sengupta, Bibhushan Shakya, Ronald L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Walsworth, and Shawn Westerdale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Snowmass2021 Cosmic Frontier White Paper: Ultraheavy Particle Dark Matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/abs/2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='06508, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' [93] Klaes MØller, Anna M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Suliga, Irene Tamborra, and Peter B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Denton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' Journal of Cosmology Large Low Background kTon-Scale LArTPCs 44 and Astroparticle Physics, 2018(05):066–066, may 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} +page_content='1088/1475-7516/ 2018/05/066.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf'} diff --git a/etE0T4oBgHgl3EQfXAB2/content/2301.02286v1.pdf b/etE0T4oBgHgl3EQfXAB2/content/2301.02286v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..bc06fe66220ddff026640fa56af942387f8433b6 --- /dev/null +++ b/etE0T4oBgHgl3EQfXAB2/content/2301.02286v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dc9d75af96766887f935235dfe28cf3ad4008cd555ea039bff185e75a2a82668 +size 17966479 diff --git a/g9E3T4oBgHgl3EQf4AtG/content/2301.04768v1.pdf b/g9E3T4oBgHgl3EQf4AtG/content/2301.04768v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c2d087e0501bf7cc523e1740e5c3dff88d97cea8 --- /dev/null +++ b/g9E3T4oBgHgl3EQf4AtG/content/2301.04768v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cc57b6441fd2cceb7f70f9cb264875004dc3530fcad229c39242ddf1e41eadd8 +size 1756837 diff --git a/g9E3T4oBgHgl3EQf4AtG/vector_store/index.faiss b/g9E3T4oBgHgl3EQf4AtG/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8a5048256f3dc9af8483462d2b97b3a6afea3d72 --- /dev/null +++ b/g9E3T4oBgHgl3EQf4AtG/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e2161798714c0c1b1eb29541d7126f0e313952ea53cadcbd7929b103a5bb3e19 +size 1900589 diff --git a/gNE_T4oBgHgl3EQf2xw0/content/tmp_files/2301.08342v1.pdf.txt b/gNE_T4oBgHgl3EQf2xw0/content/tmp_files/2301.08342v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c90f0665501dae9be79834b65bd129a472be0b0f --- /dev/null +++ b/gNE_T4oBgHgl3EQf2xw0/content/tmp_files/2301.08342v1.pdf.txt @@ -0,0 +1,1229 @@ +THE HORNICH-HLAWKA FUNCTIONAL INEQUALITY FOR +FUNCTIONS WITH POSITIVE DIFFERENCES +CONSTANTIN P. NICULESCU AND SUVRIT SRA +Version 2 +Abstract. We analyze the role played by n-convexity for the fulfillment of +a series of linear functional inequalities that extend the Hornich-Hlawka func- +tional inequality, f (x) + f (y) + f (z) + f (x + y + z) ≥ f (x + y) + f (y + z) + +f (z + x) + f(0), including extensions to the case of positive operators. +1. Introduction +Many noteworthy inequalities are related to the following problem: +Problem 1. Suppose that S is an abelian additive semigroup with neutral element +0, f a function defined on S and taking values in an ordered vector space E (or in +its positive cone E+). For n ≥ 2, find the linear inequalities relating +�n +i=1 f(xi), +� +1≤i 0. A surprising result is Theorem 9, which shows that the function +det has positive differences of any order (though it is not completely monotonic). +Probably the same happens for other immanants function (like the permanents), +but we were able to prove only the positivity of differences of order 3. [TODO +TODO]. +For the reader’s convenience, background on higher order convexity and the +theory of ordered Banach spaces is summarized in Section 2. +2. Preliminaries +The study of higher order convexity was initiated by Hopf [13] and Popoviciu +[29, 31], who defined it in terms of divided differences of a function. Assuming +f a real-valued function defined on a real interval I, the divided differences of +order 0, 1, . . . , n associated to a family x0, x1, . . . , xn of n + 1 distinct points are +respectively defined by the formulas +[x0; f] = f(x0) +[x0, x1; f] = f(x1) − f(x0) +x1 − x0 +... +[x0, x1, ..., xn; f] = [x1, x2, ..., xn; f] − [x0, x1, ..., xn−1; f] +xn − x0 += +�n +j=0 +f(xj) +� +k̸=j (xj − xk). +Notice that all these divided differences are invariant to permutations of the points +x0, x1, ..., xn. As a consequence, we may always assume that x0 < x1 < · · · < xn. +A function f is called n-convex (respectively n-concave) if all divided differ- +ences [x0, x1, . . . , xn; f] are nonnegative (respectively nonpositive). In particular, +0-convex functions are precisely the nonnegative functions, 1-convex functions the +nondecreasing ones, while 2-convex functions are simply the usual convex functions. +If f is n times differentiable, then a repeated application of Lagrange’s mean +value theorem yields the existence of a point ξ ∈ (mink xk, maxk xk) such that +[x0, x1, ..., xn; f] = f (n)(ξ) +n! +. +As a consequence, one obtains the following practical criterion of n-convexity. +Lemma 1. Every continuous function f defined on an interval I which is n times +differentiable on the interior of I is n-convex provided that f (n) ≥ 0. +A big source of convex functions of higher order is provided by the Bernstein func- +tions and the completely monotone functions. Recall that a function f : (0, ∞) → +R+ is a Bernstein function if it is infinitely differentiable and verifies the condition +(−1)n+1f (n)(x) ≥ 0 +for all x > 0 and n ≥ 1; + +4 +CONSTANTIN P. NICULESCU AND SUVRIT SRA +while, the function f is completely monotone if instead +(−1)nf (n)(x) ≥ 0 +for all x > 0 and n ≥ 0. +By definition, a function f : [0, ∞) → R+ is a Bernstein function (respectively +a completely monotone function) if it is continuous and its restriction of to (0, ∞) +has the respective property. +Every Bernstein function is (2n + 1)-convex and every completely monotone +function is 2n-convex for every n ≥ 0. +If f : [0, ∞) → R+ is a Bernstein function then so is f −f(0); if f is a completely +monotone function then f(0) − f is a Bernstein function. Some simple examples of +Bernstein functions are +x/(x + 1), 1 − e−αx (for α > 0), +log(1 + x), (x − 1)/ log x and xα (for 0 < α ≤ 1). +A nice account of the two aforementioned classes of functions is offered by the +authoritative monograph of Schilling, Song and Vondraˇcek [34]. +Besides the five examples mentioned above some other examples +of 3-convex +functions on R+ are xα (for α ∈ (0, 1] ∪ [2, ∞)), −x2 + √x, −x log x, sinh, cosh, +− log (Γ(x)) etc. +The function 1 − (x − 3) + (x−3)3 +6 +is continuous and 3-convex on R+ but not +n-convex for any n ∈ {0, 1, 2} . +The polynomials with positive coefficients and the exponential are n-convex for +every n ≥ 0. +All polynomials of degree less than or equal to 2 are both 3-convex and 3-concave. +The following approximation theorem due to Popoviciu [30] (see also [11, Theo- +rem 1.3.1 (i), pg. 20]) allows us to reduce reasoning with n-convex functions to the +case where they are also differentiable. +Theorem 1 (Popoviciu’s approximation theorem). If a continuous function f : +[0, 1] → R is k-convex, then so are the Bernstein polynomials associated to it, +Bn(f)(x) = +n +� +i=0 +�n +i +� +xi(1 − x)n−if +� i +n +� +. +Moreover, by the well-known property of simultaneous uniform approximation of +a function and its derivatives by Bernstein polynomials and their derivatives, it +follows that Bn(f) and any derivative (of any order) of it, converge uniformly to f +and to its derivatives, correspondingly. +Using a change of variable, one can easily see that the approximation theorem +extends to functions defined on compact intervals [a, b] with a < b. +Lemma 2. (i) The composition of two continuous functions that are increasing, +concave or 3-convex is a function of the same nature. +(ii) If f : R+ → R+ is a continuous 3-convex function which is also nondecreas- +ing and concave, then the same properties hold for f α if α ∈ (0, 1]. +Proof. According to Theorem 1, we may reduce the proof to the case where the +involved functions are also of class C3. In this case the proof can be completed by +computing the sign of the derivatives of order 1, 2 and 3. +□ + +5 +The n-convex functions taking values in an ordered Banach space can be in- +troduced in the same manner as real-valued n-convex functions by using divided +differences. We recall useful definitions below. +Recall that an ordered Banach space is any Banach space E endowed with the +ordering ≤ associated to a closed convex cone E+ via the formula +x ≤ y if and only if y − x ∈ E+, +such that +E = E+ − E+, +(−E+) ∩ E+ = {0} , +and +0 ≤ x ≤ y in E implies ∥x∥ ≤ ∥y∥ . +The basic facts concerning the theory of ordered Banach spaces are made available +by the book of Schaefer and Wolff [33]. See [25] for a short overview centered on +two important particular cases: Rn, the n-dimensional Euclidean space endowed +with the coordinate-wise ordering, and Sym(n, R) the ordered Banach space of all +n × n symmetric matrices with real coefficients endowed with the operator norm +∥A∥ = sup +∥x∥≤1 +|⟨Ax, x⟩| , +and the L¨owner (partial) ordering, +A ≤ B if and only if ⟨Ax, x⟩ ≤ ⟨Bx, x⟩ for all x ∈ Rn. +Here the operator norm can be replaced by any Schatten norm, in particular +with the Frobenius norm, +∥A∥F = +��N +i=1 +�N +j=1 a2 +ij +�1/2. +The Frobenius norm is associated to the trace inner product +⟨A, B⟩ = trace(AB). +The positive cone of Rn is the first orthant Rn ++, while the positive cone of +Sym(n, R) is the set Sym+(n, R) consisting of all positive semi-definite matrices. We +denote by Rn +++ and Sym++(n, R) respectively the interior of Rn ++ and Sym+(n, R). +Remark 1. Much of the study of vector-valued convex functions can be reduced to +that of real-valued functions. Indeed, in any ordered Banach space E, any inequality +of the form u ≤ v is equivalent to x∗(u) ≤ x∗(v) for all x∗ ∈ E∗ ++. +As a consequence, a function f : I → E is respectively nondecreasing, convex +or n-convex if and only if x∗ ◦ f has this property whenever x∗ ∈ E∗ is a positive +functional. For E = Rn, this inequality reduces to the components of f. +Combining Remark 1 with Lemma 1 one obtains the following practical test of +3-convexity for vector-valued differentiable functions: +Theorem 2. Suppose that f is a continuous function defined on an interval I and +taking values in an ordered Banach space E. If f is three times differentiable on +the interior of I and f ′′′ ≥ 0, then f is a 3-convex function. +An example illustrating Theorem 2 is provided by the function +f : R+ → Sym(n, R), +f(t) = −e−tA, + +6 +CONSTANTIN P. NICULESCU AND SUVRIT SRA +associated to a positive semi-definite matrix A ∈ Sym(n, R). This function is of +class C∞ and its first three derivatives are given by the formulas +f ′(t) = Ae−tA, +f ′′(t) = −A2e−tA, +f ′′′(t) = A3e−tA. +Thus f is nondecreasing, concave and 3-convex (according to the ordering of Sym(n, R)). +The matrix A3e−tA is positive semidefinite since the product of commuting positive +semi-definite matrices is also positive semidefinite. +3. The functional inequality of Popoviciu +Popoviciu [32] published in 1946 a short note on a functional inequality that we +restate here in a slightly more general form. +Theorem 3. Suppose that E is an ordered Banach space and f : [0, A] → E is a +continuous n-convex function (n ≥ 1). Then +f( +�n +i=1 xi) − +� +1≤i1<··· 0. The function M proves useful in statistics as the Fr´echet- +Hoeffding upper bound for joint distribution functions of random variables. +See +Nelsen [24]. +Popoviciu [29, 31] introduced the concept of higher order convexity for functions +of several variables using multiple divided differences. To gain some insight, let us +consider the case of a function f = f(x, y) defined on a product I × J of intervals, +and let x0, x1, . . . , xm be distinct points in I, and y0, y1, . . . , yn be distinct points +in J. The divided double differences are defined via the formula +� +x0, +x1, +. . . +, xm +y0, +y1, +. . . +, yn ; f +� += [x0, x2, . . . , xm; [y0, y1, . . . , yn; f((x, ·)]] +(3.2) += [y0, y1, . . . , yn; [x0, x1, . . . , xm; f((·, y)]]. +Notice that this formula is invariant under the permutation of variables xk (and +also under the permutation of the variables yk). +Drawing a parallel to the one dimensional case, Popoviciu [29, pg. 78] calls a +function f : I × J → R convex of order (m, n) if the divided differences +� x0, +x1, +. . . +, xm +y0, +y1, +. . . +, yn ; f +� +are nonnegative for all distinct points x0, x1, ..., xm ∈ I and y0, y1, ..., yn ∈ J. +Needless to say, the study of this concept of convexity implies a formidable +formalism, so little progress was made since the times of Popoviciu. The only one +recent contribution is [12] that studies the cases m = n = 1 and m = n = 2. +4. The case of completely monotone functions on cones +The theory of completely monotone functions can be easily extended to the +context of several variables using convex analysis. In what follows V denotes a +finite-dimensional real vector space and C an open convex cone in V with closure +C. Its dual cone is C∗ = {y ∈ E∗ : ⟨y, x⟩ ≥ 0 for all x ∈ C}. The points in C∗ are +linear functionals that are nonnegative on C. + +10 +CONSTANTIN P. NICULESCU AND SUVRIT SRA +Definition 1. A function f : C → R+ is called completely monotone if f is C∞ on +C and, for all integers k ≥ 1 and all vectors v1, ..., vk ∈ C, we have +(4.1) +(−1)k Dv1 · · · Dvkf(x) ≥ 0 +for all x ∈ C. +Here Dv denotes the directional derivative along the vector v. +A function f : C → R+ is called completely monotone if it is the continuous +extension of a completely monotone function on C. +When C = (0, ∞)n, the condition (4.1) means that +(−1)k +∂kf +∂xi1∂xi2 · · · ∂xik +(x) ≥ 0 +for all x ∈ (0, ∞)n and all sets of indices 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n of arbitrary +length k. +As in the case of completely monotone functions of one real variable, these func- +tions can be obtained as Laplace transforms of Borel measures on the dual cone. +Theorem 6. (Bernstein-Hausdorff-Widder-Choquet theorem). Let f be a nonnega- +tive continuous function on the open convex cone C. Then f is completely monotone +if and only if it is the Laplace transform of a unique Borel measure µ supported on +the dual cone C∗, that is, +f(x) = +� +C∗ e−⟨y,x⟩dµ(y) +for all x ∈ C. +When f admits a continuous extension to C, the last equality works for all x ∈ C. +For details, see Choquet [8]. +Remark 2. Finding the positive Borel measure µ that makes the formula of The- +orem 6 working represents a practical way for checking the complete monotonicity +of f. So is the case of Riesz kernels: If α1, α2, ..., αN > 0, then +x−α1 +1 +x−α2 +2 +· · · x−αN +N += +� +RN +++ +e−⟨y,x⟩ x−α1 +1 +x−α2 +2 +· · · x−αN +N +Γ(α1)Γ(α2) · · · Γ(αN)dy +for all x ∈ RN +++. See [15, Proposition 2.7]. A more subtle case is that of inverse +powers of the determinant +f (X) = (det X)−ρ , +X ∈ Sym++(N, R), +for which Scott and Sokal [35] have shown that is completely monotone if and only +if ρ ∈ {0, 1/2, 1, 3/2, ..., (N − 1) /2} ∪ ((N − 1) /2, ∞). See also [15, Theorem 4.1]. +It is worth noticing that Siegel established in 1929 the formula +(det A)−ρ = +� +Sym++(N,R) +e− trace AX +(det X)ρ dX +πn(n−1)/4Γ(ρ)Γ (ρ − 1/2) · · · Γ (ρ − (n − 1)/2)) +for all A ∈ Sym++(N, R) and ρ ≥ (N + 1) /2. See [38, Hilfssatz 37, pg. 585]. +We next extend (and improve) a result due to Sendov and Zitikis; see [36, The- +orem 4.1, pg. 76]. +Theorem 7. Every completely monotone function f : C → R+ satisfies +(4.2) +�n +i=1 f(xi) − +� +1≤i 0 such that E−α +m,n is +completely monotone on RN +++ for all α ≥ α′—see [15, Theorem 6.4]. +Remark 3. The restriction of e−x to R+ is a completely monotone function and +thus it verifies the inequality +e−x1 + e−x2 + e−x3 + e−(x1+x2+x3) ≥ e−(x1+x2) + e−(x2+x3) + e−(x3+x1). +However there x1, x2, x3 > 0 such that +e−x1 + e−x2 + e−x3 + e−(x1+x2+x3) � e−(x1+x2) + e−(x2+x3) + e−(x3+x1) + e0. +This shows that the inequality +�3 +i=1 f(xi) − +� +1≤i 0. +Then, consider +(X + Y + Z)k+1 ⊗ V ⊗ (X + Y + Z)l += (X + Y + Z) ⊗ +� +(X + Y + Z)k ⊗ V ⊗ (X + Y + Z)l� +≥ (X + Y + Z) ⊗ +� +(X + Y )k ⊗ V ⊗ (X + Y )l ++ (X + Z)k ⊗ V ⊗ (X + Z)l − Xk ⊗ V ⊗ Xl� +, += (X +Y )k+1 ⊗V ⊗(X +Y )l +(X +Z)k+1 ⊗V ⊗(X +Z)l −Xk+1 ⊗V ⊗Xl +T , +where the inequality follows from the induction hypothesis and the elementary +monotonicity properties of the tensor product. It remains to show that the term +T = Z⊗(X+Y )k⊗V ⊗(X+Y )l+Y ⊗(X+Z)k⊗V ⊗(X+Z)l−(Y +Z)⊗Xk⊗V ⊗Xl +is a nonnegative operator. +Since X, Y, Z ≥ 0, it follows that X + Y ≥ X and +X + Z ≥ X. Thus, the positive terms in T attached to Y and Z are clearly bigger +than the respective negative terms, whence T ≥ 0. Inductively, we can conclude +that for fixed l, the inequality in the statement of Lemma 9 holds for all k ≥ 0. +Applying a similar argument for l, we conclude that this inequality works in full +generality. +□ +We are now in a position to detail the proof of Theorem 11. +Proof of Theorem 11. Using the auxiliary function +fp(Z) = (Z + X)p − Xp, +the inequality of interest (5.3) can be rewritten as +fp(A) + fp(B) + fp(C) + fp(A + B + C) ≥ fp(A + B) + fp(B + C) + fp(C + A). + +17 +Now introduce the function +gp(Z) = fp(Z)+fp(B)+fp(C)+fp(Z +B+C)−fp(Z +B)−fp(Z +C)−fp(B+C). +We will show that gp is monotonic (as a map from Sym+(N, R) into itself, under +the L¨owner order). Once this monotonicity is established we can conclude that +gp(A) ≥ gp(0) = 0 +for every A ∈ Sym+(N, R), +a fact equivalent to the assertion of Theorem 11. +Monotonicity of gp follows from Lemma 6 by considering its derivative. To that +end, consider the (directional) derivative of the map Φ(Z) = Zp: +D(Zp)[V ] = V ⊗ Z ⊗ · · · ⊗ Z + Z ⊗ V · · · ⊗ Z + · · · + Z ⊗ · · · ⊗ Z ⊗ V += +p−1 +� +j=0 +Zj ⊗ V ⊗ Zp−1−j, +whenever Z ∈ Sym++(N, R) and V ∈ Sym+(N, R). See [6, Eq. (2.13), pg. 44]. +Indeed, applying this formula to fp(Z) = (Z + X)p − Xp we obtain +Dfp(Z)[V ] = +p−1 +� +j=0 +(Z + V )j ⊗ V ⊗ (Z + V )p−1−j, +which in turn leads to the identity +Dgp(Z)[V ] += Dfp(Z)[V ] + Dfp(Z + B + C)[V ] − Dfp(Z + B)[V ] − Dfp(Z + C)[V ] += +p−1 +� +j=0 +� +(Z + V )j ⊗ V ⊗ (Z + V )p−1−j +(Z+B+C+V )j⊗V ⊗(Z+B+C+V )p−1−j +−(Z+B+V )j⊗V ⊗(Z+B+V )p−1−j −(Z + C + V )j ⊗ V ⊗ (Z + C + V )p−1−j� +. +But this sum evaluates to a positive quantity, which follows from Lemma 9 upon +setting k ← j, l ← p − 1 − j and x ← x + j. Now the proof is complete. +□ +6. Further comments and extensions +6.1. Multivariable case for positive operators. Given A1, ..., An, X ∈ Sym+(N, R) +and p ∈ N, let us consider the matrices +(6.1) +Sp +0 = ⊗pX, +Sp +k = +� +1≤i1<···